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Abstract

Generalised Distributive laws in Computer Science are rules governing the transforma-

tion of one programming structure into another. In programming, they are programs

satisfying certain formal conditions. Their importance has been to date documented in

several isolated cases by diverse formal approaches. These applications have always

meant leaps in understanding the nature of the subject. However, distributive laws have

not yet been given the attention they deserve. One of the reasons for this omission is

certainly the lack of a formal notion of distributive laws in their full generality. This

hinders the discovery and formal description of occurrences of distributive laws, which

is the precursor of any formal manipulation.

In this thesis, an approach to formalisation of distributive laws is presented based on

the functorial approach to formal Category Theory pioneered by Lawvere and others,

notably Gray. The proposed formalism discloses a rather simple nature of distributive

laws of the kind found in programming structures based on lax 2-naturality and Gray’s

tensor product of 2-categories. It generalises the existing more specific notions of dis-

tributive laws. General notions of products, coproducts and composition of distributive

laws are studied and conditions for their construction given. Finally, the proposed for-

malism is put to work in establishing a semantical equivalence between a large class of

functional and object-based programs.
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Chapter 1

Introduction

All that you may achieve or discover you will regard as a fragment of a

larger pattern of the truth which from the separate approaches every true

scholar is striving to descry.

Abbott L. Lowell

1.1 Categorical Foundations of Programming

In this thesis, category theory is used to formalise and reason about a pattern frequently

occurring in programming, which is dubbed generalised distributive law. In this en-

deavour, we don’t start from the syntax of a real or hypothetical programming language

but we rather use category theory directly as a mathematical programming language in

which programming structures are modelled semantically as formal notions of category

theory. We therefore feel obliged to begin with a formal justification of this approach.

In the rest of the text we use the term mathematically structured programming for the

idealised discipline of programming which thus arises.

1.1.1 The internal language of a cartesian closed category

One of the cornerstones of the correspondence between category theory and program-

ming is the correspondence between cartesian closed categories (CCC) and simply

typed lambda calculi. Following Lambek and Scott in [LS88], this correspondence can

be formally described as an equivalence of categories of these two kinds of objects.

This can be outlined follows: a simply type lambda calculus with finite pairs is given

by

• types, among which there are at least 1, the singleton type, and which are closed

under the type forming operators → for function space and × for products. Quite

1



often one considers also other type constants such as N, the type of natural num-

bers

• terms, which are generated freely from variables and constants belonging to the

constant types by term-forming operations including abstraction, application

and pairing

• equations, among which are the usual congruence and conversion rules together

with specific equations for the specific constants.

One can assign to any simply typed lambda calculus, L , a cartesian closed category

C(L ) where the objects are types and arrows are terms factorised by the equations. An

arrow f :
∏n
i=1Xi −→ Y in C(L ) corresponds to a term where n variables of types

Xi are free. Composition in this category corresponds to substitution. The abstraction

and application of the lambda calculus correspond to the abstraction and application of

the CCC.

On the other hand, with any CCC, A , one can associate an internal language,

L(A ), which arises from the underlying graph of the category by interpreting the ob-

jects as types, arrows as terms and the equations between arrows as the equations.

It can be shown that the assignments C and L are the object parts of functors

and that these functors define an equivalence of the categories of lambda calculi and

cartesian closed categories. These are the foundations of the functional programmers’

understanding of category theory as an abstract theory of types and functions.

1.1.2 The 2-categorical paradigm of programming

Modern programming languages are not simply typed but polymorphically typed in

the sense that one can form terms and types parameterised by types. Formally, this

is known as the polymorphic, or second-order, lambda calculus, or System-F [Gir72,

Rey74].

The way the correspondence of simply typed lambda calculi and cartesian-closed

categories extends to polymorphic lambda calculi can be very roughly approximated

as follows:

• a CCC, K , is the universe of types with term- and type-forming operations as

described above

• by [RP90], certain type expressions parameterised by types correspond to func-

tors K −→ K

• by [Rey83], terms parameterised by types correspond to natural transformations

Categories, functors and natural transformations form a 2-category. Informally, it is

a category of categories and functors with the usual units and composition where for

2



each pair of categories, A , B, the functors from A to B together with natural trans-

formations 1 form a category, the so-called hom-category. The composition in all hom-

categories is the pointwise (so-called vertical) composition of natural transformations

with components (β · α)X = βX · αX and composition of functors extends to natural

transformations as so-called horizontal composition of natural transformations.

Note that the above is not a description of models of System-F, just a statement

that the models look like certain 2-categories. See [RP90, Rey83] for further details.

In this sense, 2-category theory is an abstract theory of kinds, type constructors and

parametrically polymorphic functions.

1.1.3 Mathematically structured programming

Although there are various subtleties in the correspondence between categories and

programs, they aren’t such that they can’t be handled properly should the need arise.

The important point is that one can move between the mathematical and programming

worlds and use categorical techniques to reason about and construct programs. More-

over, by comparing patterns that occur in programming to formal notions of category

theory one can discover, understand and develop sound mathematical foundations of

informal notions in programming. This has proven hugely successful and remains one

of the driving forces of progress in programming, pure functional programming in par-

ticular.

A shining example is the success of monads as notions of computations with side

effects, an idea due to Moggi [Mog91]. Monads have since become a major organising

principle in pure functional programming and form the formal foundations of procedu-

ral behaviour in pure functional languages such as HASKELL. Of similar significance is

the so-called initial algebra semantics as a semantics of inductive datatypes and func-

tions defined by induction. Coalgebras and coinduction, on the other hand, formalise

state based systems [JR97, Rut00], examples of which are objects in object-oriented

programming [Rei95, Jac96]. These are just a few examples of the major role category

theory plays in the development of the mathematics of programming.

In this thesis category theory is used to formalise and reason about distributive

laws in programming. Our starting point is the notion of a functor with (additional)

structure. An example is a monad, which comprises of a category C , an endofunctor

T : C −→ C and two natural transformations – the additional structure – µ : T2 =⇒

T, η : 1 =⇒ T . Moreover, µ and η must satisfy additional equations, namely that

µ · Tµ = µ · µT and µ · Tη = 1T = µ · ηT. These are called coherence properties.

One can also view functors with structure as constructive definitions of functors sat-

isfying certain properties witnessed by the additional structure. For instance, a monad,

1Natural transformations, α, from F to G, both of type A −→ B are denoted α : F =⇒ G : A −→
B, or just α : F =⇒ G.
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T, on a discrete category (a set) is a closure operator where functoriality of T gives

monotonicity, η witnesses extensibility and µ idempotence. The coherence properties

ensure coherence of the witnesses in the sense that any two proofs of a property ob-

tained by composition of the witnesses are equal.

In programming, functors with structure appear in various forms depending on the

language features.

Good examples are HASKELL’s type classes or signatures in SML, which are

both general mechanisms for defining arbitrary such notions. In other languages and

paradigms the correspondence is less explicit nevertheless in principle a functor with

structure is always a parametric type equipped with a collection of parametrically poly-

morphic functions which can be used for programming with all instances of the type.

The equations the additional structure must satisfy are most often ignored in practice

and supposedly checked by the programmer on the side. The situation is different in

the dependently typed setting, e.g. in COQ, EPIGRAM or AGDA, which allows the

equations to be expressed as well.

1.2 Distributive Laws

1.2.1 Distributivity in programming structures

Datatype-generic programming (a.k.a. polytypic programming) [BJJM99, Gib07, Bir88,

MFP91, JJ97, HJL06] has arisen in the 1990’s from the observation that many pro-

grams are generic transformations of datatypes whose behaviour is in the most part

determined by the structure of the datatype. The goal of the discipline is to minimise,

eliminate or automatically generate such programs in order to increase maintainabil-

ity, minimise the chance of error and to allow programmers to shift focus towards the

specific parts of a programming task.

There are two main approaches to generic programming. Both are based on the

categorical understanding of regular datatypes as carriers of initial algebras of poly-

nomial functors, so-called shape functors. One of the approaches is characterised by

definitions of functions by induction on the polynomial structure of shape functors

[JJ97, HJL06]. The other approach, the so-called algebra of programming approach

[BdM96, MFP91, Bir88], is characterised by the use of higher-order structured recur-

sion operators parametrised by a shape functor instead of ad-hoc pattern matching.

The generic programming community, being on the lookout for higher-order pat-

terns in programming, have pointed out [HB97, Mee98] that many interesting paramet-

ric functions on polymorphic datatypes are of types resembling the following:

α : FG =⇒ GF , (1.1)
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for functors F, G, thought of as constructors of parametric datatypes. A basic example

is the function zip taking a pair of lists to a list of pairs2

zip :: forall x y.([x],[y]) -> [(x,y)]

Clearly, not all functions of the above type classify as correct implementations of the

expected behaviour. The expected behaviour of zip is characterised by the conditions

that the list of first components of the result is the first component of the input, and like-

wise for second components. Similarly, any zip should be length preserving, which

corresponds to the requirement for zip to be coherent with the structure of lists given

by its two constructors: a zip of empty lists is an empty list and a zip of a cons is the

pair of the heads prepended before the zip of the tails.

Functions such as zip for arbitrary regular datatypes were studied by Hoogendijk

and Backhouse in [HB97] and called zips. The work is carried out in the allegorical

(relational) setting which makes it easy to deal with partiality. For instance, if all lists

in a tree have the same length, n, one can apply the function

zipTree :: forall x. Tree [x] -> [Tree x]

which yields a list of length n of trees of the same shape, i.e. it is shape preserv-

ing. Note that no such natural transformation exists in the category of sets and total

functions, Set, even though Tree and [ ] (lists) are definable. This is not an issue

in allegories and it is shown that zips are definable for all regular datatypes and that

they always preserve shape. Although these are useful insights, the allegorical setting

makes the results difficult to relate to programming and other categorical results.

Later, Meertens in [Mee98] defines functor pullers as polymorphic functions swap-

ping the order of two functors. An example of a puller that exists for any category C

with products and an endofunctor List is

unzip : [ ](×) =⇒ (×)[ ]
2

which is in HASKELL the function

unzip :: forall x y. [(x,y)] -> ([x],[y])

Meertens also shows a construction of functor pullers for regular datatypes modulo

some additional conditions. The construction is carefully worked out for regular datatypes

and is therefore directly applicable to functional programming. However, no theoret-

ical insight is provided as to the nature of the construction, which makes it difficult

to generalise. Moreover, the structure of H is not considered. This is significant as

shown e.g. in [MP08, GdSO09] where examples of natural transformations of type

(1.1) where G is a so-called applicative functor are shown.

2The “has type” relation in HASKELL is denoted by ::, lists of elements of type x are denoted [x]
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In [MP08], the notion of an iFunctor is defined as a datatype for which there

exists a natural transformation like (1.1) where G is any applicative functor. Practical

applications of iFunctor to parsing and datatype traversal are shown. An example of

such a traversal over lists is a generalisation of another similar natural transformation,

sequence, previously defined for monads, which takes a list of applicative functors to

an applicative functor on lists:

sequence :: Applicative i => forall a . [i a] -> i [a] .

In summary, there is a mounting evidence of the importance of such natural trans-

formations in programming and the need for their proper formal understanding. There

seems to be an underlying pattern in these and other similar examples, which we set

out to identify and study in this thesis under the name generalised distributive law.

1.2.2 Distributive laws of monads and related notions

A starting point for a categorical study of natural transformations like (1.1), which are

in some sense coherent with F and G must clearly be Beck’s notion of a distributive

law (of monads)3 [Bec69]. Monads in category theory can be used to formalise alge-

braic theories such as monoids or groups. A distributive law of monads is defined as

follows.

Definition 1.2.1 (Distributive Law of Monads). Let C be a category, and (T : C −→ C , µ, η)

and (U : C −→ C , ν, ζ) a pair of monads. A distributive law of T over U is a natural

transformation λ : TU =⇒ UT such that:

λ · ηU = Uη λ · µU = Uµ · λT · Tλ

λ · Tζ = ζT λ · Tν = νT · Uλ · λU
(1.2)

The relation of categorical distributive laws of monads to distributive laws in ele-

mentary algebra, which gives the former its name, is the following. A distributive law

in elementary algebra is usually defined by the equality, for all x, y, z:

(x+ y) × z = (x× z) + (y × z) (1.3)

where × and + are the usual multiplication and addition. Operationally, one may view

the left-hand side as addition (in “x+ y”, and “z + 0”) followed by multiplication. On

the other hand, the right-hand side prescribes multiplication followed by addition.

Let us for any set X write SX for the set of well-bracketed terms formed from

the symbol + and variables from X (formal sums). Similarly, let PX denote the

set of well-bracketed terms formed from the symbol × and variables from X (formal

3Beck calls it just a distributive law but as several derived notions have been defined since then, and we

introduce their generalisation we add “...of monads” to disambiguate it.
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products). Then the set PSX is the set of formal products of formal sums. So to speak,

where “multiplication follows addition”. Similarly, SPX is the set of formal sums of

formal products where “addition follows multiplication”. Now, a distributive law of

multiplication over addition amounts to a uniform rewriting rule turning products of

sums into sums of products. Formally, there is a natural collection of functions:

λX : PSX =⇒ SPX (1.4)

which respects the associativity and unit of substitution. Note that the opposite direc-

tion, from SPX to PSX , corresponds to factorisation, which is not always possible.

Now, the assignments S, P, extend to endofunctors on the category of sets, which

together with substitution and the injection of variables as trivial terms form monads.

Namely, S is the free abelian group monad, P is the free monoid monad. The collection

λX then becomes a formal distributive law in the sense of Def. 1.2.1. Distributive laws

provide an important tool for combination of algebraic theories, represented as monads.

In the example above, the distributive law links S and P to a ring monad, SP.

Following Beck, several similar definitions of formal categorical distributive laws

have been proposed. Namely, by duality one obtains the definition of a comonad from

the definition of a monad, and immediately a definition of a distributive law of comon-

ads by dualisation of Def. 1.2.1. One can also forget the structure on either of the

monads (comonads) and correspondingly one half of the coherence conditions (1.2)

to obtain a distributive law involving one monad (comonad) and an endofunctor with

no additional structure. Importantly, one can also combine the notions to obtain a

mixed distributive law of a monad over a comonad which appear in the definition of a

bialgebra[Swe69]. Such distributive laws and bialgebras have been used by Turi and

Plotkin in [TP97] to categorically formalise adequacy of denotational and structural

operational semantics.

1.2.3 Towards generalised distributive laws

Distributive laws of monads and the related notions are relevant to the programming

case. Firstly, any polynomial functor on a locally ω-cocomplete category such as Set

has a least fixed point and therefore there exists the free monad over F, denoted F∗ and

defined as

F∗X =def µY.X + FY .

In Set, for any set X , F∗X is the set of free terms over the signature F with variables

from X . Distributive laws of free monads over comonads have been considered by the

author of this thesis and Ralf Lämmel [LR08] as the basis for a semantics of distributed

component-based systems whose graph of components is tree-shaped and generated by
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a polynomial endofunctor and whose behaviour is given by a polynomial endofunctor.

However, as discussed in [LR08] distributive laws of monads over comonads are

too general to guarantee properties such as preservation of the shape of the graph of

components as the coherence conditions (1.2) only guarantee coherence with substi-

tution. Moreover, the example of applicative functors spoils every hope as they are

strictly more general than monads, yet, their coherent distributive laws are interest-

ing. Any theory of distributivity in programming structures based on the notion of a

distributive law of monads would have to leave them out.

The above argument shows not only that distributive laws of monads are not the

suitable notion of distributive laws in programming structures but also that there is

no such single notion. To cover all cases, we must define a notion of a distributive

law which is parameterised by theories of functors with structure. Instances of such

generalised distributive laws must define an underlying natural transformation, which

is coherent with both theories of functors with structure. The question however arises,

whether such a general notion isn’t too general to be useful. The following section

shows that there is something that can be said for all notions of distributive laws of

functors with structure.

1.2.4 Operations on distributive laws

In the case of distributive-law-like natural transformations, certain constructions, such

as products, coproducts or composition have been done repeatedly for each notion.

For example, for endofunctors F, G, H on a category C with products, and dis-

tributive laws λ : HF =⇒ FH, κ : HG =⇒ GH, one can define the distributive law

λ⊠ κ by the universal property of products in C as follows:

FH (F × G)Hoo
π1H

HF

FH

λ

��

HF H(F × G)oo Hπ1
H(F × G)

(F × G)H

λ⊠κ

�
�

���
�

(F × G)H GH
π2H

//

H(F × G)

(F × G)H

λ⊠κ

�
�

���
�

H(F × G) HG
Hπ2 // HG

GH

κ

��

(1.5)

For monads, a similar construction has been considered by Ernie Manes and Philip

Mulry [MM07]. For applicative functors, the same has been done in [GdSO09]. In the

latter two cases, as both monads and applicative functors have additional structure, it

must be shown that the resulting distributive law is coherent with this structure. The

proofs are a bit tedious but straightforward by naturality, the preconditions, and univer-

sal properties. They are similar in nature but different in the details. If we understood

the higher-order nature of these constructions, we could be able to simplify or eliminate

the proofs. This is illustrated in the following examples.

Consider monads (F, µ, η), (G, µ′, η′). Because C has products, there exists a so-

8



called cartesian-product monad defined as (F × G, (µ · π1π1) △ (µ′ · π2π2), η △ η
′),

where f △ g denotes the universal arrow of the product in the following situation4:

X X × Yoo
π1

X × Y Y
π2

//

Z

X

f

����
��

��
��

��
�
Z

X × Y

f△g

�
�

���
�

Z

Y

g

��?
??

??
??

??
??

Let λ, κ be as above but in addition coherent with the structure of the monads, F, G,

i.e., they in addition satisfy the second line of (1.2) appropriately renamed. It then

holds that the definition (1.5) gives a distributive law of H over the cartesian-product

monad. Explicitly, for

ν =def (µ · π1π1) △ (µ′ · π2π2)

ζ =def η △ η′

one can establish the following:

(λ⊠ κ) · Hζ = ζH (1.6)

(λ⊠ κ) · Hν = νH · (F × G)(λ⊠ κ) · (λ⊠ κ)(F × G) . (1.7)

For illustration, we show the proof of (1.7), the proof of (1.6) is similar. To this end,

observe that in the diagram in Fig. 1.1 the numbered squares and the hexagon commute,

where (1) commutes by definition of λ⊠κ, (2) and (4) by definition of ν and naturality,

(3) is coherence of λ with µ, and the outside hexagon commutes by naturality and

definition of λ⊠ κ. It follows that

π1H · λ⊠ κ · Hν = µH · Fλ · λF · Hπ1
2

= µH · π1
2H · (F × G)(λ⊠ κ) · (λ⊠ κ)(F × G)

= π1H · νH · (F × G)(λ⊠ κ) · (λ⊠ κ)(F × G)

A similar argument shows that

π2H · λ⊠ κ · Hν = π2H · νH · (F × G)(λ⊠ κ) · (λ⊠ κ)(F × G)

and therefore

λ⊠ κ · Hν = νH · (F × G)(λ⊠ κ) · (λ⊠ κ)(F × G) .

Note that if H is not just an endofunctor but an endofunctor with structure, coherence

4The standard notation for this arrow in category theory is 〈f, g〉.
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F2H (F × G)2Hoo
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2H

HF2

F2H
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FH (F × G)Hoo
π1H

HF
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λ

��

HF H(F × G)ooHπ1
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(F × G)H

λ⊠κ

��

H(F × G)2

H(F × G)

Hν
��

��

����
��

HF2

HF

Hµ
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??

��?
??

?

F2H

FH

µH
����

??����
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(F × G)H

νH????

__????

HF2

FHF

λF

��
FHF

F2H

Fλ

��

H(F × G)2

(F × G)H(F × G)

(λ⊠κ)(F×G)

��4
44

44
44

44
44

44
44

(F × G)H(F × G)

(F × G)2H

(F×G)(λ⊠κ)

��























(1)

(2)

(3)

(4)

,

Figure 1.1: Coherence of λ⊠ κ with µ

with its structure must be established as well.

For any notion of a distributive law, just in the case of products one must establish

similar coherence properties by similar proofs. The proofs are similar in nature, but

the details are different. For instance, an applicative functor F : C −→ C comes with

a natural transformation γX,Y : FX × FY −→ F(X × Y ). A distributive law, λ,

of an endofunctor, H, over F must be coherent with γ in the sense that the following

diagram commutes

HF(X × Y ) FH(X × Y )
λX×Y

//

H(FX × FY )

HF(X × Y )

HγX,Y

��

H(FX × FY ) HFX × HFY
Hπ1△Hπ2// HFX × HFY

FH(X × Y )FH(X × Y ) F(HX × HY )
F(Hπ1△Hπ2)

//

HFX × HFY

FH(X × Y )

HFX × HFY FHX × FHY
λX×λY // FHX × FHY

F(HX × HY )

γHX,HY

��

Note that this is by far not the whole definition of an applicative functor and not all

coherence conditions on an applicative functor but for illustration purposes we have

singled out this case.

For another applicative functor G, one can define the structure of an applicative

functor on F × G. In particular, when G comes with a γ′X,Y : GX × GY −→

G(X × Y ), one can define the arrow

νX,Y : (F × G)X × (F × G)Y
τ // FX × FY × GX × GY

γX,Y ×γ′
X,Y // F(X × Y ) × G(X × Y ) ≡ (F × G)(X × Y ) ,

(1.8)

where τ is the obvious isomorphism. For another distributive law κ : HG =⇒ GH,

where G is an applicative functor, (1.5) defines the underlying arrow of a product
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FH(X × Y ) (F × G)H(X × Y )oo

HF(X × Y )

FH(X × Y )

λ

��

HF(X × Y ) H(F × G)(X × Y )oo Hπ1
H(F × G)(X × Y )

(F × G)H(X × Y )

(λ⊠κ)

��

HF(X × Y ) H(F × G)(X × Y )oo Hπ1

H(FX × FY )

HF(X × Y )

Hγ

��

H(FX × FY ) H
(

(F × G)X × (F × G)Y
)

oo Hπ1
H

(

(F × G)X × (F × G)Y
)

H(F × G)(X × Y )

Hν

��

F(HX × HY ) (F × G)(HX × HY )oo π1

FH(X × Y )

F(HX × HY )

F(Hπ1△Hπ2)

��

FH(X × Y ) (F × G)H(X × Y )oo π1
(F × G)H(X × Y )

(F × G)(HX × HY )

(F×G)(Hπ1△Hπ2)

��

H(FX × FY )

HFX × HFY

Hπ1△Hπ2

WW////////

H
(

(F × G)X × (F × G)Y
)

H(F × G)X × H(F × G)Y

Hπ1△Hπ2

GG��������

H(F × G)X × H(F × G)YHFX × HFY
Hπ1×Hπ1oo

FHX × FHY

F(HX × HY )

γ

GG��������
(F × G)HX × (F × G)HY

(F × G)(HX × HY )

ν

WW////////

(F × G)HX × (F × G)HYFHX × FHY
π1×π2oo

HFX × HFY

FHX × FHY

λ×λ

��

H(F × G)X × H(F × G)Y

(F × G)HX × (F × G)HY

(λ⊠κ)×(λ⊠κ)

��

(1)(6) (∗)

(2)

(3)

(4)

(5)

Figure 1.2: Left projection on the coherence of ν

distributive law. To see this, one must establish all coherence conditions for the prod-

uct. In particular, to establish coherence of λ⊠κ with γ, observe that in the diagram in

Fig. 1.2 all numbered squares commute, where (1) commutes by the definition of λ⊠κ,

(6) is a precondition, (2) and (5) commute by definition (1.8), (3) and (4) commute by

naturality, and the outside square commutes by definition of λ⊠κ and naturality. Com-

mutativity of (∗) follows by a similar argument as before and a symmetrical diagram

for π2.

There is a common pattern in the two proofs and in the sense they are both sim-

ple, which is formalised in this thesis. Without a proper understanding of the pattern,

one has no other option than to go through the tedious details for each notion of a dis-

tributive law, or omit the proofs of such coherence conditions, as it is has been done

before. Moreover, there are cases when omission is not an option, such as computer

aided theorem proving.

1.2.5 Generalised distributive laws

2-Category theory is a theory of ordinary categories where one can formally model

ordinary-categorical structures. It is therefore the formal setting where various notions

of functors with structure, arising both from category theory and programming, can be

studied as formal mathematical objects.
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In this thesis, functors with structure are modelled as 2-functors into Cat, where

the functors are thought of as models, their domain 2-categories as theories. This

turns functors with structure into formal objects of 2-category theory and makes them

available for categorical manipulation.

The idea of modelling mathematical theories as categories and their models as func-

tors into suitable base categories is due to Lawvere [Law68]. Its significance can be

hardly overestimated. It gave birth to the whole field of categorical model theory,

which includes various notions of sketches [Ehr68, Wel93, BW85, BW99] as categori-

cal counterparts of the usual set-theoretical definitions by tuples. Categories of models

of sketches can also by described axiomatically as so-called locally presentable and

accessible categories [GU71, MP90, AR94].

Importantly, once a mathematical notion is described by a theory (a category) its

models can be taken also in other than the most obvious categories as long as these

categories have enough structure, such as finite products, limits, etc. These can be in

particular certain functor categories. For instance, a monad on C is a monoid in the

category of endofunctors on C and the two coherence conditions for µ and η arise as

the associativity and unit conditions of a monoid. This is a key principle also in this

thesis as we use models of a theory of functors with structure in a suitable 2-category

of models of another theory of functors with structure. This is the formal basis for our

notion of generalised distributive laws.

Once distributive laws become objects in a category, one can study the construc-

tions on distributive laws such as products, coproducts or composition as formal con-

structions on objects in the category. Our categories of generalised distributive laws

are 2-categories of 2-functors parameterised by a notion of a theory. We are therefore

interested in the constructions parametric in the theory and it turns out that many of the

usual constructions arise as such. For instance, the proofs of coherence in Figs (1.1)

and (1.2) turn out to be just projections in the corresponding functor categories – 2-

categorical lax natural transformations.

1.3 Contributions

In this thesis we develop a new notion of a generalised distributive law, which is specif-

ically designed to be close to the definitions in (mostly functional) programming lan-

guages. Our starting point is mathematically structured programming – a discipline

where one seeks parallels between mathematical and programming structures in order

to construct better and more dependable programs. The broader intent of this thesis is

to demonstrate that mathematical distributive laws deserve a more prominent place in

the toolbox of a computer scientist. Because too often mathematics plays a role in pro-

gramming only at the very beginning to guide the definition of a programming structure

and at the end to verify the result, rather than to guide the programming process.
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To this end we make original contributions to the state of the art of distributive laws

in mathematically structured programing by giving answers to the following questions:

• What is the formal relation of the distributive-law-like polymorphic programs

and formal distributive laws in category theory?

• How are the different notions of distributive laws related ?

• Is there a repeating pattern in the constructions of products, coproducts and com-

position of distributive laws that occur in mathematically structured program-

ming?

• Is it possible to simplify or completely eliminate the proofs of coherence condi-

tions in such constructions?

This is achieved in the following concrete contributions:

1. In Chapter 4, generalised distributive laws of two functors with structure are de-

fined, which subsume previously defined specific notions in category theory and

mathematically structured programming. The notion is essentially equivalent

to J.W.Gray’s notion of a quasi-functor of two variables which provides it with

strong theoretical foundations and a useful characterisation (Theorem 4.1.3). Our

contribution lies in demonstrating the connection of the various notions of co-

herent distributive-law-like polymorphic programs in mathematically structured

programming and Gray’s quasi-functors.

2. We show that in this setting one can iterate the construction to obtain distributive

laws of more than two notions of functors with structure (Sect. 4.3), and that such

iterated distributive laws correspond to Gray’s notion of a quasi-functor of n

variables. This observation yields a general higher-dimensional characterisation

theorem (Theorem 4.3.7).

3. We develop a general approach to products, coproducts and compositions of dis-

tributive laws in a way close to their informal definitions in programming. Our

analysis discloses the abstract nature of these constructions, their correctness

and their coherence properties (Chapter 5). Moreover, we eliminate the proofs

of coherence conditions altogether for a class of functors with structure (Theo-

rem 5.1.9).

4. The relevance of the notions introduced by us is documented in many examples

throughout the text. In Chapter 6, we collect several key examples in mathemat-

ically structured programming. For McBride and Paterson’s applicative functors

we make use of the fact that they are internally higher-dimensional distributive
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laws to show their notions of distributive laws, products, compositions and so-

called crushes. We also show how Meertens’s functor pullers are distributive

laws of n-ary functors.

5. We contribute to the existing body of examples of distributive laws in program-

ming by developing a notion of equivalence of functional and component-based

programs based on distributive laws (Sect. 6.3). We believe it is an important in-

stance of distributive laws, which also contributes to the mathematics of component-

based programming.

1.4 Outline

In Chapter 2 the basic notions of 2-category theory are reviewed. The material is stan-

dard, nothing of substance there is original. The reader familiar with 2-category theory

might wish to skip this section and start reading from Chapter 3 and refer to Chapter 2

only as needed following references in the main text.

In Chapter 3, functors with structure are formalised as functors from certain 2-

categories serving as theories. The elementary notions are developed and supported

by examples. The development starts in Sect. 3.1 by a discussion of formal objects

and arrows modelled as functors into a base 2-category. The section is slow-paced and

serves mostly to plant the correct intuitions about the functorial approach and to intro-

duce some basic notation. In Sect. 3.2, theories and models of functors with structure

are defined, and Sect. 3.3 introduces their morphisms and discusses the two kinds of 2-

categories of functors with structure. Formal forgetful functors, defined in Sect. 3.4, are

in the functorial setting given by precomposition with inclusions of theories. They al-

low us, in particular, to define the notions of formal domain, codomain and underlying

arrows of functors with structure. The chapter concludes by Sect. 3.5, which introduces

important examples of functors with structure which are used and further developed in

the remaining text.

In Chapter 4, the key notion of the thesis, a generalised distributive law, is defined

in Sect. 4.1, Def. 4.1.1. Section 4.2 introduces some useful notation used for gener-

alised distributive laws. Section 4.3 introduces and investigates the important case of

higher-dimensional distributive laws, i.e. distributive laws where more than two no-

tions of functors with structure are involved. Section 4.5 discusses examples.

In Chapter 5, constructions on generalised distributive laws are studied, namely

their products (Sect. 5.1), coproducts (Sect. 5.2) and composition (Sect. 5.3).

In Chapter 6, we collect important examples of distributive laws in programming.

Namely we interpret functor pullers and so-called idiomatic functors (iFunctors) as

generalised distributive laws. We illustrate how the constructions on distributive laws

developed in Chapter 5 underlie the constructions previously defined in the literature

14



for these examples. Finally, we give an original example of an application of dis-

tributive laws to formal comparison of functional and component-based programming

(previously published by us in [LR08]). The chapter is self-contained to a large degree

making it possible for the reader interested in the applications to start reading here and

refer to the previous theoretical chapters as needed.

In Chapter 7 we conclude and discuss related and future work.
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Chapter 2

Preliminaries

In this chapter, the basic notions of 2-category theory are reviewed. The material is

standard, nothing of substance here is original. The reader is assumed to be already

familiar with the basic notions of ordinary category theory such as category, functor,

natural transformation, adjunction, limits and colimits. Good first introductions to cat-

egory theory are [Awo06, BW99], Mac Lane’s textbook [Mac97] is more advanced.

The exposition of 2-categories in the following text is slanted towards the notions

of enriched category theory [Kel82]. In short, a 2-category in Def. 2.2.1 is introduced

as a category enriched over a category. In contrast, the more basic, and at first sight

more direct approach is to start from 0-cells, 1-cells and 2-cells with two kinds of com-

position, horizontal and vertical, satisfying certain coherence conditions. The enriched

approach is more principled and is thus suitable for the advanced notions gradually

introduced later. Namely, it provides the right guidance for the correct definitions of

2-functors in Def. 2.2.5, 2-natural transformations and modifications in Defs 2.2.7 and

2.2.9. Secondly, it leads directly to the definition of 3-categories in Sect. 2.2.5, which

will be needed soon. Most importantly, the enriched point of view allows us to define

categories that are “very much like but not quite” 2-categories in Sect. 2.4.

2.1 Ordinary Categories

This section collects some basic notation used in the rest of the text.

Categories, C ,D , . . ., have objectsX,Y, . . . and arrows f, g, . . .. The set of objects

of C is denoted |C |. The set membership relation ∈ is occasionally used as X ∈ C

instead of the formally correct X ∈ |C |.

Arrows have a domain (or source) and a codomain (or target). An arrow with

domain X and codomain Y is denoted f : X −→ Y .

Composition of arrows f : X −→ Y and g : Y −→ Z is denoted g · f , or just gf .

Identities are denoted 1X , or X , or just 1 in diagrams where the object is clear from

16



context.

Functors between categories are denoted F,G, . . .. Their action on objects is de-

noted F(X) or FX , the same goes for arrows. Constant functors, i.e. functors factor-

ing through the terminal one-object category, 1, are denoted Y for an object Y in D .

Formally:

Y =def C
1 // 1

Y // D

where the label Y is overloaded to denote also the point in D picking Y .

Natural transformations between functors are denoted α, β, . . ., their components

αX , αY , . . .. A natural transformation from F to G, where F,G : C −→ D , are

denoted either α : F =⇒ G : C −→ D or by the two-dimensional notation as

C ⇓α

F //

G
// D .

For natural transformations α, β, the natural transformation with components βX ·

αX is denoted β ·α. This is called vertical composition. So-called horizontal composi-

tion of natural transformations, C ⇓α

F //

G
//D , D ⇓β

H //

I
//E , is the natural transformation

whose components are βGX ·H(αX), or equivalently I(αX) ·βFX . It is denoted β ◦α

or just βα. For each functor F, the identity natural transformation, i.e. the natural

transformation with components 1X , is denoted 1F, or just F. Functors from C to D

and natural transformations with vertical composition form a category DC .

Small categories and functors form a category, Cat. Composition in this category,

i.e. composition of functors, is denoted G ◦ F or GF. Note that this notation is

consistent with the meaning given to it in the previous paragraph.

The category Cat has products C × D , with objects (X,Y ) and arrows (f, g). It

also has coproducts C + D , and exponents DC . In an arbitrary category, C , the set of

arrows between objects X and Y is denoted C (X,Y ).

When C has products,×, there is a natural isomorphism

( △ ) : C (X,Y ) × C (X,Z) // C (X,Y × Z) , (2.1)

which is used as an infix operator as in f △ g. Likewise, when C has coproducts, +,

there is a natural isomorphism

(▽ ) : C (X,Z) × C (Y,Z) // C (X + Y, Z) . (2.2)

Usually, f △ g is denoted 〈f, g〉 and f ▽ g is denoted [f, g]. We stray from this

convention because the square brackets will have a more important and no less standard

role.

We adhere to the convention, already used in (2.1) and (2.2) above, that the name

of a functor meant to be used as an infix operator is typeset in parentheses when not
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applied to arguments.

2.2 2-Categories

In this section we give a succinct summary of the basic notions of 2-category theory

which are essential in the rest of the text. Although the material as presented here

might be a bit terse, the rest of the thesis serves as an accessible and detailed example

of the notions in the area of computer science. The reader might find it more accessible

to skip to Chapter 3 at the first reading and refer to this section on as needed basis

following many references there.

2.2.1 Definition

A 2-category C is a category (so-called underlying category), C0, whose hom-sets are

not just sets but categories. Moreover, the composition in C0 and in each hom-category

interact appropriately. A formal definition follows.

Definition 2.2.1 (2-Category). A 2-category C consists of

1. a class |C |

2. for each pair A,B ∈ |C | a category C (A,B)

3. for each triple A,B,C ∈ |C | a bifunctor

cA,B,C : C (A,B) × C (B,C) −→ C (A,C)

4. for each A ∈ |C | a functor uA : 1 −→ C (A,A), where 1 is the terminal one-

object category.

This data is required to satisfy the following coherence conditions (Figure 2.1):

cA,C,D · (cA,B,C × 1) ∼= cA,B,D · (1 × cB,C,D)

cA,A,B · (uA × 1) ∼= 1 ∼= cA,B,B · (1 × uB)

We use the following conventions:

1. Elements of |C | are called 0-cells or objects. They are usually denotedA,B,C, . . ..

In case we explicitly have the 2-category of categories, functors and natural

transformations in mind (Example 2.2.2), we also use script letters C ,D , . . .,

which are otherwise reserved for categories. Instead of A ∈ |C | we often write

just A ∈ C to save notational clutter.

18



C (A,C) × C (C,D) C (A,D)
cA,C,D

//

(C (A,B) × C (B,C)) × C (C,D)

C (A,C) × C (C,D)

cA,B,C×1

��

(C (A,B) × C (B,C)) × C (C,D) C (A,B) × (C (B,C) × C (C,D))
∼= // C (A,B) × (C (B,C) × C (C,D))

C (A,D)

C (A,B) × C (B,D)

C (A,D)

cA,B,D

��

C (A,B) × (C (B,C) × C (C,D))

C (A,B) × C (B,D)

1×cB,C,D

��

1 × C (A,B) C (A,A) × C (A,B)
uA×1 //1 × C (A,B)

C (A,B)

∼=

''OOOOOOOOOOOOOOOO
C (A,A) × C (A,B)

C (A,B)

cA,A,B

��

C (A,B) × 1 C (A,B) × C (B,B)
1×uB //C (A,B) × 1

C (A,B)

∼=

''OOOOOOOOOOOOOOOO
C (A,B) × C (B,B)

C (A,B)

cA,B,B

��

Figure 2.1: Associativity of composition and unit axioms

2. Objects of hom-categories C (A,B) are called 1-cells or arrows, and are denoted

f, g, h, . . . or F,G,H, . . ., which otherwise denote functors.

3. Arrows of hom-categories are called 2-cells and denoted with Greek lettersα, β, γ, . . ..

This is the same for natural transformations.

4. The action of c is called horizontal composition and is denoted ◦ or just by jux-

taposition when there’s no danger of confusion.

5. On the other hand, composition of 2-cells is called vertical composition and is

always denoted by ·. So, βα always means β ◦ α rather than β · α.

6. For each 1-cell f ∈ C (A,B) there is a unit 2-cell on f denoted 1f . We adhere

to the usual convention that identities on objects and 1-cells are denoted just by

the name of the object or 1-cell, so 1f can also be denoted just f .

7. In diagrams, the usual convention is used of drawing 2-cells as double arrows

running orthogonally to 1-cells as in

A B

f

&&
A B

g

88α�� ,

or A ⇓α

f //

g
// B in running text. In writing, we usually chain all typing informa-

tion, so α above has type f =⇒ g : A −→ B.
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8. Horizontal composition is usually pictured just by pasting 2-cells next to each

other (see (2.3) below).

9. Likewise, vertical composition is pictured just by pasting 2-cells one on top of

the other, as in (2.3). Note that there is a way of making sense of an arbitrary 2-

categorical diagram of vertices (0-cells), edges (1-cells) and polygons (2-cells).

See section 2.2.2.

10. From now on, we use the term ordinary category for a category which is not a

2-category. In general, the adjective ordinary can be used for anything that is

explicitly non-2-categorical, such as “ordinary functor”, “ordinary natural trans-

formation”, etc.

The coherence conditions of Figure 2.1 clearly make |C | and 1-cells of C into a cate-

gory, so-called underlying category of C , denoted C0. Composition in C0 is given by

the action of c on objects of hom-categories; units are given by u(∗), where ∗ is the

sole object of 1.

Note that the above definition of a 2-category elegantly entails the more elementary

definitions where one starts from 0-cells, 1-cells and 2-cells with three kinds of com-

position that interact in a good way (are coherent). In particular, it is easy to show that

horizontal composition respects identities,

1g ◦ 1f = 1gf

and that horizontal and vertical composition commute – so called Interchange Law:

X Y

f

��
X Yg //X Y

f

CC

α��

β��
Y Z

u

��
Y Zv //Y Z

w

CC

γ��

δ��

(δ · γ) ◦ (β · α) = (δ ◦ β) · (γ ◦ α)

(2.3)

Example 2.2.2 (The 2-category of categories). Small ordinary categories, functors and

natural transformations form a 2-category; denoted Cat. Here, for a functor F : C −→

D and a natural transformation α : G =⇒ H : D −→ E (see Fig. 2.2), the horizontal

composition of α after the identity on F, α◦F, coincides with the pointwise application

αF:

(α ◦ F)X ≡ α(FX)

Similarly, the horizontal post-composition I ◦α concides with pointwise functor appli-
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cation:

(I ◦ α)X ≡ I(αX)

C D
F // D E

G

&&
D E

H

88α�� E F
I //

=

C D

F

&&
1F��C D

F

88 D E

G

&&
D E

H

88α�� E F

I
''

1I��E F

I

77

Figure 2.2: Horiziontal composition and identities

Example 2.2.3 (Ordinary categories). Any ordinary category, C , is trivially a 2-category,

where each hom-category C (A,B) is discrete.

2.2.2 Pasting

In ordinary category theory, one often draws a diagram of objects and arrows saying

“this diagram commutes”. Formally this means that for any two objects, A, B, two

arbitrary paths from A to B are equal. The validity of this statement rests on associa-

tivity of composition of arrows, because any composable path of arrows ·
f1
−→ ·

f2
−→

· · ·
fn
−→ · defines a unique arrow fn · · · f1. Geometrically, the composition gf of ar-

rows g : B −→ C and f : A −→ B is obtained by “pasting” g after f at the common

boundary, B.

The composition of paths of arrows in a diagram generalises in the case of 2-

categories to pasting of 2-cells, introduced by Benabou [Bén67]. The two basic sit-

uations are

•

•

g
��?

??
??

??
?• •

f // •

•

??

h
���

�

���
�

• •
i

//

•

•

??

h
���

�

���
�

•

•

j

��?
??

??
??

?

α�� β��

• •
h

//

•

•

??
f

��
��

��
��
•

•

g
??

??

��?
??

?

•

•

g
??

??

��?
??

?

• •
i // •

•

??

j
��

��
��

��
γ�� δ��

The left-hand side diagram defines by pasting the 2-cell (βg) · (jα) : jf =⇒ ig. The

right-hand side diagram defines by pasting the 2-cell (jγ) · (δf) : if =⇒ jh. In
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general, one can use pasting in more general situations such as:

•

•

g
??

??

��?
??

?

• •
f // •

•

??

h
���

�

���
�

• •i //

•

•

??

h
���

�

���
�

•

•

j

��?
??

??
??

?

α�� β��

• •
l

//

•

•

??

k
���

�

���
�

•

•

•

•

• •i // •

•

??

m
��

��
��

��
γ��

•

•

n

��

δ��

Which defines by pasting the 2-cell

jf
jα +3 jhg

βg +3 ig
iδ +3 ikn

γn +3mln (2.4)

Note that the same diagram can be usually pasted in many different ways. In the case

above, the following is an alternative order of pasting the 2-cells:

jf
jα +3 jhg

jhδ +3 jhkn
βkn +3 ikn

γn +3mln (2.5)

However, (2.4) = (2.5) by associativity of vertical and horizontal composition, and in-

terchange. This doesn’t mean that an arbitrary diagram pastes to give a single 2-cell,

however, if it does, it does so in a unique way [Pow90].

We adhere to the convention of denoting identity 2-cells by empty space in dia-

grams, such as in

• •
n

//

•

•

l

��

• •
k // •

•

m

��

•

•
p����

��
�

•

•

o

��?
??

??
•

•

m

��

{�
α���� ,

which means just thatm = po, and so the diagram denotes a 2-cell pok = mk
α +3nl.

Among all pasting situations the following two are of special importance:

• •//

•

•
��

• •// •

•
��
• •//

•

•
��

• •// •

•
��

α ;C
����

β ;C
���� • •//

•

•
��

• •// •

•
��

γ ;C
����

• •//

•

•
��

• •// •

•
��

δ ;C
����

In this situation, the 2-cell on the left is denoted β � α and the operation is called
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horizontal pasting. The 2-cell on the right is denoted δ ⊟ γ (note the order of δ and

γ) and the operation is called vertical pasting. The orientation of the drawing is not

important, so δ ⊟ γ can be equivalently pictured as

• •//

•

•
��

• •// •

•
��
• •//

•

•
��

• •// •

•
��

{�
γ

���� {�
δ����

It follows immediately from geometrical considerations that

(β � α) ⊟ (δ � γ) = (β ⊟ δ) � (α ⊟ γ)

Remark 2.2.4. Note that for the purposes of pasting, a 2-cell X ⇓α

f //

g
// Y can be

considered as either of the following squares.

Y Y
1Y

//

X

Y

f

��

X X
1X // X

Y

g

��

α ;C
����

Y Y
1Y

//

X

Y

g

��

X X
1X // X

Y

f

��
{�
α����

Now, in analogy to the ordinary case, any diagram of 2-cells can be proclaimed

(required) to commute. More formally, for a diagram of 2-cells to commute means that

for any two objects, A, B, and two composable paths, f , g, of arrows from A to B,

an arbitrary pair of 2-cells from f to g obtained by pasting is equal. This necessarily

leads to three-dimensional diagrams, which we draw with joy whenever it is sensible

and enlightening. The formal details can be found in [Pow90]. Here we give just an

example of how exactly the following equation

µ · Tµ = µ · µT (2.6)

corresponds to the 2-categorical pasting situation in Fig. 2.3. To this end, observe that

commutativity of (2.7) can be equivalently written as an equality of the two 2-cells

arising from splitting its surface along the bold path.

•

•

T

??
?

��?
??

• •
T // •

•

??

T
��

��
��

��

• •
T

//

•

•

T

����
��

��
��
•

•

T

??
?

��?
??

µ
KS

µ
KS

=

•

•

T

??
?

��?
??

• •
T // •

•

T
����

��
��

��

• •
T

//

•

•

??
T

��
��

��
��
•

•

T

??
?

��?
?? �� µ�� µ (2.8)
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•

•
T **VVVVVVVVVVVVV

•

•

T
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•
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•
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��#
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#•

T
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•

•

T
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•

•
T

00aaaaaaaaaaa
00aaaaaaaaaaa
00aaaaaaaaaaa
00aaaaaaaaaaa

µ

KS
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	�

µ

��

µ

=E

(2.7)

Figure 2.3: Coherence for the multiplication of a monad

In detail, first split (2.7) along the bold path:

•

•
T **VVVVVVVVVVVVV

•

•

T

;;wwwwwwww

;;wwwwwwww

;;wwwwwwww

;;wwwwwwww

•
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#
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•
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•
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��#
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��#
##
##
##
##
##
##
##
##
#

��#
##
##
##
##
##
##
##
##
#•

T

##
##
##
##
#

•

•

T

CC�����������������

CC�����������������

CC�����������������

CC�����������������
•

•
T

00aaaaaaaaaaa
00aaaaaaaaaaa
00aaaaaaaaaaa
00aaaaaaaaaaa

µ

KS

µ

��

•

NN
(2.9)

Now, by straightening the surface as indicated one obtains (2.8). To see that (2.8) is

actually (2.6) by pasting, one has to split the parallelogram along the diagonal arrow,

T, and paste the two halves together. Here, pasting corresponds to occurrences of · in

(2.6).

•

•

T

??
?

��?
??

• •
T // •

•

??

T
��

��
��

��

••

µ
KS

•

•

T

??
?

��?
??

• ••

•

??

T
��

��
��

��

• •
T

//

•

•

T

����
��

��
��
•

•

T

??
?

��?
??

µ
KS

=

•

•

T

??
?

��?
??

• •
T // •

•

T
����

��
��

��

• •

•

•

??
T

��
��

��
��
•

•

�� µ

• •
T

//

•

•

??
T

��
��

��
��
•

•

T

??
?

��?
??�� µ

(2.10)

Note the identity on T hanging on either side of µ in the diagram above. This is nec-

essary to make the types of the top and bottom halves match: the type of the boundary

in each case is TT.
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2.2.3 2-Functors, 2-natural transformations and modifications

In the previous section, 2-categories are introduced as categories where homsets are

categories. This paves the way to straightforward definitions of functors on 2-categories:

2-functors, and natural transformations on them: 2-natural transformations.

Definition 2.2.5 (2-Functor). For 2-categories C and D , a 2-functor F : C −→ D is

given by the following:

1. a function |F| : |C | −→ |D |. We usually write just F for this function when

there’s no danger of confusion.

2. for each pairA,B ∈ |C |, an ordinary functor FA,B : C (A,B) −→ D(FA,FB)

such that the following coherence conditions hold, where composition and unit in D

are d and v, respectively (Figure 2.4):

dFA,FB,FC · (FA,B × FB,C) = FA,C · cA,B,C

FA,A · uA = vFA

D(FA,FB) × D(FB,FC) D(FA,FC)
dFA,FB,FC

//

C (A,B) × C (B,C)

D(FA,FB) × D(FB,FC)

FA,B×FB,C

��

C (A,B) × C (B,C) C (A,C)
cA,B,C // C (A,C)

D(FA,FC)

FA,C

��

1 C (A,A)
uA //1

D(FA,FA)

vFA

��?
??

??
??

??
??

C (A,A)

D(FA,FA)

FA,A

��

Figure 2.4: Coherence of 2-functor F : (C , c, u) −→ (D , d, v)

We often write just F instead of FA,B . It’s immediate that F defines a functor

on the underlying categories denoted F0 : C0 −→ D0. In order to introduce natural

transformations on 2-functors, the homset notation, C (A,B), must be extended from

a mere syntactical notation to a proper functor as follows:

Definition 2.2.6 (Homfunctors). For an object in f ∈ C (A,B), the functor C (X, f) :

C (X,A) −→ C (X,B) is defined by

C (X, f)(g) ≡ f ◦ g

C (X, f)(α) ≡ 1f ◦ α

Similarly for C (f, Y ) : C (B, Y ) −→ C (A, Y ):

C (f, Y )(g) ≡ g ◦ f

C (f, Y )(α) ≡ α ◦ 1f
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That this defines functors is easy to verify.

The definition of 2-natural transformation is now rather compact.

Definition 2.2.7 (2-Natural transformation). For 2-functors F,G : C −→ D , a 2-

natural transformation θ : F =⇒ G is given by:

• for each A ∈ |C | a 1-cell θA : FA −→ GA of D such that for each pair

A,B ∈ |C |, the following holds:

D(FA,FB) D(FA,GB)
D(1FA,θB)

//

C (A,B)

D(FA,FB)

FA,B

��

C (A,B) D(GA,GB)
GA,B // D(GA,GB)

D(FA,GB)

D(θA,1GB)

��

D(1FA, θB) · FA,B = D(θA, 1GB) · GA,B

(2.11)

The following observation characterises 2-natural transformations in more elementary

terms.

Observation 2.2.8. A 2-natural transformation θ as above is equivalent to the follow-

ing:

1. θ is an ordinary natural transformation on the underlying functors F0,G0 :

C0 −→ D0. To see this, consider an f ∈ C (A,B) in the upper left corner

in (2.11). Going down and right takes it to θB ◦ Ff while going right and down

takes it to Gf ◦ θA. Commtativity of (2.11) therefore gives commutativity of the

following diagram in D0:

FB GB
θB

//

FA

FB

Ff

��

FA GA
θA // GA

GB

Gf

��

2. Similarly, for a 2-cell α : f =⇒ g : A −→ B, the bottom route gives θB ◦ Fα;

the top route gives Gα ◦ θA:

FB

FA

		

Ff

FB

FA

vv
Fg

GB

GA

		

Gf

GB

GA

vv
Gg

FB GB
θB

//

FA GA
θA //

Fα�� Gα��

θB ◦ Fα = Gα ◦ θA

(2.12)
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So in elementary terms, a 2-natural transformation is a natural transformation on the

underlying functors that in addition satisfies a 2-naturality condition (2.12) with respect

to 2-cells. It is straightforward to define vertical and horizontal composition of 2-

natural transformations (Figures 2.5 and 2.6) and to prove this data defines a 2-category.

Moreover, one can define morphisms of 2-natural transformations – modifications.

Definition 2.2.9 (Modification). Let θ, τ : F =⇒ G : C −→ D be 2-natural trans-

formations. A modification χ : θ ≡⇛ τ is given by a collection of 2-cells of D ,

χA : θA =⇒ τA such that for every 2-cell A ⇓α

f //

f ′

// B in C the following equality

holds in D:

F(B)

F(A)

		

Ff

F(B)

F(A)

ww
Ff ′Fα��

G(B)

G(A)

		

Gf

G(B)

G(A)

ww
Gf

Gα��

F(B) G(B)

θB

++

F(A) G(A)

θA

++

F(B) G(B)

τB

33

F(A) G(A)

τA

33

χA��

χB��

χA ◦ Fα = Gα ◦ χB

(2.13)

D(FA,FB) D(FA,HB)

C (A,B)

D(FA,FB)

FA,B

��

C (A,B) D(HA,HB)
HA,B // D(HA,HB)

D(FA,HB)D(FA,GB) D(FA,HB)
D(1,γB)

//

D(GA,GB)

D(FA,GB)

D(θA,1)

��

D(GA,GB) D(GA,HB)
D(1,γB) // D(GA,HB)

D(FA,HB)

D(θA,1)

��

C (A,B)

D(GA,GB)

GA,B

OOOOOO

''OOOOOO

D(FA,FB) D(FA,GB)
D(1,θB)

//

D(HA,HB)

D(GA,HB)

D(γA,1)

��

Figure 2.5: Vertical composition of 2-natural transformations

2.2.4 Duality

For an ordinary category, C , there is an opposite category, C op, such that objects of

C op are objects of C and there is an arrow fop : X −→ Y of C op for each arrow

f : Y −→ X of C . An ordinary functor F : C −→ D is by definition the same thing

as a functor Fop : C op −→ Dop and a natural transformation α : F =⇒ G : C −→ D

is by definition a natural transformation αop : Gop =⇒ Fop : C op −→ Dop because
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D(FA,FB) D(FA,GB)
D(1,θB) //

C (A,B)

D(FA,FB)

FA,B

��

C (A,B) D(GA,GB)
GA,B // D(GA,GB)

D(FA,GB)

D(θA,1)

��

E (UFA,UFB) E (UFA,UGB)
E (1,UθB)

//

D(FA,FB)

E (UFA,UFB)

UFA,FB

��

D(FA,FB) D(FA,GB)
D(1,θB) // D(FA,GB)

E (UFA,UGB)

UFA,GB

��

D(FA,GB) E (VFA,VGB)
VFA,GB //

D(GA,GB)

D(FA,GB)

D(θA,1)

��

D(GA,GB) E (VGA,VGB)
VGA,GB // E (VGA,VGB)

E (VFA,VGB)

E (VθA,1)

��

E (UFA,UGB) E (UFA,VGB)
E (1,γGB)

//

D(FA,GB)

E (UFA,UGB)

UFA,GB

��

D(FA,GB) E (VFA,VGB)
VFA,GB // E (VFA,VGB)

E (UFA,VGB)

E (γFA,1)

��

Figure 2.6: Horizontal composition of 2-natural transformations

the following two commuting squares are just different denotations of the same data:

FY GY
αY

//

FX

FY

Ff

��

FX GX
αX // GX

GY

Gf

��
FopY GopYoo

α
op

Y

FopX

FopY

OO

Fopfop

FopX GopXoo α
op

X
GopX

GopY

OO

Gopfop

It’s easy to check that this defines an ordinary endo-isomorphism op : Cat −→ Cat.

D Dop� //

C

D

F

��

C C op� // C op

Dop

F op

��

C

D

G

��

C op

Dop

Gop

��

α +3 ksα
op� //

These considerations apply to 2-categories in two ways as follows. For an arbitrary

2-category C , one can define two derived categories. Both categories have the same

objects but differ in hom-categories.

Definition 2.2.10 (Horizontally opposite category). The category C op is defined by:

|C op| =def |C |

C
op(A,B) =def C (B,A) ,

and the rest follows straightforwardly.

So the category C op has reversed 1-cells but its 2-cells have the same directions

w.r.t. C . One can also reverse the 2-cells of a 2-category as follows.
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Definition 2.2.11 (Vertically opposite category). The category C co is defined by:

|C co| =def |C |

C
co(A,B) =def C (A,B)op ,

and the rest follows straightforwardly.

So C co has reversed or 2-cells, but 1-cells are the same. The following then follows

directly from the definitions.

Lemma 2.2.12.

1. A opop ≡ A

2. A coco ≡ A

3. A coop ≡ A opco

The effect the opposite-forming operations have on 2-functors and modifications is

summarised at the end of the next section after we have discussed their categories.

2.2.5 The 3-category of 2-categories

Fix a pair of 2-categories, C , D . The 2-functors from C to D , 2-natural transforma-

tions and modifications form a 2-category, DC . Moreover, for any three 2-categories,

C , D , E , composition of 2-functors and horizontal composition of 2-natural transfor-

mations define a 2-functor cCDE : DC × E D −→ E C , which satisfies the diagrams in

Fig. 2.1, appropriately renamed. This means formally that 2-categories, 2-functors, 2-

natural transformations and modifications form a 3-category, denoted 2Cat. The formal

definition of a 3-category follows:

Definition 2.2.13 (3-Category). A 3-category C consists of

1. a class |C | of objects

2. for each pair A,B ∈ |C | a 2-category C (A,B)

3. for each triple A,B,C ∈ |C | a 2-bifunctor cA,B,C : C (A,B) × C (B,C) −→

C (A,C)

4. for each A ∈ |C | a 2-functor uA : 1 −→ C (A,A)

This data is required to satisfy the coherence conditions in Figure 2.1 where the dia-

grams are considered as diagrams of 2-functors.
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Remark 2.2.14. Clearly, there is a common theme going on between Definitions 2.2.1

and 2.2.13, which leads to the, now obvious, definition of an n-category. Moreover,

there is an even more general notion of a V -category, for a monoidal category V ,

defined as a set, |C |, together with an assignment of

1. a hom-set-like object C (X,Y ) ∈ V to each pair of objects X,Y ∈ |C |

2. an object I ∈ V and an arrow u : I −→ C (X,X) for all X ∈ V

3. for each triple X , Y , Z, an arrow c of V of type C (X,Y ) ⊗ C (Y, Z) −→

C (X,Z), where ⊗ is the tensor of V

This data must satisfy conditions similar to those of a 2-category that ensure that u is

the unit of composition c, and composition is associative.

Enriched categories generalise n-categories, and many other more and less simi-

lar notions. The theory of enriched categories, and the associated notions, have been

studied extensively. Most notably, G. M. Kelly in [Kel82] gives a comprehensive in-

troduction to Enriched Category Theory.

Finally, note that the 3-category 2Cat is cartesian closed with the closed structure

given by:

terminal object: the one-object 2-category, 1.

binary product: the 2-category A × B for any two 2-categories A and B. It is the

category of pairs of 0-cells, 1-cells and 2-cells with the obvious first and second

projections. This forms a binary product in 2Cat.

exponential: given by the right adjoint in (−)×A ⊣ (−)A for every A , where the

counit ǫ : BA × A −→ B is called evaluation.

The following lemma summarises how the exponential interacts with the dualities.

Lemma 2.2.15.

1. (BA ) ≡
(

(Bop)A
op)op

2. (BA ) ≡
(

(Bco)A
co)co

Proof. Just expand the definitions.

2.2.6 Adjunction

Adjuncions are ordinarily defined for functors and natural transformations. Here, we

describe the notion of adjunction w.r.t. an arbitrary 2-category, K . It arises simply by

spelling out the usual definition in terms of the objects, arrows and 2-cells of, K , in

place of Cat.
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Definition 2.2.16 (Adjunction). In a 2-category K , 1-cells f : X −→ Y and g :

Y −→ X are said to be adjoint iff there are 2-cells η : 1 =⇒ gf and ǫ : fg =⇒ 1 that

satisfy (see Fig. 2.7):

ǫf · fη = 1f

gǫ · ηg = 1g

Any of

f ⊣ g

(f, g, η, ǫ)

f : X ⇄ Y : g

is used as a notation for the same adjunction.

X X
1

//

Y

X

??

f

��
��

��
��

��
�
Y

X

g

��?
??

??
??

??
??

Y

X

g

��?
??

??
??

??
??

Y Y
1 // Y

X

??

f

��
��

��
��

��
�

η
KS ǫ

KS
=

X

Y

f

??�����������

Y

X

g

��?
??

??
??

??
??

Y Y
1 // Y

X

??

f

��
��

��
��

��
�

X X
1

//

Y

X

??

f

��
��

��
��

��
�
Y

X

g

��?
??

??
??

??
??

η
KSǫ

KS
=

Y

X

g

��?
??

??
??

??
??

Figure 2.7: The triangle identities in a 2-category

Definition 2.2.16 makes it possible to generalise all other ordinary notions defined

by an adjunction to an arbitrary base 2-category K . Before we investigate products

and coproducts arising in this way in detail, we mention the following simple but useful

fact. Its proof is immediate from Fig. 2.7.

Theorem 2.2.17 (Adjunctions and duality). The following are equivalent in a 2-category

K :

1. (f, g, η, ǫ) is an adjunction in K

2. (g, f, η, ǫ) is an adjunction in K op

3. (g, f, ǫ, η) is an adjunction in K co.
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2.2.7 Products

This section works out the details and notation of a notion of products on an object of

an arbitrary 2-category, K , made possible by the notion of adjunction in an arbitrary

2-category.

We start by fixing some notation. In a 2-category K , an object X ×Y is a product

of objectsX and Y iff there is for anyZ in K a natural isomorphism of hom-categories

K (Z,X) × K (Z, Y ) ∼= K (Z,X × Y ) , (2.14)

natural in Z. The left-to-right direction of (2.14) is denoted (△) and written as an infix

operator. The right to left direction of (2.14) is given by horizontal post-composition

with projections π1 : X × Y −→ X and π2 : X × Y −→ Y . This is summarised in

Fig. 2.8.

X X × Yoo
π1

X × Y Y
π2

//

Z

X

f

��

Z

X × Y

f△g

��

Z

Y

g

''
X X × Yoo

π1
X × Y Y

π2

//

Z

X

f ′

ww

Z

X × Y

f ′
△g′

��

Z

Y

g′

��

�#
α???

???
β ;C

����
����

+3α△β

Figure 2.8: Product X × Y of X , Y , in K

On ordinary category, C , has products iff there is a right adjoint, (×) : C ×C −→

C , to the doubling functor ∆ : C −→ C × C . Formally, when X,Y : 1 −→ C are

objects in C , X × Y is defined as:

1
X△Y // C × C

(×) // C

The functor ∆ is usually defined by its action on objects and arrows as ∆(X) =def

(X,X) and ∆(f) =def (f, f), but equivalently it is just ∆ =def (1C △ 1C ) in Cat.

This allows us to generalise the notion of products in a category to products on an

object in K as follows.

Definition 2.2.18 (Product on an object of a 2-category). In an arbitrary 2-category

K , with object X ∈ K , such that there exists a product X ×X ∈ K :

1. The arrow 1X△1X : X −→ X ×X is denoted ∆X .

2. It is said that X has products iff there is an adjunction ∆X ⊣ (×)X in K
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In the following text, the notationX2 is often used instead ofX×X . By definition,

the unit and counit in the adjunction in K above are just 2-cells of K of types η :

1X =⇒ (×) ◦ ∆ : X −→ X and ǫ : ∆ ◦ (×) =⇒ 1X : X ×X −→ X ×X that satisfy

the triangle identities. By (2.14) for X2, an arbitrary 2-cell γ : f =⇒ g : Z −→ X2 is

isomorphic to the pair of 2-cells:

Z X2

f //
Z X2

g
//γ�� X2 X

π1 // Z X2

f //
Z X2

g
//γ�� X2 X

π2 //

In the special case of ǫ, π1 ◦ ǫ is denoted π1
X , or just π1 when there is no danger of

confusion. Similarly for π2 ◦ ǫ and π2
X .

A product on X in K defines an isomorphism, Φ, of 2-cells of types α : ∆◦z =⇒

(x, y) and α′ : z =⇒ (×) ◦ (x, y)

X X2

∆
//

Z

X

z

����
��

��
�
Z

X2

(x,y)

��?
??

??
?

α +3

X X2oo
(×)

Z

X

z

����
��

��
�
Z

X2

(x,y)

��?
??

??
?

α′

+3
,

which is given by pasting with the unit, η, and counit, ǫ, of the adjunction as follows:

X X2

∆
//

Z

X

z

����
��

��
�
Z

X2

(x,y)

��?
??

??
?

α +3 � Φ // X X2
∆ //

Z

X

z

����
��

��
�
Z

X2

(x,y)

��?
??

??
?

α +3

X

X

1X ��?
??

??
??

X X2
∆ // X2

X

(×)����
��

��
�

η +3

� Φ−1
// X X2

∆ //

Z

X

z

����
��

��
�
Z

X2

(x,y)

��?
??

??
?

α +3

X

X

1X ��?
??

??
??

X X2
∆ // X2

X

(×)
��

����
η +3

X X2

∆
//

X2

X

(×)
��

����

X2

X2

1X2

��?
??

??
?

ǫ +3

X X2oo
(×)

Z

X

z

����
��

��
�
Z

X2

(x,y)

��?
??

??
?

α′

+3 � Φ−1
// X X2oo (×)

Z

X

z

����
��

��
�
Z

X2

(x,y)

��?
??

??
?

α′

+3

X

X

∆ ��?
??

??
??

X X2oo (×) X2

X

1X2����
��

��
�

ǫ +3

� Φ // X X2oo (×)

Z

X

z

����
��

��
�
Z

X2

(x,y)

��?
??

??
?

α′

+3

X

X2

∆

??

��?
?

X X2oo (×) X2

X2

1X2����
��

��ǫ +3

X X2oo
(×)

X

X

1X

����
��

��
�
X

X2

∆

??

��?
?

η +3

That these are indeed inverse follows from the triangle identities. More commonly,

∆ ◦ z is written (z, z) and (×) ◦ (x, y) is written x × y, and so we have the familiar

isomorphism

(z, z) =⇒ (x, y)

z =⇒ x× y .
(2.15)

This justifies the use of the pointwise notation for general objects with products regard-

less of whether the objects are internally defined as sets.
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2.2.8 Coproducts

The considerations of the previous section about products dualise for coproducts. In

particular, the following definition is a dual of Def. 2.2.18.

Definition 2.2.19 (Coproduct on an object of a 2-category). In an arbitrary category

K , with object X ∈ K , such that there exists a product, X ×X , it is said that an X ,

has coproducts iff there is an adjunction ⊕X ⊣ ∆X .

By Theorem 2.2.17, X in K has products iff X in K co has coproducts.

2.3 Lax natural transformations and functor categories

2.3.1 Lax natural transformations

The notion of a 2-natural transformation (Def. 2.2.7) is too strict for many applications.

Whereas a 2-functor is a collection of ordinary functors, a 2-natural transformation is

not a collection of ordinary natural transformations, it is just a collection of 1-cells

required to commute strictly (Fig. 2.9). It seems more natural for a notion of a natural

F(Y )

F(Z)

F(h)
����

��
��

��
��

F(X)

F(Y )

F(g)

��?
??

??
??

??
?

F(X)

F(Z)

F(f)

��

G(Y )

G(Z)

G(h)
����

��
��

��
��

G(X)

G(Y )

G(g)

��?
??

??
??

??
?

G(X)

G(Z)
��

G(X)

G(f)

F(α)

��

G(α)

��

F(Z) G(Z)
θZ //

F(X) G(X)
θX //

F(Y ) G(Y )θY
//

Figure 2.9: A 2-natural transformation θ : F =⇒ G

transformation of 2-functors to be defined in terms of 1-cells and 2-cells which are

coherent with F and G rather than to rely on 1-cells to do the whole job. Indeed, there

is a notion of a natural transformation of 2-functors which fits the 2-categorical setting

better and of which a 2-natural transformation is a special case.

Definition 2.3.1 (Lax natural transformation). For 2-functors F,G : C −→ D , a lax

natural transformation θ : F =⇒ G is defined by the following data (Fig. 2.10):

1. for each A ∈ |C | a 1-cell θA : FA −→ GA of D
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F(Y )

F(Z)

F(h)
����

��
��

��
��

F(X)

F(Y )

F(g)

��?
??

??
??

??
?

F(X)

F(Z)

F(f)

��

G(Y )

G(Z)

G(h)
����

��
��

��
��

G(X)

G(Y )

G(g)

��?
??

??
??

??
?

G(X)

G(Z)
��

G(X)

G(f)

F(α)

��

G(α)

��

F(Z) G(Z)
θZ //

F(X) G(X)
θX //

F(Y ) G(Y )θY
//

θh

y�

θf

�

θg

��

Figure 2.10: A lax natural transformation θ : F =⇒ G

2. for each pair A,B ∈ |C |, an ordinary natural transformation

D(FA,FB) D(FA,GB)
D(1FA,θB)

//

C (A,B)

D(FA,FB)

FA,B

��

C (A,B) D(GA,GB)
GA,B // D(GA,GB)

D(FA,GB)

D(θA,1GB)

��
qy

θA,B
llllllllll

llllllllll

θA,B : D(θA, 1GB) · GA,B =⇒ D(1FA, θB) · FA,B ,

(2.16)

such that the components (θA,B)f

F(B) G(B)
θB

//

F(A)

F(B)

F(f)

��

F(A) G(A)
θA // G(A)

G(B)

G(f)

��
{�

(θA,B)f ���� (2.17)

in addition satisfy the following conditions (where (θA,B)f is denoted just θf ):

(a) θ1A
= 1θA

F(A) G(A)
θA

//

F(A)

F(A)

F(1)

��

F(A) G(A)
θA // G(A)

G(A)

G(1)

��

(θ1A
)
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(b) for f : A −→ B, g : B −→ C, θgf = θg � θf

G(A) G(C)
G(gf)

//

F(A)

G(A)

θA

��

F(A) F(C)
F(gf) // F(C)

G(C)

θC

��

θgf ;C
���� =

G(A) G(B)
F(g)

//

F(A)

G(A)

θA

��

F(A) F(B)
F(f) // F(B)

G(B)

θB

��
G(B) G(C)

F(h)
//

F(B)

G(B)

θB

��

F(B) F(C)
F(g) // F(C)

G(C)

θC

��

θf ;C
����

θg ;C
����

Note that the naturality of (2.16) amounts to the following coherence condition of

the components θf and θf ′ with 2-cells

B B
1B

//

A

B

f ′

��

A A
1A // A

B

f
��{�

α ������ :

F(B)

F(A)

		

F(f)

F(B)

F(A)

ww
F(f ′)

G(B)

G(A)

		

G(f)

G(B)

G(A)

ww
G(f ′)

F(B) G(B)
θB

//

F(A) G(A)
θA //

F(α)�� G(α)��
ow
θf hhhhh hhhhh

ow
θf′ hhhhh hhhhh

θf ⊟ F(α) = G(α) ⊟ θf ′

(2.18)

The above Definition 2.3.1 is very succinct and economical and we leave it as a useful

exercise for the reader to work out the details and verify that the components of θA,B

in (2.16) are indeed 2-cells (2.20) and that the naturality of (2.16) is equivalent to the

commutativity of (2.18).

Notation 2.3.2. In the following text we use the following conventions:

• 2-cells α : fg =⇒ hi for 1-cells f , g, h, i of the appropriate types will be called

laxly commuting squares. Note however that there is no commutativity condition

as such, it is merely a 2-cell which can be pictured as a square with a diagonal

2-cell. An example is (2.20).

• a “natural transformation” always means a “lax natural transformation”, whereas

2-natural transformations are also called strict natural transformations of 2-functors.

The definitions of horizontal and vertical composition for lax natural transforma-

tions (Figs 2.11 and 2.12) relax straightforwardly the strict version (Figs 2.5 and 2.6).

Note that a strict 2-natural transformation Def. 2.2.7 is clearly an instance of Def. 2.3.1.

Remark 2.3.3. It is also possible to relax the definition of 2-functors by relaxing the

composition and unit axioms from equality to natural transformations (Fg ◦ Ff ⇒

F(g ◦ f) and 1 ⇒ F1).
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D(FA,FB) D(FA,HB)

C (A,B)

D(FA,FB)

FA,B

��

C (A,B) D(HA,HB)
HA,B // D(HA,HB)

D(FA,HB)D(FA,GB) D(FA,HB)
D(1,γB)

//

D(GA,GB)

D(FA,GB)

D(θA,1)

��

D(GA,GB) D(GA,HB)
D(1,γB) // D(GA,HB)

D(FA,HB)

D(θA,1)

��

C (A,B)

D(GA,GB)

GA,B

OOOOOO

''OOOOOO

D(FA,FB) D(FA,GB)
D(1,θB)

//

D(HA,HB)

D(GA,HB)

D(γA,1)

��

qy

θA,B
llllllllll

llllllllll

qy

γA,B
llllllllll

llllllllll

Figure 2.11: Vertical composition of lax natural transformations θ : F =⇒ G and

γ : G =⇒ H

D(FA,FB) D(FA,GB)
D(1,θB) //

C (A,B)

D(FA,FB)

FA,B

��

C (A,B) D(GA,GB)
GA,B // D(GA,GB)

D(FA,GB)

D(θA,1)

��

E (UFA,UFB) E (UFA,UGB)
E (1,UθB)

//

D(FA,FB)

E (UFA,UFB)

UFA,FB

��

D(FA,FB) D(FA,GB)
D(1,θB) // D(FA,GB)

E (UFA,UGB)

UFA,GB

��

D(FA,GB) E (VFA,VGB)
VFA,GB //

D(GA,GB)

D(FA,GB)

D(θA,1)

��

D(GA,GB) E (VGA,VGB)
VGA,GB // E (VGA,VGB)

E (VFA,VGB)

E (VθA,1)

��

E (UFA,UGB) E (UFA,VGB)
E (1,τGB)

//

D(FA,GB)

E (UFA,UGB)

UFA,GB

��

D(FA,GB) E (VFA,VGB)
VFA,GB // E (VFA,VGB)

E (UFA,VGB)

E (τFA,1)

��

s{

θA,B
oooooooo

oooooooo

s{

τFA,GB
oooooooo

oooooooo

Figure 2.12: Horizontal composition of lax natural transformations θ : F =⇒ G and

τ : U =⇒ V

Reversing the direction of the family (2.16) gives rise to an alternative notion of

lax natural transformations which is called forward, whereas the one in Def. 2.3.1 is

called reverse. To remember which is which note that this nomenclature reflects the

relative direction of the 2-components θf with respect to the 1-components θA, θB

(see 2.17 and 2.20). For completeness, a formal definition of a forward lax natural

transformations follows.

Definition 2.3.4 (Forward lax natural transformation). For 2-functors F,G : C −→

D , a forward lax natural transformation θ : F =⇒ G is defined by the following data:

1. for each A ∈ |C | a 1-cell θA : FA −→ GA of D
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2. for each pair A,B ∈ |C |, there is an ordinary natural transformation

D(FA,FB) D(FA,GB)
D(1FA,θB)

//

C (A,B)

D(FA,FB)

FA,B

��

C (A,B) D(GA,GB)
GA,B // D(GA,GB)

D(FA,GB)

D(θA,1GB)

��

θA,B

19llllllllll

llllllllll

θA,B : D(1FA, θB) · FA,B =⇒ D(θA, 1GB) · GA,B ,

(2.19)

such that the components θf , laxly commuting squares

F(B) G(B)
θB

//

F(A)

F(B)

F(f)

��

F(A) G(A)
θA // G(A)

G(B)

G(f)

��

θf ;C
���� , (2.20)

satisfy:

(a) θ1A
= 1θA

(b) for f : A −→ B, g : B −→ C, θgf = θg ⊟ θf

By naturality of (2.19), components of θA,B satisfy for 2-cells A ⇓α

f //

f ′

//B:

F(B)

F(A)

		

F(f)

F(B)

F(A)

ww
F(f ′)

G(B)

G(A)

		

G(f)

G(B)

G(A)

ww
G(f ′)

F(B) G(B)
θB

//

F(A) G(A)
θA //

F(α)�� G(α)��

θf /7hhhhh hhhhh
θf′ /7hhhhh hhhhh

G(α) � θf = θf ′ � F(α)

(2.21)

Horizontal and vertical composition dualise accordingly.

2.3.2 Lax Modifications

The notion of a modification (Def. 2.2.9) is relaxed accordingly.

Definition 2.3.5 (Modification of reverse lax natural transformations). Let θ, τ : F =⇒

G : C −→ D be reverse lax natural transformations. A modification χ : θ ≡⇛ τ is

given by a collection of 2-cells of D , χA : θA =⇒ τA, such that for every 2-cell
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A ⇓α

f //

f ′

//B in C the following equality holds in D:

χB � (θf ⊟ Fα) = (Gα ⊟ τf ′) � χA (2.22)

F(B) G(B)

θB

**

F(A)

F(B)

Ff ′

��

F(A) G(A)

θA

**
G(A)

G(B)

Gf

��

F(A)

F(B)

Ff

��
F(B) G(B)

τB

44

Fαks

χB��

θf

{� ��
���
� =

F(B) G(B)

τB

44

F(A)

F(B)

Ff ′

��

F(A) G(A)

θA

**
G(A)

G(B)

Gf ′

��

G(A)

G(B)

Gf

��

F(A) G(A)

τA

44

Gαks

χA��

τf′

{� ��
���
�

And the forward variant is obvious, here spelled out for easy reference:

Definition 2.3.6 (Modification of forward lax natural transformations). Let θ, τ : F −→

G : C −→ D be forward lax natural transformations. A modification χ : θ −→ τ

is given by a collection of 2-cells of D , χA : θA =⇒ τA such that for every 2-cell

A ⇓α

f //

f ′

//B in C the following equality holds in D:

F(B) G(B)

τB

**

F(A)

F(B)

Ff

��

F(A) G(A)

τA

**
G(A)

G(B)

Gf ′

��

F(A)

F(B)

Ff ′

��
F(B) G(B)

θB

44

+3Fα

KS
χB

;Cτf′

��
�

��
� =

F(B) G(B)

θB

44

F(A)

F(B)

Ff

��

F(A) G(A)

τA

**
G(A)

G(B)

Gf

��

G(A)

G(B)

Gf ′

��

F(A) G(A)

θA

44

+3Gα

KS
χA

;Cθf

��
�

��
�

χB ⊟ (τf ′ � Fα) = (Gα � θf ) ⊟ χA

(2.23)

The following is an accessible example of a lax modification. In particular note that

the components of a modification are 2-cells which must be in some sense coherent

with the components of the lax natural transformations the modification is on.

Example 2.3.7. A type constructor in a parametrically typed programming language

can be seen as a functor F : ⋆ −→ ⋆ where ⋆ is a universe of types, for instance the

category of sets. Therefore a type constructor is a an arrow in the 2-category Cat.

1. First, consider the category 1 with just one object, o, and no non-identity 1- and

2-cells. A 2-functor from 1 into Cat picks an object – a category. In particular,

let ⋆ denote the functor such that ⋆(o) = ⋆.
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A lax natural transformation θ : ⋆ −→ ⋆ has just one 1-component, θo : ⋆ −→ ⋆,

in Cat. This is an ordinary functor.

Consider two type constructors (arrows ⋆ −→ ⋆ in Cat): T for binary trees with

data in the leaves and L for lists. For the lax natural transformations τ and λ

such that τo = T and λo = L, a modification τ −→ λ is given by a 2-cell

α : T =⇒ L. This is a natural transformation in Cat such as the parametrically

polymorphic function flatten taking a tree to a list of its leaves in the left-to-

right order.

2. Now consider a category, C , generated freely from finite products on one object,

o. That is, C has objects 1, a terminal object, o, o2, o3, etc., and the respective

projections as 1-cells. In addition let there be a product on o in C (see Sect. 2.2.7

for details). The 2-category Cat has products so one can consider a a product

preserving 2-functor F : C −→ Cat. The image F(o) in Cat is a category with

products. Set has products so ⋆ has an extension from 1 to C , hereby called S.

Do the lax natural transformations λ and τ considered before have an extension

to C as well? Firstly, as there is more structure in C there is now difference

between the forward and reverse notions of lax natural transformations. For the

case of λ, we chose the forward direction. By definition Def. 2.3.4, we need the

following:

(a) For each object X ∈ C a component λX : S(X) −→ S(X). But all

objects in C are of the form oi, for i ∈ N, and we have that S(o) = ⋆ and

that S is product preserving so S(oi) = ⋆i and if λo = L : ⋆ −→ ⋆ we

have that the component λX : ⋆i −→ ⋆i must be Li.

(b) For each arrow f : Xi −→ Xj , λ must have a 2-component

λf : Lj · S(f) =⇒ S(f) · λi .

We can define the component by induction on the structure of f because

arrows are generated freely. For a projection π, λπ is an identity. For a

tuple g △ h, λg△h = λg △ λh, and similarly for composition, etc. The

interesting case is the product on o. The nontrivial component is λ(×) on

the arrow (×) : o2 −→ o which is a part of the definition of products on o

in C . By definition this component has the following type:

o o
L

//

o2

o

(×)

��

o2 o2L2
// o2

o

(×)

��

L(×)
;C

�����
�����
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When L is interpreted as the type constructor of lists, a parametric function

of this type is unzip taking a list of pairs into a pair of lists of the same

length. This function is moreover coherent with the product structure on ⋆

(projections, tupling, etc.) so it fits as the required component λ(×) of a lax

natural transformation λ.

The same analysis works for τ and trees represented by the functor T, where

unzip for trees takes trees where data are pairs to a pair of trees of the same

shape.

3. Thus we have two forward lax natural transformations: λ for lists and τ for

trees, which are now explicitly coherent with products in ⋆. A modification α :

T −→ L is given by a component αo, the rest is implied by the product structure.

In order to use flatten for this as before, coherence condition (2.23) must be

established. Explicitly flatten must be shown to be coherent with products and

with unzip. Coherence with products is trivial as before. To establish coherence

with unzip, one must establish the following:

unzip . flatten = flatten2 . unzip

The following example illustrates this property:

•

(a, b)
��

��
•

•
??

??
?

•

(c, d)
��

��
•

(e, f)

??
??

•

a
��

��
�
•

•
??

??
?

•

c
��

��
�
•

e
??

??
?

•

b
��

��
�
•

•
??

??
?

•

d
��

��
•

f

??
??

( , )� unzip //

_

flatten

��
[(a, b), (c, d), (e, f)] � unzip // ([a, c, e], [b, d, f ])

_

flatten
2

��

We have therefore established that flatten is a (the nontrivial) component of a

modification of trees into lists when these are considered as coherent datatypes

on a category with products.

2.3.3 2-Categories of functors and lax natural transformations

For a pair of 2-categories, C , D , functors C −→ D , lax natural transformations of

either kind and the corresponding lax modifications form a 2-category [Gra74]. We

introduce the following notation for these 2-categories.

Notation 2.3.8. For arbitrary 2-categories C , D ,
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1. the 2-category of 2-functors F : C −→ D , forward lax natural transformations

and forward lax modifications is denoted JC ,DK.

2. the 2-category of 2-functors F : C −→ D , reverse lax natural transformations

and reverse lax modifications is denoted [C ,D ].

For any fixed C , D , the categories JC ,DK and [C ,D ] are not equivalent. They

have the same set of objects, though, which is sometimes denoted |C ,D |. Formally,

|C ,D | =def |JC ,DK| = |[C ,D ]|. However, they are related by the dualities (−)op and

(−)co as described by the following theorem.

Theorem 2.3.9. For any 2-categories C , D , the following equivalences hold:

JC ,DK ∼= [C co,Dco]co (2.24)

JC ,DK ∼= [C op,Dop]op (2.25)

[C ,D ] ∼= JC co,DcoKco (2.26)

[C ,D ] ∼= JC op,DopKop (2.27)

The proof can be found in [Gra74]. It is a not technically difficult but a bit tedious

exposition from the definitions. To understand the intuition behind these equivalences,

consider first the case when C ≡ 2, the 2-category with 2 distinct objects, s, t, and

one nonidentity arrow, a, between them. Arrows θ : F =⇒ G in J2,DK are laxly

commuting squares with a 2-cell of D going diagonally.

F(t) G(t)
θt

//

F(s)

F(t)

F(a)

��

F(s) G(s)
θs // G(s)

G(t)

G(a)

��

θa ;C
����

In [2,D ], arrows are laxly commuting squares of arrows of D with the 2-cell reversed.

F(t) G(t)
θt

//

F(s)

F(t)

F(a)

��

F(s) G(s)
θs // G(s)

G(t)

G(a)

��
{�

θa����

So, arrows in J2,DK are just arrows in [2,Dco]. However, when 2 above is replaced by

a 2-category, C , with nontrivial 2-cells, JC ,DK ≇ [C ,Dco] because reversing 2-cells

in D affects not only the direction of the diagonal 2-cell but all 2-cells in the image of

C . This can be corrected by reversing 2-cells in C . But still, JC ,DK ≇ [C co,Dco],

as 2-cells in this category (modifications) are reversed with respect to JC ,DK because
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they are defined in terms of 2-cells of D . This can corrected again by considering

[C co,Dco]co, and we are done. This justifies (2.24) and (2.25); (2.26) and (2.27) are

equivalent by duality.

As for the cartesian structure of these categories, it holds that each [C ,D ] has

products if D has products. The product is defined point wise as for the strict case.

In particular, for a pair of lax natural transformations θ : H =⇒ F : C −→ D ,

γ : H =⇒ G : C −→ D , the mediating lax natural transformation has components

(θ △ γ)X =def θX △ γX (θ △ γ)f =def θf △ γf

H(Y ) F(Y ) × G(Y )
(θ△γ)Y

//

H(X)

H(Y )

H(f)

��

H(X) F(X) × G(X)
(θ△γ)X// F(X) × G(X)

F(Y ) × G(Y )

F(f)×G(f)

��

(θ△γ)f
;C

����
����

The projections π1F,G : F × G =⇒ F : C −→ D and π2F,G : F × G =⇒ G :

C −→ D are strict, i.e. π1F,G,X : (F × G)(X) −→ F(X) is just the projection

π1F(X),G(X) : F(X) × G(X) −→ F(X) and π1F,G,f = 1; similarly for π2.

F(Y ) × G(Y ) F(Y )
π1

//

F(X) × G(X)

F(Y ) × G(Y )

F(f)×G(f)

��

F(X) × G(X) F(X)
π1 // F(X)

F(Y )

F(f)

��

Remark 2.3.10. By Theorem 2.3.9, we could have done with just one notion of lax

natural transformation and eliminated the occurrences of the other in exchange for

exponents and brackets. However, this certainly wouldn’t help readability and as the

two notions, forward and reverse, are equally valid and complex we prefer to keep both

and use Theorem 2.3.9 to relate the results.

2.4 Gray’s tensor product of 2-categories

Although for any pair of 2-categories the functors between them, lax natural trans-

formations and modifications form a 2-category, these aren’t the hom-categories in

a 3-category whose objects are 2-categories. In fact 2-categories, 2-functors and lax

natural transformations don’t even form a 2-category. The problem is the supposed

multiplication

cC ,D,E : [C ,D ] × [D ,E ] // [C ,E ] , (2.28)
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which must be a functor (see Defs 2.2.1 and 2.2.13). Let us try to construct such a

functor. On objects, cC ,D,E must act by horizontal composition sending a pair F, G,

to G ◦F. For a pair of arrows θ : F =⇒ F′ : C −→ D and γ : G =⇒ G′ : D −→ E ,

there is an arrow (θ, γ) : (F,G) −→ (F′,G′) in [C ,D ] × [D ,E ], pictured in the

following commutative diagram in [C ,D ] × [D ,E ]:

(F′,G) (F′,G′)
(F′,γ′)

//

(F,G)

(F′,G)

(θ,G)

��

(F,G) (F,G′)
(F,γ) // (F,G′)

(F′,G′)

(θ′,G)

��

(F,G)

(F′,G′)

(θ,γ)

??
??

��?
??

? (2.29)

This diagram (2.29) would have to be taken by (2.28) to a commutative diagram in

[C ,E ]. By definition, the action of c on (θ,G) must be a lax natural transformation of

type GF −→ GF′. It’s easy to see from functoriality and the definition of [C ,D ] ×

[D ,E ] that this must be horizontal composition. Similarly for (F, γ). So one has the

following situation:

(F′,G) (F′,G′)
(F′,γ)

//

(F,G)

(F′,G)

(θ,G)

��

(F,G) (F,G′)
(F,γ) // (F,G′)

(F′,G′)

(θ,G′)

��

(F,G)

(F′,G′)

(θ,γ)

??
??

��?
??

? 7−→

GF′ G′F′

γF′

//

GF

GF′

Gθ

��

GF G′F
γF // G′F

G′F′

G′θ

��

6= (2.30)

The right-hand-side square in (2.30) doesn’t commute. To see this, consider compo-

nents of (γF · Gθ)f and (G′θ · γF)f , respectively, for an f : A −→ A′ in C .

GF′A G′F′A
γ
F′A //

GFA

GF′A

GθA

��

GFA

G′F′A

GF′B G′F′B
γ
F′B

//

GFB

GF′B

GθB

��

GFB

G′F′B

GFA

GFB

GFf

����
��

��
��

GF′A

GF′B

GF′f
���

�����

G′F′A

G′F′B

G′F′f����
��

��
��

Gθfks

γ
F′fks

6=

G′F′A

GFAGFA G′FA
γFA // G′FA

G′F′A

G′θA

��

G′F′B

GFBGFB G′FB
γFB

// G′FB

G′F′B

G′θB

��

G′FA

G′FB

G′Ff
���

�����

GFA

GFB

GFf

����
��

��
��

G′F′A

G′F′B

G′F′f����
��

��
��

G′θfks

γFfks

So there is no such functor, but there is a solution. In terms of enriched category

theory [Kel82], a 2-category is a Cat-category where objects are 2-categories and Cat

is the symmetric monoidal category of small categories where the tensor product is

44



the cartesian product of categories (×) : Cat × Cat −→ Cat. This definition gives

rise to the requirement of a composition functor in the form (2.28) which doesn’t exist

for the above reasons. However, there is a category-like structure, a 2Cat⊗-category,

whose objects are 2-categories and hom-categories are categories [C ,D ]0 for each pair

of 2-categories C , D . Composition in this category has type:

cC ,D,E : [C ,D ] ⊗ [D ,E ] // [C ,E ] , (2.31)

where ⊗ : 2Cat0×2Cat0 −→ 2Cat0 is so-called Gray’s tensor product of 2-categories.

Objects in this category are 2-categories, arrows are 2-functors and 2-cells are lax nat-

ural transformations. Horizontal composition is horizontal composition of 2-functors

and natural transformations, vertical composition is vertical composition of natural

transformations. Informally, Gray’s solution to coherence of composition is in relaxing

strict commutativity to lax commutativity by inserting syntactically constructed diag-

onal 2-cells. Formally, 2Cat⊗ is the monoidal category whose underlying category is

2Cat0 and tensor product ⊗, Gray’s tensor product of 2-categories which is discussed

below. Gray in [Gra74] further shows that the resulting 2Cat⊗-category is bimonoidal

closed – i.e. there are right adjoints to the left and right sections of ⊗:

C ⊗− �
[C ,−]

−⊗ D
� JD ,−K

Explicitly, the functor 2-categories JC ,DK and [C ,D ] play the role of internal hom-

categories, similarly to the exponential categories DC in the strict case.

We have no intention of going into the full details of the construction of ⊗. The

following theorem characterises ⊗ in terms of its relation to the categories JC ,DK and

[C ,D ], which are essential for the development of the rest of the thesis.

Theorem 2.4.1 ([Gra74]). There exists a functor ⊗ : 2Cat0 × 2Cat0 −→ 2Cat0 to-

gether with a natural family of natural isomorphisms

αC ,D,E : (C ⊗ D) ⊗ E −→ C ⊗ (D ⊗ E )

λC : (1 ⊗ C ) −→ C

ρC : (C ⊗ 1) −→ C ,

which are respectively the associativity, left and right units of ⊗. Moreover,

1. for any C , D:

C ⊗ (−)
�

[C ,−] (2.32)

(−) ⊗ D
� JD ,−K (2.33)
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2. for any C , D , E there are natural isomorphisms of categories:

[C ⊗ D ,E ] ∼= [D , [C ,E ]] (2.34)

JC ⊗ D ,E K ∼= JC , JD ,E KK (2.35)

As mentioned before, (2.32) and (2.33) establish a bimonoidal closed category

structure on 2Cat0 and are essential for establishing the rest, but are not needed as

such in the rest of the thesis.

Items (2.34) and (2.35) provide an insight into the nature of ⊗ without us having to

go into an explicit definition. In particular, take C = D = 2, where 2 is the two-object-

one-arrow category, as before. Now, an object in J2, J2,C KK for any C , i.e. a functor

H : 2 −→ J2,C K, is a pair of arrows of C : H(s) : H(s)(s)
H(s)(a)
−−−−−→ H(s)(t) and

H(t) : H(t)(s)
H(t)(a)
−−−−−→ H(t)(t), and a forward lax natural transformation H(a) :

H(s) −→ H(t). In summary, it is the following diagram in C :

H(s, t) H(t, t)
H(a,t)

//

H(s, s)

H(s, t)

H(s,a)

��

H(s, s) H(t, s)
H(a,s)// H(t, s)

H(t, t)

H(t,a)

��

H(a,a) ;C
���� , (2.36)

where H is uncurried. By (2.34), (2.36) is the image of a functor H : 2 ⊗ 2 −→ C .

Compare with (2.29). Similarly, an object of [2, [2,C ]], and equivalently a functor

2 ⊗ 2 −→ C , is a laxly commuting square (2.36) with H(a,a) reversed.

Arrows in J2, J2,C KK are laxly commuting cubes

H(s, t) H(t, t)
H(a,t)

//

H(s, s)

H(s, t)

H(s,a)

��

H(s, s) H(t, s)// H(t, s)

H(t, t)
��

G(s, t) G(t, t)//_______

G(s, s)

G(s, t)
���
�
�
�
�
�
�
�
�

G(s, s) G(t, s)
G(a,s) // G(t, s)

G(t, t)

G(t,a)

��

H(t, s)

G(t, s)

θt,s

����

??����

H(s, s)

G(s, s)

θs,s

����

??����

H(s, t)

G(s, t)

θs,t

�
�

??�
�

H(t, t)

G(t, t)

θt,t

����

??����H(a,a)

2:

19

θt,a

?G

θs,a

?G

θa,s

NV

θa,t

NV

Its not difficult to figure out what 2-cells in J2, J2,C KK are. As for more interesting
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categories with 2-cells, such as X =def s ⇓α

a //

a′

// t, we get by a similar analysis that

objects in JX, JX,C KK are laxly commuting “cushions”, such as the one pictured in

(2.23), where F =def H(s,−), G =def H(t,−), A =def s, B =def t, f =def a,

g =def a′, etc.

Finally, the following isomorphism is important. It describes how the two monoidal

structures given by the adjunctions (2.32) and (2.33) interact. The details are in [Gra74].

Theorem 2.4.2 (Transposition). For any 2-categories C , D , E :

[C , JD ,E K] ∼= JD , [C ,E ]K (2.37)

In the special case of C = D = 2, Theorem 2.4.2 states formally that it doesn’t

matter whether the square (2.36) is considered as a forward morphism of arrows H(s,−) −→

H(t,−) going from left to right, or a reverse morphism H(−, s) −→ H(−, t) of ar-

rows going from top to bottom.

In the general case, to see the isomorphism at work on objects of [C , JD ,E K] take

an F : C −→ JD ,E K. Its value on A ∈ C is a functor H(A,−) : D −→ E ; its value

on an f : A −→ A′ is a lax natural transformation H(f,−) : H(A,−) −→ H(A′,−)

with components H(f,B), H(f,B′) and H(f, g) for each g : B −→ B′ in D , such

that the following diagram commutes for all γ : g =⇒ g′ : B −→ B′:

H(A′, B)

H(A,B)

��

H(f,B)

H(A′, B′)

H(A,B′)

��

H(f,B′)

H(A,B) H(A,B′)

H(A,g)
++

H(A,B) H(A,B′)

H(A,g′)

33
H(A,β)��

H(A′, B) H(A′, B′)

H(A′,g′)

33
ow

H(f,g′)hhhhh hhhhh

=

H(A′, B)

H(A,B)

��

H(f,B)

H(A′, B′)

H(A,B′)

��

H(f,B′)

H(A,B) H(A,B′)

H(A,g)
++

H(A′, B) H(A′, B′)

H(A′,g)
++

H(A′, B) H(A′, B′)

H(A′,g′)

33
H(A′,β)��

ow
H(f,g)hhhhh hhhhh

(2.38)

Further, there is a modification F(α,−) for each α : f =⇒ f ′ : A −→ A′ such that

the following holds:

H(A′, B)

H(A,B)

��

H(f ′,B)

H(A′, B)

H(A,B)

��

H(f,B)ksH(α,B)

H(A,B) H(A,B′)
H(A,g) //

H(A′, B) H(A′, B′)
H(A′,g)

// H(A′, B′)

H(A,B′)

��

H(f,B′)
ow

H(f,g)hhhhh hhhhh
=

H(A′, B)

H(A,B)

��

H(f ′,B)

H(A,B) H(A,B′)
H(A,g) //

H(A′, B) H(A′, B′)
H(A′,g)

// H(A′, B′)

H(A,B′)

��

H(f ′,B′)

H(A′, B′)

H(A,B′)

��

H(f,B′)ksH(α,B′)

ow
H(f ′,g)hhhhh hhhhh

(2.39)
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Relations (2.38) and (2.39) combine to a single diagram:

H(A′, B)

H(A,B)

��

H(f ′,B)

H(A′, B)

H(A,B)

��

H(f,B)ksH(α,B)

H(A′, B′)

H(A,B′)

��

H(f,B′)

H(A,B) H(A,B′)

H(A,g)
,,

H(A,B) H(A,B′)

H(A,g′)

33
H(A,β)��

H(A′, B) H(A′, B′)

H(A′,g′)

22
ow
H(f,g′)hhhhhh hhhhhh

=

H(A′, B)

H(A,B)

��

H(f ′,B)

H(A′, B′)

H(A,B′)

��

H(f ′,B′)

H(A′, B′)

H(A,B′)

��

H(f,B′)ksH(α,B′)

H(A,B) H(A,B′)

H(A,g)
,,

H(A′, B) H(A′, B′)

H(A′,g)
,,

H(A′, B) H(A′, B′)

H(A′,g′)

22
H(A′,β)��

ow
H(f ′,g)hhhhhh hhhhhh

(2.40)

Clearly, (2.38) and (2.39) are just special cases of (2.40). In summary, F assigns to

every f , f ′, g, g′, α, β the diagram (2.40). On the other hand, a functor G : D −→

[C ,E ] assigns to each B ∈ D a functor, H(−, B) : C −→ E , and to each g :

B −→ B′ a reverse lax natural transformation H(−, g) such that for each α : f =⇒

f ′ : A −→ A′ the diagram (2.39) commutes. Diagram (2.38) depicts a modification

H(−, β) given by the action of G on a 2-cell β : g =⇒ g′ : B −→ B′. That is, also

G assigns to every f , f ′, g, g′, α, β the diagram (2.40).

The assignment (2.40) to the α, β, as above is called quasi-functor of two variables

by Gray.

Definition 2.4.3 (Quasi-functor of two variables). For 2-categories, C ,D ,E , quasi-

functor of two variables H : C × D  E consists of families of 2-functors

H(A,−) : D −→ E for all A ∈ |C |

H(−, B) : C −→ E for all B ∈ |D |

such that

H(A,−)(B) = H(−, B)(A) =def H(A,B)

together with for all f : A −→ A′, g : B −→ B′, a 2-cell:

H(f, g) : H(f,B′) ◦ H(A, g) =⇒ H(A′, g) ◦ H(f,B) (2.41)

such that (2.40) commutes and moreover the assignment of (2.41) to f , g, respects units

and composition. Explicitly:

1. H(1, g) = 1g , H(f, 1) = 1f

2. H(f ′f, g) = H(f ′, g) � H(f, g)

3. H(f, g′g) = H(f, g′) ⊟ H(f, g)
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Theorem 2.4.4 ([Gra74]). There is an isomorphism between quasi-functors of two

variables C × D  E and 2-functors D −→ [C ,E ].

For the right definition of a natural transformation of quasi-functors, the above

isomorphism extends to an isomorphism of 2-categories.

Remark 2.4.5. Note that the notion of a quasi-functor of two variables is the more fun-

damental one although introduced here later, whereas Gray’s tensor product is defined

precisely in such a way as to allow one to treat quasi-functors of two variables as 2-

functors. This is analogical to the correspondence between functions of two variables

and functions of one variable which is a cartesian product.
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Chapter 3

Functors with Structure

In this chapter, functors with structure are formalised as functors from certain 2-categories

serving as theories. The elementary notions are developed and supported by examples.

The development starts in Sect. 3.1 by a discussion of formal objects and arrows mod-

elled as functors into a base 2-category. The section is slow-paced and serves mostly

to plant the correct intuitions about the functorial approach and to introduce some ba-

sic notation. In Sect. 3.2, theories and models of functors with structure are discussed

and an approximate definition is given, and Sect. 3.3 introduces their morphisms and

discusses the two kinds of 2-categories of functors with structure. Formal forgetful

functors, defined in Sect. 3.4, are in the functorial setting given by precomposition

with inclusions of theories. They allow us in particular to define the notions of for-

mal domain, codomain and underlying arrows of functors with structure. The chapter

concludes by Sect. 3.5, which introduces important examples of functors with structure

which are used and further developed in the remaining text.

3.1 Formal Objects and Arrows

In this section the formal definition of functors with structure, to come in Def. 3.2.1, is

motivated by the simple example of formal objects and arrows in a 2-category, which

are formalised as functors from the simple one-arrow category, 2. Nothing substantially

new is presented in this section; the idea of using functors from chosen categories 1,

2, 3 and 4, for formalisation of category theory comes from Lawvere [Law66]. The

purpose of this section is to introduce the idea of functorial formalisation of structures

in a category in order to prepare the reader for the more general development that

follows.
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3.1.1 Formal objects and arrows

Let 1 be the 2-category with one object, denoted o. Similarly, let 2 be the 2-category

with exactly one nonidentity arrow between two two distinct objects. There are exactly

two functors from 1 to 2. One, labelled s, maps o in 1 to the domain of the arrow in 2.

The second one, labelled t, maps o to the codomain of the arrow.

1 2
s //

1 2
t

// (3.1)

So the domain of the arrow is s(o), also denoted just s, the codomain is t(o) or just t.

The arrow is denoted a.

Notation 3.1.1. It is convenient to use the labels s, t, a for any category, K , with a

distinguished functor F : 2 −→ K , which is clear from the context. Then, s stands

for F · s, t stands for F · t and a stands for F. This makes it possible to speak about

the image of s and t under F, without explicitly naming F.

In general, for any 2-category K , a functor from 1 picks one object of K and any

object of K defines a unique functor from 1 to K – the functor that picks it. That is,

2-functors from 1 to K are exactly objects of K . Similarly, an arrow of K is exactly

a functor 2 −→ K . In the following text, we work up to this equivalence and use the

terms formal objects and formal arrows only to emphasise when functors are meant.

In mathematical notation, the distinction is made using the numeral brackets, p−q, as

follows:

Notation 3.1.2.

1. Whenever K is a category and x is an object in it, pxq denotes the unique

functor 1
pxq // K whose value on o is x.

2. For an arrow f in K , pfq denotes the unique functor 2
pfq // K whose value

on a is f .

3. The brackets are dropped when there is no danger of confusion.

Endomorphisms in K are arrows with the same domain and codomain. Formally,

let (O,a) be the coequaliser of (3.1), i.e. in the following diagram a is a coequaliser

arrow:

1 2
s //

1 2
t

// 2 O
a // (3.2)

The category O is equivalent to a nonidentity arrow on one object.

o

a

ZZ
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The unique arrow from 1 to O is denoted o. Functors O //K are called formal loops

in K .

3.1.2 Categories of formal objects and arrows

As mentioned above, the set of formal objects in K , formally |1,K |, is isomorphic

to |K |, the set of objects of K . Likewise, the set of formal arrows in K is isomor-

phically the set of arrows of K ; formally |2,K |. These sets form the sets of objects

in the functor categories J1,K K, [1,K ], J2,K K and [2,K ]. In this section we discus

the simple structure of these categories.

First, consider a forward lax natural transformation θ : F =⇒ G : 1 −→ K , i.e.

an arrow in J1,K K. By definition, θ is determined by one component θo : Fo −→ Go.

Consequently, a modification α : θ ≡⇛ γ : F =⇒ G : 1 −→ K is determined by a

single 2-cell

Fo Go

θo
((

Fo Go

γo

88α ��

Note that the same holds when θ is a reverse natural transformation, because 1 is trivial.

So formally there is the following equivalence, for any K :

J1,K K ∼= K ∼= [1,K ] (3.3)

Arrows of J2,K K and [2,K ] are just slightly more complicated, as is observed

below. And, although 2 is still very simple, J2,K K ≇ [2,K ] for some K .

Observation 3.1.3.

1. An object in J2,K K is a functor F : 2 −→ K . This functor picks an object of

K for each of the two objects of 2, and an arrow of K between them.

Fs
Fa // Ft

2. An arrow in J2,K K between functors F and G is a lax 2-natural transformation

θ : F =⇒ G. That is, for the pair of objects of 2, there is a pair of arrows of

K , θs : Fs // Gs and θt : Ft // Gt. And for the arrow a of 2, a 2-cell,

θt · Fa
θa +3 Ga · θs.

Ft Gt
θt

//

Fs

Ft

Fa

��

Fs Gs
θs // Gs

Gt

Ga

��

θa
;C

�����
�����

(3.4)
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Because 2 has no nontrivial 2-cells, there are no other nontrivial coherence con-

dition on 1-cells.

3. A 2-cell α : θ =⇒ γ : F −→ G is a modification given by a pair of 2-cells

αs : θs ⇒ γs and αt : θt ⇒ γt such that θa ⊟ αs = αt ⊟ γa

Ft

Fs

��

Fa

�����������
Gt

Gs

��
Ga

�����������
Ft Gt

θt

**

Fs Gs

θs

**

Ft Gt

γt

44

Fs Gs

γs

44

αt ��

αs ��
θa /7hhhhh hhhhh
γa /7hhhhh hhhhh

4. In JO,K K, the objects are the same. But because there is only one object in O,

a morphism in JO,K K, i.e. a formal morphism of endomorphisms, consists of

one (not two) 1-cells, and a diagonal 2-cell.

Fo Go
θo

//

Fo

Fo

Fa

��

Fo Go
θo // Go

Go

Ga

��

θa
;C

�����
�����

2-cells follow the same pattern.

3.1.3 Forgetful functors

Any formal arrow, F : 2 −→ K , determines two formal objects – its domain and

codomain. These are given formally by precomposition of F with s and t, respectively:

1
s // 2

F // K the domain of F

1
t // 2

F // K the codomain of F

The assignment f 7→ f · s, for any f : 2 −→ K extends to a contravariant functor

Js,K K : J2,K K // J1,K K

sending formal arrows in K to their domains, formal objects in K . Similarly for t,

and also for [−,K ].
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Similarly, there is a pair of contravariant homfunctors:

Ja, 1K : JO,K K // J2,K K

[a, 1] : [O,K ] // [2,K ] ,

sending loops to their arrows. Note that this shows formally that endomorphisms are

morphisms, when one forgets that the domain and codomain are the same.

3.1.4 Composition

For any pair of composable arrows, f : X −→ Y , g : Y −→ Z, of an ordinary

category C , there exists a composite gf : X −→ Z in C . This must hold also for

formal arrows, i.e. for functors F : 2 −→ C and G : 2 −→ C , such that Ft =

Gs =def Y , there must be a functor, G ◦ F : 2 −→ C such that (G ◦ F)s = Fs and

(G ◦ F)t = Gt. This assignment, (F,G) 7→ G ◦ F, must be associative and respect

formal identities. Lawvere in [Law68] shows such a notion of composition, which we

present in this section.

Let 3 be the category given by the following pushout in Cat:

2 3
p01q

//

1

2

t

��

1 2
s // 2

3

p12q

��

It is a property of the category of categories (an axiom of a category) that in addition to

the two arrows defined by the pushout in the above diagram, there is exactly one other

arrow, p02q : 2 −→ 3, picking the composition of 01 and 12 in 3. So, 3 is a triangle:

0 2
02

//

1

0

??

01

��
��

��
��

��
�
1

2

12

��?
??

??
??

??
??

Now, any two formal arrows F and G in K are said to be composable iff Ft = Gs.

For any such pair of formal arrows, the universal arrow of the pushout precomposed

with p02q gives the composite GF. In summary, it is a property of the category of

categories Cat, that for two arrows F,G : 2 −→ K , z is their composite iff the
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following diagram commutes.

2 3
p01q

//

1

2

t

��

1 2
s // 2

3

p12q

��
3

K

!F,G

''OOOOOOOOOO

2

K

G

��

2

K

F
--

2

K

z

��

2

3
wwoooooooooooooooooooo 2

p02q

(3.5)

This property defines a family of functions

◦X,Y,Z : |2,K |X,Y × |2,K |Y,Z
// |2,K |X,Z , (3.6)

where |2,K |x,y denotes the set of formal arrows from x to y. It is easy to show that this

operation is associative and respects units and therefore defines a notion of composition

in category where objects are formal objects of K , arrows are formal arrows of K . It

is easy to check this category is isomorphic to K .

We skip the trivial example of composition of functors as formal arrows in Cat. The

following is an example of formal arrows in a category substantially different from Cat.

Example 3.1.4. In Observation 3.1.3, (2), we observed that arrows in J2,K K are laxly

commuting squares (3.4). It follows from the development so far that these are the

objects of the category [2, J2,K K]. For two lax squares, α, β:

• •
h2

//

•

•

f1

��

• •
h1 // •

•

f2

��

α
;C

�����
�����

• •
k2

//

•

•

g1

��

• •
k1 // •

•

g2

��

β
;C

�����
�����

, (3.7)

such that the codomain of the first is the domain of the second: f2 = g1, their formal

composition corresponds to horizontal pasting β � α:

• •
h2

//

•

•

f1

��

• •
h1 // •

•

f2=g1

��

α
;C

�����
�����

• •
k2

//

•

•

f2=g1

��

• •
k1 // •

•

g2

��

β
;C

�����
�����

On the other hand, suppose h2 = k1 in (3.7). Let α̃, β̃, denote the transposes of α, β,
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under the isomorphism (2.37). We have

[2, Jt,K K](α) = Jt, [2,K ]K(α̃) = ph1q

Similarly, Js, [2,K ]K(β̃) = pk1q, and so α̃ and β̃ are composable. Their composition

corresponds to vertical pasting of squares, β̃ ⊟ α̃:

• •
f2

//

•

•

h1

��

• •
f1 // •

•

h2=k1

��
{�
α �����

�����

• •
g2

//

•

•

h2=k1

��

• •
g1 // •

•

k2

��
{�

β �����
�����

3.2 Functors with Structure

In this section, the notion of a functor with structure is approximated by the very coarse

Definition 3.2.1. The approach follows the intuitions outlined in the previous section,

only generalised to arbitrary 2-categories in place of 2. We give the definition first and

discuss some important issues later.

Definition 3.2.1.

1. a theory of a functor with structure is a tuple, (T , a), where T is a small 2-

category and a is a functor a : 2 −→ T .

2. a morphism of theories from (T , a) to (U , b) is a functor H : T −→ U such

that H · a = b.

3. a (model of) a functor with structure in a 2-category, K , is a functor F : T −→

K , where T is a theory of a functor with structure. Thus formally it is a tuple

(T , a,F).

The role of K in item (3) above is that of a universe of interpretation. It is of-

ten Cat. Although later it becomes essential that the definition is abstract in K , the

categories in which functors with structure are interpreted are usually built from Cat

in such a way that the objects of a theory can be thought of as categories, arrows as

functors and 2-cells as natural transformations.

Remark 3.2.2. In Definition 3.2.1 we made a huge step from functors with no additional

structure to anything that can have the slightest chance of being called a functor with

structure because it simply has a chosen arrow, a, and some “additional structure”

which is given by the rest of an arbitrary 2-category, T . However, quite clearly not

all 2-categories are meaningful theories of functors with structure. Moreover, there is

no connection between the arrow and the additional structure in our definition so the
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“additional structure” is allowed to have nothing to with the “functor”. In this thesis,

we make no attempt to rectify these points. We simply present examples which are

much more specific than allowed by the above definition and at the same time we

present a very general mechanism to deal with arbitrary functors with structure in the

above sense. The mechanism is based on the notion of Gray’s tensor product. The

startling point is that the very general mechanism works exceptionally well for the

specific examples. We support this claim by general characterisation theorems, which

provide a general frame for the good behaviour. All of this comes in the next chapter.

In the rest of this chapter we analyse Definition 3.2.1 and present examples. Let us

fix some notation first.

Notation 3.2.3.

• For a theory (T , a), a is called the arrow of T .

• The theory is often denoted by the name of the category, T . In that case a must

be implicit from the context and in a mathematical notation it is denoted simply

a.

• Models of a theory T are called T -functors.

• The term endofunctor is used instead of functor when a factors through O.

Example 3.2.4 (Functors). The tuple (2, 1) is a theory of a functor with structure,

where the additional structure is empty. Any arrow in K defines a model of 2 in K .

Similarly, (O, 1) is a theory of an endofunctor with structure.

3.2.1 Theories generated by a 2-sketch

As discussed, the introduced notions of a theory and its model are very weak. However,

quite often and in fact in all examples considered in this thesis a theory is built freely

from the syntax of a mathematical definition. The gap between the definition – a finite

piece of syntax – and the theory – a potentially infinite 2-category – is bridged by the

theory of 2-sketches, which is briefly outlined in this section.

Ordinary sketches have been invented by Charles Ehresmann [Ehr68] as a middle

ground between Category Theory and the usual mathematical definitions. This is also

the role they play in this text. The theory of sketches has been further extensively de-

veloped. A good introduction with applications to computer science is [BW99], a more

comprehensive text is [BW85]. Charles Wells in [Wel93] provides an outline with ex-

tensive references. Sketches are classified according to the kinds of the other require-

ments allowed and form a hierarchy according to expressivity with linear sketches –

where only equations are allowed – at the bottom, finite-product sketches – where ob-

jects can be required to be finite products – somewhere in the middle, and general
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sketches – where arbitrary limits and colimits are allowed – at the top. In all cases the

theory of a sketch is informally a category freely generated by the underlying graph

of the sketch, factorised by the equations and such that the additional requirements are

met (e.g. formal products become real products in the theory).

The theory of ordinary sketches extends to the 2-dimensional and more generally

enriched context [Kel82, PW92]. In the 2-dimensional case, a definition of a functor

with structure can be thought of as a finite or denumerable collection of objects, arrows

and 2-cells, the so-called underlying 2-graph. Just as in the ordinary case, this data is

required to satisfy certain equations and other requirements (such as requirements that

certain objects are products or coproducts of other objects). Formally these constitute

a so-called 2-sketch.

In the rest of this section we discuss these points in detail.

Ordinary finite-product sketches

Formally, the theory in the finite-product (FP) case is specified as follows. Let an

FP-sketch be a graph with a collection of formal diagrams in the graph and formal

product cones. Let SktchFP be a category of FP sketches with morphisms defined as

to preserve the formal diagrams and product cones, and let U : Cat −→ SktchFP be

the underlying sketch functor, which takes a category, C , to its underlying graph, all

commuting diagrams to formal diagrams in the sketch, product cones to formal product

cones in the sketch. A model of a sketch, S , in a category C is a sketch morphism

M : S −→ U(C ). Then a theory of a sketch S ∈ Sktch is a category Th(S )

together with a model M0 : S −→ U(Th(S )), which is universal in the sense that

M0 implies a natural isomorphism between models of S in a C and finite-product

preserving functors F : Th(S ) −→ C . In SktchFP this is pictured as follows:

S U(Th(S ))
M0 //S

U(C )

M

��?
??

??
??

??
??

U(Th(S ))

U(C )

U(F)

��

Th(S )

C

F

���
�
�
�

(3.8)

The following characterisation of the theory of an FP sketch is important, for more

details see [BW85].

Theorem 3.2.5. The theory Th(S ) is defined up to equivalence by the following

properties:

1. Th(S ) has all finite products

2. M0 takes every diagram in S to a commutative diagram in Th(S )
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3. M0 takes every formal product cone to a product cone in Th(S )

4. No proper subcategory of Th(S ) includes an image of M0 and satisfies (1)-(3).

This gives in the ordinary case a mechanism to define uniquely a category by a

finite formal specification – a sketch, and also to define functors from this category by

finite enumeration of cases – the sketch model M.

Finite-product 2-sketches

A generalisation of the ordinary case to 2-categories formally underpins a transition

from an essentially 2-categorical mathematical definition to a 2-category – a theory of

a functor with structure in the sense of Def. 3.2.1. In this thesis we specifically consider

finite-product 2-sketches, i.e. essentially FP sketches with additional formal 2-edges

between paths of 2-edges and diagrams on them. These can been defined formally as

instances of more general enriched sketches, as Kelly shows in [Kel82], Chapter 6. As

2-categories are just Cat-categories, the kind of sketch we are interested in is a Cat-

sketch in Kelly’s sense. Explicitly, in detail and an accessible form the construction of

a 2-sketch and its theory is shown in [PW92].

We don’t go into more details here, just note that a theory of an FP 2-sketch is

characterised precisely as in the ordinary case, diagram (3.8) and Theorem 3.2.5, with

the exception that everything is considered 2-categorically.

This is the formal sense in which we define 2-functors from a theory of a 2-sketch

(usually an infinite object) by describing the action of the 2-functor on the components

of the 2-sketch and assume the rest is generated freely. This also applies to 2-natural

transformations.

Example 3.2.6 (Monads). An example of an essentially 2-categorical definition is the

definition of a monad. By rewriting the definition as a graph with 2-cells (so-called

computad by Ross Street [Str76]), one obtains the following:

o o
a //

o

o

??

a

��
��

��
��

��
��

o

o

a

��?
??

??
??

??
??

?

o o

1

::

m
��

e
KS

The definition also prescribes 2-diagrams on the 2-cells expressing that

m · (m ◦ a) = m · (a ◦ m) (3.9)

m · (e ◦ a) = 1o = m · (a ◦ e) (3.10)
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Moreover, there are implicit 1-diagrams (diagrams on the arrows), which must specify

that the arrow denoted 1 becomes an identity.

A theory of this sketch is a 2-category which is generated freely by the graph and

equations. The theory is denoted M and a denotes the inclusion 2 −→ O −→ M, and

also the inclusion O −→ M. A model of M in K is given by a 1-cell for a, a pair of

2-cells for m and e such that (3.9) and (3.10) hold in K It is obvious that a model of

M in Cat is a monad.

3.3 Morphisms of functors with structure

In summary, a theory of a functor with structure in full generality is a 2-category with

a chosen arrow. The models of a theory T in K are 2-functors. What is the corre-

sponding notion of a morphism?

In the well known ordinary case, theories are ordinary categories, models are func-

tors, morphisms are natural transformations. A 2-category is a collection of ordinary

categories connected by horizontal composition and therefore, as explained in Sect. 2.3,

the corresponding notion of a natural transformation of 2-functors, which is a coher-

ent collection of ordinary natural transformations, is lax a natural transformation. The

following definition fixes this nomenclature.

Definition 3.3.1 (Morphism of functors with structure). Let (T , a) be a theory of a

functor with structure; let K be a 2-category.

1. A category of models of T in K is the hom-category [T ,K ] or JT ,K K.

When in need of distinguishing them, the former is called reverse, while the

latter forward.

2. A morphism of functors with structure from F to G with theory T is an arrow

in [T ,K ] or in JT ,K K. Again, the former is a reverse, the latter a forward

morphism.

Remark 3.3.2. Our reverse morphisms are also called colax morphisms and our for-

ward morphisms are called just lax morphisms in some other literature. However, as

everything is already lax in this thesis, we believe this nomenclature could be mislead-

ing so we opted for a symmetry where just morphism without adjectives means either

of them.

Similarly, our forward category of models is related to what is called a comodel in

[PS04]. Namely, a category of comodels of a Lawvere theory L is an opposite category

of its models in C op for an ordinary category C . This generalises to the 2-categorical

case by the following isomorphism:

[A ,K co]co ∼= JA co,K K ,
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So a forward category of models of A co could also be called a category of comodels

of A .

Example 3.3.3. The case of (endo)functors with no additional structure is illuminating.

See also Observation 3.1.3.

1. Models of 2 in Cat are just functors, F : C −→ C ′, F′ : D −→ D ′. A forward

morphism F −→ G, an arrow in J2,CatK, is given by a pair of functors H :

C −→ D and H′ : C ′ −→ D ′ and a natural transformation λ : H′F =⇒ F′H.

C ′ D ′

H′

//

C

C ′

F

��

C D
H // D

D ′

F′

��

λ
;C

�����
�����

2. A reverse morphism of the same functors F, F′, i.e. an arrow F −→ F′

in [2,Cat], is given by H and H′ as above and a natural transformation κ :

F′H =⇒ H′F.

C ′ D ′

H′

//

C

C ′

F

��

C D
H // D

D ′

F′

��
{�
κ �����

�����

3. When endofunctors G : C −→ C and G′ : D −→ D are considered instead,

i.e. models of O in Cat, a forward morphism in JO,CatK is given by a single

functor H : C −→ D and a natural transformation λ : HG =⇒ G′H.

C D
H

//

C

C

G

��

C D
H // D

D

G′

��

λ′
;C

�����
�����

4. A reverse morphism G −→ G′ in [O,Cat] has the natural transformation re-

versed:

C D
H

//

C

C

G

��

C D
H // D

D

G′

��
{�
κ′ �����

�����

The following example illustrates morphisms of a more complicated theory with
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nontrivial 2-cells.

Example 3.3.4. Let C ,D ∈ Cat be ordinary categories, and T and U a pair of mon-

ads. Formally, T,U are functors M −→ Cat. Let the components of T and U be

(T : C −→ C , µ, η) and (U : D −→ D , µ′, η′), respectively. A morphism T −→ U

in [M,Cat] is by definition given by a functor H : C −→ D and a natural transforma-

tion λ : UH =⇒ HT such that the following diagram commutes:

C

C

��

T������

������

D

D

��

U
������

������

C D
H

//

C D
H //

λ

{�C

C





T

�����������������

C

C

__
T

??
??

?

µ

��

D

D





U
��������

��������

D

D

__
U

??
??

?

µ′

��

λ

��

λ

bjC D
H //

C

C

uu
1

KS
η

D

D

uu
1

KS
η′

(3.11)

Equivalently,

(λ � λ) ⊟ µ = µ′ ⊟ λ

η′ ⊟ λ = η
(3.12)

The reader might be familiar with (3.12) in the more elementary form:

Hµ · λT · Uλ = λ · µ′H

λ · η′H = Hη
(3.13)

The forward case, i.e. a morphism T −→ U in JM,CatK is obtained by reversing the

direction of λ in (3.11). This is three-dimensionally the following diagram

C

C

��

T������

������

D

D

��

U
������

������

C D
H

//

C D
H //

-5
λ

C

C





T

�����������������

C

C

__
T

??
??

?

µ

��

D

D





U
��������

��������

D

D

__
U

??
??

?

µ′

��19

λ

*2
λ

C D
H //

C

C

uu
1

KS
η

D

D

uu
1

KS
η′

(3.14)

Note that strictly speaking there is also a “silent” reversal of the identity 2-cell belong-
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ing to the square

C D
H
//

C

C

1 ��

C D
H // D

D

1�� . The form (3.12) changes by the reversal to the following:

µ′ � (λ ⊟ λ) = λ � µ

λ � η = η′

and correspondingly (3.13) becomes

µ′H · Uλ · λT = λ · Hµ

λ · Hη = η′H

Remark 3.3.5. The forward and reverse categories of functors with structure are related

by the dualities of Theorem 2.3.9 as follows:

[T ,K ] ∼= JT co,K coKco

3.4 Forgetful Functors

As before for arrows, precomposition of models with inclusion corresponds to forget-

ting parts of the structure. In particular, the following notions are valid for all functors

with structure.

Definition 3.4.1. Let F : T −→ K be a functor with structure with theory (T , a).

Then the

1. underlying arrow of F is the formal arrow defined as:

F · a : 2 // K

This arrow is often denoted just Fa.

2. domain (or source), and codomain (or target) are the formal objects of K de-

fined respectively as

F · a · s : 1 // K

F · a · t : 1 // K

These arrows are often denoted just Fs and Ft.

3. if F is an endofunctor with structure, the underlying object of F is the formal
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object

F · a · t = F · a · s : 1 // K

This arrow is often denoted just Fo.

In general, there is an obvious notion of underlying “something” functor, defined

by precomposition with inclusions. Formally, for a functor f : A −→ T of theory

(T , a) and a category A , one obtains by precomposition from a model, F, of T

a functor, F ◦ f from A . This assignment extends to a functor, the contravariant

representable functor

Jf,K K : JT ,K K −→ JA ,K K , (3.15)

for any K . When f is an inclusion of categories, it makes sense to call (3.15) a

forgetful functor.

Moreover, when A above is a part of a theory (A , a′) and f is a theory morphism,

Jf,K K is a reinterpretation functor. It takes models and compatible morphisms of T

to models and compatible morphisms of A .

By the dualities, all of the above applies to [−,−].

Example 3.4.2. The functor [a,Cat] : [M,Cat] −→ [2,Cat] takes monads to their

underlying functors. Its action on arrows of [M,Cat], monad morphisms, is that it

takes (3.11) to

C D
H

//

C

C

T

��

C D
H // D

D

U

��
{�
λ �����

�����

Similarly, [o,Cat] : [M,Cat] −→ [1,Cat] gives the underlying category for each

monad. On arrows, it takes morphisms (3.11) to the underlying functor between the

underlying categories, H : C −→ D .

Example 3.4.3 (Pointed Functors). A so-called pointed functor is an endofunctor f :

C −→ C with a natural transformation η : 1C =⇒ f . Formally, the theory for a

pointed functor is 2 with an extra nonidentity 2-cell, e : 1o =⇒ a:

o o
a //o o

1

::
e
KS

The category generated by this diagram, the theory of pointed functors, which is de-

noted Pt, is included in the obvious way in the theory of monads, M. The inclusion is
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called pt : Pt →֒ M and by definition it preserves a. Therefore, there is the underlying

pointed functor T ·pt : Pt −→ K , for every monad T : M −→ Cat. On arrows, the

action of [pt,Cat] is:

C

C

��

T�����

�����

D

D

��

U
�����

�����

C D
H

//

C D//

λ

}�C

C





T

��������������

C

C

__
T
??

??

µ
��

D

D





U
������

������

D

D

__ U
??

??

µ′

��
λ

��

λ

aiC D
H //

C

C

tt
1

KS
η

D

D

tt
1

KS
η′

7−→

C

C

��

T�����

�����

D

D

��

U
�����

�����

C D
H

//

C D//

λ

}�C

C

tt
1

KS
η

D

D

tt
1

KS
η′
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3.5 Examples

The following examples show some basic instances of functors with structure arising

directly from rewriting definitions of categorical notions as sketches. The definitions

can be found in Category-theoretical textbooks such as [Mac97] or [BW99].

Example 3.5.1 (Comonads). The theory of a comonad is Mco, i.e. the theory for

monads (Ex. 3.2.6) with 2-cells reversed. A model of Mco in Cat is clearly a comonad.

Example 3.5.2 (Monoidal categories). A monoidal category is a category, C , equipped

with a binary operation, 2 : C ×C −→ C , which is associative and has a left and right

unit. One often considers the associativity and unit laws relaxed from strict equality to

existence of isomorphisms, α, λ, ρ. Moreover one often considers a weaker lax variant,

where α, λ and ρ above are not isomorphisms but just unidirectional natural transfor-

mations. This makes sense in particular in Computer Science where the associativity

law would be realised (witnessed) by an algorithm taking x2(y2z) to (x2y)2z. The

adjective strong is then used for the case with isomorphisms.

These definitions can be generalised to take place in an arbitrary 2-category instead

of Cat and sketched as follows (with the equations omitted):

o × o o
2

//

o × o × o

o × o

2×o

��

o × o × o o × o
o×2// o × o

o

2

��

α ;C
����

o o × o
e△o //o

o

1

��?
??

??
??

??
??

? o × o ooo o△e
o × o

o

2

��

o

o

1

����
��

��
��

��
��

{�
λ���� �#

ρ????
(3.16)

Here it is assumed that the vertices o×o, o×o×o become real products of the model

of o of the theory. The theory of this sketch is denoted Mon. The arrow of Mon is the

arrow 2 : o × o −→ o. A product preserving model of Mon in Cat is a lax monoidal

category (more precisely, the value of the model on o is).

To obtain a strong monoidal category from (3.16), its reversed copy would have to

be included as well, together with equations stating that the two are inverse.

A morphism of lax monoidal categories is a lax monoidal functor. The following

example shows that all the usual coherence conditions follow from this definition, see

Sect. 3.3.

Example 3.5.3 (Lax Monoidal Functors). For monoidal categories C and D (Ex. 3.5.2),

a lax monoidal functor is a functor F : C −→ D that is laxly coherent with the

monoidal structures on C and D . Explicitly, this is a morphism in [Mon,Cat], whose
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underlying arrow is pictured below:

C D
F

//

C 2

C

⊙

��

C 2 D2F2
// D2

D

⊕

��
{�
µ

����

The usual coherence conditions (see [Mac97]) follow from this definition. The coher-

ence with associativity, α, is the following condition :

D2 D
⊕

//

C 2

D2

F2

��

C 2 C⊙ // C

D

F

��

D3

C 3

D3

F3

��

C 3 C 2C×⊙ // C 2

C

C 2

��

⊙
???????

C 2

C 3

��
⊙×C??

??

D2

D3

��⊕×D

??????

D

µ×F ;C
����

α ;C
����

µ ;C
����

=

D2 D
⊕

//D2

CC

D

F

��

D3 D2
D×⊕ //

C 3

D3

F3

��

C 3 C 2C×⊙ // C 2

D2

F2

��

C

C 2

��

⊙
???????

C 3

D2

D3

��⊕×D

??????

D

D2

��
⊕???

???

F×µ ;C
����

α′ ;C
����

µ ;C
����

(3.17)

Coherence with the left units, λ, λ′ is a lax morphism of lax triangles:

C

C

��

1�����

�����

D

D

��

1�����

�����

C D
F

//

C D
F //

C

C 2





⊙

��������������

C 2

C

__ e△1
??

??

λ
��

D

D2





⊕
������

������

D2

D

__ e′△1
??

??

λ′

��
µ

��

ν

aiC 2 D2F2
//

(3.18)

Right units are symmetrical. Note that (3.18) contains another 2-cell, ν : e′ △ F =⇒

Fe △ F, which splits into ν1 : e′ =⇒ Fe, i.e. a morphism on units, and ν2 : F =⇒ F,

which is necessarily the identity by the definition of a lax natural transformation.

Example 3.5.4 (Forward Lax Monoidal Functors). Example 3.5.3 can be reversed by

considering arrows in JMon,CatK. The resulting notion is given by a 2-cell (natural

transformation) µ′ : F ◦ ⊙ =⇒ ⊕ ◦ F2. For instance, the coherence with α changes
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appropriately:

C D
F

//

C 2

C

⊙

��

C 2 D2
F2 // D2

D

⊕

��

C 2

C 3

C 2

C×⊙

��

C 3 D3F3
// D3

D2

D3

��

⊕×D
??????

C 2

C 3

��
⊙×C??

??

C

C 2

��⊙

???????

D

α ;C
����

µ′×F ;C
����

µ′ ;C
����

=

C D
F

//C

D2D2

D

⊕

��

C 2 D2
F2 //

C 3

C 2

C×⊙

��

C 3 D3F3
// D3

D2

D×⊕

��

D2

D3

��

⊕×D
??????

C 3

C

C 2

��⊙

???????

D

D2

��
⊕???

???

F×µ′ ;C
����

µ′ ;C
����

α′ ;C
����

(3.19)

Example 3.5.5 (Right Monoidal Action). A notion similar to (3.5.2) above is that of a

right action of a monoidal category. In an arbitrary 2-category, K , letX be a monoidal

object, i.e. an underlying object of a model of a monoidal category. A right action of

X on another object, Y , is given by a 1-cell ⊘ : Y × X −→ Y , which is associative

and has a right unit. Formally, this is sketched as follows:

o′ × o o′
⊘

//

o′ × o × o

o′ × o

⊘×o

��

o′ × o × o o′ × o
o′×2// o′ × o

o′

⊘

��

α ;C
����

o′ × o o′oo o
′×e

o′ × o

o′

⊘

��

o′

o′

1

����
��

��
��

��
�

�#
ρ????

(3.20)

It is assumed that the sketch also contains a copy of (3.16) specifying that o is monoidal,

and a reversed copy together with equations making α, ρ into formal isomorphisms, as

discussed above. In a lax right monoidal action this is omitted and α, ρ are just 2-cells.

The arrow of the theory of this sketch is ⊘ : o′ × o −→ o′. The image of ⊘ under

a product preserving functor, F, into K is a lax right action of F(o) on F(o′). The

theory of the described sketch is denoted RAct.

Morphisms of certain monoidal actions are so-called strong functors. The details

will be discussed in the next section, after we have introduced distributive laws as

generalised morphisms.

Example 3.5.6. An adjoint in an arbitrary 2-category K is just an image of Def. 2.2.16

regarded as a sketch. There are two ways to regard an adjunction as a functor with

structure, depending on which adjoint, left or right, is considered as the arrow of the

functor with structure. Formally, there are two theories of functors with structure, LAdj

and RAdj of left adjoints and right adjoints. They have the came category but the arrow

of the theory, i.e. the inclusion from 2 differs.
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Chapter 4

Generalised Distributive Laws

Reynolds in [Rey83] showed that parametric functions in polymorphic lambda calcu-

lus correspond to natural transformations in category theory. Among all natural trans-

formations that occur in programming, we are interested in those of types similar to

FG =⇒ G′F and F′G =⇒ GF, which are coherent with any additional structure on

the F’s and G’s, because they repeatedly occur in many seemingly unrelated situations

in computer science and the related category theory.

Superficially, one can notice the resemblance to homomorphisms in abstract al-

gebra, namely to coherence conditions of the form f(x · y) = f(x) • f(y). This

connection has been formalised in the previous chapter where it was shown that such

natural transformations are the underlying 2-cells of coherent morphisms of functors

with structure. Quite often, though, all functors bear an additional structure and one

then wants the natural transformation to be coherent with all of them. Such a situation

gives rise to the notion of a distributive law of one functor with structure over another.

In category theory, an example was described by Jon Beck in [Bec69]: a natural

transformation λ : TU =⇒ UT where T, U are monads and λ is coherent with the

structure of the monads is called a distributive law by Beck. When the monads are

those of an abelian group and a multiplicative monoid, respectively, a distributive law

categorically formalises the usual algebraic notion of a distributive law joining them

into (the monad of) a ring. Many variants of the notion, which are straightforwardly

derived from Beck’s notion, have been studied since then. This includes cases when U

above is a comonad, or either of T or U is just a (co)pointed functor.

In this chapter, a notion of a generalised distributive law of functors with structure

is introduced. The generalisation is in the type of the structure on the underlying func-

tors. The notion is defined and it is shown that Beck’s distributive laws of monads are

an instance. It is also shown, and it follows rather straightforwardly from the defini-

tion and the general 2-categorical results of Gray, that a generalised distributive law of

functors with structure T,T′ with theory T over functors with structure U, U′ with
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theory U is at the same time a coherent morphism of the T’s and a coherent morphism

of the U’s.

The point of generalising Beck’s distributive laws is that there are important cases

of functors with structure, which are not subsumed by monads or comonads, but whose

distributive laws make sense. And although the theory becomes weaker, there are still

interesting properties of generalised distributive laws irrespective of monads. An im-

portant example is the case of higher-dimensional distributive laws where there are

more than two functors with structure involved, which is studied in Sect. 4.3.

The rest of this chapter comprises of detailed examples, which illustrate that the

notion of generalised distributive laws conceptually unifies many diverse notions in

computer science.

4.1 Definition and Characterisation

This chapter is about the following definition.

Definition 4.1.1 (Generalised distributive law). Let T , U be theories of functors with

structure, K a 2-category. A (generalised) distributive law of T over U in K is

a 2-functor F : T ⊗ U −→ K where ⊗ is Gray’s tensor product of 2-categories

(Sect. 2.4).

The intuition and nomenclature of informal distributive laws is that a distribu-

tive law of functor F over functor G, both with some additional structure, is a nat-

ural transformation λ : FG =⇒ G′F′, where F and F′, G and G′ have pair-

wise the same kind of additional structure, such that some coherence conditions ex-

pressing the coherence of λ with the additional structure hold. This is honoured by

our generalised definition in the sense that when T and U have only one arrow,

a, it follows, from the fact that 2-functors of type C ⊗ D −→ E are isomorphic

to quasi functors of two variables C × D  E and by the definition of a quasi

functor (Def. 2.4.3), that a distributive law of such T over U in Cat is a natural

transformation F(a, t) ◦ F(s,a) =⇒ F(t,a) ◦ F(a, s). In the general case, one

obtains for each arrow t : A −→ A′ ∈ T and u : B −→ B′ ∈ U a 2-cell

αt,u : F(t, B′) ◦ F(A, u) =⇒ F(A′, u) ◦ F(t, B). In this sense, F is taking the

model of T over the model of U .

Remark 4.1.2. Note that the arrows of the functors with structure involved in a dis-

tributive law are not explicitly mentioned in the definition of a distributive law. It plays

a bookkeeping role allowing us to point to the 2-cell (often natural transformation)

“swapping the order of two functors”, appropriately generalised.

More importantly, though, it serves as a reminder (or a seed of) of a notion of a

structure of the functors. Later, in Section 4.3 we realise that it is important not to

forget about it. See Remark 4.3.4 if you like to take a to peek ahead.
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We summarise the above considerations precisely in the following characterisation

theorem.

Theorem 4.1.3 (Characterisation). A distributive law of T over U , in K , formally

λ : T ⊗ U −→ K , is equivalently:

1. a model of U in [T ,K ], explicitly a functor λ↓ : U −→ [T ,K ]; so-called

vertical distributive law

2. a model of T in JU ,K K, explicitly a functor λ→ : T −→ JU ,K K; so-called

horizontal distributive law

3. It follows that λ is a reverse morphism of T -functors and at the same time a

forward morphism of U -functors and is in this sense coherent with the additional

structures of both T and U .

Proof. The result follows immediately from the isomorphisms in Theorem 2.4.1. Namely,

a functor λ : T ⊗ U −→ K is an object in [T ⊗ U ,K ] ∼= [U , [T ,K ]]. Similarly

for λ ∈ JT ⊗ U ,K K ∼= JT , JU ,K KK. The morphisms of functors with structure in

(3) are obtained as the underlying arrows of (2) and (1) because T and U are theories

of functors with structure, i.e. with an inclusion 2 −→ T ,U .

Remark 4.1.4. Note that a distributive law λ : T ⊗ U −→ K is an object in two

other 2-categories, namely JU , [T ,K ]K and [T , JU ,K K]. These last two categories

are equivalent by (2.37), however, they are not equivalent to either of JT , JU ,K KK

or [U , [T ,K ]] by any of the theorems or dualities. To understand the differences

between these three nonequivalent categories, first note that objects in [A , [B,K ]]

are the same as objects in JB, JA ,K KK and in JA , [B,K ]K ∼= [B, JA ,K K]. In all

three cases they comprise of laxly commuting squares

λA′,B λA′,B′

λA′,g

//

λA,B

λA′,B

λf,B

��

λA,B λA,B′

λA,g // λA,B′

λA′,B′

λf,B′

��

λf,g
;C

����
����

for each pair of arrows f : A −→ A′ in A and g : B −→ B′. The morphisms in all

three categories are laxly commuting cubes, but the difference lies in the direction of

the diagonal 2-cells defining the components of the morphisms. Figure 4.1 illustrates

morphisms in [A , [B,K ]], JB, JA ,K KK and JA , [B,K ]K, respectively.

Note that by purely geometrical considerations, one would expect there to be four,

not three different notions of morphisms between lax squares. However, it is clearly
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seen that the fourth variant missing from Fig. 4.1, i.e. when when α is reverse, β

forward, results in a cycle of 2-cells

ks
α

;Cβ

��
����
�� λ′

�#
??

??
??

??
•55llll
•
��
• iiRRRR

around the front-bottom-right corner. And there is a similar diagram around the back-

top-left corner. Thus the cube doesn’t make sense as coherence condition.

This answers the question posed in [PW99] as to why there are only six not eight

(there, duals are counted too) categories of distributive laws of a monad over a comonad.

• •//

•

•
��

• •// •

•
��

• •//____

•

•
���
�
�
�• •// •

•
��

•

•

��
�����

•

•

��
�����

•

•

��
�

�
�

•

•
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�����
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/
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/
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{�
β ���
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•
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•
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•

•
���
�
�
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•
��
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�����

•
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�����
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�
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�����
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/
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����
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•
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���
�
�
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��

•
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�����
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�
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�����

λ

��
//

/
//

/
λ′

��
//

/
//

/

α 3;oooo oooo

{�
β ���

���

Figure 4.1: Morphisms of distributive laws are laxly commuting cubes; here depicted

as a morphism λ −→ λ′ in [A , [B,K ]], JB, JA ,K KK, JA , [B,K ]K, respectively

from left to right; 2-cells on opposing hidden faces have the same direction.

The following example illustrates the decomposition of distributive laws into mor-

phisms as carried out in Theorem 4.1.3. It also relates generalised distributive laws to

Beck’s distributive laws of monads.

Example 4.1.5 (Distributive laws of Monads). Let C be an ordinary category, and

(T, µ, η) and (U, ν, ζ) a pair of monads on C . In [Bec69] a distributive law of T over

U is defined as a natural transformation λ : TU =⇒ UT such that:

λ · ηU = Uη λ · µU = Uµ · λT · Tλ

λ · Tζ = ζT λ · Tν = νT · Uλ · λU
(4.1)

A distributive law λ : M ⊗ M −→ Cat is a distributive law of a monad over a monad

in the above sense. In order to see this, observe that commutativity of the diagram

in Fig. 4.2 is equivalent to equations (4.1). At the same time, the left-hand side of

the diagram pictures an endomorphism (T, λ) : U −→ U (see Ex. 3.3.4), and the

right-hand side pictures modifications µ and η, all in JM,K K. Therefore1, Fig. 4.2 is

a model of a monad in JM,K K. By Theorem 4.1.3, this is the same as a distributive

law λ : M ⊗ M −→ Cat. Similarly, the right-hand side pictures a reverse morphism

(U, λ) : T −→ T and the left-hand side 2-modifications in [M,K ]. These two views

correspond to points (1) and (2) in Theorem 4.1.3.

1Although it remains to establish the associativity and unit laws.
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Figure 4.2: Distributive law λ : M ⊗ M −→ Cat of a monad over a monad.

Example 4.1.6. For comonads (D : C −→ C , δ, ǫ) and (E : C −→ C , γ, ξ) a dis-

tributive law of D over E is usually defined as a natural transformation λ : DE =⇒

ED such that the duals of (4.1) hold. To see that λ : Mco ⊗ Mco −→ Cat is a distribu-

tive law of a comonad over a comonad, it is obviously possible to expand all definitions

again. On the other hand, one can see this easily by duality from the previous example

of monads:

[M, JM,K coK] ∼= [M, [Mco,K ]co] ∼= JMco, [Mco,K ]Kco

So a distributive law of monads in K co is a distributive law of comonads in K . It

follows that the coherence conditions of the latter are just dual of those of the former.

The definition of generalised distributive laws, seen through Theorem 4.1.3, en-

tails the result of Ross Street about formal monads and distributive laws of monads in

[Str72]. Street explicitly defines the category of monads and their morphisms in an ar-

bitrary 2-category, K . This category is denoted Mnd(K ). His definition of Mnd(K )

is such that

Mnd(K ) ≡ [M,K ]

in the present notation. Street further observes that a monad in Mnd(K ) is a distribu-

tive law of a monad over a monad. In the present notation this is just

Mnd(Mnd(K )) ≡ [M, [M,K ]] ∼= [M ⊗ M,K ]

The significance of our generalisation form Mnd(K ) to the functor category [M,K ]

is that one can start to formally study distributive laws of other kinds than monads and

the relations between the different notions. And it turns out that the generalised notion

of a distributive law is meaningful and useful. This is demonstrated in the rest of this

thesis.
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4.2 Some Useful Notation

Any distributive law λ : T ⊗ U −→ K has two underlying arrows, and therefore

two source and two target functors with structure. The following definition fixes the

notation.

Definition 4.2.1. For a distributive law λ : T ⊗U −→ K , equivalently λ→ : T −→

JU ,K K, or λ↓ : U −→ [T ,K ], by the action of the contravariant forgetful functors

one obtains the following:

1. horizontal domain and codomain as the domain and codomain, respectively, of

λ→

2. vertical domain and codomain as the domain and codomain, respectively, of λ↓

3. underlying horizontal morphism as the underlying arrow of λ→

4. underlying vertical morphism as the underlying arrow of λ↓

5. underlying 2-cell as the underlying arrow of the underlying horizontal (or equiv-

alently vertical) morphism of λ

Example 4.2.2. Here are some illustrating examples.

1. A distributive law of 2 over 2 in Cat (i.e. when T and U are just 2 above) is

given by the following data:

E F
I

//

C

E

G

��

C D
F // D

F

H

��

λ1

;C
�����
�����

,

where C , D , E , F are categories, F, G, H, I are ordinary functors and λ1 is an

ordinary natural transformation.

(a) λ→1 is the morphism (F, λ1, I) : G −→ H in J2,CatK

(b) λ
↓
1 is the morphism (G, λ1,H) : F −→ I in [2,Cat]

(c) The horizontal domain is G, codomain H, the vertical domain is F and

codomain I

(d) The underlying horizontal and vertical morphisms are in this case the same

as λ→1 and λ
↓
1, respectively.

(e) The underlying 2-cell is just λ1
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2. A distributive law of O over O in Cat is given by the following data:

C C
F

//

C

C

G

��

C C
F // C

C

G

��

λ2

;C
�����
�����

,

where C is a category, F, G are ordinary functors and λ2 is an ordinary natural

transformation λ2 : FG =⇒ GF.

(a) λ→2 is the morphism (F, λ2) : G −→ G in JO,CatK

(b) λ
↓
2 is the morphism (G, λ2) : F −→ F in [O,Cat]

(c) The horizontal domain and codomain is G, the vertical domain and codomain

is F

(d) The underlying horizontal and vertical morphisms are also in this case the

same as λ→2 and λ
↓
2, respectively.

(e) The underlying 2-cell is just λ2

3. For λ as in Ex. 4.1.5

(a) Both horizontal domain and codomain is the monad U

(b) Both vertical domain and codomain is the monad T

(c) The underlying horizontal and vertical morphisms are pictured in Fig. 4.2

left and right, respectively

(d) The underlying 2-cell is the natural transformation λ3 : TU =⇒ UT

Notation 4.2.3. A distributive law λ of T over U with vertical source T, vertical

target T′, horizontal source U, horizontal target U′ is denoted

(U ,U)| λ

(T ,T)

(T ,T′)

|(U ,U′) , or just U| λ

T

T′

|U′ ,

when U , T are clear from the context.

The underlying 2-cell of λ, of type T′a ◦ Ua =⇒ U′a ◦ Ta is denoted |λ|.

Example 4.2.4. The distributive laws of Example 4.2.2 are denoted respectively:

1. (2,G)| λ1

(2,F)

(2,I)

|(2,H) or just G| λ1

F

I

|H

2. (O,G)| λ2

(O,F)

(O,F)

|(O,G) or just G| λ2

F

F

|G
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3. (M,U)| λ3

(M,T)

(M,T)

|(M,U) or just U| λ3

T

T

|U

4.3 Higher-dimensional Distributive Laws

A distributive law of (T , a) over (U , b) in K is a model of T in the category of

models of U in K . This construction can be iterated by considering K itself to be a

category of models of a functor with structure in a K ′. And so on. The following is a

preliminary definition of what we have in mind.

Definition 4.3.1 (Iterated Distributive Law). For a 2-category K , and a theory of

functors with structure (T , a),

1. a category of 1-iterated distributive laws in K is a category of models of T in

K , i.e either [T ,K ] or JT ,K K.

2. a category of n-iterated distributive laws, for n > 1, in K is a model of T in a

category of (n-1)-iterated distributive laws.

Note that a functor F : U −→ K assigns to each g : B −→ B′ in U an arrow

F(g) in K . A functor H in JT , JU ,K KK assigns to each pair of arrows g : B −→ B′

in U and f : A −→ A′ in T a laxly commuting square in K :

H(A,B′) H(A′, B′)
H(f,B′)

//

H(A,B)

H(A,B′)

H(A,g)

��

H(A,B) H(A′, B)
H(f,B) // H(A′, B)

H(A′, B′)

H(A′,g)

��

H(f,g) ;C
����
����

See (2.39) and (2.38). Now, in the case when K above is a functor category, say

JV ,K K, so H ∈ JT , JU , JV ,K KKK, one obtains a laxly commuting square in the

functor category JV ,K K. This is a lax cube. The vertices are the functors H(A,B,−),

for A ∈ T , B ∈ U . The four sides are the lax natural transformations H(f,B,−),

H(f,B′,−), H(A, g,−), H(A′, g,−), for f and g as above. The diagonal is the mod-

ification H(f, g,−), with a component H(f, g, C) for every C ∈ V , such that for any

g : C −→ C ′ the cube in Fig. 4.3 commutes. Informally, it seems, and it is straightfor-

ward to verify from the definitions, that ordinary (2-iterated) distributive laws are given

by lax squares, 3-iterated distributive laws by lax cubes, 4-iterated distributive laws by

lax tesseracts (Fig. 4.6), etc., for all tuples of arrows. In this sense, iterated distributive

laws are higher-dimensional.

Note that written out as diagrams of arrows in K (H(f, g, h),H(f ′, g′, h′)), (4.2)
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H(A,B′, C ′) H(A′, B′, C ′)
H(f,B′,C′)

//

H(A,B′, C)

H(A,B′, C ′)

H(A,B′,h)

��

H(A,B′, C) H(A′, B′, C)
H(f,B′,C) // H(A′, B′, C)

H(A′, B′, C ′)

H(A′,B′,h)

��

H(A,B,C ′)

H(A,B,C)

H(A,B,C ′)

H(A,B,h)

��

H(A,B,C) H(A′, B,C)
H(f,B,C) // H(A′, B,C)

H(A′, B′, C)

H(A′, B,C)

��

H(A′,g,C)

??????????

H(A,B′, C)

H(A,B,C)

��

H(A,g,C)????

????

H(A,B′, C ′)

H(A,B,C ′)

��
H(A,g,C′)

??????????

H(A′, B′, C ′)

H(A,g,h) ;C
����

H(f,g,C) ;C
����

H(f,B′,h) ;C
����

= H(f, g, h) = (4.2)

H(A,B′, C ′) H(A′, B′, C ′)
H(f,B′,C′)

//H(A,B′, C ′)

H(A′, B′, C)H(A′, B′, C)

H(A′, B′, C ′)

H(A′,B′,h)

��

H(A,B,C ′) H(A′, B,C ′)
H(f,B,C′) //

H(A,B,C)

H(A,B,C ′)

H(A,B,h)

��

H(A,B,C) H(A′, B,C)
H(f,B,C) // H(A′, B,C)

H(A′, B,C ′)

H(A′,B,h)

��

H(A′, B′, C)

H(A′, B,C)

��

H(A′,g,C)

??????????

H(A,B,C)

H(A,B′, C ′)

H(A,B,C ′)

��
H(A,g,C′)

??????????

H(A′, B′, C ′)

H(A′, B,C ′)

��

H(A′,g,C′)????

????

H(f,B,h) ;C
����

H(f,g,C′) ;C
����

H(A′,g,h) ;C
����

Figure 4.3: Yang-Baxter equation

is

H(A′, B′, h)H(f, g, C) · H(f,B′, h)H(A, g, C) · H(f,B′, C ′)H(A, g, h) =

H(A, g, h)H(f,B,C) · H(A′, g, C ′)H(f,B, h) · H(f, g, C ′)H(A,B, h) (4.3)

This is a variant of so-called Yang-Baxter equation. It is perhaps better known and

recognisable as the hexagon in Fig. 4.4.

Example 4.3.2 (Tesseract). A 4-iterated distributive law T : 2 ⊗ 2 ⊗ 2 ⊗ 2 −→ K

is a tesseract (4-dimensional cube), Fig. 4.6. It arises as a morphism of lax cubes, say

inside-to-outside. The morphism has by definition a component, a lax cube, for each
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H(f,B′, C ′)H(A, g, C ′)H(A,B, h)

H(A′, g, C ′)H(f,B,C ′)H(A,B, h)

H(f,g,C′)H(A,B,h)

''OOOOOOOOOOOOOOOO

H(A′, g, C ′)H(f,B,C ′)H(A,B, h)

H(A′, g, C ′)H(A′, B, h)H(f,B,C)

H(A′,g,C′)H(f,B,h)

��
H(A′, g, C ′)H(A′, B, h)H(f,B,C)

H(A′, B′, h)H(A′, g, C)H(f,B,C)

H(A′,g,h)H(f,B,C)
wwoooooooooooooooo

H(f,B′, C ′)H(A, g, C ′)H(A,B, h)

H(f,B′, C ′)H(A,B′, h)H(A, g, C)

H(f,B′,C′)H(A,g,h)

wwoooooooooooooooo

H(f,B′, C ′)H(A,B′, h)H(A, g, C)

H(A′, B′, h)H(f,B′, C)H(A, g, C)

H(f,B′,h)H(A,g,C)

��
H(A′, B′, h)H(f,B′, C)H(A, g, C)

H(A′, B′, h)H(A′, g, C)H(f,B,C)

H(A′,B′,h)H(f,g,C)
''OOOOOOOOOOOOOOOO

Figure 4.4: Yang-Baxter equation

face of the source cube, which connects the source face to the corresponding target

face.

So how can one characterise general n-iterated distributive laws for n > 3 and

for other combinations of categories J−,−K, [−,−]? Is iteration a good approach

to distributive laws of more than two theories, as it has already been observed that

even in the 2-iterated case not all combinations of categories J−,−K and [−,−] and

permutations of theories yield different distributive laws. Just as in the case of 2-

iterated distributive laws, it would be useful to have a normal form of an n-iterated

distributive law. As ⊗ is associative, it is natural to seek such a normal form as a

functor from an iterated Gray’s tensor.

Definition 4.3.3 (Higher-dimensional Distributive Law). For theories (Ti, ai), i ≤ n,

and 2-category K , an n-dimensional distributive law of Tn over Tn−1, etc., in K is

a 2-functor

λ : T1 ⊗ · · · ⊗ Tn −→ K (4.4)

Remark 4.3.4. Even though ⊗ is associative it is not the case that any n-dimensional

distributive law is equivalent to a 2-dimensional distributive law. The problem lies in

the arrows of the theories as there is no canonical way to pick an arrow in Ti ⊗ Ti+1

for a pair of theories (Ti, ai), (Ti+1, ai+1).

We now investigate the relationship of higher-dimensional and iterated distributive
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laws. It is immediate by associativity of ⊗ and iteration of (2.34) and (2.35) that

JTn ⊗ · · · ⊗ T1,K K ∼= JTn, J. . . , JT1,K KKK (4.5)

[Tn ⊗ · · · ⊗ T1,K ] ∼= [T1, [. . . , [Tn,K ]]] (4.6)

Similarly, the following is easy and useful.

Lemma 4.3.5. Any functor (4.4), is a functor from Ti, for any 1 ≤ i ≤ n.

Proof. There is the following chain of isomorphic sets of functors:

λ ∈ |JT1 ⊗ · · · ⊗ Tn,K K|

∼= |J(T1 ⊗ · · · ⊗ Ti−1) ⊗ (Ti ⊗ · · · ⊗ Tn),K K|

∼= |JT1 ⊗ · · · ⊗ Ti−1, JTi ⊗ · · · ⊗ Tn,K KK|

= |[T1 ⊗ · · · ⊗ Ti−1, JTi ⊗ · · · ⊗ Tn,K K]|

∼= |JTi ⊗ · · · ⊗ Tn, [T1 ⊗ · · · ⊗ Ti−1,K ]K|

∼= |JTi, JTi+1 ⊗ · · · ⊗ Tn, [T1 ⊗ · · · ⊗ Ti−1,K ]KK

Objects in the last category are functors from Ti to JTi+1 ⊗ · · · ⊗ Tn, [T1 ⊗ · · · ⊗

Ti−1,K ]K. Note that starting from [T1 ⊗ · · · ⊗ Tn,K ] gives the same result under

the isomorphism (2.37).

But what about categories where [−,−] and J−,−K are arbitrarily nested, such as

JT , [U , [V , JD ,K K]]K ? (4.7)

Interestingly, any such iterated category is equivalent to a category of functors of the

form (4.4). For example, using (2.34), (2.35) and (2.37), one can normalise (4.7) as

follows:

JT , [U , [V , JD ,K K]]K ∼= JT , [V ⊗ U , JD ,K K]K

∼= JT , JD , [V ⊗ U ,K ]KK

∼= JT ⊗ D , [V ⊗ U ,K ]K (4.8)

Objects in (4.8) are the same as objects in

[T ⊗ D , [V ⊗ U ,K ]] ∼= [V ⊗ U ⊗ T ⊗ D ,K ] (4.9)

In general, let Funf (T ,U ) stand for JT ,U K and Funr(T ,U ) stand for [T ,U ]

in the following theorem.

79



Theorem 4.3.6 (Higher-dimensional Normal Form). For theories Ti, i ≤ n, 2 < n,

and a 2-category K , for any category

H ≡ Funx1
(T1, . . . , (Funxn

(Tn,K ))), xi ∈ {f , r} (4.10)

there exists a permutation s ∈ Sn such that exactly one of the following holds:

1. when xi = f , for all i ≤ n,

H ∼= Funf (Ts(1) ⊗ · · · ⊗ Ts(n),K )

2. when xi = r, for all i ≤ n,

H ∼= Funr(Ts(1) ⊗ · · · ⊗ Ts(n),K )

3. otherwise there exists a k, 1 ≤ k < n in

H ∼= Funr(Ts(1) ⊗ · · · ⊗ Ts(k),Funf (Ts(k+1) ⊗ · · · ⊗ Ts(n),K ))

Proof. The theorem is proven by induction on the nesting depth of the definition (4.10).

It clearly holds for H ’s of nesting depth 2. Let the nesting depth of H be n and let the

inductive hypothesis hold for terms of nesting depth< n. Then depending on the shape

of H , exactly one of the following holds for arbitrary T , U , V , D , by (2.34)-(2.37):

1. H ≡ [T , [U ,Funx(V ,D)]] ∼= [U ⊗ T ,Funx(V ,D)]

2. H ≡ [T , JU , [V ,D ]K] ∼= JU , [T , [V ,D ]]K ∼= JU , [V ⊗ T ,D ]K

3. H ≡ [T , JU , JV ,DKK] ∼= [T , JU ⊗ V ,DK]

4. H ≡ JT , [U , [V ,D ]]K ∼= JT , [V ⊗ U ,D ]K

5. H ≡ JT , [U , JV ,DK]K ∼= JT , JV , [U ,D ]KK ∼= JT ⊗ V , [U ,D ]K

6. H ≡ JT , JU ,Funx(V ,D)KK ∼= JT ⊗ U ,Funx(V ,D)K

Clearly, the nesting depth in each step thought of as a rewriting rule from left to right

strictly decreases, so the induction hypothesis can be applied.

We now turn to the question of construction of higher-dimensional distributive

laws. Luckily, and somewhat interestingly, the complexity of distributive laws doesn’t

grow with iteration, as formulated below. The most interesting part of the following

theorem, the characterisation (4) can be de facto found already in [Gra74] for arbitrary

2-functors.
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Theorem 4.3.7 (Higher-dimensional Characterisation). For theories (Ti, ai), 1 ≤ i ≤

n, the following are equivalent:

1. 2-functors (4.4)

2. for any k, 1 ≤ k ≤ n, 2-functors

λ→ : T1 ⊗ · · ·Tk −→ JTk+1 ⊗ · · · ⊗ Tn,K K

λ↓ : Tk+1 ⊗ · · · ⊗ Tn −→ [T1 ⊗ · · ·Tk,K ]

3. for some permutation s ∈ Sn, an iterated distributive law of Ts(n) over Ts(n−1),

etc. in K . Formally:

λ ∈ Funx1(Ts(1), . . . , (Funxn
(Ts(n),K ))), xi ∈ {f , r}

4. a family of 2-dimensional distributive laws

H(A1, . . . , Ai−1,−, Ai+1, . . . , Aj−1,−, Aj+1, . . . , An) : Ti ⊗ Tj −→ K

for all i < j and all choices of objects Ai ∈ Ti. This family must agree on ob-

jects in the obvious way, and for all triples of indices i < j < k and morphisms

fi : Ai −→ A′
i, fj : Aj −→ A′

j , fk : Ak −→ A′
k the diagram in Fig. 4.5 must

commute, where the variables constant throughout the diagram are omitted.

Proof. Equivalence of (1) and (2) is trivial by associativity of ⊗ and the characterisa-

tion Theorem 4.1.3. Equivalence of (1) and (3) is the Normal Form Theorem, 4.3.6.

The interesting part is equivalence of (1) and (4), which has been shown by Gray

for arbitrary 2-functors. We won’t repeat the details here, they can by found in Chapter

4 of [Gra74], namely see Definition I,4.6. of quasi-functors of n-variables2 the remark

following it and Theorem I,4.7.

Example 4.3.8 (Tesseract, continues). By Theorem 4.3.7 a tesseract (Ex. 4.3.2) is de-

fined by sections T(−,−, s, s), T(−,−, s, t) T(−,−, t, s), T(−, s,−, s), . . . . The

total number of such combinations is
(

4
2

)

× 4 = 24. This corresponds to the number

of rectangular faces in it: six for the inside cube, six for the outside cube and alto-

gether twelve connecting faces. The number of cubes, i.e. functors like T(−,−,−, s),

T(−,−,−, t), T(−,−, s,−), . . . , is
(

4
3

)

×2 = 8: inside, outside, and the six connect-

ing them. As for the coherence condition, the theorem requires that for any six faces,

which constitute a cube geometrically, the corresponding 2-cells commute.

2which are similar in the obvious way to the case for two variables
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H(Ai, A
′
j , A

′
k) H(A′

i, A
′
j , A

′
k)

H(fi,A
′
j ,A

′
k)

//

H(Ai, A
′
j , Ak)

H(Ai, A
′
j , A

′
k)

H(Ai,A
′
j ,fk)

��

H(Ai, A
′
j , Ak) H(A′

i, A
′
j , Ak)

H(fi,A
′
j ,Ak)

// H(A′
i, A

′
j , Ak)

H(A′
i, A

′
j , A

′
k)

H(A′
i,A

′
j ,fk)

��

H(Ai, Aj , A
′
k)

H(Ai, Aj , Ak)

H(Ai, Aj , A
′
k)

H(Ai,Aj ,fk)

��

H(Ai, Aj , Ak) H(A′
i, Aj , Ak)

H(fi,Aj ,Ak)// H(A′
i, Aj , Ak)

H(A′
i, A

′
j , Ak)

H(A′
i, Aj , Ak)

��

H(A′
i,fj ,Ak)

??????????

H(Ai, A
′
j , Ak)

H(Ai, Aj , Ak)

��

H(Ai,fj ,Ak)????

????

H(Ai, A
′
j , A

′
k)

H(Ai, Aj , A
′
k)

��
H(Ai,fj ,A

′
k)

??????????

H(A′
i, A

′
j , A

′
k)

H(Ai,fj ,fk) ;C
����

H(fi,fj ,Ak) ;C
����

H(fi,A
′
j ,fk) ;C

����

=

H(Ai, A
′
j , A

′
k) H(A′

i, A
′
j , A

′
k)

H(fi,A
′
j ,A

′
k)

//H(Ai, A
′
j , A

′
k)

H(A′
i, A

′
j , Ak)H(A′

i, A
′
j , Ak)

H(A′
i, A

′
j , A

′
k)

H(A′
i,A

′
j ,fk)

��

H(Ai, Aj , A
′
k) H(A′

i, Aj , A
′
k)

H(fi,Aj ,A
′
k)//

H(Ai, Aj , Ak)

H(Ai, Aj , A
′
k)

H(Ai,Aj ,fk)

��

H(Ai, Aj , Ak) H(A′
i, Aj , Ak)

H(fi,Aj ,Ak)// H(A′
i, Aj , Ak)

H(A′
i, Aj , A

′
k)

H(A′
i,Aj ,fk)

��

H(A′
i, A

′
j , Ak)

H(A′
i, Aj , Ak)

��

H(A′
i,fj ,Ak)

??????????

H(Ai, Aj , Ak)

H(Ai, A
′
j , A

′
k)

H(Ai, Aj , A
′
k)

��
H(Ai,fj ,A

′
k)

??????????

H(A′
i, A

′
j , A

′
k)

H(A′
i, Aj , A

′
k)

��

H(A′
i,fj ,A

′
k)????

????

H(fi,Aj ,fk) ;C
����

H(fi,fj ,A
′
k) ;C

����

H(A′
i,fj ,fk) ;C

����

Figure 4.5: Coherence of n-dimensional distributive law
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Figure 4.6: Tesseract

Example 4.3.9. An instance of Theorem 4.3.7 for Ti = M, for all i, is worked out

by Cheng in [Che07]. The author shows that a distributive law of n monads can be

constructed from a collection of pair-wise distributive laws of two monads such that

the condition in Fig. 4.5 holds for the underlying functors of the monads. This is used

to combine n monads on a category, and an example why such combined monads are

interesting is given. The proof there is carried out explicitly from first principles for

monads just with the use of Street’s iterative characterisation of distributive laws of

monads in 2-categories. The interested reader might therefore find there an interesting

exposition for the special case of M.
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4.4 Algebras, Coalgebras, Bialgebras

Interestingly, the notion of a generalised distributive law subsumes also the notions of

algebras, coalgebras, bialgebras and similar related notions both for endofunctors and

monads. In the formulation below it is essential that for any purely equational theory

T and an object X ∈ K , the functor X : T −→ K sending all objects of T to X

and all arrows of T to 1X is a model of T in K . We give a few motivating examples

first before introducing a general formulation.

Example 4.4.1 (Algebras for Endofunctors). An algebra of an ordinary endofunctor

F : C −→ C is an arrow ϕ : FX −→ X of C for some category C and X ∈ C . It is

easy to check from the definitions that this is the same as a morphism ϕ : 1 −→ pFq

in [O,Cat], where 1 is the terminal one-object category. Recall that pFq denotes the

formal arrow O −→ Cat corresponding to F.

1

C
X ''OOOOO

C

1

77X

ooooo C

C

F

��
ϕ

{� ����
(4.11)

Example 4.4.2 (Algebras for Monads). For a monad (T, µ, η) : M −→ Cat, an algebra

of T is an algebra of the underlying endofunctor T : C −→ C together with the

following coherence conditions, which take place in C :

X TX
ηX //X

X

1X

��?
??

??
??

??
??

TX

X

ϕ

��
TX X

ϕ
//

T2X

TX

µX

��

T2X TX
Tϕ // TX

X

ϕ

��

(4.12)

When one observes that (4.12) is equivalent to the diagram in Fig. 4.7 it is immediate

that it is just a morphism ϕ : 1 −→ (T, µ, η) in [M,Cat].

Note that contracting the left-hand-side triangle of identities in Fig. 4.7 to a single

point yields a tetrahedron and compare this to Fig. 2.3. Going from Fig. 2.3 to Fig. 4.7

using also the unit of the monad is the construction of a free T-algebra for a given X .

Example 4.4.3 (Coalgebras). Similarly, coalgebras for endofunctors are arrows 1 −→

pFq in JO,CatK. To see this, just reverse the 2-cell in (4.11) to obtain

1

C
X ''OOOOO

C

1

77X

ooooo C

C

F

��
;Cϕ

����

Similarly, one obtains a colagebra for a comonad from Fig. 4.7 by reversing all 2-cells.
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1

1

��

1�����

�����

C

C

��

T�����

�����

1 C
X

//

1 C//

ϕ

}�1

1





1

��������������

1

1

__
1
??

??

C

C





T
������

������

C

C

__
T
??

??

µ
��

ϕ

��

ϕ

ai1 C
X //

1

1

ss
1

C

C

tt
1

KS
η

Figure 4.7: Algebra for a monad

Remark 4.4.4. It’s easy to check that when 1 is a terminal object of K , 1 is the terminal

object both in [T ,K ] and JT ,K K. This means that in categorical terms algebras and

coalgebras are points (elements) of models of theories.

4.4.1 Generalised Algebras and Coalgebras

The previous examples and Remark 4.4.4 suggest the following definition.

Definition 4.4.5 (Generalised algebra). Let K be a 2-category with terminal object 1.

1. A generalised algebra for a functor with structure T : T −→ K (a T-algebra)

is an arrow φ : 1 −→ T in [T ,K ].

2. A morphism of T-algebras φ to ψ is a modification φ −→ ψ.

3. A generalised coalgebra for a functor with structure T : T −→ K (a T-

coalgebra) is an arrow φ : 1 −→ T in JT ,K K. The notion of a morphism

dualises accordingly.

We leave for the reader to check that the definition of a modification indeed yields

the correct notions of morphisms for Examples 4.4.1, 4.4.2 and 4.4.3. The following

example shows that some interesting notions combing algebras and distributive laws in

the usual sense arise as generalised algebras in the above sense.

Example 4.4.6. 1. For a distributive law of monads, G| κ

F

F

|G, a distributive

algebra [Bec69] is a pair of algebras φ : FX −→ X , ψ : GX −→ X , such that

FGX
Fψ // FX

φ //X = FGX
κX // GFX

Gφ // GX
ψ //X

(4.13)

Is is easy to check that this is precisely a morphism 1 −→ κ in [M ⊗ M,Cat].

Equivalently, it is a morphism 1 −→ κ↓ in [M, [M,Cat]], a κ↓-algebra.
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2. Dually, a distributive coalgebra for a distributive law of comonads κ is given by

a pair of coalgebras satisfying the dual of (4.13). By duality we obtain directly

from the above example that it is a morphism 1 −→ κ in JMco ⊗ Mco,CatK and

therefore a κ→-coalgebra 1 −→ κ→ in JMco, JMco,CatKK.

A fundamental property of algebras is the existence of initial algebras, which is a

question studied well for 2 and M. Dually, one is interested in terminal coalgebras of

various endofunctors and comonads. In the remaining text, the following notation for

initial algebras and terminal coalgebras is used, whenever the respective objects exist.

Notation 4.4.7. Let T be a functor with structure with theory T .

1. the (generalised) initial T-algebra, i.e. the initial object in the category of gener-

alised T-algebras, is denoted µT

2. the unique morphism out of the initial algebra is denoted (|ϕ |) for a T-algebra

ϕ.

3. the (generalised) terminal T-coalgebra is denoted νT

4. the unique morphism into the terminal coalgebra is denoted [(ψ )] for a T-coalgebra

ψ.

Remark 4.4.8. In the algebra of functional programming [BdM96], a rule called fu-

sion discussed in more detail in (6.15) is based solely on the initiality (terminality)

properties. Hence, it generalises to generalised algebras (coalgebras).

4.4.2 Bialgebras

For the reasons explained in remark 4.3.4, neither is a distributive κ-algebra a κ-

algebra (only a κ→-algebra) nor is a distributive κ-coalgebra a κ-coalgebra (only a

κ↓-coalgebra). However, just as there are three non-equivalent ways to form a functor

category from two theories, there is a third nonequivalent notion similar to generalised

algebras and coalgebras of a distributive law of T over U . This has been called a

bialgebra when T ≡ M and U ≡ Mco.

Definition 4.4.9 (Generalised bialgebra). Let U| κ

T

T

|U be a generalised distribu-

tive law in K . A generalised κ-bialgebra is an arrow 1 −→ κ↓ in JU , [T ,K ]K – a

generalised κ↓-coalgebra – and equivalently and arrow 1 −→ κ→ in [T , JU ,K K] –

a generalised κ→-algebra.

Example 4.4.10. The following is obtained straightforwardly from the general defini-

tion.
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1. For a distributive law (O,G)| κ

(O,F)

(O,F)

|(O,G), so that F and G are endofunctors,

a κ-bialgebra is an F-algebra φ and a G-coalgebra ψ such that the following

pentagram commutes:

FX

X

φ

��
X GX

ψ
//

FX FGX
Fψ //

GFX

GX

Gφ��

FGX

GFX

κX

��?
??

?

(4.14)

2. For T ≡ M and U ≡ Mco with underlying functors F and G, respectively,

κ-bialgebra is the same as above but where everything is understood with the

additional structure. So e.g. Gφ · κX is an F-algebra coherent with M, κX ·Fψ

is a G-coalgebra, etc.

Remark 4.4.11. Although the mentioned general formulation of (co)algebras parame-

terised in a theory T allowed us to conceptually unify some notions related to (co)algebras

of endofunctors and (co)monads and distributive laws, the question remains if there ex-

ists any other interesting theory for which the notion of an algebra makes sense.
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4.5 Examples

Remark 4.5.1. Some of the following examples are presented up to isomorphisms on

objects, so we write, e.g. C 2×D2 f2

//C 2 for f : C ×D −→ C . However, note that

we don’t identify objects up to isomorphisms, we just don’t write the isomorphisms in

the diagrams.

Example 4.5.2 (Simple distributive laws). A toy example interesting for its simplicity

is that of natural transformations of functors with no additional structure. A simple

distributive law is a distributive law of 2 over 2. By the Characterisation Theorem

4.1.3, a simple distributive law in K is a 2-cell κ : fg =⇒ g′f ′ in K .

Example 4.5.3 (Distributive laws involving monads and comonads). Distributive laws

of monads over monads have already been discussed in detail in Ex. 4.1.5. Formally,

they are functors M ⊗ M −→ Cat. The other known notions of distributive laws

involving monads and comonads are:

M ⊗ Mco −→ Cat monads over comonads

Mco ⊗ M −→ Cat comonads over monads

Mco ⊗ Mco −→ Cat comonads over comonads

Example 4.5.4 (Eilenberg-Moor lifting and Kleisli extension of functors). For a func-

tor F : C −→ D , and monads H, K, the functor F̃ : C H −→ DK is called

an Eilenberg-Moore lifting of F if the following square commutes, where C T is the

Eilenberg-Moore category of algebras of a monad T on C :

C D
F

//

C H

C

UH

��

C H DKF̃ // DK

D

UK

��
(4.15)

Eilenberg-Moore liftings (4.15) are in 1-1 correspondence with distributive laws of

monads over a functor [MM07] typed

λ : (2,F)| λ

(M,H)

(M,K)

|(2,F)

These are formally functors λ : M ⊗ 2 −→ Cat. Note that because F is not an

endofunctor, there are two monads involved in this distributive law. In other words,

Eilenberg-Moore liftings are reverse morphisms of monads H −→ K.
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Similarly, so-called Kleisli extension of F is a functor F̆ : CH −→ CK such that

the following commutes:

C D
F

//

CH

C

OO
iH

CH DK
F̆ // DK

D

OO
iK , (4.16)

where CH, CK are the Kleisli categories of monads H, K, and i are inclusions. Kleisli

extensions (4.16) are in 1-1 correspondence with distributive laws of a functor over

monads

(M,H)| λ

(2,F)

(2,F)

|(M,K) ,

formally, functors λ : 2 ⊗ M −→ Cat. These are forward morphisms of monads

H −→ K.

Example 4.5.5 (Lax Monoidal Functors). A lax monoidal functor was defined in

Ex. 3.5.3 as a morphism in [Mon,K ]. Equivalently, it is a distributive law µ : Mon ⊗

2 −→ Cat

Example 4.5.6 (Strength). Strong functors with different additional structures play an

essential role in the mathematics of functional programming. A strong monad [Koc72]

(T : C −→ C , µ, η) is a monad equipped with a natural transformation σX,Y : TX ×

Y −→ T(X×Y ) coherent with the multiplication and unit of the monad, associativity

α and right unit, π1, of the product. For the latter two we have in C the following

diagrams of natural transformations:

FX × 1 F(X × 1)
σX,1 //FX × 1

FX

π1

��

F(X × 1)

FX

Fπ1

{{xx
xx

xx
xx

xx
xx

F(X × (Y × Z)) F((X × Y ) × Z)
FαX,Y,Z

//

FX × (Y × Z)

F(X × (Y × Z))

σX,Y ×Z

��

FX × (Y × Z) (FX × Y ) × Z
αFX,Y,Z// (FX × Y ) × Z

F((X × Y ) × Z)

(FX × Y ) × Z

F(X × Y ) × Z

σX,Y ×Z��
F(X × Y ) × Z

F((X × Y ) × Z)

σX×Y,Z��

(4.17)

Moggi in [Mog91] demonstrated the relevance of strong monads to the semantics of

computation. In particular, strength allows one to perform the computation of functors

at the level of arrows, as is common in functional languages.

But examples of strong functors with structure other than monads exist. For in-

stance, in [MP08] the authors introduce so-called applicative functors, also known as

idioms, which are, according to one of the equivalent definitions, lax monoidal functors

with strength. Applicative functors are not monads in general. See Ex. 4.5.8 bellow.

Here we illustrate how the various notions of strong functors with structure all arise
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as distributive laws of a right action over a functor with structure. For foundations of

strength the reader is refered to the analysis by Cockett and Spencer in [CS91].

Let C and D be cartesian categories 3. A right action of D on C is a functor

⊘ : C × D −→ C such that there are natural isomorphisms:

αX,Y1,Y2
: X ⊘ (Y1 ⊙ Y2) −→ (X ⊘ Y1) ⊘ Y2

ρX : X ⊘ 1 −→ X

υY,X : X ⊘ Y −→ X ⊕ (1 ⊘ Y ) ,

where ⊕ is the product in C and ⊙ is the product in D . These isomorphisms must be

coherent with the monoidal structure of C and D , details of which are irrelevant at this

point. A category, C , with a right action by D is called D-strong in [CS91]. All of this

can be specified in a finite product sketch, where from the first two lines above we get

the following two diagrams:

c × d c
⊘

//

c × d × d

c × d

c×⊙

��

c × d × d c × d
⊘×d // c × d

c

⊘

��

alpha
;C

�����
�����

c × d c
⊘

//

c × 1

c × d

c×e

��

c × 1

c

π1

��?
??

??
??

??
??

rho ;C
����

(4.18)

The theory of this sketch was called RAct in Example 3.5.5, where c and d were

considered to be just monoidal. However, to obtain the correct notion of strength,

which is given by a morphism of D-strong categories for a fixed D it is not enough to

consider an arbitrary morphism between two arbitrary models F, G : RAct −→ Cat.

Not even when both F and G send d to the same D in Cat. The fact that D is constant

throughout the morphism must be made explicit in the construction.

To this end, we must consider a subcategory of those product preserving models

of RAct and their morphisms where the image of d together with the whole monoidal

structure on it is fixed to a given monoidal category D : Mon −→ Cat such that

D(d) = D . This subcategory is formally given by the following 2-equaliser in 2Cat:

[RAct,Cat]D [RAct,Cat]
i // [RAct,Cat] [Mon,Cat]

[d,Cat] //
[RAct,Cat] [Mon,Cat]

D
// ,

where [RAct,Cat] is considered to be the subcategory of product preserving 2-functors

and d is the inclusion Mon −→ RAct picking the sub-2-sketch for the monoidal struc-

ture of d within RAct. This construction clearly generalises to an arbitrary K and an

object D in it in place of Cat and D .

3Certainly any monoidal structure would do for the analysis below but the monoidal structure of a product

gives what is called a strong functor in [CS91].
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A morphism in [RAct,Cat]D, i.e. an object of [2, [RAct,Cat]D] – a distributive

law – is expanded below going from top to bottom. Note that it is a particular object in

[2, [RAct,Cat]] by the inclusion [2, i]. The strong functor being defined is here called

F.

C ′ × D C ′
⊖

//

C × D

C ′ × D

F×D

��

C × D C⊘ // C

C ′

F

��

C ′ × D2

C × D2

C ′ × D2

F×D
2

��

C × D2 C × D
⊘×D // C × D

C

C × D

��

⊘
???????

C × D

C × D2

��
C×⊙??

??

C ′ × D

C ′ × D2

��C
′×⊙

??????

C ′

F×⊙ ;C
����

α ;C
����

σ ;C
����

=

C ′ × D C ′
⊖

//C ′ × D

CC

C ′

F

��

C ′ × D2 C ′ × D⊖×D //

C × D2

C ′ × D2

F×D
2

��

C × D2 C × D
⊘×D // C × D

C ′ × D

F×D

��

C

C × D

��

⊘
???????

C × D2

C ′ × D

C ′ × D2

��C
′×⊙

??????

C ′

C ′ × D

��
⊖??

??

σ×D ;C
����

α′ ;C
����

σ ;C
����

(4.19)

C × D C ′ × D
F×D //

C × 1

C × D

C×e

��

C × 1 C ′ × 1
F×1 // C ′ × 1

C ′ × D

C×e′

��
C × D

C

⊘
��

��
�

����
��

�

C ′ × D

C ′

⊖

??
??

?

��?
??

??

C × 1

C

π1

��

C ′ × 1

C ′

π1

��
C C ′F //

σ

{� ��
�

��
�

ρ[c ????
ρ′ ;C

����

(4.20)

Now, (4.19) and (4.20) are just diagrams for point free versions of (4.17) for C ′ =

D = C and all products equivalent to the binary product, ×, in C .

To obtain a strong monad rather than just a strong endofunctor it suffices to consider

monads in [RAct,Cat]D, formally λ : M −→ [RAct,Cat]D, i.e. particular distributive

laws of RAct over M. The underlying arrow of λ is a single arrow ⊘ : C × D −→ C ,

which is a morphism, σ, of the monad on C .

Remark 4.5.7. In the above example, instead of considering a category of all (product-

preserving) models of RAct and then forming its subcategory, we could have defined

explicitly the notion of a model and its morphism which fixes the image of a certain

sub-theory to a chosen sub-model. This would make explicit what could be called a

“2-sketch with constants”.

On a general level, this example demonstrates the importance of the notion of addi-

tional structure of the theories, which we ignored in our preliminary definition of func-

tor with structure (Def. 3.2.1) but which is of utmost importance. In fact, the whole

theory we are presenting in this thesis is a germ of a theory of coherence conditions of

such different additional structures.

Note that because of such issues, which we leave for the future work, whenever we
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say “x is a distributive law of y over z” we mean “some” rather than “any”. In other

words, most often not all objects and arrows in a particular functor category have the

desired properties, but some of them do.

Example 4.5.8 (Applicative functors). In [MP08], McBride and Paterson define the

notion of applicative functors (a.k.a. idioms) as a notion weaker than monads, which

is common in functional programming and useful for organisation of side-effects. In

[GdSO09] the authors use applicative functors to formalise so-called iterator pattern

in object-oriented programming.

Formally, applicative functors are lax monoidal endofunctors with strength, where

the monoidal action, µX,Y : F(X)×F(Y ) =⇒ F(X×Y ) is coherent with the strength

σX,Y : FX × Y =⇒ F(X × Y ) by the means of the following coherence equation:

F(X1 ×X2) × Y1 × Y2 F(X1 × Y1) × F(X2 × Y2)

F(X1) × F(X2) × Y1 × Y2

F(X1 ×X2) × Y1 × Y2

µ×Y1×Y2

��

F(X1) × F(X2) × Y1 × Y2 F(X1) × Y1 × F(X2) × Y2)
∼= // F(X1) × Y1 × F(X2) × Y2)

F(X1 × Y1) × F(X2 × Y2)

σ×σ

��

F(X1 ×X2 × Y1 × Y2) F(X1 × Y1 ×X2 × Y2)∼=
//

F(X1 ×X2) × Y1 × Y2

F(X1 ×X2 × Y1 × Y2)

σ

��

F(X1 ×X2) × Y1 × Y2 F(X1 × Y1) × F(X2 × Y2)F(X1 × Y1) × F(X2 × Y2)

F(X1 × Y1 ×X2 × Y2)

µ

��

(4.21)

To see how this is a distributive law just notice that (4.21) is the coherence condition in

Fig. 4.5. It follows that applicative functors are 3-dimensional distributive laws.

In detail and full generality, let C , D be monoidal categories with monoidal actions

⊕, ⊙. Let ⊘ : C × D −→ C be a right action such that it distributes over ⊕ and ⊙:

(X1 ⊕X2) ⊘ (Y1 ⊙ Y2) = (X1 ⊘ Y1) ⊕ (X2 ⊘ Y2) (4.22)

Further, let F : C −→ C be a monoidal functor with monoidal action µX1,X2
:

F(X1) ⊕ F(X2) −→ F(X1 ⊕X2), i.e. we have a λ1 : O −→ [Mon,K ], and at the

same time a strong functor with strength σX,Y : (F(X) ⊘ Y ) −→ F(X ⊘ Y ), i.e.

a λ2 : O −→ [RAct,K ]. For C = D and ⊙ = ⊕ = ⊘ = ⊙, (4.22) is trivially

satisfied and this is a λ3 : Mon −→ [RAct,K ]. In such a case (4.21) is an instance of
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the following diagram:

C 2 C 2
F2 //

C 2 × D2

C 2

⊘×⊘

��

C 2 × D2 C 2 × D2F2×C
2

// C 2 × D2

C 2

⊘×⊘

��

C C
F

//

C 2

C

⊙

��

C 2 C 2
F2 // C 2

C

⊙

��

C 2 × D2

C × D

⊕×⊙

��.
..

..
..

..
..

..
.

C × D

C
⊘zzvvv
vv

s{
µ oooo oooo

s{
σ×σoooo oooo

= C × D C × DF×D //

C 2 × D2

C × D

⊕×⊙

��

C 2 × D2 C 2 × D2F2×C
2

// C 2 × D2

C × D

⊕×⊙

��

C C
F

//

C × D

C

⊘

��

C × D C × DF×D // C × D

C

⊘

��

C 2 × D2

C 2

⊘×⊘

zzvvv
vv

C 2

C

⊙

��.
..

..
..

..
..

..
.

s{
σ oooo oooo

s{
µ×⊙oooo oooo

,

(4.23)

which is easily seen to be a Yang-Baxter equation and therefore, by Theorem 4.3.7, λ1,

λ2 and λ3 define a 3-dimensional distributive law

H : O ⊗ Mon ⊗ RAct −→ K ,

or equivalently, because (4.22) is an identity, an

H′ : O ⊗ RAct ⊗ Mon −→ K ,H ∼= H′ .

In the further text, we define

Af =def O ⊗ RAct ⊗ Mon
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Chapter 5

Constructions on Distributive

Laws

In this chapter we study constructions on generalised distributive laws, namely their

products, coproducts and composition. These are operations frequently considered for

the various notions of distributive laws. From the computational perspective, if one

equates distributive laws with programs, constructions on distributive laws become

constructions on programs. The requirement that the constructions are closed under

the additional structure becomes closure w.r.t. specification, in this analogy.

The general approach to the constructions rests on Theorem 4.1.3, which states that

a distributive law T ⊗ U −→ K is equivalently a T -functor and a U -functor. Thus

one can reduce constructions on distributive laws to constructions on functors with

structure. This is indeed what has been done in the specific cases elsewhere [MM07,

MP08, GdSO09]. The necessary ingredients for this strategy to succeed are (1.) a

generalisation of the intended construction on T - and U -functors to an arbitrary 2-

category (2.) establishing that the base category, JU ,K K or [T ,K ], has the required

structure to support this construction.

For example, a so-called cartesian-product monad on the same category always

exists if the category has products. Distributive laws λ, κ : U ⊗ M −→ K of U -

functor over a monad are monads, λ↓, κ↓ : M −→ [U ,K ], in the functor category

[U ,K ]. It is easy to generalise the construction of the cartesian-product monad. If the

common underlying object of λ↓ and κ↓ has products in [U ,K ] then one can construct

the product as the pointwise product of λ and κ as the cartesian-product monad of λ↓

and κ↓.

A similar argument leads to coproducts and composition of distributive laws, which

we also consider and we illustrate by examples that the notions arising in this way are

the usual notions considered previously for specific examples of distributive laws.
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Moreover, we illustrate how one can make use of the internal iterative nature of

certain theories of functors with structure. For instance, applicative functors are them-

selves 3-dimensional distributive laws 2 ⊗ Mon ⊗ RAct −→ K (Ex. 4.5.8). This fact

can be used for combining applicative functors, e.g. to define their composition. The

key result that makes this work is Theorem 4.3.7, which allows one to rearrange the

theories in a suitable way.

This chapter illustrates that the iterative nature of distributive laws is a useful tool

for reasoning with distributive laws. Its purpose is not to present new results about

distributive laws but to describe in a fundamental way these and similar constructions,

which could lead to a generalisation of existing or discovery of new constructions on

distributive laws.

5.1 Products

In this section a general approach to the construction of products of distributive laws

is developed. We construct products of distributive laws as products of functors with

structure, providing the functor category has enough structure. In this instance we

investigate the situation when the required structure is just that of products on objects

in the base 2-category. This is a 2-categorical generalisation of the usual requirement

for the underlying category of functors with structure to have all products.

5.1.1 Pointwise products of functors with structure

A pair of ordinary functors f, g : C −→ D has a product f ‖ g : C −→ D providing

that D has products, ×. In that case, f ‖ g is defined by the assignment on objects and

arrows:

(f ‖ g)(x) =def f(x) × g(x) (5.1)

In order to generalise (5.1) from Cat to an arbitrary 2-category, K , we must rewrite

it in a point-free fashion as

C
f△g // D2 (×) // D ; (5.2)

this is well defined in Cat because Cat itself has products, and D has products, which

are given by the adjunction ∆ ⊣ (×).

Notation 5.1.1. Because we are dealing with products on two levels, we adhere to the

nonstandard notation that, with respect to a known base 2-category with products, K ,

× is used for the products in K , i.e. f × g : X × X ′ −→ Y × Y ′, whereas f ‖ g

stands for (5.2) when it makes sense.
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For any other bracketed and circular operators denoting arrows in K of typeX2 −→

X , we interpret them as operators as follows: for an arrow, 2 : X2 −→ X and arrows

of K , f, g : Z −→ X , the notation f2g means formally the arrow:

Z
f△g //X2 2 //X .

For any pair of 2-functors F,G : T −→ K into a 2-category, K , with products,

×, there always exists the functor F ‖ G : T −→ K . It clearly holds that for any

2-cell α in T , (F ‖ G)(α) = F(α) × G(α).

The assignment F,G 7→ F ‖ G extends to a 2-functor on either of K T , [T ,K ]

and JT ,K K, defines a product in the respective 2-categories. We record this fact as

the following theorem, its proof is straightforward from the definitions.

Theorem 5.1.2. For a 2-category K , the categories [T ,K ] and JT ,K K have prod-

ucts for all T if and only if K has products.

These products are called pointwise products.

Example 5.1.3 (Pointwise product monad). For example, for a pair of monads T ≡

(t : C −→ C , µ, η), U ≡ (u : D −→ D , ν, ζ), this defines the monad T ‖ U ≡

(t× u : C × D −→ C × D , µ× ν, η × ζ) for the corresponding formal monads, T,

U, with underlying arrows t, u, respectively.

5.1.2 Products on objects in functor categories

Consider a theory T , a base 2-category K with products, and the diagram (5.2) in

[T ,K ]. By Theorem 5.1.2, [T ,K ] has products so the diagram

X
f△g // Y 2 (×) // Y (5.3)

makes sense in it providing there is an arrow (×) : Y 2 −→ Y which is a formal right

adjoint to the arrow ∆Y ≡ 1Y △ 1Y , i.e. a product on Y in [T ,K ]. This shows

that if there is a product on Y in [T ,K ], there is a product for any pair of arrows

f, g : X −→ Y in [T ,K ], i.e. distributive laws T ⊗ 2 −→ K .

Similar considerations apply for products of functors with structure other then ar-

rows. For instance, the cartesian-product monad is defined from the products in C and

it holds for the underlying arrow that (T × U)(a) = T(a) ‖ U(a).

In both cases, the key notion is that of a product on an object of a 2-category,

where the 2-category is a functor category. The rest of this section investigates the

construction of such products on objects for arbitrary T and K and it is shown that

products on objects of K always lift to products on objects of [T ,K ].

We later observe that the situation is not symmetrical for [T ,K ] and JT ,K K.

We can employ the dualities, though. This is discussed in Sect. 5.2 below.
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Remark 5.1.4. Note that formally a product on an object X in K is a product preserv-

ing model, F : Prod −→ K , of the theory, called Prod, of the following sketch

o o
1

//

o2

o

t

��

o2 o21 // o2

o

t

��
o

o2

d�����

??�����
eps
KS

eta
KS =

o o
1

//

o2

o

t

��

o2 o21 // o2

o

t

��
o2 o2

1
//

o

o2

d

��

o o
1 // o

o2

d

��
o2

o

t�����

??������� eta

�� eps

=

o2 o2
1

//

o

o2

d

��

o o
1 // o

o2

d

��

(5.4)

in K such that F(o) = X , where d ≡ 1 △ 1.

We start by looking at some simple examples.

Arrows, 2

In the following lemma, products on objects of [2,K ], equivalently arrows f : X −→

Y of K , are constructed.

Lemma 5.1.5. In a 2-category K , let X and Y be objects with products given by

adjunctions (∆X , (×)X , η, ǫ) and (∆Y , (×)Y , η
′, ǫ′), respectively. Then in the category

[2,K ] there is a product on any f : X −→ Y .

Proof. First, define an arrow (×)f : f2 −→ f in K as follows:

X Y

X2

X

(×)X

��

X2 Y 2Y 2

Y

(×)Y

��

X2 Y 2f2

//X2 X21 //

X Y
f

// Y Y
1

//X

X2

∆X
����

??����

Y

Y 2

∆Y
����

??����
ǫ ;C
����

η′ ;C
����

(5.5)

In order to show that this is a right adjoint to the arrow:

X2 Y 2

f2
//

X

X2

∆X

��

X Y
f // Y

Y 2

∆Y

��
, (5.6)

which is denoted ∆f : f −→ f2, one needs 2-cells

ηf : 1f −→ (×)f∆f ǫf : ∆f (×)f −→ 1f2 (5.7)

in [2,K ]. These are modifications with components ηX : 1X −→ (×)X∆X and

ηY : 1Y −→ (×)Y ∆Y , and ǫX : ∆X(×)X −→ 1X and ǫY : ∆Y (×)Y −→ 1Y . The
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obvious choice is

ηX := η ηY := η′ ǫX := ǫ ǫY := ǫ′ (5.8)

These must, by definition of modification, satisfy coherence conditions rendered in K

as follows:

X2 Y 2

X

X2

∆X

��

X Y
f // Y

Y 2

∆Y

��

X Y

X2

X

(×)X

��

X2 Y 2Y 2

Y

(×)Y

��

X2 Y 2f2

//X2 X21 //

X Y
f

// Y Y
1

//X

X2

∆X
����

??����

Y

Y 2

∆Y
����

??����
ǫ ;C
����

η′ ;C
����

X

X

1

��

η +3 =

X Y
f

//

X

X

1X

��

X Y
f // Y

Y

1Y

��

Y

Y 2

∆Y

��/
//

//
//

Y 2

Y

(×)Y

����
��
��
��

η′ +3

X2 Y 2

f2
//

X2

X2

1X2

��

X2 Y 2f2

// Y 2

Y 2

1Y 2

��

X2

X

(×)X

����
��
��
��

X

X2

∆X

��/
//

//
//
ǫ +3 = X Y

X2

X

(×)X

��

X2 Y 2Y 2

Y

(×)Y

��

X2 Y 2f2

//X2 X21 //

X Y
f

// Y Y
1

//X

X2

∆X
����

??����

Y

Y 2

∆Y
����

??����
ǫ ;C
����

η′ ;C
����

X2 Y 2

f2
//

X

X2

∆X

��

X YY

Y 2

∆Y

��

Y 2

Y 2

1Y

��

ǫ′ +3

To see that the equalities hold, note that the 2-cells η and ǫ in the top left corner cancel

each other out and the rest are identities; similarly for η′ and ǫ′ in the bottom right

corner in the bottom row. This establishes that the components (5.8) indeed define

modifications (5.7), i.e. 2-cells in [2,K ]. Note that because 2 has no nontrivial 2-cells,

there are no other coherence conditions on the components of the modifications. It

remains to establish that these 2-cells satisfy the triangle identities of an adjunction.

They are inherited from the triangle identities of the components (5.8) because the

components of

f f
1

//

f2

f

??
∆f

��
��

��
�
f2

f

(×)f

??

��??

f2

f

(×)f

??

��??

f2 f21 // f2

f

??

∆f��
��

��
�

ηf
KS ǫf

KS
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are just

f f
1

//

f2

f

??
∆X

��
��

��
�
f2

f

(×)X

??

��??

f2

f

(×)X

??

��??

f2 f21 // f2

f

??

∆X��
��

��
�

ηX
KS ǫX

KS
and

f f
1

//

f2

f

??
∆Y

��
��

��
�
f2

f

(×)Y

??

��??

f2

f

(×)Y

??

��??

f2 f21 // f2

f

??

∆Y��
��

��
�

ηY
KS ǫY

KS

Example 5.1.6. Apply Lemma 5.1.5 for K := Cat, X := C and Y := D , categories

with products. For a functor H : C −→ D , the arrow (×)H is the natural transfor-

mation (Hπ1 △ Hπ2)X,Y : H(X × Y ) −→ (HX) × (HY ); ∆H is just the natural

transformation with components ∆HX : HX −→ HX × HX .

Monads, M

The definition of (×)f in (5.5) is valid even in the case when f is not just an arrow, but a

monad in K . In other words, (×)f : f2 −→ f is coherent with the structure of monad

on f .

Lemma 5.1.7. In a 2-category K , let X and Y be objects with products given by

adjunctions (∆X , (×)X , η, ǫ) and (∆Y , (×)Y , η
′, ǫ′), respectively. Then in the category

[M,K ] there is a product on any formal monad with underlying arrow f : X −→ Y .

The following fact is useful in the proof.

Lemma 5.1.8.

X X2∆X // X2 Y 2

f2

''
X2 Y 2

g2

88α2
KS

= X Y

f

&&
X Y

g

88α
KS

Y Y 2∆Y // (5.9)

Proof. This is an elementary property of products.

Proof of Lemma 5.1.7. Let (f : X −→ X,µ, ξ) be a monad in K ; formally, an object

in [M,K ]. We keep the definitions (5.5) and (5.6) of (×)f : f2 −→ f and ∆f : f −→

f2. In addition it must proven that they constitute morphisms of monads, i.e. that they

are coherent with µ and ξ. To show the coherence with µ is to establish the following
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equality (where f2 ≡ f × f , not f ◦ f ):

X X

X2

X

(×)X

��

X2 X2X2

X

(×)X

��

X2 X2f2

//X2 X21 //

X Xf // X X
1

//X

X2

∆X
����

??����

X

X2

∆X
����

??����
ǫ ;C
����

η ;C
����

X

X
f ��?

??
?X Xf // X

X

??

f��
��µ

KS

(5.10)

=

X X

X2

X

(×)X

��

X2 X2X2

X

(×)X

��

X2 X2
f2 //X2 X21 //

X Xf // X X
1

//X

X2

∆X
����

??����

X

X2

∆X
����

??����
ǫ ;C
����

η ;C
����
X X

X2

X

(×)X

��

X2 X2X2

X

(×)X

��

X2 X2
f2 //X2 X21 //

X Xf // X X
1

//X

X2

∆X
����

??����

X

X2

∆X
����

??����
ǫ ;C
����

η ;C
����

X2 X2

f2

$$µ2
KS

(5.11)

But the middle stripe ǫ∆X · ∆Xη in (5.11) is equal to identity, by the triangle identity

of the adjunction. The result is just (5.9), flanked on both sides by the same diagrams.

Establishing coherence with ξ is straightforward; namely

X X

X2

X

(×)X

��

X2 X2X2

X

(×)X

��

X2 X2f2

//X2 X21 //

X Xf // X X
1

//X

X2

∆X
����

??����

X

X2

∆X
����

??����
ǫ ;C
����

η ;C
����

X X

1

CC
ξ
KS

=

X X

X2

X

(×)X

��

X2 X2X2

X

(×)X

��

X2 X2

f2
//X2 X21 //

X X
f

// X X
1

//X

X2

∆X
����

??����

X

X2

∆X
����

??����
ǫ ;C
����

η ;C
����

X2 X2

1

��
KS
ξ2

,

follows again from (5.9).

Generalisation

Note that in the proof of Lemma 5.1.7, nothing specific about monads is used. Ev-

erything follows from the triangle identities of the adjunctions defining products on

objects. And indeed, as the following theorem shows, such a construction, namely

the assignment of the square (5.5) to any arrow f lifts products on objects of K to

products on objects in [T ,K ].

Theorem 5.1.9 (Product Lifting). Let K be a category with chosen products, ×, let

T be a category, T : T −→ K a functor. Moreover, let there be for any X ∈ T a
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functor PX : Prod −→ K such that

PX(o) = T(X) . (5.12)

Moreover, each PX must preserve the chosen product. Then there exists a product

preserving functor

T̃ : Prod −→ [T ,K ]

such that T̃(o) = T, i.e. T̃ is a product on T in [T ,K ].

Proof. In the following proof, the notation (×)X , ∆X , ηX , ǫX is used instead of PX(t),

PX(d), PX(eta), PX(eps). Moreover, the index,X , is often omitted when it is clear

from the context.

We define a quasi-functor H : T ⊗ Prod  K , with the required properties,

the rest follows by Theorem 2.4.4. To this end, by Def. 2.4.3, one must define the

following:

1. for each X ∈ T a 2-functor H(X,−) : Prod −→ K . Put H(X,−) =def PX .

2. (a) for the object o ∈ Prod, a 2-functor H(−,o) : T −→ K . Put H(−,o) =def

T.

(b) for the object o2 ∈ Prod, a 2-functor H(−,o2) : T −→ K . Put

H(−,o) =def T ‖ T.

3. the equation H(X,−)(o) = H(−,o)(X) follows from definitions and (5.12).

The equation H(X,−)(o2) = H(−,o2)(X) is established as follows:

H(X,−)(o2) = PX(o2) definition

= PX(o)2 preservation of products

= T(X)2 (5.12)

= (T ‖ T)(X) definition

= H(−,o2)(X) definition

4. For f : X −→ X ′ in T and t : o2 −→ o in Prod, we define 2-cells: H(f, t)

essentially as in (5.5) (up to an appropriate renaming); define the 2-cell H(f,d)

essentially as in (5.6). H(f, 1) is just the identity. All other arrows, g, in Prod are

generated freely from t and d, we extend the definition of H(f, g) accordingly,

i.e. we set H(f, kl) =def H(f, k) ⊟ H(f, l).

5. Next, it must be shown that for the above definitions (2.40), or equivalently (2.39)

and (2.38) commute, for all 2-cells in T and Prod. The commutativity for 2-

cells in Prod, eta, eps, is shown in 5.1.5. This establishes (2.39). Now consider
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a 2-cell α : f =⇒ f ′ : X −→ Y in T , to establish (2.38) for g ≡ t is to show

X Y

X2

X

(×)X

��

X2 Y 2Y 2

Y

(×)Y

��

X2 Y 2

T(f)2

''
X2 X21 //

X Y

T(f)

&&
X Y

T(f ′)

88T(α)�� Y Y
1

//X

X2

∆X
����

??����

Y

Y 2

∆Y
����

??����
ǫX ;C

����

ηY ;C
����

=

X Y

X2

X

(×)X

��

X2 Y 2Y 2

Y

(×)Y

��

X2 Y 2

T(f)2

''
X2 Y 2

T(f)2

88T(α)2 ��X2 X21 //

X Y

T(f ′)

88 Y Y
1

//X

X2

∆X
����

??����

Y

Y 2

∆Y
����

??����
ǫX ;C

����

ηY ;C
����

(5.13)

This is just Lemma 5.1.8. The equation (2.38) for g ≡ t is literally Lemma 5.1.8.

The rest follows freely.

6. That H respects identities, i.e. H(1X , t) = 1(×)X
is a triangle identity of the

adjunction ∆X ⊣ (×)X ; H(1X ,d) = 1∆X
is trivial:

X2 X2
1X

//

X

X2

∆X

��

X X
1X // X

X2

∆X

��

=

X

X2

∆X

��

7. That H respects horizontal composition is to show:

X Y

X2

X

(×)X

��

X2 Y 2Y 2

Y

(×)Y

��

X2 Y 2
f2 //X2 X21 //

X Yf // Y Y
1

//X

X2

∆X
����

??����

Y

Y 2

∆Y
����

??����
ǫX ;C

����

ηY ;C
����
Y Z

Y 2

Y

(×)Y

��

Y 2 Z2Z2

Z

(×)Z

��

Y 2 Z2
g2 //Y 2 Y 21 //

Y Zg // Z Z
1

//Y

Y 2

∆Y
����

??����

Z

Z2

∆Z
����

??����
ǫY ;C

����

ηZ ;C
����

=

X Z

X2

X

(×)X

��

X2 Z2Z2

Z

(×)Z

��

X2 Z2
(gf)2 //X2 X21 //

X Zgf //X X
1

//X

X2

∆X
����

??����

Z

Z2

∆Z
����

??����
ǫX ;C

����

ηZ ;C
����

,

which follows by ∆Y ⊣ (×)Y .

8. That H respects vertical composition is by definition, as it is defined freely on

the components t, d.
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This is an important theorem giving a way of lifting products on objects of K to

products on objects of [T ,K ], and consequently to products of distributive laws. Note

that often K is just Cat, and all objects in the range of a functor with structure, T, are

the same category with products, say Set. It is therefore automatic that all objects in

the image of T have products on them.

Note that T̃ is product preserving if T is, providing that the products on objects in

K are defined pointwise as follows:

Observation 5.1.10. Products ∆X ⊣ (×)X and ∆Y ⊣ (×)Y on X , Y in K with prod-

ucts give rise to a product ∆X×Y ⊣ (×)X×Y on X × Y defined as

(×)X×Y =def (X × Y )2
α //X2 × Y 2 (×)X×(×)Y //X × Y

∆X×Y =def X × Y
∆X×∆Y //X2 × Y 2 α−1

// (X × Y )2 ,

where α is the obvious isomorphism. The unit and counit are just ηX×Y =def ηX×ηY ,

ǫX×Y =def ǫX × ǫY .

In the following text we take the liberty in the diagrams of identifying objects up to

isomorphism.

As an example, of the application of Theorem 5.1.9, we expand a part of the defi-

nition of a product on a right action.

Example 5.1.11 (Right actions, RAct). Any S ∈ [RAct,K ] has by Theorem 5.1.9

products in [RAct,K ] defined as follows.

Let X, Y ∈ K be defined by Y × X ≡ S(s). By definition of RAct, X and Y

necessarily have products in K , which are given by adjunctions (∆X , (×)X , η
X , ǫX)

and (∆Y , (×)Y , η
Y , ǫY ). The product on S is defined as follows where the isomor-

phism (Y × X)2 ∼= Y 2 × X2 is not pictured. The following two squares define the

underlying arrows of (×)XS and ∆S, respectively.

Y ×X Y

(Y ×X)2

Y ×X

(×)Y ×X

��

(Y ×X)2 Y 2Y 2

Y

(×)Y

��

(Y ×X)2 Y 2⊘×⊘ //(Y ×X)2 (Y ×X)2
1 //

Y ×X Y
⊘

// Y Y
1

//Y ×X

(Y ×X)2

∆Y ×∆X
��������

??��������

Y

Y 2

∆Y
��������

??��������
ǫY ×ǫX

;C
����
����

ηY ;C
����
����

(5.14)
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(Y ×X)2 Y 2
⊘×⊘

//

Y ×X

(Y ×X)2

∆Y ×X

��

Y ×X Y
⊘ // Y

Y 2

∆Y

��

(5.15)

The modifications η and ǫ with components ηX , ηY , ǫX and ǫY are defined next. The

coherence conditions for these modifications follow from the triangle identities of the

adjunctions on X and Y as follows:

Y ×X Y

(Y ×X)2

Y ×X

(×)Y ×X

��

(Y ×X)2 Y 2Y 2

Y

(×)Y

��

(Y ×X)2 Y 2⊘×⊘ //(Y ×X)2 (Y ×X)2
1 //

Y ×X Y
⊘

// Y Y
1

//Y ×X

(Y ×X)2

∆Y ×X

�������

??�������

Y

Y 2

∆Y
��������

??��������
ǫY ×ǫX

;C
����
����

ηY ;C
����
����

(Y ×X)2 Y 2

Y ×X

(Y ×X)2

∆Y ×X

��

Y ×X Y
⊘ // Y

Y 2

∆Y

��

Y ×X

Y ×X

1

��

ηY ×ηX

+3
=

Y ×X Y
⊘

//

Y ×X

Y ×X

1

��

Y ×X Y
⊘ // Y

Y

1

��

Y

Y 2

∆Y

��,
,,

,,
,,

,,
,,

,,
,

Y 2

Y

(×)Y

		��
��
��
��
��
��
��

ηY

+3

(Y ×X)2 Y 2
⊘×⊘

//

(Y ×X)2

(Y ×X)2

1

��

(Y ×X)2 Y 2⊘×⊘ // Y 2

Y 2

1

��

(Y ×X)2

Y ×X

(×)Y ×X

		��
��
��
��
��
��
�

Y ×X

(Y ×X)2

∆Y ×X

��,
,,

,,
,,

,,
,,

,,

ǫY ×ǫX+3
= Y ×X Y

(Y ×X)2

Y ×X

(×)Y ×X

��

(Y ×X)2 Y 2Y 2

Y

(×)Y

��

(Y ×X)2 Y 2⊘×⊘ //(Y ×X)2 (Y ×X)2
1 //

Y ×X Y
⊘

// Y Y
1

//Y ×X

(Y ×X)2

∆Y ×X

�������

??�������

Y

Y 2

∆Y
��������

??��������
ǫY ×ǫX

;C
����
����

ηY ;C
����
����

(Y ×X)2 Y 2
⊘×⊘

//

Y ×X

(Y ×X)2

∆Y ×X

��

Y ×X YY

Y 2

∆Y

��

Y 2

Y 2

1

��

ǫY +3

So do the triangle identities. This defines only the morphisms on the underlying arrow,

⊘, what remains is the coherence with associativity, α, and right unit rid. All of this

follows by the lifting theorem.
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5.1.3 Products of Distributive Laws

Having defined a way of lifting products on objects in 2-categories [T ,K ], for all

T ’s, we can move on to products of distributive laws T ⊗ U −→ K for various

U ’s. In the following text, known constructions of products of chosen functors with

structure are detailed w.r.t. an arbitrary base 2-category K . This leads, together with

the results of the previous section, to notions of products of distributive laws.

Notation 5.1.12. A product of distributive laws λ, κ, is denoted λ⊠ κ.

Products of Functors

It was indicated in (5.2) how the pointwise construction of products f ‖ g of functors

f, g : C −→ D can be generalised to an arbitrary 2-category K . It wasn’t shown why

this defines a product in the subcategory of arrows from C to D . This is now proven

formally in a great detail. Namely, we show that a product on X defines a product

on arrows from Z to X , for any Z. Formally, K (Z,X) has products for all Z iff X

has products in K . The point of the following lengthy exposition is not so much in

proving the obvious but in providing a detailed translation of the abstract categorical

notion of products in a hom-category to the lowest-level building blocks, 2-cells, which

can already be directly interpreted as programs.

To this end, recall from Def. 2.2.18, that an object X ∈ K has products if there

exists a 2-categorical adjunction (∆X , (×)X , ǫ, η). We start by a general lemma, which

shows that the action of the covariant homfunctor K (Z,−) for any 2-category K and

object Z ∈ K preserves adjoints.

Lemma 5.1.13. In a 2-category K , let f : X ⇄ Y : g be an adjunction with unit η

and counit ǫ. Then for any Z ∈ K , K (Z, f) : K (Z,X) ⇄ K (Z, Y ) : K (Z, g) is

an adjunction of ordinary functors, with unit K (Z, η) and counit K (Z, ǫ).

Proof. Fix a Z. The action of K (Z, f) : K (Z,X) −→ K (Z, Y ) on arrows and

2-cells (i.e. the objects and arrows of the ordinary category K (Z,X)) is:

Z ⇓α

k //

l
//X 7→ Z ⇓α

k //

l
//X

f // Y

Similarly for K (Z, g) : K (Z, Y ) −→ K (Z,X):

Z ⇓α

k //

l
// Y 7→ Z ⇓α

k //

l
// Y

g //X

The components K (Z, η)k, K (Z, ǫ)k, of the ordinary natural transformations K (Z, η) :

K (Z,X) =⇒ K (Z, gf) and K (Z, ǫ) : K (Z, fg) =⇒ K (Z, Y ) are the following
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2-cells of K :

X

Y

f

��2
22

22
22

22
X X

1X // X

Y

EE

g

��
��
��
��
�

��
η

Z X
k //

Y Y
1Y

//

X

Y

EE

g

��
��
��
��
�
X

Y

f

��2
22

22
22

22

Z Y
k //

ǫ ��

Naturality of K (Z, η) and K (Z, ǫ) amounts to showing for any Z ⇓α

k //

l
//X:

(gf ◦ α) · (η ◦ k) = (η ◦ l) · α

(ǫ ◦ l) · (fg ◦ α) = α · (ǫ ◦ k) ,

which is proven by the following diagram:

X

Y

f

��2
22

22
22

22
X X

1X // X

Y

EE

g

��
��
��
��
�

��
η

Z X

k
&&

Z X

l

88α ��

Y Y
1Y

//

X

Y

EE

g

��
��
��
��
�
X

Y

f

��2
22

22
22

22

Z Y

k

&&
Z Y

l

88α ��

ǫ ��

Now the proof of the triangle identities amounts to establishing the following two

identities:

X

Y

f

22
22

��2
22

2

X X
1X // X

Y

EE

g
��
��

��
��

��
η

Y Y
1Y

//

X

Y

EE

g
��
��

��
��

X

Y

f

��2
22

22
22

22

ǫ ��

Z X

k
&&

Z X

l

88α ��

= f ◦ α

Z Y

k

&&
Z Y

l

88α �� Y Y
1

//

X

Y

EE

g

��
��
��
��
�
X

Y

f

22
22

��2
22

2ǫ ��

X

Y

f

22
22

��2
22

2

X X
1X // X

Y

EE

g

��
��
��
��
�

��
η

= g ◦ α

,

which follow readily from the triangle identities for η and ǫ.

The desired theorem about products now follows from the isomorphism K (Z,X2) ∼=

K (Z,X)2 implied by the product on X .
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Lemma 5.1.14. LetX be an object with products in K as in Def. 2.2.18. Then for any

Z ∈ K , K (Z,X) has products.

Proof. Fix Z ∈ K . The existence of the product X2 in K implies an isomorphism

Ψ : K (Z,X)2 → K (Z,X2). The adjunction ∆ : K (Z,X) ⇄ K (Z,X)2 :

(×) defining the product in K (Z,X) is up to Ψ just the adjunction K (Z,∆X) ⊣

K (Z, (×)X), as shown below:

K (Z,X)
K (Z,∆X) // K (Z,X)2 ∼= K (Z,X2)

K (Z,(×)X) // K (Z,X) (5.16)

Explicitly:

∆ = Ψ ◦ K (Z,∆X)

(×) = K (Z, (×)X) ◦ Ψ−1 (5.17)

The following observation makes explicit the sense in which such products are

defined essentially pointwise.

Observation 5.1.15. The action of (×) in (5.17) on pairs of arrows f, g : Z −→ X after

unfolding all definitions is:

Z
f△g //X2 (×)X //X (5.18)

So we are ready to construct products of formal arrows in K between two objects

Z, X , and consequently of distributive laws λ, κ : T ⊗ 2 −→ K , equivalently 2-

functors λ↓, κ↓ : 2 −→ [T ,K ]. We want to consider the category of formal arrows

λ such that λ↓(s) = Z and λ↓(t) = X for Z, X ∈ [T ,K ]. The arrows are those

reverse lax natural transformations θ : f =⇒ g : 2 −→ [T ,K ] such that θs = 1X,

θt = 1Z and θa is a 2-cell of K of type 1Z ◦ f =⇒ g ◦ 1X. The 2-cells in this 2-

category are modifications but their components are forced by the coherence conditions

of the definition to be identities. So this is equivalent to the ordinary homcategory

[T ,K ](Z,X). By Lemma 5.1.14 this category has products if X has products in

[T ,K ]. By the Product Lifting theorem, this is whenever K has products on the

relevant objects. The following proposition summarises this result.

Theorem 5.1.16. Let λ, κ be distributive laws (2,F)| λ

(T ,H)

(T ,H′)

|(2,F′), (2,G)| κ

(T ,H)

(T ,H′)

|(2,G′),

such that the objects H′(s) and H′(t) have products in K . Then there is a distribu-

tive law F × G| λ⊠κ

H

H′

|F′ × G′, which is the product in the subcategory of vertical

distributive laws H −→ H′.
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Example 5.1.17. Distributive laws of endofunctors, λ, κ : O ⊗ O −→ Cat, such that

F| λ

H

H

|F and G| κ

H

H

|G are just natural transformations λ : HF =⇒ FH and

κ : HG =⇒ GH. Their product F × G| λ⊠κ

H

H

|F × G given by Theorem 5.1.16 is

a natural transformation λ⊠ κ : H(F × G) =⇒ (F × G)H defined as follows:

FH (F × G)Hoo
π1H

HF

FH

λ

��

HF H(F × G)oo Hπ1
H(F × G)

(F × G)H

λ⊠κ

��
(F × G)H GH

π2H
//

H(F × G)

(F × G)H

λ⊠κ

��

H(F × G) HG
Hπ2 // HG

GH

κ

��

λ⊠ κ =def (λ · Hπ1) △ (κ · Hπ2)

(5.19)

By Observation 5.1.15, it can be also expanded as

H
∆ // H2 λ×κ // H2 (×)H // H

in [O,K ]. Unfolding the definitions of morphisms in this category yields the following

diagram in Cat:

C C2

∆C

//

C

C

H

��

C C2∆C // C2

C2

H2

��
C2 C2

F×G
//

C2

C2

H2

��

C2 C2F×G // C2

C2

H2

��
{�

λ×κ����

C2 C
(×)C

//

C2

C2

H2

��

C2 C
(×)C // C

C

H

��
{�

(×)H����

This can readily be seen to be the same as (5.19).

Similarly, one obtains by Theorem 5.1.16 distributive laws of monads, strong func-

tors, etc. over functors. Explicitly, this means that when H itself has some additional

structure, the morphism (5.19) is coherent with it.

Products of Monads

The fact that monads have products is known and standard. Following is a presentation

of the product in an arbitrary 2-category K . Note the 2-categorical sleekness of the

proofs of the coherence conditions.

Lemma 5.1.18. For any two monads (T : X −→ X,µ, η) and (U : X −→ X, ν, ζ)

in a 2-category K with products on X the following comprises a monad

(T × U : X −→ X,µ · π1π1 △ ν · π2π2, η △ ζ) (5.20)

This is a cartesian-product monad.
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Proof. In order to establish that (5.20) defines a monad, the coherence conditions of

multiplication and unit must be established. Below, just associativity of multiplication

is shown, units are even simpler. Note that use is made of the isomorphisms of 2-cells

implied by the adjunction ∆X ⊣ (×)X in K (see Sect. 2.2.7 for details).

First, note that when the definition of multiplication in (5.20) is pictured in the

following diagram:

X XT×U // X XT×U //X X

T

$$
X X

T

$$
X X

U

:: X X

U

::

π1

KS
π1

KS

π2�� π2��
X X

T

  
X X

U

>>

µ
KS

ν��

(5.21)

associativity of (5.21) becomes the following equation:

X X
T &&

X X
T &&

X X
T &&

X X

T

$$
X X

T

  µ
KS µ

KS

X XT×U // X XT×U // X XT×U //X X
U

88 X X
U

88 X X
U

88X X

U

::X X

U

??
ν �� ν ��

= X X
T &&

X X
T &&

X X
T &&

X X

T

$$
X X

T

  µ
KSµ

KS

X XT×U // X XT×U // X XT×U //X X
U

88 X X
U

88 X X
U

88X X

U

::X X

U

??
ν ��ν ��

It is clearly seen that the top half of the picture is associativity of µ while the bottom

half of the picture is associativity of ν, i.e. the preconditions.

The following is now a simple corollary.

Theorem 5.1.19. Let λ, κ be distributive laws (M,T)| λ

(T ,H)

(T ,H′)

|(M,T′), (M,U)| κ

(T ,H)

(T ,H′)

|(M,U′)

such that H′(s) and H′(t) have products in [T ,K ]. Then there is a distributive law

T × U| λ⊠κ

H

H′

|T′ × U′, where T × U, T′ × U′ are cartesian products of monads

given by Lemma 5.1.18. This is a product in the category of vertical distributive laws

H −→ H′.

Example 5.1.20 (Products of strong monads). Consider strong monads in K , i.e. dis-

tributive laws (M,T)| λ

(RAct,⊘)

(RAct,⊘)

|(M,T), (M,U)| κ

(RAct,⊘)

(RAct,⊘)

|(M,U) (see Ex. 4.5.6).
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It follows that the underlying categories already have products and so by Lemmas 5.1.18,

their product T × U| λ⊠κ

⊘

⊘

|T × U exists. This is by definition a strong monad.

The following are examples of constructions of products of functors with structure

obtained as products of distributive laws.

Lax monoidal functors

A lax monoidal functor, F, in K is formally F : 2 −→ [Mon,K ] (see Ex. 3.5.3)

and objects of [Mon,K ] have products whenever F(t)(o) does in K , by lifting. One

can therefore construct products of lax monoidal functors as products of arrows in

[Mon,K ] whenever F(t)(o) has products in K .

Corollary 5.1.21. For all lax monoidal functors, F,G : 2 −→ [Mon,K ], on the same

monoidal category with products (×) in K , the product F ‖ G : 2 −→ [Mon,K ]

exists, such that (F ‖ G)(a) = F(a) × G(a).

Applicative functors

Applicative functors (Ex. 4.5.8) are lax monoidal endofunctors with strength. So the

situation is the same as for lax monoidal functors with the difference that applicative

functors are defined on monoidal categories where the monoidal action is the product.

It follows that applicative functors on the same category always have products.

Remark 5.1.22. We invite the reader to expand the definitions of projections of products

of monads and applicative functors in [2,K ] and compare them to Figs 1.1 and 1.2.

5.2 Coproducts

Section 5.1 dualises by the following two facts (see Sect. 2.2.6):

1. products in K are coproducts in K op

2. F ⊣ G in K if and only if G ⊣ F in K co

We summarise the results for a future reference.

5.2.1 Pointwise coproducts

It follows that categories JT ,K K and [T ,K ] have coproducts for all K with coprod-

ucts. Coproducts in JT ,K K, as well as in [T ,K ] are called pointwise coproducts.

Example 5.2.1.
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1. The coproduct of functors F : C −→ D , G : C ′ −→ D ′, considered as formal

arrows in J2,CatK, is the usual coproduct of functors F+G : C +C ′ −→ D+D ′

as arrows in Cat.

2. For two comonads (D : C −→ C , δ, ε), (E : D −→ D , γ, ξ), the coproduct comonad

D + E is defined as (D + E : C + D −→ C + D , δ + γ, ε+ ξ). This is pre-

cisely the free coproduct of D and E as formal monads D,E ∈ JMco,CatK.

5.2.2 Coproducts on objects in functor categories

The development of Sect. 5.1.2 dualises by the equivalence [T ,K ] ∼= JT co,K coKco.

As K has products if and only if K co does, one can lift coproducts on objects of K

to coproducts on objects of JT ,K K for all T . This is summarised below.

Corollary 5.2.2. Let K be a category with chosen products, ×, let T be a category,

T : T −→ K a functor. Moreover, let there be for any X ∈ T a functor PX :

Prodco −→ K such that

PX(o) = T(X) . (5.22)

Moreover, each PX must preserve the chosen product. Then there exists a product

preserving functor

T̃ : Prodco −→ JT ,K K

such that T̃(o) = T, i.e. T̃ is a coproduct on T in JT ,K K.

5.2.3 Coproducts of distributive laws

Corollary 5.2.2 allows us to construct coproducts of distributive laws of functors with

structure, which have coproducts whenever the underlying 2-category does, such as

functors or comonads. As before, these are just coproducts of functors with struc-

ture in the respective forward category of functors. This follows simply by duality of

propositions 5.1.14, 5.1.18 and 5.1.21. This is summarised bellow.

Notation 5.2.3. A coproduct of distributive laws λ, κ, is denoted λ⊞ κ.

Corollary 5.2.4. Let K be a 2-category with coproducts on objects whenever it mat-

ters. Let U be any theory of a functor with structure. Then for T ∈ {2,Mco,Mon},

distributive laws (U ,H)| λ

(T ,F)

(T ,F′)

|(U ,H′), (U ,H)| κ

(T ,G)

(T ,G′)

|(U ,H′), have co-

products (U ,H)| λ⊞κ

(T ,F+G)

(T ,F′+G′)

|(U ,H′). Here, the fact is used that 2co ≡ 2 and
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Monco ≡ Mon.

5.2.4 Constructions which are not for free

It is not clear, how one could reverse the proof of Theorem 5.1.9 so as to lift products

to objects in JT ,K K and dually coproducts to objects in [T ,K ]. However, such

constructions for specific theories of functors with structure may, of course, exist.

Example 5.2.5 (Applicative functors). For instance, an applicative functor (Ex. 4.5.8)

is a lax monoidal endofunctor on a category with products, which has strength. Strength

(Ex. 4.5.6) is a special kind of a morphism of a right action on a category, where all

monoidal structures, and the right action are products on the categories. Therefore the

strength fixes the monoidal structure of the lax monoidal endofunctor to be a prod-

uct. The bottom line is that an applicative functor is an endofunctor coherent with the

product on the underlying category. Formally this means that the following diagrams

commute, for any applicative functor with underlying functor L:

X X
L

//

X

X

1

��

X X
L // X

X

1

��

X

X2

∆

����
��
��
��
�

X2

X

(×)

��/
//

//
//

//
ηks = X2 X2

L2 //

X

X2

∆

��

X X
L // X

X2

∆

��

X X
L

//

X2

X

(×)

��

X2 X2
L2 // X2

X

(×)

��
{�
µ

����

X

X

1

��

ηks (5.23)

X2 X2

L
//

X2

X2

1

��

X2 X2L // X2

X2

1

��

X2

X2

(×)

����
��
��
��
�

X2

X2

∆

��/
//

//
//

//
+3ǫ = X2 X2

L2 //

X2

X2

(×)

��

X2 X2L // X2

X2

(×)

��

X2 X2

L
//

X2

X2

∆

��

X2 X2
L2 // X2

X2

∆

��

{�
µ

����

X2

X2

1

��

+3ǫ (5.24)

Coherence (5.23) and (5.24) are making η, ǫ into components of modifications, ηL, ǫL.

The fact that µ is the underling 2-cell of a forward morphism L2 −→ L, i.e. that µ is

coherent with the structure on L, follows by definition and transposition because L is

a reverse morphism (×) −→ (×). As before, these modifications, ηL, ǫL, satisfy the

triangle identities pointwise and we therefore have a product on L in JL,K K, for any

applicative functor L.
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5.3 Composition

This section continues the theme of the previous sections in that a composition of dis-

tributive laws is considered as a composition of functors with structure. It follows that

distributive laws can be possibly composed in two ways: horizontally and vertically.

First, however, before diving into any further details, it must be made precise what is

meant by composition of functors with structure and composition of distributive laws.

Definition 5.3.1 (Composition of functors with structure). For a theory of functors

with structure, (a,T ), and its two models, F,G : T −→ K in K , such that F(t) =

G(s), H is a composition of G after F, also denoted G ◦F, if H is a model of T such

that

H(a) = G(a) ◦ F(a)

In words, a composition of models G, F of T is a model of T such that its

underlying arrow is composition of the underlying arrows of G, F. According to this

relaxed specification, some functors with structure compose in more than one way, as

shown below. On the other hand, some functors with structure don’t compose at all.

The particular notion of composition depends on the particularities of the functor

with structure at hand so there is a little hope of giving a general definition. However,

we analyse the following three cases to provide some useful guidance to construction

of compositions.

Firstly, arrows always compose. Secondly, it is well known that monads T, U,

compose to give a monad whose underlying arrow is a composition of the underlying

arrows of T, U, provided there is a third distributive law of U over T. Dually, a similar

theorem holds for comonads. Thirdly, some other nontrivial functors with structure

compose and we analyse the reason.

5.3.1 Arrows

When one of the theories, T , U , in Def. 4.1.1 is just 2, distributive laws can be com-

posed as morphisms of functors with structure. This corresponds to pasting, horizontal

or vertical, of the underlying 2-cells, and all 2-cells that comprise the morphism of the

other non-trivial functors with structure. The notation � , ⊟ , is overloaded for com-

position of such distributive laws in the horizontal and vertical directions, respectively.

The following definition formalises this precisely.

Definition 5.3.2. For a pair of distributive laws λ, κ : T ⊗ U −→ K ,

1. when T ≡ 2 and U| λ

H

H′

|U′ and U′| κ

I

I′
|U′′, the distributive law κ � λ

is defined as the composite U| κ→◦λ→

IH

I′H′

|U′′
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2. when U ≡ 2 and F| λ

T

T′

|F′ and G| κ

T′

T′′

|G′, the distributive law κ ⊟ λ

is defined as the composite GF| κ↓◦λ↓

T

T′′

|G′F′

Clearly:

|κ � λ| = |κ| � |λ| (5.25)

and similarly

|κ ⊟ λ| = |κ| ⊟ |λ| (5.26)

Example 5.3.3 (Eilenberg-Moor and Kleisli liftings). Eilenberg-Moore liftings (see

Ex. 4.5.4), F| λ

H

K

|F and G| κ

K

L

|G compose by vertical pasting to GF| κ⊟λ

H

L

|GF.

Similarly Kleisli liftings H| λ

F

F

|K, K| κ

G

G

|L compose horizontally to H| κ�λ

GF

GF

|L.

Pasting of distributive laws is useful for proving that composition of underling func-

tors preserves additional structure.

Example 5.3.4 (Strong functors compose). A strong functor is a reverse morphism

of right monoidal actions (see Ex. 4.5.6). Formally, strong functors are arrows in

[RAct,Cat], equivalently distributive laws F| σ

(×C )

(×C )

|F. It follows that the com-

position of strong endofunctors on the same category is strong:

F| σ

(×C )

(×C )

|F ⊟ G| τ

(×C )

(×C )

|G = GF| τ ⊟σ

(×C )

(×C )

|GF

It follows from (5.26) that the composite strength is

(τ ⊟ σ)X,Y ≡ GFX × Y
τFX,Y // G(FX × Y )

GτX,Y // GF(X × Y ) ,

(5.27)

which is precisely the usual definition of a composition of strengths. The abstract

approach however also immediately establishes the coherence conditions, which would

otherwise have to be verified by hand.

Similarly, it follows that applicative functors compose (see Ex. 4.5.8).
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C

C

T ��?
??

??
??

?C C
T

// C

C

??

T
��

�

��
�

C

C

U

??
?

��?
??

C C
U

// C

C

??

U��
��

��
��

C C

1

!!η
�� C C

1

!!ζ
��

µ

KS
ν

KS

C

C

U ��?
??

??
??

?

C

C

T

??��������

λ

KS

Figure 5.1: Composition of monads by a distributive law

5.3.2 Monads

We now discuss monads (and dually comonads) as an example of functors with struc-

ture that compose nontrivially.

A distributive law λ in K of a monad T over a monad U, both on an object X of

K , gives rise to a monad UT on X in K , defined in Fig. 5.1. It follows that in order

to define composites of distributive laws of or over monads, an iterative distributive

law is needed. This follows from Theorem 4.1.3 as follows: a pair of distributive

laws (U ,H)| λ

(M,T)

(M,T)

|(U ,H), (U ,H)| κ

(M,U)

(M,U)

|(U ,H) is equivalently a pair of

monads λ→, κ→ : M −→ JU ,K K. By the mentioned result about composition of

monads, λ→ and κ→ compose if there is a distributive law (M,U)| γ→

(M,T)

(M,T)

|(M,U)

in JU ,K K, equivalently γ : M ⊗ M ⊗ U −→ K .

A similar argument applies to distributive laws of T over monads, and by duality

for comonads.

Example 5.3.5 (Composition of strong monads). Consider two monads, T, U, in K ,

which compose via a distributive law λ of T over U. In the case when T and U are

strong, in order for the composite, UT, to be strong, λ must be coherent with the
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strength as follows:

T(UX × Y ) U(TX × Y )

TUX × Y

T(UX × Y )

σUX,Y

��

TUX × Y UTX × Y
λX,Y // UTX × Y

U(TX × Y )

τTX,Y

��

TU(X × Y ) UT(X × Y )
λX×Y

//

T(UX × Y )

TU(X × Y )

T(τX,Y )

��

T(UX × Y ) U(TX × Y )U(TX × Y )

UT(X × Y )

U(σX,Y )

��

This requirement arises from Theorem 4.3.7 as the condition in Fig. 4.5 for the arrows

a, a, ⊘ in the theories M, M, RAct, respectively. The other coherence conditions are

trivial in this case.
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Chapter 6

Distributive Laws in

Programming

In this chapter we collect examples of distributive laws in mathematically structured

programming, some of which have appeared before in the literature [Mee98, GdSO09,

MP08], however, without them being formally understood as distributive laws of one

functor with structure over another. Our presentation improves upon these examples

by showing the formal sense in which they are distributive laws. This allows us to

demonstrate the sense in which the constructions previously carried out informally on

them are constructions on distributive laws in a formal sense.

The last section of this chapter, Sect. 6.3, desribes our original contribution to the

collection of examples of distributive laws in computer science, where distributive laws

are used to compare functional programs on inductive datatypes to component-based

systems, which are interpreted coinductively.

6.1 Distributive Laws of Polynomial Functors

Polynomial functors of arity n ∈ N are functors of type C n −→ C inductively gen-

erated by the grammar in Fig. 6.1, for a category C with products (×) and coproducts

(+).

Example 6.1.1 (Shape Functors). The type of lists of A’s in a suitable C , for each

A ∈ C , is defined as the fixed-point

ListA =def µY. 1 +A× Y (6.1)

The fixed point exists for a suitable C with enough structure, e.g. when C is locally ω-

cocomplete. The right-hand side of (6.1) defines a polynomial functor ListFA : C −→
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X ∈ C

X
(constant)

πi : C n −→ C , i < n
(projection)

F1 : C n −→ C F2 : C n −→ C

F1 × F2 : C n −→ C
(products)

F1 : C n −→ C F2 : C n −→ C

F1 + F2 : C n −→ C
(coproducts)

G : C k −→ C Fi : C n −→ C , 1 < i ≤ k

G ◦ (F1 △ · · · △ Fk) : C n −→ C
(composition)

Figure 6.1: Polynomial functors

C as 1 + (A × 1), for an A ∈ C , and we have ListA = µ(ListFA) where µ is the

least-fixed-point operator µ : C C −→ C .

Definition 6.1.2 (Datatypes). When the definition of ListA is abstracted in A, one

obtains a regular datatype, i.e. a datatype which is given by a polynomial functor

parameterised by a type. Formally, regular functors arise by adding the following rule

to Fig. 6.1:

F : C n+1 −→ C is polynomial

τF =def
~X 7→ µY. F( ~X, Y ) : C n −→ C

(type functors) (6.2)

The least fixed point in the definition τF in (6.2) comes with a natural isomorphism :

inτ : F ◦ (1n △ τF) =⇒ τF : C
n −→ C (6.3)

Example 6.1.3. One can define a binary polynomial functor ListF : C 2 −→ C as

ListF =def 1 + (π1 × π2)

and define the parametric regular datatype of lists List =def τListF. Explicitly, this is

given by the assignment

X 7→ µY. 1 +X × Y

The following is a generalisation of similar constructions of distributive laws over

polynomial functors that can be found in [Mee98, HB97]. The formulation below is

fully generic in the additional structure of the other functor, providing some general

requirements are met. This is achieved by giving the definition entirely in terms of
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distributive laws and their constructions.

Lemma 6.1.4. Let F : C n −→ C be a polynomial functor and let U be a U -functor,

for any theory U , with the underlying arrow of type Cm −→ C . Let there be a

• coproduct on U in JU ,CatK

• product (×) on U in JU ,CatK

• distributive law Un| ηX

Xm

X

|U for any constant X occurring in F

Then there exists a distributive law Un| λ

Fmα

F

|U where α : (Cm)n −→ (C n)m is

the obvious isomorphism natural in n and m.

Proof. We proceed by induction on the structure of F as follows:

1. for F ≡ X , put λ =def Un| ηX

Xmα

X

|U.

2. for F ≡ πi, put λ =def Un| πi

πm
i α

πi

|U, the i-th projection πi : Un −→ U in

JU,K K given by Corollary 5.1.2.

3. for F ≡ F1 × F2, by induction there exist Un| λi

Fm
i α

Fi

|U, i ∈ {1, 2}. These

are just arrows λ→i : Un −→ U, JU ,CatK, and as there is a product (×) on U in

JU ,CatK, the following distributive law

Un
λ→

1 △λ→
2 // U2 (×) // U

is a product of arrows in JU ,CatK by Lemma 5.1.14.

4. for F ≡ F1 + F2, by induction there exist Un| λi

Fm
i α

Fi

|U, i ∈ {1, 2}. So we

can put λ =def Un| λ1⊞λ2

(F1+F2)
mα

F1+F2

|U, which is defined by Corollary 5.2.4.

5. for F ≡ G (F1 △ · · · △ Fk), by the induction hypothesis we have Un| λi

Fm
i α

Fi

|U

and Uk| κ

Gmα′

G

|U, where α′ : (Cm)k −→ (C k)m. Therefore, we also have
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Un| λ→
1 △···△λ→

k

Fm
1 α△···△Fm

k α

F1△···△Fk

|Uk . Now because trivially

Gm α′ (Fm1 α △ · · · △ Fmk α) = (G (F1 △ · · · △ Fk))
m α

we can put

λ =def Un| (λ→
1 △···△λ→

k ) �κ

(G (F1△···△Fk))m α

G (F1△···△Fk)

|U

In the rest of this section we give details of how Lemma 6.1.4 corresponds to the

existing instances given before elsewhere.

6.1.1 Functor Pulling

In [Mee98], Lambert Meertens defines a functor puller to be a natural transformation

of type

pF,H : FHn =⇒ HFmα (6.4)

for an n-ary functor F and an m-ary functor H, where α is the natural isomorphism

α : (Cm)n −→ (C n)m.

Define 2n,1 to be the theory generated by the sketch

on // o .

Up to α, (6.4) is a distributive law of 2n,1 over 2m,1 in Cat.

C n C
F

//

(Cm)n ∼= (C n)m

C n

Hn

��

(Cm)n ∼= (C n)m CmFm

// Cm

C

H

��

pF,H 3;oooo oooo (6.5)

Meertens shows that functor pullers exist for all regular datatypes F. For the special

case of functors pullers, i.e. when F in (6.5) is just a functor with no additional struc-

ture, it’s easy to extend the construction in Lemma 6.1.4 to type functors by defining a

Hn| τλ

τFm

τF

|H, for Hn| λ

Fm

F

|H by initiality of τF.

Degenerated examples of pullers are so-called crushes, functions of type FX −→

120



X for any regular functor F and a constant X . An example of a crush is

sum : List(Z) −→ Z .

Example 6.1.5 (Applicative Functor Pullers). It is shown in Sect. 5.2.4 that applica-

tive functors have products as objects in JAf,CatK. By Corollary 5.2.2 they also have

coproducts in JAf,CatK. Moreover, applicative functors have units, i.e. for each ap-

plicative L, there is a natural transformation ηX : X −→ LX . To see this, consider ν1

in (3.18), which in the case of applicative functors, i.e. ⊗ ≡ ⊕ ≡ (×) and e = e′ = 1,

reduces to a point u : 1 −→ F1. Together with strength, σ, one obtains ηX above as

X ∼= 1 ×X
u△X // L(1) ×X

σ1,X // L(1 ×X)
Lλ // L(X)

Components of this natural transformation are distributive laws L| ηX

X

X

|L. It fol-

lows by Lemma 6.1.4 that distributive laws of polynomial endofunctors over applica-

tive functors always exist.

In [MP08], iFunctor is defined as a functor which distributes over all applicative

functors. Several examples of iFunctor are shown which are regular datatypes, such

as Tree (trees) or Expr (expressions). Lemma 6.1.4 therefore almost explains these

examples, except for the fixed points for which we would need a lifting theorem similar

to Theorem 5.1.9 or Corollary 5.2.2.

6.2 Zips and Traversals

6.2.1 Unzip

The function called unzip in HASKELL takes a list of length n of pairs into a pair of

lists of equal length n of the first and second components. The type of the function in

the Standard HASKELL Library (SHL) is:

unzip :: [(a,b)] -> ([a],[b])

It is easily provable from the implementation (not shown) that unzip satisfies the equa-

tions:

Listπ1 = π1 · unzipA,B (6.6)

Listπ2 = π2 · unzipA,B (6.7)

(6.8)

These equations characterise unzip by stating formally that first component of the

result is the list of first components of the argument. And similarly for the second
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components. This defines unzip formally as a distributive law of lists over pairs.

To this end, let List : ∗ −→ ∗ be the type constructor of lists, i.e. the functor

that takes a type, s, to the type of finite lists of elements of s and (×) : ∗2 −→ ∗ the

cartesian product. Then unzip is a natural transformation λ in

∗ ∗
List

//

∗2

∗

(×)

��

∗2 ∗2List
2

// ∗2

∗

(×)

��

λ ;C
����

Let (∆, (×), η, ǫ) be the adjunction defining (×) in ∗. Now, observe that (6.6) and (6.7)

are formally the equations:

∗ ∗
List

//

∗2

∗

(×)

��

∗2 ∗2List
2

// ∗2

∗

(×)

��

λ ;C
����

∗

∗2

∆

DD										
∗ ∗

1
//

η
KS =

∗ ∗
List

//

∗2

∗

OO

∆

∗2 ∗2List
2

// ∗2

∗

OO

∆

∗2

∗

(×)

��5
55

55
55

55
5

∗ ∗
1

//

η
KS (6.9)

By pasting ǫ : ∆(×) =⇒ 1 on the left of both sides in (6.9), and using the triangle

identities we get a definition of unzip:

∗ ∗
List

//

∗2

∗

(×)

��

∗2 ∗2List
2

// ∗2

∗

(×)

��

λ ;C
���� =

∗ ∗
List

//

∗2

∗

OO

∆

∗2 ∗2List
2

// ∗2

∗

OO

∆

∗2

∗

(×)

��5
55

55
55

55
5

∗ ∗
1

//

ǫ
KS

∗2

∗

(×)

��5
55

55
55

55
5∗2 ∗21 //

η
KS

(6.10)

This defines unzip as so-called mate [KS74] of the identity 2-cell under the adjunction

(∆, (×), η, ǫ). To see that unzip is coherent with the structure of the monad on List,

please consult Sect. 5.1, Equation (5.5) and the proofs of coherence that follow.

6.2.2 Sequence

Any instance of the function

sequence :: Monad m => [m a] -> m [a]

taking a list of monads into a monad on lists, which is defined in SHL, is a distributive

law of lists over the monad, m. Note this doesn’t define sequence uniquely. There

are at least two distributive laws of the given type: one sequencing the effects of the

monads left to right, and the other one sequencing them in the reverse order.

Similarly, one can define
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sequence :: Applicative i => [i a] -> i [a]

for an applicative functor i. This is just a distributive law of lists over i as an applica-

tive functor. Formally, a functor L⊗Af −→ K , where L is a theory of lists. These are

both examples of distributive laws of regular functors (the list) which are not pullers in

the sense of [Mee98] as the structure of the other functor is important.

Remark 6.2.1. Functions such as

transpose :: [[x]] -> [[x]]

repeat :: x -> [x]

zip :: ([x],[y]) -> [(x,y)]

i.e. matrix transposition, infinite duplication, and list zipping, are essentially distribu-

tive laws for lists considered as monads or applicative functors. The importance of this

observation is that such distributive laws can be constructed generically by operations

on distributive laws from primitive components as demonstrated above. This brings

along properties of these functions, which hold automatically once they’ve been con-

structed in such a high-level way. There is a problem though, which didn’t appear for

unzip, say, that none of the above functions is total as they are only defined on argu-

ments of the correct shape. The solution, which we leave for the future work, would

be to make the types more precise by making information about shape a part of the

datatype. In this way, one could be precise and define for instance a total function

zipn on pairs of lists of length n producing a list of pairs of length n.

6.3 Adequacy of Functional and Component-based Pro-

gramming

In the current programming practice, there are two prevailing programming paradigms:

component-based programming (CBP), with the notable example of object-oriented

programming1 (OOP), and functional programming (FP). In this chapter, a novel ap-

plication of distributive laws to formally compare programs in these two paradigms is

presented.

Informal comparisons of the paradigms have been carried out before. Most notably,

Cook in [Coo91] argues that the two styles are characterised by a different grouping of

programming fragments, namely by data and behaviour, and that this leads to a mis-

match in extensibility. This is dubbed the expression problem by Cook. Other notable

contributions are Buchlovsky and Thielecke’s paper [BT06] non the so-called Visi-

tor Pattern in object-oriented programming (see [GHJV94]). Jeremy Gibbons argues

1The term component-based programming is used rather than the much more common object-oriented

programming, which is its widespread example. The term conveys our focus on a small subset of what

comprises the discipline of object-oriented programming.
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in [Gib06] that higher-order datatype-generic programs are in many instances the FP

equivalents of patterns in object-oriented software design. In [GdSO09], he and Bruno

Oliveira argue that what we call a distributive law of a dataype over an applicative

functor is the correct formal counterpart of so-called Iterator pattern in OOP.

Implicit in all such comparisons of programs in the two paradigms is a notion of

their equivalence as one must compare “the same program” written in two styles. In

this chapter we develop such a notion of equivalence, which rests on the notion of a

distributive law.

We start by describing informally the paradigm of component-based programming,

with the aim of it being later interpreted coalgebraically. Then we remind the reader

of the initial algebra semantics of inductive functional programming and coalgebraic

semantics of state based systems. Our main contribution is in the observation that in

the interesting cases both the algebra, which defines an recursive function, and the

coalgebra, which defines a component based system, arise from a single distributive

law of data over behaviour. This makes it possible to apply category theory to establish

a bisimulation relation between the two original programs.

6.3.1 Component-based Programming

Omitting many technical details, the component-based approach can be characterised

as programming with discrete software components. Each component has an interface

and a local state. Components are organised into oriented graphs. In more detail,

each component has an address and as a part of the local state it keeps a collection of

addresses of other components, so-called pointers. This defines a directed graph on

addresses of components.

At the runtime, the components can send messages to other components, and can

be sent messages by other components and from the environment, say by the user op-

erating a user interface (keyboard, mouse). All possible senders of messages to a com-

ponent are called clients. The messages each component can receive are specified in

the interface of each component. A specification of a message contains an identifier,

an arity and a return type. The arity of each message specifies additional data that can

be used to parameterise the message. The return type specifies the type of data that

is being returned to the sender in response to the message. This data is also called a

return value. Both parameters and return values can include pointers. In order to cal-

culate the return value, a component can execute calculations on the local state, alter

the local state, send messages to other components and incorporate their return values

to the calculation. It can also create new components and store the pointers to them in

the local state and thus alter the graph of components.

In summary, a component-based program consists of a specification of the compo-

nents that can appear in the system. The specification of each component consists of an
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interface, type of the local state and the code executed in response to each valid mes-

sage in the interface. The latter is usually realised in a low-level structural program-

ming language providing basic arithmetics, conditional statements and loops, string

manipulation, message invocation and component creation. In addition, a specification

of the initial graph of components is required, which is often external, or fixed upfront.

The initial graph is often trivial: just one component, which is gradually expanded

during the execution of the program. In such a case, the initial component has a cho-

sen message whose execution, or rather the process of calculation of its return value is

equivalent with the execution of the whole program. In other examples, the graph is

fixed throughout the runtime (component creation is prohibited) and the execution of

the program is a collection of responses to messages2 being sent to its components by

the environment.

Encapsulation One of the cornerstones of CBP is so-called encapsulation, which is

the property that any access or update to the local state of a component can take place

only within the execution of a message of the component. In other words, components

cannot access the local state of other components directly. This allows, for instance,

for the graph of components to be distributed over a network, with the components

implemented in different programming languages and executed on different physical

machines.

Encapsulation has a major impact on the programming style of CBP.

Examples Examples of CBP systems are object-oriented programming, and dis-

tributed programming systems such as COM or CORBA.

The nonspecification of data structures Most component based programming sys-

tems lack mechanisms for specification for higher-level datatypes. It means that all

datatypes are primitive such as integers, characters and pointers, and there is no way

to specify new composite datatypes. Instead the primitive datatypes, wrapped as local

state in components, are linked by pointers as pieces of data into graphs which are

used to model more complicated data structures. For instance, a finite list of integers

is modelled as a linear chain of components, each carrying an integer as its local state

and a pointer to the next component.

[n1] // [n2] // · · · // [nk]

Although this allows one to model datatypes, CBP in general lacks any means of

higher-order specification of the organisation of components. This means that dur-

ing the runtime of a program components can enter in communication with any other

2often asynchronous
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component they happen to be linked to. The changes to the graph of components and

the admissible configurations are implied by the operational behaviour of the system

rather than specified and enforced. This also means that datatypes modelled as compo-

nents are unspecified to a large extent.

In this sense, CBP constrains behaviour but doesn’t constrain structure. Behaviour

is constrained by the means of interfaces. On the other hand, structure (the graph of

components) is unconstrained. For instance, even though one can model lists as a

collection of components ordered in a chain, there is no formal way of enforcing this

organisation of the components. So a list is merely a component that behaves like a

list in the sense that the messages sent to it allow other components to add elements –

new components into the chain – and look up and remove components, and that this

communication is coherent with the expected behaviour of lists: e.g. after sending a

message “add 3” a subsequent message “find 3” returns “yes”, and a message “remove

3” results in all messages “find 3” returning “no” until “3” is again added. In this sense,

Component-based programming is programming of data from behaviour.

6.3.2 Functional programming

In contrast, functional programming (FP) is centred around specifications of data, so-

called datatypes. Datatypes are specified in a high-level algebraic way by enumeration

of constructors that generate the set of elements of the datatype. One then defines

functions that are applied to elements of datatypes. This is done by pattern matching

on values of a datatype and by specification of a value of the function for each pattern.

The values are in general other functions applied to arguments.

In contrast to CBP, there can be arbitrarily many functions defined on each datatype.

When the definition of a datatype changes all functions pattern matching on the datatype

must change as well. In this sense, datatypes come first, functions later.

A functional program is a collection of all definitions of datatypes and functions on

the datatypes. The meaning of a functional program is the value of a chosen function

on chosen arguments (e.g., the function called “main” applied to the command-line

arguments). With respect to a functional program, a value of a chosen datatype can be

assigned a behaviour informally as all values reachable by application of functions in

the program to the value and recursively to the subsequent values of the datatype arising

in this process. Examples of FP languages are Haskell, ML or Clean. In summary, in

the sense described above:

Functional programming is programming of behaviour on data.
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6.3.3 Initial algebra semantics

The following is an overview of some elementary facts about the so-called initial alge-

bra semantics of datatypes in functional programming[GTW78, Awo06]. Nothing new

of substance is presented in this section. The reader is reminded of section Sect. 4.4.1,

where the notions summarised below in the usual fashion are given a uniform treatment

by distributive laws.

First, recall that an algebra of an endofunctor F is an arrow ϕ : FX −→ X , where

X is called the carrier of ϕ. Algebras are often denoted by a tuple, (ϕ,X), where X

is the carrier of ϕ. A morhpism from ϕ to ψ : FY −→ Y is an arrow f : X −→ Y

such that the square ψ · Ff = f · ϕ commutes.

X Y
f

//

FX

X

ϕ

��

FX FY
Ff // FY

Y

ψ

��

(6.11)

Such squares compose by horizontal pasting, and with the obvious unit form a category,

F-Alg.

The initial object in F-Alg, if it exists, is an algebra

inF : FµF −→ µF

It is necessarily an isomorphism by the well-known Lambeck’s Lemma. Initiality of

inF means explicitly that for any other F-algebra (ϕ,X), there exists a unique algebra

morphism, (|ϕ |) : µF −→ X , sometimes called the fold of ϕ. More precisely, (|ϕ |) is

the underlying arrow in the algebra morhpism

µF X
(|ϕ |)

//

FµF

µF

inF

��

FµF FX
F(|ϕ |) // FX

X

ϕ

��

(6.12)

Algebras of functors have a long time ago been identified as a good formal basis for

mathematics of functional programming (see e.g. [GTW78, Mal90, MFP91, BdM96]).

The key fact behind their usefulness in this context is that regular datatypes, roughly

datatypes defined by enumeration of a finite number of all admissible constructors

of new elements of a datatype from old elements and constants, correspond to initial

algebras of polynomial functors. Here, the role of the polynomial functor is to define

the signature (or shape) of the datatype, i.e. the sum of alternatives of the datatype.
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data List a = Nil | Cons a (List a)

foldList :: b -> (a -> b -> b) -> List a -> b

foldList m f Nil = m

foldList m f (Cons x xs) = f x (foldList m f xs)

data Expr a = Var a | Val Int | Add (Expr a) (Expr a)

foldExpr :: (a -> b) -> (Int -> b) -> (b -> b -> b) ->

Expr a -> b

foldExpr f g h (Var a) = f a

foldExpr f g h (Val n) = g n

foldExpr f g h (Add t u) = h (foldExpr t) (foldExpr u)

Figure 6.2: The inductive datatypes of lists and expressions

Figure 6.2 shows examples of an inductive datatypes in the functional programming

language HASKELL. Here, the datatype Expr a is defined to consist of elements

labelled Var standing for variables, which carry data of type a (a type parameter in the

definition), of elements labelled Val standing for terminals carrying integers, and of

elements labelled Add, which carry a pair of other (previously constructed) expressions.

Nothing else is in the datatype. Such a datatype can be modelled for each object A as

an initial algebra of an endofunctor, EA, where the functor (called shape functor) acts

on a bicartesian closed category, C , of “types and functions” such as Set. It captures

the arities of all constructors as follows:.

EAX = A + Z + X ×X (6.13)

Here, A is an object in C standing for the collection of variables in the expression; +

stands for coproduct in C (disjoint union in Set) and × is the product (cartesian product

in Set). Therefore, the assignment (6.13) expresses formally the fact that elements in

EAX are either variables from A, natural numbers or elements of X ×X . We define

ExprA =def µEA
(6.14)

for each A ∈ C . Now, the carrier, ExprA, of the initial algebra of EA is the type

of expressions constructed inductively from the empty type, 0, by a finite iteration of

application of the constructors. In other words, it is the least solution of the domain-

theoretic equation

ExprA
∼= A+ Z + (ExprA)2

Functions on inductive datatypes are often defined by structural recursion, that is, by
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specifying a collection of functions, one for each constructor of the datatype, which are

used recursively to collapse each level of constructors in an inductively defined element

of the datatype into a value. In the categorical setting, this amounts to giving an arrow

of type EA(X) −→ X – an EA-algebra. The universal arrow out of the initial algebra

into the algebra then corresponds to the recursive application of the algebra at each

level. This follows from an operational reading of (6.12), which is equivalent to the

following, because inEA
is an isomorphism:

(|ϕ |) = ϕ · EA(|ϕ |) · inEA

−1

In words, an element of ExprA is first taken apart to reveal one level of constructors,

then (|ϕ |) is applied to subterms, and finally ϕ is applied to the results to construct a

new X . Figure 6.2 gives a definition of a combinator foldExpr that does exactly this

for any EA-algebra. The reader can observe that foldExpr operates by case analysis

on elements of the datatype, and that it is structurally recursive3.

The uniqueness of the universal arrow out of the initial algebra corresponds in the

programming-language interpretation to uniqueness of the function defined by struc-

tural recursion. Explicitly, a function defined by structural recursion is uniquely deter-

mined by its value on each of the constructors. Equivalently, any algebra morphism out

of the initial algebra is uniquely determined by its target algebra. It therefore suffices

to compare algebras in order to reason about equality of functions defined by structural

recursion.

An important reasoning principle stemming from uniqueness is so-called fusion

which makes it possible to express the composition of an algebra morphism after a fold

as a fold. Formally:

f · (|ϕ |) = (|ψ |) ⇐ f : ϕ −→ ψ (6.15)

6.3.4 Algebras for Monads and Equations

Similar considerations apply to algebras for monads; see [Awo06, Mac97]. In particu-

lar, for any polynomial endofunctor F on a locally ω-cocomplete category C , there is

the free monad, F∗ : C −→ C defined on X as the least fixed point

F∗X = µY.X + FY , (6.16)

where µ binds Y in the rest of the expression. The assignment (6.16) extends to a

functor in the obvious way and defines a monad (see [Awo06]). For C ≡ Set, and F

representing a single-sorted signature Σ, F∗X is the set of finite terms constructed from

3Haskell and other functional languages don’t ensure that functions such as foldExpr are proper

structurally recursive functions.
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Σ on the set of variables X . The multiplication of the free monad, µ, is substitution,

and unit, η, is the interpretation of variables as trivial terms.

An example of a free monad is ExprX when considered as functor in X . Formally,

ExprX ≡ (N + (−)2)
∗
(X)

In general, for any monad (T, ν, η), a T-algebra, ϕ, is an algebra of the underlying

functor satisfying the additional coherence conditions, for any X:

X TX
ηX //X

X

1X

��?
??

??
??

??
??

TX

X

ϕ

��
TX X

ϕ
//

T2X

TX

νX

��

T2X TX
Tϕ // TX

X

ϕ

��

(6.17)

Morphisms of T-algebras are again commuting squares (6.11). The category of T-

algebras is denoted T-Alg. The forgetful functor UT, sending an algebra to its

carrier, and a morphism to the underlying arrow on carriers has a left adjoint, FT ⊣ UT

defined as

X 7−→ T2X
νX // TX (6.18)

f 7−→ Tf (6.19)

Because FT : C −→ T-Alg is a left adjoint, if C has an initial object, 0,

FT(0) ≡ T20
µT0 // T0

is an initial object in T-Alg, i.e. an initial T-algebra. As before, (the underlying arrow

of) an initial algebra morphism is denoted (|ϕ |), where ϕ is an algebra of the monad.

Importantly, algebras of a free monad, F∗ are equivalent to F-algebras by the as-

signment:

FX
ϕ //X 7−→ (| 1X ▽ϕ |) =def ϕ∗ (6.20)

F∗Y
ψ // Y 7−→ FY

Fη // FF∗Y
τY // F∗Y

ψ // Y , (6.21)

where τ : FF∗ =⇒ F∗ is the inclusion of terms with at least one level of symbols

from F as arbitrary terms. It’s worth noting that F∗0 ∼= µF; set theoretically: the set

of ground terms. In (6.20), the fold is out of the initial algebra (6.16), i.e., ϕ∗ is defined
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by the universal arrow in the following situation:

X TX
ηX //X

X

1X

��?
??

??
??

??
??

TX

X

ϕ∗

�
�

���
�

X FXoo
ϕ

TX

X

ϕ∗

�
�

���
�

TX FTXoo τX
FTX

FX

Fϕ∗

��

Operationally, the free algebra, ϕ∗, can be thought of as being defined by iteration of

ϕ.

The story of terms and monads continues for monads not generated just freely, but

modulo a set of equations on terms. Such monads are called term monads and denoted

TΣ, where T stands for “terms” and Σ is a single sorted signature. Even though the

equivalence of Σ-algebras and TΣ-algebras doesn’t hold for this case, one can still

see functions defined by initiality as being defined by structural recursion on the terms

modulo the equations.

6.3.5 Coalgebraic component-based programming

The formalities in the previous section dualise for coalgebras and comonads. In sum-

mary:

1. A coalgebra (X,ψ) of an endofunctor, G : C −→ C is an arrowψ : X −→ GX

2. The final coalgebra is given by the greatest fixed point of the equation

νG ∼= GνG ,

and it is often denoted outG, or just out, and has type νG −→ GνG. It is an

isomorphism.

3. The underlying arrow of a morphism ψ −→ outG is denoted [(ψ )] and called the

unfold of ψ.

4. The cofree comonad over G is defined by the greatest fixed point

G∞X =def νY.X × GY

5. A coalgebra, ψ, of a comonad (D, δ, ǫ) is a coalgebra of the underlying functor
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satisfying in addition the dual of (6.17):

DX X
ǫ

//

X

DX

ψ

��

X

X

1X

��?
??

??
??

??
??

DX D2X
Dψ

//

X

DX

ψ

��

X DX
ψ // DX

D2X

δX

��

(6.22)

The category of D-coalgebras is denoted D-CoAlg.

6. The forgetful functor UD : D-CoAlg −→ C has a right adjoint UD ⊣ FD

defined by

FD(X) = DX
δX // D2X

As right adjoints preserve limits, FD(1) is the final D-coalgebra.

7. G∞(1) ∼= νG, when this makes sense.

It is well known [Jac96, Rei95, Rut00] that coalgebras can be used to give semantics

to objects in object-oriented programming, or state-based systems in general, of which

our component-based systems are an instance.

Consider the following definition of an interface of a component in a hypotheti-

cal component-based language, which is similar in nature to the mainstream object-

oriented languages.

interface IExpr

attribute eval:() -> Int

procedure mult:Int -> ()

In general and somewhat informally, interfaces in the language are given by a col-

lection of attributes and procedures, called collectively methods. Attributes are values,

observations, potentially parametrised, which don’t change the local state. Procedures

are sequences of commands that accept a parameter, change the local state accordingly

and possibly return an observable value. The above example describes an interface of a

component representing expressions, where the attribute eval returns the value of the

expression and the procedure mult presumably4 multiplies the expression by a param-

eter by altering the local state of the expression, i.e. changing the expression in place

rather than returning a copy.

4Guessing from the name. There is nothing in the interface specifying the meaning of mult.
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Such an interface can be modelled categorically as an endofunctor, G : C −→ C

defined on a bicartesian closed category C as:

G =def

∏

i≤n

Gm (6.23)

where each Gm stands for one method, m, in the interface. It is defined as follows:

attributes are represented by constants – function spaces BA for an attribute

attribute a: A -> B ,

where A and B are the interpretations of the type symbols A, B as objects in C .

procedures are represented by the functor (−×B)A for a declaration

procedure: A -> B

So a (−×B)A-coalgebra,

ψ : X −→ (X ×B)A ∼= X ×A −→ X ×B

is thought of as a function taking the current state and a parameter, (x, a) ∈

X ×A, to a new state and a return value in X ×B.

In summary, IExpr corresponds to the functor:

GX ≡ Z ×XZ (6.24)

As described before, in a component based system, each component has potentially

a different interface and the components are linked by pointers, sending each other

messages. For the time being, we describe the standard coalgebraic semantics of just

one object. This is itself a state-based system.

Fix an endofunctor G describing the interface of a state-based system. A colagebra

ψ : X −→ GX specifies one step of the system with state in X , producing all pos-

sible observable behaviour in GX . Dually to the case of algebras where all possible

constructors are collected into one functor, here all possible behaviour is collected in

a functor G. The final G-coalgebra, outG : νG −→ GνG, if it exists, represents the

abstract system with the given interface G. This system is capable of any behaviour

specified by G. Given any concrete system ψ : X −→ GX , the arrow

[(ψ )] : X −→ νG

into the final coalgebra can be thought of as giving for any element x ∈ X , a state,

[(ψ )](x) ∈ νG, of the universal system. The state is such that a run of the abstract

133



system, outG, in this state simulates ψ in state x in the sense that the two systems

produce exactly the same behaviour. I.e., an outside observer wouldn’t be able to

distinguish them by observations only. So [(ψ )] can be thought of as a constructor of

an abstract system from an initial state x with behaviour ψ.

This models faithfully encapsulation in CBP because one can no longer observe

the concrete state in νG in the same sense as one cannot observe the true nature (im-

plementation details) of components in CBP. All that is observable is the behaviour

G(νG). Moreover, the uniqueness of [(ψ )] means that any behaviour of ψ in state x

is represented by a unique element of νG, so one can use equality in νG to compare

behaviour. Informally, two elements x, y ∈ νG are equal if and only if they have the

same observable behaviour.

The arrow, outG of the final coalgebra performs one step of the abstract system in

all possible methods. For G of the form (6.23),

νG
outG // GνG

πi // GiνG

retrieves the i-th method of the interface that G represents. For Gi ≡ (− × B)A,

x ∈ νG, a ∈ A, the arrow

1
x△a // νG ×A

outG×A // GνG ×A
πi×A // GiνG ×A

app // νG ×B ,

(6.25)

where app is application given by the closed structure of C , can be thought of as

sending message i to x, with the argument a. The result is the pair (new state, return

value). The situation is similar for attributes.

From this point onwards the standpoint is taken that datatypes are formally carri-

ers, µF, of initial F-algebras, for some functor F, and that well defined functions on

datatypes are defined by structural recursion, i.e. categorically they are folds (|ϕ |) for

some algebra ϕ : FX −→ X . From this point of view many interesting functions in

FP are necessarily folds, or they factor through a fold. We observe that often the alge-

bras, ϕ : FX −→ X of folds (|ϕ |) have the form ψ ·κX : FGX −→ GF′X −→ GX

for some distributive law κ : FG =⇒ GF′ and a ψ : F′X −→ X . This is investigated

and illustrated below.

6.3.6 Programming expressions, in two ways

As an introduction to the more general development to follow, we show an example

of one problem and two solutions, a functional one and a component-based one. A

categorical semantics is given to both, an algebraic and a coalgebraic one, respectively,

which is later compared formally and a notion of their equivalence is shown.
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data TExpr = CVal Int | CAdd TExpr TExpr

feval (CVal n) = n

feval (CAdd t u) = (feval t) + (feval u)

fmult x (CVal n) = CVal n*x

fmult x (CAdd t u) = CAdd (fmult x t) (fmult x u)

Figure 6.3: Expressions

Expressions, functionally

Figure 6.3 shows a datatype of ground expressions TExpr and a pair of functions:

feval evaluating an expression to a number and fmult multiplying each expression

by an integer parameter, x. We give this program a categorical semantics as an arrow in

a bicartesian closed category C . The category must be such that the following functor

has a least fixed point (e.g. ω-cocomplete).

E =def Z + (−)2 , (6.26)

where Z is an object of C with monoidal functions (×) : C 2 −→ C and (+) : C 2 −→

C ; 2 is the two object category, so X2 ∼= X × X . In the following text the semantic

brackets J, K are used informally to denote interpretations of symbols in the program as

arrows and objects in C . Types are interpreted as objects. So formally we can write:

JTExprK = µE

meaning that the datatype TExpr is interpreted as the carrier of the initial algebra of E.

The functions feval and fmult are interpreted as the pair of arrows

µE

JfevalK△JfmultK // Z × µE
Z . (6.27)

Now observe that both functions are structurally recursive, so they are formally inter-

preted as folds. As for feval, the E-algebra,

ε : Z + Z2 −→ Z ,

corresponding to the meaning of the definition is the pair

ε1 =def Z
1Z // Z

ε2 =def Z2 (+) // Z .
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Altogether:

JfevalK = µE

(| 1Z ▽ (+) |) // Z . (6.28)

As for fmult, first note that the constructors, CVal, CAdd, are interpreted as

JCValK = Z
ι1 // E(µE)

inE // µE

JCAddK = µE
2 ι2 // E(µE)

inE // µE

And it is worth noting that

JCValK▽ JCAddK = inE . (6.29)

The algebra, ψ, for fmult has type ψ : Z + (µE
Z)2 −→ µE

Z. The left component is

clearly simply

ψ1 =def Z
(×)≀ // ZZ

JCValKZ

// µE
Z ,

where (−)≀ is the currying isomorphism C (X×Y, Z) −→ C (X,ZY ), for allX,Y, Z.

The right component of ψ is

ψ2 =def (µE
Z)2

τµE // (µE
2)Z

JCAddKZ

// µE
Z ,

where

τ : ((−)Z)2 =⇒ ((−)2)Z (6.30)

is the obvious natural isomorphism. Altogether, we have:

JfmultK = µE

(| JCValKZ·(×)≀ ▽ JCAddKZ·τµE
|)

// µE
Z (6.31)

Expressions, component-based

We now turn to component-based systems. An example is presented (see Fig. 6.4) and

interpreted coalgebraically, which has the same intended meaning as the functional

program in Fig. 6.3.

Let us first explain the contents of Fig. 6.4. It contains the definitions of two compo-

nents, IVal and IAdd, in a hypothetical component-based language. Both components

are declared to adhere to the interface IExpr, which is defined to accept two messages.

One is an attribute, i.e. it doesn’t update the local state, it is just a value. The type

of the return value of eval is Int, the type of integers. The messages doesn’t accept
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interface IExpr

attribute eval:() -> Int

procedure mult:Int -> ()

component IVal implements IExpr

state value:Int

attribute eval = value

procedure mult(x) { value := value * x; }

component IAdd implements IExpr

state t,u: IExpr

attribute eval = t.eval + u.eval

procedure mult(x) { t.mult(x); u.mult(x); }

Figure 6.4: Implementation of Expr

any parameters. A second message defined in IExpr is mult. It is parameterised by

Int and returns a value of the unit type, which is equivalent to returning no interest-

ing value. But remember, as mult is a procedure, it can change the local state of the

components it is sent to.

An implementation of a component consists of a specification of the type of the

local state. It is Int in the case of IVal and a pair of pointers to components with

interface IExpr in the case of IAdd.

Each component must also define an implementation for each attribute and method

in the interface. As attributes are pure expressions, the symbol = is used to separate

the expression on the right from its name on the left. For the component IVal, the

expression defining the value of eval is just value, i.e. the variable holding the local

state. For IAdd, the expression defining the value of eval is

t.eval() + u.eval()

Here, the dot denotes message sending so the expression t.eval() denotes the return

value of the message eval sent to the component pointed to by the state variable t. The

two return values, integers, are added by (+).

Implementations of methods are sequences of commands separated by ;. The se-

quence itself is enclosed in braces {, }. For IVal, mult updates the local state by the

operator := to the value of the current local state multiplied by the value of the param-

eter x. The implementation of mult for IAdd contains two commands: one sending

message mult with parameter x to the component pointed to by state variable t, the

second one sending message mult with parameter x to the component pointed to by

u. Note that this sequence doesn’t change the local state of the component itself, but

possibly of the components pointed to by t and u.
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Coalgebraic semantics of IExpr

In order to interpret Fig. 6.4 coalgebraically, we impose the requirement that graph of

components is a finite tree of components IVal and IAdd. This assumption is not

expressed in the program. However, both acyclicity and lack of sharing, i.e. the fact

that there are no two distinct paths in the tree of components with the same source

and target, are clearly in line with the intended meaning of the program. Firstly, in

the presence of cycles the processing of recursive messages wouldn’t be terminating.

If sharing was present, the meaning of mult as a function assigning expressions to

expression would be rather weird. Just consider the following graph with one IAdd

component, a, where both t and u are pointing to the same IVal component, v. Then

in the initial state (6.32):

a [1]

t

&&
a [1]

u

88 , (6.32)

where the local state of v is in square brackets, the value of eval sent to a is 2. Sending

message (mult 2) to a results in the state:

a [4]

t

&&
a [4]

u

88 , (6.33)

because v is sent (mult 2) twice, first through t and then through u. In this state,

sending eval to a results in 8. Informally speaking, multiplying an expression with

value 2 by 2 resulted in an expression with value 8. So clearly by prohibiting cycles

and sharing in this program doesn’t loose any desirable behaviour; finiteness is a natural

requirement.

Next, the definitions of IVal and IAdd are interpreted as coalgebras. It has been

already explained in what sense IExpr corresponds to the functor G defined in (6.24).

So each of the components, IVal, IAdd, is interpreted as an G-coalgebra.

For IVal, the local state has type Int, and we put

JIntK =def Z

so we are looking for a coalgebra

JIValK : Z // GZ

In general, as the local state of a component is implicitly defined to be a tuple, a refer-

ence to a local-state variable is interpreted as a projection. Formally, for a component
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with state declaration

state x1 : t1, . . . , xn : tn ,

where xi are names of variables and ti are names of types, a reference xi is interpreted

simply as

JxiK =def πi

Now, as GZ is a product, Z × ZZ, JIValK splits into two arrows:

JIValKeval =def Z
1Z // Z

JIValKmult =def Z
(×)≀ // ZZ

and

JIValK =def Z
JIValKeval△JIValKmult // Z × ZZ (6.34)

As for IAdd, the local state should contain two pointers to other components. So

how should pointers be represented? There are known approaches to programming and

reasoning with pointers [] but here we take a different, more abstract approach. We

observe, that as long as the graph of pointers is a tree and as long as there is no notion

of global state, i.e. all state updates resulting from a message sent to a component x

in the tree are localised within the subtree rooted at x, one can replace a pointer to x

with the abstract component simulating x in its current state. So the state of the IAdd

is formally νG
2.

As discussed in Sect. 6.3.5, sending any message .mi is interpreted as the i-th pro-

jection of the observation obtained by outG. In particular, the messages eval and mult

are interpreted as follows:

J.evalK =def νG
outG // GνG

π1 // Z

J.multK =def νG
outG // GνG

π2 // νG
Z

It clearly holds that

J.evalK △ J.multK = outG (6.35)

Lastly, from the assumption of no sharing, message sending to components pointed to

by different state variables commutes. Formally, for state variables t, u, and arbitrary

messages m, n:

Jt.m(x);u.n(y)K = Ju.n(y); t.m(x)K ⇐ t 6= u
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It is therefore safe to interpret such a sequence of message sending commands in par-

allel.

Remark 6.3.1. More precisely, one can define for a pair of components u, v, with

interfaces U , V , the component (u, v) with interface, U ⊗ V , which has a message

(m,n) for each pair of messagesm in U and n in V , and such that sending the message

(m,n) to (u, v) is equivalent to both u.m ; v.n and v.n ;u.m. See [RBN06] for the

author’s Type-theoretic investigation of such constructions on state-based components.

Putting this all together, the interpretation of IAdd is a colagebra defined as follows:

JIAddKeval =def νG
2 J.evalK2 // Z2 (+) // Z

JIAddKmult =def νG
2 J.multK2 // (νG

Z)2
τνG // (νG

2)Z

JIAddK =def νG
2

(+)·J.evalK2△τνG
·J.multK2

// Z × (νG
2)Z , (6.36)

where τ is as in (6.30).

We have defined coalgebras (6.34), (6.36) interpreting the program in Fig. 6.4. In

order to define an interpretation of a system of components, we introduce some nota-

tion: (x, IVal) denotes a component IVal with state x, and ((t, u), IAdd) denotes a

component IAdd pointing to components t and u. Now define interpretation of com-

ponents as:

J(x, IVal)K =def [( JIValK )](x) : νG (6.37)

J((t, u), IAdd)K =def [( JIAddK )](JtK, JuK) : νG (6.38)

Abstracting on the state of components, x in (6.37), (t, u) in (6.38), one obtains the

functions

Z
J(−,IVal)K // νG

νG
2 J(−,IAdd)K // νG

As the graph of components is a tree, one can observe that a configuration of a system

is exactly a term of type µE and the definition of interpretation of components, (6.37),

(6.38), is structurally recursive and therefore defines the semantic function

Φ =def µE

(| J(−,IVal)K ▽ J(−,IAdd)K |) // νG (6.39)

In summary, a system of components whose graph of components is a tree is in-

terpreted as the behaviour of the component in the root of the tree, which is obtained

inductively.
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Comparing the functional and component-based programs

First, observe that (6.27) is in fact a G-coalgebra so there is the arrow

Ψ =def µE

[( JfevalK△JfmultK )] // νG , (6.40)

which assigns to a term its G-behaviour obtained by iteratively applying feval and

fmult to intermediate results. We can now hope to be able to establish

Ψ = Φ : µE
// νG (6.41)

This doesn’t seem so hopeless as one can observe that Ψ and Φ are defined in terms

of exactly the same components. Namely, after unfolding all definitions in (6.41) one

obtains:

Ψ = [( (| 1Z▽ (+) |) △ (| inE
Z · ι1

Z · (×)≀ ▽ inE
Z · ι2

Z · τµE
|) )]

Φ = (| [( 1Z △ (×)≀ )]▽ [( (+) · π1
2 · outG

2
△ τνG · π2

2 · outG
2 )] |)

Then it follows from basic properties of products and coproducts that for natural trans-

formations κ, κ′ : EG −→ GE, defined as follows:

κ =def (1Z▽ (+)) △ (ι1
Z · (×)≀ ▽ ι2

Z · τ) (6.42)

κ′ =def (1Z △ (×)≀)▽ ((+) · π1
2
△ τ · π2

2) (6.43)

it holds that

Ψ = [( (|G(inE) · κµE
|) )]

Φ = (| [(κ′νG · E(outG) )] |)

Finally, it is straightforward to show that

κ = κ′ (6.44)

and it therefore remains to establish

[( (|G(inE) · κµE
|) )] = (| [(κνG · E(outG) )] |) : µE

// νG . (6.45)

But (6.45) is known (see e.g.[TP97]).
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6.3.7 Adequacy, distributively

In this section, the introductory example of TExpr and IExpr is recast in terms of

distributive laws of endofunctors. This formulation then forms the basis of a generali-

sation in terms of generalised distributive laws.

Expressions and distributive laws of endofunctors

First, note that all non-generic components that occur in 6.42 are

1Z : Z // Z (6.46)

(+) : Z2 // Z (6.47)

(×)≀ : Z // ZZ (6.48)

τ : ((−)Z)2 +3 ((−)2)Z . (6.49)

These are all the following distributive laws of endofunctors, where most of the func-

tors are constant.

Z| 1Z

Z

Z

|Z

Z| (+)

(−)2

(−)2
|Z

(−)Z| (×)≀
Z

Z

|(−)Z

(−)Z| τ

(−)2

(−)2
|(−)Z

Then observe that (6.42) is equivalently

Z × (−)Z| (1Z⊞(+))⊠((×)≀⊞τ)

Z+(−)2

Z+(−)2
|Z × (−)Z

and (6.43) is equivalently

Z × (−)Z| (1Z⊠(×)≀)⊞((+)⊠τ)

Z+(−)2

Z+(−)2
|Z × (−)Z
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for the product and coproduct of distributive laws, ⊠, ⊞. Equation (6.44) then reduces

to

(α⊞ β)⊠ (γ ⊞ δ) = (α⊠ γ)⊞ (β ⊠ δ) (6.50)

for distributive laws, α, β, γ, δ, of endofunctors on the same category. This is proven

by so called abides rule for product and coproduct [MFP91], namely it holds that:

(k▽ l) △ (m▽n) = (k △ m)▽ (l △ n) .

Bialgebras

The proof of (6.45) can be carried out quite straightforwardly by a rudimentary calcula-

tion involving properties of products, coproducts and, importantly, fusion. On the other

hand, [TP97] shows a more abstract proof based on the notion of bialgebra, which was

introduced in Sect. 4.4.2 in terms of generalised distributive laws.

Recall from Sect. 4.4.2 that a when λ is a distributive law of T over U in K , a

λ-bialgebra ϕ is an arrow 1 −→ λ in [T , JU ,K K] or equivalently in JU , [T ,K ]K.

As T and U are theories of functors with structure there exist the forgetful 2-functors

[T , Jo,K K] : [T , JU ,K K] −→ [T ,K ] (6.51)

JU , [o,K ]K : JU , [T ,K ]K −→ JU ,K K (6.52)

which forget either the coalgebra or algebra part, respectively, of a bialgebra. In the

cases of Ex. 4.4.10, i.e. for endofunctors, monads and comonads, the following is

important and known.

Theorem 6.3.2. Consider the components, ordinary functors: [M, Jo,CatK](1, κ) and

JMco, [o,Cat]K(1, κ). These functors have a right and left adjoint, respectively.

Proof. See [TP97], Theorems 7.2 and 7.3.

Corollary 6.3.3. For a (Mco,D)| κ

(M,T)

(M,T)

|(Mco,D) in Cat, the category κ-bialgebras

in Cat, formally JMco, [M,Cat]K(1, κ) has an initial and a terminal object.

Proof. Because right adjoints preserve limits and left adjoints preserve colimits, the

terminal κ-bialgebra is obtained by the action of the right adjoint on the trivial terminal

T-algebra, T1 −→ 1. Likewise, the initial κ-bialgebra is obtained by the action of the

left adjoint on the trivial initial D-coalgebra, 0 −→ D0.

The initial κ-bialgebra given by Corollary 6.3.3 is

T20
µ0 // T0

T!D0 // TD0
κ0 // DT0 (6.53)
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The terminal κ-bialgebra is

TD1
κ1 // DT1

D!T1 // D1
δ1 // D21 (6.54)

It follows that there is a unique morphism from (6.53) to (6.54), whose underlying

arrow has type

T0 −→ D1 (6.55)

When everything is considered up to the isomorphism between (co)algebras of an end-

ofunctor and (co)algebras of its (co)free (co)monad,

F-Alg ∼= F∗-Alg G-CoAlg ∼= G∞-CoAlg (6.56)

one obtains (6.45). We interpret this as the following result about functional and

component-based programs.

Theorem 6.3.4. Consider fixed polynomial functors F, G; a functional program P

thought of as implementing an abstract datatype with interface G by the tuple of func-

tions JP K : µF −→ GµF; a component-based program, R, whose admissible graph of

components has shape µF and where all components have an interface corresponding

to G, formally JGK : FνG −→ νG. Then if there is a distributive law G∞| κ

F∗

F∗

|G∞

such that

JP K = (|G(inF∗) · κµF |)

and

JRK = [(κνG · FoutG )]

where J K has the meaning described above, then P and R are observationally indis-

tinguishable when applied to the same element of µF serving as the initial value of the

abstract datatype, and a description of the graph of components, respectively.

For our case of comparison of functional and component-based programming, it is

important to note that something has been gained by the generalisation from functors to

their free monads and comonads. Because, although (6.56) holds, it is not the case that

distributive laws of endofunctors are isomorphic to distributive laws of the free monad

over the cofree comonad. Clearly, one can lift every distributive law of endofunctors to

a distributive law of a monad over a comonad by iteration and coiteration. But one can

do more: Turi and Plotking in [TP97] show that natural transformations

F(1 × G) =⇒ GF∗ (6.57)

144



give rise to distributive laws G∞|
F∗

F∗

|G∞. So do natural transformations

FG∞ =⇒ G(1 + F) (6.58)

To see how (6.57) and (6.58) correspond to programs, first recall that a polynomial

F describes a the signature of a datatype, or equivalently the graph of components.

A polynomial G stands for behaviour, equivalently interface. And it was shown in

the introduction how one can think of a natural transformation FG =⇒ GF as of a

program operating by case analysis, always matching on one constructor and recursing

to the subterms; equivalently, delegating a message to the immediate subcomponents.

In this light, (6.57) is taking results for subterms, possibly ignoring them, to results

with new subterms, which can be deeper than one layer. In the functional case, this

allows definitions like

mult x (Add t u) = Add t u

or

mult x (Add t u) = Add (Add t t) (Add u u) .

In the component-based case, the first corresponds to

method mult(v) { } ,

i.e. not passing a message to child components and

method mult(v) { t := new Add(t,t); u := new Add(u,u); } ,

i.e. construction of new components. However note that the type F∗ includes the pure

variable term, with no constructors from F in it. This has no counterpart in current

mainstream object-oriented programming, nor in the simplified component-based pro-

gramming as we have described it. The same applies for functions changing the head

constructor of a clause, e.g.:

mult x (Add t u) = Val x ,

which are perfectly legal in functional programming. In component-based program-

ming this would correspond to a change of the type of the component that currently

processes the message. This is allowed in some languages, but not in the mainstream

class-based ones.

On the other hand, (6.58) provides for iterative recursive invocation, such as

mult x (Add t u) = Add (mult x (mult x t)) (mult x (mult x u))

and omitting a constructor in the result
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mult x (Add t u) = t

in the functional case. In the component-based reading, this corresponds to

method mult(x) { t.mult(x); t.mult(x); u.mult(x); u.mult(x); }

The second case, i.e. omitting a constructor has already been discussed.

So clearly, moving to monads has enlarged the class of programs on either side we

are able to formally relate by distributive laws.

Remark 6.3.5. The generalisation used here to conceptually unify thy functorial and

monadic case poses the intriguing question whether similar adequacy results exist for

other notions of distributive law than of a monad over a comonad.

6.3.8 Algebra of distributive laws and programming

Theorem 6.3.4 effectively identifies distributive laws of free monads over cofree comon-

ads with a certain subclass of programs which can be interpreted both a as functional

and component based programs. It follows that the operations on distributive laws de-

scribed in Chapter 5 can be used as operations on programs. Some examples were

presented in the previous section. In the rest of this section we outline the interpreta-

tions of the formal constructions in the respective programming paradigms.

Combining structure

The coproduct⊞ of distributive laws corresponds to combination of struc-

ture.

Functionally, programs p on µE and q on µE′ give a program p⊞ q on µE+E′ . For

instance, say we wanted to extend expressions TExpr with constructor

data TExpr = ... | CMult TExpr TExpr

for representing multiplicative expressions. Consequently, the functions feval and

fmult must be extended with cases for the new constructor, CMult.

...

feval (CMult t u) = (feval t) * (feval u)

...

fmult x (CMult t u) = CMult (fmult x t) u

This bit of code corresponds to a distributive law κ ≡ Z × (−)Z| (⋆)⊠γ

(−)2

(−)2
|Z × (−)Z,

where γ could be defined as λ f g x . (fx, g1). This isn’t however precisely what is

written in the code, but rather
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fmult x (CMult t u) = CMult (fmult x t) (fmult 1 u) .

However, the type of γ, namely ((−)Z)2 =⇒ ((−)2)Z or even the whole κ, forces us

to invoke the recursive call, because of naturality. This is where the monadic general-

isation comes in handy, because the form (6.57) allows us reuse the previous subterm

and to define just a γ′ of type

((−) × (−)Z)2 =⇒ ((−)2)Z

as

γ′ =def λ (t, f)(u, g) . λ x . (fx, u)

which can be lifted to a distributive law of the free monad of (−)2 over the cofree

comonad of (−)Z. Such a distributive law can be then combined by ⊞ with the lifted

κ, because the sum of free monads is the free monad of sum. The complete program is

given by a distributive law of a free monad over cofree comonad.

(Z × (−)Z)∞| κ̃⊞κ̃′

(Z+(−)2+(−)2)
∗

(Z+(−)2+(−)2)
∗

|(Z × (−)Z)∞ ,

where α̃ denotes the iteration of a distributive law G| α

F

F

|G to a distributive

law G∞| α̃

F∗

F∗

|G∞. Note that in terms of changes to source code, changes to

the datatype is an expensive operation in FP as cases for the new constructors of the

datatype must be added to each function in p.

In the component-based case, p ⊞ q corresponds to putting two sets of definitions

of components together to form one large system. In the above example, κ corresponds

to the definition of a new component

component CMult implements IExpr

state t,u: IExpr

attribute eval = t.eval * u.eval

procedure mult(x) = { t.mult(x); }

In terms of changes to source code this is simple, as the two programs are just put

together.

Combination of behaviour

The product ⊠ of distributive laws corresponds to combination of be-

haviour.
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Functionally, when p implements a collection of functions G and q implements a col-

lection of functions G′, p⊠q implements both G and G′. For instance, say we wanted

to implement in addition the function print producing a character string in Str.

This can be given as a distributive law

Str| ρ

Z+(−)2+(−)2

Z+(−)2+(−)2
|Str

i.e. a natural transformation (an algebra indeed) of type Z + Str2 + Str2 =⇒ Str.

The details are obvious. Now one readily obtains the distributive law

(Z × (−)Z × Str)∞| (κ̃⊞κ̃′)⊠ρ̃

(Z+(−)2+(−)2)
∗

(Z+(−)2+(−)2)
∗

|(Z × (−)Z × Str)∞

In terms of source code, the functional case is simple as the definition of print is

just added to the others. In the component-based case, the old implementations of

components must be merged with the new implementations.

This dichotomy has been described by Cook [Coo91] as so-called expression prob-

lem. In the case of distributive laws, there is no difference.

Note that a rudimentary description of products, coproducts, and also composition

of components in the Type-theoretical setting has been carried out by the author in

[RBN06].
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Chapter 7

Conclusion

7.1 Conclusions

7.1.1 Summary

The intent of this thesis was to contribute to the understanding of certain parametrically

polymorphic programs, which, when understood categorically as natural transforma-

tions, resemble categorical distributive laws in that they essentially swap the order of

two functors. We have analysed the situation and defined a generalised distributive law

essentially as a 2-functor

λ : T ⊗ U −→ K (7.1)

where ⊗ is Gray’s lax tensor product of 2-categories and T and U are 2-categories

standing for theories of the functors with structure involved in the distributive law. In

this situation it is said that λ is a distributive law of a T -functor over a U -functor. Our

requirement on the theories, T , U , was only that a theory has a chosen arrow, which

is understood as the underlying arrow of the functor with structure. The characteristic

functor-swapping natural transformation arises from this definition as the 2-cell given

by (2.41) of Def. 2.4.3 for the chosen arrows. Much of the rest of the presented results

about distributive laws, namely the coherence with both functors with structure and the

ability to treat a distributive law both as a model of T and as a model of U follows

from fundamental properties of 2-categories which hold in full generality. We therefore

claim that the characterisation (7.1) is a fundamental characterisation of distributive-

law-like programs in mathematically structured programming. It hasn’t been known

before in such a refined form and by introducing it we have clarified the previously

vague understanding of such programs.

The clarification and demonstration of the connection of distributive-law-
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like programs and Gray’s lax tensor product of 2-categories is the main

contribution of this thesis.

In Chapter 5, we investigated constructions of products, coproducts and compo-

sition of distributive laws in this general setting and showed how the usual specific

constructions arise as instances of the generic case. This alleviates the burden of prov-

ing coherence conditions in many cases.

In Chapter 6, we outlined how our generalised definition matches the previously

defined notions and in Sect. 6.3 we show how distributive laws of “structure over be-

haviour” connect inductive functional programming and coinductive component-based

programming.

7.1.2 Critical Evaluation

The following is a summary of our contributions and non-contributions.

1. In Chapter 3, we defined functors with structure (Def. 3.2.1) as 2-functors into an

arbitrary base 2-category from a 2-category with a chosen arrow called a theory.

2. In Sect. 3.2.1, we recalled that it follows from general results about 2-categories

generated by a 2-sketch, that a model in K of a theory generated by a 2-sketch

is equivalent to a model of the sketch in K , i.e. that it is valid to define such

a model by enumeration of the values of the model on the components of the

sketch. Similarly for morphisms. This results in a notion of a functor with

structure which is very similar to functors with structure in the informal sense,

as one can essentially turn a categorical definition of a functor with structure into

a 2-sketch to obtain a formal functor with structure. In this context we considered

finite-product 2-sketches, i.e. computads with equations on 1- and 2-cells, and

products on 0-cells.

3. In Chapter 4, we defined generalised distributive laws (Def. 4.1.1) parameterised

by a pair of theories of functors with structure essentially as 2-functors from the

Gray’s lax tensor product of the two theories to a base 2-category.

4. This definition is characterised by Theorem 4.1.3, according to which a distribu-

tive law is equivalently a model of T in the forward category of models of U ,

and a model of U in the reverse category of models of T . This corresponds to

the general intuition and other results about distributive laws (see also Sect. 7.2).

5. We further defined an n-ary version of the definition of a distributive law (Def. 4.3.3)

which has an iterated characterisation as a model in an iterated category of

models. It also comes with a strong characterisation theorem (Theorem 4.3.7)
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which allows one to construct an arbitrary-dimensional distributive law from 2-

dimensional distributive laws which pairwise satisfy only a 3-dimensional co-

herence condition (Fig. 4.4). This is a useful tool for the construction of models

and distributive laws whose theories arise from simpler theories by Gray’s tensor

product.

In these results, our contribution lies in the identification and collecting of the rel-

evant results and their presentation in an accessible geometrical style and thus illus-

trating the connection of distributive-law-like programs and Gray’s tensor product of

2-categories. This arises from the connection of Beck’s distributive laws of monads

and Gray’s tensor product, which is obvious as soon as the iterative case is known.

Namely, from the fact that M −→ [M,K ] is a distributive law of monads, the tran-

sition to M ⊗ M −→ K has been proven by Gray in full generality. It is therefore

straightforward to generalise M to an arbitrary 2-category T to arrive at our notion of

a generalised distributive law. The rest of our results, the characterisation theorems and

the theory of higher dimensional distributive laws are just Gray’s results from [Gra74].

In Chapter 5 we consider some common constructions on generalised distributive

laws:

6. In Chapter 5, we describe a general approach to products, coproducts (by duality)

and composition of distributive laws based on the iterative characterisation of

distributive laws as models of functors with structure in a category of models of

a functor with structure.

7. To this end we prove a general product lifting theorem (Theorem 5.1.9) show-

ing that products on objects of the base 2-category can be lifted to products on

objects in the functor category.

8. In Sect. 5.3, we make use of the fact that certain theories of functors with struc-

ture are defined as Gray’s product of one or more simpler theories where one of

them is 2, to define their composition.

The material in this chapter is our own. Our contribution lies in the development of

the constructions in the chosen lax approach, which gives rise to constructions which

are very close to the definitions found in programming. In fact, we demonstrate in

examples that they are literally the same modulo the usual encoding and conventions

that take place when translating 2-categorical concepts to 1-categorical ones 1. This

serves our purpose of linking programming and mathematics.

On a more general level, Chapter 5 illustrates that our lax 2-categorical approach

to distributive laws is viable. It is our belief that other interesting constructions on dis-

tributive laws could be introduced to programming by interpreting other results about

lax natural transformations such as lax adjoints or Kan extensions.

1e.g. the use of pointwise definitions instead of the point-free 2-categorical style
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Finally, in Chapter 6, we apply the developed theory to examples in programming

as follows:

9. We illustrate how Meertens’s functor pullers and McBride and Patterson’s iFunctors

arise as instances of the same scheme of a distributive law of a polynomial func-

tor over an arbitrary functor with structure.

10. In Sect. 6.3, we establish a semantical equivalence of inductive functional and

coinductive component-based programs that arise in a canonical way from a dis-

tributive law.

Although in (9) we haven’t completely subsumed the mentioned notions because we

haven’t considered regular datatypes and shape, we have shown enough for the rest to

be straightforward. Namely, one has to verify that fixed points of endofunctors lift from

K to JT ,K K, for an arbitrary K , similar to the lifting of products in Theorem 5.1.9.

Preservation of shape will then follow from coherence.

Finally, although turning to [HB97] at an informal level we haven’t formally ex-

plained the allegorical approach thereof. It seems plausible that such an explanation

would involve a 2-category of allegories, relators and their natural transformations. We

provide a more thorough comparison in Sect. 7.2.

7.2 Related Work

Distributive Laws in Datatype-generic Programming The direct predecessors of

our work have already been mentioned in the introduction. Here we offer a more

thorough analysis.

Hoogendijk and Backhouse in [HB97, Hoo97] analyse the situation of commuting

relators, so-called zips, in the allegorical setting. As the work is carried out in a differ-

ent formal setting, we offer just an informal comparison of the requirements on zips in

[HB97], Section 4, with Def. 2.4.3 of a quasi-functor of two variables. One can see that

if Alg is a suitable 2-categorical universe of allegories, Fn is a theory of n-ary regular

datatypes, F : Fn −→ Alg and G : Fm −→ Alg are two allegorical datatypes with

underlying arrows f : C n −→ C and g : Cm −→ C , respectively, then what is called,

modulo notation, zip (f, g) in [HB97] is essentially a 2-functor H : Fn⊗Fm −→ Alg

such that H(o,−) = G, H(−,o) = F.

• The “proper natural transformation indexed by an l ∗k matrix of types” given by

a zip (f, g) corresponds the underlying 2-cell H(a,a).

• The comments regarding arbitrary arity corresponds to the requirement that Fk

be a single sorted finite product 2-theory with an underlying arrow of type ok −→

o.
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• The requirement of preservation of projections up to a transposition, τ , corre-

spond to F, G being strongly finite-product preserving, i.e. the product preser-

vation is only up to the isomorphism τ : (Xn)m ∼= (Xm)n.

• Preservation of shape is coherence with the structure of Fk

• The requirement that zip (f, g) and zip (f, h) be coherent with any transforma-

tion α : g =⇒ h, i.e. equation (37) in [HB97]:

αf · zip (f, h) = zip (f, g) ◦ fα (7.2)

is similar to our Equation (2.38). Equation (2.39) follows from a symmetrical

requirement for the first argument of zip.

• It is moreover required in [HB97], (38), that (7.2) be relaxed to an inclusion of

relations. This requirement follows from the nondeterminism and partiality in

the relational setting. This could be captured by not considering a 2-categorical,

i.e. a Cat-enriched setting, but a Cat⊆-enriched setting.

• Section 4.2 in [HB97] spells out coherence of H with composition and units,

which can be readily seen to be our items (1)-(3) in Def. 2.4.3.

In summary, we conjecture that allegorical zips can be made precise in our setting (up

to nondeterminacy and partiality) as 2-functors out of Gray’s lax tensor of theories of

regular datatypes into a suitable 2-category of allegories.

Meertens’s functor pullers [Mee98, Mee96] can be seen as a categorical version of

so-called half-zips in [HB97], which are like zips with half of the symmetrical require-

ments on a quasi functor dropped.

The theme of a traversal of a datatype, F, by a functor, T, standing for the collected

result or effect later appears for different functors of effects. For instance, in [MBJ98]

natural transformations of type FTm =⇒ TF are used for a monad T. These must

be coherent with the structure of the monad and preserving the shape of F. Later,

McBride and Patterson observe in [MP08], that one doesn’t need a monad to define a

traversal but that an applicative functor is enough for many applications such as parsing

or crushing (evaluation). The same kind of distributive-law-like polymorphic program

is associated in [GdSO09] with the semantics of traversals in object-oriented program-

ming, so-called iterators.

In all these cases, the additional structure is fixed in the case of the other functor,

T, and there is a notion of a datatype, F, and its shape, which must be preserved. We

generalise this situation to a pair of functors with structure and natural transformations

which must be coherent with both of them.
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Distributive laws à la Beck Once the connection of such distributive-law-like pro-

grams and Beck’s distributive laws of monads [Bec69] is made, together with the ob-

servation that the single notion alone won’t suffice, one is naturally interested in what

has been done in terms of its generalisation.

In [PW99], Power and Watanabe give an overview of the notions of distributive

laws of monads and comonads and study their relations. In [LPW00], the spectrum

of derived distributive laws is extended to the weaker distributive laws of pointed end-

ofunctors and plain endofunctors. In both cases, Street’s iterative characterisation of

Beck’s monads in [Str72] is used to define categories of such distributive laws. This

is used, among other things, to systematically enumerate and study the relations of the

mentioned notions of distributive laws. Our 2-functorial characterisation of these cate-

gories improves on theirs in exhibiting the general nature of these and similar compar-

isons and therefore some of the specific characterisation theorems proven in [LPW00]

become just instances of one general characterisation theorem, Theorem 4.1.3. See

also Remark 4.1.4. We believe this is helpful as it separates the specifics from the

generics.

Recently Cheng in [Che07] studies iterated distributive laws of monads. Again,

Street’s characterisation theorem is used and it is remarked that a monad in K is a

2-functor from a suitable 2-category, ∆, and that ∆ −→ [∆,K ] ∼= ∆⊗∆ −→ K , in

our notation. The main theorem in the paper is a characterisation of iterated distributive

laws of monads, which becomes an instance of the Higher-dimensional Characterisa-

tion Theorem 4.3.7 in this thesis for the specific case of ∆. See also Ex. 4.3.9.

As for constructions on distributive laws, Manes and Mulry in [MM07] give a com-

prehensive overview for monads. Our treatment covers some of the constructions ex-

hibited there in a greater generality while eliminating the proofs of coherence carried

out explicitly. On the other hand, their collection is more complete.

Lawvere Theories, etc. The transition form Street’s 2-category Mnd(K ) of mon-

ads in K to [M,K ] is of crucial importance because it allows one to make the step to

[T ,K ] and then to [U , [T ,K ]] ∼= [T ⊗ U ,K ] for all theories T , U . This com-

pletes the connection of certain parametrically polymorphic programs on datatypes,

through Beck’s distributive laws of monads to categorical model theory. This, we be-

lieve, brings the programs to their true foundations and opens up a chasm of further

possibilities.

The leading example in this area of research is the research programme of Hyland,

Plotkin and Power into the semantics of computational effects [PP02, HPP06, HLPP07,

PP08]. From the starting point of Moggi’s notions of computations as monads, the au-

thors argue e.g. in [PP02] that monads in the context of computational effects are a no-

tion derived from operations (such as read and write for computations with input

and output) while the operations should be considered primitive. One then specifies
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operations in a suitable notion of a sketch, from which arises a theory with a corre-

sponding notion of a model. The notion of theory, the central semantical notion used

in this line of work is that of a countably enriched Lawvere theory [Pow99], and the

corresponding notion of a model is a finite cotensor preserving V -functor. When V is

Cat, one obtains a countable Lawvere 2-theory, for which there is a notion of a sketch,

which allows one to specify notions such as monoidal categories or categories with a

monad, considered also in this thesis. The corresponding notion of a model considered

there is however that of a pseudo V -functor and pseudo V -natural transformation, as

opposed to our lax notions.

7.3 Future Work

Functors with additional structure In the thesis we studied a certain notion of a

combination of functors with structure which is at the same time a coherent morphism

of both (all) functors with structure involved. We avoided the question of the “correct”

notion of the additional structure of functors simply because the range of examples pre-

sented here indicates that there is no such single notion which would be at the same time

general and strong enough. In this thesis we simply use different specific approaches

to different specific examples.

In order to address this shortcoming it seems that we would need to consider func-

tors with structure parameterised by a notion of additional structure such as linear,

finite-product, with-constants, etc. One can then expect that more complex additional

structures of functors involved in a distributive law will arise from simpler additional

structures, among other things by distributive laws of a simpler kind. Such a situation

was encountered here in the example of applicative functors.

There seems to be a myriad of further structure when one takes further the sim-

ple idea presented in this thesis. We believe it deserves to be studied in order to de-

velop deep theoretical understanding and useful mathematics of coherence properties,

which present in their more complicated forms a major hurdle in areas such as higher-

dimensional category theory.

In [KPT99] a general framework for sketches in the enriched biclosed monoidal

setting is described, which seems to be a good starting point for such an investigation.

Regular distributive laws An obvious shortcoming of this work on the practical

front is that we haven’t described distributive laws of datatypes. Section 5 illustrates

a general approach to definitions of combinators on distributive laws – by lifting com-

binators on functors with structure. We considered products, coproducts and compo-

sition, but not fixed points. This is certainly desirable in order to define distributive

laws of all regular datatypes over functors with structure. It would involve a lifting of
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,

in a K , which represent regular functors for a polynomial F, to diagrams in JT ,K K.

Transpositions – shape preservation After we have defined generalised distributive

laws of all regular datatypes over endofunctors, it shouldn’t be difficult to show that

they preserve the shape of the datatype. However, a problem arises in defining dis-

tributive laws of datatypes over datatypes in the total setting as in order for a function

like

zip :: ([x],[y]) -> [(x,y)]

to be well defined, the two lists must have the same length. Similarly for

zipTree :: (Tree x, Tree y) -> Tree (x,y)

transpose :: [[x]] -> [[x]]

where the two trees must have the same shape and all lists in the lists of lists must have

the same length. Otherwise the functions are ill-defined2.

More formally, let ST denote the set of shapes of datatype T, and let Ts denote the

subtype of T of elements of shape s. Then for any s ∈ STree, m,n ∈ N = S[ ], there

are distributive laws

zips : (×) ◦ Tree2
s =⇒ Trees ◦ (×)2

transposem,n : [[ − ]n]m =⇒ [[ − ]m]n

This collection is moreover natural in the shapes. It would be desirable to make such

shape constraints a part of the type and express formally that the above distributive

laws are a family natural in the shape, rather than ad hoc instances. In order to carry

this out in the total setting one would have to turn to dependent types, where one can

be more precise about the types and express such shape constraints.

Abbott, Altenkirch and Ghani develop in [AAG03] an approach to datatypes, which

is fundamentally built on a notion of shape. Datatypes are formalised as containers of

data, which have shape (a type of positions) and an assignment of a datum to each

position. Categorically, datatypes are indexed by a category of shapes, S, i.e. they are

represented as functors S −→ ∗, where ∗ is a category of types. It would be interesting

to see distributive laws in this setting.

2The way this is handled in practice is by truncating the arguments to the same shape.
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Dependently typed distributive laws There is no doubt that distributive laws appear

in programming with dependent types. How does the theory apply to that setting, or

what is needed to make it work?

An example why it might be useful was given above when we indexed types by

shapes but one could go further and consider the general dependently typed setting.

For instance, this could describe situations when shape is not only preserved but also

changed in a systematic way.

Distributive proofs No less interesting would be to consider distributive laws of

proofs under the Curry-Howard isomorphism. A distributive law of functors with struc-

ture can be seen as an underlying natural transformation together with witnesses of

proofs of coherence conditions. Composition and other operations on distributive laws

construct proofs of coherence for the results from the proofs for the arguments. In our

case, these proofs were just simple equational ones. This could be taken further.

For instance, consider the function

Ts(X)2
zip // Ts(X

2)
eqX // Ts(B)

and // B , (7.3)

where eqX is boolean equality on X and and is the lifting of and : B2 −→ B to

T’s. The function (7.3) is a boolean equality of trees which assigns true to a pair

of trees with equal elements. How can this be defined with propositional equality,

and in general for other inductive/coinductive structures and general propositions? For

instance, it could be that inductive proofs of proposition P about an inductive type T

are defined in terms of a distributive law of T over P.
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