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ABSTRACT

Bifurcations from spherically symmetric states can occur in many physical and biological sys-
tems. These include the development of a spherical ball of cells into an asymmetrical state and
the buckling of a sphere under pressure. They also occur in the evolution of reaction—diffusion
systems on a spherical surface and in Rayleigh-Bénard convection in a spherical shell. Many
of the behaviours of these systems can be explained by their underlying spherical symmetry
alone. Using results from the area of mathematics known as equivariant bifurcation theory we
can use group theoretical methods both to predict the symmetries of the solutions which are
expected to result from bifurcations with symmetry and compute their stability. In this thesis

both stationary and Hopf bifurcation with spherical symmetry are discussed.

Firstly, using group theoretical techniques, the symmetries of the periodic solutions which can
be found at a Hopf bifurcation with spherical symmetry are computed. This computation has
been carried out previously but contains some errors which are corrected here. For one partic-
ular representation of the group of symmetries of the sphere, O(3), the stability properties of
the bifurcating branches of periodic solutions resulting from the Hopf bifurcation are analysed

and a survey is carried out of other periodic and quasiperiodic solutions which can exist.

Secondly, symmetry considerations are used to investigate the existence and stability proper-
ties of symmetric spiral patterns on the surface of a sphere which result from stationary bifur-
cations. It is found that in the case of the Swift-Hohenberg equation spiral patterns with one
or more arms can exist and be stable on spheres of certain radii. Although one-armed spirals in
the Swift-Hohenberg equation are stationary solutions, it is shown that generically one-armed

spirals on spheres must drift.
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CHAPTER 1

INTRODUCTION

Bifurcations from spherical symmetry can be observed in many physical systems including
the buckling of a sphere under pressure and Rayleigh-Bénard convection to name just two
of the numerous examples. The bifurcation behaviour of such specific models can be studied
directly, ignoring the symmetries, however some aspects of the analysis will be common to all
models with the same underlying symmetry. This phenomenon that distinct but symmetrically
related systems can exhibit remarkably similar behaviour is often called model independence
[45]. Using the area of mathematics known as equivariant bifurcation theory one can study the
model-independent behaviours of symmetric dynamical systems (those which depend on the

symmetries alone) without any reference to the details of a particular model.

Equivariant bifurcation theory uses group theory to analyse bifurcations in dynamical systems
with symmetry. Unlike other methods, equivariant bifurcation theory allows us to distinguish
aspects of a problem which are a consequence of the underlying symmetries from those which
are specific to the particular model. The advantage of equivariant bifurcation theory over other
methods of bifurcation analysis in systems with symmetry is that we are able to study the be-
haviours of entire classes of systems with the same underlying symmetries in a more generic
framework by using the symmetries alone. A great deal of information can be deduced in
this way and explicit use of symmetry-based principles often simplifies the analysis. The sym-
metries determine the range of behaviours which it is possible for all symmetrically related
systems to exhibit but the details of the particular model decides which of these behaviours the

system chooses.

This thesis uses equivariant bifurcation theory to study the range of behaviours associated with
a bifurcation from a spherically symmetric state. The wide range of physical systems where

such a bifurcation can occur is explored in Section 1.2.1. The two main themes of this thesis are

(a) the time-periodic solutions which can be created as a result of a Hopf bifurcation from a

spherically symmetric state and



1.1. INTRODUCTION TO DYNAMICAL SYSTEMS WITH SYMMETRY

(b) the symmetric spiral patterns which can exist on spheres as a result of a stationary bifur-

cation from spherical symmetry and subsequent secondary bifurcations.

The second topic is particularly interesting as it represents the first analytical study of symmet-
ric spiral patterns on spheres. Such patterns have been found numerically and experimentally
in a range of physical systems which is discussed in Section 1.2.2. Further details on the struc-

ture and results of this thesis are given in Section 1.3.

1.1 Introduction to dynamical systems with symmetry

Over the past thirty years equivariant bifurcation theory has developed into a powerful mathe-
matical tool with applications including pattern formation, animal locomotion, speciation, fluid
dynamics and magnetohydro dynamics. To allow us to describe current research in this area
of mathematics, in particular to explain the results obtained in this thesis, we must first give
brief definitions of some of the technical language which is used throughout the literature, and
in this introduction. A more thorough introduction to the general theory of bifurcations with

symmetry can be found in Chapter 2 of this thesis.

When we study bifurcations of dynamical systems with symmetry we consider systems of or-

dinary differential equations

% — Flx M), (1.1.1)

where x € V for some finite dimensional vector space V, A € R is a bifurcation parameter and
f is a smooth nonlinear mapping. We specify the symmetries of (1.1.1) in terms of a group I'
where

Yf(x,A) = f(yx,A) forall xe€V, A€R and 7€l (1.1.2)

We say that the vector field f is equivariant with respect to the action (or representation) of I' on
V. A consequence of v € T being a symmetry of (1.1.1) is that if x(f) is a solution then so is yx(t).
An element o € T is a symmetry of a stationary solution, x, of (1.1.1) if ox = x. The set of such
symmetries form a subgroup Xx C I called the isotropy subgroup of x. Similarly the isotropy
subgroup of a periodic solution x(t) of (1.1.1) is the subgroup of elements (v,68) € T x S! for
which yx(t + 0) = x(t) for all ¢.

We assume that (1.1.1) has a trivial solution x = 0 with isotropy subgroup I' which undergoes
a bifurcation at A = 0. We call this a bifurcation with I' symmetry. If this is a stationary
bifurcation then (under certain hypotheses) a result called the equivariant branching lemma
[25] guarantees that branches of stationary solutions with certain isotropy subgroups bifurcate.
These isotropy subgroups fix a one-dimensional subspace of V and are called axial isotropy
subgroups. If the bifurcation at A = 0 is a Hopf bifurcation then any bifurcating branches
of solutions are periodic and have the symmetries of isotropy subgroups of ' x S'. There is
an analogue of the equivariant branching lemma called the equivariant Hopf theorem which
(again, under certain hypotheses) guarantees the existence of periodic solution branches with
isotropy subgroups which fix a two-dimensional subspace of V & V. Such isotropy subgroups

are called C-axial.
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Which subgroups of T (I' x S!) are axial (C-axial) isotropy subgroups depends on the action
(or representation) of I' on the vector space V. Thus the representation is as important as the
symmetry group I' in determining the symmetries of the solutions of (1.1.1) which can exist.
This will be reflected throughout this thesis where we consider the symmetries of solutions

which can occur in different representations of certain groups.

For a given representation of I', the general form of the equivariant vector field f(x, A) can be
computed using the fact that it must satisfy (1.1.2). This vector field can be used to determine
whether solutions branch supercritically or subcritically and their stability. In addition, the
vector field can be used to determine when it is possible for solutions with non-axial symmetry

to exist.

The general theory of bifurcations with symmetry, which has been very briefly outlined above,
has been used in a wide range of applications. Here we give just a few of the large number of
examples of situations where equivariant bifurcation theory has been used to deduce informa-

tion about systems with certain symmetries.

e Stationary bifurcations with Sy symmetry (where Sy is the symmetric group on N sym-

bols) can be used to describe speciation models [26, 36].

e Stationary bifurcations leading to the spontaneous formation of regular patterns with
symmetries determined by geometry can be studied for many different examples includ-

ing the elementary example of a bifurcation in a box considered by Hoyle [52].

e Spatially periodic patterns on planar lattices result from stationary bifurcations with H, +
T? symmetry where H is the group of rotations and reflections of the lattice £. The
equivariant branching lemma leads to a series of planforms which are guaranteed to exist
bifurcating from a trivial homogeneous state [33]. These bifurcations can be used to ex-
plain patterns seen in certain kinds of reaction—diffusion systems, convection, geometric
hallucination patterns in the visual cortex [12, 37], stripes and spots on animal skins and

nematic liquid crystals [21].

e Hopf bifurcations can also occur on lattices leading to patterns which are periodic in space
and time. Examples studied include the case of a square lattice by Silber and Knobloch
[77] and cubic lattices by Callahan [17].

e Hopf bifurcation has been used to describe four identical nonlinear oscillators coupled
with the symmetry of a square. In addition to the periodic solutions with maximal sym-
metry, Swift [79] found that there can be a branch of quasiperiodic solutions with two

frequencies bifurcating from the origin.

e For small Reynolds numbers, an ABC flow is a stable solution of the Navier-Stokes equa-
tions with a particular forcing. Hopf bifurcation with the rotational symmetries of a cube
can be used to study the instability of ABC flow for increasing Reynolds numbers in the
case A=B=C=1][6]

e Hopf bifurcation with Sy symmetry can be used to describe the behaviour of N all-to-all

coupled nonlinear oscillators [32].
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e Abreu and Dias [1] have studied Hopf bifurcation in reaction—diffusion equations defined
on the hemisphere with Neumann boundary conditions on the equator. They obtain pe-
riodic solutions for the hemisphere problem by extending to the sphere and finding solu-

tions with spherical spatial symmetries containing reflection across the equator.

In addition to these examples, there has been much research concerning bifurcations with
spherical symmetry where the group of symmetries, I, contains the orthogonal group O(3).
Recall that in this thesis we will be considering the Hopf bifurcation with spherical symmetry
and the existence of symmetric spiral patterns on spheres resulting from stationary bifurca-
tions. Research concerning particular systems which undergo bifurcations from spherically
symmetric states provides the motivation for the work in this thesis, while previous studies
of such bifurcations using equivariant bifurcation theory form the basis on which the current
work builds. In Section 1.2 we review the research which is of particular relevance for the work

presented in this thesis.

1.2 Previous studies of pattern formation on a sphere

In this section we give an overview of the previous research concerning pattern formation on a
sphere which is relevant for the work presented in this thesis. This includes motivating exam-
ples of systems which can undergo a bifurcation from a spherically symmetric state, and also
systems which have been found to exhibit spiral wave behaviours, particularly in spherical
domains. We also review results which have been obtained by studying stationary and Hopf

bifurcations with O(3) symmetry using the techniques of equivariant bifurcation theory.

1.2.1 Bifurcations with O(3) symmetry

There are many physical and biological examples of systems where a spherically symmetric
state undergoes a bifurcation to a state with less symmetry. For instance, bifurcations to sta-
tionary patterns occur in Rayleigh-Bénard convection in a spherical shell [13, 14, 76]. If the
fluid within the spherical shell is subjected to a magnetic field (and is electrically conducting)
or concentration gradient in addition to the temperature gradient then it is possible for a Hopf
bifurcation to oscillating solutions to occur. Examples of such oscillating solutions in convec-
tion have been found by Cross and Hohenberg [29], Knobloch [56] and Knobloch and Proctor
[58]. Convection within a spherical shell has applications including continental drift driven by
convection currents in the Earth’s mantle and also convection within the Sun where the strong

magnetic field has an influence on the convective motion.

Another physical example of a bifurcation from a spherically symmetric state is the buckling
of a sphere or spherical shell under uniform external pressure. This has applications including

the evolution of a gas bubble in a liquid [55, 70].

Both stationary and Hopf bifurcations can occur in reaction-diffusion systems on a sphere,

as discussed by Turing [80]. Stationary patterns resulting from reaction—diffusion systems on
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a sphere are considered by Varea et al. [82] and Callahan [18] while a specific example of a
reaction—diffusion system which undergoes a Hopf bifurcation is discussed in [34, 35, 89]. Hopf
bifurcations can also occur in excitable reaction—diffusion systems which will be discussed in

the context of spiral waves later in this introductory chapter.

Biological examples of bifurcations from states with spherical symmetry include a spherical
ball of cells developing into an asymmetric shape. Such a ball of cells could be an embryo as in

[80] or a solid tumour as in [15].

Stationary bifurcations with spherical symmetry have been widely studied using the meth-
ods of equivariant bifurcation theory. Recall that the main result in the study of symmetric
stationary bifurcations is the equivariant branching lemma which guarantees the existence of
branches of stationary solutions to (1.1.1) with the symmetries of the axial isotropy subgroups
of the group I' in the representation of interest. There may also be solutions with the symmetries
of the other isotropy subgroups in this representation but there is no result which guarantees
their existence. In the case where the group I is O(3) the irreducible representations are on the
spaces V; of spherical harmonics of degree ¢. The representations and subgroups of O(3) will

be introduced in Chapter 3.

The problem of computing all isotropy subgroups of O(3) in every irreducible representation
has been tackled by a number of people. Michel [68] first listed the isotropy subgroups for the
representations on the spaces V; for even values of ¢ using a result called the chain criterion
(see Theorem 2.4.2). Ihrig and Golubitsky [53] noticed that this criterion was incorrect for com-
puting isotropy subgroups of O(3) due to its continuous symmetries and suggested a more
appropriate version. They used this new criterion to compute all isotropy subgroups of O(3)
for the representations on V; for every value of . However, Linehan and Stedman [63] noticed
that this improved chain criterion still gave incorrect solutions in some cases. They gave a result
which they called the ‘massive chain criterion” which allowed them to correctly list the isotropy
subgroups of O(3) in every irreducible representation on V;. We will make use of the massive

chain criterion (Theorem 3.4.1) in Chapter 6.

Having used the equivariant branching lemma to prove the existence of branches of solutions
to (1.1.1) with certain symmetries, it is possible compute conditions for these solutions to be
stable. Chossat et al. [23] considered the stability of the solution branches with axial symmetry
in the representations of O(3) on V; for ¢ = 3,4 and 5. In addition they discussed the existence
of other solutions with submaximal isotropy (i.e. symmetry ¥ C O(3) where X. fixes a subspace

of V; of dimension larger than one and £ C A where A is a larger isotropy subgroup of O(3)).

Other studies of stationary bifurcations with O(3) symmetry include that of Matthews [66] who
discusses the transcritical bifurcations from spherical symmetry that occur when the represen-
tation of O(3) is on V; for ¢ even. Results on the existence and stability of solution branches are
given for the even values of £ up to ¢ = 18 including all solutions in subspaces of dimension 3
or lower. A criterion for the existence of solutions with dihedral symmetry in two-dimensional
spaces is given and it is shown that when / is large, although none of the bifurcating branches
of stationary solutions are stable, there is a preferred solution with only one positive eigenvalue

and this is never the axisymmetric solution.
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In applications it is not always the case that the spherical symmetry is perfect. For example,
although the Earth can be modelled as a sphere with O(3) symmetry, the rotation of the Earth
and the fact that it is not a perfect sphere break the O(3) symmetry. This can be reflected in
models by adding small inhomogeneities to the equivariant vector field as in [19] or by adding
small terms which are equivariant with respect only to a subgroup A C O(3) to weakly break
the O(3) symmetry to A symmetry as in [61]. In the latter case it is found that equilibrium
solutions which exist when the system has perfect spherical symmetry can persist when the

symmetry is broken and in addition heteroclinic cycles can occur.

The dynamics in a system which contains a heteroclinic cycle are complex. Equilibria are con-
nected by trajectories and a state on such a trajectory will appear to cycle among the fixed-points
in turn. Heteroclinic cycles can be structurally stable in systems with symmetry [39]. Another
situation in which it has been found that heteroclinic cycles can exist in systems with O(3)
symmetry is when there is a mode interaction where the representation of O(3) is on the direct
sum of vector spaces Vy © V1 1. Armbruster and Chossat [5] found heteroclinic cycles in the
interaction between the £ = 1 and ¢ = 2 spherical harmonics. In an extension of this work by
Chossat and Guyard [22] it was found that in most cases heteroclinic cycles can be found in
(£, + 1) mode interactions. Additionally, heteroclinic cycles have been found when the O(3)
symmetry is broken to SO(2) x Z§ symmetry in the representation of O(3) on V; & V, [24].

Hopf bifurcations with spherical symmetry have also been studied previously. In the origi-
nal work of Golubitsky and Stewart [43] on Hopf bifurcations with symmetry the example of
the Hopf bifurcation with spherical symmetry was considered. The authors listed the C-axial
isotropy subgroups of O(3) x S! in the representations on V; @ V;. (Recall that periodic solu-
tions of (1.1.1) with these symmetries are guaranteed to exist by the equivariant Hopf theorem.)
One small error in this list was corrected by Golubitsky et al. [46]; however, a small number of
errors remain. It may be possible for solutions of (1.1.1) other than those guaranteed by the
equivariant Hopf theorem to exist under certain conditions. These solutions would have the
symmetries of isotropy subgroups of O(3) x S! with fixed-point subspaces of dimension larger

than two. These isotropy subgroups are yet to be computed for each representation.

By computing the general form of the equivariant vector field f, it is possible to compute the
stability of the periodic solution branches predicted by the equivariant Hopf theorem. For the
specific example of the Hopf bifurcation with O(3) symmetry where O(3) acts naturally on
Vo @ V2, Iooss and Rossi [54] use analytical methods to find five different types of bifurcating
periodic solutions. They compute the stability of these solution branches and show that a fam-
ily of quasiperiodic solutions can bifurcate directly from the trivial solution together with the

periodic solutions.

Subsequently, Haaf et al. [51] showed that these results could be found more efficiently by
realising V, as the set of traceless symmetric 3 x 3 matrices. They too describe the stability
of the five periodic solution branches and discuss the restriction of the dynamics to higher
dimensional invariant subspaces of V, @ V; and the various possible degeneracies which can
occur in the stability conditions. Both Iooss and Rossi [54] and Haaf et al. [51] found that

the stability of two of the five axial solution branches in this representation depends on the
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coefficients of quintic order terms in the equivariant vector field. There have been no studies of
the dynamics which can occur near Hopf bifurcations with O(3) symmetry for representations

on V, @ V, for values of ¢ larger than two.

1.2.2 Spiral Waves

In addition to the periodic patterns which can occur as a result of Hopf bifurcations with spher-
ical symmetry we will also study in this thesis another type of pattern which can occur in

spherical geometry— spiral patterns.

Spiral patterns or spiral waves arise in various chemical and biological systems as well as in
numerical simulations of reaction-diffusion systems. For instance, spiral waves have been
observed in the Belousov—Zhabotinsky chemical reaction [88] and in the oxidation of carbon
monoxide on the surface of a platinum catalyst [71] as well as in Rayleigh-Bénard convection
and excitable systems such as those described by the FitzHugh-Nagumo model. It is thought
that spiral waves and their three-dimensional analogues, scroll waves, appear in heart muscle
during cardiac arrhythmias (see for example [10, 49, 72, 85]). In addition, there is speculation
that spiral waves may be involved in epileptic seizures where a spiral wave manifests as the

local synchronization of large groups of neurons [69].

Spiral waves in planar domains have been widely studied and observed in numerical simu-
lations and experiments (see [7-9, 30] for example). In planar domains, spiral waves rotate
rigidly about a centre where the front of the wave has a tip. Far from the rotation centre the
spiral wave is well approximated by an Archimedean spiral. This rigid rotation is a relative
equilibrium since in a frame rotating at the same speed as the spiral the tip position is fixed. In
addition, spiral waves can meander (the tip traces out a flower pattern with either inward or
outward petals depending on parameter values) or drift (the tip drifts off along a line drawing
little loops as it goes). These motions are two-frequency quasiperiodic. Barkley [8] realised that
these spiral wave dynamics could be explained by the Euclidean symmetry SE(2) of the plane.
His ideas were extended by Sandstede et al. [73, 74] and Wulff [86]. In particular, the Euclidean
symmetry can be used to study the transition (via Hopf bifurcation) from rigidly rotating to
meandering planar spirals [74]. Multiarmed spirals can also occur in planar domains [83] and
have been observed in the Belousov—Zhabotinsky reaction [41]. For an overview of results on

spiral waves in the plane see Boily [11] or Hoyle [52].

Spiral waves can also occur in spherical geometry. In contrast to the large volume of work
on planar spirals, there has been relatively little research concerning spiral patterns on spheres.
Spiral waves on the surface of a sphere must have two tips and so the dynamics of such patterns
are expected to be qualitatively different from the planar case. In this thesis we will investigate
another difference between planar and spherical spirals; while one-armed planar spirals have
trivial isotropy (i.e. no symmetries) we will show that one-armed spherical spirals which have

symmetry in the equator can exist generically.

Various spiral patterns on spheres have been found to exist. Grindrod and Gomatam [50]

showed that a rotating spiral wave on a sphere which is symmetric in the equator can exist
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and be stable [48] under the condition that the tips are fixed at the north and south poles.
Indeed such solutions have been found experimentally [64] and in numerical simulations of
excitable reaction—diffusion systems on a sphere [3, 16, 47, 87, 91]; however, spiral waves which

are asymmetric with respect to the equator have also been observed [67].

Meandering spiral waves have been found in simulations of systems with inhomogeneous ex-
citability [31, 87] on the sphere. The transition from rotating spiral waves to meandering spiral
waves on a sphere has been studied using the group of rotations of a sphere, SO(3), by Chan
[20] and Comanici [27, 28]. They independently studied the Hopf bifurcation of a rotating spiral

relative equilibrium with trivial isotropy which leads to the meandering of the spiral wave.

In addition to rotating spirals, stationary spiral patterns have also been observed in spherical
geometries. For example, numerical simulations of Rayleigh-Bénard convection in a thin spher-
ical shell have been found to give a stable stationary spiral roll covering the whole surface of
the sphere without any defects [62, 90]. A similar stable stationary spiral pattern has also been
found in numerical simulations of a variation of the Swift-Hohenberg equation by Matthews
[65]. With certain parameter values the single armed spiral was found but in addition double
spirals and ‘tennis ball’ patterns were observed. As yet there has been no analytical study of

the existence properties of spiral patterns with symmetries on the sphere.

1.3 Structure of this thesis

There are two main themes to the work in this thesis — the study of the Hopf bifurcation with
O(3) symmetry and also the investigation into the existence of symmetric spiral patterns on
spheres resulting from stationary bifurcations. Throughout this thesis we will use definitions
and results from the general theory of bifurcations with symmetry, an overview of which is
given in Chapter 2. We will also require the results concerning the representations and sub-

groups of the group O(3) which are reviewed in Chapter 3.

We begin the work on the Hopf bifurcation with spherical symmetry in Chapter 4. We repeat
the computations of Golubitsky et al. [46] regarding the enumeration of the C-axial isotropy
subgroups of O(3) x S! in order to correct the errors which remain in the list given in [46].
As a result of these computations we are able to present a corrected list of the C-axial isotropy
subgroups of O(3) x S! and in addition we compute the isotropy subgroups & C O(3) x S!
which fix a four-dimensional subspace of V; @ V;. If these subgroups are maximal (i.e. there
is no isotropy subgroup A satisfying £ C A C O(3)) then a result of Fiedler [38] (see Theorem
2.5.3) guarantees the existence of periodic solutions with these isotropy subgroups bifurcating
from the Hopf bifurcation with O(3) symmetry in addition to the periodic solutions with C-
axial symmetry. If & C O(3) x S! is a submaximal isotropy subgroup which fixes a subspace
of dimension greater than two then it is possible, depending on the values of coefficients in
the equivariant vector field f, for solutions with X symmetry to exist. A result of van Gils and
Golubitsky [40] says that when the vector field f in the restriction to the fixed-point subspace

of X decomposes into phase and amplitude equations then we expect the submaximal solution
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with ¥ symmetry to be quasiperiodic when it exists. In this thesis we use these results to

consider the submaximal solutions which can exist in the representation on V3 @ V3.

In Chapter 5 of this thesis we consider the Hopf bifurcation with O(3) symmetry where O(3)
acts naturally on V3 @ V3. Here we find that there are six C-axial subgroups. We use the gen-
eral form of the equivariant vector field to compute the stability conditions for each of the six
bifurcating periodic solution branches with C-axial symmetry. In this representation we find
that the cubic order truncation of the general equivariant vector field is sufficient to determine
the stability of all six solution branches. In this chapter we also investigate solutions in the
equivariant vector field for the representation on V3 ® V3 which have symmetry %, where X is
an isotropy subgroup which fixes a four-dimensional subspace of V3 & V3. These subgroups
are all submaximal. We find that it is possible for both periodic and quasiperiodic submaximal

solutions to exist.

We then move on to consider symmetric spiral patterns on spheres. The most symmetric spiral
patterns on the sphere have symmetries which are a subgroup of O(3) x Z,. Systems which
have this symmetry have an x — —x symmetry in addition to the spherical symmetry. In Chap-
ter 6 we consider the solutions which can exist as a result of a stationary bifurcation with this
symmetry for both irreducible and reducible representations of O(3). Many of these solutions
exist only for certain values of the coefficients in the equivariant vector field. We show how
these coefficients can be computed for the example of the Swift—-Hohenberg equation [78]. We
consider reducible representations of O(3) in this chapter due to the fact that the spiral solu-
tions, for which we are interested in deducing the existence properties, can only result from
mode interactions where the representation of O(3) is a reducible representation on V; & V1

for some value of /.

In Chapter 7 we begin by investigating the existence properties of spirals which have sym-
metries which are a subgroup of O(3) x Z,. In the reducible representations on V, & V3 and
V3 @ V4 we show that such spiral patterns can exist as stationary solution branches resulting
from a stationary bifurcation with O(3) x Z, symmetry and subsequent secondary bifurca-

tions.

For the example of the Swift-Hohenberg equation with no quadratic terms we consider when
the stationary spirals can exist and be stable and how they bifurcate from other solutions in the
representations of O(3) on V, & V3 and V3 & V. Finally we show that if the symmetry is broken
from O(3) x Z; to O(3) then generically multiarmed spiral patterns persist as stationary so-
lutions with slightly broken symmetry. One-armed spirals (when they persist) are generically

forced by symmetry to drift.



CHAPTER 2

BACKGROUND

GENERAL THEORY OF BIFURCATION WITH
SYMMETRY

2.1 Introduction

In this chapter we provide, without proofs, background results required for this thesis. This
constitutes an overview of the area of mathematics known as equivariant bifurcation theory. A

much more detailed account, including proofs, can be found in [46, Chapters XII, XIII and XVI].

Equivariant bifurcation theory can be thought of as the study of systems of ordinary differential
equations with symmetry where the symmetries of a system of ODEs are specified in terms of
a group I'. Let V be a finite dimensional vector space and let

% — f(x, ) 21.1)

be a system of ODEs where x € V, A € R is a bifurcation parameter and f : V xR — Visa

smooth, nonlinear map. We say that a transformation vy is a symmetry of (2.1.1) if
fly-x,A)=7-f(x,A) Vx e V. (2.1.2)

Here, - represents some ‘action’ of 7y on the vector space V, which must be defined. A conse-
quence of (2.1.2) is that if x(t) is a solution to (2.1.1) then so is 7y - x(¢). We assume that the set
of transformations 7 that are symmetries of (2.1.1) form a group I'. Throughout this thesis the
type of groups, I', we will be dealing with are compact Lie groups. These groups and the way

they act on vector spaces are defined in Section 2.2.

Using the symmetry group, I', of the system (2.1.1) alone we are able to compute the generic

form of the nonlinear map f. Such a mapping which commutes with the action of I' on V is

10
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said to be I' equivariant. In Section 2.3 we present the required results for the computation of

this mapping.

The system (2.1.1) is said to describe a steady-state bifurcation problem with I symmetry if it has a
fixed-point xo = 0 such that f(0,A) = 0 for all values of A and the Jacobian (df)| 1) has a real
eigenvalue passing through zero at a bifurcation point A = A.. At this bifurcation a number
of branches of steady-state solutions are created which have less symmetry than I'. In Section
2.4 we will introduce the equivariant branching lemma which proves the existence of branches of

steady-state solutions with the symmetries of certain subgroups of I'.

If xo is a fixed-point solution of (2.1.1) such that (df)|(x, ) has purely imaginary eigenvalues
at a bifurcation point A = A, then the solution undergoes a Hopf bifurcation with I' symmetry.
Under certain hypotheses the equivariant Hopf theorem, which we shall introduce in Section 2.5,
proves the existence of branches of periodic solutions emanating from the bifurcation point

with the symmetries of certain subgroups of I' x S'.

In this chapter we also consider how symmetries can be used to compute the stability properties

of the solution branches created at bifurcations with symmetry.

2.2 Group Theory

Throughout this thesis we will be using results which apply for certain actions of Lie groups.
We now review the properties of these groups and their representations which we will require
for this thesis. Further details on all ideas introduced in this section can be found in [46, Chapter
X11].

2.21 Lie groups and their representations

Definition 2.2.1. A Lie group is a differentiable manifold, where the group operation is an an-
alytic map and the inversion operation which gives the inverse of a group element is also an-
alytic. A Lie group is a way of describing a continuous symmetry since group elements can
be varied continuously. A Lie group is compact if its manifold is compact. This is equivalent
to the parameters of the Lie group varying over a closed interval. Every compact Lie group is

isomorphic to a closed subgroup of GL(n), the group of all invertible n x n matrices over R.

The compact Lie groups which we will encounter in this thesis are the orthogonal group O(3),

consisting of all 3 x 3 matrices A satisfying

AAT = I,
and its subgroups. Here, I3 is the 3 x 3 identity matrix. The group O(3) will be studied in some
detail in Chapter 3.

Let I' be a compact Lie group and V a finite dimensional vector space. We say that I' acts linearly
on V if there is a continuous mapping (called the action) I' x V — V sending (v, v) — 7 - v such
that

11
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(a) For each v € T the mapping p, : V. — V defined by p,(v) = 7 - v is linear.

(b) If y1, 72 € Ttheny; - (72-v) = (1172) -vforallv € V.
Definition 2.2.2. The mapping p : I' — GL(V) which sends 1y to p, is a representation of T on V.

Here GL(V) is the group of all invertible linear transformations V — V.

If V is n dimensional, then the representation p is n dimensional and consists of invertible n x n
matrices p for v € I'. A group can have many different representations of various dimensions.

Every representation has p; = I,,, where I, is the n x n identity element.

Within the collection of all representations of a group I' there are two types which we are inter-
ested in for the purposes of studying systems of ODEs with symmetry. These are the irreducible

and absolutely irreducible representations.

Definition 2.2.3. A subspace W C V is I'-invariant under the representation p of the group I if
p(Y)YweW, VYyel, YweW.

A representation of I' is said to be irreducible if the only I'-invariant subspaces are {0} and V.

Let I' be a compact Lie group acting linearly on V. We say thatamap f : V — VisI'-equivariant
or commutes with I'if

fly-v)=7-f(v) Vyel, VYvelV. (2.2.1)
Definition 2.2.4. A representation of I is said to be absolutely irreducible if the only linear map-
pings that commute with the action of I on V are scalar multiples of the identity.
It can be shown that every absolutely irreducible representation is irreducible.

Remark 2.2.5. For representations over C, there is no distinction between irreducibility and
absolute irreducibility, but real representations can be irreducible without being absolutely ir-

reducible.

2.2.2 Isotypic decomposition and linear commuting maps

The study of a representation of a compact Lie group is often simplified by observing that it
decomposes into a direct sum of simpler, irreducible representations.

Definition 2.2.6. A subspace W C V is said to be I'-irreducible if W is I'-invariant and the action

of I' on W is irreducible.

Under the action of a compact Lie group I' a vector space V can be decomposed into the sum

of a finite number, m, of I'-irreducible subspaces V;, giving
V=Vig - -oV,.

See [46, Chapter XII, Corollary 2.2]. This decomposition is not in general unique. Some of the
V; may be isomorphic to each other. Subspaces V; and V; are I'-isomorphic to each other if there
is a linear isomorphism 6 : V; — V; which commutes with the action of I'. To get a unique

decomposition we use the following theorem.

12
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Theorem 2.2.7. Let T be a compact Lie group acting on V.

(a) Up to isomorphism there are a finite number of distinct T-irreducible subspaces of V. Call these
u,..., U

(b) Define Wy to be the sum of all T-irreducible subspaces W of V' such that W is isomorphic to U;.
Then
V=W & - dW (22.2)

is the unique isotypic decomposition of V for the action of T.
Proof. See [46, Chapter XII, Theorem 2.5]. O

The subspaces W; are called the isotypic components of V for the action of I'.
The following results about linear maps which commute with nonirreducible (or reducible)

representations will be useful in Section 2.4.

Lemma 2.2.8. Let I' be a compact Lie group acting on V, let A : V. — V ba a linear mapping that
commutes with T and let W C 'V be a T-irreducible subspace. Then A(W) is T-invariant and either
A(W) = {0} or the representations of T on W and A(W) are isomorphic.

Proof. See [46, Chapter XII, Lemma 3.4]. O

This lemma together with Theorem 2.2.7 implies the following result.

Theorem 2.2.9. Let I be a compact Lie group acting on V. Decompose V into isotypic components
V=W & &W.
Let A:V — V be a linear mapping commuting with T. Then A(W;) C Wi forj=1,... k.

Proof. See [46, Chapter XII, Theorem 3.5]. O

2.3 Classification of equivariant mappings

Suppose that the mapping f : V — V commutes with the action of a Lie group I' on V, as in
(2.2.1). Such a mapping is said to be [-equivariant. The action of I' on V imposes restrictions
on the possible form of f enabling us to compute its general form. In this section we present
all results required to show that when we compute the generic form of the nonlinear mapping
f we need only consider polynomial maps. These results are technical and we do not give any

proofs here.

In Section 2.3.1 we give results which describe the smooth nonlinear mappings which are equiv-
ariant with respect to I'. In Section 2.3.2 we show how to compute the number of I'-equivariant

mappings of a chosen degree using character methods.

13
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2.3.1 Technical results
Invariant functions

Let I be a Lie group acting on a vector space V. A real-valued function g : V — R is I'-invariant
if
g(yx) = g(x) Vx eV, VyeT. (2.3.1)

An invariant polynomial is a real-valued polynomial satisfying (2.3.1). Let Pr denote the ring of

I-invariant polynomials and &, the ring of I'-invariant functions.

Definition 2.3.1. Let/ = {uj, ..., us} be a collection of I'-invariant polynomials. Then ¢/ forms
a Hilbert basis for Pr is for every ¢ € Pr there exists a polynomial p : R® — R such that

8(x) = p(ur(x), ..., us(x)).

The Hilbert-Weyl Theorem states that when I' is a compact Lie group, there is always a finite
Hilbert basis, U, for Pr (see [46, Chapter XII, Theorem 4.2]). This result can be extended to any

I'-invariant function in £t by the following result:

Theorem 2.3.2 (Schwarz). Let I be a compact Lie group acting on a vector space V. Let uy, . .., us be
a Hilbert basis for Pr and let g € Er. Then there exists a smooth function h : R® — IR such that

8(x) = h(ur(x), ..., us(x)).
Proof. See [46, Chapter XII, Theorem 4.3]. O

This result reduces the study of I'-invariant functions to the study of I'-invariant polynomials.
In particular, we need only find a Hilbert basis for Pr to have characterised the I'-invariant

functions.

Equivariant mappings

The results in this section use the following lemma.

Lemma2.3.3. Let g : V — R bea I'-invariant function and let f : V — V be a I'-equivariant mapping.
Then the product gf : V — V is I'-equivariant.

Proof. See [46, Chapter XII, Lemma 5.1]. O

Let 7_))1" and ?r denote the set of I'-equivariant polynomials and smooth functions respectively.
We say that the equivariant polynomials fi, ..., f, generate ﬁr over Pr if every I'-equivariant
polynomial f may be written f = g;f1 + - - - + g, f; for invariant polynomials g1,...,gr. The

—
definition for generating equivariants of &£ r over &r is analogous.

The Hilbert-Weyl Theorem generalises to equivariant polynomial mappings: When I’ is a com-
pact Lie group there exists a finite set of ['-equivariant polynomials fi, .. ., f; that generate 7_7)r.

See [46, Chapter XII, Theorem 5.2]. We can now give the equivariant version of Theorem 2.3.2:

14
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Theorem 2.3.4 (Poénaru). Let I' be a compact Lie group acting on a vector space V and let f1,..., f;

— —
generate Pt over Pr, then fy,..., fr generate & r over Er.
Proof. See [46, Chapter XII, Theorem 5.3]. O

This theorem reduces a search for generating equivariants to a search for generating polynomial

equivariants.

The results of this section allow us to determine the general form of a I'-equivariant map. We
wish to use the form of this general I'-equivariant map to compute the stability of solutions to

(2.1.1). To do this we will need to use the Taylor expansion of this map.

It is possible (although less elegant) to compute this Taylor expansion directly. To compute the
Taylor expansion to order k we consider a map V — V containing all possible homogeneous
polynomial terms of degree i for every i < k. We then use the fact that the map f must satisfy
(2.1.2) for all ¥ € T for the action of I' on V to discover that some terms are not permitted
and others occur in certain ratios in the Taylor expansion. Note that it is sufficient to impose
that (2.1.2) hold for the actions of a set of generators of the group I We must bear in mind
that choice of representation of I' will affect the outcome of this computation. We will use this
method throughout this thesis to compute Taylor expansions of general forms of I'-equivariant
mappings near bifurcation points.

At any order k the Taylor expansion of f is linear combination of a number, E(k), of linearly
independent I'-equivariant maps of order k. When computing the k' order terms in the Taylor
expansion of f it is useful to know this number E(k) so that we know that all possible equiv-
ariants have been found. In Section 2.3.2 we will show how to compute E(k) using character
methods.

2.3.2 Character formula for the number of I'-equivariant maps

In this section we state results required to compute the number of I'-equivariant maps of degree

k for a given representation of I on a finite dimensional vector space V.

Let Pk denote the vector space of all homogeneous polynomials of degree k which are invariant
under the action of I on V and let ?’Ii denote the vector space of all homogeneous polynomial

maps of degree k which are equivariant under the action of I' on V. Then
dim 77’15 = #linearly independent polynomial T-invariants of degree k = I(k)

dim 3’1{- = #linearly independent polynomial I'-equivariant maps of degree k = E(k).

Suppose that V. = C" and p, is the n x n matrix which describes the action of ¥ € I' on V.
Then we define the character of the element v € I for the representation p of I' on V to be the

function x : I' — C given by

x(7) = trace(py) = é(pa,)ﬁ, Vyer.

1

15



2.4. STEADY-STATE BIFURCATION WITH SYMMETRY

The action of I' on V induces a natural action on PF and the corresponding character is denoted
by X(x)- The following theorem of Sattinger [75] tells us how to compute I(k) and E(k) using

characters.

Theorem 2.3.5. Let I' be a compact Lie group acting linearly on a vector space V with corresponding

character x. Then

I(k) = dim Pk = / X (7) dur(y) (2:32)

E(k) = dim P& / Xk ) dur(7) (2.33)

where dpr(vy) is the normalised invariant (Haar) measure of T.

The calculations of I(k) and E(k) can be simplified by noting the fact that elements which are

conjugate in I have the same character for a given representation.

In order to use Theorem 2.3.5 we need to calculate the character x ). We use the recursive

formula

k-1 ,
7) =Y x(" xe () (2.3.4)
i=0

with x(g)(7) = 1. A proof of this formula can be found in Antoneli et al. [4]. Using this formula

one can compute

xo(r) = x(r) (2.3.5)
2%y (1) = x()+ (x(n)? (2.3.6)
6xa) (1) = 2x(7*) +3x(Vx(v?) + (x (1) (23.7)

We will use these formulae and Theorem 2.3.5 to compute E(3) for reducible representations of

the group O(3) in Chapter 6.

2.4 Steady-state bifurcation with symmetry

Throughout this section let V be a finite dimensional vector space. Consider the system of

ODEs
dx

5 =), (24.1)

where x € V, A € Ris a bifurcation parameter and f : V x R — V is a smooth, nonlinear map
which satisfies
flyx, A) = vf(x,A) VxeV, VyeT, (24.2)

for a compact Lie group I'. In other words f commutes with the action of ' on V.

In this section we introduce a result known as the equivariant branching lemma. This lemma
makes predictions about the symmetry of solutions at steady-state bifurcations, based on the
symmetry of the bifurcation problem. It was proved by Vanderbauwhede [81] and Cicogna
[25].
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In Section 2.4.1 we give the required definitions before stating the equivariant branching lemma
in Section 2.4.2. Results related to computing the stability of the bifurcating solution branches

are given in Section 2.4.4.

2.4.1 Group orbits, isotropy subgroups and fixed-point subspaces

Further details on the results in this section can be found in [46, Chapter XIII].

Group orbits and isotropy subgroups

Let xg € V be a steady-state solution of (2.4.1) for some value of A so that

f(Xo, )t) =0.

Since f commutes with the action of T, yxp is also a steady-state solution for all y € I'. Thus
steady-state solutions of (2.4.1) occur in group orbits where the group orbit of xg is defined to be
the set

I'xo={yxp:y €T}

The symmetry of a fixed-point xg € V is the set of all ¥ € T that leaves xg invariant. This set is

a subgroup of I called the isotropy subgroup of x¢ and is denoted
Yoo ={7 €T : yx0 =x0}.

It can be shown that points on the same group orbit have conjugate isotropy subgroups (see [46,
Chapter XIII, Lemma 1.1]). We consider conjugate steady-states to represent the same steady-

state and solutions are classified in terms of their isotropy subgroup.

We say that X C T is an isotropy subgroup if it fixes some vector x € V and contains all the
group elements that fix x. Whether a given subgroup of I is an isotropy subgroup will depend
upon the action of I' on V. In other words different subgroups of I' will be isotropy subgroups

in different representations of I'.

Given a representation of I' on a vector space V it is possible to compute all conjugacy classes
of isotropy subgroups of I'. Let X and A be two conjugacy classes of isotropy subgroups of I'.
Then we can define a partial order, <, by ¥ < A if and only if there are subgroups Yex and
Ar € A such that X; C Ay. This partial ordering allows us to construct the lattice of isotropy

subgroups for this representation of I'.

Group orbits and isotropy subgroups satisfy the following proposition.

Proposition 2.4.1. Let I be a compact Lie group acting on V. Then for anyx € V

(a) IfT is finite, then |T| = |Z||T'x|

(b) dimT = dim Xy + dimT'x.

Proof. See [46, Chapter XIII, Proposition 1.2]. O

17



2.4. STEADY-STATE BIFURCATION WITH SYMMETRY

Fixed-point subspaces
The fixed-point subspace of a subgroup X C I'is defined as
Fix(X)={xeV :ox=x, VoeXL}.
Fixed-point subspaces are flow invariant under I'-equivariant mappings since if o € %,
f(x,A) = flox,A) = af(x,A), V x € Fix(Z).

Hence we have that f(Fix(X),A) C Fix(X) i.e. a trajectory which starts in Fix(X) remains in
Fix(X) for all time. This means that if we are looking for a solution to (2.4.1) with a certain

isotropy subgroup Ly, we can restrict f to Fix(Zy,) and solve the equations there.

If X, is the isotropy subgroup of the point xq then the largest group to leave Fix(Xy, ) invariant

is the normaliser of Xy, in T defined by
N(Zx) = {7 €T : 7 7 = Zx }-

The group that we expect to govern the bifurcation in Fix(Xy, ) is N(Zy,)/Xx,, where we factor
out Y, because it acts trivially on Fix(Xy,). Thus the restriction of (2.4.1) to Fix(Zy,) results
in equations which have N(Xy,)/Xx, symmetry. Moreover, the size of the quotient group,
IN(Xx,)/Zx, |, gives the number of solutions within Fix(Xy, ) which are equivalent i.e. have the

same isotropy.

Suppose that I acts absolutely irreducibly on V. Then by definition Fix(I') = {0} or V. If T
acts non-trivially then Fix(T') = {0} and due to the flow-invariance of Fix(I') there is a solution
f(0,A) = 0of (2.4.1) for all A.

An isotropy subgroup X C I is said to be maximal if there does not exist an isotropy subgroup
A C T satisfying ¥ C A C T. If an isotropy subgroup X~ C T has dimFix(X) = 1 then we say
that X is an axial isotropy subgroup. It can be shown that axial isotropy subgroups must be

maximal.

Determining isotropy subgroups of I

To decide which subgroups of a finite group I are isotropy subgroups for a given representation

we can use the following result.

Lemma 2.4.2 (Chain criterion). Suppose that I is group of finite order. A subgroup ¥ C T is an
isotropy subgroup if and only if dim Fix(X) > 0 and dim Fix(A) < dim Fix(X) forall A D X.

Proof. See, for example, [68]. O

Remark 2.4.3. When I' contains continuous symmetries Lemma 2.4.2 provides only a necessary
condition for a subgroup £ C I to be an isotropy subgroup. To compute isotropy subgroups in
the case where I' = O(3) we use an different version of Lemma 2.4.2 called the ‘massive chain

criterion’ [63]. This is discussed in Section 3.4.
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To compute the isotropy subgroups of a group I' for a given representation using Lemma 2.4.2
we first need to find the dimension of the fixed-point subspaces of the subgroups ¥ C I'. To

compute the dimension of a fixed-point subspace we use the following theorem.

Theorem 2.4.4 (Trace formula). Let I' be a compact Lie group acting on V and let . C T be a Lie
subgroup. Then

dim Fix(Z) = /Z X ()

where the integral is with respect to the normalised Haar measure on X and x(0) = trace(py) is the
character of ¢ € X and p, is the matrix of the element o € X in the representation p on V. If the group

I is finite then we have

dim Fix(Z 2 x(o
|Z| oex

Proof. See [46, Chapter XIII, Theorem 2.3]. O

2.4.2 The equivariant branching lemma

Suppose that xg is a fixed-point of (2.4.1) and at some parameter value A = A, there is a steady-
state bifurcation. This means that the Jacobian at this point, (df)| (xo,\c)- has one or more zero
eigenvalues. From now on we will assume that the system has been reduced to the centre
(xoA) = 0- We also

assume that the origins of x and A have been chosen such that the fixed-point is at xy) = 0 and

manifold so that the Jacobian vanishes at the bifurcation point. That is (df)]

the bifurcation point is at A = 0. Then the existence of the fixed-point at the bifurcation point
requires that f(0,A) = 0. Note that this is automatically satisfied if I" acts absolutely irreducibly

onV.
We now make the following definition.
Definition 2.4.5. Let I be a compact Lie group acting on a vector space V. A steady-state bifur-

cation problem with T symmetry is a [-equivariant mapping f : V x R — V satisfying f(0,0) =0
and (df)|,0) = 0.

Recall that the I'-equivariant mapping, f, satisfies (2.4.2). By differentiating the equivariance

condition (2.4.2) using the chain rule we have

7(df)‘(x,)\) ( f)| () Y7 vx eV, Vyel. (2.4.3)

Applying this at the fixed point x = 0 we see that (df)|( 1) commutes with the action of . If I
acts absolutely irreducibly on V then the only linear mappings which commute with the action

of I are scalar multiples of the identity so

(df)lon) = c(M)I

with ¢(0) = 0 since by definition (df)|(0) = 0. This excludes the possibility of a Hopf bifur-

cation, where we would have a pair of purely imaginary eigenvalues at the bifurcation point.
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(Hopf bifurcations will be considered in Section 2.5 and are associated with nonabsolutely irre-

ducible complex representations.) We can assume generically that

c'(0) #0. (2:4.4)

We are now able to state one version of the equivariant branching lemma.

Theorem 2.4.6 (Equivariant branching lemma). Let I be a Lie group acting absolutely irreducibly
on V and let f be a I'-equivariant bifurcation problem satisfying (2.4.4). Let ¥ be an axial isotropy
subgroup of I'. Then there exists a unique smooth solution branch to f = 0 such that the isotropy

subgroup of each solution is X.

It is possible to prove a more general version of this theorem.

Theorem 2.4.7 (Generalised equivariant branching lemma). Let I' be a Lie group acting on V.

Assume
(a) Fix(T') = {0}
(b) & C I is an axial isotropy subgroup
(c) f:V xR — VisaT-equivariant bifurcation problem satisfying

(dfi)lo0v #0 (2.4.5)

for some nonzero v € Fix(X).

Then there exists a unique branch of solutions to f(x, A) = 0 emanating from (0,0) where the symmetry
of the solution is X.

Here (df,) is defined by

(dfa)ij = a((;i)ij.

Proof. See [46, Chapter XIII, Theorem 3.5] O

Theorem 2.4.6 follows from Theorem 2.4.7 since nontrivial absolutely irreducible actions satisfy
Fix(I') = {0} and when T acts absolutely irreducibly (dfi)|(0Vv = ¢'(0)v. So conditions
(2.4.4) and (2.4.5) are equivalent. There are certain advantages to each version of the equivariant
branching lemma. The generalised version does not require the action of I' to be absolutely
irreducible - it holds even for reducible actions as long as Fix(I') = {0}. However, Theorem
2.4.7 has condition (2.4.5) which must be checked for each axial isotropy subgroup whereas

condition (2.4.4) holds simultaneously for all subgroups > C T.

The equivariant branching lemma guarantees that if (2.4.1) satisfies the relevant conditions then
at a steady-state bifurcation there will be a branch of solutions with ¥ symmetry if X is an axial
isotropy subgroup of I'. There may also be solution branches that bifurcate from the origin
with isotropy subgroup X such that dim Fix(X) > 1 but the equivariant branching lemma says
nothing about them. In general they will have to be found directly from (2.4.1). All branches

which bifurcate at the origin are known as primary branches.
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Remark 2.4.8. In the conditions of the equivariant branching lemma it is assumed that ¢’ (0) #
0. This means that the trivial equilibrium x = 0 undergoes an exchange of stability (for A near
0). We say that a primary bifurcating branch of solutions is subcritical if the branch occurs for

values of A where the trivial solution is stable and supercritical otherwise.

2.4.3 Bifurcations from group orbits of equilibria

It is possible for primary branches of group orbits of equilibria to undergo a secondary symme-
try breaking bifurcation for example in a mode interaction problem where the representation
of the group I’ is reducible. We now consider the solutions which can result from a secondary
bifurcation from a group orbit of fixed-points. All results in this section can be found in Golubit-

sky and Stewart [45]. We consider bifurcations from equilibria with less than full I' symmetry.

Let f : VxR — V be a T equivariant vector field where I' is a compact Lie group. Let x( be
a fixed-point of f and I'xy the group orbit through xp. Assume that dimI'xy > 1 and denote
by Xy, the isotropy subgroup of xo. By Proposition 2.4.1 the group orbit I'xg C V is a smooth
manifold of dimension dimI' — dim X. This means that it is possible for a group orbit to be
flow invariant rather than just consisting of equilibria. In that case the group orbit is called a

relative equilibrium.

The following theorem shows that flows on relative equilibria generically fill out k-dimensional
tori where the number k is uniquely determined by the isotropy subgroup Z,. In other words,

solutions that are relative equilibria are quasiperiodic with k frequencies.

Theorem 2.4.9. Let I'xg be a relative equilibrium and let Y.y, be the isotropy subgroup of xo. Then

relative equilibria are quasiperiodic motions with k frequencies where generically

k = rank(N(Zx,)/Zx,)-

Here N(Xy, ) is the normaliser of X, in I and the rank of a Lie group is the maximal dimension

of any Torus group
m
—_—N—

T" =81 x ... x !
contained in that group.

This means that it is possible for steady-state bifurcations from group orbits of equilibria to lead

to relative equilibria rather than just new equilibria.

2.4.4 Stability of solution branches

In this section we consider the stability of branches of fixed-point solutions of (2.4.1).

We say that a fixed-point, x¢, of a system of ODEs is asymptotically stable if every trajectory x(t)
which begins near x stays near xq for all + > 0 and also lim_,. x(t) = X¢. The fixed-point is

neutrally stable if the trajectory stays near xq for all ¢ > 0.
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Linear stability is a condition for asymptotic stability which says that if all the eigenvalues of
the Jacobian evaluated at the fixed-point xg have negative real part then xj is linearly stable. If
it has no eigenvalues with the real part equal to zero then xp is a hyperbolic fixed-point. The
Hartman-Grobman Theorem says that for hyperbolic fixed-points xg, if xg is linearly stable then

Xo is asymptotically stable.

When, as in (2.4.1), the system of ODEs commutes with the action of a Lie group I’ the following

issues arise:

(a) If the isotropy subgroup Xy, of a fixed-point xg has dim X,; < dimI then neither linear
stability nor asymptotic stability is possible. The Jacobian, (df)|(x,), is forced to have
zero eigenvalues. We must introduce the concepts of linear orbital stability and orbital

stability.

(b) The explicit computation of the Jacobian, (df)|(y,.) is aided by knowledge of the repre-

sentation of the isotropy subgroup Xy, .

Orbital stability

Let I be a Lie group acting on V and let f be a I'-equivariant map as in (2.4.1). Let xg be
a fixed-point of (2.4.1) with isotropy subgroup X. Using Proposition 2.4.1 we can see that if
dimY < dimT then dimI'xg > 0. This means that there are steady states of (2.4.1) arbitrarily
close to xq. Trajectories which start at these fixed-points remain there for all time and so do not
tend to x¢. This means that xp cannot be asymptotically stable. We must define a new type of

stability.

We say that the fixed-point xq is orbitally stable if x( is neutrally stable and if whenever x(t) is a

trajectory beginning near xp, then lim;_. x(t) exists and lies in I'xo.

We can also show that if dimX < dim I then the fixed-point cannot be linearly stable: Since
dimTI'xp > 0 the orbit I'xy contains a smooth curve y(s) = y(s)xp with (s) a smooth curve in
I' and y(0) = 1. Since x is a stationary point of (2.4.1) then (s)x is also for all s so we have

f(y(s),A) = 0. Differentiating this with respect to s and evaluating at s = 0 gives

d

R AACIR O I CTAI PN (ig

X()) =0, (246)
s=0 s=0

and so (df)](x,) has a zero eigenvalue with eigenvector ‘é—z ‘5:0 xo, which is tangent to the
group orbit I'xg. This means that the fixed point xy has a zero growth rate eigenvalue corre-
sponding to perturbations along the group orbit. We can note that (2.4.6) provides a method

for computing the zero eigenvectors of (df)|(x,1)-

There is a linear criterion for orbital stability: Let xg be an equilibrium of (2.4.1) where f com-
mutes with the action of I'. The fixed-point xg is linearly orbitally stable if the eigenvalues of

(df)|(x,,1)- other than those forced to be zero by symmetry, have negative real part.

It can be shown that if a fixed-point X is linearly orbitally stable then it is orbitally stable.
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Symmetry restrictions on the Jacobian

Let x be a fixed-point of (2.4.1). It is possible to use the action of the isotropy subgroup X of xg
on V to block diagonalise the Jacobian (df)|(x, 1) and thereby simplify the explicit computation
of the eigenvalues. By computing the eigenvalues of (df)](x, ) we can determine whether or

not the fixed-point xy is orbitally stable.

We have already seen in (2.4.3) that the Jacobian satisfies the commutativity condition

W(df)|(x,/\) (df)| (yx,\)Y

Since ¥ C T is the isotropy subgroup of xq, by definition, oxy = X¢ for every ¢ € ¥ and so

a(df)|ixon) = (Af)l(ox0,1)T = (Af)(xp1)

Thus (df)](x,,) is a linear map which commutes with the isotropy subgroup Z. We can decom-

pose V into isotypic components for the action of X:
V=W & - &W
as in Theorem 2.2.7. Then by Theorem 2.2.9

() (x,0) (W) © W

If ¥ acts absolutely irreducibly on an isotypic component W; then the restriction of (df)|x, 1)
to W; is a scalar multiple of the identity. The subspace Fix(Z) is always an isotypic component

since it is the sum of all subspaces of V on which X acts trivially.

2.5 Hopf bifurcation with symmetry

In this section we consider the case where a system of ODEs with I' symmetry undergoes a
Hopf bifurcation. There is an analogue of the equivariant branching lemma which tells us that
periodic branches of solutions with certain symmetries will be created at a Hopf bifurcation

with I' symmetry.

2.5.1 Existence of periodic solutions

Consider the system of ODEs given by

% — f(x ). 25.1)
Assume that there is an equilibrium solution x = 0 for all values of A. This system undergoes
a standard Hopf bifurcation (i.e. without symmetry) at A = 0 if (df)]o,0) has a single pair of
complex conjugate eigenvalues which cross the imaginary axis (with non-zero speed) at A = 0.
The standard Hopf theorem implies that a branch of periodic solutions is created but it uses
the hypothesis that the imaginary eigenvalues are simple. When system (2.5.1) has I' symme-

try we cannot use the standard Hopf theorem directly since there are expected to be multiple
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pairs of complex conjugate eigenvalues crossing the imaginary axis at a Hopf bifurcation with

symmetry.

Assume now thatin (2.5.1), x € R", A € R is a bifurcation parameter and f : R" x R — R"isa
smooth mapping which commutes with the action of a compact Lie group I' on IR" as in (2.1.2).

Further assume that f(0,A) = 0 so there is a trivial I'-invariant equilibrium solution, x = 0.

For Hopf bifurcation of this solution to occur at A = 0 we require that (df)|() have purely
imaginary eigenvalues. We assume that (2.5.1) is already reduced to the imaginary eigenspace.
Note that since eigenvalues occur in complex conjugate pairs the number of purely imaginary
eigenvalues at the bifurcation point must be even, so we must have x € R?” where n = 2p.

Sometimes it is useful to make the identification R?? = CP.

It turns out that if (df)| o0 is to have purely imaginary eigenvalues then the imaginary eigenspace,
R", must be I'-simple. This means that either R” = V & V where V is an absolutely irreducible
representation of I, or I' acts irreducibly but not absolutely irreducibly on R". In either case,

in suitable coordinates and rescaling time if necessary, at the bifurcation point the Jacobian

0 I
00) = = ( . g ) (2.5.2)
P

pr = 0(A) £iw(A) (2.5.3)

generically takes the form

(df)

and the eigenvalues of (df)|( ) are

each of multiplicity p, where o and w are smooth functions of A satisfying ¢(0) = 0 and w(0) =
1. This implies that the eigenvalues at the bifurcation point are +i. See [46, Chapter XVI, Section
1].

Near a Hopf bifurcation we expect to see branches of periodic solutions. Let x(t) be a periodic

solution of (2.5.1) with period 27t. A symmetry of x(t) is an element (-y,8) € T x S! such that
(7,0) - x(t) = yx(t+0) = x(¢t), Vt.

Here S! is the circle group of phase shifts acting on the space of 27 periodic functions. We say
that (v, 0) is a spatiotemporal symmetry. Notice that if 6 = 0 then the symmetry is purely spatial.

We can write the isotropy subgroup of x(t) as
Sy ={(7,0) €T xS x(t+6) =x(t)} c T x S

Remark 2.5.1. In Chapters 4 and 5 of this thesis we will consider representations of O(3) on
a space of the type V & V where O(3) acts absolutely irreducibly on V. In this case, by [46,
Chapter XVI, Remark 3.3(d)], we can take a basis for V as a real vector space and consider
V @ V to be the vector space over C with this basis. Elements of I' = O(3) acton V & V by the

same matrices as for V and @ € S! acts as scalar multiplication by el

We now state the equivariant Hopf theorem which is the analogue of the equivariant branching

lemma.
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Theorem 2.5.2 (Equivariant Hopf theorem). Consider the system of ODEs given by (2.5.1) where
x € R", A € Rand f : R" x R — R" is a smooth mapping which commutes with the action of a
compact Lie group I on R™. Suppose that T acts I'-simply on R" so that we can assume that (2.5.2) and
(2.5.3) hold. Assume also that

do

., £0. (2.5.4)

Then if ¥. C T x S' is an isotropy subgroup satisfying
dimFix(X) =2, (2.5.5)

there exists a unique branch of periodic solutions to (2.5.1) with period near 27t bifurcating from the

origin having X as their group of symmetries.
Proof. See [46, Chapter XVI, Theorem 4.1]. O

Condition (2.5.4) is the hypothesis from the standard Hopf theorem that the eigenvalues of
(df)l(o) cross the imaginary axis with non-zero speed. We say that an isotropy subgroup
¥ C T x S!is C-axial if is satisfies condition (2.5.5). The equivariant Hopf theorem guarantees
that if system (2.5.1) satisfies the relevant conditions then at a Hopf bifurcation with I' symmetry
abranch of periodic solutions with & symmetry is created if ¥ is an isotropy subgroup of I' x S!
with dim Fix(X) = 2.

It is possible for condition (2.5.5) in the equivariant Hopf theorem to be weakened to the sub-

group X being a maximal isotropy subgroup of T x S!:

Theorem 2.5.3 (Fiedler [38]). Assume that system (2.5.1) satisfies the conditions (2.5.2) and (2.5.4)
stated above and suppose that Y. is a maximal isotropy subgroup of T x S'. Then there exist small

amplitude periodic solutions to (2.5.1) with period near 27, having X as their group of symmetries.

In addition to the branches of solutions to (2.5.1) guaranteed to exist by the equivariant Hopf
theorem, Theorem 2.5.3 guarantees the existence of branches of solutions with symmetry X
where ¥ has dim Fix(X) > 2 but X is maximal.

In Section 2.5.3 we will discuss how to compute the isotropy subgroups of ' x S!. Before that,

we will consider the stability of periodic solutions to (2.5.1).

2.5.2 Stability of periodic solutions

In this section we will consider how to compute the stability of periodic solutions to (2.5.1).

Suppose that x(t) is a periodic solution of (2.5.1) with period 124% for a period-scaling parameter
T near 0. A Liapunov-Schmidt reduction of (2.5.1) gives a reduced equation g(x, A, T), the zeros

of which are in one-to-one correspondence with the periodic solutions x(t) of (2.5.1).

To compute the stability of these periodic solutions we first assume that the map f is in (exact)
Birkhoff normal form. That is f commutes with I’ x S! at all orders. It is only possible to find
a suitable change of coordinates to put f in Birkhoff normal form up to a given order k. There
is no change of coordinates that puts f into Birkhoff normal form to all orders but we will deal

with this issue later.
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Stability in Birkhoff normal form

The following theorem gives us the form of the reduced equation g when f is in Birkhoff normal

form.

Theorem 2.5.4. Suppose that the vector field f in (2.5.1) is in Birkhoff normal form. Then it is possible
to perform a Liapunov-Schmidt reduction on (2.5.1) such that the reduced equation g has the form

S A T)=f(x,A)—(1+71)]x (2.5.6)

where T is the period-scaling parameter.

Proof. See [46, Chapter XVI, Theorem 10.1]. O

Remark 2.5.5. When the representation of I' is as in Remark 2.5.1 we identify | with i and so
the reduced equation is
g(x, A1) = f(x,A) — (1 + 7)ix (25.7)

Let x(t) be a periodic solution of (2.5.1) with isotropy subgroup £ C I x S! which corresponds
to a solution, (xg, A, Tp), to ¢ = 0. There is a one-to-one correspondence between the Floquet
multipliers of the periodic solution x(t) and the eigenvalues of (dg)|(x, 1,7)- A multiplier lies

inside the unit circle if and only if the corresponding eigenvalue of (dg)| has negative

X0,A0,70)
real part (see [46, Chapter XVI, Proposition 6.4]). This is reflected in the following result.

Corollary 2.5.6. Suppose that the vector field f in (2.5.1) is in Birkhoff normal form and that g is the
mapping obtained by using the Liapunov-Schmidt procedure. Let (xo, Ao, To) be a solution to ¢ = 0 and
let x(t) be the corresponding periodic solution of (2.5.1). Then x(t) is orbitally asymptotically stable if

the n — dy, eigenvalues of (dg)| which are not forced to be zero by the group action have negative

X0,A0,T0)
real parts. Here we define

dy, =dimI'+1—dimZX.

Proof. See [46, Chapter XVI, Corollary 10.2]. O

Remark 2.5.7. When dim Fix(X) = 2, the assumption that f is in Birkhoff normal form implies
that we can apply the standard Hopf theorem to (2.5.1) restricted to Fix(X) x R. In this case
exchange of stability occurs at the bifurcation point so that if the steady-state solution x = 0 is
stable subcritically, then a subcritical branch of periodic solutions with isotropy subgroup X is
unstable. Supercritical branches may be either stable or unstable depending on the signs of the

real parts of the eigenvalues on the complement of Fix(X).

Stability in truncated Birkhoff normal form

It is possible to use Corollary 2.5.6 to determine the asymptotic stability of some periodic solu-

tions of (2.5.1) even when f is not in Birkhoff normal form.

By a suitable change of coordinates, up to any given order k the I'-equivariant vector field f can

be made to commute with S! also. Thus to order k the Taylor expansion of f can be assumed to
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commute with T x S1. We call this the k" order truncated Birkhoff normal form of (2.5.1). The
dynamics of the truncated Birkhoff normal form are related to, but not identical with the local
dynamics of the system (2.5.1) around the equilibrium point x = 0. In truncating the Taylor
series, we are ignoring terms of higher order which do not commute necessarily with S! and
that can change the dynamics and also possibly the stability of those periodic solutions which,

by the equivariant Hopf theorem, exist even for the nontruncated system.

Assume that

FlA) = Fx,A) +o([x]%)
where f commutes with T x S! but the perturbation o(||x||*) commutes only with T. Here, as
usual, i(x) = o(||x||¥) means that i(x)/||x|[¥ — 0 as ||x|| — 0. It is possible to show that, pro-
vided k is large enough, Corollary 2.5.6 remains true for the reduced function § corresponding

to the truncation f.

Definition 2.5.8. Suppose that dim Fix(X) = 2. Then X has p-determined stability if all eigenval-

ues of
(dg)|(X0,/\0,T0) = (df)|(X0,)\0) - (1 + TO)]/

other than those forced to be zero by X, have the form
py = aja" +o(a"),

where x(t) is a branch of periodic solutions to x = f(x,A) with symmetry ¥, a = ||x(¢)| and o;

is a C-valued function of the Taylor coefficients of terms of degree < p in f.

We say that f is nondegenerate for ¥. if all o have non-zero real parts. This allows us to state the

following theorem.

Theorem 2.5.9. Suppose that the hypotheses of Theorem 2.5.2 hold, and that the isotropy subgroup
L C T x S has p-determined stability. Let k > p and assume that f is nondegenerate for . Then for
A sufficiently near 0, the stabilities of a periodic solution of (2.5.1) with isotropy subgroup X are given
by the same expressions in the coefficients of f as those that determine the stability of a solution of the

truncated Birkhoff normal form

dx
=t A
o —FxA),
with isotropy subgroup X.
Proof. See [46, Chapter XVI, Theorem 11.2]. O

Remark 2.5.10. By Theorem 2.5.9, the result given in Remark 2.5.7 holds even when f is not in

Birkhoff normal form.

k'™ order Taylor series of f which commutes with T x S! to com-

This means that we can use the
pute the stability of a periodic solution with isotropy subgroup X whose existence is guaranteed
by the equivariant Hopf theorem, as long as k > p when X has p-determined stability. Theorem
2.5.9 completes the results required for a stability analysis of the C-axial periodic solutions of

2.5.1).
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2.5.3 Isotropy subgroups of T' x S!

In order to apply the equivariant Hopf theorem we need to consider which subgroups ¥~ C
' x S! can be isotropy subgroups and which of these subgroups have two-dimensional fixed

point subspaces. We begin by discussing how to compute the isotropy subgroups of I' x S!.

Computing isotropy subgroups of I' x S!

In this section we outline the method of Golubitsky and Stewart [43] and Golubitsky et al. [46,
Chapter XVI, Section 7] for computing the isotropy subgroups of I' x S!. An alternative method
for computing the isotropy subgroups £ C I' x S! with dim Fix(X) = 2 is given by Golubitsky
and Stewart in [44]. Although this alternative method requires less computation, the reasons
for some of the steps in the procedure are less intuitive then the method of [46, Chapter XVI,

Section 7] summarised in this section. In this thesis we will use the method outlined below.

Definition 2.5.11. Suppose that H C T is a subgroup and 6 : H — S! is a group homomor-
phism. We call
H® = {(h,6(h)) €T xS' :h € H}

a twisted subgroup of T x S'. We call the homomorphism 6 : H — S! the twist of H.

All isotropy subgroups of I' x S! are twisted subgroups, see [46, Chapter XVI, Proposition 7.2].

We intuitively think of elements of I as spatial symmetries and elements of S! as temporal
symmetries, acting on periodic solutions by a phase shift. Thus an element (h,0(h)) € T x S!

is a spatial symmetry if (/1) = 0 and a combined spatiotemporal symmetry if 6(h) # 0.

For a given twisted subgroup H? C T’ x S1, the spatial symmetries form a subgroup K = ker 6.
Since K is the kernel of a homomorphism 6 it is a normal subgroup of H. Furthermore the
quotient group H/K is isomorphic to a closed subgroup of S!, namely Im(8). The only closed
subgroups of Slare1, Z, (n >2) and st

We wish to compute the conjugacy classes of isotropy subgroups of I' x S!. To do this we need
to know when two twisted subgroups are conjugate in I’ x S!. The following lemma provides

two sufficient conditions.

Lemma 2.5.12.

(a) Let H and L? be conjugate twisted subgroups in T x S'. Then H and L are conjugate subgroups
of T.

(b) Let H% and H? be conjugate twisted subgroups in T x S'. Then there exists v € Nr(H) such
that ker ¢ = yker@y~1. Here Np(H) = {y € T : yHy~! = H} is the normaliser of H in T.

Proof. See [46, Chapter XVI, Lemma 7.3]. O

This lemma allows us to determine the conjugacy class of the pair (H,K) in T’ x S! but this does

not determine H? uniquely since (H, K) does not uniquely determine 6. If 8 is a homomorphism
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H — S! with ker § = K then all other such homomorphisms are of the form a o § where & is an
automorphism of Im(6). The twisted groups H? and H**? are conjugate in T' x S if a is induced

by conjugation by elements in Nr(H).

In summary, the conjugacy classes of twisted subgroups of I' x S! can be found as follows:

1. Find the conjugacy classes of closed subgroups of I'. For each conjugacy class choose a

representative H.
2. Find all closed normal subgroups K C H such that H/K is isomorphic to 1, Z, or sl

3. Choose one representative of each conjugacy class of K’s under the action of Nr(H)/H.

This gives a list of all pairs (H, K).

4. Find the possible homomorphisms 6 for each pair by listing the automorphisms of H/K,
not including those that are induced by conjugation by elements v € Nt-(H).

This procedure gives a complete list of the conjugacy classes of twisted subgroups of I' x S'.

Two simplifications are often useful:

(i) For twist types 1 and Z;, there are no such automorphisms.

(ii) If there exists an element x which acts by conjugation to invert each element of H, then
for twist types Z3 and S! the only non-trivial automorphism of H/K is inversion, but this

is induced by conjugation by x and hence can be eliminated.

Dimensions of fixed-point subspaces

To determine which of the twisted subgroups H, computed by the method above, are isotropy
subgroups for a particular action of the group T x S! we use the chain criterion, Lemma 2.4.2.

To use this we need to know how to compute dim Fix(H?).

Using the trace formula, Theorem 2.4.4, an argument given in Golubitsky et al. [46, Chapter
XV, Section 8] shows that for twisted subgroups H?,

dim Fix(H%) = /H" trace(h,0(h)) = /H 2 cos(0(h))trace(h). (2.5.8)
This can be used to prove the following proposition.
Proposition 2.5.13.
(a) If 0(H) = 1 then dim Fix(H%) = 2 dim Fix(H).
(b) If O(H) = Z; then dim Fix(H%) = 2(dim Fix(K) — dim Fix(H)).
(c) If 8(H) = Zj then dim Fix(H?) = dim Fix(K) — dim Fix(H).

(d) If 8(H) = Z4 then dim Fix(H%) = dim Fix(K) — dim Fix(L) where L is the unique subgroup
suchthat K C L C Hand |H : L| = 2.
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(e) If 0(H) = Zg then dim Fix(H?) = dim Fix(H) + dim Fix(K) — dim Fix(L) — dim Fix(M)
where L, M are the unique subgroups between K and H such that |H : L| =3 and |H : M| = 2.

Proof. See [46, Chapter XVI, Section 8]. O

The method of proof of Proposition 2.5.13 works only for twist types Z; whenk =1, 2, 3,4 or
6. For other values of k and twist type S! we have to use (2.5.8) directly. Provided we know
how to compute dim Fix(H) for subgroups H C I' (which will depend on the representation of
T'), we are now able to compute the C-axial isotropy subgroups of ' x S! with two-dimensional
fixed-point subspaces. This enables us to use the equivariant Hopf theorem, Theorem 2.5.2.
We can also use this method and the chain criterion (Lemma 2.4.2) to compute the isotropy

subgroups of I' x S! with higher dimensional fixed-point subspaces.

This concludes the background results on the general theory of bifurcations with symmetry

which will be required for this thesis.
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CHAPTER 3

BACKGROUND

THE GROUP O(3)

3.1 Introduction

In this thesis we will be studying bifurcations from states with spherical symmetry. The sym-
metry group of the sphere is O(3). In this chapter we will give information about this group
which will be required throughout this thesis. In Section 3.2 we define the group O(3) and in-
troduce its representations. In Section 3.3 we consider the subgroups of O(3), their containment
relations and the dimension of the fixed-point subspace of each subgroup in each representa-
tion of O(3). Further details on the results in Sections 3.2 and 3.3 of this chapter can be found
in [46, Chapter XIII]. In Section 3.4 we will outline the method used for determining, in each

representation, which subgroups of O(3) are isotropy subgroups.

3.2 The group O(3) and its representations
The orthogonal group O(3) consists of all 3 x 3 matrices A satisfying A~! = AT. These matrices
have det(A) = %1 and represent the rotations and reflections of a sphere. Algebraically

0(3) =S0(3) x Z5,

where SO(3) is the group of all rotations of the sphere, i.e. A € O(3) with det(A) = 1, and
Z5 = {1, -1}, where I is the identity element and —I is inversion in the centre of the sphere.
If a point on the surface of the sphere is given in spherical polar coordinates by (6, ¢) then the

action of the element —I on this point is

(0,9) — (m—06, T+ ¢) where 0<60<m and 0<¢ <2m.
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3.2. THE GROUP O(3) AND ITS REPRESENTATIONS

For each irreducible representation of SO(3) there are two irreducible representations of O(3),
where the element —I either acts as plus or minus the identity, giving rise to the plus and
minus representations of O(3) respectively. The group SO(3) has precisely one irreducible
representation in each odd dimension 2¢ 4- 1 for £ > 0, denoted by V,, where V is the space of

spherical harmonics of degree £.

The natural representation of O(3) on V; is defined to be the plus representation, where —I acts
as the identity, if £ is even and the minus representation, where —I acts as minus the identity, if
¢is odd.

3.2.1 Spherical harmonics

Let (6, ¢) denote a point on the surface of a sphere of constant radius R where 6 € [0, 7] is
the angle measuring the distance to the north pole (the z-axis) and ¢ € [0,271] is the azimuthal

angle.

The spherical harmonics of degree ¢, Y}"(6, ¢), are the eigenfunctions of the angular part of the

spherical Laplacian operator:

1[0 -0 1 9 9 1 2
2 _ 1|99 9 gl L9
VUR0,9) = 72 {BR 3R " sin0a0 "M% T snzeae2 | Y
with eigenvalue — Z(?;l) . The functions are given by
/2
m _ (_1\m (2€+1) (é_m)! ! m im¢
Y/ (0,¢9) = (—1) ( ({5 m) P/ (cosB)e (3.2.1)

for —¢ < m < {, where
(1 _ x2)m/2 d€+m

TR T
is the associated Legendre function. The spherical harmonics satisfy

Py (x) = -1

Y0, ¢) = (=1)"Y[(0,9), (3.2.2)

where the bar denotes complex conjugate. They also satisfy the orthogonality condition
27T P70 —
/ / YI0,0) Y} (6,4) sin0 dO dg = 3y Sy - (3.2.3)
JO JO ’

In some sections of this thesis we will explicitly use the spherical harmonics of degrees ¢ = 2,
3, and 4. These are given in appendix A. We now consider the matrices for the action of O(3)

on the spherical harmonics of degree /.

3.2.2 Matrices for the natural action of O(3) on V,

In this section we consider how the elements of the group O(3) act on the functions Y} (6, ¢) €
V, for the natural action on V;. We show how to compute the (2¢+ 1) x (2¢ + 1) matrices which
generate the natural action of O(3) on V. These will be used in later chapters of this thesis to

compute the general form of equivariant vector fields.
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3.2. THE GROUP O(3) AND ITS REPRESENTATIONS

Let (6,¢) denote a point on the surface of the sphere as in Section 3.2.1. We will consider the

actions of the following set of generators of O(3) on the spherical harmonics of degree ¢:
e An infinitesimal rotation, ¢, in the ¢ direction taking (6, ¢) — (6, ¢ + ¢').
e An infinitesimal rotation, ¢, in the 6 direction taking (6, ) — (6 +6',¢).
e The inversion element —I which takes (6, ¢) — (7 — 0, T+ ¢).
Using (3.2.1) we can compute that
Y (r = 0,7+ 9) = (=1)Y"(0,9)

so when / is even the element —I acts as the identity on all spherical harmonics of degree ¢ and

when / is odd —I acts as multiplication by —1.

Similarly we can use (3.2.1) to show that

Y0,¢+¢') =™ Y] (0,9) (3.2.4)
and that in the limit 8/ — 0,
YPO+0,0) = f%\/(e )~ m 1) 6" YI1(6,0) + Y7 (6,0)
%\/(5 —m)({+m+1) 6 Y, (6,0). (3.2.5)

Since it is not obvious that (3.2.5) holds, a proof is given in appendix B.

Suppose that w is the physical variable in a pattern-forming system and that it can be written

as

Y, (6,9)
Y, . Y[Z+1(9,¢) T
w(0,¢) = Y, AnY]"(0,9) = (A_y, A1, -+, Ay : = AY,(0,¢).

m=—/ :
Y{(6,9)

ie. as a linear combination of the spherical harmonics of degree ¢ where -1 indicates the
transpose.

We want to find the (2£ + 1) x (2 + 1) matrices My and My for the actions of the infinitesimal
rotations ¢’ and 6’ on the vector of amplitudes A = (A_;, A_;4q, -+, Ay).

For the infinitesimal rotation ¢’ € O(3),

14 ¢ y
¢ -w(6,¢) =w(0,¢0+¢") = Y, AuY'(0,0+¢) = )Y, Aue™ Y['(6,9).

m=—_{ m=—A{

Hence ¢/ : Ay — eim‘/’/Am and therefore the matrix which multiplies the column vector of

amplitudes AT on the left to execute the transformation ¢ — ¢ + ¢’ is

M¢’ = diag (e71€¢/,ei(7£+1)¢,,. . .,ei(gfl)"’/,ew"’/) . (3.2.6)
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3.3. SUBGROUPS OF O(3)

For the infinitesimal rotation 6’, by (3.2.5) we have
{
0 -w(0,0) = wO+6,0) = Y A,Y/(6+6,0)

m=—{

= AMY,(6,0)T
= Y,(6,0) MT AT

where M is the (2£ 4+ 1) x (2¢ + 1) matrix with mth row

vm=<0,...,0, ;\/(ﬁ—i-m)(é m+1)¢, 1, f\/(z m)(L+m+1)6,0, ,0)

form = —/,...,¢ where the entry 1 lies in the m™ column. Therefore the matrix which multi-
plies the column vector of amplitudes AT on the left to execute the transformation 6 — 6 + ¢’
is

Mg =MT = {VIZ IvE | |vﬂ , (3.2.7)

i.e. the matrix with columns vJ,.

Finally, since

—1-w(8,¢)=w(r—0,T+¢) = ZAmyg(n 0,1+ ¢) = ZAm ) Y6, 9)

m=—{ m=—/
the element —I acts on the column vector AT by scalar multiplication by (—1)* or equivalently

by multiplication by the matrix M_; = (—1)‘Iy¢41 where I/, 1 is the (2¢ +1) x (2£+ 1) identity

matrix.

Remark 3.2.1. Suppose that w(6, ¢, t) is a solution to some pattern forming system and it can

be written as a time-dependent linear combination of spherical harmonics of degree ¢:
w(6, ¢, 1) 2 A (t)Y](6,9)
m=—{

where A, (t) € C. Since w is real the amplitudes Ay, (t) must satisfy

Aow(t) = (~1)"An(t)  VE

Hence Ay(t) € R and in general the dimension of the vector of amplitudes A = (A_y, A_;,1,...,Ay)

(and hence the representation) is 2¢ + 1.

3.3 Subgroups of O(3)

In this section we consider the subgroups of O(3) and their containment relations. This infor-
mation will be required when computing isotropy subgroups of groups containing O(3) which
we will do in Chapters 4 and 6 of this thesis. In Section 3.3.2 we state without proof the theo-
rems of Golubitsky et al. [46] which tell us the dimension of the fixed-point subspace of each

subgroup in the representations of O(3) on Vj, the space of spherical harmonics of degree /.

The subgroups of O(3) fall into three classes:
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3.3. SUBGROUPS OF O(3)

I Subgroups of SO(3),
I Subgroups containing the inversion element —1I,

III Subgroups not in SO(3) and not containing —1I.

In this section we will consider each of these classes of subgroups in turn.

Class I subgroups

The group SO(3) is the group of rotations of a sphere. It can be generated by rotations in the
x-, y- and z-axes. The subgroup consisting of rotations in the z-axis and a rotation through 7 in
the x-axis is isomorphic to the group of symmetries of the circle, O(2), where the reflection in
O(2) is realised by the rotation in the x-axis. Removing this rotation we are left with only the

rotations in the z-axis and the subgroup SO(2).

The subgroup generated by rotation through 271/# in the z-axis and rotation through 7 in the

x-axis is isomorphic to D,. By removing the rotation in the x-axis we are left with Z,,.

In addition there are the exceptional subgroups, T, O and I, the groups of rotations of a tetra-
hedron, octahedron and icosahedron respectively. They are finite and of orders 12, 24 and 60

respectively. Finally there is the trivial subgroup 1.

Class II subgroups

The subgroups of O(3) of class II all have the form X x Z§ where ¥ is a subgroup of SO(3).

Class III subgroups

Each class III subgroup, H C O(3), is isomorphic to a subgroup, 7(H), of SO(3), though ¥
is never conjugate to that subgroup. Every class III subgroup is uniquely determined by the
subgroups 71(H) and H N SO(3) of SO(3). In [46, Chapter XIII, Section 9] it is shown that the
subgroup H N SO(3) has index 2 in 7t(H) and that all class III subgroups of O(3) are conjugate
to one of the subgroups H given in Table 3.1.

H  n(H) HNSO(®3)

0(2)~ 0(2) S0(2)
(02 (®) T
D4, Doy Dy,
D}, Dy L
Zz,, Zom L

Table 3.1: The class III subgroups of O(3)

The subgroup O(2) ™ can be generated by rotations in the z-axis and reflection in the xz-plane.
The group generated by a rotation through 27t /m in the z-axis and reflection in the xz-plane is

isomorphic to D%,. The subgroup O~ is the group of rotations and reflections of a tetrahedron.
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3.3. SUBGROUPS OF O(3)

The subgroup D4,, can be generated by an element —R?, ,,,» which is a rotation through 77/m in
the z-axis combined with inversion in the origin, and a rotation through 7t in the x-axis. Finally,
by removing the rotation in the x-axis from D4, we are left with Z,, .
3.3.1 Containment relations
In this section we describe the containment relations between the conjugacy classes of sub-
groups of O(3).
Class I subgroups

It is clear that

(@) Zy, <Dy < 0(2),

(b) Z,, < Zy, and D,, < Dy, if n divides m,

(c) Zy < Dy (n > 2) due to the rotation through 77 symmetry of Dy,

(d) Z, < SO(2) < O(2) (n > 2).

The containment relations for the exceptional subgroups of SO(3) are shown in Figure 3.1.

SO(3)
O/ \ I
o o<

;\Dt/;/i

Figure 3.1: The containment relations for the exceptional subgroups of SO(3). Arrows indicate

the direction of containment.

Class II subgroups
The subgroups of a class Il subgroup ¥ x Z§ where X. is a subgroup of SO(3) are:

(a) Subgroups of %,
(b) Subgroups of the form K x Z§ where K is a subgroup of X,

(c) The class III subgroups of O(3) which are isomorphic to a subgroup of X.
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3.3. SUBGROUPS OF O(3)

Class III subgroups

Proposition 3.3.1. The containments between conjugacy classes of subgroups of class 111 groups are as

follows:

(a) O~ contains DZ, Z,,D3, D3, Z, and all subgroups of T.
(b) O(2)" contains D}, (m > 2), Z, and subgroups of SO(2).
(c) Z,,, contains Z., where k divides m and 2k does not divide m, and subgroups of Z,.

(d) ng contains ng and Z,, when k divides m and 2k does not divide m, Dy when k divides m,
D3, Z, and all subgroups of Dy,.

(e) Dj, contains D} where k divides m, Z., , and subgroups of Z,.

Proof. See [46, Chapter XIII, Section 9]. O

Remark 3.3.2. Note that if H is a class III subgroup of O(3) then subgroups of H N SO(3) are

contained in H and all other subgroups of H are of class III.

3.3.2 Dimensions of fixed-point subspaces

In order to determine the isotropy subgroups of any group containing O(3) we will need to
know the dimensions of the fixed-point subspaces of the subgroups of O(3) in the representa-
tions on the spherical harmonics of degree ¢ for both the plus and minus representations. These

are given by the following two theorems.

Remark 3.3.3. For the plus representation of O(3), —I acts trivially and therefore Fix(X x Z§) =
Fix(X) for subgroups £ C SO(3). In the minus representation where —I acts as minus the
identity, —1I fixes only the origin and hence Fix(XZ x Z5) = 0 for all subgroups ¥ C SO(3).
Hence we only need formulae for the dimensions of the fixed-point subspaces of the class I and
class IIT subgroups of O(3).

Theorem 3.3.4. Let SO(3) act irreducibly on the space V; of spherical harmonics of degree {. The
dimensions of the fixed-point subspaces of closed subgroups are:
(@) d(Zmw)=2[(/m]+1  (m>1)

waon={ L

() d(T) =21[¢/3]+[£/2] — £ +1

(d) d(O) = [£/4] + [¢/3] + [£/2] — £ +1
(e) d(I) = [£/5] + [¢/3] + [¢/2] — £ +1

0 (£odd)
1

(¢ even)

() d(0(2)) = {
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3.3. SUBGROUPS OF O(3)

(g) d(SO(2)) =1,
where d(¥) = dim Fix(X) and [x] is the greatest integer less than or equal to x.
Proof. See [46, Chapter XIII, Section 8]. O

From parts (c), (d) and (e) of Theorem 3.3.4 we can observe that we have the results in Table 3.2.
It can also be seen that
A(T)({+6)=d(T)(£) +1

d(0)(¢+12) = d(O)(¢) +1
A(I) (£ +30) = d(I)(£) +1.

¢ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
dmy o o o o o0 1 o0 O O 1 0 1 0 0 1
do){o o o 1 0 1 0 1 1 1 0

imy|o o 1 1 0 2 1 1 2 2

¢ 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
amy {1 0o 1 o 1 1 1 o0 1 1 1 1 1 0 2

Table 3.2: Dimensions of the fixed-point subspaces of I, O and T for £ = 1,...30.

Theorem 3.3.5. Let O(3) act irreducibly on V, with —1I acting as minus the identity. Then the dimen-

sions of the fixed-point subspaces for class 11l subgroups are

(@) d(Z5,) = 2[(0+m)/2m]

(£ even)

(b d(Dz,) {
m]+1 (€ odd)

() d(D4, ) = [(¢+m)/2m]
(d) d(0~) = [¢/3] — [¢/4]

SRR,

where d(X) = dim Fix(X) and [x] is the greatest integer less than or equal to x.
Proof. See [46, Chapter XIII, Section 9]. O

Using part (d) of Theorem 3.3.5 we can observe that we have the results in Table 3.3. It can also
be seen that

d(O7)(0+12) =d(O7)(£) + 1.

Remark 3.3.6. Theorems 3.3.4 and 3.3.5 can be proved using the trace formula, Theorem 2.4.4.
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3.4. DETERMINING ISOTROPY SUBGROUPS OF O(3)

¢ |1 2 3 4 5 6 7 8 9 10 11 12
do)# o o 1 0 0 1 1 0 1 1 1 1

Table 3.3: Dimensions of Fixed-Point subspaces for O™

3.4 Determining isotropy subgroups of O(3)

Recall from Section 2.4.1 that for finite groups I', Lemma 2.4.2, the standard chain criterion,
provides a necessary and sufficient condition for a subgroup X C I to be an isotropy subgroup.
However, when I' contains continuous symmetries, as for I' = O(3), Lemma 2.4.2 provides
only a necessary condition for X to be an isotropy subgroup. WhenI' = O(3), a necessary and
sufficient condition for a subgroup £ C O(3) to be an isotropy subgroup in the representation

on V; is provided by a result of Linehan and Stedman [63] called the ‘massive chain criterion’.

In this section we state the massive chain criterion and also illustrate why it is required by con-
sidering an example where the standard chain criterion fails to correctly identify the isotropy
subgroups of O(3). Throughout this thesis we will use different notation from Linehan and
Stedman [63] since the authors use notation which makes analogies with areas of physics. This

is also the reason for the seemingly strange name of the criterion.

Theorem 3.4.1 (Massive chain criterion). The subgroup ¥ C O(3) is an isotropy subgroup in the
representation on Vy if and only if for each strictly larger and adjacent group A (so that L C A C --- C
0(3))

dim Fix(A) — r(A) < dimFix(X) — r(X)

where

r(X) = min{dimV, — 1, q(X)} (3.4.1)
and
Proof. See Linehan and Stedman [63]. O

This differs from the standard chain criterion, Lemma 2.4.2, by the quantity r(X). The subspace
of V; which is invariant under X is Fix(X). We can partition Fix(X) into two sets. In the first set,
V/'(X), we place one copy of each basis pattern. We then place any duplicates into the second
set of basis functions, V(). Functions in V() can be transformed by an element in O(3) to
a function in V}"(X). Then r(X) = dim V() so (X) is a measure of the extent to which the
members of the subset Fix(X) are equivalent under transformations in O(3). If dim V, > 3 then
r(X) =0,10r3.

An example

Example 3.4.2. Suppose that O(3) acts on V3 with the natural representation. In this case the
subgroup Z, C O(3) has dimFix(Z;) = 3 and Dj is a larger and adjacent subgroup - it lies
immediately above Z; in the lattice of subgroups of O(3). Since dim Fix(D3) = 2, using the
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standard chain criterion (Lemma 2.4.2) there is no reason to rule out Z, from being an isotropy
subgroup of O(3) for this representation. Indeed, by checking all other subgroups larger and
adjacent to Z, we conclude, using the standard chain criterion, that Z, is an isotropy subgroup.
This conclusion is however incorrect and we now show that any solution in Fix(Z;) in fact has

D3 symmetry, with respect to a particular choice of symmetry axes.
One copy of Z; is generated by a rotation through 7t in the z-axis. For the natural action of
O(3) on V; this gives
Fix(Z2) = {¥57(0,9), Y5(0,9), Y3(0,9)}
or equivalently

Fix(Z2) = {Y3(6,9), Re(Y3(6,¢)), Im(Y3(6,¢))}.

Hence, any solution w(6, ¢) with Z, symmetry can be written as a linear combination
w(6,¢) =a Y3(6,9) + b Re(Y;(60,9)) + c Im(Y3(6,¢)),

where a, b, ¢ € R. If this solution is rotated through any angle in the z-axis then it still lies
in the same subspace Fix(Z;) but the values of the coefficients a, b and ¢ will change. Hence
there are infinitely many solutions with Z, symmetry in Fix(Z;). This is due to the fact that the
normaliser Ng(3)(Z2) = O(2) x Z§ is infinite. Without loss of generality, there is some choice
of rotation which makes ¢ = 0. This is equivalent to noticing that Im(Y?) is just a rotation of
Re(Y?) through 77/4 in the z-axis and hence that

Vi'(Z2) = {¥3, Re(Y3)}  V3(Z2) = {Im(¥3)}.

This means that 7(Z;) = 1 and since we can compute r(D3) = 0 we find that Z, is not an
isotropy subgroup in this representation by the massive chain criterion. For the choice of sym-

metry axes which make ¢ = 0 the solution w(6, ¢) lies in Fix(D3) and thus has D3 symmetry.

Note that we have explicitly shown that #(Z;) = 1 by considering the basis functions. Using

the formula (3.4.1) we can simply compute that

1(2Z5)

min{dim Vg — 1, dim NO(3) (Zz) — dim22}
min{6, dim(O(2) x Z5) —dimZ,} = 1.

We have now summarised all the information about the group O(3) which will be required
throughout this thesis in order to compute isotropy subgroups of groups containing O(3). To-

gether with the results in Chapter 2 we have now given all background results for this thesis.
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CHAPTER 4

HOPF BIFURCATION ON A SPHERE

ISOTROPY SUBGROUPS AND EQUIVARIANT
MAPPINGS

4.1 Introduction

In this chapter we investigate the symmetries of branches of periodic solutions which are cre-
ated at a Hopf bifurcation with O(3) symmetry. At such a bifurcation, pairs of complex conju-
gate eigenvalues of the trivial solution with spherical symmetry cross the imaginary axis. We
require that at this point the Jacobian has purely imaginary eigenvalues. In Chapter 2 we saw
that this is the case when the representation of O(3) is on V; & V;, where O(3) acts absolutely
irreducibly on Vj, the space of spherical harmonics of degree ¢. A vector x € V;, & V; can be

written as ,

x= Y zuY['(0,¢) +Zn Y/ (0,9).

m=—/{

The action of O(3) on x € V; & V; is determined by its action on
T
7z = (Z,g, Z,(g,l), ey Zg) S sz+1.

Elements in O(3) act on z via the same matrices as for the action of O(3) on V} i.e. those given

in Section 3.2.2. In addition, an element ¢ € S! acts on z as scalar multiplication by e'¥.

We consider the system of ODEs

dz

e f(z,A), (4.1.1)

where z € C2*1, A € R is a bifurcation parameter and f : C2*! x R — C2*1 is a smooth

mapping which commutes with the action of the compact Lie group O(3) on V; & V. By the
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4.2. TWISTED SUBGROUPS OF O(3) x S!

notion of Birkhoff normal form, f can also be assumed to commute with the action of S! to
some order k. This equivariant vector field is a function of the complex amplitudes z;, and z,

for —¢ < m < {. In Section 4.4 we consider how to compute the general form of such mappings.

Since the action of O(3) on V; @ V; is O(3)-simple we can assume that (4.1.1) satisfies all con-
ditions of the equivariant Hopf theorem (Theorem 2.5.2). Thus if ¥ C O(3) x S! is a C-axial
isotropy subgroup (i.e. it fixes a two dimensional subspace of V; @ V;) then there exists a branch
of periodic solutions to (4.1.1) with period near 27t bifurcating from the origin with X as their
group of symmetries. Furthermore, by Theorem 2.5.3, branches of solutions with the symme-

tries of other maximal isotropy subgroups of O(3) x S! are also guaranteed.

To determine the symmetries of the branches of periodic solutions of (4.1.1) which are guaran-
teed to exist, it remains to compute the maximal isotropy subgroups of O(3) x S'. The C-axial
isotropy subgroups were first listed by Golubitsky and Stewart [43]. One error in this list was
corrected by Golubitsky et al. [46, Chapter XVIII, Section 5], however a small number of other
errors remain. In this chapter we repeat the computations of Golubitsky and Stewart [43] in

order to correct these errors.

Recall from Section 2.5.3 that all isotropy subgroups of I' x S! are twisted subgroups. In Section
4.2 we compute the conjugacy classes of twisted subgroups H? of O(3) x S! for which it is
possible that H? could be an isotropy subgroup of O(3) x S! for some representation on V, @ V.
In Section 4.3.2 we decide which of these twisted subgroups are C-axial isotropy subgroups in
the representation on V; ® V; for every value of {. We correct the errors in Table 5.1 of [46,
Chapter XVIII, Section 5] and present an amended list of the C-axial subgroups, giving reasons

why the changes are required.

In Section 4.3.3 we consider the isotropy subgroups, & C O(3) x S! which have four-dimensional
fixed-point subspaces. If ¥ is maximal then by Theorem 2.5.3 a branch of periodic solutions
with symmetry X is guaranteed to bifurcate from the origin. If X is submaximal (i.e. contained
in a C-axial subgroup) then it is possible that solutions to (4.1.1) with ¥ symmetry may exist
depending on the values of the coefficients in the Taylor expansion of the equivariant vector
field f.

4.2 Twisted subgroups of O(3) x S?

In this section we follow the method of Golubitsky et al. [46, Chapter XVI, Section 7] (which
we summarised in Section 2.5.3 of this thesis) to compute the conjugacy classes of twisted sub-

groups H? of T x S! in the case where T is the orthogonal group O(3).

Step 1 of this method is to find the conjugacy classes of subgroups of O(3) and to choose a

representative H. These subgroups were given in Section 3.3 of this thesis.

For step 2 we must find all closed normal subgroups K C H such that H/K is isomorphic to 1,
Z,, or S! for each subgroup H C O(3). Then step 3 says that we must choose one representative
of each conjugacy class of K’s under the action of Nr(H)/H. This gives a list of conjugacy
classes of all pairs (H, K). The point of these computations is to produce a list of pairs (H, K)
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which, together with a homomorphism 6 : H — S!, give the conjugacy classes of twisted
subgroups of O(3) x S! which can be isotropy subgroups for the representation on V, & V
where V; is the space of spherical harmonics of degree ¢. The computation of this list can
be greatly simplified by noticing that certain pairs (H, K) cannot give a twisted subgroup H?

which is an isotropy subgroup of O(3) x S! for any homomorphism 6.

Remark 4.2.1. Recall from Remark 2.5.1 that the element ¢y € S! acts as multiplication by e'¥.
For any value of /, in the plus representation of O(3) x S on V, @ V,, the element —I € O(3)
acts as the identity and therefore the element (—1,0) € O(3) x S! must lie in every isotropy
subgroup. This means that H and K must both be class II subgroups of O(3) since —I € H and
—I € kerf =K.

In the minus representation, —I acts as minus the identity the time shift by iy = 7 acts as
multiplication by —1. Hence (—1I,7) € O(3) x S! acts as the identity and must therefore be
contained in every isotropy subgroup. This means that H must be a class II subgroup and K

must be either a class I or class III subgroup of O(3) since —I € H and —I ¢ kerf = K.

We now compute the conjugacy classes of pairs (H,K) for which H is a class II subgroup of
O(3) and K is normal in H with quotient group H/K isomorphic to 1, Z, or S!. Note that any

such K must contain the commutator subgroup
H = (h % 'hk : h,kec H)

since this is the smallest normal subgroup of H such that the quotient H/H’ is abelian. Here
(-) indicates ‘group generated by’. We will call pairs (H, K) which satisfy the conditions above

permitted pairs.
Before we list the conjugacy classes of permitted pairs (H, K) we recall some facts about normal
subgroups. A subgroup K is normal in H if hKh~! = K for all h € H. This is equivalent to
hkh=! € K for all h € H and k € K. We write this as K < H. We can note that

(a) the subgroups H and 1 are always normal in H (so (H, H) is always a permitted pair)

(b) any subgroup of an abelian group is normal.
Lemma 4.2.2. If H is any group and K is a subgroup with |H : K| = 2 then K is a normal subgroup of
Hand H/K 2 Z5.
Proof. See, for example, [2]. O
A consequence of this lemma is that if H = ] x Z§ for some | C SO(3) then ] < H with
H/J] = Z; and so (] x Z5,]) is always a permitted pair.

Proposition 4.2.3. The conjugacy classes of pairs (H, K) which can give a twisted subgroup of O(3) x

SY which is an isotropy subgroup are as given in Table 4.1.

Proof. By Remark 4.2.1 H must be a class Il subgroup of O(3) in order for the twisted subgroup,
H?, given by the pair (H, K) and homomorphism 6, to be an isotropy subgroup of O(3) x S! in

any representation. We will consider each class II subgroup, | X Z$, in turn.
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J K H/K ] K H/K
SO(3) 0(3) 1 Doy Dy x Z§ Z,
SO(3) Z, D4, Z,

0(2) 0(2) X ZE 1 Zmd Ly X ZE Zd

0(2) Zy || Zog1ym Zy, Zsi-1)

SO(Z) X Z% Zy Zoma ng Zy
0(2)” Z; T T x Z§ 1

SO(2) SO(2) x Z§ 1 T 7
SO(Z) Zz Dz X ZE Z3

Zy X Z5§ st D, Zs
z;, st o) O x Z§ 1

D, D, x Z§ 1 Y Z,
D, 7 T x Z§ Z

Z, x Z§ Z, o~ Z,
D? Z I I x Z§ 1

I Z;

Table 4.1: The normal subgroups of class II subgroups of O(3) which have quotient subgroups
isomorphic to a subgroup of S!. Here H = | x Z5. These pairs (H, K) can give twisted
subgroups of O(3) x S! which could be isotropy subgroups.

] = SO(3): By computing the commutator subgroup we find that when H = O(3) we have
H' = SO(3) and H/H' = Z,. Thus for (H,K) to be a permitted pair K must contain
SO(3). This leaves only the pairs (O(3),0(3)) and (O(3),SO(3)).

] = O(2): When H = O(2) x Z§ we have H' = SO(2) and H/H' = Z, x Z,. Thus for (H, K)
to be a permitted pair K must contain SO(2). Notice that since Z, x Z; is abelian but
not cyclic K = SO(2) does not give a permitted pair. This leaves only the pairs (O(2) x
Z5,0(2) x Z5) and (O(3) x Z5,0(2)), (O(3) x Z5,0(2)") and (O(3) x Z5,80(2) x
Z5) which are permitted by Lemma 4.2.2.

] = S0O(2): Since SO(2) x Z§ is abelian all of its subgroups are normal. The subgroups K
which give a permitted pair (H, K) are SO(2) x Z5, SO(2), Z,, and Z,, x Z5. The pairs
with K = Z,, are not permitted since in this case H/K = S! x Z,.

] = D, for n odd: When H = D, x Z§ and n is odd we have H' = Z, and H/H' = Z; x Z,.
Thus for (H,K) to be a permitted pair K must contain Z,. Notice that since Z, x Z,
is abelian but not cyclic K = Z, does not give a permitted pair. This leaves only the
pairs with K = D, x Z5, D}, D, and Z,, x Z5. All of these subgroups K are normal in
H = D, x Z§ and give permitted pairs (H, K).

] = D, forn even: Let n = 2m. When H = Dy, X Z§ we have H' = Z,, and H/H' = Z, x
Zy x Z,. Thus for (H,K) to be a permitted pair K must contain Z,,. Notice that since
Zy x Zy x Zy is abelian but not cyclic K = Z,, does not give a permitted pair. All of the
subgroup types K which give permitted pairs when 7 is odd also give permitted pairs
when 7 is even. In addition to these pairs we have that K = ng and Dy, x Z5 give
permitted pairs by Lemma 4.2.2. The remaining normal subgroups of H = Dy, x Z§

which contain Z,, are K = D7, Dy, Zy, x Z§ and Z,,,. However, all of these subgroups
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give H/K = Z, x Z; and as such, do not give permitted pairs.

] = Zy: Since Z, x Z5 is abelian all of its subgroups are normal. Suppose that m divides
n so that n = md for some d € IN. Then K = Z,, is a subgroup of H = Z, x Z§
with H/K = Z; x Z,. This is a subgroup of S' only when d is odd. The subgroup
K = Z,, x Z§ has quotient group H/K =2 Z; and hence the pair (H, K) is permitted for
all values of d. Suppose now that 2m divides n so that n = 2md. Then K = Z, has
H/K = Z,; and so the pair (H, K) is permitted for all values of d.

J=T: When H = T x Z§ we have H' = Dy and H/H' = Z3 x Z; = Zs. Thus, for (H,K)
to be a permitted pair, K must contain D;. The subgroups containing D, are T x Z5, T,

D, x Z§ and D,. All of these subgroups are normal in H and give permitted pairs (H, K).

J = O: When H = O x Z§ wehave H = T and H/H' = Z,. Thus, for (H, K) to be a permitted
pair, K must contain T. The subgroups containing T are O x Z5, O, T x Z5 and T. All of

these subgroups are normal in H and give permitted pairs (H, K).

J =1: When H =1 x Z5 we have H' = T and H/H' = Z,. The only subgroups K which give

a permitted pair are then II x Z5 and I.

These arguments justify all entries in Table 4.1. O

In order to give a list of conjugacy classes of twisted subgroups of O(3) x S! it remains only
to carry out the fourth and final step in the procedure given in Section 2.5.3. This says that for
every pair (H, K) in Table 4.1 we must determine the possible homomorphisms 6 : H — H/K.
To do this we must find all automorphisms of H/K which are not induced by conjugation by

elements in the normaliser of H.

Homomorphisms

For each pair (H, K) in Table 4.1 we must find all of the homomorphisms 6 : H — H/K to
determine the conjugacy classes of twisted subgroups of O(3) x S!. Recall that if 6 is a homo-
morphism H — S! with ker = K then all other such homomorphisms are of the form a o 6
where « is an automorphism of Im(#) = H/K. The twisted groups H? and H**? are conjugate
in O(3) x S!if a is induced by conjugation by elements in No(3)(H). Thus for each pair (H, K)
in Table 4.1 we must find all automorphisms of H/K which are not induced by conjugation by

elements in the normaliser of H.

When H/K is 1 there are no such automorphisms and the only homomorphism 6 : H — H/K
is given by
6(h)=0 VheH.

When H /K is Z, there are again no such automorphisms and the homomorphism 6 is given by

0, hek
0(h) = -
m, heH-K

We now consider the remaining pairs (H, K) in turn.

45



4.2. TWISTED SUBGROUPS OF O(3) x S!

Pairs (SO(2) x Z§,K): Consider the pairs (SO(2) x Z$, K) in Table 4.1 where SO(2) x Z5/K =
S!. There are no non-trivial automorphisms a : S' — S! which are not induced by an element
in Ng(3)(SO(2) x Z5) = O(2) x Z5. Hence, up to conjugacy, there is only one possible homo-
morphism 6 : SO(2) x Z5 — S! for each pair (SO(2) x Z5, K) which is as follows:

e When K = Z,, x Z§ the pair (SO(2) x Z§,K) can only give an isotropy subgroup in the
plus representation of O(3) by Remark 4.2.1. In this representation —1I acts as the identity
and —I € K = ker 6. Thus the homomorphism 6 is given by

0(p) =0(—y) =np Vi € SO(2). (42.1)

e When K = Z, the pair (SO(2) x Z§, K) can only give an isotropy subgroup in the minus
representation of O(3) by Remark 4.2.1. The homomorphism 6 is given by
0(y) =

{ np, ¥ € SO(2) 22)

np 4+, ¢ € S0O(2) x Z§—S0(2).

Pairs (T x Z§,K) : Consider the pairs (T x Z§,K) in Table 4.1 where K = D, x Z§ or D,
and T x Z5/K = Z3 or Zg respectively. In both cases there are no non-trivial automorphisms
which are not induced by an element in Ng3) (T x Z5) = O x Z5. In each case there is (up to

conjugacy) just one homomorphism, 6, which is as follows:

e When K = D; x Z5 the homomorphism, 6, is given by

_ 2k

3 VherD, fork=0,1,2

0(h)

where ¥ = Ry, /3 is a rotation through 277/3 and so is a generator of Z3. By Remark 4.2.1
the pair (H, K) can only give an isotropy subgroup in the plus representation of O(3) so
6(—h) = 0(h) in this case.

e When K = D, the homomorphism, 6, is given by

27tk
o(h) = % VherD, fork=0,...,5
where r = —Ry, /3 is a rotation through 277/3 combined with inversion in the origin and

so is a generator of Zg.

Pairs (Z, x Z5,K): For the pairs (Z, x Z5,K) in Table 4.1 the number of non-trivial auto-
morphisms a : H/K — H/K which are not induced by conjugation by elements in N 3)(Zn %
Z5) = O(2) x Z§ depends on the size of H/K. We will consider each case in turn.

e Consider the pair (Z,,; X Z5, Z, x Z5) where H/K = Z;. One possible homomorphism
0 : Zyg X Z5 — Z4is given by

0(rF) = 0(—1*) =2mk/d  fork=0,...,md —1 (4.2.3)
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where r = Ry, /4 is a rotation through 271/md and is the generator of Z,,;. All other
homomorphisms are given by a o 8 where a : Z; — Z,; is an automorphism. Suppose
that Z; = (w) where w = 27r/d. Whend = 1 or 2 there are no non-trivial automorphisms.

When d > 3 the automorphisms «; of Z, are given by
wj(w)=jw  forj=1,...,d—1

Notice that if j = 1 then we have the trivial automorphism.

Let k € O(2) be the order two element such that
KRy ! =Ry  for rotations Ry € SO(2).
Then for elements r* € Z,,; where r = Ry /ua,
O(xr* k1) = 0(r**) = 4ntk/d  fork=0,...,md —1

and
(aj 0 0)(r*) = w;(2mk/d) = aj(kw) = jkw = 2mjk/d.
Hence, when j = 2 the homomorphism ¢; given by «; o 6 is induced by conjugatation by
k€ 0(2).
This means that the homomorphisms from Z,,; x Z5 to Z, are given by  and ¢; = a; 0 6
forj=3,...,d — 1 where
() = p;i(—%) = a;(0(%)) = a;(2mk/d) = 27kj/a. (4.2.4)

Consider the pair (Z,,, x Z$, Z,) where H/K = Zy, and b = 2d — 1is odd. One possible

homomorphism 0 : Z,,, X Z§ — Zjy, is given by

0(r") = 2nmk/b  fork=0,...,mb—1
0(—r*) = 2mk/b+m  fork=0,...,mb—1. (4.2.5)

where r = Ry /mp is the generator of Z,,;,. All other homomorphisms are given by a o 6
where o : Zy, — Zj;, is a non-trivial automorphism. When b = 1 there are no such auto-
morphisms. Notice that since (—1I,77) € H®° for all a, the automorphisms must satisfy
a(7r) = 7. Suppose that Zy, = (w) where w = 7t/b. When b > 3 the automorphisms «;
of Zy,, are given by

#j(w) =jw  forj=1,...,2b—1and jodd.

We can only have j odd since we need a;(7r) = 7. Notice that if j = 1 then we have the

trivial automorphism and if j = b then «;, is not an automorphism (it is not bijective).

For x € O(2) and r* € Z,,,, where r = Ry /.

o' = 0(%) = 4nk/b  fork=0,...,mb—1
O(c(—r")x 1) = 8(—r*) = 4nk/b+7  fork=0,...,mb—1  (42.6)

47



4.2. TWISTED SUBGROUPS OF O(3) x S!

and
(ajo0)(r*) = w;(2mk/b) = 2mjk/b
(ajo0)(—r*) = wj@rk/b+m) = 27jk/b+jm = 2mjk/b+m (427
since j is odd. Hence, when j = 2 + b the homomorphism ¢; given by «; o 6 is induced by
conjugatation by x € O(2).
This means that the homomorphisms from Z,,;, x Z5 to Z,, are given by 0 and ¢; = a0 6
forj=3,5,...,b—2,b+4,...2b — 1 where
wj(rk) = oc]-(G(rk)) = wj(27tk/b) = 27kj/b
pi(—r*) = a;(0(—r%)) = a;(2mk/b+ 1) = 27kj/b+ 7. (4.2.8)
Notice that the homomorphism given by j = b + s is the same as a homomorphism given
byj=ssowecantakej=3,4,...,b—1in (4.2.8).
Finally, consider the pair (Zy,,q x Z5, Z,,,) where H/K = Z;;. One possible homomor-
phism 0 : Zy,,y X Z5 — Z, is given by
o) = mk/d  fork=0,...,2md —1
0(-r*) = nk/d+m  fork=0,...,2md —1. (4.2.9)

where ¥ = R/, is the generator of Z;,,;. All other homomorphisms are given by a o 6

where a : Zy; — Z,; is a non-trivial automorphism. When d = 1 there are no such auto-

wof)

morphisms. Notice that since (—1I,77) € H(®°® for all a, the automorphisms must satisfy

a(7r) = 7. Suppose that Zy; = (w) where w = 7w/d. When d > 2 the automorphisms «;
of Z; are given by
aj(w) =jw  forj=1,...,2d —1and j odd.

We can only have j odd since we need a;(7r) = 7. Notice that if j = 1 then we have the
trivial automorphism and if j = d where d is odd then «; is not an automorphism (it is

not bijective).
For x € O(2) and r* € Z,,y where r = Ry /4,
O(xr'x™1) = 0(r%) = 27k/d  fork=0,...,2md —1
O(k(— ™) = 8(—*) = 2nk/d+n  fork=0,...,md—1 (4.2.10)
and
(ajo0)(r*) = wj(nk/d) = mjk/d
(ajo8)(—r") = aj(nk/d+m) = mjk/d+jn = mjk/d+ 7 (4.2.11)
since j is odd. Hence there is no homomorphism ¢; = «; o 6 induced by conjugatation by

x € O(2). The homomorphisms from Z,,,; x Z5 to Z,,; are given by 6 and ¢; = a; o 0 for
j=3,5,...,2d —1 where

wj(rk) = zx]»(Q(rk)) = vcj(nk/d) = ntkj/d
q)j(—rk) = ocj(Q(—rk)) = wj(rk/d + ) = mkj/d + 7. (4.2.12)
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Table 4.1 together with the homomorphisms given above completes the list of conjugacy classes
of twisted subgroups of O(3) x S!. The next step is to identify those twisted subgroups which
are isotropy subgroups for some representation on V, @& V;. This is the subject of the next sec-

tion.

4.3 Isotropy subgroups of O(3) x S!

In Section 4.2 we computed the conjugacy classes of twisted subgroups, H?, of O(3) x S!. We
found that the pairs of subgroups (H, K) given in Table 4.1, with the exception of the pairs with
H = Z, x Z§, uniquely identify these conjugacy classes. For each pair where H # Z, x Z§

there is only one possible homomorphism 6 : H — H/K.

In this section we will identify which of these twisted subgroups are isotropy subgroups with
two or four-dimensional fixed-point subspace in each representation of O(3) x S' on V; & V.
To do this we will use the chain criterion (Lemma 2.4.2) and the formulae for computing dimen-
sions of fixed point subspaces of twisted subgroups given in Section 2.5.3. We first compute the
dimensions of the fixed-point subspaces of each of the twisted subgroups, H 0 of 0(3) x St for

each representation on V, ® V.

4.3.1 Dimensions of fixed-point subspaces of twisted subgroups

In this section we compute the dimension of the fixed-point subspace of each conjugacy class of
twisted subgroups, H?, of O(3) x S!. The dimension of the fixed-point subspace of H? for the
representation on V, @ V; is a formula in terms of £. We only give formulae for dim Fix(H?) in
the representations where it is possible for HY to be an isotropy subgroup of O(3) x S!. Recall
from Remark 4.2.1 that twisted subgroups H? C O(3) x S! given by pairs (H,K) can only be
isotropy subgroups in the plus representation if K is a class II subgroup of O(3) and in the

minus representation K must be either class I or class III.

Proposition 4.3.1. The dimension of the fixed-point subspace of each conjugacy class of twisted sub-
groups HO, is as given in Table 4.2 for the representation in which it is possible for HY to be an isotropy
subgroup of O(3) x S'. In the cases where H = Z, x Z§ the dimension of the fixed-point subspace of
HYi depends on the value of j where the homomorphisms p; are as given in (4.2.4), (4.2.8) or (4.2.12)
depending on the subgroup K.

Proof. We will use Proposition 2.5.13, as well as Theorems 3.3.4 and 3.3.5. Note that in the plus
representation —I acts as the identity and so for subgroups | C SO(3), dimFix(] x Z§) =
dimFix(J). In the minus representation —I acts as minus the identity and so fixes only the

origin and hence dim Fix(] x Z§) = 0.

For the pairs (H, K) in Table 4.1 with H/K = 1, by Proposition 2.5.13(a), since these pairs can

only give isotropy subgroups in the plus representation,

dim Fix(H?) = 2 dim Fix(H) = 2 dim Fix(])
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] K dim Fix(H?) dim Fix(H?)
plus representation minus representation
SO(3) 0(3) 0 -
SO(3) SO(3) - 0
2, leven
O(2 0(2) x Z5 -
2)  o@xz { 0 o
2, {leven
0O(2 O(2 -
@) @) { 0, (odd
0, [even
O(2 SO(2) x Z§ -
@) (2) x 5 { ) o
0, {even
O(2 0O(2)" -
@) @) { 2, (odd
SO(2) SO(2) x Z§ 2 -
SO(2) SO(2) - 2
s0(2) Z, % Z5 { 2 whenn=1,2,...,¢ B
0 otherwise
2 h =1,2,...,¢
S0(2) z;, - when = LS
0 otherwise
D, D, x Z& 2[¢/n]+2, [leven B
2[¢/n], ¢odd
D, D, ~ 2[4/n]+2, (leven
2[¢/n], { odd
D, Zo X 75 204/n], { even B
2[¢/n]+2, (odd
D, D ~ 2[¢/n], {even
2[4/n]+2, (odd
Doy Dy X ZE 2 [(é -+ m)/Zm] -
Doy Dj, - 2[(£+ m)/2m]
Zmd L X ZE 2|pd,j,m (Z)‘ -
Z(Zd—l)m Zy - Z‘P(Zd—l),j,m(‘e”
Z2md ng - 2‘P2d,j,m (/) ‘
T T x Z§ 4[0/3]+2[0/2] —20+2 -
T T - 4[0/31+2[0/2] —20+2
T D, x 7 0—2[¢/3], {even B
£—2[¢/3] -1, (odd
T D, ~ —21[t/3], {even
0—2[¢/3] -1, (odd
(0] O x Z§ 2([¢/4)+1€/3]+[¢/2) —t+1) -
() (®) - 2([€/4] +1€/3] +[£/2] —£+1)
(0] T x Z§ 2([€/3] —[£/4]) -
0 o - 2([¢/3] = [¢/4])
I I xZ§ 2([/5]+ /3] +[€/2) —£+1) -
I I - 2([¢/5]+[£/3]+[¢/2] —£+1)

Table 4.2: The dimensions of the fixed-point subspaces of the twisted subgroups H? of O(3) x

S in the representation on V; @ V; where H? can be an isotropy subgroup. Here
the set P ; ,(¢) is defined by Py ;,(¢) = {p =0 <p<{ and % € Z} and
the value of j determines the homomorphism ¢; which is given by (4.2.4), (4.2.8) or
(4.2.12) for the different subgroups K.
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where H = | x Z§. The formula in terms of ¢ for dim Fix(]) is given by Theorem 3.3 4.

Consider next the pairs (H,K) in Table 4.1 with H/K = Z,, where K = X x Z§ is a class
IT subgroup of O(3). By Proposition 2.5.13(b), and since these pairs can only give isotropy
subgroups in the plus representation,

dim Fix(H?) = 2 (dim Fix(K) — dim Fix(H)) = 2 (dim Fix(Z) — dim Fix(J))

where H = ] x Z§. The formulae in terms of ¢ for dim Fix(X) and dim Fix(]) are given by The-
orem 3.3.4. In many cases it is possible to simplify the expression for dim Fix(X) — dim Fix(])

to find the formula given in Table 4.2.

Now consider the pairs (H, K) in Table 4.1 with H/K = Z,, where K is a class I or III subgroup
of O(3). By Proposition 2.5.13(b), and since these pairs can only give isotropy subgroups in the

minus representation,
dim Fix(H?) = 2 (dim Fix(K) — dim Fix(H)) = 2 dim Fix(K)

where H = | x Z§. The formula in terms of ¢ for dim Fix(K) is given by Theorem 3.3.4 (for
class I K) or Theorem 3.3.5 (for class III K).

We consider the remaining pairs (H, K) in turn.

SO(2) x ZS,7Z,, x Z5): Recall from Section 4.2 that for this twisted subgroup the twist homo-
2 2 group
morphism, 6 : SO(2) x Z§ — S, is given by

0(p) =6(—) =np  for  $€SO(2)

where —¢p = —I - ¢. For each ¢ € SO(2) in the representation on V, the trace of ¢ is
given by
6 .
Trace(y) = x(p) = ) ™.
m=—/{

In our representation on V; & V;, by Remark 2.5.1, 6(1) acts as scalar multiplication by
i) and hence ,
Trace(ip, 0(y)) = ¥ Z elmv,
m=—{

Then by the trace formula we have

dim Fix(H®) = /S o2y TERCC(000)) = 2 /S oz, TR 1Y)
2

1 27 iny : imiyp
%/0 e Y eMVdy

m=—{

{ 2 ifn=1,2,...,¢

0 otherwise.

(SO(2) x Z5,Z,,): Recall from Section 4.2 that for this twisted subgroup the twist homomor-
phism, 6 : SO(2) x Z5 — S!, is given by

0(p)=np  6(=y)=ny+n
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where ¢ € SO(2) and —¢p = —I - ¢p. For each element £y € SO(2) x Z§ we then have

. E . . é .
Trace(y,ny) =€ Y e™  and  Trace(—y,np + 1) = —elWFED Y ¥

m=—{ m=—{

Then by the trace formula we have
dimFix(H) = | Trace( 001
im Fix(H") 5022 race(h,0(h))
- T 12 / T — ¥
/SO(Z) race(lp np) + s0(2) race(—y, nyp + 1)

- 2/ Trace(y,
5002 race(y, ny)
B {2 ifn=12..10

0 otherwise.

(Zypg < Z5,Zy x Z5): For these pairs the twisted subgroups are given by HY where the ho-
momorphisms §; : Z,g X Z5 — Z, are given by (4.24) forj =1andj=3,4,...,d - 1.

Thus for each element ¥ € Z,,;, where r = Ry, /md is a rotation through 277 /md,

e
Trace(r", ¢]-(rk)) — o2rijk/d Z o2ripk/md

p=—1
and hence
dimFix(HY) = / Trace(h, ; (I ::2/ Trace(h, ; (I
im Fix(HY) Zoax race(h, y;(h)) L race(h, ;(h))
2 md—1
= d Z Trace(r¥, p; (r¥))
2 st 27ti(m
- (mj+p)/md
md _E Z [ }
p=—"t k=
Since |
_ ”
mdz:l [eZTFi(mj*P)/md}k _ md  when # c7z
k=0 0 otherwise,

we find that if we define the set

Py jm(€) = {P €Z: —(<p<t and m;;-lp € Z} (4.3.1)

then
dim Fix(H?) = 2|Py;,,(€)].

Notice that for p € Py, (¢),
p=m(dg—j)  forsomeqeZ

This means that

Pd,j,m(ﬁ) = {qe€Z: —0<m(dg—j) <[t}
_ 'mj—€< <mj+€
= {qEZ.md _q_imd . (4.3.2)
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(Z(zd—l)m X Z5,Zny): Let b = 2d — 1. For these pairs the twisted subgroups are given by HYi
where the homomorphisms ¢; : Z,;, x Z5 — Zj, are given by (4.2.8) for j = 1 and
j=23,4,...,b—1and b = 2d — 1. Thus for each element * € Z,,;,, where r = Ry, is a
rotation through 27t /mb,

Trace(rX, p;(r*)) = Trace(—rk, p;(—r")) = *71iik/b e27tipk/mb
) ]
p=—t

and hence, as in the case above,

dimFix(HY) = 2/Z Trace(h, ¥j(h))

mb
= 2[Pyjm(0)] = 2|Pga_1)m(0),
where the set P, ; ,,(¢) is as in (4.3.1) and (4.3.2).

(Zoma x Z5,Z,,,): For these pairs the twisted subgroups are given by H¥/ where the homo-
morphisms ¥; : Zypyg X Z5 — Zpq are given by (4.2.12) for the odd valuesj = 1,3,5, ...,2d —

1. Thus for each element ¥ € Z,,,;, where r = R,;/,,,4 is a rotation through 7/md,

.. Z .
Trace(rk, l/)j(i’k)) = Trace(—rk, lpj(—rk)) — e7tijk/d Z e7mipk/md

p=—4
and hence
dim Fix(HY/) = / Trace(h,j(h)) = 2 Trace(h, y;(h))
ZZdeZE ZZmd
2 mel K K
= — Trace(r ,l/’]'(r )
2md =
1 / 2md—1 ) . k
_ i /md
_ % Z Z [en (mj+p)/m } )
p=—0 k=0
Since "
— m
27’% ! [eni(mj-&-p)/md}k _ 2md when % €27
=0 0 otherwise,
we find that
dim Fix(H%) = ZHP 4 <p<{ and m]m_:lp is an even integer}‘

= 2[Pagjm(0)],
where the set P;; ,,(¢) is as in (4.3.1) and (4.3.2).
(T x Z§, Dy x Z5): By Proposition 2.5.13(c) and Theorem 3.3.4(b) and (c),

dim Fix(H?) = dim Fix(D,) — dim Fix(T)
B —2[t/3], { even
¢—2[0/3]—1, f£odd

in the plus representation.

53



4.3. TSOTROPY SUBGROUPS OF O(3) x S!

(T x Z§,D,): By Proposition 2.5.13(e) and Theorem 3.3.4(b) and (c),
dimFix(H?) = dimFix(T x Z3) + dim Fix(D,) — dim Fix(D; x Z5) — dim Fix(T)
= dim Fix(D;) — dim Fix(T)
B —21[0/3], leven
¢—2[¢/3] -1, fodd

in the minus representation. O

4.3.2 C-axial isotropy subgroups

In Section 4.3.1 we computed formulae for the dimensions of the fixed-point subspaces of the
twisted subgroups, H?, which may be isotropy subgroups for a representation of O(3) x S!
on V, @ V;. We now wish to determine for which values of ¢ each twisted subgroup, H, is a
C-axial subgroup of O(3) x S'. That is, the values of ¢ for which H? is an isotropy subgroup
with dim Fix(H?) = 2. We first list in Table 4.3 the values of £ where each twisted subgroup
has dim Fix(H?) = 2 before determining, using the chain criterion (Lemma 2.4.2), when each

of these twisted subgroups are C-axial isotropy subgroups.

Proposition 4.3.2. The values of ¢ for which the twisted subgroups H? C O(3) x S have two-

dimensional fixed-point subspaces in the representation on Vy & V; are as given in Table 4.3.

Proof. For the twisted subgroups, HY withH = | x Z5 where | = O(2) or SO(2), the entries in
Table 4.3 follow directly from Table 4.2. Similarly, when ] and K are both exceptional subgroups
of O(3) then the entries in Table 4.3 follow directly from Table 4.2 when combined with Tables
3.2and 3.3.

For the pairs (T x Z5, D, x Z5) and (T x Z§, D;) we can see that

¢—2[¢/3] =2 when/iseven = [¢/3] =0/2—1 when/iseven
= 0</¢<6 and/iseven

¢—2[¢/3]—1=2 when/isodd = [¢/3] = (¢ —3)/2 when {isodd
= 3</¢<9 and/isodd.

Hence, for the twisted subgroups H? given by these pairs, the values of £ for which dim Fix(H?) =
2are?2,4,5,6,7 and 9.

The entries in Table 4.3 for the twisted subgroups, H?, where H is a dihedral subgroup of O(3)
follow from the fact that
[¢/n] =1 whenn < ¢ <2n
[¢/n] =0 when0 </ <n
[(l+m)/2m] =1 whenm < { < 3m

Finally we consider the range of values of ¢ for which |P;,,(¢)| = 1 where Py ; ,,({) is the set
defined by (4.3.1). By (4.3.2), |Py,j,»(¢)| = 1 when there is only one integer g which satisfies

¢ ¢
— + . 4.3.3)

<g<

Q.
Ul—.
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J K Values of ¢ Values of ¢
plus representation minus representation
0(2) 0(2) x Z§ Even ¢ -
0(2) 0(2) - Even ¢
0(2) SO(2) x Z§ Odd ¢ -
0(2) 0(2)” - Odd ¢
SO(2) SO(2) x Z§ All ¢ -
SO(2) SO(2) - All ¢
SO(2) Z, x Z§ Alllforn=1,2,...,0 -
SO(2) Z,, - Alllforn=1,2,...,¢
</ 14
D, D, x Z 0<¥l<n, even _
n</t<2n, fodd
D b 0<l<m, { even
! ! n<l<2n, (odd
. n</f<2n, [(even
D, Z, X Z5 -
0<{l¢<mn, (lodd
D D n</t<2n, [even
! ! 0<t¢<n, (odd
Dy, D, x Z§ m<{<3m -
Doy D4, - m</{<3m
0<l<m, d=1
Z,q" Zy X Z§ m<l<md—1), d>3,j=1 -
m(d—j)<l<mj d>3,j>3
0<l<m, d=1j=1
B m <l <2m, d=2,j=1
Zog-1ym™ Zn - ;
m <l <m(2d—2), d>3,j=1
m2d—1—j)<{l<mj, d>3,j>3
. _ m<l<md—1), d>2,j=
ZZrnd[ ] sz - . ( ) ]
m(2d—j)<l<mj, d>2,j>3
T T x Z5 3,4,7,8,11 -
T T - 3,4,7,8,11
T D, x Z§ 2,4,5,6,7,9 -
T D, - 2,4,5,6,7,9
(] O x Z§ 4,6,8,9,10,13,14,15,17,19,23 -
O O - 4,6,8,9,10,13,14,15,17,19,23
O T x Z§ 3,6,7,9-14,16,17,20 -
O (O - 3,6,7,9-14,16,17,20
I Ix 75 6,10,12,15,16,18,20,21,22,24-28 -
31-35,37-39,41,43,44,47,49,53,59
I I - 6,10,12,15,16,18,20,21,22,24-28

31-35,37-39,41,43,44,47,49,53,59

Table 4.3: The values of £ for which the twisted subgroups H? € O(3) x S! given by the pairs
(H, K) have two-dimensional fixed-point subspaces in the representation on Vy &V
where H? can be an isotropy subgroup. Here H = | x Z5. [*] The homomorphism is
Y H— H/K which is given by (4.2.4), (4.2.8) or (4.2.12) depending on K.
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When d = 1 we must have j = 1 and this integer, g must be 1 so

0<m—_£§1§m—+€<2 = 0</l<m.
m m

When d = 2 we must also have j = 1. The nearest integers to 1/d = 1/2 are 0 and 1 which are

equal distances away and hence we cannot have |P,1 ,,(¢)| = 1 for any values of £.

When d > 3 and j = 1 the nearest integer to j/d is g = 0 and so
1< ——<0<——<1 = m<L<m(d-1).
m m

Finally, when d > 3 and j > 3 the nearest integer to j/d is ¢ = 1 and so

mj—{
md

mj+£<

0< i

<1< 2 = m(d —j) < €< mj. O
Theorem 4.3.3. The C-axial subgroups of O(3) x S in the representations on V, & V are as given in

Table 4.4.

] K 6(H)  Plus representation Minus representation
0(2) 0(2) x Z§ 1 Even ¢

0(2) 0(2) Z Even /¢

0(2) SO(2) xZ5 Z, Odd ¢

0(2) 0(2)” Z, Odd ¢

SO(2) Z,xZ§ st All L forn =1,2,...,¢0

S0(2) 12, st Alllforn=1,2,...,0
I I xZ5 1 6,10,12,15, 16, 18, 20, 21, 22, 24,

25,26,27,28,31, 32,33, 34, 35,37,
38,39, 41, 43, 44, 47, 49, 53, 59
I I Zy 6,10, 12,15, 16, 18, 20, 21, 22, 24,
25,26,27,28,31, 32,33, 34, 35, 37,
38,39, 41, 43, 44, 47, 49, 53, 59

O O x Z5 1 4,6,8,9,10,13,14,15,17,19,23

O O Zy 4,6,8,9,10,13,14,15,17,19, 23

O T x Z§ Zy 3,6,7,9,10,11, 12,13, 14, 16,17, 20

O (O)n Zy 3,6,7,9,10,11, 12,13, 14, 16,17, 20
T D, x Z§ Zs 2,4,5,6,7,9

T Dy Zg 2,4,5,6,7,9

Dy, Dy, x Z§ Zy m<{<3m, (m>3)

D2y D4, Z, m<<3m, (m=>3)

D, D, x 7§ Z, 2,45

D, DZ Z> 2,4,5

Table 4.4: The C-axial subgroups of O(3) x S! for the representations V; @& V;. The last two
columns give the values of ¢ for which the subgroups are isotropy subgroups. Here
H=]x1Zs.

Proof. We consider each row in Table 4.3 and determine for which values of ¢ the twisted sub-
group HY given by the pair (H, K) is an isotropy subgroup by using the chain criterion (Lemma
2.4.2).
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If a twisted subgroup, HY is maximal (i.e. not contained in any other twisted subgroup G? in
Table 4.3) then it is a C-axial isotropy subgroup for all values of ¢ where dim Fix(H?) = 2 as
given in Table 4.3.

Remark 4.3.4. Notice that a pair (H, K) gives a twisted subgroup, H? that contains the twisted
subgroup, LY, given by the pair (L, M) only if L C H, M C K and the quotient groups satisfy
L/M C H/K. Also note that this is a necessary but not sufficient condition for LY C H?. We
will sometimes use the notation (L, M) C (H,K) to mean that L¥ ¢ HY.

Since the pairs (H,K) =

(0(2) xZ5,0(2) x Z3),  (0(2) xZ5,0(2)),  (0(2) xZ;,80(2) x Z3),
(0(2) xZ3,0(2)7),  (SO(2) x Z3, Zn x Z3), (8O(2) x Z3,7,,),

(I x Z5,1 x Z5), (I x Z5,1), (O x 75,0 x Z5),
(O x Z5,0), (O x2Z5T xZ5), (O xZ507),
(T x Z5, Dy x Z5), and (T x Z5,D,)

define maximal twisted subgroups, HY, they give C-axial isotropy subgroups for all values of ¢

given in Table 4.3.

The twisted subgroup given by the pair (Dy,,, x Z$, Dy, x Z5) is contained in that given by the
pair (Dyyg X Z5,D,y,q % Z5) for any odd value of d. However, for any odd value of d the values
of ¢ for which each of these twisted subgroups have two-dimensional fixed-point subspaces do
not overlap. Hence by the chain criterion, when m > 3, (Dy;,, x Z§, Dy, X ZE) gives a C-axial
subgroup when m < ¢ < 3m. Similarly when m > 3 the pair (Dy,, x Z5, ng) also defines a
C-axial subgroup when m < £ < 3m. When m = 2, from Table 4.3 we can see that both of the
pairs (Dg x Z§, Dy x Z5) and (D4 x Z5, DY) define twisted subgroups with two-dimensional

fixed-point subspaces when ¢ = 2,3,4 and 5. However
(Dy X Z5,Dy x ZS) C (O x Z5, T x Z5) and (D4 x Z5,D9) ¢ (O x Z5,07).

Hence, by the chain rule, neither pair defines a C-axial isotropy subgroup when ¢ = 3.

This accounts for all of the entries in Table 4.4. It remains to explain why the rest of the pairs

(H,K) in Table 4.3 do not define C-axial isotropy subgroups.

By the chain criterion the twisted subgroup, H?, defined by (SO(2) x Z5,SO(2) x Z$) cannot
be an isotropy subgroup since it is contained in the twisted subgroup, LY defined by (O(2) x
Z5,0(2) x Z5) and for all values of ¢ where dim Fix(H?) = 2, dim Fix(L¥) = 2 also. Similarly
H? defined by (SO(2) x Z5, SO(2)) cannot be an isotropy subgroup because it does not satisfy
the chain criterion with LY defined by (O(2) x ZS, 0(2)) for any value of /.

Since (T x Z5, T x Z5) C (O x Z5,0 x Z5), by the chain criterion the twisted subgroup H?
defined by (T x Z5, T x Z§) cannot be a C-axial isotropy subgroup when ¢ = 4 or 8 even
though dim Fix(H?) = 2 for these values. Also (T x Z5, T x Z5) C (O x Z5,T x Z5), and
so by the chain criterion H? cannot be a C-axial isotropy subgroup when ¢ = 3, 7 or 11 either.

This leaves no values of £ for which dim Fix(H?) = 2 so we conclude that H? is never a C-axial
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isotropy subgroup. We come to the same conclusion for the twisted subgroup LY defined by
(T x Z§, T) since

(TxZ5T)C (0Ox2Z50) and (Tx2Z5T)C (0OxZ50).

The pairs (Zq X Z5,Zm % Z5), (Z(aq—1ym X Z5, Zm) and (Zyyg X Z5,Z,,,) cannot define C-
axial isotropy subgroups for any value of ¢ for any homomorphism ¢; : H — H/K. For all /,
the twisted subgroups defined by these pairs do not satisfy the chain criterion when compared
with the twisted subgroup defined by the pairs (SO(2) x Z§, Z,, x Z5), (SO(2) x Z5,Z,,,)
and (SO(2) x Z§,Z,,,) respectively.

Notice that

(D X Z5, D, x Z5) C (0(2) x Z5,0(2) x Z5) (4.3.4)
(Dy X Z5, Dy x Z5) C  (Doy x Z5, D, x Z5). (4.3.5)

By (4.3.4) and the chain criterion the twisted subgroup, H?, defined by the pair (D, x Z5, D, x
Z5) cannot be a C-axial isotropy subgroup for any even values of /. By (4.3.5) and the chain
criterion, H?, is also not a C-axial isotropy subgroup for the remaining odd values of £. Similarly
(Dy x Z5,D;,) does not give a C-axial isotropy subgroup for any value of £ due to the fact that
the pair is contained in both (O(2) x Z5,0(2)) and (Da, x Z5, D).

In addition

(Dy X Z5Z, xZ5) C (0(2) x Z5,80(2) x Z5) (4.3.6)
(Dp X 25, Zy X Z5) C (Dyy X Z5,Dy X Z5). (4.3.7)

By (4.3.6) and the chain criterion the twisted subgroup, H?, defined by the pair (D, x Z$, Z, x
Z5) cannot be a C-axial isotropy subgroup for odd values of £. By (4.3.7) and the chain criterion,
H?, is also not a C-axial isotropy subgroup for the remaining even values of ¢. Similarly (D, x
Z5,D73) does not give a C-axial isotropy subgroup for any value of ¢ due to the fact that the
pair is contained in both (O(2) x Z5,0(2)”) and (Dy, x Z5,D4,).

Having now considered all rows in Table 4.3, this completes the proof. O

Differences from previously published results

As mentioned in Section 4.1, the C-axial isotropy subgroups of O(3) x S! were first listed by
Golubitsky and Stewart [43]. One error in this list was corrected in Golubitsky et al. [46, Chapter
XVIII, Section 5], however a small number of other errors remained. In this Chapter so far,
we have repeated the computations of Golubitsky and Stewart [43] and Golubitsky et al. [46,
Chapter XVIII, Section 5] in order to correct these errors. Table 4.4 represents our corrected list
of the C-axial isotropy subgroups of O(3) x S!. In this section we outline how and why our
results differ from those of [43] and [46].

The differences between our results in Table 4.4 and the results of Golubitsky et al. given in
Table 5.1 of [46, Chapter XVIII] are as follows:
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1. We have found it necessary to include the value ¢ = 15 in the lists of values where the
pairs (H,K) = (I x Z5,1 x Z5) and (I x Z$, 1) give twisted subgroups which are C-axial
subgroups in the plus and minus representations respectively. This is because the twisted
subgroups given by both of these pairs are maximal and in the given representations the

fixed-point subspace of the twisted subgroups is two-dimensional.

2. In Table 5.1 of [46, Chapter XVIII] the final row states that in the plus representation
the pair (H,K) = (D, x Z5, Dy x Z5) defines a twisted subgroup which is a C-axial
subgroup when £/2 < n < £. 1 We have found in our computations that the range of
values for which this twisted subgroup is a C-axial isotropy subgroup is £/3 < n < ¢
whenn > 3and ¢/ = 2,4 and 5 when n = 2.

In all previous enumerations of the C-axial subgroups of O(3) x S, [43, 44, 46], it is
assumed that the twisted subgroup, LY given by (Dy, x ZS, D, x Z5) is contained in
HY given by (Dy, x Z5, Dy, x Z5). This results in the reduction in the range of values
for which LY is a C-axial subgroup which is reported in [43, 44, 46]. However, the con-
tainment relation L¥ ¢ HY does not hold. For example, the element (R /,, 7r), where
R, /n € O(3) is a rotation through an angle 77/n and 7 € S! is the non-identity element
in Z,, is contained in the smaller group, LY, but not in any copy of the larger group,
H®. When we choose a copy of the group L = Dj, x Z5 to make the twisted subgroup
LY we choose the two axes of rotation required. There is only one copy of the group
H = Dy, x Z§ which contains L but in this case L = ker6 and hence LY ¢ H?. This is
an example of the insufficiency of the condition given in Remark 4.3.4 to determine all

containment relations between twisted subgroups of O(3) x S'.

3. In Table 5.1 of [46, Chapter XVIII] the penultimate row states that in the minus represen-

tation the pair (H,K) = (D, x Z$,D,,) gives a twisted subgroup, H’ which is a C-axial
subgroup when ¢/2 < n < {. However, as we noted in the proof of Theorem 4.3.3, H 0 is
not a C-axial subgroup by the chain criterion since it is contained in the twisted subgroup,
LY given by the pair (D, x Z5,D4,).
We have shown that LY is a C-axial subgroup for the values given in Table 4.4. This
twisted subgroup does not appear in the list of C-axial subgroups given in [43] nor Table
5.1 of [46, Chapter XVIII] since it is assumed that LY is contained in the twisted subgroup
given by (O(2) x Z5,0(2) ") for all values of n. This assumption is false due to the fact
that D4, is not contained in O(2)~ by Proposition 3.3.1.

C-axial subgroups in the natural representation

Using Table 4.4 we can find the C-axial isotropy subgroups for the natural representations of
0O(3) x S on V; @ V;. Recall that the natural representation is the plus representation for even

values of £ and the minus representation for odd values of ¢. Table 4.5 gives the C-axial isotropy

]By comparing Table 14.1 of [43] and Table 5.1 of [46, Chapter XVIII] and the subsequent remarks it is clear that there
is a misprint in footnote [2] to Table 5.1 [46, Chapter XVIII] and it should say that the class II subgroup is D,, ;o X Z§

and n is even.
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subgroups in the natural representation for £ =1, ..., 6. This table is the equivalent to Table 5.2
of [46, Chapter XVIII], taking into consideration the errors in Table 5.1 of [46, Chapter XVIII]
which we have corrected. We find that when ¢ = 3, there are fewer branches of periodic
solutions guaranteed to exist by the equivariant Hopf theorem than previously thought and
when ¢ = 4,5 and 6 there are more solution branches. In Chapter 5 we will study the C-axial

periodic solutions in the natural representation on V3 @ V3 in detail.

Number of branches given by

T K 6(H) equivariant Hopf theorem
1 0(2) 0(2)” Z, 2
SO(2) 1Z,, St n=1]
2 02 O(2)xzs 1 5
S0(2) Z,xZ§ St [n=1,2]
T D, x Z§ Z3
Dy D, x Z§ Z;
3 0(2) 0(2)° Z, 6
S0(2) Z,, S'1<n<3
o) (o Z,
Dg Df Z,
4 0(2) 0(2)xz5 1 10
SO(2) ZuxZ§ St[1<n<4]
0 O x Z§ 1
T D x Z5 Z3
D,, D, x Z§ Zy 2<n<4
5 0(2) O(2)° Z, 11
SO(2) Z, S [1<n<5
T D; Zs
Doy, D, X Z§ Zy [2<n <5
6 0O(2) 0O2)xz5 1 15
SO(2) Zu xZS St[1<n<é
I IxZ§ 1
() O xZ5 1
0 T x Z§ Z,
T D x Z5 Z3
D,, D, x Z§ Z) 3<n<6]

Table 4.5: The C-axial subgroups of O(3) x S! for the natural representations on V, @ V; for
£=1,...,6. Here H = | x Z5.

4.3.3 Isotropy subgroups with four-dimensional fixed-point subspaces

In this section we compute the isotropy subgroups, & C O(3) x S!, which have four-dimensional
fixed-point subspaces for all representations on V; @ V,. If ¥ is maximal then by Theorem 2.5.3
a branch of periodic solutions with ¥ symmetry is guaranteed to bifurcate from the origin. If &
is submaximal (i.e. contained in a C-axial subgroup) then it is possible that solutions to (4.1.1)
with X symmetry may exist depending on the values of the coefficients in the Taylor expansion

of the equivariant vector field f. We call such a solution (if it exists) a submaximal solution.
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In this section we compute in which representations, V; @ V;, the twisted subgroups in Table
4.2 are isotropy subgroups of O(3) x S! with four-dimensional fixed-point subspaces. To do
this we first list in Table 4.6 the values of ¢ where each twisted subgroup has dim Fix(H?) = 4.
We then determine, using the chain criterion (Lemma 2.4.2), when the twisted subgroups are

isotropy subgroups with four-dimensional fixed-point subspaces.

Proposition 4.3.5. The values of ¢ for which the twisted subgroups H® C O(3) x S' in Table 4.2 have

four-dimensional fixed-point subspaces in the representation on V; & Vy are as given in Table 4.6.

Proof. The twisted subgroups, H?, with H = ] x Z§ where ] = O(2) or SO(2) do not appear
in Table 4.6 since they never have a four-dimensional fixed-point subspace. When | and K are
both exceptional subgroups of O(3) then the entries in Table 4.6 follow directly from Table 4.2
when combined with Tables 3.2 and 3.3.

For the pairs (T x Z5, D, x Z5) and (T x Z§,D;) we can see that

¢—2[/3] =4 when/iseven = [¢/3] =€/2—2 when/iseven
= 6 < ¢ <12 and/iseven

¢—2[t/3]—1=2 when/isodd = [¢/3] = ({—5)/2 when {isodd
= 9<¢<15 and/isodd.

Hence the values of ¢ for which dim Fix(HG) =2are8,10,11,12,13 and 15.

The entries in Table 4.3 for the twisted subgroups, H?, where H is a dihedral subgroup of O(3)
follow from the fact that

[(/n] =1 whenn < ¢ < 2n
[¢/n] =2 when 2n < ¢ < 3n
[(l4+m)/2m] =2 when3m < { < 5m

Finally we consider the range of values of ¢ for which |P;,,(£)| = 2 where Py ; ,,({) is the set
defined by (4.3.1). By (4.3.2), [Py, (£)| = 2 when there are two integers g which satisfy (4.3.3).

When d = 1 we must have j = 1. This means that one of the integers must be 1 but the next
nearest integers to 1 are 0 and 2 which are equal distances away and hence |P; 1 ,,,(¢)| # 2 for

any values of 4.

When d = 2 we must also have j = 1. The nearest integers to 1/d are 0 and 1 and so we have

Ml g M L <<
2m 2m

Whend > 3, |P;;,,(¢)| = 2 when

mj—{

-1< <2

<0<1<L

mj + ¢
md
which implies that
max{mj,m(d —j)} < ¢ < min{m(d+j),m(2d —j)}.

The results in Table 4.6 follow directly from these computations. O

61



4.3. TSOTROPY SUBGROUPS OF O(3) x S!

] K Values of ¢ Values of ¢
plus representation minus representation
D, D, x Z { n</t<2n, { even B
2n < ¢ <3n, {odd
D, D, B { n<dt<2n, { even
2n < /¢ <3n, {odd
D, 7, % 75 { 2n < ¢ <3n, {even B
n</t<2n, f odd
D, D: B { 2n < { < 3n, [{even
n</t<2n, f odd
Dy, Dy, x Z§ 3m < {<5m -
Doy D4, - 3m < £ <5m
z 2y % 25 { m<l<3m d=2,j=1 ~
[A] d>3
Z g1y Zy - { B S[f;,]< e 7d2,2]37 l
Zoya Z, - { ! S[l; e dllzjz 1
T T x Z§ 6,9,10,13,14,17 -
T T - 6,9,10,13,14,17
T D, x Z§ 8,10,11,12,13,15 -
T D, - 8,10,11,12,13,15
(®) O x Z5 12,16,18,20-22,25-27,29,31,35 -
O O - 12,16, 18,20-22,25-27,29,31,35
O T x Z§ 15,18,19,21-26,28,29,32 -
() (O)n - 15,18,19,21-26, 28,29, 32
I I xZ§ 30,36,40,42,45,46,48,50, 51,52, 54-58 -
61-65,67-69,71,73,74,77,79, 83,89
I I - 30, 36,40, 42,45, 46,48,50,51,52,54-58

61-65,67-69,71,73,74,77,79, 83,89

Table 4.6: The values of £ for which the twisted subgroups H? € O(3) x S! given by the pairs

(H, K) have four-dimensional fixed-point subspaces in the representation on V; &V

where HY can be an isotropy subgroup. Here H = J x zs.
[*] The homomorphism is Y H— H/K which is given by (4.2.4), (4.2.8) or (4.2.12)

depending on K.
[A]l: max{mj,m(d —j)} < { < min{m(d+j),m2d —j)}

[B]: max{mj,m(2d —1—j)} < <min{m(2d —1+7j),m(4d —2—j)}
[Cl: max{mj,m(2d — j)} < £ < min{m(2d + j), m(4d — j)}.
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Theorem 4.3.6. If H® C O(3) x S! is a twisted subgroup with four-dimensional fixed-point subspace
in the representation on Vy @ V, then it is an isotropy subgroup in that representation. In other words,
Table 4.6 is a list of the isotropy subgroups of O(3) x S with four-dimensional fixed-point subspaces in
the representation on V; @ V.

Proof. We consider each twisted subgroup HY in Table 4.6 and show that for all values of ¢
where dim Fix(H?) = 4, the twisted subgroup is an isotropy subgroup. We do this using the

chain criterion (Lemma 2.4.2).

If a twisted subgroup, H? is maximal (not contained in any other subgroup of O(3) x S') then
it is an isotropy subgroup with four-dimensional fixed point subspace for all values of £ where
dim Fix(H?) = 4. The pairs (H,K) =

(I x Z§,1 x Z5), (I x Z5,1I), (O x Z5,0 x Z5),
(O x Z5,0), (OxZ5T xZ5), (O xZ5,07),
(T x Z5, Dy x Z5), and (T x Z5,D,)

give maximal twisted subgroups and are therefore maximal isotropy subgroups with four-
dimensional fixed point subspace for all values of ¢ given in Table 4.6. Hence, by Theorem
2.5.3, a branch of periodic solutions of (4.1.1) with these symmetries is guaranteed to exist for

the representation on V; @ V; for the values of ¢ in Table 4.6.

The twisted subgroup given by the pair (Dy,, x Z5,D;, x Z) is contained in that given by the
pair (Dyyg X Z5,D,q % Z5) for any odd value of d. However, for any odd value of d the values
of ¢ for which each of these twisted subgroups have four-dimensional fixed-point subspaces do
not overlap. Hence by the chain criterion, when m > 3, (Dayy X Zg, D, x Zg) gives an isotropy
subgroup with four-dimensional fixed-point subspace for all values of ¢ in Table 4.6. We can
also observe that (Dy,, x Z5, Dy, x Z5) never gives a maximal isotropy subgroup since for all
values of ¢ for which it has a four-dimensional fixed-point subspace, (Dg;, x Z§, D3, x Z5) is
a C-axial subgroup which contains (D, x Z§, D, x Z5).

Similarly when m > 3 the pair (D2, x Z$, D) also defines a submaximal isotropy subgroup
with four-dimensional fixed-point subspace in the minus representation when 3m < ¢ < 5m.
When m = 2, from Table 4.3 we can see that both of the pairs (Dy x Z5, D, x Z5) and (D4 x

75, DY) define twisted subgroups with four-dimensional fixed-point subspaces when ¢ = 6,7,8
and 9. Although

(Dy X Z5, Dy X Z5) C (O x Z5, T xZ5) and (D4 x Z5,D4) C (0 x2507),

the larger groups have fixed-point subspaces of dimension less than four when ¢ = 6,7,8 and
9. Hence, by the chain criterion, both pairs define a submaximal isotropy subgroup when ¢ =
6,7,8 and 9.

Now consider the twisted subgroup, H? given by the pair (T x Z5, T x Z5). Although it is
contained in the twisted subgroups given by the pairs (I x Z5,1 x Z5), (O x Z5,0 x Z§) and
(O x ZS, T x Z5); for the values of £ for which dim Fix(H?) = 4, these subgroups have a smaller

fixed-point subspace and so H? is a submaximal isotropy subgroup by the chain criterion. Sim-
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ilarly the pair (T x Z§, T) gives a submaximal isotropy subgroup with four-dimensional fixed-

point subspace for all values of ¢ given in Table 4.6.

For general n the twisted subgroup H? given by the pair (D, x Z$, D, x Z5) is contained
in the twisted subgroups given by the pairs (Dy, x Z5, Dy x Z5) and (Dy, X Z5, Dy, X Z5).
However for the values of ¢ where dim Fix(H?) = 4, these pairs always have a fixed-point
subspace of dimension less than 4 and so by the chain criterion H? is an isotropy subgroup
with four-dimensional fixed-point subspace for the values of ¢ given in Table 4.6. It can never
be a maximal isotropy subgroup since it is contained in the C-axial subgroup given by the
pair (O(2) x Z5,0(2) x Z5). We now consider the fact that for n = 2,3,4 and 5, H may be
contained in a twisted subgroup LY where L = M x Z and M is an exceptional subgroup of
0(3):

(@) (D5 x Z5,Ds5 x Z5) C (I x Z5,1 x Z5) but when dimFix(Ds x Z5, D5 x Z5) = 4,
dim Fix(I x Z5,1 x Z5) < 4.

(b) (D4 x Z5,Dy x Z5) C (O x Z5,0 x Z5) but when dimFix(Dy x Z5, Dy x Z5) = 4,
dim Fix(O x Z5,0 x Z5) < 4.

() (D3 x Z§,D3 x Z5) C (I x Z5,I x Z5) and(O x Z5,0 x Z5) but when dim Fix(D3 x
Z5,D; x Z5) = 4, dim Fix(I x Z5, T x Z5) < 4 and dim Fix(O x Z5,0 x Z5) < 4.

(d) (Dy x Z§, Dy x Z5) C (I x Z§,1 x Z5), (O x Z5,0 x Z5), (T x Z5, T x Z5) and (T x
Z5,D; x Z5) but when dim Fix(D; x Z§, D, x Z5) = 4, these larger groups have fixed-

point subspaces of dimension less than 4.

Hence for all values of 1, by the chain criterion, (D, X Z5,Dy X Zg) gives a submaximal

isotropy subgroup with four-dimensional fixed-point subspace for the values of ¢ in Table 4.6.

Similar arguments show that the twisted subgroups given by the pairs
(Dy x Z5,Dy) (Dp X 25,2y X Z5) and (D, x Z5,D5)

are also submaximal isotropy subgroups with four-dimensional fixed-point subspace for the

values of ¢ given in Table 4.6.

Finally we consider the twisted subgroups, H¥/, where H is a cyclic subgroup of O(3).

(a) Let HY be the twisted subgroup given by the pair (Z,,q X Z$, Zm x Z5) with homo-
morphism ; defined by (4.2.4). When d > 3 this subgroup is not contained in any
other twisted subgroup with four-dimensional fixed-point subspace. It is contained in
the C-axial subgroup given by the pair (SO(2) x Z,Z,, x Z5) and hence is a submaxi-
mal isotropy subgroup with dim Fix(H¥/) = 4 for all values of ¢ given in Table 4.6 and all
homomorphisms ¢;. When d = 3 and m = 1, j must be equal to 1 and dim Fix(H"1) = 4
when ¢ = 2 or 3. So even though (Z3 x Z5,7Z5) C (T x Z5, D, x Z), by the chain cri-

terion, HY1 is still a submaximal isotropy subgroup when ¢ = 2 and 3 since dim Fix(T x
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Z5,Dy x Z5) < 2 for these values of ¢. Similarly whend = 2, j =1 and

(Zow X Z5,Zm X Z5) C  (Doy X Z5, Dy X Z5)
(Zy x 75,7y x Z5) C (OxZ5TxZ5)

but the larger group always has a fixed-point subspace of dimension less than four for
all values of / where the smaller group has a fixed-point subspace of dimension four and
hence by the chain criterion, HY! is a submaximal isotropy subgroup for all values of ¢

given in Table 4.6.

(b) Let HY/ be the twisted subgroup given by the pair (Z (24-1)m % Z5, Z) with homomor-
phism ¢; defined by (4.2.8). This never has four-dimensional fixed-point subspace when
d = 1. For all other values of 4

(Z(qu)m X 25, Zm) C (Zypa—1ym % 25, Zs,,)

for any odd value of j = 1,3,...,2d — 3. However, the larger group always has a fixed-
point subspace of dimension less than four for all values of £ where the smaller group has

a fixed-point subspace of dimension four. Also whend =2andm =1,j =1and
(Zg X Zg,]l) - (T X ZE, Dz)

however again the larger group always has a fixed-point subspace of dimension less than
four for all values of ¢ where the smaller group has a fixed-point subspace of dimension
four and hence by the chain criterion, HY/ is a submaximal isotropy subgroup for all

values of ¢ given in Table 4.6.

(c) Let HY be the twisted subgroup given by the pair (Zy,,4 x ZS, Z,,,) withhomomorphism
; defined by (4.2.12). Whend =1

(Zow x Z5,2,,,) C (Zem x Z5,Zy,,)
(sz X ZZ/ ) C (D X ZZ/D )
(Z4x25,Z,) C (OxZ50")
(2o xZ5,Z,) C (DyxZ5D3) and other larger groups

but the larger group always has a fixed-point subspace of dimension less than four for
all values of ¢ where the smaller group has a fixed-point subspace of dimension four and
hence by the chain criterion, H? is a submaximal isotropy subgroup for all values of ¢

given in Table 4.6.

This completes the proof. O

Conclusions

We have now computed the isotropy subgroups of O(3) x S with two and four dimensional

fixed-point subspaces in the representations on V, @® V; for all values of £. The equivariant Hopf
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theorem guarantees the existence of branches of periodic solutions to (4.1.1) with the symme-
tries of the C-axial subgroups at a Hopf bifurcation with O(3) x S! symmetry. To determine
whether these solution branches bifurcate supercritically or subcritically and whether the solu-
tions can be stable we must compute, to high enough order, the Taylor expansion of the general
form of the O(3) x S! vector field for a specific value of £. We also need this Taylor expansion
to determine if it is possible for solutions with £ symmetry to exist where X is a submaximal
isotropy subgroup of O(3) x S! with four-dimensional fixed-point subspace. One method of

computing this Taylor expansion is discussed in the next section.

44 O(3) x S! equivariant mappings

In this section we discuss in general how to compute the Taylor expansion of a O(3) equivariant
mapping f(z) where z € C2*1 is the vector which describes the amplitudes of the spherical
harmonics of degree / in the space V, @ V; as in Section 4.1. Recall from Chapter 2 that by
the notion of Birkhoff normal form the Taylor expansion of f to order k can be assumed to

commute with O(3) x S!. Thus to compute the kth

order truncated Birkhoff normal form of f
for the natural representation of O(3) on V; @ V; it is equivalent to compute the k' order Taylor

expansion of a mapping which is equivariant with respect to O(3) x S'.

Throughout this section we will assume that O(3) acts on z € C2*1 by the natural action of
O(3) on V;. This means that elements of O(3) act on z by the same matrices as for V; i.e. those

given in Section 3.2.2, and the phase shifts i € S! act as scalar multiplication by e'¥.

Given a specific value of / it is possible to compute the Taylor expansion of a O(3) x S! equiv-
ariant mapping f(z) for the representation on V; @ V; to any given order. However, it is not
possible to carry out this computation for general £. In this section we will discuss the method
of computation for the representation of O(3) x S! on V;, @ V; for a given value of ¢ and prove
that two certain cubic maps are O(3) x S! equivariant for all values of . In Chapter 5 we will
carry out the computation of the Taylor expansion of the O(3) x S! equivariant mapping, f, to
cubic order for the action of O(3) x S on V3 @ V5.

4.4.1 Equivariant mappings on C/*!
In this section we describe a method for computing the Taylor expansion of a O(3) x S! equiv-

ariant mapping f(z) for the natural representation on V; & V; to any given order.

Recall that the mapping f : C2*1 — C?*1is O(3) x S! equivariant if

fly-z)=v-f(z) VYyeO(3)xS. (4.4.1)

This mapping is in exact Birkhoff normal form. Here ‘- represents an action of O(3) x S! on

the vector

T 20+1
Z:(Z,g,z,ngl,...,Zg) eC +,

where ‘T’ denotes the transpose. The action, *-’, of 7 € O(3) x S! on z is given by multiplication
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on the leftby a (2¢ 4 1) x (2¢ 4 1) matrix, M. Hence the mapping f must satisfy
f(Myz) = M, f(z)  Vy€0O(3)xSh (4.4.2)

Let F; denote the Taylor expansion of f to order k. In order to compute F; we impose that (4.4.2)
hold for the mapping Fy = (Fx ¢, Fc —¢41,-- -, Fk,é)T where each component Fy,, v = —/,..., ¢
is a linear combination of all possible terms in z_4, ..., zy and their complex conjugates of
order less than or equal to k. This will force the coefficients of some terms to be zero and
others to occur in certain ratios. Thus Fy is a linear combination of a number of basis O(3) x S!

equivariant mappings of order less than or equal to k.

We can note that it is sufficient to impose that Fy satisfies (4.4.2) for a set of generators of O(3) x
S!. In Section 3.2.2 we computed the matrices, My and My, for the action of the generators ¢’

and ¢’ which are infinitesimal rotations in the z- and y- axes respectively. Recall that

My = diag (e_ié"&/,e_iw_l)"”/,...,ei(é_l)"’,,eiw) (4.4.3)

My

{er RAVERIE. IVﬂ (4.4.4)

i.e. the matrix with columns v, where

_ 1 rq L /
Vi = <0, ...,0,—5\/(€+m)(€—m+1)6, 1, 5\/(£—m)(€+m+1)9, 0, ...,0)
form = —{,..., ¢ with the entry 1 lying in the m™ column.

In the natural representation on V, the element —1I acts as the identity when / is even and minus
the identity when ¢ is odd. This means that —I acts on z € C2*! by scalar multiplication by
(—1)! or equivalently by multiplication by the matrix M_; = (—1){I/,1 where I,/ is the
(20 +1) x (2¢ + 1) identity matrix. Recall that in our representation the phase shifts ¢ € S! act
as scalar multiplication by e'¥ or equivalently by multiplication by the matrix My = eVl 1.

Hence the O(3) x S! equivariant vector field f satisfies
f(e¥z) =ef(z) VypeSh

This means that in the Taylor expansion Fy, each component Fy , contains only terms of odd

order which are of the form

2,2, 2y 1) B " Bapn) ja€—4,... ¢ for gq=1,...,2p—1. (4.4.5)
Moreover, equivariance with respect to rotations ¢’ implies that the only terms in Fy , are those
of the form (4.4.5) where j1 +jo + - +jp —jpr1) = —Jp-1) =1

We have seen that for any value of ¢, the Taylor expansion to order k, Fy, of the O(3) x S!
equivariant vector field, f, for the representation of O(3) on V; is a linear combination of a
number of basis O(3) x S! equivariant mappings of order less than or equal to k. The basis

mappings must be of odd order and contain only terms of the form given above.

We now show that two particular mappings are cubic O(3) x S! equivariant mappings for all

values of /.
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4.4.2 Two cubic O(3) x S! equivariant mappings

Proposition 4.4.1. Letz = (z_y, z_y41, .-, Z[)T € C2+1 be the vector which describes the ampli-
tudes of the spherical harmonics of degree £. The mappings

Pi(z) =z|z]*> and Py(z) =2 (Zé +2) (1)mzmzm>

where

{ T
2= Y el and 2= (=120 (-1 Mz, (<))

are cubic equivariant maps for all natural representations of O(3) x S'.

Proof. We must show that for j = 1 and 2,
Pi(y-z) = 7-Pj(z) Yy € O(3) x S..

It is sufficient to show that this condition holds for the set of generators of O(3) x S! discussed
in Section 3.2.2. Since these mappings are both cubic and each component contains only terms
of the form given in (4.4.5) they are both equivariant with respect to the actions of the inversion
element —I and the phase shifts ¢ € S!. It remains to show the equivariance of P; and P, with
respect to the infinitesimal rotations ¢’ and #'. The matrices My and My for the actions of these
two infinitesimal rotations are given by (4.4.3) and (4.4.4). These matrices act by multiplication
of z on the left.

kth

Let vi denote the entry in the k™ row of the column vector v where k = —/, ..., ¢. Then

. 12 4 . / ey
|:P1(M¢/Z)]k = elkd) Z) Z |e1m¢ Zm|2 = elk('b [Pl (Z>]k - [Mq)’Pl (Z):|k vk

m=—/{

m=1

o 4 PV P
{PZ(M(P/Z)LC = (=1)kelk¥'z_, <z3 +2 ) (—1)"e" 2,09 z_m>
= & [Py(2)], = [M¢,P2(z)}k Vk.
We also have that

1 1
[Myz], = 5\/(e kD) (k)0 g+ zp — E\/(£+1<+ 1)(£ — k)8'z11

and subsequently in the limit 6 — 0
4

[P1(My2)], = [MQ’Z]k{ )y

m=—/{

1
E\/(ﬁ —m+1)(l+m)0'zy 1+ zm—

1
E\/(e 1) — m)8 zs

)

1
75\/(( +m + 1)(£ — m)el(zm+12m + Zm+1zm)}

4
1
Y zntn -+ 5/ (€= m+ D+ m)0 (212 + Zn120)

m=—{

= [My 2], {

J4
= [My-zl Y |zl (4.4.6)

m=—/{
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since the other terms in the sum cancel out by telescoping. We also compute that
- 2
[MpP1(2)]y = [Mpz], }. |znl* = [Pi(Mpz)l, VK.
m=—/{

and hence the map P is equivariant with respect to the action of the infinitesimal rotation 6’.

Similarly

[Py(Mpz)], = (-1)*[Mypz]_, {; (Mpz]g)* + Y (-1)" [Mgz],, [MG’Z]—m}

and

{
[MG’PZ(Z)]k = (_1)k [m] Kk {;Z% + Zl(_l)mzmzm} .

But since @’ is infinitesimal in the limit 8/ — 0

- (~1)" Mozl [Myz]_, = 5 (3 6+ D8 ezo = 2120 )

4
+ Y (=" {zmzm + %\/(5 —m+1)(0+m)0 (zy_1Z—m — Z_ms1Zm)

m=1

1
+§\/(€ +m+1)(¢ - m)el(z—m—lzm - Zm—i—lzm)} .

Telescoping this sum leaves us with

l 4
(Mool + X (1) Moz, Mpz]_y = 528+ 32 (<120

m=1 m

NI~

and hence
[P2(Myz)], = [MgP2(2)]; Vk.
The map P; is equivariant with respect to the action of the infinitesimal rotation 6.

We have shown that P and P; are both equivariant with respect to a set of generators of O(3) x
S! for the representation on V; for any value of ¢ and hence they are O(3) x S! equivariant

mappings for all representations. O
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CHAPTER D

HOPF BIFURCATION ON A SPHERE

THE NATURAL REPRESENTATION ON V3 & Vs

5.1 Introduction

In this chapter we investigate the dynamics which can occur near a Hopf bifurcation with spher-
ical symmetry for a specific representation of the group O(3). Throughout this chapter we
assume that O(3) x S! acts on the O(3)-simple space V3 @ V3 where O(3) acts absolutely ir-
reducibly on the spherical harmonics of degree three, V3, by the natural representation. The
natural representation on V3 is the minus representation where —I € O(3) acts as minus the

identity. Recall that the action of O(3) on V3 & V3 is given by the action of O(3) on a vector
z(t) = (z—3, z2—2, z_1, 20, 21, 22, 23)T e’

which describes the amplitudes of the spherical harmonics of degree three as in Section 4.1.
Consider the system of ODEs given by

dz

L fz0), (5:1.1)

where A € R is a bifurcation parameter, z € C” and f : C’ x R — C’ is a smooth mapping
which commutes with the action of O(3) on V3 @ V3. Using the notion of Birkhoff normal form,
we can assume that for any positive integer, k, the Taylor expansion of f to order k, which we
denote by Fy, is equivariant with respect to the action of O(3) x S1on V3 @ V3. In Section 5.2 we
use the method given in Section 4.4 to compute F3, the Taylor expansion of f to order 3 which

commutes with the action of O(3) x S' on V3 @ V3.

Recall that under certain hypotheses, the equivariant Hopf theorem, Theorem 2.5.2, guarantees

that if © C O(3) x S! is an isotropy subgroup satisfying dim Fix(X) = 2 in the representation
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on V3 @ V3 then there is a unique branch of periodic solutions to (5.1.1) with period near 27t

bifurcating from the Hopf bifurcation point at the origin with X as their group of symmetries.

In Chapter 4 we computed the C-axial isotropy subgroups of O(3) x S for all representations of
0O(3) x S' on V, & V, as well as the isotropy subgroups which fix a four-dimensional subspace.
In Section 5.3 we will consider all of the isotropy subgroups of O(3) x S! for the representation
on V3 @ V3 and give images of the periodic solution branches with the symmetries of the C-axial
subgroups, whose existence is guaranteed by the equivariant Hopf theorem. In Section 5.4 we
investigate the stability of these solution branches using the vector field computed in Section
5.2.

Depending on the values of coefficients in the O(3) x S! equivariant vector field f it is pos-
sible for (5.1.1) to admit solutions with symmetry > where X is an isotropy subgroup with
dimFix(X) > 2. In Section 5.5 we will investigate the conditions under which solutions to
(5.1.1) with symmetry X where dimFix(X) = 4 can exist. It turns out that in this case all
isotropy subgroups, ¥, with four-dimensional fixed-point subspaces are submaximal isotropy
subgroups — that is, they are contained within a C-axial subgroup. We refer to a solution with
submaximal symmetry as a submaximal solution and solutions with C-axial symmetry are ref-
ered to as maximal solutions (since all the maximal isotropy subgroups are C-axial in this rep-

resentation).

5.2 The O(3) x S! equivariant vector field

In this section we compute the Taylor expansion of the general O(3) equivariant vector field,
f, for the action of O(3) on V3 @ V3. Due to the notion of Birkhoff normal form we can assume
that the Taylor expansion also commutes with the action of S! to any given order k. Here we
compute the Taylor expansion of f to cubic order. We denote this Taylor expansion by Fz. It
must satisfy

F(Myz) = M,F3(z)  Vy€0(3) xS (5.2.1)

where

z(t) = (z—3, z2—2, 21, 20, 21, 22, 23)T e’

is the vector which describes the amplitudes of the spherical harmonics of degree 3 and the
group of 7 x 7 matrices M, which give the action of O(3) on z is generated by the matrices
M¢/, Mgy, M_; and Ml/J which are defined for general values of ¢ in Section 3.2.2. We find that

the generating matrices for the action of O(3) on z € C” are

M¢/ = diag (e73i"’l,efzi"’,,efi"’,, 1, eiq’/,eZi‘P,,eﬁ‘/’,) (5.2.2)
M_=-1I (5.2.3)
My =¥ (5.2.4)
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1 30 0 0 0 0 0
V31 e o 0 0 0
0 20/ 1 —V30 0 0 0
My = 0 0 V36 1 —/30’ 0 0 (5.2.5)
0 0 0 V30 1 3000
0 0 0 0 1 /3
0 0 0 0 0 30/ 1

where diag (. ..) indicates a diagonal matrix with elements as listed. By imposing that F3 satisfy
(5.2.1) for this set of generating matrices, we find that the general form of a cubic vector field

which commutes with the action of O(3) x S! as above is
F3(z,A) = uz + Az|z|> + BP(2)2 + C Q(z) + D R(z) (5.2.6)

where y, A, B, C, D are smooth complex-valued functions of A and

2 = |zal +lzal + [z P + 20 + 21 P + 22 + |z
P(z) = 2z5—2z 12 +2z 520 —22 323
2 = (—23,2,—21,20,—2-1,2-2, —2_3)T
Q(z) = (Q-3 Q2 Q_1, Qo Q1, O, Q3)"
R(z) = (R.3 R, Ry, Ry, Ry, Ry, R3)T,

where Qm(i) = Q,m(z), Rm(i) = R,m(Z), with z = (23, Z2, 21, 20, Z—1, Z—2, Z,3)T and

Q 3(z) = 5z3(5|z-5 +5[z 2 — [z1]* — 4|z0|* — 5|z1|* — 5|za|* — 8|23/
+ 5z3 (22% —3z1z_1+ 3222_2) +15 (222,121 + 522_22,1)
+ 5V2 (202_122 + 207221 + 32_22_1Z0)

Q 2(z) = 5z.9(5|z-5 +3|z-1> = 3|z1]* — 8|zaf* — 5]z3]*) + 4v/302_1202)
+ 52, (52121 + 3232_3) + 10V/152_12_3%_5 + 3v/302% 29
+ 5V2 (212_3%0 + 202123 + 3202_32_1)

Q.1(z) = z (—5|Z—3|2 + 15[z 2[* = 3|z_1* + 12[zo|* — 16|21 |* — 15|z, |* — 25|Z3|2)
+ Z1 (242% + 25z9z_5 — 15232_3) +V15 (47:12_3271 + 22%23 =+ 522,22_3)
+ 5V2 (202_3%0 4 202223 + 3202_3%_2)
+2V/30 (3z_220Z_1 + 2z_pz1Z0 + 22120%2)

Q(z) = = (—20|z_3|2 F 120z 2 — 12202 + 12|21 2 — 20\z3|2)

+ 429 (122121 + 5232_3) + 15V2 (212023 + 2_p2_1Z_3)
+5v2 (z12_3Z_p + 202_3Z_1 + 232221 + 232_122)

+ v/30 (42,2212_1 +4zyz_1Z1 + 32%22 + 322,12,2>
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R 3(z) = 3z.3(3lz-3]*+3Jz 2> + 21 = |21]* — 2|z2* — 3|z3]*) + 3z 22273
+3V2 (202221 + z_22_1%0) + V15 (zz_zz,l + 212_222)

Roo(z) = z (9|Z—3|2 +4|z 0 +7z0]% = 221 P — 4|z - 6|23|2> +3z_323%
432 (202521 + 212_3%0) + 52_12122 + /30 (22_120 + z_lzozl)
+ V15 (z_32pZ1 + 202123+ 22_12_3Z_))

Roi(z) = z (3|Z—3|2 +7)z 2 + |z_1]* + 620> — |21 ] — 2|22 |* — 3|Z3|2> +6257)
+3v2 (20z_3Z_2 + 202223) + V30 (22_p20Z_1 + z_221Z0 + 202122)
+15 (22,2273 + 2722322) + 5z 52774

Ro(z) = 62 (|z,1 2+ |z |2) +3V2(z_371Z 2 + 212075 + Z_2Z_17_3 + Z_123%2)

+ 12z1z_1Z9 + V30 (Z,2212_1 + Z%Zz + 22712,2 + Z_12221)

Remark 5.2.1. We have found four cubic O(3) x S! equivariant maps for this representation.
This is in agreement with the results of the computations of the number of equivariants by
Antoneli et al. [4].

In Section 5.3 we will use the Taylor expansion, F3, to determine conditions on the coefficients
A, B, C and D for the maximal solutions to (5.1.1) to be stable. It will also be used in Section 5.5

to discover when branches of submaximal solutions can exist.

5.3 Isotropy subgroups and maximal solution branches

From Table 4.5 we can see that in the natural representation on V3 & V3, O(3) x S! has six C-
axial isotropy subgroups. Thus, by the equivariant Hopf theorem, (5.1.1) is guaranteed to have
a branch of periodic solutions with each of these symmetry groups. In this section we compute
one possible form of the fixed-point subspace of each of the six C-axial isotropy subgroups and
use this information to discover what the solutions with these symmetries look like. We also
find the isotropy subgroups, ¥ with fixed-point subspaces of dimension larger than two by

using Theorem 4.3.6 when dim Fix(2) = 4 and the chain criterion when dim Fix(Z) > 4.

5.3.1 Isotropy subgroups and their fixed-point subspaces

We now compute all isotropy subgroups of O(3) x S! in the representation on V3 @ V3 and one

possible form of their fixed-point subspaces.

Proposition 5.3.1. The isotropy subgroups of O(3) x S! for the representation on V3 & V3 and one
possible form of their fixed-point subspaces are as given in Table 5.1. Also listed is N(X) /% for each
isotropy subgroup X where

NEZ)={y€0B) xS 9y 1 =3}
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is the normaliser of ¥ in O(3) x S'.

z ] K 0(H) Fix(Z) dimFix(L)  N(Z)/Z
02 o0 0@ 2z {(0,0,0,1,0,0,0)} 2 st
SO(2), SO(2) z, st {(0,0,w1,0,0,0,0)} 2 st
SO(2), SO(2) z; st {(0,w1,0,0,0,0,0)} 2 st
SO(2); SO(2) z; st {(w,0,0,0,0,0,0)} 2 st
0 0 0~ Z, {(0,w1,0,0,0, —wy,0)} 2 st
Ds Dg D! Z, {(w1,0,0,0,0,0, —w; )} 2 st
Zs Zys zZ; Z, {(w1,0,0,0,0,0,w;)} 4 0(2) x St
Z4 Zy Z; Z, {(0,w1,0,0,0,w,,0)} 4 0(2) x §!
D; D3 D} Z {(w1,0,0,w,,0,0, —wy) } 4 D, x St
D, D, D3 Zs {(0,1,0,,,0,w1,0)} 4 D, x !
7} Z3 1 Zg {(0,0,w1,0,0,w,,0)} 4 SO(2) x S
Zs Zs 1 Zyl {(w1,0,0,0,0,,,0)} 4 SO(2) x St
72 Z; Zs3 7, {(w1,0,0,w,,0,0,w3)} 6 0(2) x §!
7} Z, 7, Z, {(0,w1,0,w,,0,w3,0)} 6 0(2) x S
73 Z, Z; Z, {(w1,0,w3,0,ws,0,w4)} 8 0(2) x St
1 1 1 Z, c’ 14 0(3) x St

Table 5.1: The isotropy subgroups . of O(3) x S! for the representation on V3 @ V3. Here H =
J x Z5 and all vectors a column vectors. [*] The homomorphism 6§ : H — H/Kis
given by (4.2.8) withb = 5and j = 3.

Figure 5.1 shows the partial ordering of the conjugacy classes of isotropy subgroups for this

representation.

Remark 5.3.2. We use the notation of Golubitsky et al. [46], whereby ¥ = ] is an isotropy
subgroup with H = | x Z$ and 6(H) a nontrivial subgroup of S!. A subscript or superscript is
added in cases of ambiguity. Notice also that since H is a class II subgroup of O(3) and K is a

class I or III subgroup for all isotropy subgroups in this representation, 6(H) # 1.

Remark 5.3.3. The final column in Table 5.1 lists the group N(X) /X for each isotropy subgroup
¥, where N(X) is the normaliser of ¥ in O(3) x S! which leaves Fix(Z) invariant. Recall from
Section 2.4.1 that since the vector field f in (5.1.1) is equivariant with respect to the action of
0O(3) x S! to any order k, in the restriction to Fix(X), f restricts to a N(X)/Z equivariant system
to order k. Considering the restriction of f to Fix(X) enables us to deduce information about the
possible existence and bifurcations of periodic and quasiperiodic solutions with submaximal
symmetry, i.e. the symmetries of isotropy subgroups with dim Fix(X) > 2. In Section 5.5 we
investigate possible submaximal solutions in Fix(X) for the isotropy subgroups X in Table 5.1
with dim Fix(X) = 4.

Proof of Proposition 5.3.1 The isotropy subgroups of O(3) x S! with fixed-point subspaces
of dimensions 2 and 4 in the natural representation on V3 ® V3 are given by Theorems 4.3.3
and 4.3.6 respectively. Using Table 4.2 we find that when ¢ = 3 the only twisted subgroups,

HY c O(3) x S!, with fixed-point subspaces of dimension greater than 4 are those listed in
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0(3) x st

D2 Z4 Zﬁ Zé Zé

1
Figure 5.1: The partial ordering of conjugacy classes of isotropy subgroups of O(3) x S! in the

representation on V3 @ V3.

Table 5.1. Using the chain criterion it can be seen that each of these twisted subgroups is an

isotropy subgroup.

It remains to show that the form of the fixed-point subspace for each isotropy subgroup in Table
5.1 is correct for one set of generators of the subgroup. In Table 5.2 we list the set of generators

for each isotropy subgroup which give the fixed-point subspaces in Table 5.1.

The action of each of the generators, ¢ € X on z is given by multiplication by the matrix M,

where
e (RZ,0) is a rotation through an angle « in the z-axis with
Mgz ) = diag (ef?uxi e 20 o g oai G2ai e3rxi)
where diag (...) indicates a diagonal matrix with elements as listed.
e (0,&) is a phase shift by a with Mg ) = e*'I;.

e (kxz,0) is reflection in the xz-plane which sends y — —y. The matrix for its action on
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¥ Generators Fix(X)

0(2) (RZ,0), (kx2,0), (—1, ) {(0,0,0,1,0,0,0)}
SO(2), (RZ,a), (—1,m) {(0,0,w1,0,0,0,0)}
S0(2), (RZ,2a), (—1,7) {(0,w1,0,0,0,0,0)}
SO(2), (Rz,30), (—1,7) {(w1,0,0,0,0,0,0)}

0 (=RZ,5,0), (Rar/3,0), (Ka=y,0), (=1,m)  {(0,1,0,0,0,—wy,0)}
Ds (—=RZ ,5,0), (R%,0), (—1,7) {(w1,0,0,0,0,0, —w; )}
%6 (=RZ,5,0), (—1,7) {(w1,0,0,0,0,0,w>)}
%4 (=R%,5,0), (=) {(0,w1,0,0,0,w,,0)}
Ds (R3,:/3,0), (%x2,0), (=1, 71) {(w1,0,0,2,0,0, —w1) }
D; (R%,0), (xx2,0), (=1, 7) {(0,w1,0,w,,0,w1,0)}
%g (R3,,/3,270/3), (=1, 7) {(0,0,1,0,0,w,,0)}
Zs (R}, /5,67/5), (—1,7) {(w,0,0,0,0,w,,0)}
73 (R3,/3,0), (—1,7) {(w1,0,0,w2,0,0,ws3)}
7z} (R%,0), (—1,7) {(0,wq,0,wy,0,ws3,0)}
Z% (=R%,0), (=1, ) {(w1,0,w3,0,ws3,0,wy4) }
1 (=1, m) c’

Table 5.2: One set of generators for each isotropy subgroup of O(3) x S! in the representation

on V3 @ V3 and the corresponding fixed-point subspace.

zeCis

o o © ©
[e> RN )

M

sz,O) =

S O O O O O
o R O O O O O
o
S O O Bk O O O
o ©O ©O O O =~ O

o O O O
o O O O o O

-1

(R%,0) is rotation through 7t in the x-axis which sends y — —y and z — —z. The matrix

for its action on z € C7 is

o o o o
|
_

Mgy, 0) =

o O O O O O
o O O o O

-1 0
-1 0

o O O O
o O O O O
o O O O O O

e (xy=y,0) is a reflection in the plane where x = y which sends x < y. The matrix for its
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actionon z € C7 is

0 0 000 0 —i
0 0 000 -1 0
0 0 00 i 0 0
My =] 0 0 010 0 0
0 0 i 00 0 0
0 -1 000 0 0
| i 0 000 0 0 |

e (Ra3,0) is a rotation through 277/3 in the line x = y = z whichsends x — y — z — x.
We do not require the matrix for the action of this transformation on z € C’ since the

other generators of O are sufficient to compute the form of Fix(O) in this representation.

To see that these generators give the fixed-point subspaces shown, observe that for the action

of each generator, o € X, on w € Fix(X) we have M,w = w.

5.3.2 Maximal solution branches

For each of the C-axial isotropy subgroups, ¥, in Table 5.1 it is possible to give images of the
branch of periodic solutions to (5.1.1) with symmetry X.. Solution branches with these symme-

tries are guaranteed to exist by the equivariant Hopf theorem.

Suppose that w(6, ¢, t) is a time-dependent function on a sphere which can be written as a linear
combination of the spherical harmonics of degree 3. Then

3

Y zm(t)YF(6,9) +cc.

m——
3

= Y (zm(t)+ (=1)"Z_n(t)) YI'(0,9)

m=—

w(0,¢,1)

by (3.2.2). Notice that w(6, ¢, t) is real. If w(6, ¢, t) has symmetry X then
oz =1z, Yo e X = z € Fix(X)
where
z(t) = (z—3, -2, z_1, 20, 71, 22, 23) € C".

Assume that z(f) is a periodic solution of (5.1.1) which has C-axial symmetry. Using the forms
of the fixed-point subspaces of each of the C-axial isotropy subgroups given in Table 5.1 we
can compute the form of the periodic solution pattern w(6, ¢, t) corresponding to each C-axial
isotropy subgroup. In each case the vector z(t) € Fix(X) depends only on wj (t) € C. We can
assume that wy (t) = Rel“! where R € R is constant and w = 27t/ T, so w(0, ¢, t) has period T.

o~

(a) If z(t) € Fix(O(2)) then
w(0,¢,1) = (wi(t) +T1(1) Y3(6,¢) = 2Re(wi (1)) Y3(6,¢)

_ R J7 3
= 3 E(Scos 9—3cos€)cos(wt).
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(
((0
(

b) SO(2), é( (c) SO(2), /q)‘ d) S0(2), q)

‘ o) 7 ’
v v @
- - .y W .-~

wWheel e

Figure 5.2: The six perlodlc solution branches with C-axial symmetry. (a), (e) and (f) illustrate
the evolution of the three standing waves over one period and (b), (c) and (d) illus-
trate the travelling wave solutions showing the axis and direction of rotation. Red
areas show where the solution is positive and blue areas where the solution is nega-

tive.

This is a standing wave solution and it is drawn in Figure 5.2(a) for values of t over one

period.

—_—

(b) If z(t) € Fix(SO(2),) then
w(O,9,8) = wi(H)Y;(0,¢) ~@()¥I(0,¢) = 2Re (wi()Y;(6,4))

R [21 | )
1 ;smG(Scos 9—1) cos(wt — ¢).

This is a travelling wave solution and it is drawn in Figure 5.2(b) where the direction the

pattern travels around the sphere is shown.

—~—

(c) If z(t) € Fix(SO(2),) then

w0, ¢,1) = wi(H)Y52(0,9)+@()Y3(0,9) = 2Re (wi(1)¥;2(60,¢))

R /1
= 5\ / % sin? § cos 6 cos(wt — 2¢).

This is a travelling wave solution and it is drawn in Figure 5.2(c) where the direction the

pattern travels around the sphere is shown.
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—_~—

(d) If z(f) € Fix(SO(2)5) then

w(O,¢,1) = wi(Y52(0,9) - @ ()Y(0,9) = 2Re (wi(t)Y;3(60,¢))

R [,
= 7\ 5 sin 6 cos(wt — 3¢).

This is a travelling wave solution and it is drawn in Figure 5.2(d) where the direction the

pattern travels around the sphere is shown.

(e) If z(t) € Fix(O) then

wO,¢,1) = (i) = D)) Y5 2(0,9) + (~wi(t) + @1 (1) Y3 (6,9)
= 2itm (wi(1) (Y32(0,¢) - Y3(6,9))

1
= Ry % sin? 0 cos 0 sin(2¢) sin(wt).

This is a standing wave solution and it is drawn in Figure 5.2(e) for values of t over one

period.
(f) If z(t) € Fix(Dg) then

w(6, 1)

(wi () + (1)) Y52 (6,¢) — (i () + @1 (1)) Y3 (6,9)
= 2Re(wi(t) (¥;°(6,9) - Y3(6,9))

R [,
= S\ sin 6 cos(3¢) cos(wt).

This is a standing wave solution and it is drawn in Figure 5.2(f) for values of ¢ over one

period.

In the next section we will compute when these solution branches can be stable.

5.4 Stability of maximal solution branches

Recall that in Chapter 4 we found that the equivariant Hopf theorem guarantees that (5.1.1)
has six branches of periodic solutions with the symmetries of the C-axial subgroups of O(3) x
S! given in Table 5.1. Images of these solutions were given in Section 5.3. In Section 5.2 we
computed F3, the Taylor expansion to cubic order of a vector field which is equivariant with
respect to the action of O(3) x S! on V3 @ V3. This Taylor expansion is given by (5.2.6). In
this section we will use F3 and the isotypic decomposition of V3 for the action of each of the
C-axial subgroups to determine the branching direction and stability of each of the six periodic

solutions.

Stability of periodic solutions with C-axial symmetry

In order to meet the conditions of the equivariant Hopf theorem we assume that (1) € C in
(5.2.6) satisfies #(0) = iand Re(p'(0)) # 0. We will assume that

Re(u(A)) = A+ higher order terms in A,
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so the trivial solution z = 0 is stable for A < 0 and unstable for A > 0. This means that for a
branch of solutions bifurcating from the trivial solution at A = 0 to be stable it must bifurcate
supercritically. To determine the dependence of the direction of branching on the coefficients
A, B, C and D in (5.2.6), for each periodic solution we compute the branching equation by
restricting (5.2.6) to Fix(X) for each of the corresponding C-axial subgroups X.. We do this in
Section 5.4.1.

Suppose that z(t) is a periodic solution of (5.1.1) with C-axial symmetry group ¥ which has
p-determined stability. By Theorem 2.5.9, the stability of the this periodic solution near 0 can

be determined by the expressions for the stability of the periodic solution of
— = F(z,A) (5.4.1)

with the same symmetry X, where the kth order Taylor expansion, F,, commutes with 0(3) x st
and k > p. We will see that each of the C-axial subgroups in Table 5.1 has 3-determined stability
so we can use F3 to determine the stability of all of the maximal periodic solution branches.

The equivariant Hopf theorem states that the bifurcating branches of periodic solutions, z(t),
7T

of (5.1.1) have period near 27t. Suppose then that they have period 12+77 so that T is the period
perturbing parameter. Then by Theorem 2.5.4, and the fact that the symmetry group, X, of z(t)
has 3-determined stability, the periodic solutions of
dz
& =Bz A) (5.4.2)
with period 12+—”T are in one-to—one correspondence with the zeroes of
2(z, A, 1) = F3(z,A) — (1 + 7)iz. (5.4.3)

Moreover, the expressions in terms of the coefficients A, B, C, and D in F3 which determine the
stability of the periodic solutions of (5.4.2) determine also the stability of the periodic solution
of (5.1.1) with the same symmetry. If z(t) is a periodic solution of (5.4.2) with A = Ay and
T = Ty then the corresponding solution to (5.4.3) is (zo, Ao, 7). By Corollary 2.5.6, since the

Floquet multipliers of z(t) correspond to the eigenvalues of (dg)| , the periodic solution

20,A0,T0)

z(t) is stable if the eigenvalues of (dg)| which are not forced to be zero by symmetry

29,A0,T0)
have negative real part.

Computing eigenvalues of (dg)|(;, 1, 1)

The eigenvalues of (dg)|(, 1, are expressions in terms of the coefficients A, B, C, and D in

2y,
F3. Our task is to compute these eigenvalues for each of the periodic solutions with C-axial
symmetry. Throughout this section we will use the subscripts r and i on the coefficients A, B,

C, and D to denote the real and imaginary parts respectively.

For our representation of O(3) x S' on V3 @ V3, the Jacobian (dg)l for each periodic

20,A0,70)
solution is a 14 x 14 matrix. It is most convenient for us to choose as basis functions for C7 the

coordinate functions

Z_3, Z—3/ zZ_p, Z—Z/ Z_1, Z*l/ 20, ZO/ 21, Z]/ 23, 22/ Z3, 23- (544)
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With this basis the Jacobian is given by

M(3-3) M52y M3-1) M30 M31) M3z Mg
M 330 M2y M_2_1) M_20 M 21 M2 M_23
M (

[A)l(zor0m) = | M3 M2 Mo-1) Moo Moy Moz Mg
Ma,3)  Mu2 Moy Mooy May Maz  Mag
Mg, 3y Moz Mp-1y Mpog Moy Mez  Meg
M@p, 3y M@ 2 Mgy Mo Mgy  Maz  Mag
(5.4.5)
where
M) = ( m/(i,j) m,(l]) )
My M)
and

gi agi
mj) = 371 mi; ) = 87]

where the derivatives are evaluated at (zg, A, T0). Suppose that
_ T 7
a= (a3 a a,da, a, a, a3) €C
is an eigenvector of (dg)|(z, A,,)- With respect to the basis (5.4.4) this vector is
(ﬂ_3, ﬂ__3, a_p, 5_1_2, a_—i, a*l/ ap, a0/ ai, ﬁl/ az, d2/ as a3/) .

We can simplify the computation of the eigenvalues of (dg)|(z,7,) in two ways.

1. We can use the isotypic decomposition of V3 for the action of the corresponding C-axial

subgroup X. This allows us to block diagonalise the matrix.

2. We can compute the zero eigenvectors of (dg) |( . Knowing which isotypic compo-

29,A0,T0)
nents the zero eigenvalues lie in will help us to compute the other eigenvalues in those

components.

Zero eigenvectors of (dg)|(z, 1)

For a solution (zo, A, 7o) with symmetry %, the number of distinct zero eigenvectors of (dg)|(z,,,7)

is given by
dy = dim(O(3)) +1 —dim(X) = 4 — dim(X).

Since dim(O(3) x S!) = 4, as discussed in Section 2.4.4, there are four smooth curves

yi(s) =vj(s)zo, j=1,2,3,4
in the group orbit (O(3) x S')zg where 7;(s) is a smooth curve in O(3) x 5! with v(0) = 1. For
each of these curves,

47

Zg
ds 5s=0
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is an eigenvector of (dg)| (1, 7,) With zero eigenvalue. Of these vectors, only dy = 4 — dim(X)

are distinct.

We now discuss the four smooth curves in O(3) x S! which give rise to these zero eigenvectors.

The three smooth curves in O(3) can be thought of rotations in the z-,y- and x-axes respectively.
Infinitesimal rotations in the z-axis are the given by the matrix My as in (3.2.6). Let the curve
given by rotating a point about the z-axis be y; (s) then

'Yl(s> —_ diag (67351, e7251’ e*Sl, 1, e51’ 6251, e351)

and so
dn
ds

= diag (—3i, —2i, —i, 0, 1, 2i, 3i). (5.4.6)
s=0

Similarly, infinitesimal rotations in the y-axis are the given by the matrix My as in (3.2.7). Let

the curve given by rotating a point (6, 0) an infinitesimal amount about the y-axis be y;(s) then

1 —y/3s 0 0 0 0 0
Vi1 /s o 0 0 0
0 Vi 1 VB0 0 0
m2s)=1| 0 0 V3s 1 V3 0 0
0 0 0 V3s 1 —y/3s 0
0 0 0 0 25 1 —y/3s
0 0 0 0 0 35 1
and so -~ _
0 —/3 0 0 0 0
Vi oo /5 o o o0 o0
) o Vi o V3 0 0 o0
Skl—l o 0 V3 0 —v3 0 0 (54.7)
ds s=0
0 0 0 V3 0 -3 o
0 0 0 0 20 —y/3
0o 0 0 0o 0 /i o

Finally, the curve given by rotating a point (6, 7r/2) about the x-axis, y3(s) can be found by
rotating the curve y(s) through an angle 77/2 in the z-axis. We find that

1 350 0 0 0 0
Vi 1 s 0o 0 0 o0
0 3 1 Vs 0 0o o0
YE)=] 0 0 V3 1 V3 0 0
0 0 Va1 /3 0
0 0 0 5501 /3
0 0 0 0 0 351
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and so ~ _
0 50 0 0 0 0
Jioo o Ji oo 0o o0 o
4 0 20 V3 0 0 0
Bl — | o 0o V3 0 V3 0 0 (5.4.8)
ds |,_g
000 0 V3 0 /3 o0
0o 0 0 0 /5 o 3
00 0 0 0 i o
The smooth curve in S! is given by 74(s) = e'I; where I; is the 7 x 7 identity matrix. Hence
d’)’4 .
— =ily. 4.
a | =i (54.9)

Zero eigenvectors of (dg)|(,, A, can then be found for the solution (zo, A, Tp) with £ symme-
try by multiplying (5.4.6)—(5.4.9) by a vector zj € Fix(X).

5.4.1 Branching equations

For each of the branches of periodic solutions z(t) of (5.4.2) we now compute the equation

which determines whether the branch bifurcates subcritically or supercritically.

Suppose that (zo, A, T) satisfies g(zo, A, T) = 0 and zy € Fix(X) for some C-axial subgroup X.
Then in the restriction of (5.4.3) to Fix(%),

0 = F3(zo,A) — (1 + 7)izo.
Since wj is the only non-zero entry in the vector z, € Fix(X), this implies that
0= pu(A)wy +hg(A,B,C,D)w|w;|* — (14 T)iw, (5.4.10)

where hy (A, B,C, D) is a (real) linear combination of the coefficients in (5.2.6) which is different
for each C-axial group X. If we define v(A) = u(A) — (1 + 7)i then dividing (5.4.10) by w; we

have the branching equation for the solution with X symmetry:
0=v(A) +hg(A,B,C,D)|w|? (5.4.11)

We can compute that the branching equations for each the solutions with C-axial symmetry are
as given in Table 5.3.
Notice that since Re(y#(A)) = A to linear order in A, we have Re(v(A)) = A to linear order also.
Taking the real part of the branching equation (5.4.11) we have

A = —Re (hs(A,B,C,D))|wi|?. (5.4.12)

Recall that in order for the branch of solutions to be stable the branch must bifurcate supercriti-
cally. The branch of periodic solutions with symmetry X bifurcates supercritically when A > 0.
This occurs when Re (hy (A, B,C,D)) < 0.
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X Branching equation Real part of branching equation

0(2) 0=v(A)+(A+B—12C)|w;|? A:—(A»+B,—12C,)\wl|2

SO(2), 0=v(A)+(A—3C+D)uw —(A, —3C, + D) |ws [?

S0(2), Ofv(/\)+(A+4D)\w1\2 —(Ay +4D,)|wy |2

SO(2); 0 =1v(A)+ (A+25C +9D)|w, |2 —(Ay +25C, +9D,)|w; |2
O Ofv(/\)+(2A+ZB—4OC)\w1|2 —(2A, + 2B, — 40C,) |w; |?

Dg 0=1v(A)+ (2A42B—15C)|w1|> A= —(2A, +2B, — 15C,)|w; |2

Table 5.3: Branching equations for each of the six bifurcating branches of periodic solutions. For

the branch to bifurcate supercritically we require that A > 0.

5.4.2 Eigenvalues of the solution branches

We now compute the eigenvalues of (dg)| for each of the branches of periodic solutions

29,A0,To)
with C-axial symmetry group, X, in turn using the isotypic decomposition of V3 for the action

of ¥ and the cubic order truncation of the O(3) x S! equivariant vector field given by (5.2.6).

The C/)EZ/) symmetric branch

P

We will compute the eigenvalues of (dg) |( for the periodic solution with O(2) symmetry.

20,A0,T0)
Since

dorz = dim(0(3)) +1~ dim(0(2)) = 3

we expect to find that (dg)| (1,7, has three zero eigenvalues.

——

The isotypic decomposition of V3 for the action of O(2): The subspace

—

Wo = {(0,0,0,11,0,0,0)} = Fix(0(2))

is an isotypic component since it is the subspace on which O(2) acts trivially. This corresponds
to the trivial representation of O(2). The action of O(2) for the other irreducible representations
is given by
¢ (zj zj) = (e_ij‘/’z_j, eif‘f’zj) ¢ € SO(2)
Kyz - (ij/ Zj) = (-1 (ij Z*]')
for j > 1. The representation on V3 is a sum of the trivial representation on Wy and the repre-

sentations above for j = 1, 2 and 3 on the subspaces W;, W, and W3 respectively where

Wy = {(01 0,u1,0,uy,0, O)}
W2 = {(0/ M1,0,0,0, us, 0)}
W3 = {(ullolololo/o/uz)}.

—_~

Thus the isotypic decomposition of V3 for the action of O(2) is

Vs =Wyd W & W, D Ws.
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Zero eigenvectors of (dg)| The three zero eigenvectors of (dg)| are found by

20,M0,T0)* 20,A0,70)

multiplying (5.4.7)~(5.4.9) by a vector (0,0,0,w;,0,0,0) € Fix(O(2)). This gives

a(wy) = (0,0,—wy,0,wq,0,0)T €Wy
as(w1) = (0,0,w1,0,w1,0,0)" €W
as(wy) = (0,0,0,iw;,0,0,0)T € Wy

for the curves 77, v3 and 74 respectively.

Block diagonalised form of (dg)| Using the isotypic decomposition of V3 above we

20,A0,T0)*

can block diagonalise (dg)|( by reordering the basis functions of V3 and thus the basis

20,A0,70)
coordinate functions as

z0, 20, Z—1, Z2-1, 21, 21, 2-2, Z-2, Z2, 22, Z-3, Z2-3, Z3 Z3. (5413)

This gives the block diagonal form of (dg)|(z,1,,7) 28

Mg 0 0 0 0 0 0
0 M_yq) My 0 0 0 0
0 My My, O 0 0 0
(d8)] (z,00,10) = 0 0 0 M5 2 M2 0 0
0 0 0 Moo May 0 0
0 0 0 0 0 M55 M_s3
0 0 0 0 0 Mgs Mgs

Eigenvalues in Wy: The eigenvalues of (dg)|(z,,1,,7,) in Wo are given by the eigenvalues of

/
m m
Mo0) = 7/(0/0) _o)
M0y M(00)
Since Wy contains the zero eigenvector as, Mg o) has a zero eigenvalue and the other eigenvalue

is given by 2Re(mg5)) where

Mg = 9%0 = v(A) + (2A+2B —24C) |wy|* = (A+ B —12C) |w 2

929 (20,A0,70)

using the branching equation. Thus the eigenvalues in Wy are

& = A, +2B, —24C,) [w1[* = —2A  and & =0.

Eigenvalues in W;, j = 1,2,3: The eigenvalues of (dg)|(,, 1,7, in W; are given by the eigen-
values of
M, = < M—j—j) M) ) ,
Mi—j) My
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Since gj(z) = g_j(Z) where z = (z3,22,21,20,2-1,2-2,23) it follows that for this solution

LN = y LN o= o i . i inz .72
M_j—j) = My and M(_; y = M(; _;). Also, since g_; cannot contain any terms in Z_;zj or
zj|z0|?, we must have that

09_; 09
m’(f]»ﬁj) = ai ] =0 and m_j,) = % =0
"7 (zo,10,70) T (zo,M0,10)
and hence
mj—py 0 0 m,
/
mo— | 0 TG Mey 0
=

0 miy mej-p O

M) 0 0 o)

We can see that the eigenvalues of M; are double and given by the eigenvalues of

Ej = ( M) M) _
!/
iy M™M=ii)

When j = 1, since W contains the zero eigenvectors a; and a3, we know that one pair of double

eigenvalues of M are zero and the other is given by 2Re(n(_; _1)) where

98-1
az_1

=v(A) + (A +12C+6D) |wy|* = (—B+24C +6 D) |wy |

(z0,10,70)

M(-1,-1)
Hence the eigenvalues in Wj are

& = (2B, +48C, +12D,) |w1|* and & =0.

When j = 2 or 3 the eigenvalues are the roots of

¢ —2Re(m(_j )&+ |m p|*—|m(_; ;> =0

where
09—
My ) = S = v(A) + Alwr P = (=B+12C) feoy 2
, 022 (z0,A0,70)
ag_z
m = = Bw?
(=22 0z (z0,A0,70) '
mesa = B2 v+ (A-200) [y = (B ) fun?
/ 0z-3 (z0,A0,70)
ag,g
m/ = = = (=B +10C) w}.
(-33) 9% | oo ( ) wy
Thus the eigenvalues of (dg)|(,1,7,) in W2 are

&= {_Br +12C, + \/BE +24B,C; — 144Ci2} jwrf?,

and the eigenvalues in W3 are

= [—B, —8C, + \/B3 — 20B,C, + 100C2 — 36B;C; + 36c§] s 2.

Note that we have found three zero eigenvalues as expected and hence if the values of A, B, C

—_~

and D are such that the other eigenvalues are non-zero then O(2) has 3-determined stability.
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—_~—

The SO(2); symmetric branch

—_—

We will next compute the eigenvalues of (dg)| y for the periodic solution with SO(2),

20,A0,70
symmetry. Since

e~

dgory;, = dim(0(3)) + 1~ dim(SO(2);) = 3

we expect to find that (dg)| (1,7, has three zero eigenvalues.

—_~—

The isotypic decomposition of V; for the action of SO(2);: The subspace

—_~—

Wo = {(0,0,11,0,0,0,0)} = Fix(SO(2),)

—_—

is an isotypic component since it is the subspace on which SO(2); acts trivially. This corre-

—_——

sponds to the trivial representation of SO(2),. The action of SO(2), for the other irreducible

representations is given by

(R, @) - (z) = (ei(f“)“z]-) , (Ra, ) € SO(2),
for j # —1. The representation on V3 is a sum of the trivial representation on Wy and the
representations above for j = —3, =2, 0, 1, 2 and 3. However the representations for j = —3
and j = 1 are SO(2);-isomorphic, as are the pair of representations given by j = —2 and j = 0.

Hence the isotypic decomposition for the action of SO(2); on V3 is

Vs=WoDdW; & W, B W;D Wy,

where
W1 = {(010/0/0/0/ M],O)}
W2 - {(0/0/0/01010' ul)}
W3 = {(0/ ulror 1/[2,0,0, 0)}
W4 - {(u'l/O/O/O/MZIOIO)}’

Zero eigenvectors of (dg)|(,,,7): The three zero eigenvectors of (dg)| 1, 1) are found by

multiplying (5.4.7)—(5.4.9) by the vector (0,0,w1,0,0,0,0) € Fix(SO(2),). They are

T
az(wl) = (0,—\/?)101,0,\/6&)1,0,0,0) € Ws

T
as(wr) = (0,v5wy,0,V6w,0,0,0) €W
a,(w)) = (0,0,iw,0,0,0,0)T € W

for the curves 7;, 73 and 74 respectively.

Block diagonalised form of (dg)|(,,,7): Using the isotypic decomposition of V3 above we

can block diagonalise (dg)| by reordering the basis functions of V3 and thus the basis

20,A0,70)
coordinate functions as

Z_1, Z*l/ 22, 22/ 23 23/ Z_p, 2—2/ 20, ZO/ Z_3, Z—S/ 21, Zl- (5414)
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This gives the block diagonal form of (dg)| (1,7 28

My .y O 0 0 0 0 0
0 M(2,2) 0 0 0 0 0
0 0 Mgz O 0 0 0
() (z0,00,0) = 0 0 0 Mo 2 M2 0 0
0 0 0 Myg.a My 0 0
0 0 0 0 0 M35 M 31
0 0o 0 0 0 M3 My

Eigenvalues in Wy: The eigenvalues of (dg)| ) in Wy are given by the eigenvalues of

20,A0,T0
M(_4,_1). Since Wy contains the zero eigenvector a;, M(_; _) has a zero eigenvalue and the
other eigenvalue is given by 2Re(m_; _1)) where

g
m_y_qy = w5 = v(A) + (2A — 6C +2D) |w;|* = (A—3C+ D) |w|?

9z (z0,40,70)

using the branching equation. Thus the eigenvalues in Wy are

& = (A, —6C, +2Dy) jwy|* =21  and & =0.

Eigenvalues in W; and Wp:  The eigenvalues of (dg)| in Wi and W, are given by the

20,A0,T0)
eigenvalues of M, ,) and M3 3) respectively. Notice that since g; cannot contain any terms in

zjz% | forj=2or3,

ag3

;o _ 9% 983
823(

_ / _
=0 and M35 =
20,A0,T0)

(z0,A0,70)

and hence the eigenvalues are given by m; ;) and 7i(; ;y for j = 2 or 3. We compute that

Moy = B2 — U(A) + (A~ 15C —2D) [wy > = (~12C —3D) Juy
' 92 (z0,A0,70)

M) 983 = v(A) 4+ (A —=25C —3D) |wy|* = (—22C —4D) |w;|?
’ 923 (z0,A0,70)

and hence the eigenvalues of (dg)|(,1,,7) in Wi are
& = (-12C-3D)|w;|* and & = (—12C—3D) |w|?
and in W, the eigenvalues are

&= (-22C—4D)|w;[* and & = (—22C—4D) [w|*

Eigenvalues in W3 The eigenvalues of (dg)| 1, 7,) in W3 are given by the eigenvalues of
M5 2y M2
(d8)1 (29,10, |W3:< (=2 e
(z0.10,70) Mo_2 My
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Notice that since g_» cannot contain any terms in z2. 1Z—20rzglz_4 |?, and gg cannot contain any

terms in z2 2y or z_p|z_1 /%,

dg—2 9g—2
m’i _ = — = 0, m _ = = 0,
(7272 0Z—2 (20,A0,70) (=20 9z (z0,40,10)
980 / 980
My 9y = =—>—— =0 and m = == =0.
02 9z (20,A0,70) ©0) 9Zo (zo,A0,T0)
We are then left with
M-z 0 0 miyy)
0 m —2,-2 mL 0
(d8) 2 10,10) W = 272 20
0 Mo,—2)  "(0,0) 0
m/(o,—z) 0 0 0,0)

Thus the eigenvalues of (dg)| in Wj are given by the eigenvalues of

20,A0,T0)

M(_o o
E; = (/ 2,-2) (=2,0)
Mo,—2)  ™(0,0)

and their complex conjugates. Since W3 contains the zero eigenvectors a, and a3, the eigenval-

ues of Ej are zero and Trace(E3) = m(_p 5 + () where

My g = 982 =v(A) + (A+15C+7D) |wq|* = (18C + 6D) |w1 |
' 9z-2 (20,40,70)
_ 98 _ 2 _ 2
m(0,0) = = —V(A) +(A+12C+6D) |ZU1| = (15C+5D) \w1| .
929 (z0,A0,70)

Hence the eigenvalues of (dg)| in W3 are {5 = 0 twice,

20,A0,T0)
& = (33C, + 11D, + 3iC; +iD;) [wn|?>,  and & = (33C, + 11D, — 3iC; — iD;) |w; |*.

Eigenvalues in Wy:  The eigenvalues of (dg)| in W are given by the eigenvalues of

20,A0,T0)

M3 3 M_31
(98)] 201, |w4=< T )
(z0,A0,70) Ma_3 Man

Similar arguments to those above show that these eigenvalues are the eigenvalues of

!/
E, = m(73f3) M _s1)
Mg,z ™M)

and their complex conjugates. We compute that

mi sy = B2 — V() + (A= 5C+3D) [n? = (~2C +2D) [y 2
' 9z—3 (z0,A0,70)
ag,3
m/ = == 2\/EC ZUZ
(3 9z (z0,A0,70) '
m/(l 3 = a_gl = 2V/15C w?
' dZ-3 (z0,A0,70)
mayy = %1 =v(A) + (A+2B—16C — D) |w;|> = (2B —13C —2D) |w1|?.
' 9z (z0,A0,T0)
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Hence the eigenvalues of (dg)| in Wy are the roots of

20,A0,T0)
¢ - (’”(4»4») + m(m)) C o m(_a,_3)M(11) — M(_31ym(y 5 =0

and their complex conjugates. They are
+ -8B _pivs 2 -
¢y = —C—|—D+B—7C—D:t 0 ) wn] and ¢
where

13— _\? _ _
§:<C+D+B;CD> + (2C - 2D) (2B — 13C — 2D) + 60|C|*.

Since we have found three zero eigenvalues as expected, if the values of A, B, C and D are such

P

that the other eigenvalues are non-zero then SO(2); has 3-determined stability.

e~

The SO(2), symmetric branch

—~—

We now compute the eigenvalues of (dg)|(z, 1,,) for the periodic solution with SO(2), sym-

metry. Again, since

dsorz, = Gim(0(3)) +1 - dim(SO(2);) =3

we expect to find that (dg)|(z 1,7, has three zero eigenvalues.

—_—

The isotypic decomposition of V; for the action of SO(2),: The subspace

—_—

Wo = {(0,11,0,0,0,0,0) } = Fix(SO(2),)

is an isotypic component since it is the subspace on which SO(2), acts trivially. This corre-

sponds to the trivial representation of SO(2),. The action of SO(2), for the other irreducible
representations is given by

(Re,20) - (zj) = (ei(f“)“z]«) , (Ry,20) € SO(2),
for j # —2. The representation on V3 is a sum of the trivial representation on Wy and the

representations above for j = —3, —1, 0, 1, 2 and 3. However the representations for j = —3

—_~—

and j = —1 are SO(2),-isomorphic. Hence the isotypic decomposition for the action of SO(2),
on V3 is
V3 =Wy ® Wy & W ® W3 & Wy & Ws,

where

{(0,0,0,u1,0,0,0)}
W, = {(0,0,0,0,u1,0,0)}
Ws = {(0,0,0,0,0,u1,0)}
W, = {(0,0,0,0,0,0,u;)}
{(u1,0,u,,0,0,0,0)}.
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Zero eigenvectors of (dg)|(;,1,7):

multiplying (5.4.7)—(5.4.9) by the vector (0,w1,0,0,0,0,0) € Fix(SO(2),). They are

The three zero eigenvectors of (dg)|(z, A, ) are found by

T
a(wy) = (—v3w,0,v5w1,0,0,0,0) € Ws

T
as(w) = (\@wl,o,\/ﬁwl,o,o,o,o) €Ws
as(wy) = (0,iwy,0,0,0,0,0)T € Wy

for the curves 77, 3 and 74 respectively.

Block diagonalised form of (dg)| Using the isotypic decomposition of V3 above we

20,A0,)*
can block diagonalise (dg)|(,,,1,7,) Py reordering the basis functions of V3 and thus the basis

coordinate functions as

Z_, Z_2, 20, Z0, Z1 21, 22, 22, 23, 23, Z-3, 2-3, Z—1, Z_1. (5.4.15)
This gives the block diagonal form of (dg)|(,,1,7,) @8
M5 5 O 0 0 0 0 0
0 Mgy O 0 0 0 0
0 0 My O 0 0 0
(dg)|(20,)\0,'f0) = 0 0 0 M(22) O 0 0
0 0 0 0 Mgy 0 0
0 0 0 0 0 M3 M_31
0 0 0 0 0 My 3 My
Eigenvalues in Wy: The eigenvalues of (dg)|(,,,7) in Wo are given by the eigenvalues of

M(_5,_5). Since Wy contains the zero eigenvector a5, M(_, _5) has a zero eigenvalue and the

other eigenvalue is given by 2Re(m_, _5)) where

dg_
My o = ag 2 = v(A)+ (2A+8D) |w1 > = (A +4D)|w; |2
22 |(2p,10,70)

using the branching equation. Thus the eigenvalues in Wy are

Eigenvalues in W, forj = 1,2,3 and 4 The eigenvalues of (dg)|(z1,) in Wj forj = 1,2,3

and 4 are given by the eigenvalues of M(;_1; 1). Notice that since g; ; cannot contain any

terms in Zj,lzgz forj=1,2,30r4,

(20,A0,70)
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and hence the eigenvalues are given by m;_y;_1) and 7y ;1) for j = 1,2,3 and 4. We

compute that

9
M) = 3%70 =v(A) + Alwy > = —4D|w;?
0 1(zp,A0,70)
9
may = — 1(A) + (A—15C —2D) [w1 2. = (—15C — 6D) |ty ]
1 1(z0,A0,10)
Moo = % =v(A)+ (A+2B—40C —4D) |w1|2 = (2B —40C —8D) |w1|2
2 (zp,A0,10)
p)
Mz = %3 =v(A) + (A—25C —6D) |w|*> = (—25C —10D) |w; |?
3 1(zo,A0,10)

and hence the eigenvalues of (dg) in Wy are

|(Zof?\o,To)
gl = —4D|w1\2 and 61 = —45|ZU1|2,
in Wz,
&= (-15C—6D)|w|>* and & = (—15C —6D) |wy |,

in Wg,
&= (2B—40C —8D)|w;[* and & = (2B —40C —8D) |w; |?

and in Wy the eigenvalues are

& = (-25C—10D) [w|* and &4 = (—25C —10D) |wy|*.

Eigenvalues in W5:  The eigenvalues of (dg)| 1, 7,) in W5 are given by the eigenvalues of

Mi-3,-3) Mi-3-1) ) .

(d8) | (zg,10,70) W5 = (
(0 OTO) M(,l,,g) M(fl,fl)

It can be shown that these eigenvalues are the eigenvalues of

E5 — m(_31_3) m/(*?),fl)
My _g (-1,1)

and their complex conjugates. Since W5 contains the zero eigenvectors a; and a3 the eigenvalues

of E5 are zero and Trace(Es) = m(_3 _3) +(_; _1) where

My = 82 — U(A)+ (A+25C+9D) [wi|> = (25C +5D) w1 |?
' 9z-3 (z0,A0,70)

m_q_qy = 981 =v(A) + (A+15C +7D) |w|* = (15C +3D) |wy|?.
' 9z (20,A0,70)

Hence the eigenvalues of (dg)| in Ws are {5 = 0 twice,

20,A0,T0)

&&= (40C, + 8D, + 10iC; + 2iD;) [w1|?,  and & = (40C, + 8D, — 10iC; — 2iD;) |w; |

Since we have found three zero eigenvalues as expected, if the values of A, B, C and D are such

that the other eigenvalues are non-zero then SO(2), has 3-determined stability.
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—_~—

The SO(2), symmetric branch

In this section we compute the eigenvalues of (dg) for the periodic solution with

| (z0,10,70)

—_——

SO(2); symmetry. As in all previous cases, since

—_——

ds?<2/)3 =dim(0(3)) +1 —dim(SO(2);) =3

we expect to find that (dg)| ) has three zero eigenvalues.

20,A0,70

—_—

The isotypic decomposition of V; for the action of SO(2),: The subspace

—_~—

Wo = {(141,0,0,0,0,0,0)} = Fix(SO(2)5)

—_~—

is an isotypic component since it is the subspace on which SO(2), acts trivially. This corre-

sponds to the trivial representation of SO(2);. The action of SO(2), for the other irreducible

representations is given by

(Ra,30) - (z7) = (ei<f'+3>“zj) . (Ry,31) € SO(2),
for j # —3. The representation on V3 is a sum of the trivial representation on Wy and the
representations above for j = —2, —1, 0, 1, 2 and 3. Since none of these representations are

SO(2);-isomorphic, the isotypic decomposition for the action of SO(2); on V3 is

Vs=Wo W, W, ® W3 d Wy P Ws B W,

where
Wl = {(0,141/0/0/0/0/0)}
W, = {(0,0,u1,0,0,0,0)}
W3 = {(Oror O/ U, 0/ 0/ 0)}
Wy = {(0,0,0,0,u1,0,0)}
W5 - {(O/O/ 0/ 0/ 0/ Uy, 0)}
W6 - {(0/0/0/0101011’[1)}'
Zero eigenvectors of (dg)|(,,1,7): The three zero eigenvectors of (dg)| (41, 7,) are found by

multiplying (5.4.7)-(5.4.9) by the vector (w1,0,0,0,0,0,0) € Fix(SO(2);). They are

a(w;) = (0,w1,0,0,0,0,0)7 €Wy
az(wy) = (0,w1,0,0,0,0,0)T € W,
ag(wy) = (iw1,0,0,0,0,0,0)T € Wy

for the curves 7y, 73 and 74 respectively.
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Block diagonalised form of (dg)| Using the isotypic decomposition of V3 above we

2o,M0,T0)"

can see that (dg)| must already be diagonal in the basis given by (5.4.4). Thus the block

29,A0,T0)
diagonal form of (dg)|(z,1,7) 18

M55 0 0 0 0 0 0
0 M_y O 0 0 0 0
0 0 M_yq O 0 0 0
(d9)] (2o r0) = 0 0 0 Mgy O 0 0
0 0 0 0 Myy O 0
0 0 0 0 0 Mpyy O
0 0 0 0 0 0 Mgy

Eigenvalues in Wy: The eigenvalues of (dg)| in Wy are given by the eigenvalues of

20,A0,70)
M_3,_3). Since W contains the zero eigenvector a4, M(_3 _3) has a zero eigenvalue and the

other eigenvalue is given by 2Re(m_3 _3)) where

g
My = S = v(A) + (2A +50C +18D) [w; |2 = (A +25C +9D) |w; |2
' 9z-3 (z0,M0,70)

using the branching equation. Thus the eigenvalues in W are

¢ = (2A, +50C, +18D;) |w|* = —2A  and &, =0.

Eigenvalues in W; forj = 1,...,6: The eigenvalues of (dg)| inWforj=1,...,6are

29,A0,T0)
given by the eigenvalues of M) for k = —2,...,3. Notice that since g, cannot contain any
terms in Zkz%3 fork=-2,...,3,
M j) = %8k =0
(60 oz (z0,A0,70)
and hence the eigenvalues are given by m ;) and 7y for k = —2,...,3. Since the zero

eigenvectors a; and as lie in Wy we must have m(_, ) = 0 and &; = 0. We compute that

My = 281 — v(A)+ (A—=5C+3D) [ws|> = (=30C — 6D) |y ]2

' 9z—1 (z0,A0,70)

ey = 280 — V() + (A=20C) [wr]? = (—45C —9D) s
92 (z0,A0,70)

may = o8 — U(A)+ (A—25C —3D) [w; ! = (=50C — 12D) fawy ?
9z1 (z0,A0,70)

Moy = 82 — V() + (A—25C — 6D) [w; 2 = (=50C — 15D) fuwy ?
922 (z0,A0,70)

ey = o8 — V(M) + (A +2B—40C —9D) |w; 2 = (2B — 65C — 18D) |ty ?
923 (z0,A0,70)

and hence the eigenvalues of (dg) in W, are

20,A0,T0)

& =(-30C—6D)w;* and & = (—30C—6D) |wi|?
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in Wg,
&= (-45C—9D)|wi|>* and & = (—45C —9D) |w; |,
in W4,
& = (—50C —12D) |w1|* and & = (—50C — 12D) |wy|?,
in W5,

&= (-50C—15D) [w1]* and & = (—50C — 15D) |w; |?

and in W the eigenvalues are
& = (2B—65C —18D) [wy|> and & = (2B —65C — 18D) |w; |*.

Since we have found three zero eigenvalues as expected, if the values of A, B, C and D are such

—_

that the other eigenvalues are non-zero then SO(2); has 3-determined stability.

The O symmetric branch

We now compute the eigenvalues of (dg)l(;, A, ) for the periodic solution with O symmetry.
Since

dg = dim(O(3)) + 1 — dim(0O) = 4

we expect to find that (dg)| has four zero eigenvalues.

20,A0,T0)

The isotypic decomposition of V; for the action of O: The subspace

Wy = {(0,u1,0,0,0, —u1,0)} = Fix(O)
is an isotypic component since it is the subspace on which O acts trivially. This corresponds
to the trivial representation of O. Our representation of O on V3 is a sum of irreducible repre-
sentations of O. The irreducible representations of O are given by the character table, Table 5.4

where
1 [(x=y)]  [(Ranz)] [(RR)] [(=R%)2)]

are the five conjugacy classes of elements in O.

Representation | [I]  [(kx=y)] [(Rans3)] [(R%)] [(*R;/z)]
“ 1 1 1 1 1
v 1 1 1 1 1
X3 2 0 1 2 0
M 3 1 0 1 1
Xs 3 1 0 -1 -1

Table 5.4: Character table for the group O

In our representation on V3

xM=7 x[(x=y)] =1 x[(Rarsa)] =1 x[(R7)]=-1 x[(-R%;5)] =1

so we can see that

X=X1+Xa+ X5
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5.4. STABILITY OF MAXIMAL SOLUTION BRANCHES

Since none of these representations are O-isomorphic, the subspaces which are invariant under
each of the representations are the isotypic components. The computation of the form of these
subspaces is greatly simplified if, instead of using the spherical harmonics of degree 3 as our

basis functions, we use the set of basis functions given by

By = x]/z:i\/;(lf2 Yg)
By = x(z2—y2):\/;(Y31—Y3l)+ %(Y;B'—Yg’)

_ 2.2y s [T (1 1 LT (3 3
B, = y(x*—z% i 5 (Y3 +Y3)+1,/35 (Y3 +Y3>
27
_ 2.2y -2 2
By = z(y"—x%) 2 105 <Y3 +Y3)

3 5 |/ 3/
_ 2 d,2 2 _ 2 T3 3 2 T (-1
By = x(x 2 +Z)> 2\ 35 (n*-93)-3yq (Y3 Y?’)
2 3 2 2 51 7T _3 3 31
3 T
By = z<22—2(x2+y2)) = 2,/71/;)

Let us denote the vector of amplitudes for this basis by b = (by, by, ba, b3, ba, bs, bg). Since all

elements of O act trivially on By the space which is invariant under the representation x; is

Wy = {(b,0,0,0,0,0,0)} = {(0,u1,0,0,0, —u1,0)} = Fix(@).

Using the actions of the generating elements of O on the point (x,1,z) on the surface of the

sphere as given in Table 5.2 we can see that

I-( ) (B1,B2,B3) = x(I)=3

)~ ( ) (=B, =B1,—B3) = x(Ki=y) = -1
(Rars3) - (B1, B2, Bs) = (Bz,B3,B1) = x(Rans3) =0

)~ ( ) (=B1,—By,B3) = x(R7)=-1

) ( ) (=By,B1,B3) = x(—R%),) =1
This means that the three-dimensional subspace

Wi = {(0,b1,b5,b3,0,0,0)} = {(v/3uy,us, V5uz,0,—v/5u1,u3, —V/3uz) }

is invariant under the action of the representation 4. Similarly

I-(By,Bs,Bg) = (ByBs,Bs) = x(I)=3
(kx=y) - (B4, Bs,Bs) = (Bs,By,Bs) = x(Kx=y) =1
(Rans3) - (Ba,Bs,Bg) = (BaBg,Bs) = x(Rans3) =0
(R%)-(Bs,B5,Bs) = (—Bs, —Bs,Bs) = x(R)=-1
(=R%,5) - (B4 Bs,Bs) = (Bs,—By,—Bs) = x(—=R%,,)=-1

so the three-dimensional subspace

W, = {(0,0,0,0,b4,bs,bs)} = {(v/5u1,0,V3uz,u3,v/3u1,0,v/5u;)}
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5.4. STABILITY OF MAXIMAL SOLUTION BRANCHES

is invariant under the action of the representation xs5. Therefore the isotypic decomposition of

V3 with respect to the action of O is

Vi3 =Wy Wy & Ws,.

Zero eigenvectors of (d :  The four zero eigenvectors of (d are found b
g g (Z(],/\o,T()) g N g (ZOr/\O/TO) y

multiplying (5.4.6)-(5.4.9) by the vector (0,w1,0,0,0, —w;,0) € Fix(O). They are
aj(wy) = (0,iwy,0,0,0,iw,0)T € W
T
a(w) = (—\@wl,ol V5w, 0,v/5w1,0, _\/gwl) e

T
V3wy,0, /5w, 0, —ﬁwl,o,—\@wl) ew,
ag(wy) = (0,iwy,0,0,0,—iws,0)T € Wy

a3(wy) =

for the curves 71, 2, ¥3 and 4 respectively.

Block diagonalised form of (dg)| Using the isotypic decomposition of V3 above we

20,A0,T0)*

can see that to diagonalise (dg)| ) we must use the basis functions

20,A0,T0
U1 =2Z_p— 2, Uy = \@z,g, — \/57:1, U3 = \fSZl — \ﬁ23, vy =2z_2+2

U5 = \/5273 + \/521, Vg = \@Z_1 + \623, V7 = 2

and their complex conjugates. Under this change of basis g(z, A, T) becomes h(v, A, T) where

V= (vll 0U2,03,04,05,0¢, 07) and

Nap) 0 0 0 0 0 0
0 N@2) Ngazy Nog 0 0 0
0 Ni2y N@zy Nga 0 0 0
(dh)|(zo,A0,T0) = 0 N(4,2) N(4,3) N(4,4) 0 0 0
0 0 0 0 N5y Nes) Ny
0 0 0 0 N5y Nge Ny
where
!/
Ny = ( Zfi'j) Z(”) ) and - ngj = % ;M) = %
(ij) ) T (z0,M0,0) 71 (z0,00,10)

Eigenvalues in Wy:  The eigenvalues of (dg) in Wy are given by the eigenvalues

29,A0,70)
of Ny 7). Since Wy contains the zero eigenvector a4, one eigenvalue is zero and the other is

2Re(n(1,1)) where

ohy  dg_2 @ 092 0z_p n 092 9z 092 0z_p 0%2 02

) 901 | 9u; 0oy 0z, v, | 0z 001  9zp 901 0z 90y

97



5.4. STABILITY OF MAXIMAL SOLUTION BRANCHES

where all derivatives are evaluated at (zg, Ag, Ty). Since

and 982 = 932 982 = 982
—v1 + 04) 0z_» aZZ’ dzy 32_2,

when the derivatives are evaluated at (zg, Ao, Tp), we find that

ag,2 _ ag,z
82_2 ( 822

eny

(20,A0,70)

V(A) 4 (3A +2B — 40C +4D) |w;|* — (—A — 2B +40C + 4D) |w |2
(2A +2B —40C) |wy |*.

20,A0,T0)

Hence the eigenvalues of (dg)| in Wy are

20,A0,T0)

&5 = (4A, +4B, —80C,) [wy|* and &5 =0.

Eigenvalues in Wi:  The two distinct eigenvalues of (dg)|(ZO,AO,TO) in Wy have multiplicity
three. Since W; contains the three zero eigenvectors a;, a; and a3, one of the two distinct
eigenvalues is zero. Since all of the entries in N(34), N(34), N42) and N4 3) are zero, due to
the fact that they vanish upon evaluation at (zg, Ao, 7p) the two distinct eigenvalues in W are

given by the eigenvalues of N(4 4). Since one of these eigenvalues is zero, the other is 2Re(n(4,4))

where
e = M4 _ 982 98 _ 082025 08207 08 92, 98297
(44) 804 304 804 aZ,2 804 aZZ 804 aZ,Z 804 822 804
_ 8g_2 + ag_z
9z (z0,A0,0) 9z (zo,A0,T0)

= v(A)+ (3BA42B —40C +4D) |w;|> + (—A — 2B + 40C + 4D) |w; |?
= (—2B +40C + 8D) |w |*.

Hence the eigenvalues of (dg)| in Wy are

ZO,/\O,TO)
¢ = (—4B, +80C, +16D;) [wy>  and & =0,

each of multiplicity 3.

Eigenvaluesin W;:  The two distinct eigenvalues of (dg)| in W, also have multiplicity

29,A0,T0)
three. Since all of the entries in N(57), N(s7), N75) and N(74 are zero, due to the fact that
they vanish upon evaluation at (zg, Ag, 7o) the two distinct eigenvalues in W, are given by the

eigenvalues of N(77) = Mg ) since v7 = zo. Since

0
Moo = igo = v(A) +2A|w|* = (—2B+40C) |w |*
0 (Zo,)\O/TO)
930
ml g e - _Zsz,
(0,0) 0% (20,A0,T0) 1

the eigenvalues are the roots of

¢ — (4B, +80C,) |w1 ¢ + ([2B — 40C? — [2B[2) [ws|* = 0.
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5.4. STABILITY OF MAXIMAL SOLUTION BRANCHES

Thus the eigenvalues of (dg)| in W, are

20,A0,T0)

&= —2Br+40Cri2\/B3+40BiCi—400C1.2 w2

each of multiplicity 3. Since we have found four zero eigenvalues as expected, if the values
of A, B, C and D are such that the other eigenvalues are non-zero then O has 3-determined

stability.

The Dy symmetric branch

Finally, we will compute the eigenvalues of (dg)|(.,) for the periodic solution with Dg
symmetry. Since
dp. = dim(0(3)) + 1~ dim(Dg) = 4

we expect to find that (dg)| has four zero eigenvalues.

20,A0,T0)

The isotypic decomposition of V3 for the action of ],)2: The subspace
WO = {(ullol 0/ 0/ O/ 0/ _u])} = FIX(]S;)

is an isotypic component since it is the subspace on which D acts trivially. This corresponds
to the trivial representation of Dg. Our representation of Dg on V3 is a sum of irreducible
representations of Dg. The irreducible representations of Dy are given by the character table,
Table 5.5 where

U [(=Rn3)] [(Rarsa)] [(=Ro)] [(©)]  [(=Rnysx)]

are the six conjugacy classes of elements in Dg. Here R, is a rotation through an angle a in some
axis and « is a rotation through 7 in an orthogonal axis. The element (—I, 7r) € Dg acts as the

identity and is a member of [I].

Representation | [I]  [(=Rq/3)]  [(Rans3)]  [(=Rx)]  [(K)]  [(—Ry/3x)]
X1 1 1 1 1 1 1
X2 1 1 1 1 1 1
X 1 -1 1 -1 1 -1
Xa 1 -1 1 1 -1 1
X5 2 1 1 2
Xe 2 -1 -1 2 0

Table 5.5: Character table for the group ]i,

In our representation on V3,

x=7 x[(=Rzs3)] =1 x[(Rons3)] =1 Xx[(=Rp)]=1 x[(0)]=-1 x[(=Rq/z0)] =1

so we can see that

X=Xx1+tXxX2+ X4+ X5+ Xe-
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Since none of these representations are Dg-isomorphic, the subspaces which are invariant under
each of the representations are the isotypic components. The subspaces which are invariant

under X1, X2, X4, X5 and X are respectively

Wo = {(#1,0,0,0,0,0,—uy)} = Fix(Dg)
Wy = {(11,0,0,0,0,0,u1)}
W, = {(0,0,0,u1,0,0,0)}
Ws = {(0,u1,0,0,0,u,0)}
Wy = {(0,0,u1,0,u5,0,0)}.

Hence the isotypic decomposition of V3 with respect to the action of Dg is given by

Va=Wyd Wy & W, B W5 D Wy.

Zero eigenvectors of (dg)| The four zero eigenvectors of (dg)| ) are found by

20,A0,70)" Z0,A0,To

multiplying (5.4.6)~(5.4.9) by the vector (w1,0,0,0,0,0, —w;) € Fix(Dg). They are

aj(w) = (iwy,0,0,0,0,0,iw)T € Wy
a(w) = (O,\@wl,O,O,O,\@wl,O)T € Ws
a3(wy) = (o,fswl,o,o,o,—\@wl,o)T cWs
a(w)) = (—iwy,0,0,0,0,0,iw)T € Wy

for the curves 71, 2, 73 and 4 respectively.

Block diagonalised form of (dg)| : Using the isotypic decomposition of V3 above we

2,A0,T0)

can see that to diagonalise (dg)| ) we must use the basis functions

Z0,A0,70
vy =2-3—23 Uy=2z-3+23, Z0, Z-2, Z2, Z-1, Z1

and their complex conjugates.

Due to the fact that g;(z) = ¢_;(Z) where Z = (z3,22,21,20,2-1,22,Z3), it follows that for this
solution, M(_; _;y = Mjyand M(_;y = M . This results in the following block diagonal

form of (dg)| (z0.A0,70)"

jid) Go=7)

M55 — M(_33) 0 0 0 0 0 0
0 M3 3 +M_ 55 0 0 0 0 0
0 0 M) 0 0 0 0
(d8)l(z,20,70) = 0 0 0 M5 2 M2 0 0
0 0 0 My My 0 0
0 0 0 0 0 M_y1 My
0 0 0 0 0 M1y My

Eigenvalues in Wy: The eigenvalues of (dg)| in Wy are given by the eigenvalues of

Zo,)\Q,Tg)
M3, 3y — M(_33). Since Wy contains the zero eigenvector ay, M(_3 3y — M(_33) has a zero
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eigenvalue and the other eigenvalue is given by 2Re(m_3 _3) — m(_33)) where

og_
m_s 3 = ai 3 = v(A) + (3A 4+ 2B +10C +9D) |w1|* = (A +25C +9D) |w, |*
=3 1(z0,A0,70)
og_
M(-33) égz : = (~A—2B+40C +9D) [w;|?
3 1(zo,A0,70)

using the branching equation. Thus the eigenvalues in W are

& = (4A, +4B, —30C,) |w1|* = —24  and & =0.

Eigenvalues in Wy: The eigenvalues of (dg)|,,,7,) in W1 are given by the eigenvalues of
M(_3,_3)+ M(_33). Since W; contains the zero eigenvector a;, M(_3 _3) + M(_33) has a zero
eigenvalue and the other eigenvalue is given by 2Re(nn(_3 _3) + m(_33)). Thus the eigenvalues
in Wj are

& = (—4B, +130C, +36D;) [w1|>* and & =0.

Eigenvalues in Wy:  The eigenvalues of (dg)|(,1,1,) in W2 are given by the eigenvalues of

Mg, Since
o % — y(A)+ (24 —40C) [0y |2 = (—2B — 25C) |y
) 920 | (200,70
930
% = (2B —20C) w?
(0,0) 920 | (20,00,70) | "

the eigenvalues are the roots of
g% — (~4B, — 50C;) w1 ¢ + (|2B +25C[2 — 2B — 20CP?) [y |* = 0.

Thus the eigenvalues of (dg)| in W, are

20,A0,70)

& = [ZBr —25C, & \/4(13, —10C, )2 — 45C;(4B; + 5c,-)} s |2.

Eigenvalues in W3:  The eigenvalues of (dg)| in Wj are given by the eigenvalues of

20,A0,70)
m(_Z,_2> 0 O mz_zrz)
(M(z,z) Mz )_ 0 M(Z2,2)  M(_yy) 0
M(—22) M2 0 M(_pp) M(-2-2) 0
M) 0 0 M(—2,-2)

due to the fact that g_» cannot contain any terms which do not disappear upon differentiating
with respect to Z_; or z; and evaluating at zy and as such

ag,Z
822

ag,2

= =0.
0Z_p

(z0,A0,70)

=0 and m_p0) =
(z0,A0,70)

ml(fzrfz) =

Hence the eigenvalues are double and given by the eigenvalues of

me_o _ m!
Es — (/ 2,-2) (—2,2) .
M2y M(-2,-2)
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Since the zero eigenvectors a, and a3 are contained in W3 the eigenvalues of E3 are zero and
2Re(m(_p,—5)) where

g
My g = o2 = v(A) + (2A+3D) |w;|* = (—2B + 15C + 3D) |w; |.

9z (20,A0,70)

Hence the double eigenvalues of (dg)| in Wj are

20,A0,70)

¢ = (—4B,+30C, +6D,) [wy*  and & =0.

Eigenvalues in Wy: By an argument similar to that above, the eigenvalues of (dg) |z 1,z) in

W, are double and equal to the eigenvalues of

= | MLy My |
m_yqy Mo

These are given by the roots of

gz — JRe (m(—l,—l)) ¢+ |H1(_1,—1)|2 — ‘m/(_l,l)|2 =0

where
meay = B = V(W) + (24— 30C) [wy? = (2B —15C) |ur 2
' 9z (20,A0,70)
ag_1
My = = = (—2B+15C) w?.
=LV 9z (20,A0,70) !

Thus the double eigenvalues of (dg)|(z,1,,) in Wa are

&t = [—ZBT —15C, + /(2B — 15C,)2 — 120B,C; | |w: |

Since we have found four zero eigenvalues as expected, if the values of A, B, C and D are such

that the other eigenvalues are non-zero then Dy has 3-determined stability.

Summary

The eigenvalues of each of the C-axial periodic solutions in each of the isotypic components
for that solution are listed in Table 5.6. The isotypic components for the actions of each of the

C-axial subgroups are summarised in Table 5.7.
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Table 5.6: The eigenvalues of (dg)|

typic component.

20,)0,T0) for each C-axial branch of periodic solutions by iso-

Isotropy Isotypic Eigenvalues Multiplicity
subgroup  component
OA(Z/) Wo (2A; + 2B, — 24C,)|w > = —2A 1
0 1
Wi (—2B, +48C, + 12D,)|w1 |? 2
0 2
W, [fB, +12G, + \/Bz 1 24B,C; — 144c,2} |y |2 2
[—B, +12G, — \/B% 1 24B,C; — 144cﬂ |y |2 2
Ws [fB, —8C, + /B2 — 20B,C, +100C? — 36B,C; + 36c3] |12
[—B, —8C, — \/Bg — 20B,Cy + 100C2 — 36B,C; + 36(:}] J; |2 2
5672/)1 Wo (24, — 6C, + 2D, )|wr |2 = —2A 1
0 1
Wy ¢ = (712C73D)|w1\2 andg 1 of each
Wa ¢ = (722C74D)|w1\2 andE 1 of each
W3 = (33Cr + 11D, + 3iC; + iDi) \wl |2 and 6 1 of each
0 2
Wi gi:(—CJrDJrEflszEfﬁi\/g) |wy |? and & 1 of each
_ — 2
where § = (7C+D+Bf %C7D>
+(2C —2D) (2B — 13C — 2D) + 60|C|?
5672/)2 Wo (2A, +8D,)|w |> = —2A 1
0 1
40 &= —4D|w|> and & 1 of each
WZ i:: (—15C—6D)|’LU]‘2 andE 1 of each
W3 § = (2B —40C — SD) \w1|2 and E 1 of each
W4 é = (*25(: — 10D)|w1 ‘2 and 6 1 of each
Ws & = (40C, + 8D, + 10iC; + 2iD;)|w1|? and & 1 of each
0 2
56(7)3 Wo (2A; +50C, +18D,) w1 |> = —2A 1
0 1
Wy 0 2
Wo ér: (—30C—6D)|w1\2 andE 1 of each
W3 C: (*45C*9D)|ZU1‘2 andE 1 of each
W4 ér: (—50C—12D)|w1\2 andg 1 of each
WS 6 = (—SOC — 15D)|w1 ‘2 and E 1 of each
We ¢ = (ZB —65C — 18D)|wl ‘2 andg 1 of each
0 Wo (4A, + 4B, — 80C,)|w; |2 = —2A 1
0 1
W (—4B, + 80C, + 16D,)|w; |2 3
0 3
W, [sz, +40C, + 2\/ B2 + 40B;C; — 4ooc§] w2 3
{723, 140G, — 2\/ B2 + 40B;C; — 400(:3] [y |2 3

Continued on next page
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Table 5.6 : — continued from previous page

Isotropy Isotypic Eigenvalues Multiplicity
subgroup  component

Ds Wo (4A, + 4B, — 30C,)|w; |> = —2A
0
Wy (—4B, +130C, + 36D, )|w; [2
0
W, [—23, —25C, + \/4(B, — 10C,)2 — 45C;(4B; + 5ci)] w1 |2

= T Y

{72& —25C, — \/4(B, — 10C, )2 — 45C; (4B; +5ci)] wy[?
Ws (—4B, 4+ 30C; + 6D, )|w; |2
0

W, [7237 —15C, + /(2B, — 15C,)2 — 1203,-(3,—] |y |2

N NN =

[—ZB, —15C, — /(2B, — 15C,)2 — 12013,@»] w1 |2 2

Py Isotypic components

0,0,0,u1,0,0,0)} = Fix(0(2))
0,0,u1,0,12,0,0)}
0,11,0,0,0,u,,0)}
1u1,0,0,0,0,0,u2)}

o
=
>

|I

U) N
I H

0,0,u1,0,0,0,0)} = Fix(SO(2);)
0,0,0,0,0,u1,0)}
0,0,0,0,0,0,111)}
0,11,0,12,0,0,0)}
111,0,0,0,112,0,0) }

[72]
®)
=
S
N
=
||

»ls (n N
Il

—

0,11,0,0,0,0,0)} = Fix(SO(2),)
0,0,0,u1,0,0,0
0,0,0,0,u1,0,0

S0(2), )
)
)
0,0,0,0,0, 1,0)
)
0

(
(
(
(
(
(
(
(
(
(
(
(
(
(0,0,0,0,0,0, 11
(11,0, 115,0,0,0,
(
(
(
(
(
(
(
(
(
(
(
(
(
(

Ul»hw
Il

}

SO(2), 11,0,0,0,0,0,0)} = Fix(SO(2)3)

0,u1,0,0,0,0,0

)
)
0,0,11,0,0,0,0)
0,0,0,11,0,0,0)
)
)
)

0,0,0,0,11,0,0
0,0,0,0,0,11,0
0,0,0,0,0,0,u;

m»
Il

}
}
}
}
)
}=
}
}
}
}
}
}

©)
I \

0,11,0,0,0,—u7,0)} = Fix(0)
V/3uy, uz, V51,0, —/5uy, uz, —/3u2) }
/51,0, /31y, 13, v/3u1,0,v/5uz) }

u1,0,0,0,0,0, —11) } = Fix(Dg)
1u1,0,0,0,0,0,u1)}
0,0,0,u1,0,0,0)}
0,u1,0,0,0,u,,0)}
(0,0,11,0,u,0,0) }

]
H H H H || H

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

Table 5.7: Isotypic components for the actions of the C-axial subgroups X on Vj.
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5.4.3 Conditions for stability of the solution branches

We now state a theorem which lists conditions in terms of the coefficients A, B, C and D for

each of the individual solution branches to be stable.

Theorem 5.4.1. For each C-axial subgroup, ¥, listed in Table 5.1 let Ay, . .., Ay be the functions of the
coefficients A, B, C and D given in Table 5.8. Then

(i) Foreach %, the corresponding branch of periodic solutions to (5.1.1) is supercritical if Ag < 0 and
subcritical if Ag > 0.

(ii) For each %, the corresponding branch of periodic solutions to (5.1.1) is stable near A = 0if A; < 0
forall j. If Aj > 0 for some j = 0, ..., k then the branch of periodic solutions is unstable.

Proof. The conditions in Table 5.8 are those which must be satisfied for each of the branches of
solutions to have eigenvalues with negative real part. These eigenvalues were found using F;,
the cubic order truncation of the Taylor expansion of the general O(3) x S! equivariant vector
field. Since each of the six C-axial isotropy subgroups X have 3-determined stability, these
conditions are sufficient to determine the stability of the periodic solutions of (5.1.1) with axial

symmetry by Theorem 2.5.9. O

5.4.4 Remarks and Examples

From our analysis of the stability of the six branches of periodic solutions to (5.1.1) with maxi-

mal symmetry we make the following observations.

1. We have found that for each of the six C-axial isotropy subgroups of O(3) x S! in the nat-
ural representation on V3 @ V3, the periodic solution with this symmetry (whose existence
is guaranteed by the equivariant Hopf theorem) has 3-determined stability. That is, the
cubic order truncation of the Taylor series of the general O(3) x S! equivariant mapping
is sufficient to determine the stability of each of the six solution branches. The number of
zero eigenvalues for each solution branch is the number forced to be zero by symmetry.
This is in contrast with the representation on V, @ V, where Iooss and Rossi [54] and Haaf
et al. [51] found that some C-axial isotropy subgroups had 5-determined stability, so the
conditions for stability of the corresponding branches of periodic solutions included co-
efficients of order 5 terms in the Taylor expansion of the general equivariant mapping on
Vo @ V.

2. For each of the six solution branches it is possible to find a set of values for A, B, C and D

such that the solution is stable:
Example 5.4.2. Suppose that

Ay=-20 B,= Bi=5 C,=-—

N =

5
2
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3 Ao I

0(2) A, + B, —12C, —B, +24C, + 6D,
— B, +12C,
Re(BC) — 6/C|2
— B, —8C,
|C|2 — Re(BC)

SO(2), A, —3C +D, 2B, — 15C,
—4C, — D,
—11C, — 2D,
3C, 4+ Dy

[Re(v3)| - [B, - ¥, )

S0(2), A, +4D, -D,
—5C, — 2D,
B, — 20C, — 4D,
5C, + D,

SO(2); A, +25C, +9D, —5C, — D,
—25C, — 6D,
2B, — 65C, — 18D,
—10C, — 3D,

0 A, + B, —20C, —B, +20C, + 4D,
— B, +20C,
Re(BC) — 10|C|?

D¢ 2A, + 2B, — 15C, —2B, — 25C,
—5|C[2 — 4Re(BC)
— 2B, — 15C,
—Re(BC)
— 2B, +15C, + 3D,
— 2B, +65C, + 18D,

Table 5.8: Stability conditions for the six branches of periodic solutions. If A; < 0 for all j then

the branch of periodic solutions is stable near A = 0.

_ _ 12 _ _ _
*): 6 = (—C+D+B— §C—D) +(2C —2D) (2B — 13C — 2D) + 60|C|2.

and A; and D; take any values. Then we can see that the three standing wave solutions
(with symmetries O(2), O and 13;) are all stable and the travelling wave solutions (with
symmetries SO(2);, k = 1,2,3) are all unstable. The bifurcation diagram near the bifur-

cation point A = 0 is then as in Figure 5.3.

Example 5.4.3. Suppose that

A,=10 B,=1 B=-20 (=3 (=3 D,=-10 D;=-5

—_—

and A; takes any value. Then we find that the solution with SO(2); symmetry is stable.
The bifurcation diagram near the bifurcation point A = 0 is then as in Figure 5.4. The

stability of the branch of solutions with SO(2); symmetry is not determined since, with

these parameter values, this solution has zero eigenvalues in addition to those forced to
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A
Figure 5.3: Bifurcation diagram for the values of the parameters A, B, C and D as in Example

5.4.2. Stable solutions are denoted by solid lines and unstable solutions by dashed

lines.

Figure 5.4: Bifurcation diagram for the values of the parameters A, B, C and D as in Example

5.4.3. Stable solutions are denoted by solid lines and unstable solutions by dashed

—

lines. The dot-dashed line indicates that the stability of the solution with SO(2),

symmetry is not determined at cubic order for these parameter values.

be zero by symmetry.

Example 5.4.4. Suppose that

1 1
Ap=-2 B, =-1 Cr:—ﬁ =3
and A;, B;, C; and D; take any values. Then we find that the solution with SO(2), sym-
metry is stable. The bifurcation diagram near the bifurcation point A = 0 is then as in

Figure 5.5.

Example 5.4.5. Suppose that

Ay = —40 B, =10 G =3 D, =-5

—_——

and A;, B;, C; and D; take any values. Then we find that the solution with SO(2); sym-
metry is stable. The bifurcation diagram near the bifurcation point A = 0 is then as in

Figure 5.6.
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Figure 5.5: Bifurcation diagram for the values of the parameters A, B, C and D as in Example
5.4.4. Stable solutions are denoted by solid lines and unstable solutions by dashed

lines.

Figure 5.6: Bifurcation diagram for the values of the parameters A, B, C and D as in Example
5.4.5. Stable solutions are denoted by solid lines and unstable solutions by dashed

lines.

. It is possible for all six branches of periodic solutions to bifurcate supercritically and be
unstable for some values of the parameters A, B, C and D. This could mean that a sub-
maximal solution is stable, there is a heteroclinic orbit or the behaviour of the system with

these parameter values is chaotic.

Example 5.4.6. Suppose that
Ay=-30 B,=50 B;=50 (=3 (C=-150 D,=-13

and A; and D; take any values. Then we find that all six maximal branches of periodic
solutions bifurcate supercritically yet are unstable. The bifurcation diagram near the bi-

furcation point A = 0 is then as in Figure 5.7.

. There are a number of pairs of solution branches which are never simultaneously stable.

Using Table 5.8 these can be seen to be

e~ e~

(a) SO(2); and SO(2),
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‘i

Figure 5.7: Bifurcation diagram for the values of the parameters A, B, C and D as in Example

5.4.6. Stable solutions are denoted by solid lines and unstable solutions by dashed

lines.
(b) SO(2), and SO(2),

(c) 56\(2/)2 and O

(d) SO(2); and D.

This concludes our analysis of the stability of the solutions to (5.1.1) with maximal C-axial
symmetry. We now move on to consider the existence and stability of solutions with submaxi-
mal symmetry, in particular solutions with symmetry X where X is an isotropy subgroup with
dim Fix(%) = 4.

5.5 Submaximal solution branches

In Section 5.4 we considered only the solutions of (5.1.1) which have C-axial symmetry. These
solutions are guaranteed to exist for all values of the coefficients A, B, C and D in the cubic order
truncation of the Taylor series of f, the general O(3) x S! equivariant vector field. However,
these are not the only solutions of (5.1.1). In this section we will find conditions on the values
of the coefficients A, B, C and D which allow the existence of solutions with symmetry groups
T where ¥ is an isotropy subgroup of O(3) x S! in the representation on V3 & V3 with a four-

dimensional fixed-point subspace. These subgroups are listed in Table 5.1.

Remark 5.5.1. In the natural representation of O(3) x S! on V3 @ V3 all of the isotropy sub-
groups, X, with four-dimensional fixed-point subspaces lie inside C-axial subgroups. Hence
the subgroups X are submaximal and we refer to solutions with symmetry X as submaximal

solutions.

Suppose that
dz
a - f (Z/ )‘)r

where f : C7 x R — C7 is equivariant with respect to O(3) x S! to all orders i.e. f is the exact

Birkhoff normal form, not just a truncated Taylor series. Then recall from Remark 5.3.3 that
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f restricts to a N(X)/X equivariant system on Fix(X) for some action of N(X)/X. For each
isotropy subgroup X the group N(X)/X is given in Table 5.1. For the isotropy subgroups with
dim Fix(X) = 4 the action of N(X) /X on Fix(X) is given in Table 5.9.

p! N(Z)/Z Action

Ze O(2)x St ¢lw,wy) = (e7Mwy, e30w,) ¢ €SO(2)
(w1, wy) = (—wp, —w1) k€ 0(2)

)
)

Z; 0O(2)xS! P(wy, w2) = (e" 2wy, e®w,) ¢ € SO(2)
)

k(wy, wy) = (—wp, —wy) k€ 0(2)
63 D, x 51 R?T(wl,wz) = (—wl,wz) R?T € Dy
RY (wy,ws) = (wy,wy) RY € D,
D, D,x§! RE (w1, wp) = (wq,ws) R%Z € Dy
RY (w1, ws) = (—wq, wy) RY € D,

Z, SO(2) x S'  Pp(wy,wy) = (e %wy, e®Pw,) ¢ € SO(2)
Zs SO(2) xS'  ¢(wy,wy) = (e ¥w, e¥w,) ¢ €S0(2)
Table 5.9: The action of N(XZ) /X on Fix(X) for isotropy subgroups ¥ with dim Fix(X) = 4. For
each X, € Sl acts as (wy, wy) = ¥ (wy, wy).

We now consider the restriction of f to Fix(X) for each isotropy subgroup X given in Table 5.9.
To cubic order the restriction of f to Fix(X) is equal to the restriction of F3 to Fix(X) where F3
is as in (5.2.6). We will look for changes in stability of the maximal solution branches within
Fix(X) and identify additional periodic and quasiperiodic solutions to (5.1.1) which lie in these

subspaces.

5.5.1 Solutions in Fix(Z¢) and Fix(Z,)

We first look for submaximal solutions with symmetry ¥ = Zg or Z4. For both of these isotropy
subgroups N(X)/%Z = O(2) x S!. Using the actions of O(2) x S! given in Table 5.9 for these
two isotropy subgroups we compute that to cubic order the Taylor expansion of the general

mapping which commutes with these actions is in both cases of the form

W = yw1+aw1|w1|z+ﬁw1|w2\2

Wy = pwy+ aws|wy|? + Pwa|w . (5.5.1)
In the restriction of F3 to Fix(Zs),
x=A4+25C+9D and B=A+2B—-40C—-9D
and in the restriction to Fix(Zy),
x=A+4D and P =A-+2B—40C—4D.

The system of equations (5.5.1) has previously been studied in the context of a Hopf bifurcation
with O(2) symmetry. Provided that none of the coefficients of the cubic terms in the Birkhoff

normal form of this bifurcation vanish (i.e. there are no degeneracies, so there are two cubic
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equivariant mappings) then there are only two types of solutions which bifurcate from a Hopf

bifurcation with O(2) symmetry: standing waves and rotating or travelling waves.

In Fix(Zs) the standing waves are solutions with Ds symmetry and the rotating waves are
solutions with 86\(2/)3 symmetry. In Fix(Z,) the standing waves are solutions with O sym-
metry and the rotating waves are solutions with 56\(_2/)2 symmetry. Since generically these are
the only solutions which bifurcate, in the Hopf bifurcation with O(3) symmetry there are no

solutions with Zg or Z, symmetry.

Only if we allow degeneracies is it possible for solutions with Zg or Z4 symmetry to exist. For
example if #, = B, then a solution with submaximal symmetry can exist: The standing wave

solution in Fix(X) is given by wy = w; and the eigenvalues of this solution are
2Re(x + B)|wi|?, 2Re(a — B)|w1|?>, and 0 twice.

The travelling wave solution in Fix(X) is given by w, = 0 and the eigenvalues of this solution
are
Re(w)wi?, (B—a)lwr?, (B—a)[w?, and 0.

Suppose that o, < 0 and «; 4+ B, < 0 so that both solutions bifurcate supercritically. If a, —
Br < 0 then the standing wave is stable in Fix(X) and if &y — B > 0 the travelling wave
solution is stable. When a, = f, the stability of neither solution is determined by the cubic

order truncation and a solution with submaximal symmetry exists.

For a classification of the possible degeneracies in the O(2) Hopf bifurcation see [42].

5.5.2 Solutions in Fix(D3) and Fix(D,)

Next, we look for submaximal solutions with symmetry groups & = D3 and D, where N(Z) /X =
D, x S'. If we compute to cubic order the equations which are equivariant with respect to the
actions of D, x S! on Fix(D3) and Fix(D,) described in Table 5.9 then we find

Wy = pwy + aqwr|w* + Brawy|ws P + yiwiw

Wy = pows + aaws|ws|? + Batn|wy |* + Yowitm,. (5.5.2)

In the case where y; = pup, these equations also occur in the context of a Hopf bifurcation
on a rotating rhombic lattice in the restriction to certain four-dimensional subspaces. See, for
example, [57, 59]. In the restriction of (5.2.6) to Fix(]ig,) or Fix(]iz) we have u; = yup = H,
B2 =2B1 = 2B, 72 =21 =27y and in Fix(]ja,),

wg = 2A+4+2B—-15C

© = A+B-12C=(2n +6+7)
— A-20C (5.5.3)
= B-10C
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and in Fix(Dy),
xy = 2A+2B—-40C
ny = A+B—12C:%(30¢1+4ﬁ+4y)
= A (5.5.4)
v = B.

—_~

In either case there are three branches of standing wave solutions, with symmetries O(2), O
and Dy, which bifurcate from the Hopf bifurcation with O(3) symmetry. Depending on the
values of the coefficients a1, B and vy in Fix(X) for ¥ = ]5/3 or ]3/2 it is possible to find solutions

to (5.5.2) with X symmetry.

Here we will consider the equations in Fix(D,), where the values of the coefficients are given
by (5.5.4). Since the equations in Fix(D3) have the same form, a similar analysis yields similar

results.

In Fix(D,) the three standing wave solutions are w1 = 0, with C/)ZZ/) symmetry, wy = 0, with O
symmetry and wy = / %wz, with Dg symmetry. This is because alternative forms of Fix(Dg)
and Fix(0O) to those given in Table 5.1 which lie inside Fix(D,) are

Pix(]/j/é) = { <O,\/ f—owz, 0,w,,0, 4/ f—owz, O) } Fix(@) ={(0,w1,0,0,0,w1,0)}. (5.5.5)

This alternative form of Fix(O) is found using the set of generators (—RfT /20 0), (Ra/3,0),
(kxz,0), (=1, 1) with the actions as given in Section 5.3. To see that (5.5.5) gives a form of
Fix(Dg) we show that it just a rotation of the form of the fixed-point subspace given in Table

5.1. In this subspace

w(®,9,1) = 2Re(wr(1) (Y5(60,9) ~ 3(0,9)) = R [B (0 a2,

Suppose that we apply the transformation RY which rotates this combination through 7 in the

y-axis sending x — z and z — —x. Then

Rcos(wt) /35
R -w(6,¢,t) = 72( ) ;(23—3;1/2)

_ \/ER cos(wt) (Y;2(0,¢) + Y(0,9)) +2 \/ER cos(wt)Y3(6,¢)

= 2 \/ERcos(wt) l % (Y3_2(9,gb) +Y32(9/4’)) +Y3(6,¢9)

Hence the form of Fix(Dg) given in (5.5.5) is just a rotated version of the form given in Table
5.1.

We now consider the points where the stability of these standing wave solution branches within
Fix(D;) change. For the periodic solution with 6(\/2) symmetry, Fix(Dy) is contained in the
direct sum of the isotypic components Wy and W,. Thus the eigenvalues of this solution within
Fix(D,) are

& =0, & = (24, +2B, —24C) [w,?,
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o= {—Br—i-lzc,i /B2 +24B,C; — 144C2 | [ .

We see that this branch of solutions undergoes a stationary bifurcation if Re(BC) = 6|C|2. It
is also possible for this solution branch to undergo a Hopf bifurcation at —B, + 12C, = 0 if
6|C|> — Re(BC) > 0 there.

The eigenvalues of the O symmetric branch in Fix(D,) are

& =0, & = (4A, +4B, —80C,) |w:|?,

& = —2B7+40Cri2\/33+403ici*400Ci2 o .

Hence this branch of solutions undergoes a stationary bifurcation if Re(BC) = 10|C|?. It can
also undergo a Hopf bifurcation at —B, + 20C, = 0 if 10|C|?> — Re(BC) > 0 there.

Finally, the periodic solution with Ds symmetry has eigenvalues

& =0, & = (4A, +4B, —30C,) |w/|?,

&= [_ZBr —15C, + \/ (2B, — 15C,)? — 120B,C; | |w|?

in Fix(D,) where w is some combination of w; and w,. This solution undergoes a stationary bi-
furcation when Re(BC) = 0. It also has a zero eigenvalue at —2B, — 15C, = 0 which represents
a Hopf bifurcation if Re(BC) > 0 there.

The bifurcations of these solution branches allow for the possibility of the existence of periodic
and quasiperiodic solutions with D, symmetry. Using the numerical continuation package
AUTO, it is possible to demonstrate the existence of these branches of periodic and quasiperi-

odic solutions with D, symmetry for some particular values of the coefficients A, B and C.

Remark 5.5.2. The numerical branch continuation package AUTO requires that the input equa-
tions are real. This means that instead of finding periodic solutions to (5.5.2) with coefficients
given by (5.5.4), we set w; = Re'? and w, = Sel¥ where R, S, ¢ and 1 are real functions of time
and find fixed points of the resulting set of real differential equations. Separating the real and

imaginary parts and letting & = a7 and 6 = 2¢ — 2y, (5.5.2) with coefficients given by (5.5.4)

becomes
R = AR+ a,R3+ B,RS*+ RS* (v, cos(8) + 7;sin(6)) (5.5.6)
= AS+ % (3, + 4B, +47,) S® +2B,SR? + 25R? (7, cos(8) — y;sin(h))  (5.5.7)
6 = 2R%(w; —2B; —2vicos() — 27, sin(0))
+282 (% cos(8) — 7, sin(6) — 13—00(1' + %[Si - éy,) . (55.8)

The solution of these equations with R = 0 has 6?23 symmetry, the solution with S = 0 has O
symmetry and the solution with R = \/% S and 6 = 0 has Dg symmetry. Making this change
of coordinates to a system of 3 real differential equations introduces complications. If R = 0 or
S = 0 then the phase difference 6 is not defined. This is due to the fact that the values of the

frequencies ¢ and ¢ depend on a parameter Im () = w which does not appear in the system
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(5.5.6) — (5.5.8). A consequence of this is that for certain values of the coefficients «,  and 7,
when R = 0 or S = 0 it may be that there is no value of 8 for which § = 0 and hence AUTO
will not find a branch of stationary solutions to (5.5.6) — (5.5.8). The phase difference 0 keeps
changing as one of the periodic solutions with (/)\(2/) or O symmetry is approached. This occurs
when the eigenvalues §2i for the solutions with 6(/2) or O symmetry are complex. In this case
trajectories spiral towards (away from) a stable (unstable) periodic orbit as shown in Figure 5.8.
In the case where a value of 8 which gives § = 0 can be found the eigenvalues are real and the
direction in which trajectories approach (move away from) a stable (unstable) periodic orbit is

defined as in Figure 5.9.

—— periodic orbit

Figure 5.8: When 6 # 0 for any value of 6 € R trajectories spiral towards a stable periodic orbit
where R=0o0r S = 0.

\‘\A periodic orbit

Figure 5.9: When 6 = 0 trajectories approach the stable periodic orbit where R = 0 or S = 0 in

a defined direction given by the eigenvector corresponding to the eigenvalue ¢;.

Despite this complication, we wish to study the dynamics of the system near the points where
R =0o0r S = 0. We do this using AUTO for a particular set of values of the coefficients A, B
and C.

Example 5.5.3. Suppose that when A =1

A=-3+1, B=1+3i, C:Cr—i—ii
40
and we vary the value of C,. Then
a0 =wnp =2A+ 2B —40C = o, + 5i, p=A=-3+] vy=B=1+3i, (5.5.9)

where a, = —4 — 40C,. For these values
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—~

1. The O(2) symmetric branch of solutions bifurcates supercritically when «, < % and un-
dergoes a stationary bifurcation at a, = % (\/ 559 — 22) .

2. The O symmetric branch of solutions bifurcates supercritically when &, < 0 and under-

goes a stationary bifurcation at o = v/31 — 6.

3. The Dg symmetric branch of solutions bifurcates supercritically when a, < % and under-

goes a stationary bifurcation at &, = 5 and a Hopf bifurcation at &, = %.

Using AUTO we find that there is a branch of periodic solutions connecting the 6?23 and Dy
symmetric branches and a branch of periodic solutions connecting the O and Dy symmetric
branches. These bifurcate at the stationary bifurcations and have D, symmetry. Neither of
these solutions is stable. In addition there is a branch of stable quasiperiodic solutions which
bifurcates from the solution with Dg symmetry at the Hopf bifurcation. This solution branch

also has D, symmetry. These branches of solutions can be seen in Figure 5.10.

As oy — o, = 2.17806 the quasiperiodic solution spends an increasing amount of time near the
unstable branch of solutions connecting the O(2) and Ds symmetric branches. This can be seen

in Figure 5.11. At a; = a, the system undergoes a global bifurcation to a homoclinic orbit.

Types of stationary bifurcations in Example 5.5.3

With the values of the coefficients as in (5.5.9), the system of real three differential equations for
which AUTO finds the branches of fixed-points becomes

R = R+aR®—3RS*+ RS?(cos(8) + 3sin(h)) (5.5.10)
S = S+ 11—0 (3, — 8) S® — 6SR? 4 2SR? (cos(8) — 3sin(8)) (5.5.11)
6 = 2R?>(3—6cos(h) —2sin(h)) + 25> <3 cos(f) — sin(8) — il)) . (5.5.12)

We can use these equations to determine the nature of the stationary bifurcations of the solution
branches.

——

Bifurcation of O(2) symmetric solution This branch of solutions has a stationary bifurcation

V/559 — 22
Ny =0g = ———
3
At this value of a, we have the stationary solution

Rop=0, Sy= L, 0y = 2arctan M .
30 — /559 51

Suppose we expand

at

~ 0.5477269 . ..

ay = uco—l—eal—i-ezucz—i-...
R = Rop+eR;+€*Ry+...
S = Sp+eS +e2Sy+...
0 = 6Op+ed +e20,+...
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2.5]

2.0

1.5]

1.0

0.5]

0.Q

T T
-20. -15. -10. -5. 0. 5. 10. 15. 20.

Qp

Figure 5.10: AUTO generated diagram of the three standing wave solutions with 6{2/), O and

0.

0.

0.

.00

Dy symmetry in Fix(D;). The diagram shows the bifurcations of these solution
branches and the bifurcating branches of solutions with ]3/2 symmetry. P denotes a
pitchfork bifurcation, T a transcritical bifurcation and H a Hopf bifurcation. Stable
solutions are denoted by solid lines and unstable solutions by dashed lines. The
unstable solutions with D, symmetry are periodic and the stable solution with D,

symmetry is quasiperiodic.

90

80

70

. saddle point

aN

I I I I I
0.30 0.35 0.40 0.45 0.50 0.55 R 0.60

Figure 5.11: AUTO generated diagram of the periodic solution branch in the RS plane for dif-

ferent values of a,. As a, approaches 2.17806 the periodic solution approaches the
saddle point on the branch connecting the R = 0 solution branch to the § = 0

branch which is marked.
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Then
sin(f) = sin(fp) + €6y cos(fy) + € (92 cos(fp) — %9% sin(90)> +...
1
cos(f) = cos(fy) — ey sin(fy) — € <92 sin(6y) + 59% cos(eo)) +...

Substituting into the right hand sides of equations (5.5.10) — (5.5.12) and setting equal to zero
we find that at O(e!)

0 0 0 Ry
M-R=|0 -2 0 S | =m
0 0 a 6

where g ~ —7.43868 ... and b ~ —0.59191 . . .. This has solutions

Ry 1 0
S |=K| 0 [+ar]| —b/2
01 0 0
where K € R. At O(e?) we find
0 0 0 R, 0 cKay
0 -2 0 S; | =ax| b |+ | da?+eK?
0 0 a 6> 0 fK?

wherec, d, eand f € R. Multiplying on the left by 1 = ( 100 ), the left zero eigenvector of
M, we find that we must have cKaq = 0. If K = 0 then we find that Ry = R, = ... = R, = 0 for
any n so we never switch onto a different branch of solutions. Hence we must choose a1 = 0

and so we have

R, 1 0 0
S, | =K 0 [+ax| —b/2 [ +| —4K?
0, 0 0 e

where K’ € R. At O(e?) we find

0O 0 O R3 0 cKay — gK3
0 -2 0 S3 =a3| b | + hKK'
0 0 a 03 0 jKK'

where g, h and j € R. Again multiplying on the left by the left zero eigenvector 1 we find that

K must satisfy

cKay — gK3 =0
soK=0orK = =+, /%. Since we find that ¢, and g are both positive this means that the
bifurcation at &, = 7”"52_22 is a subcritical pitchfork. If K = 0 in the expansion above then we

—_—
Cip

remain on the solution branch with O(2) symmetry and if K = + 2 then we switch onto

one of the bifurcating branches. These bifurcating branches are submaximal solutions with D,

symmetry.
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5.5. SUBMAXIMAL SOLUTION BRANCHES

Bifurcation of O symmetric solution A similar analysis to that above shows that the bifurca-

tion of this branch of solutions at
=3l -6~ —0.4322356...
is also a subcritical pitchfork.

Stationary bifurcation of Dy symmetric solution This branch of solutions undergoes a sta-

tionary bifurcation at a, = ag = 5. At this value of a, we have the stationary solution

ROZ\/EI S(]:\/i, 9020

Expanding as for the 6(2/) symmetric case and substituting into the right hand sides of equa-
tions (5.5.10) - (5.5.12) and setting equal to zero we find that at O(e')

6 -3V30  &V15 Ry — 515
M-Ry=| -%30 ¥ -2 S | = | -¥V2 (5.5.13)
- % V15 %8 V2 — 35; 01 0
The matrix M above has eigenvalues —2, 0 and % The right and left zero eigenvectors of M
are
1
r=| —1/30 and  1=(1 -£V30 V5 )
-3V15
respectively. Hence equation (5.5.13) has solutions
Ry 1 0
s, | =k| “1v30 |+a| 2v2
3 27
61 —2V15 Z

where K € R. At O(e?) we find

6  —£/30 &V15 R, —%V15
_% 30 15A _% > S, = a %f (5.5.14)
12 18 32
-¥V15 $V2 -F 02 0

94 2 4743 2, 1101
— 25 V15K® — 15550 V1547 + 55 Kay
76 2 1809 177
+| —BV2KE - 72500\["‘1 + 155 V30Kay
8472 | 243 3% /15
5K+ 125"‘1 125 V 15Kay

Multiplying on the left by the left zero eigenvector 1 we find that K must satisfy

108 T5K2 1212 1089 —— ,

Hence the two possible values of K are

3 121
- %\/ﬁtxl and K1 = ﬁ 150(1

118
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With K = Ky we have to O(e!)

so we stay on the original branch of solutions and with K = K; we have

3 121
R 5 1350 V 15
= \/E + enq % 2
0 0 -=

so we switch to a different branch of solutions where the value of 0 is not always zero. Hence

the bifurcation at «, = 5 is transcritical.

Example 5.5.4. Suppose that when A =1
A=-1+42i B=-1+2i, C:Cr+111i

and we vary the value of C,. Then
& =01 =2A+2B—-40C = a, —2i, B=A=-1+2i y=B=-1+2i, (55.15)

where &, = —4 — 40C,. For these values

—~

1. The O(2) symmetric branch of solutions bifurcates supercritically when a, < § and un-
dergoes a stationary bifurcation at &, = —2. This bifurcation can be found to be a sub-

critical pitchfork.

2. The O symmetric branch of solutions bifurcates supercritically when &, < 0 and under-
goes no bifurcations. For these parameter values the eigenvalues C;E are complex and so
by Remark 5.5.2 AUTO will not find this branch of solutions as there is not a correspond-
ing branch of stationary solutions to (5.5.6)—-(5.5.8).

3. The Dg symmetric branch of solutions bifurcates supercritically when a, < % and under-

goes a stationary bifurcation at &, = —24, which can be found to be transcritical, and a
Hopf bifurcation at , = — 23—8.

Using AUTO we find that there is a branch of unstable periodic solutions with D, symmetry
connecting the branches of solutions with C/)ZZ/) and Dy symmetry. At the transcritical bifur-
cation on the Dg symmetric branch, a branch of stable periodic solutions with D, is created.
This solution goes through two saddle node bifurcations but remains stable for large negative
values of a;. In addition there is an unstable branch of quasiperiodic solutions bifurcating from
the Hopf bifurcation point on the Dg symmetric branch. As &, — &, ~ —10.1 the quasiperiodic
solution spends an increasing amount of time near the unstable branch of solutions connecting
the 6?23 and Dg symmetric branches. This can be seen in Figure 5.12. At a, = &, the system

undergoes a global bifurcation to a homoclinic orbit.

All of these solution branches can be seen in Figure 5.13.
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R 0.40

1.5
0
1.0
0.5
0.0
-0.5]
-1.04
saddle point
~1.3 T T T T T
0.15 0.20 0.25 0.30 0.35

0.10
Figure 5.12: AUTO generated diagram of the periodic solution branch in the Rf plane for dif-

—~——

ferent values of a,. As a, approaches -10.1 the periodic solution approaches the

saddle point on the branch connecting the O(2) symmetric solution branch to the

Ds symmetric branch which is marked.

3.0 |
0(2) | D
I
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0.0 y | { |
-30. -20. -10. 0. a, 10.

-40.
Figure 5.13: AUTO generated diagram of the maximal solution branches with O(2) and Dg
symmetry showing the connector branches, the periodic solution and also another
branch of submaximal solutions with D, symmetry. H denotes a Hopf bifurca-

tion, T a transcritical bifurcation and P a pitchfork bifurcation. Stable solutions are

denoted by solid lines and unstable solutions by dashed lines.
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5.5.3 Solutions in Fix(Z}) and Fix(Zs)

Finally, we look for submaximal solutions with symmetry groups ¥~ = Z% and Zs where
N(Z)/Z = SO(2) x S'. Computing to cubic order the SO(2) x S! equivariant vector field
for the actions of SO(2) x S! described in Table 5.9 we find that in both cases the mapping is of

the form

w1 1w +aw1|w1|2+bw1\w2|2

Wy = pows + cwy|wa|? 4 dwy|w; |2

By rescaling wq — \/%wl these equations are of the form

W = pwy +aqwy|wy|* + B |ws|?

Wy = pows + apwy|wa|? + Buwy|wy % (5.5.16)

These equations describe the interaction of two Hopf bifurcations with SO(2) symmetry at
1 : 1 resonance, but with different SO(2) actions. In the case where p11 = i, similarly to (5.5.2),
these equations also occur in the context of a Hopf bifurcation on a rotating rhombic lattice in

the restriction to certain four-dimensional subspaces [57, 59].

In the restriction of (5.2.6) to Fix(Z}) or Fix(Zs) we have y; = yp = p and in Fix(Z}),

6, = A+4D
6, = A-3C+D (5.5.17)
B = A-15C—2D

and in Fix(Zs),
xy = A+25C+9D
w, = A+4D (5.5.18)

B = A—25C—6D.

In either case there are two ‘pure mode’ travelling wave solutions (the maximal solution branches)
and branches of ‘mixed mode’ solutions (submaximal solutions) which exist for some values of

the coefficients a1, ap and B. The pure mode solutions correspond to w; = 0 with eigenvalues
2 2 i 2
0, 2a)rlwal),  (B—w)|wal?,  (B—&2) |w
and wp = 0 with eigenvalues
0 2 2 _ 2 = 2
) (@)elwr*y,  (B—a)fwil?,  (B—1) wr]*

Subscript r denotes the real part. The starred eigenvalues (x) are required to be negative for the
branch to bifurcate supercritically from the Hopf bifurcation with O(3) symmetry. The maximal
solution branches undergo Hopf bifurcations when B, = (a3), and B, = (a1), respectively.
At these bifurcations it is possible for a quasiperiodic branch of mixed mode solutions with

submaximal symmetry to be created.
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—_~—

Remark 5.5.5. In Fix(Z}) the travelling wave solution with w; = 0 has SO(2); symmetry and

—_—

when w; = 0 the corresponding solution has SO(2), symmetry. The branch of mixed mode

solutions (where it exists) has Zé symmetry.

Similarly in Fix(Zs) the travelling wave solution with w; = 0 has SO(2), symmetry and when

wy, = 0 the corresponding solution has SO(2); symmetry. The quasiperiodic branch of mixed

mode solutions (where it exists) has Z5 symmetry.

It is possible for the quasiperiodic submaximal solutions to be stable within Fix(X) for ¥ = Z})
or Zs. For example, suppose that the pure mode solutions bifurcate supercritically at the Hopf
bifurcation with O(3) symmetry. Then («1), < 0 and (ay), < 0. Suppose further that (ay), <
(a1)y. By letting w; = Rel? and w, = Sel¥ and separating the phase and amplitude equations

we find that the ‘mixed mode’ solution is given by

R2 — A(a2)r — Br) §2 — A(wa)r — Br)
B — (a1)r(a2)r B — (a1)r(a2)r

and exists when R? > 0 and S? > 0. This occurs if
1. (a1)r < Br and B2 < (aq)r(az), or

2. By < (a2), and B2 > (a1),(a2);.
The real parts of the eigenvalues of the mixed mode solutions are the roots of

g —age (o) =P (020, (00 B 4122 ()~ ) 0.

Thus when
(a1)r < Br and ,3% < (aq)r(a2)r

the quasiperiodic mixed mode solution exists and is stable within Fix(X). A bifurcation dia-

gram varying the value of j, is given in Figure 5.14.

5.5.4 Conclusions

By studying the restriction of F3 given by (5.2.6) to four-dimensional invariant subspaces we
have been able to find periodic and quasiperiodic solutions to (5.1.1) with submaximal symme-
try. Although there are no such solutions in the four dimensional spaces Fix(Z4) and Fix(Zs),
we found that periodic and quasiperiodic solutions with the symmetries of each of the other
isotropy subgroups £ C O(3) x S! with four dimensional fixed-point subspaces can exist for
some values of the coefficients A, B, C and D in F3. Moreover, it is possible for these solutions
to be stable within Fix(X).
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N
7

Lr-norm

quasiperiodic solutions

wy = 0 pure mode

(22)r (1), 0 (@1)r(@2)r

Figure 5.14: Bifurcation diagram showing a situation where quasiperiodic submaximal solution
branches with symmetry ¥ = Z% or Zs exist and one such branch is stable. The
pure mode solutions are periodic maximal solutions with C-axial symmetry. Here
H indicates a Hopf bifurcation. Stable solutions are denoted by solid lines and
unstable solutions by dashed lines. The stability is computed in the restricted space
Fix(Z).
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CHAPTER O

STATIONARY BIFURCATION WITH O(3) x Z; SYMMETRY

6.1 Introduction

Some dynamical systems, including pattern forming systems such as Boussinesq Rayleigh—
Bénard convection, are invariant under a change in sign of the physical variable w. For example
the Swift-Hohenberg equation [78]

5 = Hw = (1+ V2w —w? (6.1.1)
is invariant under the transformation w — —w. Hence if w is a solution then —w is also a
solution. Suppose we study the dynamics of such a system on a sphere. Then the geometry
forces the solutions to be invariant under the group O(3) and the w — —w symmetry forces

the solutions to be invariant under the group
Z, ={1,-1}.

Hence the overall symmetry of the system is O(3) x Z,. Suppose that the trivial solution w = 0
undergoes a stationary bifurcation as the parameter y is varied. After reducing equation (6.1.1)

to the centre manifold we have the following system of ODEs

% — f(x, ), 6.1.2)

where x € V is the position in phase space and A is a bifurcation parameter. The vector field, f,
is equivariant with respect to some action of O(3) x Z, on V where —1 € Z; acts on the vector

xby —1-x = —x. Equivariance with respect to this symmetry implies that

f(=xA) = =f(xA)

i.e. the vector field f is odd in x so a Taylor expansion of this vector field will not contain any

terms of even order. Since f is odd,
fOA) =—f(0,A) = f(0,A)=0,
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and hence (6.1.2) has a trivial solution x = 0 for all values of A. We assume that this solu-
tion undergoes a stationary bifurcation when A = 0 where stationary solutions with certain
symmetries are created. The symmetries of the fixed-point solutions of equation (6.1.2) will
be isotropy subgroups of O(3) x Z, for some representation of the group. In the case of the
Swift-Hohenberg equation (6.1.1) the radius, R, of the sphere dictates the relevant representa-
tion of O(3) x Z,. For some values of R this representation will be an irreducible representation
of O(3) x Z; on V, the space of spherical harmonics of degree ¢, for a particular value of ¢,
but for other values of R the solutions will have symmetries that are isotropy subgroups of
O(3) x Z; for a reducible representation on V; & V;, 1 for some value of ¢. That is, they result
from an interaction between the £ and £ + 1 modes. In Chapter 7 we will study some particular

solution patterns which can only result from mode interactions.

In this chapter we study the isotropy subgroups of O(3) x Z, for several natural representa-
tions of the group O(3). In Section 6.2.1 we will consider the isotropy subgroups for the irre-
ducible representations on V;. These isotropy subgroups are related to the isotropy subgroups
of O(3) x S! which we considered in Chapter 4. In Section 6.2.2 we will investigate the isotropy
subgroups for reducible representations on V; @ V1 where there is an interaction between the
¢and ¢ 41 modes. We refer to such a representation as the (¢, £ + 1) mode interaction. Although
all isotropy subgroup of O(3) in the representations on Vi & V;, and V;, & V3 have previously
been computed (see [5, 22, 24]), there has been no study of the isotropy subgroups of O(3) x Z,
for mode interaction problems. In Section 6.2.2 we will consider the specific example of the (2,3)

mode interaction.

In Section 6.3 we discuss the relationship between O(3) and O(3) x Z; equivariant vector fields
for irreducible representations of the groups. We also consider O(3) x Z; equivariant vector
fields for reducible representations and compute explicitly to cubic order the Taylor expansion
of a general O(3) x Z; equivariant vector field for the representations on V, & V3 and V3 @ V;.

These vector fields will be used in Chapter 7 for the investigation of spiral patterns on spheres.

Finally in Section 6.4 we show how to compute the values of the coefficients in the equivariant

vector fields for the specific example of the Swift-Hohenberg equation (6.1.1).

6.2 Isotropy subgroups of O(3) x Z;

In this section we first discuss how to compute the isotropy subgroups of O(3) x Z; in the
irreducible representations of O(3) on V;, the space of spherical harmonics of degree . We
then consider the subgroups which can be isotropy subgroups in reducible representations on

Vi ® Vy41, the space of spherical harmonics of degrees £ and ¢ 4 1.

Recall that all solutions of (6.1.2) have as their group of symmetries an isotropy subgroup
of O(3) x Z; for a given representation. The equivariant branching lemma, Theorem 2.4.6,
guarantees the existence of solutions with the symmetries of the axial isotropy subgroups of
O(3) x Z, at the stationary bifurcation of the trivial solution x = 0. It may be possible for

(6.1.2) to have solutions with the symmetries of other isotropy subgroups depending on values
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of the coefficients in the Taylor expansion of f.

For any representation of O(3) x Z,, the isotropy subgroups are twisted subgroups H? where
H is a subgroup of O(3) and 6 : H — Z; is a group homomorphism. These twisted subgroups
are a subset of the twisted subgroups of O(3) x S! containing only the subgroups, H? with
twist types Z, or 1. These twisted subgroups are uniquely determined by pairs of subgroups
(H,K) where H is a subgroup of O(3) and K is a normal subgroup of H such that H/K = Z,
or 1. Since there are no automorphisms of H/K in either case, the group homomorphism
0 : H — H/Kis always given by

o(h) = { 1 ifthek (6.2.1)

-1 ifhe H-K.

A complete list of the twisted subgroups of O(3) x Z; contains the pairs (H, H) for all sub-
groups H C O(3) and all pairs (H, K) where |H : K| = 2 (by Lemma 4.2.2, K is then normal in
H). All such pairs can be found in Table 6.7.

For different representations of the group O(3), different twisted subgroups will be isotropy
subgroups of O(3) x Z,. To determine which twisted subgroups are isotropy subgroups for
a particular representation on the space V (where V = V, or V; @ V;1 for any value of ¢) we
use the massive chain criterion (Theorem 3.4.1). This says that the twisted subgroup H? C
O(3) x Z; is an isotropy subgroup in the representation on V if and only if for each strictly
larger and adjacent group A (so that H* C A C - C O(3) x Zy)

dim Fix(A) — r(A) < dim Fix(H%) — r(H%)
where
r(H?) =min{dimV — 1, q(H%)}  and  q(H?) = dim Ng3)xz,(H’) — dim H.

Remark 6.2.1. Although the statement of Theorem 3.4.1 relates to subgroups ¥ C O(3) in
irreducible representations, the theorem remains valid for twisted subgroups H? C O(3) x Z,

and reducible representations.

To use Theorem 3.4.1 we must compute the values of dim Fix(H?) and r(H?) for each twisted

subgroup H?. For pairs (H, H) the twisted subgroup is not really twisted at all and
dim Fix(H, H) = dim Fix(H).

For the pairs twisted subgroups given by pairs (H, K) where |H : K| = 2 we use the trace for-
mula (Theorem 2.4.4) to compute dim Fix(H?). Let [ dup denote the normalised Haar integral
on H. Then since the index |H : K| = 2 we have that [ duy = 1 [ dp. This means that

dim Fix(K) = [ x(h)dux =2 [ x(h)dun
K K
We also have that

dim Fix(H, K) :/Kx(h)dyH—/H KX(h)dﬂHr
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since x((c, —1)) = —x(0), and

dim Fix(H) — /K x(h)dm + /H A,

Hence we have
dim Fix(H, K) = dim Fix(K) — dim Fix(H).

We can use this to compute the twisted subgroups which can be isotropy subgroups in irre-

ducible and reducible representations of O(3) x Z,.

Remarks on notation

From now on in this thesis if the subgroup H? = (H, H) is an isotropy subgroup in a particular

representation of O(3) x Z, then we will denote H? simply by H.

If the twisted subgroup H? = (H, K) is an isotropy subgroup then usually we will denote H?
by (va) x Where the tilde over the symbol denotes that the isotropy subgroup has twist type
Z,y. We use this notation because in some representations there may be two or more isotropy

subgroups with the same subgroup H but different subgroups K.

Notice that a pair (H, K) will only be given a label (H)y if it is an isotropy subgroup in the

representation being discussed.

For example, if in a particular representation the twisted subgroups given by pairs (D4 X
Z5, Dy x Z5), (Dy x Z5, Dy x Z5) and (Dyg x Z5, D) are isotropy subgroups then we de-

note

(Dy X Z5, Dy x Z5) by Dy xZ5,
(D4 X Zg, D, x ZE) by (D4 X ZS)D

c
ZXZZ

and (DyxZ5, DY) by (Dy4x ZS)DQ'

When there is only one isotropy subgroup with twist type Z, for the subgroup H then we
will drop the subscript K since there will be no confusion as to which isotropy subgroup we
mean. For example, if in another representation only the twisted subgroups given by pairs

(Dyg x Z5, Dy x Z5) and (Dy x Z5, Dy x Z5) are isotropy subgroups then we denote

(D4 X ZE, Dy x ZE) by Dy % ZE
and (D4 x Z5, Dy x Z5) by Dy xZ§.

6.2.1 Isotropy subgroups in irreducible representations

In this section we compute the twisted subgroups of O(3) x Z; which can be isotropy sub-
groups in an irreducible representation on V,. For any value of /, in the plus representation of
O(3) the element —I € O(3) acts as the identity and therefore the element (—1I,1) € O(3) x Z;
must lie in every isotropy subgroup. This means that H and K must both be class II subgroups
of O(3) since —I € Hand —I € kerf = K.
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In the minus representation, —I acts as minus the identity and hence (—I,—1) € O(3) x Z;,
acts as the identity and must therefore be contained in every isotropy subgroup. This means
that H must be a class II subgroup and K must be either a class I or class III subgroup of O(3)
since —I € Hand —I ¢ kerf = K.

Thus the twisted subgroups of O(3) x Z, which can be isotropy subgroups in an irreducible
representation on V; are those listed in Table 6.1. Also given is the formula in terms of ¢ for the
dimension of their fixed-point subspaces for the representation on V; and the value of g(H?)

(which is required in order to use the massive chain criterion, Theorem 3.4.1).

Remark 6.2.2. Notice that Table 6.1 is a restriction of the list of twisted subgroups of O(3) x S!
given in Table 4.2 to those with twist types Z; or 1. Notice also that in Table 4.2 the formu-
lae for dim Fix(H?) are twice those in Table 6.1. This is due to the fact that in Table 4.2 the

representation of O(3) is the O(3)-simple representation on the direct sum of two copies of V.

The axial isotropy subgroups of O(3) x Z, which fix a one-dimensional subspace in the rep-
resentation on V, are then as in Table 6.2. This is a restriction of Table 4.4 to those entries with

twist types Z; or 1.

Similarly the isotropy subgroups of O(3) x Z, which fix a two-dimensional subspace in the rep-
resentation on V; are as in Table 6.3 which is almost a restriction of Table 4.6 to those entries with
twist types Z, or 1. In addition to making this restriction we must also remove the twisted sub-
groups HY given by the pairs (Zyy, X ZS, Zyy x Z5) and (Zoy x Z5, Z,,,). These pairs both give
twisted subgroups with g(H?) = 1. For every value of ¢ where they have a two-dimensional
fixed-point subspace, the twisted subgroups given by the pairs (Dy, x Z§, Dy x Z5) and
(Day x Z5,D4,,) have one-dimensional fixed-point subspaces. Hence (Z,, X ZS, Zy % Z5)
and (Zy, x Z5,Z,,,) do not satisfy the massive chain criterion when compared with (Do X
Z5,Dyy x Z5) and (Dyy, x Z5, DY, ) respectively.

Remark 6.2.3. In the natural representation when ¢ is odd all isotropy subgroups have twist
type Z,. Also, since H is a class II subgroup of O(3), —I € H. This means that all isotropy
subgroups in these representations have dim Fix(H?) = dim Fix(K). Hence, if K is an isotropy
subgroup of O(3) for some odd value of £ then the twisted subgroup, H?, given by (H, K) where
H = KU (—I,—1)Kis an isotropy subgroup of O(3) x Z, for the same value of £. Consequently
the work of [23, 53, 63] in finding the isotropy subgroups of O(3) has already determined the

isotropy subgroups of O(3) x Z, for natural representations on V;, where / is odd.

Remark 6.2.4. In the natural representation on V; for even values of ¢ the isotropy subgroups
of O(3) x Z; with twist type 1 are precisely the isotropy subgroups of O(3) for the same value
of ¢ and as such have already been determined in [23, 53, 63]. However, in addition, O(3) x Z,
has isotropy subgroups with twist type Z,.

Using the massive chain criterion, Theorem 3.4.1, it is possible to determine all isotropy sub-
groups of O(3) x Z; in the representation on V; for a given value of . We will consider here

the examples of the natural representations on V, for £ = 2,3 and 4.
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] K dim Fix(H?) dim Fix(H?) q(H?)
plus representation minus representation
SO(3) 0(3) 0 -
SO(3) SO(3) - 0
1, [leven
0(2 0(2) x Z§ - 0
(2)  0(2)x7 { 0 o
1, [leven
0O(2 0O(2 - 0
@) @) { 0, (odd
0, {even
O(2 SO(2) x Z5 - 0
@ (2) > 2, { 1, fLodd
14
0(2) 0(2)" - 0, Ceven 0
1, fodd
SO(2) SO(2) x Z§ 1 - 1
SO(2) SO(2) - 1 1
D, D, x 75 [¢/n]+1, CLeven B 0
[¢/n], ¢ odd
D, D, ~ [¢/n]+1, CLeven 0
[¢/n], ¢ odd
D, Zo X 25 [¢/n], {even B 0
[¢/n]+1, Codd
D, D B [¢/n], {even 0
[¢/n]+1, Lodd
Doy D, x Z§ [(£+m)/2m)] - 0
Doy D4, - [(€ +m)/2m] 0
1
Zn Z % Z5 200/m]+1 - { 5 m
1, m>2
Zon Lo X 7§ 2((€+m)/2m] - 1
Zn Zn - 200/m) +1 { 5 m=1
1, m>2
Zowm Z,,, - 2[(+m)/2m] 1
T T x Z§ 200/3]+ [€/2] —£+1 - 0
T T - 200/3|+[4/2] —L+1 0
O O x Z§ [6/4]+[€/3]+[¢/2) —L+1 - 0
O () - [€/4]+[€/3]+[¢/2) — L +1 0
O T x Z§ (/3] —[£/4] - 0
O (0} - [€/3] —[¢/4] 0
I I x Z§ [0/5]+[£/3] +[£/2] — £ +1 - 0
I I - [€/5]+[€/3]+[¢/2) — L +1 0

Table 6.1: The twisted subgroups HY of O(3) x Z; and the dimensions of their fixed-point sub-
spaces in the representations on V; where H? can be an isotropy subgroup. Here
H=]x2Zj
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] K 6(H)  Plus representation Minus representation
0(2) O(2)xZ§ 1 Even ¢

0(2) 0(2) Z, Even ¢

0(2) SO(2)xZ5 Z, Odd ¢

0(2) O(2) 7y Odd ¢

I I xZ§ 1 6,10,12, 15,16, 18, 20, 21, 22, 24,

25,26,27,28,31, 32,33, 34, 35,37,
38,39,41,43,44,47,49, 53, 59

I I Z, 6,10,12,15,16, 18, 20, 21, 22, 24,
25,26,27,28,31,32,33,34, 35,37,
38, 39,41, 43,44, 47,49, 53, 59

(@) O x Z§ 1 4,6,8,9,10,13,14,15,17,19,23

(0] o] 7 4,6,8,9,10,13,14,15,17,19, 23

(@) T x Z§ Z, 3,6,7,9,10,11,12,13,14, 16,17, 20

(@) (O 7, 3,6,7,9,10,11, 12, 13, 14, 16, 17, 20

Dy D, x Z§ Zy m<{<3m, (m>3)

D,, Di, Z, m<0<3m, (m>3)

D, D, x Z§ Z, 2,4,5

D, D4 7 2,4,5

Table 6.2: The axial isotropy subgroups of O(3) x Z, for the representations V;. The last two
columns give the values of ¢ for which the subgroups are isotropy subgroups. Here
H=]x1Zs.

J K 6(H) plus representation minus representation

n</tl<2n  [even
D, D,xZ5 1 -
2n < (¢ <3n, (odd

n</t<2n, { even
D, D, Z, -

2n < ¢ < 3n, {odd
2n < ¢ <3n, [{even

D, Z.xZ5 Z -
S {n§€<2n, ¢ odd

D, D: 7 B { 2n < /¢ <3n, [{even
n</t<2n, £ odd
Dy, Dy x Z§ Zy 3m < L <5m -
Dy, D4, Z, - 3m < { < 5m
T T x Z§ 1 6,9,10,13,14,17 -
T T Zy - 6,9,10,13,14,17
() O x Z§ 1 12,16,18,20-22,25-27,29,31,35 -
() () Zy - 12,16,18,20-22,25-27,29,31,35
() T x Z§ Zy 15,18,19,21-26,28,29,32 -
() O~ Zy - 15,18,19,21-26,28,29,32
I I xZ§ 1 30,36, 40,42,45,46,48,50,51,52,54-58 -
61-65,67-69,71,73,74,77,79, 83,89
I I Zy - 30,36,40,42,45,46,48,50,51,52,54-58

61-65,67-69,71,73,74,77,79, 83,89

Table 6.3: The isotropy subgroups of O(3) x Z, with two-dimensional fixed-point subspaces
for the representations V,. The last two columns give the values of ¢ for which the

subgroups are isotropy subgroups. Here H = | x Z5.
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Example 6.2.5 ( The natural representation on V,). Using Table 6.2 we can see that in the

natural representation on V, the axial isotropy subgroups are

0(2) x Z5 = (0(2) x Z5, O(2) x Z5) and Dy x Z§ = (D4 x Z5, Dy x Z5).

Similarly, using Table 6.3 the only isotropy subgroup with two-dimensional fixed-point sub-
space is
D, x ZE = (Dz X ZE, D, x ZE)

and this subgroup has (D, x Z5) = 0. Using Table 6.1 we find that the twisted subgroups of
O(3) x Z, which fix a subspace of dimension greater than two in the natural representation on
V), are the two given in Table 6.4. Neither of these twisted subgroups are isotropy subgroups by
the massive chain criterion. This means that any combination of spherical harmonics of degree

¢ = 2has Dy x Z5 symmetry about some axes.

H K H/K  dimFix(H®) r(H?)
ZyxZ5 ZoxZ5 1 3 1
75 75 1 5 3

Table 6.4: The twisted subgroups of O(3) x Z; which have a fixed-point subspace of dimension
greater than 2 when ¢ = 2.

The lattice of isotropy subgroups is as in Figure 6.1.

0(3) X Zz
/\
0(2) x Z; Dy x Z5
—_ =

D, x ZE
Figure 6.1: Lattice of isotropy subgroups of O(3) x Z; for the natural representation on V,.

Example 6.2.6 ( The natural representation on V3). Using Table 6.2 we can see that when ¢ = 3

there are three axial isotropy subgroups

0(2) xzZ5 = (0(2)xZ30(2)")
OxZ5, = (0xZ50")
D x Z5 = (D¢ xZ5, DY)

and using Table 6.3 there are two isotropy subgroups with two-dimensional fixed-point sub-

spaces:

D3 x 75 = (D3 X ZE, Dg) and D, x Z§ = (Dz X ZE,DE)

Using Table 6.1 we find that the twisted subgroups of O(3) x Z; which fix a subspace of di-
mension greater than two in the natural representation on V3 are the four given in Table 6.5. We
use the massive chain criterion (Theorem 3.4.1) to determine which of these twisted subgroups

are isotropy subgroups.

The lattice of isotropy subgroups when ¢ = 3 is then as in Figure 6.2.
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H K  H/K dimFix(H?) r(H?) Isotropy subgroup?
Z3xZ5 Zs 7z 3 1 No
Zyx 75 Zs Z, 3 1 No
%75 Z; 7 4 1 Yes, Z, x Z5
75 1 7 7 3 Yes, Z;

Table 6.5: The twisted subgroups of O(3) x Z; which have a fixed-point subspace of dimension
greater than 2 when ¢ = 3. The dimension of the fixed-point subspace is shown. The
right-hand column indicates whether or not each twisted subgroup is an isotropy

subgroup. If it is an isotropy subgroup then its label is given.

O(3)xZ,
/’\
0(2) x Zg Dg x Z5 O x Z5
Ds x Z D, x Z5
\/

Zy x 7§

7

Figure 6.2: Lattice of isotropy subgroups of O(3) x Z, for the natural representation on Vj.

Example 6.2.7 ( The natural representation on V). Using Table 6.2 we can see that when ¢ = 4

there are five axial isotropy subgroups

0(2)xZ5; = (0(2)xZ5 0(2) xZ5)
OxZ5 = (0xZ50 xZ5)
Ds x Z5 = (Dgx Z5, Dy x Z5)
DexZ5 = (Dgx zz,Ds x Z5)
(

Dy i -

and using Table 6.3 there are three isotropy subgroups with two-dimensional fixed-point sub-

Spaces:
Dy x ZE = (D4 X Zg, Dy x Zg)
D3 X ZE = (D3 X ZE, D3 X ZE)
D; x Zg = (Dz X Z%, Zy X Zg)

Using Table 6.1 we find that the twisted subgroups of O(3) x Z; which fix a subspace of di-
mension greater than two in the natural representation on V} are the six given in Table 6.6. We
use the massive chain criterion (Theorem 3.4.1) to determine which of these twisted subgroups

are isotropy subgroups.

The lattice of isotropy subgroups is as in Figure 6.3.
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H K H/K dimFix(H%) r(H®) Isotropy subgroup?
Dy xZ5 Dyx7Z5 1 3 0 Yes, Dy x Z5
Zy X275 ZyxXZ§ 1 3 1 No
Z3 X ZE Z3 X ZE 1 3 1 No
Z,x75  Z§ Z 4 1 Yes, Z, x Z5
ZoxZ5 Zyx75 1 5 1 Yes, Z, x Z5

zs5 zs 1 9 3 Yes, Z5

Table 6.6: The twisted subgroups of O(3) x Z; which have a fixed-point subspace of dimension
greater than 2 when ¢ = 4. The dimension of the fixed-point subspace is shown. The
right-hand column indicates whether or not each twisted subgroup is an isotropy

subgroup. If it is an isotropy subgroup then its label is given.

0(3) X Zz

0(2) XZE OXZE Dg ><Z§ Dy XZE D¢ XZE

z;
Figure 6.3: Lattice of isotropy subgroups of O(3) x Z; for the natural representation on Vj.
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6.2.2 Isotropy subgroups in reducible representations

We now compute the twisted subgroups of O(3) x Z, which can be isotropy subgroups in the
reducible representations on V; @ V;, 1. This will be useful in Chapter 7 where we will study

specific patterns on spheres which can only occur in mode interactions.

Here we assume that O(3) acts on the V; and V,, 1 components via the natural actions on these

spaces. Let
z=(xy) = (x—élx—(ﬂ—l)/-“/xé; ]/—(é+1),y—z/---/w+1)

be the vector of amplitudes of the spherical harmonics of degrees ¢ and ¢ + 1 where
Xep=(-1)"%, and  y_n=(-1)"y,.

The isotropy subgroups of O(3) x Z, for the natural reducible representation on V, & V. fall

into three categories

1. Isotropy subgroups which contain the element (—1I,(—1)¢) € O(3) x Z,. This element
acts as the identity on V; but fixes only the origin in V1. These isotropy subgroups are
the isotropy subgroups of O(3) x Z; in the irreducible representation on V; and have a

fixed-point subspace containing only amplitudes x;;.

2. Tsotropy subgroups which contain the element (—1I, (—1)‘*1) € O(3) x Z,. This element
acts as the identity on V; 1 but fixes only the origin in V. These isotropy subgroups are
the isotropy subgroups of O(3) x Z; in the irreducible representation on V;, 1 and have

a fixed-point subspace containing only amplitudes y;.

3. Isotropy subgroups containing neither (—I,1) nor (—I, —1). These isotropy subgroups
are twisted subgroups H? where H is a class I or III subgroup of O(3). Subgroups of this
type are never isotropy subgroups in irreducible representations. They have fixed-point
subspaces containing amplitudes x,, and y,,. Since the action of O(3) x Zj is irreducible
on V; and V4, every symmetry maps V, — Vy and V;. 1 — Vj;q. This means that
there cannot be a one-dimensional fixed-point subspace containing elements in V; and
Vi+1. Hence, although these subgroups can be isotropy subgroups, they cannot be axial

isotropy subgroups because they always fix a subspace of dimension two or larger.

This means that it is possible for twisted subgroups H? with H any class of subgroup of O(3) to
be isotropy subgroups of O(3) x Z; in reducible representations. There are many more isotropy
subgroups in reducible representations on V; © V., than in irreducible representations since
all of the isotropy subgroups in the representations on V; and V;; are isotropy subgroups in
the representation on V, @ V| and there are additional isotropy subgroups H? with H a class

I or IIT subgroup of O(3).

All twisted subgroups of O(3) x Z; are listed in Table 6.7 along with formulae for the di-
mension of their fixed-point subspaces in the representation on V, ® V; 1 and the value of
g(H%) = dim N0(3)(H9) — dim(H?). We wish to determine which of these subgroups are

isotropy subgroups in a given reducible representation.
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Remark 6.2.8. The formulae for the dimensions of the fixed-point subspaces in Table 6.7 are
computed as follows. The dimension of the fixed-point subspace of a twisted subgroup H? in
the representation on Vy ® Vy 1 is just the sum of the dimensions of its fixed-point subspaces in

the representations on V; and V;, 1. In other words
dim Fixy, ey, ,, (H?) = dim Fixy, (H) + dim Fixy,, , (H%). (6.2.2)

However, the values of dim Fixy, (H %) depend on the classes of the subgroups H and K which
define the twisted subgroup H? and whether ¢ is even or odd. Recall that

dim Fixy, (H) when H/K =1

6.2.3
dim Fixy, (K) — dim Fixy, (H) when H/K = Z,. (623

dim Fixy, (H?) = {
1. When H is a class I subgroup of O(3) then K must also be a class I subgroup. Since H and

K are both subgroups of SO(3), formulae for dim Fixy, (H) and dim Fixy, (K) are given by
Theorem 3.3.4.

2. If H and K are both class II subgroups of O(3) then H? contains the element (—1I,1) and
hence dim Fixy, (H?) = 0 when ¢ is odd. Therefore

dimFixy,(H?)  when ( even

dim Fixy,qv,,, (H?) =
Viov () {dimFixVHl(H") when ¢ odd.

The formulae for dim Fixy, (HH) can then be computed using (6.2.3) and Theorem 3.3.4.

3. If H is a class IT subgroup and K is a class I or III subgroup of O(3) then H? contains the

element (—I, —1) and hence dim Fixy, (H?) = 0 when ¢ is even. Therefore

dim Fixy, (H%) when £ even

dim Fix H?) =
Vieve (HY) { dimFixy,(H?)  when ¢ odd.

The formulae for dim Fixy, (HY) can then be computed using (6.2.3) and Theorems 3.3.4
and 3.3.5.

4. If H is a class III subgroup of O(3) then for odd values of £ where —I acts as the identity,
dim Fixy, (H) is as given by Theorem 3.3.5. However, for even values of ¢ where —I
acts as the identity the group H acts on V; in exactly the same way as the group 7(H)
which is the subgroup of SO(3) which is isomorphic to H. Thus for even values of /,
dim Fixy, (H) = dim Fixy, (7r(H)). Using (6.2.2) and (6.2.3) we then find that when K = H

dim Fixy, (H) + dim Fixy,, (7(H)) when ¢ odd

dim Fixy,qy,,, (HY) =
ViV, (H) { dim Fixy, (7(H)) 4 dim Fixy,,, (H) when / even.

When H/K = Z,,
dim Fixy, sy, ,, (H?) = dim Fixy,qv, ,, (K) — dim Fixy,qy, ., (H)

where dim Fixy,qv,,, (H) is as above and dim Fixy,qyv,,, (K) depends on the class of K.
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Table 6.7: Twisted subgroups H? of O(3) x Z; and formulae for dim Fix(H?) for the reducible representations on V; & V.

(t): q(H?) =3 whenn = 1.

H K H/K dim Fix(H?) for £ odd dim Fix(H?) for £ even q(H?)
s0(3) s0(3) 1 0 0 0
0(2) 0(2) 1 1 1 0
0(2) SO(2) Z, 1 1 0
$0(2) s0(2) 1 2 2 0
H class I D, D, 1 [£] + [52] +1 [£] + [52] +1 0
Dz, o | Z |52+ [=] 5]+ (<] 0
D, 2, |z )+ [5] +1 L]+ 52 +1 0
Z, Z, 1 2[t]+2[51] +2 2] +2[52] +2 1(4)
Zow z, z, 2[4] +2 [t 2[4] +2[ Lt 1
T T 1 2[§]+2[42] - e+1 2[{]+2[42] - e+1 0
0 0 1 4]+ 48]+ [§] + [%] - ¢+1 4]+ [&2] +[§] + [%2] -¢e+1 0
0 T | Z []+ (5] - [=] - [4] [5]+ (5] - [%] - [4] 0
| || s e | s e |
0(3) 0(3) 1 0 0 0
O(2) x Z§ O(2) x Z§ 1 1 1 0
0(2) xZ5 | SOQ2)xZ5 | Z, 0 0 0 2
SO(2) xZ5 | SO(2)xZ5 | 1 1 1 0 _
D, x Z§ D, x Z§ 1 [&1] +1 [£] +1 0 &
D, x Z§ Z,x275 | 7, Ed [£] 0 §
HclassTl | Do, xZ5 | DyxZ5 | 2, [Ce] [52] 0 5
KclassTl | Z, x 7§ Z, x 75 1 2[&1] +1 2[£] +1 1(4) ?g
ZonxZ5 | ZoxZ5 | 7, 2[tgin] 2[42] 1 §
T x Z§ T x Z§ 1 2[4 ]+ 4] -¢ 2[4] + [4] - ¢+1 0 g
OxZ; O x7Z; 1 G+ |5+ |5 S+ 5+ 15—+ 0 e
oz | o | 1| [l -l 0 E
o | om0 | [w]h e ool | o <
Continued on next page NN



Table 6.7 — continued from previous page

LeT

H K H/K dim Fix(H?) for £ odd dim Fix(H?) for £ even q(H?)
0(3) S0(3) Z, 0 0 0
0(2) x Z§ 0(2) Z, 0 0 0
0(2) x Z§ 0(2)~ Z, 1 1 0
SO(2) x Z SO(2) 7, 1 1 0
H class II D, x Z§ D, Z, [ﬂ [/%1] 0
K class D, x Z§ D? Z, {%] 41 V%l +1 0
TorIII Dy, X Z§ D? Z, [%n] [[+2nn+1 0
Zy < 7 z, z, 2[£] +1 2[&1] +1 10
Zoy < Z§ z;, z, 2 [ann] 2 [H;nm} 1
vz |1 | m | il 2[5 ) - :
oxz | o |z | [l e ] | o
o x5 (o 7, 4] - [4] ea] e 0
v | o m | el s | o
0(2)" 0(2)~ 1 2 2 0
0(2)" S0(2) Z, 0 0 0
o e B B G R e R i e b R M ol el el R I R I R I RS A
o L R IR b1 et el e R B & ol R & ol R RS EI R B 0
Z3, z,, 1 2[4] +2[5] 1 2[egm] 42 [£]+1 1
2, z, z, 2[4 +2[ak] +1 2[42] +2 [ ] +1 1
H class III D4, De, 1 [5;7”] + 5;71] +1 |:f+21n+n} 4 [%] 11 0
D3, D; 43 [%] + V*ﬁ,f” +1 [‘2#] + [5271] +1 0
I A 4]+ [e3 ]+ %] ;
D, Z,, z, [52] + (4] [z 4 [£] 0
D: D: 1 [£] + [42] +2 [£] + [42] +2 0
o | o= = 1+ [ 4[5 !
D3, D? 7, [%n} + [2+21n+n] V;Tn} n [2-%—21:—11] 0
D3 zy Z; 37[—%—[%] ¥+1—[‘%1] 0

iz x (€)O 40 SdNOYOINS XAIOALOS] "T°9



6.2. ISOTROPY SUBGROUPS OF O(3) X Z;

The axial isotropy subgroups for the representation of O(3) x Z; on V; & V., are the axial
isotropy subgroups of O(3) x Z; for the representations on V; and V,,; which can be found
from Table 6.2.

There are two ways to determine all of the isotropy subgroups for a given reducible repre-
sentation of a group I'. One way is to use the massive chain criterion just as we have for the
irreducible representations of O(3) x Z; in examples 6.2.5-6.2.7 above for the representations
on V3, V3 and Vj. The second way is to use the following proposition of Chossat and Guyard
[22].

Proposition 6.2.9. Let pq and py be two irreducible representation of I acting respectively on the vector
spaces Wy and Wy and let W = Wy @ Wy. Then X is an isotropy subgroup for the action p = p1 + p2
of I on W, if and only if there exist isotropy subgroups ¥ and X for the representations p1 and p
respectively such that

=N

Proof. Let (wq,wz) be any element of W; & W, and let X be its isotropy subgroup. Clearly &
must fix both elements w; and w; so ¥ C Xy, N Xy, with Xy, and Xy, the isotropy subgroups
of wy and w; respectively. Conversely, any element in ¥, N Xy, fixes wq as well as wy and

hence is in .. O

To use Proposition 6.2.9 we must consider all isotropy subgroups of I' not just the conjugacy
classes. All possible orientations of the isotropy subgroups of O(3) x Z; on V; and V., must
be considered. Since this complicates this method of computation we will use the massive chain
criterion method to determine the isotropy subgroups of O(3) x Z; for representations on V; &
Vi1 for the examples in this thesis. We now consider the example where the representation is
on V, @ Vs.

Example 6.2.10 (The natural representation on V, @& V3). For the reducible representation of
O(3) x Z, on V, @ V3 the axial isotropy subgroups are the axial isotropy subgroups for the
irreducible representations of O(3) x Z; on V; and V3. These isotropy subgroups were found
in Examples 6.2.5 and 6.2.6 and are given in Table 6.8 along with one possible form of the fixed-

point subspace of each group. These fixed-point subspaces are given in the form

{(szr X_1, X0, X1, X2, Y-3, Y-2, Y—1, Yo, Y1, Y2, y3)}

where x; is the amplitude of Yé(f), ¢) and y; is the amplitude of Yé(@, ¢). Recall that these
amplitudes satisfy x_j = (—1)/X; and y_; = (—1)fy]-.

Using Table 6.7 we find that the twisted subgroups of O(3) x Z, with a fixed-point subspace
of dimension greater than 1 when ¢ = 2 are as listed in Table 6.9. Using the massive chain
criterion we can determine which of these twisted subgroups are isotropy subgroups. The
penultimate column in Table 6.9 shows whether or not each twisted subgroup is an isotropy
subgroup. If it is an isotropy subgroup, a label for the subgroup is also given in this column.
The final column gives one possible form of the fixed-point subspace if the twisted subgroup is

an isotropy subgroup. If the twisted subgroup H? is not an isotropy subgroup then this column
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6.2. ISOTROPY SUBGROUPS OF O(3) X Z;

Isotropy subgroup H K H/K Fixed-point subspace
0(2) x Z§ O(2) xzZ5 O(2)xZ§ 1 {(0,0,4,0,0;0,0,0,0,0,0,0)}
Dy x Z§ Dy x Z5 D, x Z5 Zy {(a,0,0,0,4;0,0,0,0,0,0,0) }
0(2) x Z§ 0(2) x Z§ 0(2)” Zy {(0,0,0,0,0;0,0,0,4,0,0,0)}
D:;/Zg D¢ x Z§ D¢ Z;  {(0,0,0,0,0;ia,0,0,0,0,0,ia)}
O/;_iﬁ O x Z5 (O} Z, {(0,0,0,0,0;0,4,0,0,0,4,0)}

Table 6.8: Axial isotropy subgroups of O(3) x Z; for the (2,3) mode interaction and one possi-

ble form of their fixed-point subspaces. In all fixed-point subspaces, a € R.

gives an example of a twisted subgroup G? for which the massive chain criterion (Theorem
3.4.1) fails.

Figure 6.4 shows images of patterns with the symmetries of some of the isotropy subgroups.
Patterns with symmetry groups containing the isotropy subgroup D, can be seen in Figure 7.4.
We can construct the lattice of isotropy subgroups for the (2,3) mode interaction as in Figure
6.5 by using the dimensions of the fixed-point subspaces of the isotropy subgroups given in
Table 6.9. We also must consider the containment relations between the twisted subgroups. In
some cases it may be clear from the form of the fixed-point subspace given in Table 6.9 that one
twisted subgroup lies inside another, however in other cases the fixed-point subspaces may

need to be rotated in order to see the containment.

(©)

g

«r \

Figure 6.4: Images of patterns with symmetries of some isotropy subgroups of O(3) x Z; in

R
(©)
N
V -
4

the representation on V, @ V3 as given in Table 6.9. Images (a) and (b) have ]’)v;’i
symmetry, (c) and (d) have DZ symmetry and (e) and (f) have DZ symmetry all
viewed from the top and side respectively. See Table 6.9 for definitions of these

symmetry groups.
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H K dimFix(H?)  r(H?) Isotropy Fixed-point subspace/
subgroup? Example of larger group G?
S0(2) S0(2) 2 0 No (0(2)", 0(2)")
D; D; 2 0 No (D¢, DY)
Dy D, 2 0 Yes, Dy {(a,0,0,0,4;0,ib,0,0,0, —ib,0)}
D; Zs 2 0 No (Ds x Z5, D)
Zy Zy 2whenn >4 1 No (0(2)7, 0(2)")
Zs Zs 2 1 No (Ds x Z5, D{)
D, D, 3 0 Yes, D, {(a,0,b,0,4;0,ic,0,0,0, —ic,0) }
D, Z, 3 0 Yes, D, {(ia,0,0,0, —ia;0,b,0,c,0,b,0)}
Zs Zs 4 1 No (D3, D3)
Z, Z, 4 1 Yes, Zy {(A,0,0,0,4;0,B,0,0,0,B,0)}
Z Z 6 1 Yes, Z» {(A,0,¢,0,4;0,B,0,d4,0,B,0)}
Z, 1 6 1 Yes, Z, {(0,4,0,—4,0;B,0,C,0,—C,0,—B)}
1 1 12 3 Yes, 1 Vod Vs
D, XxZ§ Dy xZ§ 2 0 Yes, D, X Z§ {(a,0,b,0,4;0,0,0,0,0,0,0) }
ZyxZ5  ZyxZs 2 1 No (Dy x Z5, Dy X Z5)
Zy X 7§ 75 2 1 No (Dy x Z5, Dy X Z5)
Py XTS5 Zox 7§ 3 1 No (Dy x Z5, Dy X Z5)
75 z5 5 3 No (Dy x Z5, Dy X Z5)
D3 x Z5 Dj 2 0 Yes, D x Z5 {(0,0,0,0,0;4,0,0,b,0,0, —a)}
D x 75 D3 2 0 Yes, Dy x Z5 {(0,0,0,0,0;0,4,0,b,0,a,0)}
Zs x Z§ Zg 2 1 No (Dg x Z5, DY)
Z4 % 7§ z; 2 1 No (0x7Z5 07)
Zs X Z§ Z3 3 1 No (D3 x Z5, D3)
Zy X 7§ Z, 3 1 No (Dy x Z5, D)
Z, X Z5 z; 4 1 Yes, Zy x Z5 {(0,0,0,0,0;a,b,c,d, —c, b, —a)}
75 1 7 3 Yes, Z5 V3
0(2)" 0(2) 2 0 Yes, O(2)~ {(0,0,4,0,0;0,0,0,b,0,0,0)}
D¢ D¢ 2 0 Yes, D¢ {(0,0,4,0,0;ib,0,0,0,0,0,ib) }
D{ D¢ 2 0 Yes, D} {(0,0,4,0,0;0,ib,0,0,0, —ib,0) }
D! D5 2 0 Yes, Df {(1,0,0,0,4;0,0,0,5,0,0,0)}
D3 D: 2 0 No (0(2), 0(2)7)
D3 Z> 2 0 No (D3, D3)
D3 D; 2 0 Yes, D} {(a,0,0,0,4;0,b,0,0,0,b,0)}
Zg Zg 3 1 No (D¢, DY)
z; z; 3 1 No (D4, DY)
z; Z, 3 1 No (D4, D3)
D; Dj 3 0 Yes, Dj {(0,0,4,0,0;b,0,0,c,0,0,—b)}
D3 Vi 3 0 Yes, D} {(ia,0,0,0, —ia; b,0,¢,0, —c,0, —b)}
D3 D3 4 0 Yes, Dj {(a,0,b,0,4;0,c,0,d,0,¢,0) }
z; 1 5 1 Yes, Z {(0,A,0,~7,0;0,B,0,c,0,B,0)}
z; z, 7 1 Yes, Z, {(a,b,c,—b,a;d,e, f,g,—f,e,—d)}

Table 6.9: The twisted subgroups of O(3) x Z, with a fixed-point subspace of dimension
greater than 1 in the representation on V, & V3. In the fixed-point subspaces, lower-

case letters represent real values and upper-case, complex values.
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Figure 6.5: Lattice of isotropy subgroups of O(3) x Z; for the (2,3) mode interaction.
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6.3 O(3) x Z, equivariant vector fields

In this section we first consider the relationship between O(3) x Z; and O(3) equivariant vec-
tor fields for natural irreducible representations on V. Differences between these vector fields
(and hence different dynamics) occur for even values of £. We consider the example where
£ = 2 in some detail. We then move on to discuss the mappings which are equivariant with
respect to reducible actions of O(3) x Z; on V; @ V;1. For general { we compute the number
of cubic O(3) x Z; equivariant mappings using character methods. Finally we will compute to
cubic order the Taylor expansion of the general O(3) x Z, equivariant vector field for the nat-
ural representations on V, @ V3 and V3 @ V;. Throughout this section we will consider only the
natural representation of O(3) x Z, where —I € O(3) acts as (—1)¢ on the spherical harmonics

of degree ¢ and —1 € Z; acts as —1 on all spherical harmonics.

6.3.1 Irreducible representations

Consider the system of ODEs

% — f(x, ), (6.3.1)

where A € R is a bifurcation parameter, x is the vector of amplitudes of the spherical har-
monics Y}"(6,¢) and f is a smooth mapping which is equivariant with respect to the natural

representation of O(3) x Z; on V.

Hence f satisfies
f(My-x,A) = My - f(x,A)

for the matrices M., which generate the action of O(3) on V;. These matrices are given in Section
3.2.2. Recall in particular that M_| = (—1)¢I,,,1 where Iy is the (20 + 1) x (2¢ + 1) identity
matrix. In addition, f is equivariant with respect to the action of —1 € Z; on V;. The matrix for

this actionis M_1 = —Ipp11.

If ¢ is odd then M_; = M_; and hence an O(3) equivariant mapping on V; when / is odd is
equivariant with respect to O(3) x Z,. The O(3) equivariant vector fields for / = 3 and 5 have
been computed to cubic order by Chossat et al. [23].

If ¢ is even then imposing that an O(3) equivariant vector field also commutes with —1 € Z,
removes all of the terms of even order from the O(3) equivariant vector field. Hence in the
representation on V; for £ even the O(3) x Z; equivariant vector field is the same as the O(3)
equivariant vector field with the even order terms removed. The cubic order terms in such a

vector field for £ = 4 and 6 have been computed by Callahan [18].

When ¢ is even the dynamics in an O(3) x Z, equivariant vector field will be different from
those in an O(3) equivariant vector field and have not previously been studied. We consider

now the example where the representation is the natural representation on V5.
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6.3.2 Example: The representation on V,

In this section we consider the solutions which can occur in the O(3) x Z, equivariant vector
field for the representation on V,. We compute the stability of the axial solution branches and

look for submaximal solutions.

We can compute using the method in Section 6.3.1 that to cubic order for the representation of

O(3) x Z; on V, the equivariant vector field f is given by
x = f(x,A) = ux+ax|x?, (6.3.2)

where

x = (x-2,x_1,X0, X1, x2)T

is the vector of amplitudes of the spherical harmonics of degree two. Here x_,, = (—1)"%,
and
2 - 2
X" =} fxml
m=—2

The coefficients « and y are smooth, real functions of A. We will assume that 4 = A+ higher
order terms in A so that a stationary bifurcation occurs at A = 0 and the trivial solution is stable
for A <0.

Recall from Example 6.2.5 that in this representation there are two axial isotropy subgroups,
O(2) x Z5 and D4/>\</Z§. The only other isotropy subgroup in this representation is Dy x Z§
and every combination of spherical harmonics of degree two has D, x Z5 symmetry about
some axes. (Any combination of spherical harmonics Y}"(6, ¢) automatically has Z§ symme-
try. Since Re(Yé(6,<p)) and Im(Yé(G, ¢)) are equivalent patterns under a rotation for j = 1,2,
r(Z5) = 3 and we have three degrees of freedom with the choice of our rotation axes. We can
choose these in such a way that the combination has D, x Z5 symmetry about these axes.) The
group of symmetries of any solution to x = f(x, A) must contain D, x Z§ and all solutions lie

in Fix(D, x Z5). The fixed-point subspaces of the isotropy subgroups are

Fix(0(2) x Z5) = {(0,0,4,0,0)}
Fix(Dy x Z5) = {(b,0,0,0,b)}
Fix(D, x Z5) = {(b,0,a,0,b)}

where a,b € R. By the equivariant branching lemma (Theorem 2.4.6) stationary solutions with
O(2) x Z§ and DZ_;/ZE symmetries are guaranteed to exist. By (2.4.6) these solutions must
have 2 and 3 zero eigenvectors respectively, none of which lie in Fix(D; x Z§). However, using
the cubic order truncation (6.3.2) of the equivariant vector field, f, we find that both solution
branches have four zero eigenvalues. This means that there are degeneracies at cubic order and
we must include the quintic order terms in f to determine the stability of the axial solution
branches. Recall that a O(3) x Z; equivariant vector field contains no quartic terms. To quintic
order the O(3) X Z; equivariant vector field is
2

2
x = f(x,A) = Ax + ax|x|* + px ( Z |xm|2> + 7 S(x) (6.3.3)

m=—2
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where
So(x) = xp (10x§ — 36x_1x5x1 + 24x% )x3 — 482X X _1X_5 + 15x2,1x%) —9xoxt
+V6xp (3x1xil + 12x2x2_1x,2 — x%xz_l)
S 1(x) = x, (4xé — 18x_1x1X3 + 36Xpx_ x5 + 24x2 ,x5 + 24x% | x3 — 3Ox2x1x_1x,2)
+18x3x% , + V60 (2x%x1x_2 — 12xx1%% | — 322 | — 9x%x,1x_2>
So(x) = xo (4x3 — 16x,1x1x% + 40x2x_2x% + 18x2,1x% — 72x2x1x,1x_2)

+3v6 (szx,z + X1 — x%) (x%x,z + xz_lxz)

and S_,;, = (—1)m§m. We wish to determine conditions on «,8,v € R for the axial solution
branches to be stable and also whether it is possible for solutions with Dy x Z5 symmetry to
exist. All eigenvalues of each axial solution which lie in the complement of Fix(D, x Z5) are
either zero or equal to an eigenvalue in Fix(D; x Z5). This means that we can use the restriction
of (6.3.3) to determine the stability of the axial solution branches in addition to looking for

submaximal solutions in this subspace. The restriction of (6.3.3) to Fix(Dy x Z$) is

i = Aa+aa(20® +a?) + (B+4y)a® +4 (B4 10v) a’b* + 4Bab* (6.3.4)
b = Ab+ab(2b® +a*) +4(B+67) b+ (B+107) ab + 4Ba’b°. (6.3.5)

These equations have residual symmetries N(D; x Z5)/D, x Z§ = Dg. The stationary points

of these equations are

1. The trivial solution wherea = b = 0.

2. The solution where b = 0 and a satisfies A + aa? + (B + 47)a* = 0. These solutions are of

the form (ag +,0) where

ok = 2(+47)

» —a £ /a2 —4A(B+4y)

These solutions have O(2) x ZS symmetry and exist only when a3 , is real and positive.

See Figure 6.6 for a picture of this solution.

3. The solution where a = 0 and b satisfies A + 2ab® + 4(B + 67)b* = 0. These solutions are
of the form (0, bp,+ ) where

—a+ /a2 —4A (B + 67)

b2, =
0+ 4(B+67)

—~—

These solutions have Dy x Z$ symmetry and exist only when b2 , is real and positive.

See Figure 6.6 for a picture of this solution.

4. Solutions where both a # 0 and b # 0. Then a and b satisfy

A+ (20 +a?) + (B+4y)a* +4(B+10y) a®b* +48b* = 0 (6.3.6)
A4 a(20* +a?) +4(B+67)b* + (B +10y)a* +4Ba’b> = 0. (6.3.7)
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By subtracting (6.3.6) from (6.3.7) we see that
3a* — 20a%p% + 12b* = (3a®> — 2b%)(a® — 6b*) = 0
and hence there are solutions where

(a) a® = 6b%. Using (6.3.6) we see that b must satisfy A + 8ab? + 64(B + 67)b* = 0 and

hence b? = }Ib(% .. This solution has the same existence properties as solution 3 above

and hence it has D4 x Z§ symmetry. This solution is a rotation of solution 3 as can
be seen in Figure 6.6.

(b) 3a% = 2b?. Using (6.3.6) we see that b must satisfy 9 + 24ab? + 64(B4y)b* = 0 and
hence b? = %a%, .- This solution has the same existence properties as solution 2 above

and hence it has O(2) x Z§ symmetry as can be seen in Figure 6.6.

~ V%0

Solution 2 with Solution 3 with Solution 4a with Solution 4b with

—

0O(2) x Z§ symmetry Dy x Z§ symmetry Dy x Z§ symmetry O(2) x Z§ symmetry

Figure 6.6: Images of solutions to (6.3.4)-(6.3.5). All solutions have axial symmetry i.e. O(2) x

—

Z5 or Dy x Z5 symmetry.

There are no further solutions and hence there are no submaximal solutions with D, x Z§
symmetry. We now investigate the stability of the maximal solution branches, solutions 2 and
3. Solutions 4(a) and 4(b) have the same existence and stability properties as solutions 3 and 2
respectively. We will assume that A > 0 so that the trivial solution is unstable and we will find

the branches of solutions which bifurcate supercritically at A = 0.

Solutions with O(2) x Z§ symmetry exist when a9+ € R. For this to occur we require that
a? —4A(B+47) > Oand aj , > 0.

e When g +4vy <0, aé,f > 0 for all values of « but a%,+ < 0.
e When 0 < 4A(B +47) < a? aj. > 0whena <O0.
These solutions have eigenvalues
G =6ya. and &= -2A+2(B+47)aj, (doublein V,)

and hence the solutions with O(2) x Z$ symmetry are stable wheny < 0and A > (B + 47)11%, 4

Solutions with Dy x Z§ symmetry exist when bp+ € IR. For this to occur we require that
a* —4A(B+67) > 0and aj, > 0.

e When g+ 67 <0, bzl_ > 0 for all values of a« but b(z),Jr < 0.
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e When 0 < 4A(B+67) < a?, b5, > 0whena <0

These solutions have eigenvalues
81 =—2A+8(B+67)by. and & = —24yb; .

and hence the solutions with O(2) x Z§ symmetry are stable when v > 0 and A > 4(8 +
67)bé, 1

Hence we can see that the two axial solutions can never be simultaneously stable. There are
many different possible phase portraits depending on the values of A, «, f and . The maximum
number of solutions occurs when a? — 4\ (B +47) > 0,a? — 4\ (B + 67) > 0 with (B +4v) > 0,
(B+67) > 0and a < 0. Then solutions

(0,0), (£ag+,0), (0,£bg+), ( \/7b0i, \/7b0i> (i\/gﬂoi,i\/gﬂoi)

exist-a total of 24 non-trivial solutions to (6.3.6)—(6.3.7) but only two distinct symmetry types.
For the example coefficient values A =1, « = —5, B = —2 and 7 = 1 the phase portrait is as in

Figure 6.7.

SIS
R~

Figure 6.7: Phase portrait showing the solutions to (6.3.6)-(6.3.7) when A = 1,04 = =5, = -2

and v = 1 and their stability. Solutions with O(2) x Z, are represented by dots and
solutions with Dy x Z; by squares. This phase portrait has hexagonal symmetry

due to the residual Dg symmetry of the equations in Fix(Dy x Z5).
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6.3.3 Example: The representation on V3

We now consider the stability of solutions with axial symmetry which occur in the O(3) x Z,
equivariant vector field for the representation on V3. Recall that in the representation on V3 the
O(3) equivariant vector field contains no cubic terms so is already equivariant with respect to
O(3) x Z,. Hence the results in this section are the same as those found by Chossat et al. [23].
We can compute using the method of Section 6.3.1 that to cubic order for the representation of

O(3) x Z; on V3 the equivariant vector field f is given by

% = f(x,A) = px + ax|x|*> + BR(x) (6.3.8)

where y, a, B € R are smooth functions of A,
2 : 2 _ 2
x| = Z |Xm | = x5 — 2x_1x7 + 2x_pxp — 2X_3X3
m=-3

and R(x) = (R_3, R_5, R_1, Ry, Ry, Ry, R3) where R_; = (—1)*R; and

R_3(x) = 15x_3 (4x_1x1 — Bx%) —10V15x% ,x1 — 4V15x% | 4+ 30V2x_px_1x0
R ,(x) = 5x_, (3x5 +4x_1x1 — le_2x2> — 20V/15x_3x_1x2 — 30V/2x_3x0X1
—2v/30x2 1 xo
R 1(x) = x4 (60x_3x3 —20x_pxp + 8x_1x1 — 9x(2)> + 30V/2x_3x0%>
—12\/Ex%x_3 — 10\/ﬁx2_ZX3 + 4/30x_5x0%x1
Ro(x) = 3xg <3Ox_3x3 + 10x_pxp + 6x_1%1 — 3x%> —2/30 (x_zx% + x31x2>

—30v/2 (x_3X1Xp + X3X_pX_1).

As in Section 6.3.2, we will assume that 4 = A+ higher order terms in A so that a stationary
bifurcation occurs at A = 0 and the trivial solution is stable for A < 0. By the equivariant
branching lemma (Theorem 2.4.6), (6.3.8) has branches of stationary solutions with the symme-

tries of the axial isotropy subgroups of O(3) x Z; in this representation.

Recall from Example 6.2.6 that in this representation there are three axial isotropy subgroups,

0(2) x Z5, (D/;_ig and D;_;/ZE. The fixed-point subspaces of these axial isotropy subgroups

are

Fix(0(2) x Z5) = {(0,0,0,4,0,0,0)}
Fix(O x Z5) = {(0,4,0,0,0,4,0)}
Fix(Dg x Z5) {(a,0,0,0,0,0,—a)}

where 4,b € R. By restricting (6.3.8) to each of these subspaces we find that the branching

equations for each of these isotropy subgroups are

0(2) x 75 : 0=A+(ax—98)a® (6.3.9)
OxZ5 : 0= A+ (2a —508) a? (6.3.10)
D x Z§ 0= A+ 2aa’. (6.3.11)
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By (2.4.6) these three solution branches must have 2, 3 and 3 zero eigenvectors respectively. We

—_—

compute that the branch of solutions with O(2) x Z§ symmetry has eigenvalues
—36Ba% (2)  24Ba®(2)  0(2) — 20 =2(a —9B)a® (1)

where the number in brackets indicates the multiplicity of each eigenvalue. This solution

branch can never be stable.

The branch of solutions with O x Z§ symmetry has eigenvalues
80Ba*> (3)  0(3) — 2\ =2(2a —508)a* (1)

and hence is stable when it bifurcates supercritically (when 2« — 508 < 0) and g < 0. Finally

—~—

the branch of solutions with D¢ X Z§ symmetry has eigenvalues
—60Ba* (2)  —90Ba* (1)  0(3) —2A = 4aa?® (1)

and hence this solution branch is stable when « < 0 and B > 0. The solution branches with

symmetries O x Z5 and Dg X Z5 cannot be simultaneously stable.

Notice that for this representation on V3, the stability of each of the axial solution branches is
determined by the cubic order truncation of the O(3) x Z; equivariant vector field in contrast
to the representation on V; studied in Section 6.3.2 where the quintic order expansion was

required to determine the stability of the axial solution branches.

In Section 6.4 we will compute the values of & and f in (6.3.8) for the specific example of the
Swift-Hohenberg equation (6.1.1) in order to determine which of the axial solution branches

are stable for this example.

6.3.4 Reducible representations

Consider the system of ODEs
dz

- = A 3.12
)] (63.12)
where A € R is a bifurcation parameter,
)T

T
zZ= (X,‘ y = (x,g,x_([_l),...,xg,‘ ]/_(€+1),]/,[,. ..,y(€+1))

is the vector of amplitudes of the spherical harmonics Y (6, ¢) and Y}, , (6, ¢) where

(+1
Xem = (=1)"%p and y_n=(-1)"y,

and f is a smooth mapping which is equivariant with respect to the natural representation of
O(3) x Zy on V; @ V1. Hence f satisfies

f(M’(yé,é-&-l) ) Z,)\) _ M,(f’“_l) 'f(Z,/\)

for the matrices M(f’HD which generate the action of O(3) on V; & V;, 1. The matrices Mg““)
are given by
14
My = [ My Qe ] (63.13)
Op1e MEH
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where Mfy is the matrix for the action of v on V; and 0,4 is the (2j + 1) x (2k + 1) zero matrix.

The set of generating matrices Mfy are given in Section 3.2.2.
We make the following observations about mappings which are equivariant with respect to the

action of O(3) x Zp on Vy @ Vy q:
1. Equivariance with respect to the element —1 € Z; implies that
f(=2,A) = =f(z,}),
i.e. f is odd in z and hence contains only terms of odd order.
2. Suppose that

T
f(z) = (8(1);h(z))T = (g—z/ 8—(t=1)r +-+r 8L ]L(eﬂ), hy, ..., h(g+1)) . (6.3.14)

Since the actions of O(3) x Z; on V; and V1 are absolutely irreducible, there are two lin-
ear equivariant maps ix(A)(x;0) and p,(A)(0;y). This means that the solution branches
which are guaranteed to exist by the equivariant branching lemma with the symmetries
of an axial isotropy subgroup for the irreducible representation on V; need not bifurcate
at the same value of A as those for the irreducible representation on Vy, 1. Moreover, all

of the linearly independent equivariant mappings comprising f are of the form (P(z);0)
or (0;Q(z)).

3. Imposing that f is equivariant with respect to the action of —I € O(3) on V; & V1 we

find that all cubic order terms in g(z) are of the form
XiXjXk for i,j,kE —l,... 0

or
Yiyjxx for i,j,e —({+1),...,((+1) and ke —4,..., ¢

Similarly all cubic order terms in /(z) are of the form
viyiyr  for i ke —(L+1),...,(£+1)

or
XiXjYk for i,j,€ —¢,...,¢0 and ke —(L+1),...,({+1).

4. Imposing that f is also equivariant with respect to the action of the infinitesimal rotation

¢’ € O(3) on V; @ V1 we find that all cubic order terms in g, (z) are of the form
XXXy where i+j+k=m for i jke—{... 0
or
yiyjxx where i+j+k=m for ij€ —(l+1),...,+1) and ke —4,... 1L
Similarly all cubic order terms in h,,(z) are of the form
Yiyiyx where i+j+k=m for ijke—({+1),...,(£+1)
or

x;jxjyy where i+j+k=m for ije€—{....0 and ke —-(L+1),...,(L+1).
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Given a small value of / it is possible to compute the form of the equivariant vector field f(z, A)
to cubic order. We find that the cubic equivariant maps containing terms in x;x;x; are the cubic
equivariants for the representation of O(3) on V; and the cubic equivariant maps containing

terms in y;y;yy are the cubic equivariants for the representation of O(3) on V.

In order to know when we have found all cubic O(3) x Z; equivariant maps it is possible to

compute the number of such maps using character methods.

The number of cubic O(3) x Z, equivariant maps in the representation on V;, ® V;

In this section we will follow the method of Antoneli et al. [4] using characters to compute the
number of cubic O(3) x Z; equivariant maps in reducible representations on V, & V; . This

method is outlined in Section 2.3.2.

We can note that equivariance with respect to the action of the element —1 € Z; does not
place any restrictions on cubic maps so we need only consider equivariance with respect to the
rotations and inversion symmetries of O(3). Since all rotations through an angle 6 in SO(3) are

conjugate we have that in the representation on V; @ V1 the character of such a rotation Ry is

given by
N == N
xRy = Y @ Y e
m=—/ m=—~—1
l
= 2 ) emy e—i0(E+1) | Gi6(L+1)
m=—/{
B cos(¢8) — cos((£ +1)0)
= 2( T cos(0) +cos((£+1)0)
cos(£0) — cos(0) cos((¢ +1)6)
= 2 .
1 — cos(0)

The Haar integral of a class function f on SO(3) is

%/O'"f(zzg)u ~ cos(0))do.

(See Wigner [84].) The conjugacy classes of elements of O(3) are also parameterised by 6,
however there are two classes for each 6. One class is represented by the rotation Ry and the

other is represented by —Ry. In this case the Haar integral of a class function on O(3) is

o= | F(Ra) + (= Ra)] (1~ cos(@))do.

Thus we also need to compute x(—Rg). Using the action of —I on V; & V; 1 we find that
¢ L 0 41 E 0
X(=Rg) = (-1)7 } ™+ (=" ) o™
m=— m=—{—1

_ (_1)Z+l (e719(5+1) +ei9(€+1))

= (=) 2cos((£+1)6)
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Using (2.3.3) we see that the number of cubic O(3) X Z; equivariants for the representation on
Vi ® Vp4q is given by

EG) = 3= (1= cos(6)) [xc(Re)* + 3x(Ro x(Ran) + 2x(Rso)x(Ro)

Ton
+(~Ro)* + 3% (—~Ro)*x(Rap) + 21(~ Ra)x(~Ro) | 46

1
= — (h+L+3L+3+2I5+2),

127
where

L = /0 "(1 = cos(8))x(Re)*d0 = 272(16¢ +7) (6.3.15)
L — /0 " (1= cos(6))x(=Rg)*d6 = 671 (6.3.16)
L= [0 cos(@)x(Re)x(Ru)de = 27 (63.17)
o= (1= cos(@)x(~Ro)x(Ran)d6 = 6 (6:3.18)

N 2 if £ =0mod3
I = /0 (1 —cos(8))x(Rg)x(Rzg)dd = -2 if¢=1mod3 (6.3.19)

0 if £ =2 mod 3.
o = [ (1= cos(®)x(~Ro)x(~Ro)d6 = 0. (6:3.20)

The details of the computations of these integrals can be found in Appendix B. Thus

4t if £ =0mod 3
E3) = % 2t(16¢04+7)+6m+ 61+ 18T+ ¢ —47r if £ =1mod 3
0 iff{=2mod3
(8¢+12)/3 if ¢ =0mod 3
— { (8¢+10)/3 if¢=1mod3 (6.3.21)
(8¢+11)/3 if £ =2 mod 3.

6.3.5 Example: The representation on V, @ V3

We now compute to cubic order the general form of a mapping which is equivariant with re-
spect to the action of O(3) x Z; on V, @ V3. This vector field will be required in Section 7.2.1.
Using (6.3.21) we see that in the Taylor expansion of the O(3) x Z, equivariant vector field
for the representation on V, © V3 there are 9 cubic equivariant maps. Using equivariance with
respect to the matrices M§2’3) defined by (6.3.13) for v = ¢, 6, —I and —1 we find that

f(z,A) = (g(z,A);h(z,A))
where

g(zA) = px+mx|x* + Bixlyl* + 1P(xy) + 12Q(x y) (6.3.22)
Hyy + a2y|x* + Baylyl* + SiR(y) + 528 (x,y) + 5T(xy).  (6.3.23)
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6.3. O(3) x Zy EQUIVARIANT VECTOR FIELDS

Here yy, u2, 1, 22, B1, B2, Y1, Y2, 01, 02 and 63 € R are smooth functions of A,

x|

lyl

and

2

2

= x4 [xoa P+ xol* + |x1 [P + |22

= x% —2x1X_1 +2x0x_»

= |y—sl* +y—2l* + ly—11* + lvol* + [y1* + [v2* + |ys|?
= Y3 —2y-1+2y2y-2 —2y3y_3

e P(x,y) = (P_, P_q, Py, P, P;) where P_; = (—1)*P; and

P_>(xy)

P_1(xy)

PO(xr Y)

18y _3y3x_2 — 2y_oyax_o — 10y% 52 + 4V 15y_3y_1xp — 5vV/6y_3y2% 1
+V10 (y_ay1x_1 +4y_3y1x0 + 2y _2y_1%1) — 2v/5y0 (y_2X0 + 3y _3%1)
10y% 1 %1 + 5y _3y2%0 — 3Y_3y3x_1 — 18y_oyox_1 + 5y_1y1%_1
—2\/%y_2y0x1 - 5\/§y,1y0x0 =+ 6\f5y_3y0x2 + 5\f6y3y_2x_2
—V10y_1 (y2x_2 + 2y_2x2) + V15y1 (By_2x0 — 2y_3x1)

4V10 (y_1ysx 2 +y-3y1%2) —3V15 (y 2y1%1 +Y-1¥2%_1)

—2V/5y0 (y-2%2 + ¥2x-2) + 5V2y0 (131 +y-1x1)

=5 (y-sy2x1 +y—2y3x_1) +2x0 (y,3y3 +4y—2y2 +5y-1y1 — 53/%)

o Q(X/Y) = (Q*2/ Q—l/ QO/ Q]/ QZ) where Q—k = (_1)kék and

Q-2(xy)

Q—l (X/ Y)

Qo(x,y)

= X (y% —6y_2y> + 16y_3y3> +3V10y 2y1x_1 +2V10y_3y1%0

—4V/5y_ayox0 — 2V/3y_1y0x 1 + 2V/6y 1 X0 — 5V6y _3y2x 1

= w1 (y-ays — 6y-2y2 + 9y-1y1 — 55 ) + 6471 — 5y-ay2%0

73\/Ey_1y2x,2 + 2\/5]/1]/0)(,2 — Z@y,zyoxl — \ﬁyoy_le
+ 5vV6ysy_2x_5 + V15y1 (y-2x0 + 2y_3x1)

= X (—71/% +12y_1y1 — 6y—2y2 — 4y—3y3) + 5y _3y2x1 + 5y _2Y3X 1

—V15 (y1y-231 + y-1y2x-1) +2V10 (y a1 +y—1y3x2)
— 4v/5y0 (y—2x2 +y2x_2) + V2y0 (y1x_1 + y_1x1)
+2V6 (y%x—z + y31x2>

e R(y) = (R_3, R_3, R_1, Rg, Ry, Ry, R3) where R_; = (—1)kR; and

15 5 (4y_1y1 — 393 ) — 10VI5y2 y1 — 4v/155% +30v2y 2y 1y
52 (3y3 +4y 11 — 10y 2y ) — 20v/I5y 3y 192 — 30V2y _ayoys
~2/30y2 10

y-1 (60y-ays — 20y 2y> + 8y 11 — 993 ) +30v2y_syoy
—12V15y1y 3 — 10v/15¢2 53 + 4v/30y 2101

3y0 (30y 3 + 10y 2y> +6y-131 — 393 ) —2v/30 (y-293 +¥2.1» )
~30v2 (y-sy1¥2 + ysy—2y-1)
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6.3. O(3) x Zy EQUIVARIANT VECTOR FIELDS

e S(x,y) = (S_3, S_2, S_1, So, S1, S, S3) where S_; = (—1)¥S; and

S_s3(x,y) = 15y_3 (Zx,lxl - x%) —10V6x 231y 2 +2V15x% yy1 — 6V/5x_ox 110
+ 6\/Ex0x_2y,1

So(xy) = -5y (3x% —2x_qx1 + 4x,2x2> —2vV10x_5 (2x1y_1 + X_1y1)
+ 4V15x_1x0y_1 — 2v/30x% 10 + 10x% 2 + 10V6x 120y 3
+ 6\/§x,2x0y0

Sixy) = -y <3x% — 14x_1x1 + 28x_2x2> +2V10x_1 (2x2y_5 4+ x_212)
+ 6V10x0x2y—3 + 2V15x2 yy3 — 4v/15x0x1y 2 — 2V/3x_px110
+ 4V6x_oxgy1 — 1637 11 + 6V2x0x 130

So(x,y) = 3yo (x% +6x_1x1 — 10x,2x2) +2V3 (¥ _2x1y1 + X20X_1y_1)

—6v/2x0 (x1y-1+ x_1y1) —2V/30 <x2—1y2 + x%‘/d)
+ 6V/5x0 (x2y—2 + X_2y2) + 6V/5 (x1x2y_3 + X_1X_2¥3)

o T(X,y) = (T_3, T_z, T,l, To, Tlr Tz, T3) where T,k = (—1)ka and

T_3(x,y) = 5y_3 <2x% - 3x,1x1> + 5\f6x_2x1y_2 —5x_1x0y—2 — 2V 10x0x_2y_1
+v15x% 14

T » (X, y) = 5]/,2 (x(% —2x_1x1+ 2x,2x2) - 5\/8x_1x2y,3 + 5x0x1y,3
—\/Equ,zy_l + V 30x2_1y0 — 4\/5)(,23(0]/0 + 3\/%3(,29(1]/_1

T 1(x,y) = y-1 (ng —7x_1x1 + 16x,2x2) —2V10x0x2y—3 + V15x3y 3

+ 6x2,1y1 + 2\/§x_2x1y0 - 4\@x_2x0y1 + \/ﬁxoxly_z
—V2x0x_130 — 3V10x_120y >

To(x,y) = o (x% —6x1x_1 + 18x2x,2) — 4v/5x (x2y—2 + x_212)
+V/30 (x%]/—z + xﬂyz) —2V3 (x_ox1y1 + X_1%2y 1)
+V2x0 (v1y 1+ X 1y1)

Remark 6.3.1. The mapping x|x|? is the cubic equivariant for the representation of O(3) on V5

and y|y|? and R(y) are the cubic equivariants for the representation of O(3) on V3 as found in
[23] and Section 6.3.3.

We could now use this equivariant vector field to determine the direction of branching and
the stability of the axial solution branches i.e. those with symmetries as in Table 6.8, for given
values of the coefficients p1, p2, a1, a2, B1, B2, Y1, Y2, 61, 62 and J3 € R. We will use this

equivariant vector field in Chapter 7 when studying spiral patterns on spheres.

6.3.6 Example: The representation on V3 @ Vy

We can also compute to cubic order the general form of a mapping which is equivariant with

respect to the action of O(3) X Z; on V3 @ V4. This vector field will be required in Section
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6.3. O(3) x Zy EQUIVARIANT VECTOR FIELDS

7.2.2. Using (6.3.21) we see that in the Taylor expansion of the O(3) x Z; equivariant vector
field for the representation on V3 @ Vj there are 12 cubic equivariant maps. Using equivariance
with respect to the matrices M£r3'4) defined by (6.3.13) for v = ¢’, 6/, —I and —1 we find that

f(z,A) = (g(z,A); h(z, X)) where

g(z,A) x4 arx|x|? + B1x|y |2 + 11P(x) + 12Q(x,y) + 13R(x,y) + 14S(x,y) (6.3.24)
h(z,A) = puy+ vczy\x|2 + ,Bzy|y\2 +5T(y) +U(x,y) +83V(x,y) + 4W(x,y) (6.3.25)

Here yy, w2, 1, 22, B1, B2, Y1, Y2, V3, Y4 61, 62, 03 and &4 € R are smooth functions of A.

Instead of writing explicitly the cubic equivariant maps P, Q, R, S, T, U, V and W, Tables 6.10-
6.18 give the coefficients of each term in each component of the equivariant vector field. For
example, Table 6.10 lists all of the terms which occur in the component g_3 of f and their coef-
ficients in terms of a1, 81, 71, Y2, v3 and 4. Using Table 6.10 we can see that the coefficient of
X1Y—_3y—1ing_3is —204/105;, + 31/10573 which means that the term x1Yy—3Y—1 does not occur
in x|x|2, x|y|?, P(x) or S(x,y) and has coefficient —20+/105 in Q(x,y) and 31/105 in R(x, y).
Since x_p, = (=1)"%; and y_, = (—1)"y,, we must have g_,, = (-1)"g,, and h_, =
(—1)mﬁm so we only give the form of the components g_3, g2, §-1, g0, h—4, h_3, h_, h_1 and
hp.

Remark 6.3.2. The mappings x|x|> and P(x) are the cubic equivariants for the representation
of O(3) on Vj as found in [23] and Section 6.3.3 and y|y|?> and T(y) are the cubic equivariants
for the representation of O(3) on Vj as found in [18].
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qql

Term a Py T 72 73 74
Term © Py 7 7 3 T4 X_3x_ox3 | -2 0 0 0 0 0
x25x3 2 0 0 0 0 0 X_3X_1Xp 0 0 201/15 0 0 0
X_3X_pXp 2 0 0 0 0 0 X_3X0X] 0 0 —30v/2 0 0 0
x_3x_qx1 | 2 0 1 0 0 0 x2,x 2 0 ~50 0 0 0
x_3x3 1 0 —45 0 0 0 X_oX_1%1 2 0 20 0 0 0
x2,xp 0 0 —10V/15 0 0 0 x_px3 1 0 15 0 0 0
X_pX_ 1% 0 0 30v/2 0 0 0 X2 x 0 0 —21/30 0 0 0
x3, 0 0 —4,/15 0 0 0 X_3Y_3Y4 0 0 0 210v/3 —28/3 70v/3
X_3Y_4V4 0 2 0 0 0 0 X_3Y_2y3 0 0 0 —2521 421 —25\21
X 3y 313 0 2 0 315 —42 105 X_3Y_1Y2 0 0 0 —15V/3 33 45\/3
X_3Y_213 0 2 0 -390 54 —180 X_3Yoy1 0 0 0 5/30 —/30 —51/30
X_3y_111 0o -2 0 375 —51 225 X oy ays | O 2 0 —420 56 —140
X_33 0 1 0 —180 24 —-120 X oy 3y3 | O 2 0 70 14 140
X oY 413 0 0 0 —210v/3 28\/3 —70v/3 X_2Y_2¥2 0 2 0 —170 17 —140
X oY 312 0 0 0 25\/21 —4y/21 25\/21 X_ 2y 11 0 2 0 370 —50 140
X oY _2¥1 0 0 0 15v/3 -3/3 —45\/3 X013 0 1 0 —230 34 —70
X_2¥_1Y0 0 0 0 —5/30 V30 5/30 X_1Y_4Y3 0 0 0 145 0 —42+/5
X_1Y_4¥2 0 0 0 321/105 —4/105 4105 X_1Y_3Y2 0 0 0 35\/35 —34/35 15V/35
X_1Y_3Y1 0 0 0 —~181/105 3/105 61/105 X_1Y_a1 0 0 0 ~111/5 18V/5 —27\/5
X_1Y_2¥o 0 0 0 0 0 30v/6 X_1Y_1Yo 0 0 0 75v/2 —15v2 10v2
x_1y2, 0 0 0 10v/15 —2y/15 10v/15 XoY_aY2 0 0 0 21210 —V/210 44/210
XoY_4y1 0 0 0 —301/70 370 0 XoY_3y1 0 0 0 8210 0 —61/210
X0 —3Y0 0 0 0 90V7 —15V7 0 Xo¥—2Y0 0 0 0 1103 —~15V/3 60v/3
XoY_2Y -1 0 0 0 —30V/10 61/10 0 X0y, 0 0 0 —204/30 4,/30 —10v/30
X1Y_4¥0 0 0 0 20v/42 0 0 X1Y_41 0 0 0 —20+/35 61/35 0
X1Y_3Y_1 0 0 0 —201/105 31/105 0 X1Y_3Y0 0 0 0 301/14 0 0
12, 0 0 0 30v/15 —6v15 0 X1Y_2y_1 0 0 0 —20v/5 -3V5 0
Yoy aY-1 0 0 0 0 —6V/21 0 X2y _4¥o 0 0 0 201/70 —61/70 0
Yoy _3Y_2 0 0 0 0 3v21 0 Xo¥_3y_1 0 0 0 —100v/7 127 0
X3Y_qY -2 0 0 0 0 12v/7 0 xy%, 0 0 0 150 -9 0
X325 0 0 0 0 21 0 X3Y_4y_1 0 0 0 0 V21 0
Table 6.10: The form of the component g_3 of the O(3) x Z;, vysy2 | 0 0O 0 0 —3vaL 0

Table 6.11: The form of the component g_, of the O(3) x Z;,

equivariant mapping f in the representation on

equivariant mapping f in the representation on
V3 @ Vy. For example, the coefficient of x1y_3y_1

ing 3is 20 V10575 + 3v/1057s. V3 @ Vj. For example, the coefficient of x1y_4y in

g-ois —20v/357, + 61/3573.
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9¢1

Term v P el T2 73 T4 Term ap Py T 72 73 T4
X_3X_1X3 2 0 60 0 0 0 X_3X0X3 2 0 90 0 0 0
X_3X0X2 0 0 30v/2 0 0 0 X_3X1X 0 0 —30v/2 0 0 0

x_3x3 0 0 —12/15 0 0 0 X_pX_qX3 0 0 —30v2 0 0 0

x2,x3 0 0 —-10V/15 0 0 0 X_oxgxp 2 0 30 0 0 0
X ox qxp | 2 0 -20 0 0 0 X o232 0 0 -2v30 0 0 0
X_pXpX1 0 0 44/30 0 0 0 X_1XpX1 -2 0 18 0 0 0

x2 x 2 0 8 0 0 0 X2 2 0 0 —21/30 0 0 0

x_1x3 10 -9 0 0 0 x3 10 -9 0 0 0
X_3Y_2Y4 0 0 0 32\/105 —4/105 4y/105 X_3Y_1Y4 0 0 0 301/70 —~3V/70 0
X_3Y_1¥3 0 0 0 —18v/105 3,/105 —61/105 X_3Y0Y3 0 0 0 —90V/7 15v7 0
X_3Yoy2 0 0 0 0 0 30v/6 X_3y1y2 0 0 0 301/10 —6v/10 0

x3p 0o 0 0 10715 V15 —10v15 Xoayoys | O 0 0 2/210  —v210  4v210
X oY 3Y4 0 0 0 ~14V/5 0 42\/5 X oY 1y3 0 0 0 —8v/210 0 —61/210
X oY 2y3 0 0 0 —354/35 3v/35 —15v/35 X_aYol2 0 0 0 110v/3 —15V3 60v/3
X Y 1Y2 0 0 0 1115 —18/5 27\/5 X013 0 0 0 —201/30 41/30 —-10v/30
X_2Yoy1 0 0 0 —75V2 15v2 —15v2 X_1Y_3Y4 0 0 0 —28/6 7\/6 146
X_1Y_aY4 0 2 0 392 56 —224 X_1Y_2y3 0 0 0 —15V42 5v42 —5/42
X_1Y_3¥3 0 2 0 343 35 161 X_1Y_1Y2 0 0 0 57v/6 —3v6 96
x_1y_ay2 | O 2 0 —258 50 -116 x_1¥0%1 0 0 0 -16V15 /15 —2/15
x| 00 2 0 187 26 89 X0Y_4¥4 0 2 0 —336 42 252

X193 0 1 0 -80 4 —40 X0Y_3Y3 0o =2 0 504 —84 168
XoY_4¥3 0 0 0 28\/6 -7v6 ~14V6 XoY_2Y2 0 2 0 —324 24 —-108
Xoy_3Y2 0 0 0 15v42 —5v42 5V42 XoY_1¥1 0o 2 0 96 12 72
X021 0 0 0 —57v/6 3v6 -9v/6 X013 0 1 0 0 9 30
Xo¥-1Y0 0 0 0 16v/15 V15 2\/15 X1Y_4Y3 0 0 0 —~28/6 76 14v6
X1Y_4¥2 0 0 0 —48V/7 47 24\/7 X1Y_3Y2 0 0 0 —15V42 5v42 —5V/42
X1Y_3y1 0 0 0 —28/7 47 —36V/7 X1y _2y1 0 0 0 57v/6 -3v6 96
X120 0 0 0 881/10 —12/10 361/10 X1Y_1Y0 0 0 0 -16V15  —V/15 —2\/15

X124 0 0 0 ~180 15 —60 XoY_4¥o 0 0 0 2y/210 —V/210 4y/210
Yol 4l 0 0 0 201/35 —6+/35 0 X2y 31 0 0 0 —84/210 0 —6v/210
X2¥_3Y0 0 0 0 —30v/14 0 0 X2 _2Yo 0 0 0 1103 —15V3 60v/3
oY oY1 0 0 0 20v/5 35 0 X2, 0 0 0 —20v/30 430 —~10v/30
3440 0 0 0 20V/42 0 0 X341 0 0 0 301/70 —370 0
X3Y_3Y_1 0 0 0 —20+/105 3,/105 0 X3Y_3Y0 0 0 0 —90V/7 15v7 0

132, 0 0 0 30V/15 —6v/15 0 X3y_oy_1 0 0 0 3010 —6v/10 0

Table 6.12: The form of the component g_1 of the O(3) x Z; Table 6.13: The form of the component gy of the O(3) x Z,
equivariant mapping f in the representation on equivariant mapping f in the representation on
V3 @ Vy. For example, the coefficient of x1y_4y5 in V3 @ V4. For example, the coefficient of x1y_4y3 in
§-1is —48V772 +4V773 + 24V 714 80 is —28v/672 + 7673 + 14v/674.
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LST

Term ) Ba I3 oy o3 N
Y-ay-3ys | 2 0 0 0 0 0
Term & B 5 5 5 0y Y 4y 23 0 0 —140V7 0 0 0
a2 2 0 0 0 0 0 voay1y2 | O 0 210 0 0 0
Y_4Y_3Y3 -2 0 0 0 0 0 Y_4Yo1 0 0 —14V10 0 0 0
Y4y 2o 2 0 280 0 0 0 v 53 2 0 245 0 0 0
Y_ay_11 2 0 420 0 0 0 sy oy | 2 0 ~105 0 0 0
y_ay} 1 0 —224 0 0 0 yayyr | 20 175 0 0 0
v2 iy 0 0 70v/7 0 0 0 v_3y3 1 0 —154 0 0 0
Y3y ol 0 0 210 0 0 0 v2ou 0 0 —45\/7 0 0 0
Y_3y_1Y0 0 0 14/10 0 0 0 Yooy 1y | O 0 23\/70 0 0 0
¥2,00 0 0 124/70 0 0 0 v, 0 0 —30V/7 0 0 0
yoay*y 0 0 —20V7 0 0 0 Y 4X px3 | O 0 0 ~70V3 0 0
Y_4X_3X3 0 -2 0 —140 0 0 Y_4X_1X2 0 0 0 0 0 —14\/5
Y_4X_2Xp 0 2 0 0 0 0 Y_4X0x] 0 0 0 76 76 76
Y_4X_1x 0 2 0 0 0 -28 y_3x 3x3 | O 2 0 -35 0 0
y_4x3 0 1 0 7 7 21 Y_3X X 0 2 0 105 0 35
Y_3X_3%p 0 0 0 70V/3 0 0 yo3x_1x; | O 2 0 -21 21 ~14
Y_3X_px 0 0 0 0 0 145 y_3x3 0 1 0 ~14 ~14 0
Y_3X_1X 0 0 0 ~7v6 ~7v6 —7v6 Y_2X_ 3% 0 0 0 —10v21 0 —5v21
Y oX_3x; 0 0 0 —-10/105 0 —2\/105 Y oX_oxq 0 0 0 -12V/35 335 V35
Y_2X_2Xg 0 0 0 V210 V210 —V/210 Y_2X_1X0 0 0 0 5V42 542 0
y_ox%, 0 0 0 67 67 6V/7 Y_1X_ 3% 0 0 0 —6v105  —+/105 0
Y_1X_3X 0 0 0 9/70 —/70 370 Y_1X_2X 0 0 0 3,/210 —24/210 —/210
Y_1X_oX_q 0 0 0 —6v/35 —6v/35 —21/35 Y122, 0 0 0 —6\/7 —6\/7 47
YoX_3%_1 0 0 0 —6v/42 442 —2\/42 YoX_3%0 0 0 0 27v/7 N7 97
Yox2, 0 0 0 370 3v/70 V70 YoX_oX_q 0 0 0 —9v14 6v/14 —3V14
Y1X_3X_p 0 0 0 0 —10v21 0 Y1x_3X_q 0 0 0 —61/105 —/105 —24/105
yox? 4 0 0 0 0 10vV7 0 yi1x2, 0 0 0 157 0 5\7
Table 6.14: The form of the component h_4 of the O(3) x Z; yz;;zx’z g g g g 753? g
-3

equivariant mapping f in the representation on Table 6.15: The form of the component /_3 of the O(3) x Z;,

V3 & V. For example, the coefficient of y;x_3x_» equivariant map f in the representation on V3 & Vj.

inh_gis —10v2153. For example, the coefficient of y1x_3x_q in h_3 is

—6v/1056; — v/10563 — 24/10564.
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8G1

Term o B2 & 5 53 5 Term s B2 31 5 43 8y
Y-4Y—2Y4 2 0 -280 0 0 0 Y-aY-1Y4 2 0 -420 0 0 0
y_ay_1ys | O 0 210 0 0 0 Y-4¥oy3 0 0 —14/10 0 0 0
e _ 0 0 407 0
Y—a¥oy2 0 0 24+/70 0 0 0 Y—a¥1¥2 V7 0 0
y_ai} 0 0 —20/7 0 0 0 y-3y-2ys | O 0 210 0 0 0
e 0 0 70v/7 0 0 0 Y-3y-1y3 -2 0 175 0 0 0
y 371/3 3 | 20 105 0 0 0 y-3Yoy2 0 0 23/70 0 0 0
T 2
~ 0 —90V7
ysyya | 00 90v/7 0 0 0 Yool : g 4;12 8 8 g
y-3Yo¥1 0 0 -23V70 0 0 0 Y-a¥3 -
ey 20 —240 0 0 0 Yyoyaya | 20 ~135 0 0 0
712 2 0 135 0 0 0 Y—2Yo¥1 0 0 12\/10 0 0 0
Y—2¥y-141 ; 5 o o ) ) .
2 1 0 76 0 0 0 ¥y
yZ—Zyo 0 0 2110 0 0 0 yfly% 1 0 —64 0 0 0
Y~1Y%0 —
0 0 0 - _
Yoaxav | 00 0 —10V105 0 2105 Y-a¥0%3 0 o ) 69\/\? 6‘/\/7:% 23\/\2,?
Y_4XX2 0 0 0 V210 V210 —/210 Y—a11%2 ) ) i :
y_4x3 0 0 0 V7 6v7 67 Y-3x_1%3 0 —6v105  —V/105 0
Y_3X_X3 0 0 0 —10v/21 0 521 Y-3XpX2 0 0 0 3v/210 —2v/210 —v/210
e _3x3 0 0 0 —6V/7 —6v7 47
Y-3x_1X2 0 0 0 121/35 —3v35 —V/35 Y-3¥1 V7 V7 V7
Y_2X_pX3 0 0 0 0 5V3 15V3
y-3XoXq 0 0 0 —5V42 —5V42 0
Y_2X_3X3 0 2 0 -5 0 -15 Y-2X_1X2 0 0 0 3615 65 35
y zx72x2 0 2 0 75 15 25 y-2%oX1 0 0 0 -18v6 7v/6 -3v6
e X 0 2 0 -5 -5 —30
Y—2x_1X] 0 2 0 —51 24 -9 Y-1X-3%3
y-2%5 o 1 0 16 16 0 Y-1%-2% g 22 g 155 8 58
Y_1X_3Xp 0 0 0 0 —5V3 —15V/3 y—lx—lle . -1 . ;2 ; ;
A )
y-1xpxp | 0 0 0 -36V5 —6v/5 -3v5
yoixqxg | 00 0 18v/6 -7v6 3v6 Yox—sxa | O 0 0 -V30 -V30 ~2v/30
YoX-3x1 0 0 0 -3v6 26 96 YoX—2%1 0 0 0 —242 92 —3v2
YoX_2%o 0 0 0 393 -3 73 YoX-1X0 0 0 0 5V15 —5V15 V15
yox? 0 0 0 1510 0 V10 yx-3x; 0 0 0 4V15 4/15 8v/15
-1
Y1X_3%) 0 0 0 9v/10 410 3v10 Y1¥-2%0 0 0 0 141/30 44/30 -21/30
B 2
0 0 0 —60 15
yxoxp | 0 0 0 —6v5 95 -2V5 S 0 0 0 9v/10 4V10 3(\]/ﬁ
yox_3x_1 | 0 0 0 -18V15  —8V15  —6V15 y2¥-3%0 - - -
Y2 0 0 0 45 ~15 15 yaxpx_q | 0 0 0 6v/5 —95 2V5
. 0 0 0 0 5031 0 y3x_3x_q | 0 0 0 —6v105 105  —2/105
Y3x_3x_3 o o o g L
yax? 0 0 0 0 10v/7 0 317 0 5 0 5v7
- YaX_3X 2 0 0 0 0 10v/21 0

Table 6.16: The form of the component h_, of the O(3) x Z;

equivariant mapping f in the representation on

Table 6.17: The form of the component /i_; of the O(3) x Z,

equivariant mapping f in the representation on

V3 @ Vy. For example, the coefficient of y1x_3xp in Vs @ V4. For example, the coefficient of y;x_sx1 in

i is 9v/100; + 4/1085 + 3v/100,. I is 4y/158, + 4/1565 + 8+/156,.
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Term ap B2 o1 [ J3 N
Y_aYoY4 2 0 -448 0 0 0
Y_ay1y3 0 0 14y/10 0 0 0

y_ay3 0 0 12v/70 0 0 0

Yyoay_1ys | O 0 14/10 0 0 0
Y_3Y0Y3 2 0 308 0 0 0
y-3y1¥2 0 0 -23V/70 0 0 0

V2 oys 0 0  12V70 0 0 0

Yooy 1Y3 0 0 —23/70 0 0 0
Y_2YoY2 2 0 152 0 0 0

y_oy3 0 0 —-21v/10 0 0 0

Vi 0 0 —21/10 0 0 0
y_1y0m1 2 0 128 0 0 0

v 10 —64 0 0 0

Y_4x1X3 0 0 0 —6\/42 FAVZY) —2/42

y_ax3 0 0 0 3V70 3V70 V70

Y_3%x3 0 0 0 —27/7 —7V7 —9V7
Y_3x1xo 0 0 0 914 —6\/14 314

Y_ox_1x3 0 0 0 -3v6 26 96
Y_2xoX2 0 0 0 39v/3 -3 -7V3

y_ox3 0 0 0 ~15v/10 0 V10

Y_1X_oX3 0 0 0 V30 V30 21/30

Y_1X_ 1% 0 0 0 24V/2 9v2 3v2
Y_1XpX] 0 0 0 —5V15 5V15 -V15
YoX_3X3 0 -2 0 -8 -8 36
YoX_2X 0 2 0 —-12 —12 —4
Yox_1x] 0o =2 0 -84 24 -8

Y0x3 0 1 0 67 -13 9

Y1X_3X o 0 0 0 V30 V30 24/30

VX 2% 1 0 0 0 24V/2 9v2 3v2
Y1X_1X) 0 0 0 —5v15 5v15 -V15
YoX_ 3%, 0 0 0 -3v6 26 96
Y2X_ X 0 0 0 393 -3 ~7V3

Y22 0 0 0 —15\/10 0 V10

Y3x_3X0 0 0 0 —27/7 —7V7 —9V7
Y3X_px_q 0 0 0 914 —6V14 314
Yax_3x_q 0 0 0 —6/42 4/82 —2\/42
yax?, 0 0 0 370 3v/70 V70

Table 6.18: The form of the component iy of the O(3) x Z; equivariant mapping f in the

representation on V3 @ Vy. For example, the coefficient of yjx_3x_p in hy is

V3085 + /3083 + 2/300;.

6.4 Coefficients for the Swift-Hohenberg equation

The motivation for the work in this chapter on bifurcations with O(3) x Z, symmetry was
the fact that dynamical systems on a sphere which are invariant under a change in sign of the
physical variable have O(3) x Z; as their group of symmetries. One such system is the Swift—

Hohenberg equation [78],
ow

5 = MW= (14 V?)*w — w’. (6.4.1)
In this section we will discuss how to compute the values of coefficients in O(3) x Z; equiv-
ariant vector fields for this specific example system. We will compute the values explicitly in
some of the representations for which we computed the general form of the equivariant vector
field in Section 6.3. This will allow us to determine which solutions of (6.4.1) are stable in these

cases.

Since we are considering the Swift-Hohenberg equation on a spherical domain, we assume that
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the solutions can be written as a linear combination of spherical harmonics i.e.
w(6,9,1) =} Z e (D)7 (0,9)
(>0m=—{

where x;,, = (—1)"%;,, since w(0,$,t) € R. Recall that spherical harmonics are eigenfunc-

tions of the angular part of the spherical Laplacian operator

1828 1 9 o 1 2

) 1 9 9 7
VU(R,0,¢) = OR™ OR ' sinf df m989 * sin? 0?2
with ((0+1)
+
V2Y[(0,4) = —TYZH(@‘P)

where R is the radius of the sphere which we assume is constant.

Equation (6.4.1) has an equilibrium solution w = 0. Linearising about this solution by letting
w = ew; we find that
aw1

—; = hwr—(1+ V2)2w,. (6.4.2)

In Section 6.4.1 we will consider the case where the representation of O(3) x Zj is irreducible
so that the solution of the linear problem (6.4.2) can be written as a sum of spherical harmonics
of a single degree /. We then carry out the computation of the coefficients in the equivariant
vector field for the specific case where ¢ = 3. In Section 6.4.2 we consider the case where the
representation of O(3) x Z; is the reducible representation on V; & V., where w; is assumed
to be a linear combination of spherical harmonics of degrees ¢ and ¢ + 1. We carry out the
computations of the coefficients of the cubic terms in the equivariant vector field for the specific

examples where { = 2 and ¢ = 3.

6.4.1 Irreducible representations of O(3) x Z;

In this section we consider how to compute coefficients in an O(3) x Z; equivariant vector
field for the specific example of the Swift-Hohenberg equation (6.4.1) when the representation
of O(3) x Z; is irreducible. In this case the solution of the linearised Swift-Hohenberg equation

(6.4.2) can be written as a sum of spherical harmonics of a single degree ¢.

If we assume that ,

wr =Y (HY](0,9) (643)

m=—{

for some value of ¢ then substituting into (6.4.2) we find that

% oy — (1= £(0+1) /Ry,

which has general solution
w1 (1) = exp [(y — Q-+ 1)/R2)2)t} w1 (0).
Hence the critical value of u where the modes of degree ¢ have zero growth rate occurs at

pe = (1—L(L+1)/R?)?
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H(R)

12 14

Figure 6.8: A plot of the function y¢(R) = (1 — £(¢ +1)/R?)? for ¢ = 2,3 and 4. The minimum
value of y. = 0 for ¢ = 2 occurs at R = V6, for ¢ = 3 the minimum occurs at
R = v/12 and for / = 4 the minimum occurs at R = /20.

and the value of R which minimises ji. for a given value of ¢ is

Figure 6.8 show plots of i as a function of R for some specific values of .

We now consider the full equation (6.4.1) with the nonlinear term w?. Let

po= pet el =€ (6.4.4)
= €%t (6.4.5)
w = ew;+ €ewy + ws. (6.4.6)

Substituting (6.4.4) — (6.4.6) into (6.4.1) we find that to cubic order in epsilon

Jw
St

5T = e3y2w1 — (14 V2)2(ew, + €*wy + 3w3) — e3w§’.

At order € we recover the linearised stability problem as before which is satisfied for w as in
(6.4.3). If we let wy = 0 then the equation at order €2 is also satisfied. At order € we then have

awl
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If we multiply (6.4.7) by Y}" and integrate over the sphere we find

27 naw17 . 27T 7T .
/0 Iy WYK sinf dod¢ = /0 /0 pow1Y[" sin 6 dod¢
T 2\2 ) i
—/O /O (1+ V2)%w; Y7 sin 6 dodg

27T 7 o
~ [ wi¥7sine dodg
0 0
= h-L-h (64.8)

We can then see that by using the form of w; as in equation (6.4.3) and the orthogonality of the
spherical harmonics (3.2.3) the left hand side becomes x;, where the dot denotes % and the

first integral on the right hand side, I;, becomes px;,. By integrating by parts we find that
2w _ 2w 7T —
L= / / (1+ V2)2w;Y7 sin 0 dod¢p = —/ / w3(1+ V2)2Y sin 0 dfde = 0
0 0 0 0

since (1+ V2)2YJ" = (=1)"(1 + V?)2Y]" = 0 for any m. This means that (6.4.8) becomes

2m 7 14 37
o = X — / / Y x Y| Yisin6 dodg. (6.4.9)
0 0

n=—/{

By evaluating all terms in this integral we can find the exact form of the component X, in the
O(3) X Z;, equivariant vector field for the Swift-Hohenberg equation for the representation on

Vy. Using the orthogonality of the spherical harmonics we can see that
2w I
/ / YPYPY YT sin0dodp =0  unless  m+n+p=gq. (6.4.10)
o Jo

This reduces the number of integrals we need to evaluate. Alternatively, if we already have the
general form of the equivariant vector field found using symmetries we need only compute as

many integrals as there are coefficients in the vector field.

We will now consider the case where the representation is on V3.

Example: The representation on V3

In Section 6.3.3 we computed that the general form of the O(3) x Z; equivariant vector field
for the representation on V3 is given by (6.3.8). We now compute the values of & and S for the
specific example of the Swift-Hohenberg equation. This will allow us to determine which of
the three axial solution branches guaranteed to exist by the equivariant branching lemma is

stable for the Swift-Hohenberg equation on a sphere of radius near R, = v/12.
When ¢ = 3 we can see from equation (6.4.9) that for —3 < m < 3 we have
2n 3 3 _
tn = pzvn — [ [ X x| V¥sing dedg. (64.11)
0 0 n=-3

Comparing this and the form of the equivariant vector field (6.3.8) we can see immediately that

H2 = A. Since the coefficient of x_3x1x; in the Xy component of (6.3.8) is —SO\ﬁﬁ and the term
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3
X_3X1Xp occurs 6 times in the expression (22:73 xn) in (6.4.11) with m = 0 we can see that

27T 7T __
30v26 = 6 / / Y5 3Y2Y2Y0sin 6 dodg
o Jo
2 (T
= 2?3(3\7{ (—25 c0s'? 0 +95c0s'? 0 — 138 cos® 6 + 94 cos® 6
Jo
—29 cos* 6 + 3 cos? 0) sin 6d6

212
- 28671

Similarly we see that the coefficient of xg in the ¥y component of (6.3.8) is « — 98 and the term

3
x3 appears only once in the expression (Zﬁ:_s xn) in (6.4.11) with m = 0 so

27T T
§—9p = —/ / (Y2)4 sin 6 dod¢

0 0

49 (7 ( 12 10 8
- —7/ 625 c0s'20 — 1500 cos® 6 + 1350 cos® 0

1287 Jo
—540 cos® 0 + 81 cos* 9) sin 6d@
1687
o 286077
Hence we find that ; 175
_ __ 1 4.
P="28e0xr ™ =55 (6:4.12)

are the values of the coefficients in the equivariant vector field (6.3.8) for the Swift-Hohenberg

equation. Using the results of Section 6.3.3, since

7 315
- 2 - = ——
B 286077 <0 and x — 508 286 <0

we can see that the solution branch with O x Z§ symmetry is stable for the Swift-Hohenberg

equation on a sphere of radius near R, = v/12.

6.4.2 Reducible representations of O(3) x Z,

In this section we consider how to compute coefficients in an O(3) x Z, equivariant vector
field for the specific example of the Swift-Hohenberg equation (6.4.1) when the representation
of O(3) x Z; is reducible. In this case the solution of the linearised Swift-Hohenberg equation
(6.4.2) can be written as a sum of spherical harmonics of degrees ¢ and ¢ + 1.

(1) (2)

If we assume that wy = w; ' + w;”’ where

4 (41

wi) = L wn(®Y7(0,¢)  and wi?) = L nOYEa(@9)

for some value of ¢, then substituting into the linearised Swift-Hohenberg equation (6.4.2) we
find that

E)wl

S = — (1 0+ 1)/R22wl) — (1= (£ +1) (£ +2) /R2)2w?. (6.4.13)
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Notice that
(1= L(L+1)/R2)? = (1— (0+1)(£+2)/R2)? = (z+11)2 when R=(+1
and hence substituting R = ¢ + 1 into (6.4.13) we have
owy _ o1
ot Tl 1)zt

which has general solution

wi (t) = exp [(F - (€+11)2) f] w1(0).

Hence R; = ¢+ 1 and the critical value of ;1 where the £ and ¢ + 1 modes both have zero growth
rate occurs at s, = 1/ (¢ + 1)2. Notice that this is the point in Figure 6.8 where the ¢ and ¢ + 1

lines cross.

We now consider the full equation (6.4.1) with the nonlinear term w?. Let

o= pet € (6.4.14)
R = R.+€’R, (6.4.15)
T = €% (6.4.16)
w = ew;+ € wy + ws (6.4.17)

where R = ¢+ 1 and u. = 1/(£+1)?. We find that the linear differential operator L =
p— (14 V?)?acts as

L = - <1_£(e+1))2

R2

00+1)  20(0+1 2
~ ycﬂzyz_(l_ (R% >+ (Rg )R2€2>

2
~ M- (1 B £(£R+21)> g [uz—z (1 B e(£R+21)> <2€(i;|—1)R2)]
= Lo+el (6.4.18)

on the spherical harmonics of degree £. On the spherical harmonics of degree ¢ we find that

4/
and on the spherical harmonics of degree ¢ + 1 we find that
4(0+2)

Substituting (6.4.14) — (6.4.17) into (6.4.1) we find that to cubic order in €

ow
39wy
€T

At order € we recover the linearised stability problem which is satisfied since

= eLowy + €2 Low, + €3(Lows + Lywy — w3).

¢ 41
wy = Z[xm(f)yf(f’/fPH ZZ yn (DY} 1(0,9). (6.4.19)
m=—£ n=—~(-1
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At order €2 we have 0 = Lows. Let wy = 0, then we find that at order € we have

awl

1L Lywy — w® 42
5T OZU3+ 2W1 w1 (6 0)

If we multiply equation (6.4.20) by ?E and integrate over the sphere we find
21 7 awl —p . 2m _—
/0 /O SAV]sin dedg /0 /O Lyw; Y sin 0 dfdg
2w p7T _
~ [ LowsY} sine dodg

0o Jo ‘

2 7T _

- / / w‘I’Yf sin 6 dOd¢
o Jo )
= h—-DL-1I. (6.4.21)

We can then see that by using the form of w; as in equation (6.4.19) and orthogonality of the
spherical harmonics (3.2.3) the left hand side becomes x, where the dot denotes diT and the first

integral on the right hand side, I;, becomes

_iR X
2T e r)

By integrating by parts we find that

27T, - 27T T _
L = / / L0w3YZ sin 0 d@d(’) = — / / w:),LOY? sin 6 d9d4) =0.
0 0 0 0

This means that equation (6.4.21) becomes

< At R) oy ym S y" 3Y” 0 dod

%y = (1 — ) ) x —/ / Y x + ) sin )

r= T ey Pl o \ BT ) ’
(6.4.22)

Similarly if we multiply equation (6.4.20) by ?5 11 and integrate over the sphere we find

3
) 4(6 + 2) 27T rrT 14 141 . .
0 0 m=—{ n=—/(-1
(6.4.23)
By evaluating all terms in these integrals we can find the exact form of the components 1,
and y, in the O(3) x Z; equivariant vector field for the Swift-Hohenberg equation for the

representation on V; @ V. Using orthogonality of the spherical harmonics we can see that
2 pm _
/ / YZYZ;YZYZ sinf dfd¢ = 0 unless m+n+p=q. (6.4.24)
0 0

This reduces the number of integrals we need to evaluate. Alternatively, if we already have the
general form of the equivariant vector field found using symmetries we need only compute as

many integrals as there are coefficients in the vector field.

We will now evaluate the coefficients in the O(3) x Z, equivariant vector field for the Swift-

Hohenberg equation when the representation is on V, @ V3 or V3 @ Vj.
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Example: The coefficients for the representation on V, & V3

In Section 6.3.5 we computed that the general form of the O(3) x Z; equivariant vector field
for the representation on V, @ V3 is given by (6.3.22)-(6.3.23). We now compute the values of

the coefficients in this vector field for the specific example of the Swift-Hohenberg equation.

When ¢ = 2 we can see from equations (6.4.22) and (6.4.23) that

8 2, 2 3 34
Xp = <V2_27R2> xp—/o /O ( Z mezm—l— Z an:?) Ygsinﬂ dod¢ (6.4.25)

m=—2 n=-3

. 16 L v " ’ P
7y (m + 27122) Yy — /0 /O (mzz X Y3+ ng3 an3> Y!sin6dodg.  (6.4.26)
Comparing these equations and the general form of the equivariant vector field for this repre-
sentation (6.3.22)—(6.3.23) we can see immediately that yy = pp — %Rz and py, = pp + %Rz. By
comparing the cubic terms in the general form of the equivariant vector field with equations
(6.4.25) and (6.4.26) we can compute the values of the coefficients a1, a2, B1, B2, Y1, Y2, 01, 02

and J3 as follows:

e The coefficient of xJ in %( of the general equivariant vector field is a1. The term xJ occurs

only once in the cubed sum of equation (6.4.25) so we have
2 15
= - Y04 s =——
aq /0 /0 (Y7)*sin6 dfd¢ T
e The coefficient of x;y_»y_1 in ¥_, of the general equivariant vector field is 2+/10y;. The
term x1y_oy_1 occurs 6 times in the cubed sum of equation (6.4.25) so we have

3VI0 2oL, o2 B
no= _T/o ./o V2Y3 Y5 Y, sinf dédg = .

e The coefficient of x_1y_1yp in ¥_, of the general equivariant vector field is —2v/379,. The

term x_1y_1Yo occurs 6 times in the cubed sum of equation (6.4.25) so we have
2w 7 o 1
_ —1y—130772 _
S \@/0 /0 Y3 1Y AY, *sin6 dodg = o

e The coefficient of x_zy% in X_p of the general equivariant vector field is 1 + 2. The term

x,zy% occurs 3 times in the cubed sum of equation (6.4.25) so we have
2 o7
_ ~2(y0y2y7 2 ; =B L6
B = 3/0 /O Y 2(8)%Y, *sin6 dodg — 12 = — - — 1 =~
e The coefficient of y_3y1y2 in 1o of the general equivariant vector field is —30v/26;. The
term y_3y1y2 occurs 6 times in the cubed sum of equation (6.4.26) so we have

V2
10 Jo

_ 7
28607

2 7T
5 = / Y3 Y2y sin 0 dodg =
0
e The coefficient of i3 in g of the general equivariant vector field is B, — 961. The term 3

occurs only once in the cubed sum of equation (6.4.26) so we have

L 1687 63 175
_ 0\4 o; — _ — _
P2 = /o /0 (Y3)"sin0 d0d¢ + 901 = — 200 — oo = 286n"
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e The coefficient of y_3x_pxp in y_3 of the general equivariant vector field is 2a,. The term

Y_3X_pXy occurs 6 times in the cubed sum of equation (6.4.26) so we have

2t 7
_ —3y—2v2v 3 _ 3
v = 3/0 /O Y32, Y3Y;5 sin6 dodg = — .

e The coefficient of y;x% , in 1/_3 of the general equivariant vector field is 21/155,. The term
Y1 x% , occurs 3 times in the cubed sum of equation (6.4.26) so we have

V15 1/v—2\2y 3 3
2 = _W/o /0 Y3(Y;%)?Y5  sin0 dodg = — .

e The coefficient of y_,x_1xg in y_3 of the general equivariant vector field is —543. The

term y_px_1xp occurs 6 times in the cubed sum of equation (6.4.26) so we have

5y = 9/271/711/*21/*11/0?‘3 in6 dode — —
3_50032235m 4’—227_[-

It is now possible to use these values of the coefficients in the general form of the equivariant
vector field (6.3.22)—(6.3.23) to study the stability and bifurcations of the various branches of
solutions of the Swift-Hohenberg equation. We will do this in Chapter 7.

Example: The coefficients for the representation on V3 & V;

In Section 6.3.6 we computed that the general form of the O(3) x Z; equivariant vector field
for the representation on V3 @ Vj is given by (6.3.24)-(6.3.25). We now compute the values of

the coefficients in this vector field for the specific example of the Swift-Hohenberg equation.

When ¢ = 3 we can see from (6.4.22) and (6.4.23) that

3 21 pm 3 4 34
%, = (V2_16R2> w— [ [ | X wd+ Loy ) Visinododgp  (6427)

m=-3 n=—4

3
5 2w 3 4 —p .
gy = (Vz + 16R2> Yy — /O /0 ( Y a0+ Yy YE| Yisinododg.  (64.28)
m=-3 n=—4
Comparing these equations and the equivariant vector field for this representation (6.3.24)-
(6.3.25) we can see immediately that yy = pp — %Rz and py = p2 + 15—6R2. By comparing
the cubic terms in the general form of the equivariant vector field with equations (6.4.27) and
(6.4.28) we can compute the values of the coefficients a1, a2, B1, B2, Y1, Y2, V3, Y4, 61, 02, I3 and

04 as follows:

e The coefficient of x_3x_pxp in X_3 of the general equivariant vector field is 2a1. The term
X_3X_Xp occurs 6 times in the cubed sum of equation (6.4.27) so we have

175

o —3y—2v27 3 . ded
v = —3/0 /0 Y3 Y5 2375 sin 0 dodg = — o

e The coefficient of x_px_1x¢ in x_3 of the general equivariant vector field is 30 V271. The

term x_px_1xg occurs 6 times in the cubed sum of equation (6.4.27) so we have

_ —L/m/nrzrlyo?‘%ineded 7
T T2 Jo 33 RIS ¢ =~ 28607
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The coefficient of x_3y_4y4 in Ax_3 of the general equivariant vector field is 281. The
term x_3y_4Y4 occurs 6 times in the cubed sum of equation (6.4.27) so we have

735

Ty sy 447 i dod BAcH

The coefficient of x1y_4y0 in X_3 of the general equivariant vector field is 20v/42,. The

term x1y_4y0 occurs 6 times in the cubed sum of equation (6.4.27) so we have

- 6 /2H/HY1Y*4Y0?‘3sin9ded -2
2T Toovmo Jo T3Te TaTs ¢ =~ 2860

The coefficient of xpy_3y_» in X_3 of the general equivariant vector field is 3v/2173. The

term xoy_3y_o occurs 6 times in the cubed sum of equation (6.4.27) so we have

_ 6 / " Y3Y 3V, 275 sin 0 dodg = — ——
BT Ta e Jo AT ?="1Br
The coefficient of x_1y_»yp in X_3 of the general equivariant vector field is 30 V674. The

term x_1y_»Yo occurs 6 times in the cubed sum of equation (6.4.27) so we have

_ —L/ZH/HY*Y*ZYO?*smeded N
T 0B Jo 3 Te TaTE ¢ =~ 28607

The coefficient of y% 4Y4 in y_4 of the general equivariant vector field is 2a;. The term

yz_ 4Y4 occurs 3 times in the cubed sum of equation (6.4.28) so we have

6615
97241

27
@ / 247, sin6 dodg =

The coefficient of % ;y» in J_4 of the general equivariant vector field is 70v/76;. The term

y? 32 occurs 3 times in the cubed sum of equation (6.4.28) so we have

27
340347

21
70[ /
The coefficient of y_4x_»x7 in §_4 of the general equivariant vector field is 28,. The term

Y—4X_pXp occurs 6 times in the cubed sum of equation (6.4.28) so we have

315

7Ty Ay 2y27 i dod Al

The coefficient of y_3x_3xp in y_4 of the general equivariant vector field is 70v/35,. The

term y_3x_3x, occurs 6 times in the cubed sum of equation (6.4.28) so we have

21 7 —_
6 = —706\/5 ; /Oyfygwgn%ineded(p:—

3
2867

The coefficient of zxz_ in 1y_4 of the general equivariant vector field is 10 V7 03. The term
Y2X—_zmmy g q

y2x2 5 occurs 3 times in the cubed sum of equation (6.4.28) so we have

27 3
= YZ(Y. 2Y 0 dode =
% 10[ / 4 sin ¢ =113
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e The coefficient of y_3x_5x1 in _4 of the general equivariant vector field is 14+/564. The

term y_3x_px1 occurs 6 times in the cubed sum of equation (6.4.28) so we have

6 2 e — 4
5 = ——/ / Y;3Y52Y1Y, * sin 6 dedg = 0.
! 14v5o Jo 74 73 304 ¢
It is now possible to use these values of the coefficients in the general form of the equivariant
vector field (6.3.24)—(6.3.25) to study the stability and bifurcations of the various branches of

solutions of the Swift-Hohenberg equation. We will do this in Chapter 7.
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CHAPTER 7

SYMMETRIC SPIRAL PATTERNS ON SPHERES

7.1 Introduction

In Section 1.2.2 we discussed the fact that spiral patterns (both rotating spiral waves and station-
ary spirals) have been found in numerical simulations of reaction—diffusion systems, Rayleigh—
Bénard convection and other pattern forming systems on the sphere. In addition to spiral waves
with trivial isotropy (no symmetry), spirals with certain symmetries can exist on the sphere.
The fact that the one-armed spiral patterns found by Calhoun et al. [16], Li et al. [62], Matthews
[65] and Zhang et al. [90] all have a rotation-through-7r symmetry in some axis in the equatorial
plane has, until now, not been noted or utilised. The spiral pattern found by Calhoun et al. [16]

is given in Figure 7.1.

In this chapter we will study the generic existence of spiral patterns with symmetry on spheres
using equivariant bifurcation theory methods. We will investigate the spiral patterns which can
occur as a result of stationary bifurcations on a sphere and subsequent secondary bifurcations.

We also consider the stability of these spiral patterns.

7.1.1 Stationary spiral patterns on spheres

In this chapter we will be considering stationary spiral patterns on spheres which have the form
of those given in Figure 7.2. These spiral patterns are functions on the sphere, w(6, ¢, t), where
the areas on which w > 0 and w < 0 form intertwined spirals. The contours along which w = 0
are Archimedean spherical spirals which originate at a single point on the surface of the sphere

and terminate at the antipodal point.

We say that the spiral is m-armed if at the tips, or point of origin, there are m areas where w > 0.
This means that for an m-armed spiral pattern there are 2m zero contour Archimedean spirals.
The top row of images in Figure 7.2 shows one, two and three armed spirals, looking directly

at the point of origin, and the bottom row shows the same patterns from the side. The red areas
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Figure 7.1: The one-armed spiral pattern found in numerical simulations of a reaction-diffusion

system by Calhoun et al. [16].

show where w > 0 and blue areas show where w < 0. We make no distinction between patterns
which spiral clockwise or anticlockwise from the north pole since the symmetries of the pattern

are the same in either case.

Symmetries of spiral patterns on spheres

Consider the spiral patterns with one, two and three arms as in Figure 7.2. We can describe the
symmetries of these patterns and also those with larger numbers of arms in terms of rotations
and reflections of the sphere. Each of the spirals has a rotation-through-7r symmetry, R%, in
an axis in the plane of the equator as viewed in the images in the top row of Figure 7.2. In
addition, the m-armed spiral has rotation-through-271/m symmetry, R}, _ /m in the axis through
the spiral tips. Thus the symmetry group of a one-armed spiral pattern is Z, and an m-armed
spiral for m > 2 has symmetry group Dy, as a subgroup of O(3). Furthermore, for any choice
of generators, the group of symmetries of a one-armed spiral is contained in a copy of the

symmetry group of an m-armed spiral for any value of m.

Notice that inversion in the origin, —I € O(3) does not act as the identity or minus the identity
on any spiral pattern. If a pattern, w(6, ¢, t), can be made with a linear combination of spherical
harmonics of even degree then, since —I acts as the identity on all spherical harmonics of even
degree, —I must act as the identity on w(6, ¢, t). Similarly if w(6, ¢, t) can be made with a linear
combination of spherical harmonics of odd degree then, since —1I acts as minus the identity on
all spherical harmonic of odd degree, —I must act as minus the identity on w(6, ¢, t). However,
—1I acts as neither plus nor minus the identity on spiral patterns so we conclude that spiral
patterns can only be made through linear combinations of spherical harmonics of odd and

even degrees.

Indeed, we find that spiral patterns such as those in Figure 7.2 can be made with linear combi-
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one-armed spiral two-armed spiral three-armed spiral

Figure 7.2: Images of one-, two- and three-armed spirals. The top row shows the pattern looking
directly at the tips and the bottom row of images shows the patterns viewed from
the side. The red areas show where the functions are positive and blue areas show

where they are negative.

nations of spherical harmonics of degrees ¢ and £ + 1 and hence are patterns of the form

/4 (+1
w(8,¢,t) = szm(t)yg"(e,q>)+ Zg Yn(£)Ys1 (6, ¢)
m=— n=—(-1

where x_,;, = (=1)"%,;, and y_, = (—1)"y,, since w(6, ¢, ) must be real. Hence, for it to be
possible for spiral patterns to exist as a result of a stationary bifurcation with O(3) symmetry,

the representation of O(3) must be a reducible representation on V; & V.

One of the conditions which must be satisfied in order for the m-armed spirals described above
to exist as a result of a stationary bifurcation with O(3) symmetry in a reducible representation
on Vy @ Vy,q is that its symmetry group (Z; in the case of a one-armed spiral and D, for an
m-armed spiral where m > 2) must be an isotropy subgroup of O(3) in this reducible represen-
tation. Recall that in Section 6.2.2 we saw that any pattern which is a combination of spherical
harmonics of degrees ¢ and ¢ + 1 cannot have an isotropy subgroup which is axial. Thus Z,
and D, are never axial isotropy subgroups. However, they may be isotropy subgroups which

fix a subspace of V; @ V;1 of dimension greater than one.

This means that the existence of spiral patterns at a stationary bifurcation with O(3) symmetry
is never guaranteed by the equivariant branching lemma. To determine whether spiral patterns
can exist at such a bifurcation in the representation on V; @ V1 for a particular value of ¢ we
must compute the O(3) equivariant vector field for this representation (which is 4¢ + 4 dimen-
sional) and find solutions with the relevant symmetries directly. Since Z, C Dy, for all values of
m, if any spiral solutions with symmetry Z, or D, exist then they can be found in the restriction
of the O(3) equivariant vector field to the 2¢ + 2 dimensional subspace Fixy,qv,,, (Z2). Even
for low values of ¢ this vector space is large, so to find one-armed spirals with Z, symmetry in

this space is not a simple task.
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We should also note that since

rank(N(Zy)/Z;) = rank(O(2) X Z5/Z;) = 1 (7.1.1)
rank(N(Dy,)/Dy,) = rank(Dy,/Dy) = 0, (7.1.2)

by Theorem 2.4.9, generically solutions with D,, which exist in O(3) equivariant vector fields
are stationary, whereas solutions with Z, symmetry are generically relative equilibria with one
period i.e. they rotate. This only makes it more difficult to establish the existence of one-armed

spiral patterns with such symmetry.

The most symmetric spiral patterns on spheres

Since finding one-armed spirals with Z; symmetry requires us to solve a large number of equa-
tions we make the following simplification which forms the basis for most of the work in this
chapter. Rather than look for the spiral patterns with symmetries contained in O(3), we con-
sider the most symmetric spiral patterns on spheres, which, in addition to the symmetries con-

tained in O(3), have the symmetry,

(R, —1) € O(3) x Z,. (7.1.3)

T/ m’

Here, R., /m 18 a rotation through 71/m in the axis through the spiral tips and —1 is the non-
identity element in Z, which acts (in all representations) as multiplication by —1 thus sending
red areas to blue and vice versa in the images given in Figure 7.2. This means that the spiral
pattern is such that the areas where w(6,¢,t) > 0 and w(6,¢,t) < 0 are of identical size and
shape. Such spiral patterns have symmetry groups which are subgroups of the larger group
O(3) x Z;.

Recall that in Chapter 6 we studied the twisted subgroups of O(3) x Z,. With the additional

symmetry (7.1.3) the symmetries of a one-armed spiral form the twisted subgroup
D, = (Dy, Zs) = ((R%,1),(RY, -1)), (7.1.4)
and the symmetries of an m-armed spiral for m > 2 form the twisted subgroup

Dy = (Dow, D) = ((R%,1),(R! 1). (7.1.5)

wt/mr

Using the methods given in Chapter 6 (the information in Table 6.7 and the ‘massive chain crite-
rion’, Theorem 3.4.1) we can determine when these twisted subgroups are isotropy subgroups
of O(3) x Z;.

Proposition 7.1.1. The subgroup Doy, is an isotropy subgroup of O(3) x Z, in the representation on
Vo @ V1 when £ > m form > 1.

Proof. By the massive chain criterion, Theorem 3.4.1, Dy, is an isotropy subgroup iff for each

strictly larger and adjacent group A,

dim Fixy,qy, , (A) — r(A) < dim Fixy,ev,,, (D2m) — r(Dam). (7.1.6)
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Notice that in reducible representations on V, & V1, r(X) = q(X) for all twisted subgroups of
O(3) x Z;. For each twisted subgroup X, the values of dim Fix(X) and g(X) are given in Table
6.7. We must show that (7.1.6) holds for all strictly larger and adjacent groups A when ¢ > m.

Case 1: m = 1. The twisted subgroup D, given by the pair (H,K) = (D, Z5) has
dimFixw@wH(lf)vz) =/+1 and g(D3) = 0.
It is contained in strictly larger groups given by pairs of types

(DZmIDm) (DZmIZZm) (DZm X ZE/ZZm X Z%) (Dzm X Z%, Dém)

4m’ 4m’

(H,K) =

All of the twisted subgroups, HY, given by these pairs have q(H?) = 0, so we need only
show that for the pairs which give twisted subgroups adjacent to Dy, dim Fix(H?) < £+ 1
when £ > 1 to demonstrate that D5 is an isotropy subgroup. From Table 6.7, we see that
for each of the pairs listed above, dim Fix(H?) is an decreasing function of m. In other
words, the larger the group H?, the smaller the value of dim Fix(H?). Thus, for each pair
above, we need only consider the smallest value of m which gives a twisted subgroup

which is strictly larger and adjacent to D,. Then we are left with the pairs

(D4, Dz) (D4,Z4) (Dz X ZE,ZZ X ZE) (Dz X ZC,DE)

H,K) =
U= pipz) (Diz,) (DIDy).

Each of these pairs has dim Fix(H?) < £+ 1 when ¢ > 1. Hence D, is an isotropy sub-
group when ¢ > 1.

Case 2: m > 2. The twisted subgroup Ds,, where m > 2 is given by the pair (H, K) = (Dy,,, Dyn).
It has

dim Fixy,qv,,, (Dam) = [(£+m)/2m] +[({ +m+1)/2m] ~ and  q(D3) =0.
It is contained in the strictly larger and adjacent groups given by the pairs

(Dme,me) for p > 3 and prime
(H,K) = ¢ (Day X Z5, Dy x Z5)
(Daw x 25,04 )

Using Table 6.7 we see that all of the twisted subgroups, H?, given by these pairs have
q(H?) = 0 and dim Fix(H?) < dimFix(D,,,) when ¢ > m. Hence D,,, is an isotropy

subgroup when ¢ > m.
Having considered all possible cases, this concludes the proof. O

We have shown that the twisted subgroups Dy, can be isotropy subgroups of O(3) x Z, in
some representations on Vy @ Vy, 1. Recall from Section 6.2.2 that these isotropy subgroups are

never axial so solutions with these symmetries are never guaranteed to exist at a stationary
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bifurcation with O(3) x Z, symmetry by the equivariant branching lemma. We must look for

these solutions in the O(3) x Z; equivariant vector field.

Notice that the symmetry group of a one-armed spiral, Dy, is still contained in that of an m-
armed spiral, DNZm, for any value of m > 2 when the additional symmetry (7.1.3) is included.
When m is odd this containment is obvious, however when m is even it is less so. Suppose
that we have an m-armed spiral, for m even, with tips at the poles. This has a symmetry group
which contains the symmetries of a one-armed spiral with tips on the equator. Since D, C Dy,
for all values of m, all m-armed spiral patterns which exist for any given value of ¢ can be found
in the restriction of the O(3) x Z, equivariant vector field to the subspace Fix(D5). This space
is £ + 1 dimensional. By looking for spiral solutions with the additional symmetry (7.1.3) we

have halved the number of equations which we must solve in order to find such solutions.

Another benefit of considering spiral patterns with additional symmetry (7.1.3) is that since
rank(No 3z, (D2m)/Dam) = 0, 7.1.7)

for all values of m, by Theorem 2.4.9, all spiral patterns with D,,, symmetry are (generically)

stationary patterns and are therefore easier to find as equilibria of the £ 4 1 equations in Fix(D5).

In Section 7.2 we look for spiral patterns with Do, symmetry in the restriction to Fix(D3) of the
O(3) x Z; equivariant vector field on V; & V;, 1 when ¢ = 2 and ¢ = 3. For the representation
on V, @ V3, where Dy, is an isotropy subgroup for m = 1 and m = 2, we find conditions on
the values of the coefficients in the O(3) x Z; equivariant vector field for one- and two-armed
spiral patterns to exist and consider the specific case of the set of coefficients which occur for
the Swift-Hohenberg equation which were computed in Section 6.4. We also consider the one-,
two- and three-armed spiral patterns which can exist in the Swift-Hohenberg equation for the

representation on V3 @ Vj.

In Section 7.3 we consider the effect of breaking the symmetry from O(3) x Z; to O(3) on the
spiral pattern solutions with D5, symmetry i.e. breaking the symmetry (7.1.3). We investi-
gate whether the spiral patterns found in Section 7.2 can persist under this forced symmetry

breaking.

7.2 Spiral patterns with symmetries contained in O(3) x Z,

In this section we look for solutions with symmetry D5, in O(3) x Z; equivariant vector fields
for representations on V, @ V,, 1 for small values of £. Recall that D,,, is the symmetry group
of the most symmetric m-armed spiral pattern on a sphere. We show that it is possible for such

patterns to exist and demonstrate how they bifurcate from other solutions.

Consider the system of ODEs

% = f(z,A), (7.2.1)

where A € R is a bifurcation parameter and the mapping f : V, ® V; 1 xR — V, @ V44
commutes with the action of O(3) x Z; on V; & V1. Suppose that z = (x;y) where x € V,
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and y € V;,1. We saw in Section 6.3.4 that the mapping f(z, A) is of the form

f(z,A) = (g(z,A);h(z,1))"

and the two linear equivariant mappings are p.x(A)(x;0) and p,(A)(0;y) where p,(A) and

py(A) are real valued functions of A.

As in Chapter 6, since f is equivariant with respect to —1 € Z, f is odd in z and hence (7.2.1)
has a trivial equilibrium f(0,A) = 0 for all values of A. This undergoes stationary bifurcations
when iy (A) = 0 and py(A) = 0. At these stationary bifurcations, branches of equilibrium
solutions with certain symmetries are guaranteed to be created. These solution branches have
the symmetries of the axial isotropy subgroups of O(3) x Z; in the representation on V; & V1
by the equivariant branching lemma. These isotropy subgroups were computed in Section 6.2
for all values of /. Subsequent bifurcations of these solution branches can lead to solution
branches with the symmetries of an isotropy subgroup of O(3) x Z, which fixes a subspace of
Vi ® Vy4q of dimension larger than one. We are particularly interested in the existence of such
submaximal solutions with Dy, symmetry and how they can bifurcate from other solution

branches.

Remark 7.2.1. Recall from Section 2.4.3 that it is possible for secondary steady-state bifurcations
from group orbits or equilibria to lead to relative equilibria as well as new equilibria. By The-
orem 2.4.9, the number of frequencies of a relative equilibrium (O(3) x Z;) zy with isotropy

subgroup D, (the symmetries of an m-armed spiral) is
k = rank (N0(3)XZZ(®)/])A_2;1> = rank <D4m X Z5 X 25/15;,1) =0 forallm > 1,

and hence all spiral solutions resulting from secondary stationary bifurcations after a station-
ary bifurcation with O(3) x Z; symmetry are equilibria with zero frequencies (i.e. stationary

patterns).

We now look for stationary solutions with D5, symmetry in the restriction to Fix(D5) of the
O(3) x Z; equivariant vector fields on V, & V3 and V3 @ V,. We also consider the stability of
such patterns when the coefficients in the vector field are those we computed in Section 6.4 for

the Swift-Hohenberg equation.

7.2.1 Spiral patterns in the representation on V, © V3

Recall that in Example 6.2.10 we computed all isotropy subgroups of O(3) x Z; in the repre-
sentation on V, @ V3. Among these isotropy subgroups were D, and Dy, the symmetry groups
of one- and two-armed spiral respectively, which fix three- and two- dimensional subspaces of
Vo @ V3 respectively. By Proposition 7.1.1 these are the only isotropy subgroups of the form
D5, in this representation. We now show that it is possible for stationary solutions with these

symmetries to exist in the O(3) x Z, equivariant vector field on V, @ Vj.

Since D, C D4 we must have that Fix(li) C Fix(]?z), i.e. for every choice of generators of D,

Fix(D;) contains a copy of Fix(Dy).
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Suppose that we choose the copy of D, which is given by
ﬁJZ = (R%, -1), (R%,1)). (7.2.2)

The one-armed spiral with this symmetry spirals between the two points on the surface of the

sphere on the y-axis. This copy of D, is contained within the copy of Dy which is given by
Dy = ((Rp,—1), (Ry ',1))

where Ry, is the rotation through 7 in the line x = —y, z = 0 which sends x — —y,y — —x
and z — —z. The two-armed spiral with this symmetry group is oriented as in the top row of

Figure 7.2, spiralling from the north to south poles.

For these choices of generators the fixed-point subspaces are

Fix(D;) = {(ia,0,0,0,—ia; 0,b,0,¢,0,b,0)} (7.2.3)
Fix(Dy) = {(i,0,0,0,—ia; 0,b,0,0,0,b,0)} (7.2.4)

where 4, b, ¢ € R. Notice that Fix(D4) C Fix(D;). Hence both one- and two-armed spirals (if
they exist) can be found in the restriction of the O(3) x Z, equivariant vector field to Fix(D5)
as above. We computed this vector field to cubic order in Section 6.3.5 where we found that it
is as in (6.3.22)—(6.3.23). The restriction to Fix(ﬁé) is given by

i = pa+2u1a°+ (281 + 8y — 672) ab® + (B + 72) ac? (7.2.5)
b = uyb+ (2B —5001) b> + (205 — 308, + 1053) ba* + (B + 1561) be>  (7.2.6)
¢ = pyc+ (Ba—901)c + (2ap — 300, + 1863) ca® + (2B + 306, ) cb? (7.2.7)

where py, py, a1, B1, 71, 72, &2, P2, 61, 62 and J3 are real functions of A. These equations have

residual symmetry
N(D3)/Dy = Dy X Z§ x Zy/ Dy = Zy X Zy X Zs,

so if solutions with D, symmetry exist then there are [N(D,)/D,| = 8 equivalent solutions
within Fix(D5).

The trivial solution z = 0 undergoes stationary bifurcations when y; = 0 and p, = 0. To
investigate the interactions between the ¢ = 2 and ¢ = 3 modes, we assume that jiy = A and
#y = A+ p. Then the trivial solution is stable when A < min(0, —p). At A = 0 the £ = 2
modes become unstable and the equivariant branching lemma guarantees that the unrestricted
system (6.3.22)—(6.3.23) has stationary solution branches with the symmetries of axial isotropy
subgroups of O(3) x Z; in the representation on V, which bifurcate at A = 0. Similarly, at A =
—p the £ = 3 modes become unstable and give rise to solution branches with the symmetries

of axial isotropy subgroups of O(3) x Z; in the representation on Vj.

Branches of solutions with the symmetries of the axial isotropy subgroups of O(3) x Z; in the
representation on V, @ V3 which contain ]/:)vz are guaranteed to exist in (7.2.5)-(7.2.7). The other
equilibrium solutions which it may be possible to find in these equations have the symmetries

of the isotropy subgroups which contain D, and fix a subspace of dimension greater than one.
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All isotropy subgroups containing D, are listed in Table 7.1 along with the generators of a copy
of the group which contains the copy of D; given by (7.2.2). The fixed-point subspace which
lies inside Fix(D3) given by (7.2.3) is also listed for each isotropy subgroup. These isotropy

subgroups were computed in Example 6.2.10.

Isotropy Generators Fixed-point subspace
subgroup
Dfx/zg (R, —1), (R ,1), (=1,1) {(ia,0,0,0, —ia ; 0,0,0,0,0,0,0)}
0(2) x Z5 (R3,1), (kxz,1), (=1, 1) {(0,0,0,0,0; 0,0,0,c,0,0,0)}
D; x Z5 (—RY5,1), (R:, 1), (=1, ~1) {(0,0,0,0,0; 0,1/3¢,0,¢,0, \/%cﬁ)}
O x Z5 (—RZ 5, 1), (Rans3 1), (K2, 1), (=1, —1) {(0,0,0,0,0; 0,b,0,0,0,b,0)}
Dy (RZ,,,—1), (RZ Y1) {(ia,0,0,0, —ia ; 0,b,0,0,0,b,0)}
D! (=R2 5, —1), (RS, 1) {(i1,0,0,0,—ia; 0,0,0,¢,0,0,0)}
D x Z§ (R%,1), (Kxz,1), (=1, —1) {(0,0,0,0,0; 0,b,0,¢,0,b,0)}
D, (R%, 1), (R%,1) {(ia,0,0,0, —ia ; 0,b,0,¢,0,b,0)}

Table 7.1: Isotropy subgroups for the representation of O(3) x Z; on V, @ V3 which contain
D,. Also shown is the form of the fixed-point subspace which lies inside Fix(D5).
The generators which give this subspace are also listed. Here «y; is a reflection in the
xz plane sending y — —y, Ry,/3 is a rotation through 277/3 in the line x = y = z

y

sending x — y — z and Ry 7 is rotation through 7 in the line x = —y, z = 0

sendingx — —y,y — —xand z — —z.

The subsection of the lattice of isotropy subgroups (Figure 6.5) which shows only the isotropy

subgroups containing D, is given in Figure 7.3.

0(3) X 2o
D x Z5 0(2) x 7§ O x 7§ Do x Z
D{ D, D, x Z5
D,

Figure 7.3: Subsection of lattice of isotropy subgroups of O(3) x Z; in the representation on

V2 @ V3 including only those isotropy subgroups which contain D,.

We now investigate whether it is possible for solutions of (7.2.5)—(7.2.7) with non-axial symme-
try to exist and, if so, the conditions on the coefficients a1, B1, v1, Y2, @2, B2, 91, 62 and d3 which
must be satisfied for the solutions to exist and be stable. We are most interested in the existence

of solutions with D, and D, symmetry since these are the stationary spiral solutions.
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Existence of equilibria in Fix(D;)

The non-trivial equilibrium solutions of (7.2.5)—(7.2.7) are as follows.

[ A
a==+ _ZTcl’

This solution branch has D4 x Z5 symmetry and bifurcates from the trivial solution at

1. If b = ¢ = 0 thend = 0 when

A = 0. Itis an ¢ = 2 axial solution.

2. If a = b = 0then ¢ = 0 when

c==x 57—
B2 — 94

This solution branch has O(2) x Z; symmetry and bifurcates from the trivial solution at

A = —p. Itis an ¢/ = 3 axial solution.

3. Ifa = ¢ = 0 then b = 0 when

_ —A—p
= 2m s0er

—_—

This solution branch has O x Z, symmetry and bifurcates from the trivial solution at

A = —p. Itis an ¢ = 3 axial solution.

4. Ifa=0butb # 0and c # 0 then b = ¢ = 0 when

_ —3(A+p) _ —5(A+p) 2105
b=+ 1665 and c== 862 SO c—3b.

These solutions have Dy x Z; symmetry and bifurcate from the trivial solutionat A = —p.

They are ¢ = 3 axial solutions.

Remark 7.2.2. There is no solution with D, x Z, symmetry since any solution in Fix(D; x Z;)
with b # 0 and ¢ # 0 satisfies

A+p+ (282 —5081) b? + (B2 +1561) 2 =0
A+p+ (B2 —951) c® + (2B2 + 3061) b* = 0.

—_—~—

2 = W2 and so the fixed-point solution has Dg x Z, symmetry.

The only solution is ¢

5. Ifb=0butc #0and a # 0 then 4 = ¢ = 0 when

A+2010% + (B1 +72) > =0
A+p+ (ﬁz — 951) 2 + (20(2 — 300, + 18(53) a2 = 0.

Generically these equations have one solution for (a2, c?) which is given by

2 —A (B2 —941) + (A +p) (B1+72)
20 (,BZ — 951) — (2062 — 804, + 1853) (,Bl + ’)/2)

2 _ —2a1(A 4 p) + A (2ap — 308, + 1853)
21 (B —961) — (2ap — 300, +1863) (B1 + 72)
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Hence solutions for (a,c) with a # 0 and ¢ # 0 exist when a? > 0 and ¢ > 0. These so-
lutions have D symmetry and result from secondary bifurcations from O(3) x Z, sym-
metry. They bifurcate from the solution branch with O(2) x Z§ symmetry when a = 0,

i.e.
Lo (Bitm)p
Bo—961—B1— 72’

and from the solution with D4 x Z§ symmetry when ¢ = 0, i.e.

3= 2019
- 20(2 — 3052 + 18(53 - 20(1 ’

.Ifc=0anda #0,b # 0thend = b = 0 when

A+ 20&1112 + (2,81 + 8’)/1 — 672) bz =0
A+ p+ (282 —5081) b% + (25 — 308, + 1083) a* = 0.

Generically these equations have one solution for (a2, b%) which is given by

2 _ —A (282 —5061) + (A +p) (2B1 +871 — 672)
20(1 (2,32 - 50(51) - (2062 — 30(52 + 1053) (2/31 + 8’)/1 - 6’)/2)

a

—20&1(/\ + P) +A (20(2 — 300, + 1053)

bZ — .
20(1 (Zle — 5051) — (2062 - 3052 + 10(53) (Zﬁl + 8’)’1 - 6’)’2)

Hence solutions for (a,b) with a # 0 and b # 0 exist when 2> > 0 and b*> > 0. These
solutions have D, symmetry which is the symmetry group of a two-armed spiral. They

result from secondary bifurcations from O(3) x Z; symmetry. They bifurcate from the

solution branch with O x Z5 symmetry whena = 0, i.e.

1 (28148711 —672)p
2B — 5001 —2B1 — 871+ 672"

and from the solution with Dy X Z§ symmetry when b = 0, i.e.

31— 2010
2wy — 300, + 1063 — 201"

.Ifa#0,b#0andc # Othend = b = ¢ = 0 when

A+2a10% + (2B1 + 871 — 672) B> + (B1+712) 2 =0
A+ p+ (282 —5001) b? + (20 — 308, + 1083) a® + (B2 + 1561) 2 = 0
A+p+ (Ba—961) ¢ + (2ap — 308, + 1853) a® + (2B2 + 3051) b*> = 0.

Generically these equations have one solution for (a2, b2, c?) which is given by

p Q

a? = N v = N = N
where
M = —128ABd1 + 64(A +p)d1 [281 + 371 — 2]
P = 8A[83f2 + 6028y — 90616, + 456155 — 8(A + p) [B165 + 7203 + 61161
Q = 16A[10028; — 150616, — Bads + 756103] + 16(A + p) [63B1 + 47165 — 37205 — 10a151]
N = —64[(2B1+371 — 72) (20201 — 308162 + 150163) + 6382 (11 — 72) — 4w1B2d1] -
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Solutions for (a,b,c) witha # 0, b # 0 and ¢ # 0 exist when a*> > 0, b> > 0 and ¢? > 0.
This occurs when
MN >0, PN >0 and ON > 0.

Any such solution would have D, symmetry which is the group of symmetries of a one-
armed spiral on a sphere. They bifurcate from the solution branch with Dg x Z§ symme-

try whena =0, i.e.
Lo @Bit31—m)p
262 —2B1 =311+ 72

from the solution with 1571 symmetry when b = 0, i.e. when P = 0 and from the solution

with Dy symmetry when ¢ = 0, i.e. when Q = 0.

Images of solutions with each of these symmetry types are shown in Figure 7.4.

Expressions for the eigenvalues corresponding to a linearisation of each of these solutions can
be found. However, due to the large number of coefficients involved, the exact form of the
eigenvalues of all but the axial solutions (solutions 1-4) is algebraically very messy. Rather
than computing the stability of the solution branches and the bifurcation structure for general
values of the coefficients a1, B1, 1, 72, ®2, B2, 61, 2 and 63 we consider instead specific values

of these coefficients, where solutions with Dy (one-armed spiral) symmetry exist.

Figure 7.4: Images of solutions to (7.2.5)~(7.2.7). These solutions all have symmetry groups con-
taining D5. In some cases two views of the solutions are given to fully describe the

symmetries.
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Example 7.2.3 (Solutions with D, symmetry exist but are unstable). Suppose that

N = *1, Ny = *1, ﬁl = *1, ﬁz = *1, (7.2.8)
1 1 1 1 1
= —— = —— 5 = —— (5 = —— (5 = ——.
T 2’ T2 2’ 1 60’ 2 2’ 3 5
In the restriction of the equivariant vector field to Fix(D;) we have
i = Aa—2a%—3ab®— §ac2 (7.2.9)
2
b = (A+p)b— gzﬁ + 11ba® — Zbcz (7.2.10)
. 17 5 47 , 5 ,
¢ = (A+p)c 3¢ T 5 Zcb . (7.2.11)

The branch of solutions with ¢/ = 2 axial isotropy (with symmetry Dy x Z5) bifurcate at A = 0
and those with ¢ = 3 axial isotropy (those with symmetries O(2) x Z;, O x Z; and D¢ x Z5)

bifurcate at A = —p. We use the results of Section 7.2.1 to see where the solutions with submaxi-

mal symmetry can exist and we investigate the stability within Fix(D,) of all solution branches.

1. (The solution branch with D, x Z§ symmetry) Since D4 x Z5 is an axial isotropy sub-

group there is always a branch of solutions with this symmetry bifurcating from A = 0.
With the values of the coefficients (7.2.8) the solution branch bifurcates supercritically so
exists when A > 0. Within Fix(D,) it has eigenvalues
13 57
= — = — = —)\ .
G1=-20  G=SAtp  G=gAte
Thus the solution branch is stable when A < — % p and undergoes stationary bifurcations

atA = —é—gp and A = —%p.

. (The solution branch with O(2) x Z$ symmetry) With the values of the coefficients
(7.2.8), this solution branch bifurcates supercritically from A = —p so exists when A > —p.

Within Fix(Dj) it has eigenvalues

1 8
G1="20A+p) G=-7-(134+30p)  G=—1-(A+p).
It undergoes a stationary bifurcation at A = — % p and is stable when A > — %p.

. (The solution branch with O x Z5 symmetry) With the values of the coefficients (7.2.8),
this solution branch bifurcates supercritically from A = —p. Within Fix(D;) it has eigen-
values

G=-20tp)  G=-Z(IA+18)  GH=-2(A+p).

It undergoes a stationary bifurcation at A = — % p and is stable when A > — %p.

. (The solution branch with D¢ x Z5 symmetry) With the values of the coefficients (7.2.8),
this solution branch bifurcates supercritically from A = —p. Within Fix(D;) it has eigen-

values ) .
G1=-2(+p) G2=-5(A+3) &=5(A+p).
This branch of solutions always has at least one positive eigenvalue so it is always unsta-

ble. It undergoes a stationary bifurcation at A = —3p where ¢, = 0.

182



7.2. SPIRAL PATTERNS WITH SYMMETRIES CONTAINED IN O(3) x Z;

5. (The solution branch with ]5?11 symmetry) With the values of the coefficients (7.2.8) this

—~—

solution branch bifurcates from the solution with Dy x Z§ symmetry at A = —19p and

joins the branch with O(2) x Z, symmetry at A = — %p. Thus it exists only when p < 0.
Within Fix(D;) it has eigenvalues

4

and ¢, and ¢3 are the roots of

L

&2 =90 (8391 — 130p) (13A +30p) (57A + 10p) = 0.

¢~ 35

They have negative real part for all values of A and p where the solution exists and hence

the solution branch is stable when A > — %p.

6. (The solution branch with D, symmetry) With the values of the coefficients (7.2.8) this

solution branch with two-armed spiral symmetry bifurcates from the solution with Dy x Z§
symmetry at A = — % p and joins the branch with O x Z; symmetry at A = — % p. Thus it
exists only when p < 0. Within Fix(Dy) it has eigenvalues

and ¢, and ¢3 are the roots of
1 1
2 —_— _—— =
-+ 106 (691 —220) ¢ 5 (112 +18p) (131 4+ 2p) = 0.

They have negative real part for all values of A and p where the solution exists and hence
the solution branch is stable when A > % p. Since the solution only exists when A > — % Y

and p > 0 the solution branch is always stable.

7. (The solution branch with D, symmetry) With the values of the coefficients (7.2.8) the
solution branch with one-armed spiral symmetry bifurcates from the solution branch with
DY symmetry when A = —3p and joins the branch with D¢ x Z$ symmetry at A = —3p.
It can be found that this solution branch is always unstable in Fix(D;) with one positive

and two negative eigenvalues for all values of A and p where it exists.

The bifurcation diagram for p < 0 is as in Figure 7.5. There are no bifurcations when p > 0 and
the only solution branches that exist for these values of p are the axial solution branches. This
can be seen from the gyratory bifurcation diagram in Figure 7.6. In these bifurcation diagrams,
and all subsequent bifurcation diagrams in this thesis, a solid line indicates a solution which is
stable within Fix(D,) and a dashed line indicates an unstable solution branch. The signs (e.g.
+ + —) next to the branch indicate the signs of the real parts of the eigenvalues on this branch.
In addition, in all bifurcation diagrams in this chapter only one copy of each branch of solutions

occurs. This is because all branches with the same symmetry have the same L, norm.

Example 7.2.4 (Solutions with D, symmetry exist and are stable). Suppose that

1
m=-1 w=-1 pi=-3 p=-1, (7.2.12)
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L?-norm

Figure 7.5: Bifurcation diagram for the system (7.2.9)—(7.2.11) when p < 0. The branch of so-
lutions with Dy (one-armed spiral) symmetry is always unstable and the solution
with ]?4 (two-armed spiral) symmetry is always stable. All bifurcations are pitch-
fork bifurcations. Note that the L2 norm of the solution x = (a,b,c) is given by
|x||> = a* + b? + c. The diagram is not to scale but the relative sizes of the L?

norms are shown.

Mm=5 N=5 (51:@, 02 =75, (53:—5-

In the restriction of the equivariant vector field to Fix(f)vz) we have

1 1
i = Aa—2a%+ gub2 + gacz (7.2.13)
b = (A+p)b— %zﬁ — 19ba® — Zbcz (7.2.14)
. B 108 2 3
¢ = (A+p)c 20° = ca 2cb . (7.2.15)

As for the previous example, we use the results of Section 7.2.1 to see where the solutions
with submaximal symmetry can exist in (7.2.13)—(7.2.15) and we investigate the stability within

Fix(D,) of all solution branches.

e~ —~—

1. (The solution branch with Dy x Z5 symmetry) Since D4 X Zj is an axial isotropy sub-
group there is always a branch of solutions with this symmetry bifurcating from A = 0.
With the values of the coefficients (7.2.12) the solution branch bifurcates supercritically so

exists when A > 0. Within Fix(D>) it has eigenvalues

17 93
G=-20 G=-gAtp G=-pghte

Thus the solution branch is stable when A > % o and undergoes stationary bifurcations

atA = %pand)\: 12—7p.
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A B C D E F G H 1 J K
Figure 7.6: The top diagram is an unfolding diagram showing the lines on which bifurcations of

the solution branches occur in Example 7.2.3 as the circle around the codimension 2
point, A = p = 0, is traversed. The gyratory bifurcation diagram at the bottom of this
figure shows the solution branches and their stability in Fix(D,). All bifurcations are

pitchfork bifurcations.
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2. (The solution branch with O(2) x Z5 symmetry) With the values of the coefficients
(7.2.12), this solution branch bifurcates supercritically from A = —p so exists when A >

—p. Within Fix(Dy) it has eigenvalues

1 8
G=-2004p)  G=g5(TA+100) L=z (A+p).
It undergoes a stationary bifurcation at A = —%p but always has at least one positive

eigenvalues and so is always unstable.

3. (The solution branch with O x Z§ symmetry) With the values of the coefficients (7.2.12),

this solution branch bifurcates supercritically from A = —p. Within Fix(D>) it has eigen-
values 1

G1="2+p) =57 (9A+20)  G=5(A+p).
It undergoes a stationary bifurcation at A = —%p but always has at least one positive

eigenvalues and so is always unstable.

4. (The solution branch with D:>\<_/Z§ symmetry) With the values of the coefficients (7.2.12),
this solution branch bifurcates supercritically from A = —p. Within Fix( D,) it has eigen-

values

g1=-2(A+p) 5222(7)\7%7) 53:—%(7“#7)-

Thus the solution branch is stable when A < — % p.

5. (The solution branch with 1571 symmetry) With the values of the coefficients (7.2.12), this

solution branch bifurcates from the solution with O(2) x Z; symmetry at A = —% p and

joins the branch with Dy x Z§ symmetry at A = %p. Thus it exists only when p > 0.
Within Fix(D;) it has eigenvalues

8
61 = —5(5)\_10) =0
and ¢ and &3 are the roots of
2~ L (56270 — 7900) & — —7 (791 +10p) (937 — 10p).
860 36980

They have negative real part for all values of A and p where the solution exists and hence
the solution branch has three eigenvalues with negative real part when A > %p. However

the branch only exists when A < % p so the solution branch is always unstable.

6. (The solution branch with Dy symmetry) With the values of the coefficients (7.2.12),

this solution branch with two-armed spiral symmetry bifurcates from the solution with

—_~—

O x Zj symmetry at A = —% p and joins the branch with Dy x Z§ symmetry at A = % p.
Thus it exists only when p > 0. Within Fix(D;) it has eigenvalues

8

&=~ (11— p)

and ¢, and ¢3 are the roots of

1

1
& - 36 (2514 = 380) & — 2 (194 +2p) (174 = 20) = 0.
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They have negative real part for all values of A and p where the solution exists and hence

the solution branch is stable when A > 11—3 0.

7. (The solution branch with D, symmetry) With the values of the coefficients (7.2.12), the

solution branch with one-armed spiral symmetry bifurcates from the solution branch with

D¢ X Z§ symmetry when A = —%p and joins the branch with D, symmetry at A = 11—3p.
It can be found that this solution branch has one real negative eigenvalue and a complex
conjugate pair with negative real part in Fix(D,) for all values of A and p where it exists.

Hence the solution is stable in Fix(D).

The bifurcation diagram for p > 0 is as in Figure 7.7. There are no bifurcations when p < 0 and
the only solution branches that exist for these values of p are the axial solution branches. This

can be seen from the gyratory bifurcation diagram in Figure 7.8.

A

L?-norm

-0 30 —®%e  —he 0 5P 350 o A
Figure 7.7: Bifurcation diagram for the system (7.2.13)-(7.2.15) when p > 0. The branch of

solutions with D, (one-armed spiral) symmetry is always stable and the solution
with ]3:1 (two-armed spiral) symmetry is stable for some values of A and p. All
bifurcations are pitchfork bifurcations. Note that the L2 norm of the solution x =
(a,b,c) is given by ||x||?> = a? + b% + c2. The diagram is not to scale but the relative

sizes of the L2 norms are shown.
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A
1
J 2
N
N
O
H /\:%P
SO A=
. — F A=t
A=0 P, Er=o0
&D )‘:712-9P
e A=-%p
Boa=—jp
4
N
A
©
A
0(2) x Z§
Dg x Z5

A B C D E F G H 1 J K
Figure 7.8: The top diagram is an unfolding diagram showing the lines on which bifurcations of

the solution branches occur in Example 7.2.4 as the circle around the codimension 2
point, A = p = 0, is traversed. The gyratory bifurcation diagram at the bottom of this

figure shows the solution branches and their stability in Fix(D;). All bifurcations are

pitchfork bifurcations.
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Example 7.2.5 (Solutions with spiral symmetry in the Swift-Hohenberg equation on a sphere
of radius near 3). Recall that in Section 6.4.2 we found that for the Swift-Hohenberg equation
(6.4.1) on a sphere of radius R = 3 + €2R; the relevant representation of O(3) is the represen-
tation on V @ V5 and the critical value of the parameter y is §. We computed that the values of

the coefficients in the equivariant vector field are

15 6 3 1

8
Hx = H2 — ERZ/ M=o p1 = T M T @ T (7.2.16)

SR ) S R N YR NS A S B
Py =H2 T op ™2 B2 = T P27 Tgen 1T T 2860n” P T dan 37 T22n
where y = % + €%up. Let jix = A then juy = A + p where p = 8 R,. Substituting these values into

equations (7.2.5)—(7.2.7) we have

15 5 , 23 ,

. _ _ 3 _ _
a = Aa —147Ta 7227ra —447Tac (7.2.17)
. 315 , 15, 371,

_ B N AN 721
b (A+p)b = oge b = 5p b7 — 5750 (7.2.18)
, 1687 5 23 , 371 ,

_ B _ B 281 o 721
¢ (A tp)e = 2560 ~ 22" " 2862 (7.2.19)

As for the previous examples, we use the results of Section 7.2.1 to see where the solutions with
submaximal symmetry can exist and we investigate the stability within Fix(D;) of all solution

branches.

—_~—

1. (The solution branch with Dy x Z5 symmetry) Since D4 x Z§ is an axial isotropy sub-

group there is always a branch of solutions with this symmetry bifurcating from A = 0.
With the values of the coefficients (7.2.16) the solution branch bifurcates supercritically so

exists when A > 0. Within Fix(D,) it has eigenvalues

4 4
Gi=-20  G=pAtp G=qoAte
When p > 0 the branch is unstable but when p < 0 it is stable when A < — 14—1 p. There are
stationary bifurcations when A = — %p and A = — 14@ p-

2. (The solution branch with O(2) x Z5 symmetry) With the values of the coefficients
(7.2.16) this solution branch bifurcates supercritically from A = —p so exists when A >

—p. Within Fix(Dy) it has eigenvalues

24
G=—2A+p) L= 1637 (1921 — 1495p) 0= "% (A+p).
The eigenvalues &1 and {3 are always negative. There is a stationary bifurcation at A =

%p when p > 0 and this solution is stable when A < %p.

3. (The solution branch with O x Z§ symmetry) With the values of the coefficients (7.2.16)
this solution branch bifurcates supercritically from A = —p. Within Fix(D,) it has eigen-

values . o
G1=-201+p)  G=570BA-18p)  G=—z(A+p).

The eigenvalues ¢ and ¢3 are always negative. There is a stationary bifurcation at A = %p

when p > 0 and this solution is stable when A < %p.
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4. (The solution branch with Dg x Z§ symmetry) With the values of the coefficients (7.2.16)
this solution branch bifurcates supercritically from A = —p. Within Fix(D,) it has eigen-
values

G1=-2(A+p) ¢ 9\ — 26p) Csz%(A+p)~

2= 55 (
This branch of solutions always has at least one positive eigenvalue so it is always unsta-

ble. It undergoes a stationary bifurcation at A = 2§p where ¢, = 0.

5. (The solution branch with ]/)Ti symmetry) With the values of the coefficients (7.2.16) this

solution branch bifurcates from the solution with O(2) x Z, symmetry at A = 1£2p when

p > 0 and the branch with Dy x Z§ symmetry at A = — 150 when p < 0. Within Fix(D5)

it has eigenvalues

4

and ¢, and ¢3 are the roots of

2 1
2 _c RN B _
G+ g (96070 + 70400) & + = (1921 — 1495p) (41 + 165p) = 0.

They have negative real part for all values of A and p where the solution exists and hence

the solution branch is stable when A < % o.

6. (The solution branch with D, symmetry) With the values of the coefficients (7.2.16)
this solution branch with two-armed spiral symmetry bifurcates from the solution with

O x Z; symmetry at A = %p when p > 0 and the branch with Dy x Z5 symmetry at
A = —11p when p < 0. Within Fix(D,) it has eigenvalues

4
¢1= 75 (6A —p)

and ¢, and ¢3 are the roots of
5 2 1

They have negative real part for all values of A and p where the solution exists and hence
the solution branch is stable when A > % p. Since the branch only exists when A > % p it

is always stable.

7. (The solution branch with D, symmetry) With the values of the coefficients (7.2.16) the

solution branch with one-armed spiral symmetry bifurcates from the solution branch with

D¢ x Z5 symmetry when A = 29—6 p and the branch with ]571 symmetry at A = %9 © when

p > 0. The branch only exists for positive values of p. It can be found that this solution
branch has one positive and two negative eigenvalues in Fix(D,) for all values of A and

p where it exists. Hence the solution is unstable.

The bifurcation diagram when p > 0 is as in Figure 7.9 and the bifurcation diagram when p < 0
is as in Figure 7.10. We can combine these bifurcation diagrams into a gyratory bifurcation
diagram as in Figure 7.11. Note that these bifurcation diagrams are qualitatively the same as

those for Example 7.2.3.
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T 0(3) x 2,

w0 Ko Fo 2P e A

Figure 7.9: Bifurcation diagram for the Swift-Hohenberg equation in Fix(D) for the represen-

L?*norm

tation on V, @ V3 when p > 0. We find that the solution with the symmetry group
of a one-armed spiral, D,, is unstable where it exists. The solution with the sym-
metry group of a two-armed spiral, Dy, is always stable. All bifurcations are pitch-
fork bifurcations. Note that the L? norm of the solution x = (a,b,c) is given by
|x||> = a® + b? + 2. The diagram is not to scale but the relative sizes of the L?

norms are shown.

11 _ 165

0 —zpP P )L
Figure 7.10: Bifurcation diagram for the Swift-Hohenberg equation in Fix(D;) for the represen-

tation on V, @ V3 when p < 0. We find that the solution with the symmetry group
of a one-armed spiral, ]32, does not exist but a stable solution with ]i does exist
when A > — 14—1p and is always stable. All bifurcations are pitchfork bifurcations.
Note that the L2 norm of the solution x = (a,b, c) is given by ||x||> = a? + b? + 2.

The diagram is not to scale but the relative sizes of the L? norms are shown.
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A B c D E F ¢ H I J K
Figure 7.11: The top diagram is an unfolding diagram showing the lines on which bifurca-

tions of the solution branches occur for the Swift-Hohenberg equation as the circle
around the codimension 2 point, A = p = 0, is traversed. The gyratory bifurcation
diagram at the bottom of this figure shows the solution branches and their stability

in Fix(D,). All bifurcations are pitchfork bifurcations.
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Remark 7.2.6. We have found that for the Swift-Hohenberg equation on a sphere of radius
near 3, and with the parameter y near %, solutions with the symmetries of one- and two-armed
spirals can exist for some values of A and p = ng. Recall that the relationships between the
parameters A and p and the radius of the sphere R and the parameter y in the Swift-Hohenberg
equation (6.4.1) are given by

R=3+¢€’R, and yz+62y2:;+62<)\+287R2>=;+62(/\+;p>.
By restricting the O(3) x Z; equivariant vector field for the representation of O(3) x Z, on V, &
V3 to the invariant subspace Fix(D, ) we have been able to find explicit expressions for the seven
branches of solutions which exist within this subspace and determine their stability within this
subspace. We have found that although a one-armed spiral pattern with D, symmetry can exist
for some values of the parameters A and p, the solution is not stable in this subspace. We have
also found that two-armed spiral patterns with Dy symmetry can exist for some values of the

parameters A and p and moreover these solutions are stable within the subspace Fix(D5).

Sufficiently close to the codimension 2 point A = p = 0, numerical simulations of the Swift—
Hohenberg equation (6.4.1) in the subspace Fix(D5) on a sphere of radius near 3 agree with the
analytical results above. With initial conditions within the invariant subspace Fix(D;) we can
find the stable solution branches and bifurcation points as in Figures 7.9 — 7.11 by varying the

values of p and A.

However, if the initial conditions are random in the whole 12-dimensional space V, @ V3 then
the simulations lead us to believe that a solution with symmetry group Dj (see Table 6.9) may
be stable in the whole space. These solutions have the symmetries of the ‘tennis ball’ pattern
as discovered in the numerical simulations of Matthews [65]. We now investigate the stability
of this solution analytically in the whole space, V, @ V3 and also compute all of the eigenvalues
of the solution with D symmetry to determine if two-armed spirals can be stable in the whole

space for the Swift-Hohenberg equation.

Stability of two-armed spirals in V, @ V3 for the Swift-Hohenberg equation

In Example 7.2.5 we found that in Fix(D;) the solution with the symmetries of a two-armed
spiral on a sphere, Dy, is stable in the Swift-Hohenberg equation for all values of the bifurcation
parameters A and p where it exists. We now investigate whether this solution is stable in the

whole space V, @ V3 for any values of A and p.

To do this we must compute the values of the nine eigenvalues in the complement of Fix(D>).

We find that four of these eigenvalues are the roots of

2
[425250@2 + 405 (2124 +451p) & + 126 (A — p) (2376 + 4329p)} =0

so the eigenvalues are double and for all values of A and p where the solution exists 2124\ +
451p > 0 and 126 (A — p) (2376A 4 4329p) > 0 so the eigenvalues always have negative real
part.
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Another of the eigenvalues is

2
§ =5z (27A+13p)

which is negative for all values of A and p where the solution exists. The four other eigenvalues
are zero. Of these only three are forced to be zero by symmetry so one of them would be found
to be nonzero if we were to consider a higher order truncation of the equivariant vector field.
Hence it may be possible for this solution to be stable in the Swift-Hohenberg equation on a
sphere with radius near 3, depending on the values of coefficients of fifth order terms in the
equivariant vector field. However, numerical simulations suggest that the solution is in fact
unstable. Small perturbations from this solution lead the system to prefer a solution with Df

symmetry. We now consider the stability of this ‘tennis ball solution” with symmetry group Di.

Stability of tennis ball pattern in V, @ V3 for the Swift-Hohenberg equation

Numerical simulations of the Swift-Hohenberg on a sphere of radius approximately 3 with
random initial conditions i.e. starting at any pointin V, @ V3, lead us to believe that the solution
with D{ symmetry is stable when it exists. This solution has the symmetries of a tennis ball as

found in the numerical simulations of Matthews [65]. Such a pattern is shown in Figure 7.12.

N -

Figure 7.12: Images of a pattern with DZ symmetry viewed (a) from the top and (b) from the

side.

The subgroup D C O(3) x Z; is certainly an isotropy subgroup in this representation (see
Table 6.9). We now confirm analytically, up to a degeneracy in one eigenvalue, that this solution

is indeed stable in V, & V3 at cubic order.

Recall from Table 6.9 that
Fix(DZ) ={(0,0,4,0,0; 0,ib,0,0,0, —ib,0)} (7.2.20)

where a,b € R. We find that in the subspace Fix(D4) the equivariant vector field on V» ® V3
with the Swift-Hohenberg coefficients (7.2.16) reduces to

A _ o3 1o o

a = Aa T 227_(6117 (7.2.21)
_ 315 5, 15 ,

b = (A+p) 2867tb 1z b. (7.2.22)

These equations have a fixed-point solution with DZ symmetry given by

a* = %7‘[ (8A —13p) v 4)A +11p)

_ 286
- 525
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which exists when p > 0and A > %p orp<OandA > 714—1;).
The nonzero eigenvalues of this solution in V, ® V3 are the roots of quadratic equations
FZ+BE+C=0

and so have negative real part when B > 0 and C > 0. The quadratic equations are as follows.

e Two eigenvalues are the roots of
1575¢2 + 30 (1091 + 18p) & + 26 (4A + 11p) (10A — 11p) = 0.

Since when the solution with D symmetry exists

18

and (41 +11p) (10A —11p) > 0,
the roots always have negative real parts.

e Another two eigenvalues are the roots of
3502 +2 (431 +220) & + (4A + 11p) (81 — 13p) = 0.

Since when the solution exists

A > —%p and (41 +11p) (8A —13p) > 0,

the roots always have negative real parts.

e There are double eigenvalues which are the roots of
157508 + 15 (2012 + 633p) & + 2 (3764 +299p) (137 — 8p) = 0.
Since when the solution exists
A>——p and (376A +299p) (131 —8p) >0,

the roots always have negative real parts.

Hence all of the non-zero eigenvalues have negative real part for all values of A and p where the
solution exists. We find that there are four zero eigenvalues using the cubic order truncation
of the equivariant vector field on V, @ V3. However only three of the four zero eigenvalues
are forced to be zero by symmetry. The other eigenvalue would be found to be non-zero if
we were to consider a higher order truncation of the equivariant vector field. Hence, as for
the solution with D, symmetry, it may be that this solution is stable in the Swift-Hohenberg
equation on a sphere with radius near 3, depending on the values of coefficients of fifth order
terms in the equivariant vector field. Numerical simulations indicate that this solution is stable
to any perturbation in V, @ V3. This suggests that the final eigenvalue which depends on the

fifth order coefficients has negative real part when the solution exists.

195



7.2. SPIRAL PATTERNS WITH SYMMETRIES CONTAINED IN O(3) x Z;

7.2.2 Spiral patterns in the representation on V3 @ V,

We next consider spiral patterns which can exist in the O(3) x Z; equivariant vector field for
the representation on V3 @ Vj as computed in Section 6.3.6. The existence of solutions with the
symmetries of the axial isotropy subgroups in this representation is guaranteed by the equivari-
ant branching lemma (Theorem 2.4.6) and solutions with the symmetries of the other isotropy
subgroups may exist depending on the values of the coefficients in the equivariant vector field.
By Proposition 7.1.1 the twisted subgroups D5, D, and Dy are isotropy subgroups in this rep-
resentation. These are the symmetry groups of the most symmetric one-, two- and three-armed
spiral patterns on the sphere respectively. We will determine if patterns with these symmetries
can exist for any values of the coefficients in the O(3) x Z; equivariant vector field and if so,
we compute how these solutions bifurcate from other solutions. To do this we will study the
equilibria in the restriction of the vector field to Fix(D;). These solutions have the symmetries

of the isotropy subgroups which contain D,. We begin by computing these isotropy subgroups.

Isotropy subgroups of O(3) x Z; in the representation on V3 @ V,; which contain D,

As discussed in Section 6.2.2, for the reducible representation of O(3) x Z; on V3 @ V; the axial
isotropy subgroups are precisely the axial isotropy subgroups for the irreducible representa-
tions of O(3) x Z, on V3 and Vj as found in Examples 6.2.6 and 6.2.7. Using Table 6.7 and
the massive chain criterion (Theorem 3.4.1) we can compute that the isotropy subgroups of
O(3) x Z; in the representation on V3 & V4 which contain D, are as in Table 7.2. Note that D,

itself is an isotropy subgroup with
Fix(D,) = {(0,4,0,b,0,4,0; ic,0,id,0,0,0, —id, 0, —ic) } (7.2.23)
for the copy of D, which is given by
D; = ( (R, 1), (R%,1)).

The one-armed spiral with this symmetry spirals between the two points on the surface of the
sphere which lie on the y-axis. In Table 7.2, for each isotropy subgroup H?, we give the form
of the invariant subspace Fix(H?) which is contained in Fix(D,) as above. The copy of Fix(Dy)
given in Table 7.2 is that of a two-armed spiral with tips at the poles whereas the copy of Fix(Ds)
contained in Fix(D5) as in (7.2.23) defines a three-armed spiral which, like the one-armed spiral,

has its tips on the y-axis.

The section of the lattice of isotropy subgroups of O(3) x Z; in this representation including

only those isotropy subgroups with contain D5 is as in Figure 7.13.

The restriction of the equivariant vector field to Fix(]iz)

To discover whether it is possible for solutions with the symmetries of one-, two- and three-

armed spirals (D, Dy and Dy respectively) to exist in the equivariant vector field (6.3.24)—
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Isotropy H K Fixed-point subspace
subgroup H
O x Z5 0% 7§ o- {(0,4,0,0,0,a,0; 0,0,0,0,0,0,0,0,0)}
0(2) x Z§ 02)x7Z5 0(2)" {(0,0,0,,0,0,0; 0,0,0,0,0,0,0,0,0)}
7 3 3 .

(Do X Z5)py D x Z5 D! {(0,,/ﬁb,0,b,0,,/ﬁb,0, 0,0,0,0,0,0,0,0,0)}
D, x Z5 DixZ5 DyxZ§ {(0,0,0,0,0,0,0; 0,0,id,0,0,0, —id,0,0)}
(Ds X Z%)pyxzs Do xZ5 DyxZ {(0, 0,0,0,0,0,0; ic,0,/7ic,0,0,0, —/7ic, 0, —ic)}
Ds x Z5 DsxZ5 Dy xZ§ {(0,0,0,0,0,0,0; ic,0,0,0,0,0,0,0, —ic) }

(D2 X Z5)p; D, x Z5 D3 {(0,8,0,6,0,4,0 ; 0,0,0,0,0,0,0,0,0)}
(D2 X Z%)7,x2s DaxZ5  Zyx 75 {(0,0,0,0,0,0,0; ic,0,id,0,0,0, —id, 0, —ic)}

Ds Ds D; { (0, \/ 5b,0,b,0,4/ 36,0 ic,0,v/7ic,0,0,0, —V/7ic, 0, —ic) }

D, D, D, {(0,4,0,0,0,a,0; 0,0,id,0,0,0,id,0,0)}

D! D! D3 {(0,0,0,6,0,0,0; ic,0,0,0,0,0,0,0, —ic)}
(DY) D! D3 {(0,0,0,b,0,0,0; 0,0,id,0,0,0, —id,0,0) }
(155{)21 D! z; {(0,2,0,0,0,2,0; ic,0,0,0,0,0,0,0, —ic)}

D, D, Z, {(0,4,0,6,0,a,0; ic,0,id,0,0,0, —id, 0, —ic) }

Table 7.2: Isotropy subgroups of O(3) x Zj in the representation on V3 & V; which contain D,.

(6.3.25) we consider the restriction to the subspace Fix(Dy) given by (7.2.23) where

i = pea+ (2a; —5071)a® + (a1 + 1591 )ab® 4 (281 — 4207, + 5673 — 14074)ac?

+(2B1 — 32073 4 2673 — 1407, )ad? + (272 — 73 + 474)V/210bcd (7.2.24)
b = xb+ (207 +3071)ba® + (a1 — 991)b° + (281 — 33677 + 423 — 25274) bc?

+(2B1 — 3247y, + 247y3 — 1087,4)bd? + 2(275 — 3 + 474 )V210acd (7.2.25)
¢ = pyc+2paca® + (By + 76 + 75+ 2184)ch? + 2ar¢> + (20 — 28057 )cd>

+(0y 4 83 — 84)V/210abd (7.2.26)
d = pyd+ (282 + 600 + 3005 + 1004)da’ + (B2 + 165, + 1653)db* + (2a — 28061 )dc?

+(2ay — 24068, )d® + (6, + 63 — 84)V/210abc (7.2.27)

As for the representation on V, @ V3, these equations have residual symmetry
N(D,)/Dy = Dy X Z§ X Zy /Do = Zy x Zy X Zs,

so if solutions with D, symmetry exist then there are [N(D,)/D,| = 8 equivalent solutions
within Fix(D5).

As in the case for the representation on V, @ V3, we assume that i = A and p, = A + p. Then
the trivial solution is stable when A < min(0, —p). At A = 0 the { = 3 modes become unstable
and the equivariant branching lemma guarantees that the unrestricted system (6.3.24)—(6.3.25)
has solution branches with the symmetries of axial isotropy subgroups of O(3) x Z, in the
representation on V3 which bifurcate at A = 0. Similarly at A = —p the { = 4 modes become
unstable and solution branches with the symmetries of axial isotropy subgroups of O(3) x Z;

in the representation on V} bifurcate.
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0O(3) xZ,
0x 7§ 0(2) x 5 (Dg x Z5) s Dy x Z5 (D X Z5)py s D x Z5
(D2 X Z5)p; (D)7, D D D, (D9)ps (D2 X Z5) 7, %7
D,

Figure 7.13: The lattice of isotropy subgroups of O(3) x Z, which contain D, for the represen-
tation on V3 & Vj.

It is possible to find analytic expressions for solutions to (7.2.24)—(7.2.27) with the symmetries

of all isotropy subgroups in Table 7.2 with the exceptions of (D;_;/Zg) ZoxZ5) (D;_>\<_/Z§)D§ and

D,. Solutions with (D?>\</Z§) z,x25 of (D2 X Z5)p; symmetry do not exist; every solution in
Fix((Di/;\:Zﬁ) z,xz5) has (D6/>\</Z§)D3X z5 symmetry and every solution in FiX((D;—;/ZS)Dé)
has (D¢ x Zg)Dg symmetry. Solutions with D, symmetry do exist but unfortunately, unlike the
case for the representation on V, @ V3, we are not able to find an expression for the equilibrium
solutions to (7.2.24)—(7.2.27) with D, symmetry. To find solutions with D, symmetry and their
stability within Fix(]iz) it is necessary to use a numerical branch continuation package such as
AUTO. This requires us to give values for the coefficients a1, a2, 81, B2, Y1, Y2, Y3, V4, 01, 62, 63
and dy.

In Example 7.2.7 we will consider the system (7.2.24)—(7.2.27) with the values of the coefficients
which we computed in Section 6.4 for the Swift-Hohenberg equation on a sphere of radius

approximately 4.

Example 7.2.7 (Solutions with spiral symmetry in the Swift-Hohenberg equation on a sphere
of radius near 4). Recall that in Section 6.4.2 we found that for the Swift-Hohenberg equation
(6.4.1) on a sphere of radius R = 4 + €%R; the relevant representation of O(3) is the representa-
tion on V3 ® Vy and the critical value of the parameter u is 11—6. We computed that the values of

the coefficients in the equivariant vector field are

175 735 7

3
Px = P2 — RRz, M= e p1 = 5 M= 28600 (7.2.28)

! - 7 o SR 6615
28607" BT "1 4T T 28e0n M T 2T 160 27 Topan

Y2 =
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315 27 3
= 2 =

3
Pr= 5 O = 310347 03 = and 04 =0.

286 T 1437

Let pty = A then py = A + p where p = %Rz. Substituting these values into equations (7.2.24)-
(7.2.27) we have

a = Aa— 235’51657ra3 — 5?;7217Tab2 — 2?;316571M2 — 228265nad2 + i@bcd (7.2.29)
b = Ab— 2266%; 3 — 2‘:’376; a® — %bcz — ;glégnbdz + i@acd (7.2.30)
¢ = (A+p)c— 4%661257_[c3 — 2:;1657_[012 — %c 2 4256325716d2 BZ\gZ?abd (7.2.31)
d = (A+p)d— ;%ii 3 — 2226‘1@2 - 52712151192 — 42563;518 + 3@ abe.  (7.2.32)

We now find the solutions of (7.2.29)—(7.2.32) for which there are explicit expressions. We com-
pute their stability in Fix( D5) and expect to find bifurcations where it is possible that a solution

with D, symmetry may be created.

1. (The solution branch with O/;i; symmetry) Since O x Zj is an axial isotropy sub-
group, a branch of solutions with this symmetry bifurcating from A = 0 is guaranteed to

exist by the equivariant branching lemma. It is givenby b = c =d = 0 and

286
2 _
"= TTA.
The solution branch bifurcates supercritically so exists when A > 0. Within Fix(D,) it has
eigenvalues
o 8 _ (22 +7p)
G=-20 GL=-ph G=p G-t

When p > 0 the branch is unstable but when p < 0 it is stable when A < —% p. There are

stationary bifurcations when p = 0 and also when A = — % p for p < 0.

—_—~— —~—

2. (The solution branch with O(2) x Z§ symmetry) Since O(2) x Z is also an axial isotropy
subgroup a branch of solutions with this symmetry bifurcating from A = 0 is guaranteed
to exist. Itis givenby a = c = d = 0 and
2860

= Tear ™

The solution branch bifurcates supercritically so exists when A > 0. Within Fix(D) it has

b2

eigenvalues
- 24 _(46A +241p) (5921 +1687p)
=24 e=mopt 6= b= 1687
When p > 0 the branch is unstable but when p < 0 it is stable when A < —%p. There
are stationary bifurcations when A = — % pand A = —% p for p < 0.

3. (The solution branch with (Dmﬁ)pg symmetry) A branch of solutions with this sym-
metry is guaranteed to bifurcate from A = 0 since (DZ\X_/ZE)Dg is an axial isotropy sub-

group. Itis givenby c =d = 0,a = /b and

143
2 _
b = 14()7()\.
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The solution branch bifurcates supercritically so exists when A > 0. Within Fix(D) it has
eigenvalues

(2A +5p) (A+7p) ‘

G1=-21 o= )\ G3 = 5 G4 = 7

25

Since ¢1 and ¢ have opposite signs this solution can never be stable. When p < 0 there

are stationary bifurcations when A = — fp and A = —7p.

—_~—

. (The solution branch with D, x Z5 symmetry) A branch of solutions with this symmetry
is guaranteed to bifurcate from A = —p since D4 X Z is an axial isotropy subgroup. It is

givenbya =b =c = 0and
34034 (A +p)
39825\ TP

The solution branch bifurcates supercritically so exists when A > —p. Within Fix(D,) it

d2

has eigenvalues

8 _ (58)\ —119)

(45881 — 8687p)
205 AP G= 177

13275

f1=-2(A+p) G = G4 =

Since ¢7 and ¢ have opposite signs this solution can never be stable. When p > 0 there

are stationary bifurcations of this solution when A = 119 gpand A = igggp

. (The solution branch with (D?;_/Zg)mx 7 symmetry) Since (DZ_;/ZE)DSX z; is an axial
isotropy subgroup, a branch of solutions with this symmetry bifurcating from A = —p is
guaranteed to exist. It is givenby a = b = 0,d = v/7c and
2431
2 _
- = 2268071(/\+p).
The solution branch bifurcates supercritically so exists when A > —p. Within Fix(D,) it
has eigenvalues
- 1 ~ (1172 —34p) ~ (10A —17p)
= -200+p) D=y (A+p)  G= ol = 8 )
When p < 0 the branch is unstable but when p > 0 it is stable When A< i p There are

stationary bifurcations of this solution when A = ﬁp and A = ﬁ 40 for p < 0.

. (The solution branch with Dg x Z5 symmetry) Since Dg x Z§ is an axial isotropy sub-
group, a branch of solutions with this symmetry which bifurcates from A = —p is guar-

anteed to exist. It is givenby a = b = d = 0 and

4862
2
= ge5 A to)

The solution branch bifurcates supercritically so exists when A > —p. Within Fix(D) it

has eigenvalues

(4r —17p)

o) =T g VR0

g1=-2(A+p) Go = 315

49(

Since ¢1 and ¢ have opposite signs this solution can never be stable. When p > 0 there

are stationary bifurcations of this solution when A = p and A = 29241 0.
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7. (The solution branch with Dy symmetry) This solution with the symmetries of a three-
armed spiral is given by a = / %b and d = /7c where

_M3m(10A-17p) o 5 24317 (2A +50)

2
b 2352 ¢ 70560

and so it exists when p > 0and A > %p and also when p < 0and A > —%p. It bifurcates
from the solution with (Dg x ZE)D3X2g symmetry at A = %p when p > 0 and from the

solution with (Dg x ZE)Dg symmetry at A = —3p when p < 0.

Within Fix(Dj) it has eigenvalues

1
ffl:*@()\*P) gzzfﬁ(/\+34p)

and ¢3 and ¢4 are the roots of
2182 + 4 (13A +20) & +4 (10A — 17p) (24 +5p) = 0.

Since 13A +2p > 0 and (10A —17p) (2A +5p) > 0 for all values of A and p where the
solution exists, these eigenvalues always have negative real parts. We can see that {; < 0
when the solution exists and when p < 0 there is a stationary bifurcation at A = —34p
where it may be possible that a branch of solutions with D, symmetry bifurcates. This

solution branch is always stable when p > 0 and also when p < 0and A > —34p.

8. (The solution branch with D, symmetry) This solution with the symmetries of a two-

armed spiral is givenby b = ¢ =0,

14377 (58A — 119p) 243171 (2A + 7p)
2 _ 2 _
o 14490 and d 10350
and so it exists when p > 0and A > %p and also when p < 0and A > —Zp. It bifurcates

from the solution with Dy X Z§ symmetry at A = % o when p > 0 and from the solution

with O x Z§ symmetry at A = —%p when p < 0.

Within Fix(D;) it has eigenvalues which are the roots of the two quadratic equations

16122 + (3804 +203p) & + (581 — 119p) (2A +7p) =0 (7.2.33)
59512572 + 115 (13844 — 3551p) & + (2656A2 — 62368)p + 119476p2) =0. (7234

The roots of (7.2.33) always have negative real part for the values of p and A where the
solution exists. The eigenvalues resulting from (7.2.34) are zero when

A= <1949 i345\/%)p

166 332

Hence when p > 0 there are stationary bifurcations at these points where it is possible
for solutions with D, symmetry to bifurcate. This solution branch is always stable where
exists for p < 0 and when p > 0 it is stable when A > (% + g% 86) 0-

9. (The solution branch with ]/)v‘él symmetry) This solution is givenby a =d =0,

_ M3m(94A-21p) o 5 24317 (46 + 241p)

bZ
11487 344610
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and so it exists when p > 0 and )\/_?/%p and also when p < 0 and A > f%p. It

bifurcates from the solution with Dg x Z§ symmetry at A = %p when p > 0 and from

o\ o 241

the solution with O(2) x Z§ symmetry at A = — 50 when p < 0.

Within Fix(Dj) it has eigenvalues which are the roots of the two quadratic equations
8205¢2 + (18572 + 11327p) ¢ + (944 — 221p) (46A +241p) =0 (7.2.35)

628338972 — (415720 — 187621p) & — (188640/\2 + 346464\ p — 613836,02) =0. (7.2.36)

The roots of (7.2.35) always have negative real part for the values of p and A where the
solution exists. Equation (7.2.36) gives one positive and one negative eigenvalue for all
values of A and p where the solution exists and hence this solution branch is never stable

and undergoes no bifurcations.

(The solution branch with (DZ)DE symmetry) This solution is given by a = ¢ = 0,
2 1437t (45881 — 8687p) and £ — 24317 (5921 4 1687p)
N 644133 B 2760570
and so it exists when p > 0 and A %p and also when p < 0 and A > —%p. It
bifurcates from the solution with Dy x Z§ symmetry at A = 3225 when p > 0 and from
the solution with O(2) x Z§ symmetry at A = — 1885 when p < 0.

Within Fix(D;) it has eigenvalues which are the roots of the two quadratic equations

322066582 4 (7799378 + 3869978p) & + (592A + 1687p) (45881 — 8687p) = 0 (7.2.37)

2822498787¢% — 61346 (6919) — 143240) &
-~ (18727920/\2 + 973505521 — 239976828p2> -0 (7238

The roots of (7.2.37) always have negative real part for the values of p and A where the

solution exists. The eigenvalues resulting from (7.2.38) are zero when

A= ( 36543, 1 \/3868479589) p=Mp.

14060 ~ 14060

Of these two points, the solution only exists at A = A* p when p < 0. There is a stationary
bifurcation at this point where it is possible for solutions with D, symmetry to bifurcate.

This solution branch is stable when p < 0 and A < A* p.

(The solution branch with (D) z; symmetry) This solution is givenby b =d =0,
1437 (4A —17p) 24317p
2 _ 2 _
o 630 and €= 550

—_~—

and so it exists when p > 0 and A > 14—7p. It bifurcates from the solution with Dg x Z5

symmetry at A = %p when p > 0 and from the solution with (D/x\ig symmetry at p = 0.

Within Fix(Dy) it has eigenvalues which are the roots of the two quadratic equations
FE42MA+p)E+p(4A—17p) =0 (7.2.39)
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31582 — 2 (17A 4 152p) & — (16/\2 — 88Ap — 68p2) = 0. (7.2.40)

The roots of (7.2.39) always have negative real part for the values of p and A where the

solution exists. The eigenvalues resulting from (7.2.40) are zero when
1 3
A= (—x-V21)p.

Of these two points, the solution only exists at A = (% +3v 21) o when p > 0. There is
a stationary bifurcation at this point where it is possible for solutions with D, symmetry

to bifurcate. This solution branch is never stable.

Images of solutions with each of these symmetry types and also a solution with D, symmetry

are shown in Figure 7.14.

We have found seven stationary bifurcations from which it may be possible for a solution with
D, symmetry to bifurcate. Four of these bifurcations occur for p > 0 and the other three occur
when p < 0. We can now use AUTO to locate these branches of solutions and compute their
stability within Fix(D,). We find that the bifurcation diagram for p > 0 is as in Figure 7.15
and the bifurcation diagram for p < 0 is as in Figure 7.16. We can combine these bifurcation

diagrams into a gyratory bifurcation diagram as in Figures 7.17 and 7.18.

Remark 7.2.8. We have found that for the Swift-Hohenberg equation on a sphere of radius
near 4 and with the parameter y near 11—6, solutions with the symmetries of one-, two- and
three-armed spirals can exist for some values of A and p = 1R,. Recall that the relationships
between the parameters A and p and the radius of the sphere R and the parameter u in the
Swift-Hohenberg equation (6.1.1) are given by
R=4+€’R;y and y:116+€2;42:116+62(/\+136R2>:1164—62(/\4—:,0).

By restricting the O(3) X Z; equivariant vector field for the representation of O(3) x Z; on
V3 @ Vy to the invariant subspace Pix(f)vz) we have been able to find explicit expressions for
eleven types of solution branches which exist within this subspace and determine their stability
within this subspace. Solutions with D, symmetry and their stability were found using the

numerical branch continuation package AUTO.

We have found that it is possible for solutions with the symmetries of one, two and three-
armed spiral patterns to exist and that each of these solution types can be stable within Fix(l?z)

for some values of the parameters A and p.
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D; (i) D; (ii)

Figure 7.14: Images of solutions to (7.2.24)—(7.2.27). These solutions all have symmetry groups
containing Dy. In some cases two views of the solution are given to fully describe

the symmetries.
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Figure 7.15: Bifurcation diagram for the Swift-Hohenberg

bifurcations.
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when p > 0. All bifurcations are pitchfork
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Figure 7.16: Bifurcation diagram for the Swift-Hohenberg equation in Fix(D5) for the representation on V3 & V4 when p < 0. All bifurcations are pitchfork

bifurcations with the exception of the bifurcation at A = —34p which is transcritical.
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Figure 7.17: Unfolding diagram for the Swift-Hohenberg equation in Fix(D,) for the represen-
tation on V3 @ V4. This diagram shows the lines on which bifurcations of the so-

lution branches occur as the circle around the codimension 2 point, A = p = 0, is

traversed.
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7.2. SPIRAL PATTERNS WITH SYMMETRIES CONTAINED IN O(3) x Z;

Sufficiently close to the codimension 2 point A = p = 0, numerical simulations of the Swift—
Hohenberg equation (6.1.1) in the subspace Fix(D5) on a sphere of radius near 4 agree with the
analytical results above. With initial conditions within the invariant subspace Fix( D,) we can
find the stable solution branches and bifurcation points as in Figures 7.15 — 7.18 by varying the

values of p and A.

7.2.3 Conclusions on stationary spirals in the Swift-Hohenberg equation

In Examples 7.2.5 and 7.2.7 we have seen that it is possible for spiral patterns with symmetries
D,,,, contained in the group O(3) x Z; to exist in the Swift-Hohenberg equation on spheres of
radius near 3 and 4 where the relevant representations of O(3) x Z; areon V, & Vz and V3 & Vy

respectively.

We have found that in the representation on V, @ V3, two-armed spirals can exist and are stable
to perturbations within the subspace Fix(D) for all values of A and p where the solution exists.
We have also seen that it may be possible for these solutions to be stable in the whole space
V2 @ V3 depending on the values of coefficients of order 5 terms in the equivariant vector field.

In addition we found that one-armed spirals can exist, although they are never stable.

In the representation on V3 @ V,; we found that it is possible for solutions with the symmetries
of one, two and three-armed spiral patterns to exist. We have found that each of these solution

types can be stable within Fix(D5) for some values of the parameters A and p.

Numerical simulations in MATLAB of the Swift-Hohenberg equation (6.1.1) on spheres of radii
near 3 and 4 agree with these analytical results sufficiently close to the codimension 2 point
A = p = 0. Furthermore, simulations on spheres of larger radii suggest that one-armed spirals
in particular exist and may be stable to any small perturbations. For example, the pattern
shown in Figure 7.19 results from a simulation with random initial conditions on a sphere of
radius R = 6.01 and p = 0.25.

—
o —
—
~

—

Figure 7.19: One-armed spiral solution resulting from numerical simulation of Swift—
Hohenberg equation (6.1.1) with R = 6.01 and y = 0.25.

We now wish to discover whether the spiral patterns with symmetry groups Dy, contained in
O(3) x Z; which we have found in the representations on V, & V3 and V3 & Vj can persist as

solutions with less symmetry when the symmetry is weakly broken from O(3) x Z; to O(3).
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7.3 Persistence of symmetric spiral patterns under forced sym-

metry breaking

In Section 7.2 we found several spiral patterns with symmetries D,,, C O(3) x Z, which can
exist on the sphere, both generically and in specific examples including the Swift-Hohenberg
equation. These patterns all have the symmetry (7.1.3) which means that the areas on the sur-
face of the sphere where the pattern function, w(0, ¢, t), is positive and negative are of identical
size and shape. We now consider what happens to spiral patterns with D,,, symmetry when
the overall symmetry of the system is slightly broken from O(3) x Z; to O(3). Can spiral

patterns with Ds,, symmetry persist as spiral patterns without the symmetry (7.1.3)?

If a system has overall symmetry O(3) x Z;, this can be weakly broken to O(3) by introducing
small terms which are only equivariant with respect to O(3). This means adding small even
order terms to vector fields which are equivariant with respect to O(3) x Z, or equivalently
adding small quadratic terms to PDEs such as the Swift-Hohenberg equation (6.1.1) which

break the w — —w symmetry.

Suppose that z is an equilibrium solution of a O(3) x Z; equivariant vector field for some rep-
resentation on V; ® V1 which has isotropy subgroup H?. The isotropy subgroup is uniquely
determined by the pair of subgroups of O(3), (H, K) where H/K = Z; or 1. Suppose now that
small even order terms which commute only with O(3) are added to the vector field. Solutions
in this vector field have the symmetries of isotropy subgroups of O(3) in the representation
on V; @ V1. Should the solution zg with H? symmetry persist, it would have only symmetry
K. This means that if zg is a one-armed spiral solution with D, symmetry then, if it persists
after symmetry breaking terms are added, it would have only Z; symmetry. Similarly an m-
armed spiral with Dy, symmetry, if it persists, would have D;, symmetry. We now investigate

whether it is possible for these solutions to persist.

Remark 7.3.1. Recall from Section 2.4.3 that it is possible for secondary steady-state bifurca-
tions from group orbits of equilibria to lead to relative equilibria as well as new equilibria.
By Theorem 2.4.9, the number of frequencies of a relative equilibrium (O(3)) zy with isotropy

subgroup D,;, (the symmetries of an m-armed spiral without symmetry (7.1.3)) when m > 2 is
k = rank <N0(3)(Dm)/Dm) =0 forallm>2

and hence when breaking symmetry from O(3) x Z; to O(3) m-armed spiral patterns for m > 2

(if they persist) remain stationary. In contrast, since
k= rank (Nog)(2)/25) = 1,

in general, one-armed spiral patterns with Z, symmetry (if they exist) are singly periodic i.e.

they are forced to rotate.
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7.3.1 Persistence of m-armed spirals for m > 2

Throughout this section the representation of O(3) is assumed to be the reducible representa-

tionon Vy @ Vy 4.

In order to show that m-armed spirals for m > 2 with Dy, symmetry persist as n-armed spirals
with D,, symmetry when O(3) x Z, symmetry is broken to O(3) we use the Implicit Function

Theorem:

Theorem 7.3.2 (Implicit Function Theorem). Suppose that F : R? x R" — IRP is differentiable
with F(a,b) = 0 and det(dF)|,p) # O then for (c,d) in a neighbourhood of (a,b) the system
F(c,d) = 0 has the unique solution ¢ = g(d) and g is differentiable.

Suppose that F : R*+1) x R" — R*(+1) is the O(3) equivariant vector field for the represen-
tation on V; @ Vy, to cubic order where the vector of amplitudes of the spherical harmonics
is z € R, Suppose further that (¢, ) € R" is a vector containing all of the coefficient
values of each of the terms in the vector field where a € R™ is the vector of coefficients of the
quadratic terms in z and B € R"~™ is the vector of coefficients of the cubic terms. When a = 0,

F is equivariant with respect to O(3) x Z; since there are no quadratic terms.

Suppose that F(zp, 0, By) = 0 where z, is a solution with symmetry H? = (H,K) C O(3) x Z;
and det(dF)|( 0,4, 7 O then by the Implicit Function Theorem the system F(z,a, ) = 0 has
a unique solution z; = g(«, ) in a neighbourhood of (zo, 0, By) (i.e. « near 0, B near By and z;

near z() and this solution has symmetry K.

For a stationary solution zg in the O(3) x Z, equivariant vector field with symmetry H? to
persist as a stationary solution with K symmetry in the O(3) equivariant vector field by the Im-
plicit Function Theorem we require that (dF) , o) have no zero eigenvalues. In other words,

the solution with symmetry H? has no zero eigenvalues in Fix(K).

Theorem 7.3.3. Stationary solutions zy with symmetry Dy, (m > 2) which exist within O(3) x
Z, equivariant vector fields persist as stationary solutions with Dy, symmetry when the O(3) x Z,

symmetry is broken to O(3) by adding small even order terms to the vector field.

Proof. We must show that the solution zg with D5, symmetry has no zero eigenvalues within

Fix(Dy,) in order to use the Implicit Function Theorem to show the persistence of the solution.

Recall that generically the solution with D5,, symmetry has
dim(O(3) x Z») — dim(Dyy,) = 3

zero eigenvalues in Vy @ V1. In the restriction of the O(3) equivariant vector field to Fix(D,,)

the equations are equivariant with respect to Ng3)(Dm)/Dmn. Since

the group orbit of any solution in Fix(Dy, ) is zero dimensional and hence generically no solution
which exists in Fix(Dy,,) has a zero eigenvalue in Fix(D,,). The three eigenvalues of the solu-
tion with Dj,, symmetry which are forced to be zero by symmetry must lie in the complement
of Fix(Dy,). O
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Furthermore, in a small enough neighbourhood of the solution with ]5;1 symmetry, solutions

with D, symmetry will have the same stability properties.

7.3.2 Persistence of one-armed spiral solutions

Since dim(Ng3)(Z2)/Z,) = 1 every solution in Fix(D5) has a zero eigenvalue in Fix(Z;)
and hence the Implicit Function Theorem cannot be used to show the persistence of one-armed
spiral solutions with D symmetry. These one-armed spiral patterns cannot be shown to persist

generically. We must consider each one-armed spiral on a case by case basis.

Recall that in Example 7.2.5 we found an (unstable) one-armed spiral pattern with D, symmetry
in the O(3) x Z; equivariant vector field for the representation on V, & V3 with the coefficient
values for the Swift-Hohenberg equation. We now demonstrate that this solution can persist as
a solution with Z, symmetry when small quadratic terms are added to the Swift-Hohenberg

equation.

Persistence of one-armed spiral solutions in the Swift-Hohenberg equation

Breaking the symmetry from O(3) x Z; to O(3) in the case of the Swift-Hohenberg equation
(6.1.1) on the sphere is equivalent to adding a small even order term to the equation which
breaks the w — —w symmetry. The most obvious term to add is a quadratic nonlinearity
giving

5 = Hw— (1+ V2w + sw® — w?, (7.3.1)

where s is small. The aim is to discover whether spiral solutions with D, symmetry which
exist when s = 0, and are stationary, can persist as solutions with Z, symmetry when s is
nonzero. Recall that, in general, spiral patterns with Z, symmetry, if they exist, are periodic.
However, (7.3.1) is variational and as such cannot have periodic solutions. Thus one-armed

spiral solutions of (7.3.1) will remain stationary when s # 0.

Example 7.3.4 (Persistence of one-armed spirals in the Swift-Hohenberg equation on a sphere
of radius near 3). Recall from Section 6.4.2 that for a sphere of radius near 3 the relevant rep-
resentation of O(3) is the reducible representation on V, @ V3. To cubic order the general O(3)

equivariant vector field for this representation is

f(z,4) = (8(z,4);h(z, 1))

where
g(z,A) = pex+nUx) +vV(y) + arx|x]? + Bix|y]* + 11P(x y) + 12Q(x, y) (7.3.2)
h(z,A) = wyy+IW(Xy) +aylx]> + Byly* + 61R(y) + 6S(x y) + 5T(x,y) (7.3.3)

in which the cubic equivariant mappings P, Q, R, S and T are as in Section 6.3.5 and the

quadratic equivariant mappings are
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° U(X) = (LLZ, ll_1, LIO, Ul, Uz) where U,k = (*1)kUk and

u_2 (X) = 4x_2x0 — \/6X%1
U_1(x) = 2vV6x_ox; —2x_1xp
Up(x) = 4x_oxp+2x_1x] — 2x(2,

o V(y) = (Voo V1, Vo, Vi, V3) where V_; = (—=1)KV} and

Voa(y) = —V10y_sy1 +2V5y_oy0 — Véy?
Voily) = —5y_ay2+ VI5y_oy1 — V2y_1yo
Voly) = —5y_ays+3y_1y1 — 243

° W(x,y) = (W,3, sz, W_l, W(), Wl, Wz, W3) where W_k = (*1)ka and

W_3(x,y) = 5y_3x; —5y_osx_1+ \/Ey,lx_z

Woa(xy) = 2V5yox_ o —V15y_1x_1 +5y 3%

W_1(xy) = 2\/5y1x,2 — ﬁyox_1 + my,3x2 + \/ﬁy,pq —3y_1xp
Wolxy) = 2V5(yax 2+y2x 2) + V2 (y-1x1 +y151) — 4yoXo.

For the Swift-Hohenberg equation we computed in Section 6.4.2 that the values of the coeffi-
cients of the odd order terms in (7.3.2)—(7.3.3) are

8 15 6 3 1
e =2 =g = g P T M T g P e Y
16 25 175 7 3 1
Hy =it g 02 = onn P2 = og S Toggon 2T Tan M BT ;g

where y = % + €24p. By assuming that the Z, symmetry is weakly broken so that s = e€s; we can

compute, using the same method as Section 6.4.2, that the values of the quadratic coefficients

1 /5 1 /5 1 /5
;7 = _ﬁ Esl v = _ﬁ ;Sl g = —E ;Sl. (735)

Recall from Example 7.2.5 that when s; = 0, (7.3.2)-(7.3.3) with the coefficients above have a

stationary solution with Dy symmetry. Using the restriction to

are

Fix(D,) = {(ia,0,0,0, —ia; 0,b,0,¢,0,b,0)}

we found that this solution exists when p = R, > 0and A = py is such that 2p < A < 12p.

Moreover, this solution is always unstable.

When the symmetry is broken from O(3) x Z, to O(3) (when s; # 0), Fix(D3) is no longer an
invariant subspace. The solution with D, symmetry which exists when s; = 0 is no longer a
solution to (7.3.2)«(7.3.3) but may become a (stationary) solution with Z, symmetry which is

contained in the invariant subspace

Fix(Z,) = {(d+ia, 0, ¢, 0, d—ia; 0, b+if, 0, ¢, 0, b —if, 0)}. (7.3.6)
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To discover whether a solution with Z, symmetry can bifurcate at s; = 0 from the solution with

D, symmetry we can expand in powers of s; for small s; about the D, symmetric solution.

In the restriction of (7.3.2)—(7.3.3) to Fix(Z,) we let

a = ao—ﬁ—slal—l—s%az—i-...
b = b0+51b1+5%b2+...
f = f0+51f1+5%f2+...

where dy = ep = fo = 0 and (a, by, cp) is the solution with ]% symmetry which exists when

s1 = 0. At order s{ we have the solution with D, symmetry. At order s1 we find that
m=by=c1=0 d=di(Apfi) e =elAp)

and fi is arbitrary. If we choose a value for fi then at order s? we find that

ay = ax(A, p) by = by(A, p) e =c2(A,p) dy =dy(A,p, f2), ep =0

and f, arbitrary. Hence we can see that a whole family of solutions (depending on f) exist
as stationary solutions with Z, symmetry. This is to be expected since (7.1.1) implies that any
rotation in the z-axis of a solution in Fix(Z; ) given by (7.3.6) is also a solution with Z, symmetry
which lies in Fix(Z;) but has a different value of f. These individual solutions are stationary

since (7.3.1) is variational.

In conclusion, the one-armed spiral pattern with D, symmetry which we found in Section 7.2.5
persists as one of a family of one-armed spiral patterns with Z; symmetry when a quadratic
term is included in the Swift-Hohenberg equation which breaks the symmetry from O(3) x Z,
to O(3).

Persistence of one-armed spiral solutions in a non-variational Swift-Hohenberg equation

Suppose that instead of adding the term sw? to (6.4.1) we instead add a nonlinear quadratic
term which renders the equation non-variational. Then generically we expect any solution
with Z, symmetry to drift. To make (6.4.1) non-variational and break the w — —w symmetry

we can add terms such as | Vw|? and wV?w so that we have

d

a—ij = uw — (1+ V?)?w — w® + p|Vw|? + quViw. (7.3.7)
which is non-variational so long as q # 2p (see [60]). The coefficients of the even order terms in
the amplitude equations will now depend on the values of p and g. We consider the case of the

representation of O(3) on V, & V3 where the amplitude equations are given by (7.3.2)-(7.3.3).

Example 7.3.5 (Coefficient values for a non-variational Swift-Hohenberg equation on a sphere
of radius near 3). Suppose that in (7.3.7) p = 0 and ¢ = €g;. Then the equation is non-
variational and we expect the values of the coefficients #, v and { in the O(3) equivariant vector
field on V, ® V3, (7.3.2)—~(7.3.3), to depend on the value of g;.

214



7.3. PERSISTENCE OF SYMMETRIC SPIRAL PATTERNS UNDER FORCED SYMMETRY BREAKING

Recall that in this representation, yi = § and R, = 3. By letting
1
U= 5 + 62,142, R=3+4€Ry,, T==¢€* w=ecw+ewy+ews,

we see that the linear differential operator L = u — (1 + V?2)? acts on the spherical harmonics
of degree / as in (6.4.18). The operator M = V2 acts as

(l+1)  20(0+1)
2 _ 2 _ 2
M=V"=— Rz T e Rye” = My + "My
c C
on the spherical harmonics of degree /.
At orders €' and €2 in (7.3.7) we find that
2
wi =Y xu(T)Y3(0,¢) + Zyn Y8 (O0,¢) and  wp =0
m=—2 n=-3

respectively so that at order €,

0

% = Lows + Lowq — w% + qrw1 Myws. (7.3.8)

Multiplying (7.3.8) by ?g and integrating over the sphere we find that

. 8 2 P
Xp = (yz ~ 57 ) / / wiYh sin6 d6 d¢
2 —
_2m / / < mez’”> Y. sin6 d6 d¢
m=—2

4,,71 2m pT 3 —
_?/0 /0 wy | Y, yaY3 | Yysin6dodg  (7.3.9)

n=-3

and by multiplying (7.3.8) by Yg and integrating over the sphere we find that
] 16 21T 7 —p
yp = (}12 + 27122) Yp— / / w3Y} sin 6 d6 d¢
_2q1 [T -
s / / W ( me;”> Y! sin6 do dg
m=—2

2
Aq / 7T/ Wy < ) an3> Yhsin6dodg. (7.3.10)

n=-3
Using the same method as Section 6.4.2, we compute that the values of the quadratic coefficients

in the O(3) equivariant vector field, (7.3.2)-(7.3.3), in the non-variational case are

1 /5 1[5 1 /5
= 21\f‘71 V= 45\f”71 6= 15\/7‘71 (73.11)

We now demonstrate that with these values of the quadratic coefficients, and the values of the
coefficients of the odd order terms given by (7.3.4), the stationary one-armed spiral solution
with D, symmetry which exists in (7.3.2)—(7.3.3) when g; = 0 persists as a solution with Z;

symmetry and that this solution drifts.

Recall that

Fix(Z;) = {(d+1ia, 0, ¢,0,d—ia; 0, b+1if, 0, ¢, 0, b —if, 0)}.
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If we try to expand these variables in powers of q; as in Example 7.3.4 we cannot find solutions

at order q;. We must change coordinates and let
d +ia = Re'®, b+if = Selt and =Y,

then the equations in the restriction of (7.3.2)-(7.3.3) to Fix(Z; ) can be reduced to five equations
for R, S, ©, ¢ and ¢. We then expand

R(t) = ro+qn —Hﬁrz—i-...
S(t) = so+qis1+q3s2+...
Ot) = Oy+:0; +710,+...
c(t) = c0+q1c1+q%cz+...
e(t) = eg+qier+qiert....

In these coordinates the stationary solution with D, symmetry which exists when q; = 0 is
givenby (g, so, ®p, cg,0) where @y = 71/2. When q; # 0, stationary solutions in the coordinates
(R,S,0,¢,e) correspond to periodic solutions of (7.3.2)—(7.3.3). We find that there is a stationary

solution with Z, symmetry given by

= ro(Ap) +qira(Ap) + ...
so(A, 0) +qis2(A,p) + ...
= /24 0101(Ap)+...

c = co(Ap)+qica(Ap) + ...

® v =
I

e = qe(Ap)+....

This corresponds to a periodic solution in the original coordinates 4, ..., f, which is a one-

armed spiral with Z, symmetry that drifts with speed
cb=‘¥=?]1¢]1+031ﬁ’+...,

where v1 = v1(rg, S0, ©1, co, €1), about the z-axis. Hence we can see that for p = 0 and small g,

solutions of (7.3.7) with Z; symmetry rotate at speed proportional to 4.

The rotating spiral solution on a sphere of radius near 3 for the non-variational Swift-Hohenberg
equation, found analytically in Example 7.3.5 cannot be found in numerical simulations since
it is unstable. However, numerical simulations of (7.3.7), with p = 0 and g small and positive,
on a sphere of radius R ~ 4 starting from the stable single armed spiral found in Example 7.2.7
result in a single armed spiral pattern with Z, symmetry which rotates at a rate proportional

to g in the direction indicated in Figure 7.20.

We have been able to demonstrate analytically the persistence of one single armed spiral pattern
in the Swift-Hohenberg equation in the representation on V, @ V3. Numerically we find that
other single armed spiral patterns in representations on V; @ V; 1 for larger values of ¢ can also

persist.
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o
S

Figure 7.20: The rotating single armed spiral which results from numerical simulations of
(7.3.7), with p = 0 and g small and positive, on a sphere of radius near 4. The
initial condition is a stationary single armed spiral with D, symmetry. The arrow
indicates the direction and axis of rotation. The speed of rotation is proportional to

g. Note that this is not the rotating spiral found in Example 7.3.5.
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CHAPTER &

CONCLUSIONS

In this thesis we have used the techniques of equivariant bifurcation theory to describe various
patterns which can exist on spheres as a result of a bifurcation from a spherically symmet-
ric state. The group theoretical methods of equivariant bifurcation theory have allowed us to
describe the symmetries of the solutions which are created at a bifurcation with spherical sym-
metry using the only action of the group O(3), of rotations and reflections of the sphere, on the
spaces Vy, of spherical harmonics of degree ¢. Not only have we used symmetries to describe
the existence properties of certain patterns on spheres, we have also used symmetries to com-
pute the stability of these patterns. All of this can be done without reference to any particular
governing partial differential equation and hence the solution types we have found are generic,
i.e. we can expect to find solutions with these symmetries in any system which undergoes a

bifurcation from a spherically symmetric state.

In this thesis we have considered two different types of patterns which can exist on the sphere.
These were the time periodic solutions which can exist as a result of a Hopf bifurcation from
spherical symmetry and the spiral patterns with symmetry which can exist on a sphere as a

result of a stationary bifurcation with spherical symmetry.

In Chapters 4 and 5 we investigated the time-periodic solutions which can exist as a result
of a Hopf bifurcation from a spherically symmetric steady state. The main result relating to
Hopf bifurcations with symmetry, the equivariant Hopf theorem, guarantees that at a Hopf
bifurcation with O(3) symmetry, branches of periodic solutions with the symmetries of the

C-axial isotropy subgroups of O(3) x S! are created.

In Chapter 4 we computed these C-axial isotropy subgroups for every representation of O(3) x
S! on V, @ V, for every value of £. This involved first enumerating the conjugacy classes of
twisted subgroups of O(3) x S!. Then, using a group theoretical result known as the chain
criterion, we determined which of these twisted subgroups are C-axial for the representations
on V; @ V,. Although these computations had been carried out before (see [43, 44, 46]) all pre-

viously published lists of the C-axial isotropy subgroups of O(3) x S! contained some errors.
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Many of these errors stemmed from incorrect assumptions about the containment relations be-
tween the twisted subgroups of O(3) x S! of dihedral type. We have now corrected these errors
and presented a revised list of the C-axial isotropy subgroups in Section 4.3.2. From this list one
can identify for any representation on V, @ V/, for any value of ¢, the symmetry groups of the
time-periodic solutions which are guaranteed by the equivariant Hopf theorem to exist at a

Hopf bifurcation with O(3) symmetry for this representation of O(3).

The corrections which we made to the list of C-axial isotropy subgroups of O(3) x S! did not
affect the much studied example of the Hopf bifurcation with O(3) symmetry for the represen-
tation on V, @ V; [51, 54]. However, our revised list allowed us to see that in the previously
unstudied case of the natural representation on V3 @ V3 there are six branches of periodic solu-
tions guaranteed to exist by the equivariant Hopf theorem; one less branch than had previously
been predicted [46]. Three of these solutions are travelling waves and the other three are stand-
ing waves. By computing to cubic order the general form of a vector field which commutes with
the action of O(3) x S! on V3 @ V3, we were able in Chapter 5 to find conditions on the coeffi-
cients in this vector field for each of these solution branches to bifurcate supercritically and be
stable. Using these conditions, we found that for each of the six C-axial solution branches it is
possible to give a set of coefficient values such that the periodic solution is stable. We also saw
that it is possible for all six solution branches to simultaneously bifurcate supercritically and
be unstable. This could indicate that it is possible for heteroclinic cycles or chaotic behaviour
to be present within the system of equivariant differential equations. The time-dependent be-
haviour of the system under these circumstances would be an interesting avenue for future

investigation.

The branches of periodic solutions guaranteed by the equivariant Hopf theorem to exist at a
Hopf bifurcation with O(3) symmetry are not the only solutions which can exist. A slightly
stronger result than the equivariant Hopf theorem guarantees the existence of periodic solu-
tion branches with the symmetries of all maximal isotropy subgroups of O(3) x S!. These are
isotropy subgroups which are not contained in any larger isotropy subgroups except O(3) x S'.
Note that C-axial isotropy subgroups are automatically maximal. It is also possible, depending
on the values of coefficients in the O(3) x S! equivariant vector field, for solutions with the
symmetries of other (submaximal) isotropy subgroups of O(3) x S! to exist. There is no result
in equivariant bifurcation theory regarding such solutions. They must be found directly in the

equivariant vector field.

By computing the isotropy subgroups of O(3) x S! which fix a subspace of V; & V; of dimension
greater than 2 it is possible to determine the symmetry groups of solutions which may exist in
the O(3) x S! equivariant vector field. In Section 4.3.3 we used the same method as for the
C-axial isotropy subgroups to compute the isotropy subgroups of O(3) x S' which fix a four-
dimensional subspace of V; @ V; for all values of ¢. For those which are maximal, a solution

branch with this symmetry is guaranteed to exist.

Establishing the existence properties of solutions with submaximal isotropy involves much
more computation, although we have been able to find several such solutions for one par-

ticular representation. In the natural representation of O(3) x S on V3 & V3 we found that all
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six isotropy subgroups which fix a subspace of dimension four are submaximal. In Section 5.5
we investigated whether solutions with these symmetries can exist in the O(3) x S! equivari-
ant vector field. We found, both analytically and by using the numerical branch continuation
package AUTO, that for four out of the six isotropy subgroups, %, submaximal periodic or
quasiperiodic solutions can exist for some values of the coefficients in the O(3) x S! equiv-
ariant vector field. Some of these solutions can even be stable within the four-dimensional

subspace Fix(X).

The second topic considered by this thesis was the existence of symmetric spiral patterns on
spheres. In contrast to the single armed spiral patterns which can be found in the plane, one-
armed spiral patterns on the sphere can have symmetries. The spiral pattern must have two
tips. If these lie at antipodal points on the sphere (say the north and south poles) then it is pos-
sible for the spiral pattern to have a rotation symmetry about an axis in the plane of the equator.
Patterns with such symmetries have been found in numerous experiments [64] as well as nu-
merical simulations of Rayleigh-Bénard convection [62, 90] and other pattern forming systems
such as the Swift-Hohenberg model [65] and reaction-diffusion systems [16]. Until this thesis,
no analytical study of the generic existence and stability properties of single or multi-armed
symmetric spiral patterns on spheres had been undertaken. Using techniques from equivari-
ant bifurcation theory we investigated whether symmetric spiral patterns on spheres can result

from a stationary bifurcation with spherical symmetry and subsequent secondary bifurcations.

To simplify the problem, we began by studying the most symmetric spiral patterns on spheres.
In addition to symmetries contained in the group O(3), these spirals have a symmetry corre-
sponding to a change in sign of the solution function, w, combined with a rotation in O(3). For
these patterns, the areas where w > 0 and w < 0 are of identical size and shape. The symme-
tries of such spiral patterns are subgroups of O(3) x Z,. Group theoretical results tell us that
spiral solutions with these symmetries (if they exist) are generically stationary. Our aim was
to demonstrate that stationary single and multi-armed spirals with these symmetries can result

from an initial stationary bifurcation with O(3) x Z, symmetry.

Since the problem of a stationary bifurcation with O(3) x Z; symmetry had not previously
been studied, Chapter 6 of this thesis was devoted to this subject. Bifurcations with O(3) x
Z; symmetry can occur in the numerous systems on a sphere which are invariant under a
change in sign of the physical variable. One such example is the Swift-Hohenberg model. At
a stationary bifurcation with O(3) x Z; symmetry, where O(3) acts on the vector space V, the
equivariant branching lemma guarantees that branches of equilibria with the symmetries of
the axial isotropy subgroups of O(3) x Z; bifurcate. The axial isotropy subgroups fix a one-
dimensional subspace of V. Here V is either V}, the space of spherical harmonics of degree ¢
or V; @ V;1 when there is a mode interaction between the spherical harmonics of degrees ¢
and ¢ + 1. In Section 6.2 we computed the axial isotropy subgroups in both cases and all of the
isotropy subgroups for several examples. We noted that in representations on V, @ V1 there
are many more isotropy subgroups. This means that mode interactions can result in a much

wider range of possible solution patterns than can be found with a single mode.

In Chapter 7 we observed that spiral patterns can only result from mode interactions — such
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patterns can only be made with a combination of spherical harmonics of odd and even degrees.
Indeed, we found that they can exist in an interaction between the spherical harmonics of de-
grees { and ¢ + 1. We also observed that the symmetry groups of symmetric spiral patterns
are never axial isotropy subgroups so spiral patterns are never guaranteed by the equivariant
branching lemma to exist at a stationary bifurcation from spherical symmetry. Thus, to deter-
mine when symmetric spiral patterns can exist we had to find them directly in the equivariant

vector field.

Through the study of the stationary bifurcation with O(3) x Z; symmetry we found that
the symmetry group of the most symmetric m-armed spiral (where m > 1) is a submaximal
isotropy subgroup of O(3) x Z; in the representation on V; & V1 for £ > m. Hence stationary
spiral solutions with these symmetries may exist depending on the values of coefficients in the
O(3) x Z; equivariant vector field. In Section 7.2.1 we determined the conditions which must
be satisfied for one- and two-armed spirals to exist in the O(3) x Z; equivariant vector field for
the representation on V, ® V3. We demonstrated that it is possible to find a set of coefficient val-
ues which allows a single armed spiral pattern to exist and be stable in its fixed-point subspace.
By computing the values of the coefficients for the specific example of the Swift-Hohenberg
equation we were able to show that both the one- and two- armed solutions can exist, but that

the one-armed spiral pattern is never stable.

A similar treatment of the representation on V3 @ Vj using the values of the vector field co-
efficients arising from the Swift-Hohenberg equation showed that the most symmetric spiral
patterns with one, two and three arms can exist as a result of a stationary bifurcation with
O(3) x Z, symmetry and subsequent bifurcations. Furthermore, in this case the stationary

one-armed spiral pattern can be stable for some values of the bifurcation parameters.

Finally, in Section 7.3 we considered the effect of weakly breaking the overall symmetry of the
system from O(3) x Z; to O(3) on the spirals found in previous sections. We saw that any
m-armed spiral pattern for m > 2 will always persist as a stationary spiral pattern without
the ‘red to blue’ symmetries of the most symmetric spiral patterns. The case of the one-armed
spiral is not so simple. If a stationary one-armed spiral solution does persist under this weak
symmetry breaking then generically it is forced to rotate. This can be demonstrated directly for
the most symmetric unstable one-armed spiral which exists in the representation on V, @ V3 in
the Swift-Hohenberg equation. This spiral solution loses symmetry and begins to rotate when

non-variational terms which break the O(3) x Z; symmetry to O(3) are added.

Thus we have shown that stationary spiral patterns on spheres can exist generically as a result
of a stationary bifurcation with O(3) x Z; symmetry (and subsequent secondary bifurcations)
in the case of a mode interaction. Indeed, they do exist in the Swift-Hohenberg equation. These
spiral patterns can be stable (in some subspaces) and we have seen how they bifurcate from
other solution branches. Furthermore, these spiral patterns can persist when the O(3) x Z,

symmetry is broken to O(3).

The two types of patterns on spheres which we have considered in this thesis, although quite
different, have both been studied using the generic framework of equivariant bifurcation the-

ory. This powerful tool has enabled us to discover new and interesting possible behaviours of
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whole classes of systems with underlying spherical symmetry. In the case of the Hopf bifurca-
tion with O(3) we have corrected errors in previous results and added to the range of known
solutions which can exist at such a bifurcation. We have also shown the possibility for the dy-
namics, at certain coefficient values, to contain heteroclinic cycles or even for chaotic behaviour
to occur. By studying stationary bifurcations with O(3) x Z; symmetry we have been able
to show both generically, and in specific case of the Swift-Hohenberg model, that symmetric
spiral patterns on spheres can exist. These patterns, previously only found in experiments and
numerical simulations, have been shown to be potential solutions of many dynamical systems

with underlying spherical symmetry.
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APPENDIX A

SPHERICAL HARMONICS

A.1 Spherical harmonics of degrees ¢/ = 2, 3 and 4

Here we list the spherical harmonics of degrees ¢/ = 2, 3 and 4 in both spherical polar coor-
dinates, (6,¢) and Cartesian coordinates (x,y,z) where the spherical-to-Cartesian coordinate

transformation is given by

x = sinfcos¢
y = sinfsing

z = cos®H.

Recall that the spherical harmonics satisfy

Y, "(0,¢) = (=1)"Y[(6,¢),

where the bar denotes complex conjugate. They also satisfy the orthogonality condition
27 —
/ / an(e, (P) YZI (9, (P) sin 0 dg dgb = 55,4/ (5m’ml.
0 0 ’

Here we list the functions for negative values of m only.

Spherical harmonics of degree { = 2

_ 1 /15 . 5. 5, 115,
Y, %(6,¢) = 4\/; sin?f e AP = e (x —iy)?
Y, '(6,0) = ;\/E sinf cosfe ¥ = i ; (x —iy)z

1 /5 1 /5
Y§(6,¢) = 4\/;(3c0529—1) = 4\/;(222—x2—y2),
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A.1. SPHERICAL HARMONICS OF DEGREES ¢ = 2, 3 AND 4

Spherical harmonics of degree { = 3

Y3_3(9, $) = % ?;f sin®f e %P = ;\/f (x —iy)®
2(0,9) = i 12(:;5 sin®6 cosfe 2 = i g (x —iy)?z
10,9) = % 27: sinf (50520 — 1) e ¢ — % %(x—iy)(ﬁlzzfxz—yz)
Y3(0,¢) = i ; (5c0s®0 —3cosf) = i\/Zz(Zzz —3x% — 3y%).
Spherical harmonics of degree ¢ = 4
Y, 40,9) = 1% > it g e = 136@ (x —iy)*
Y2 (0,9) = 2\/? sin®0 cosf e = % % (x —iy)’z

Y, 2(0,9) = %\/% sin?@ (7cos? 6 — 1) e 2%

= 2 ewpe )

CL6,9) = %\/%sin9(7c0339—3c059)e_1¢

= 2\/5 (x —iy)z(42% — 3x% — 31?)

Y)(6,9) = 136 — (35cos*0 —30cos? 0 + 3)
3 1 202 2 2
= I (3(x + )% + 822 (2% — 3x% — 31?)).
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APPENDIX B

DETAILS OF COMPUTATIONS

B.1 Proof that (3.2.5) holds

Equation (3.2.5) asserts that in the limit 6’ — 0

Y0 +6,0) = —%\/(ﬁ—l—m)(é—m—l—l) o' Y"1(9,0) + Y} (6,0)

o= m) (1) 6 Y 0,0,

Since this is not immediately obvious from the definition of the spherical harmonics (3.2.1) we
show here that this equality holds.
From (3.2.1) we have that

204+1) (£ —m)!
47 (L +m)!

1/2
Y0 +6',0) = (—1)™ (( > P (cos(6+0')).

We can expand the associated Legendre function P}" (cos(6 +6')) as follows, discarding powers

of 6’ greater than one since ¢’ is infinitesimal:

_ 2 N\m/2 {+m
P (cos(0+6") = (1 —cos’(6 +07)) ld

_1)51

7 T (¥

2 a dac= x=cos(6+6")
détm

2 l
dxt+m (" =1) ]

(sin + 6 cos9)™ | dl+m 1!
200! a7
x=cos6—0’sin6

sin” (6 +6")
2t 41

x=cos(6+6")

sin™ 0 4 m#’ cos@sin™ 19 | dF™ y
(2 - 1)
20 41 dxt+m
x=cos—0'sin 6
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B.1. PROOF THAT (3.2.5) HOLDS

Here ;;Lm (x2 —1)% is a polynomial in x of degree less than or equal to £ — m. Define
dt+m ) ' l—m ‘
W(x ~1) =) ax =p(x)
k=0
Then
{—m
p(cos —0'sinf) = a(cos§ — 0’ sin 0)*
k=0
l—m
= a(cosk @ — k6’ sin @ cos*~1 0)
k=0
l—m l—m
= a; cosk 0 — 0’ sin 6 Y kay cosk~ 19
k=0 k=0
= p(cosf) — 6 sind p’(cos0)
and so
B /] / s am—1
P/'(cos(0+0")) = sin" 0+ m(;czsf)sm 0 p(cosf — 0" sinf)
sin™ 6 4 m#’ cos @ sin” 1 0 .
= T 7] (p(cosB) — 6’ sin6 p’(cos))
sin™ @ mcos Osin™ =16 in™

= WP(COS 9) + 9/ <MP(COS 9) _ % sin @ p/(COS 9))

mcos 0
sin 6

= P}'(cos8) — 0P} (cos ) + 6’ P} (cos )

Thus we have

6
Y0+ 6,0) = Y7'(6,0) + /(£ —m) (¢ +m+1) 0/ Y 1(6,0) + ' TESY(0,0). (BLY)
Similarly
—m / _ y—m _ I y—m+1 _ ,TI’ICOSG —m
Y0+ 6,0) = Y;7(8,0) + /(¢ m) (€ —m+1) 6 ;1 (6,0) — 0"y (6,0).
(B.1.2)
By (3.2.2) the spherical harmonics satisfy
Y, ™(6,0) = (—1)"Y}"(6,0)
and so (B.1.2) becomes
mcos 6

Y/ (04 6,0) = Y7'(6,0) — /(¢ +m) (¢ —m+1) ' Y (6,0) — ¢’ -

—5Y/'(6,0). (B.13)

Adding together (B.1.1) and (B.1.3) and dividing by 2 we arrive at (3.2.5) as required.
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B.2. DETAILS OF COMPUTATIONS REQUIRED TO FIND (6.3.21)

B.2 Details of computations required to find (6.3.21)
Here we give the details of the computations of the integrals [; to I given by (6.3.15)—(6.3.20)

which are required to compute the number of cubic O(3) x Z; equivariants in the representa-

tionon Vy ® Vy 4.

The integral [; given by (6.3.15)

b= " (1~ cos(0))x(Re)
0
_[7 — cos( oimd é“ ’ cos(£0) — cos(0) cos((£ + 1))
- '/0 2 (mX:_/ +m*§ 1 ) ( 1 —cos () >d9

m=—/{ m=—0—1

7r ¢ 041 3
/0 (cos(£0) — cos((£+2)0 ( ) em? 4 Y e )

m=—{

n e 4 | ’
/0 (cos(£0) — cos((£+2)0)) (2 Yy e+ e 10(0+1) | e19(f+l)> do

m=—{

¢ 3 ¢ 2
/On(cos(éﬂ) —cos((¢+2)8)) [8 ( ) ei’"9> +12 ( ) ei’”9> (e*iWH) +ei9(f+l))
m=—{
‘
6< Z eim€> (e—ie(z+1)+eie(z+1))2+ (e—19(€+1) +eie(4+1))3l do
m=—{

- /0 " (cos(£6) — cos((£ +2)6)) [8S1 125 + 6S5 + S4] d6

where the only terms in Sq, Sy, S3 and S4 which contribute to the integral are those in cos(¢6)
and cos((¢ +2)0) since
/2 ifm=n

/o cos(m@) cos(n6)df = { 0 . (B.2.1)

We now compute the coefficients of cos(£0) and cos((¢ +2)68) for Sy, S, S3 and Sy in turn.

S1: Let the coefficient of cos(¢0) in Sy be given by Bl. Then B! is twice the number of triples

(m,n,p) such thatm +n+ p = £ wherem,n,p € —¢,..., (. Thus

2041

Br=2Y j=(+1)(2¢+2).

j=1
Similarly, if the coefficient of cos((£ + 2)8) in Sy is B} (+2) then B! (142 twice the number of
triples (m, n, p) such that m +n+p = £ +2 where m,n,p € —£,..., ¢ and thus

201

Blesa) =2 21 j=20(20—1).
]:
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B.2. DETAILS OF COMPUTATIONS REQUIRED TO FIND (6.3.21)

S»: Notice that
20
Sy =2Bocos((£+1)8) +2 Y B (cos((£ + 1+ m)6) + cos((£ + 1 —m)6))
m=1
where B, is the number of pairs (p, q) such that p+q = m where p,q € —(,...,{. The
coefficients of cos(¢0) and cos((¢ +2)0) in S, are both given by 25; where 1 = 2.

S3: Notice that
4 20
S3=4+4) cos(mb)+2 ) (cos((20+2+m)f)+ cos((20 +2—m)b)).
m=1 m=1
From this we see that the coefficient of cos(£6) in S3 is 4 and the coefficient of cos((£ 4 2)6)

is 2.

S4: There are no terms in cos(¢6) or cos((£ +2)0) in S4.

Hence

7T

(cos(£8) —cos((£+2)0)) [(8(2¢ +1)(2¢ +2) 4 48( + 24) cos(£0)
+ (160(2¢ — 1) + 480 + 12) cos((£ +2)6)] do
[(8(20 +1)(20 +2) + 48( +24) — (16£(20 — 1) + 48¢ + 12)]
(16 +7)

I =

S—

i
2
27

The integral I, given by (6.3.16)

L = /()n(l—cos(G))X(—Rg)4d6 _ /(]n16(1—cos(G))cos4((£+1)6)d0

Now
8cos*((£+1)0) = cos(4(£ +1)0) +4cos(2(£ + 1)) + 3

SO

L = /07I 2(1— cos(8)) (cos(4(£ +1)8) + 4 cos(2(¢ +1)8) +3) d6

= 6.

The integral I3 given by (6.3.17)

b= [ cos(e)x(Rex(Ra)de
7r ¢ 1 ¢ 1
= / (cos(ﬂQ)—cos((f—l—Z)Q))( Yo oem Y e‘m9> ( Yy iy Y e21m9> dé
0 m=—/{ m=—/(—1 m=—/{ m=—(—1

= [ (cos(t®) — cos((¢ +2)0))P(6)ct
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B.2. DETAILS OF COMPUTATIONS REQUIRED TO FIND (6.3.21)

4 . {+1 . 4 . (41 .
P(Q) — ( Z elmGJr Z e1m9> ( Z e21m9+ Z eZ1m9>

l m=—~0—1 m=—/{ m=—0—1
eim9+e719(€+1) +ei9(5+1)> (2 i e2im9+e72i9(f+l) +eZiG(f+1)>

m=—{

= 4( i eim@) ( i e2im6> +2 i RUL (e72i9(é‘+l)+e219(£+1))

m=—{ m=—{

4
+2 ) e2imo (efie(“l) + eiWH)) +2(cos(3(£+1)0) +cos((¢+1)8))
m=—/{

= 451+ 25, + 253 + 284.

We want to compute the coefficients of cos(¢0) and cos((¢ 4 2)6) in P(6). There are no such

terms in S3 or S4. We consider the other terms S; for j = 1,2 in turn.

S1: The coefficient of cos(£6) in S; is twice the number of pairs (m, p) such that m +2p = ¢
where m,p € —{,..., L. There are ¢ + 1 such pairs. The coefficient of cos((£ + 2)0) in Sy is
twice the number of pairs (m, p) such that m +2p = £ + 2 where m,p € —¢, ..., L. There

are / such pairs.

S,: Notice that

‘ ‘ ‘
S, = Z olmé (e—2i9(€+1)+e2i9(€+1)) _ Z Qi (m=20-2) Z lf (p+20+2)
m=—{ m=—/{ p=—4

4
= 242 (cos((m—2¢—2)6)+ cos((m+2(+2)6)).
m=1
The coefficient of cos(£6) in Sy is zero and the coefficient of cos((¢ + 2)0) is 2.

Hence

I = '/:(cos(w) —cos((£+2)8)) [8(¢+1)cos(£0) + (8¢ +4)cos((¢+2)0)]do = 27

The integral I, given by (6.3.18)

o= (1= cos(@)x(~Ra)x(Ra) 6

7T

|
S—

4(1 — cos(8)) cos>((£ +1)8) <4 f cos(2mb) +2+2cos(2(¢ + 1)6)) de

m=1

= /07T (2cos(2(£+1)0) +2 — cos((20 +3)60) — cos((20 +1)8) —2cos(6))

m=1

(4 i cos(2mb) +2 + 2 cos(2(¢ + 1)9)) do

- /0”4(@52(2(4 +1)8) +1)d6 = 6.
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B.2. DETAILS OF COMPUTATIONS REQUIRED TO FIND (6.3.21)

The integral I5 given by (6.3.19)

[0~ coso)(Ro)x(Rso)

T 14
/0 (cos(0) — cos((¢ +2)6 ( Z Qdimd Z 31m9>

m=—{ m=—(—1

/On(cos(ﬁe) —cos((£+2)6)) <4 ﬁ cos(3mb) + 2 + 2 cos(3(¢ + 1)9)) do

m=—/{
T 4
/ 4(cos(¢0) — cos((¢ +2)6)) ( ) Cos(3m9)> do
0 m=—/{
2 if £ =0mod3
-2t if¢{ =1mod3
0 if £ = 2mod 3.

The integral I given by (6.3.20)

s

Iy = (1 —cos(6))x(—Rp)x(—Rsp)db
0
s

= 4(1 — cos(0)) cos(3(¢ +1)0) cos((¢+1)8)d6 = 0.
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