
Swierstra, Wouter (2009) A functional specification of
effects. PhD thesis, University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/10779/1/Thesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33564156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

A Functional Specification of Effects

Wouter Swierstra

February 2009

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy.

Abstract

This dissertation is about effects and type theory.

Functional programming languages such as Haskell illustrate how to

encapsulate side effects using monads. Haskell compilers provide a hand-

ful of primitive effectful functions. Programmers can construct larger com-

putations using the monadic return and bind operations.

These primitive effectful functions, however, have no associated defini-

tion. At best, their semantics are specified separately on paper. This can

make it difficult to test, debug, verify, or even predict the behaviour of ef-

fectful computations.

This dissertation provides pure, functional specifications in Haskell of

several different effects. Using these specifications, programmers can test

and debug effectful programs. This is particularly useful in tandem with

automatic testing tools such as QuickCheck.

The specifications in Haskell are not total. This makes them unsuit-

able for the formal verification of effectful functions. This dissertation over-

comes this limitation, by presenting total functional specifications in Agda,

a programming language with dependent types.

There have been alternative approaches to incorporating effects in a de-

pendently typed programming language. Most notably, recent work on

Hoare Type Theory proposes to extend type theory with axioms that pos-

tulate the existence of primitive effectful functions. This dissertation shows

how the functional specifications implement these axioms, unifying the

two approaches.

The results presented in this dissertation may be used to write and ver-

ify effectful programs in the framework of type theory.

i

Contents

Abstract i

Acknowledgements v

1 Introduction 1

1.1 Effects . 2

1.1.1 A brief history . 2

1.1.2 Monadic I/O . 4

1.1.3 The challenge ahead 5

1.2 Related work . 5

1.2.1 Tackling the Awkward Squad 6

1.2.2 Hoare Type Theory . 7

1.2.3 Interactive programs in dependent type theory 7

1.2.4 The essence of multitasking 8

1.3 Overview . 8

2 Functional specifications 11

2.1 Purely functional data structures 11

2.2 The IO monad . 13

2.3 Implementing queues . 14

2.4 Mutable state . 17

2.5 Teletype interactions . 23

2.6 Concurrency . 28

2.7 Discussion . 40

3 Structuring Functional Specifications 42

3.1 The Expression Problem . 42

3.1.1 Evaluation . 45

ii

3.1.2 Automating injections 46

3.1.3 Examples . 49

3.2 Structuring syntax . 51

3.3 Virtual machine . 54

4 Software transactional memory 59

4.1 Syntax . 61

4.2 Specification . 63

5 Dependently typed programming in Agda 67

5.1 Agda basics . 67

5.1.1 Implicit arguments . 69

5.1.2 Indexed families . 70

5.2 Pattern matching . 72

5.3 Proofs . 74

5.4 Dependent pairs . 75

5.5 Universes . 76

6 A Total Specification of Mutable State 79

6.1 Syntax and semantics of mutable state 79

6.2 Automatic weakening . 84

6.2.1 Manual weakening . 85

6.2.2 An alternative proof 86

6.2.3 Smarter constructors 87

6.3 Discussion . 89

7 Distributed Arrays 91

7.1 Mutable arrays . 92

7.2 Distributed arrays . 95

7.3 Discussion . 102

8 The Hoare state monad 103

8.1 A problem of relabelling . 103

8.2 A direct proof . 105

8.3 The Hoare state monad . 108

8.4 Relabelling revisited . 113

8.5 Discussion . 115

iii

9 Implementing Hoare Type Theory 116

9.1 An overview of Hoare Type Theory 116

9.2 An implementation of Hoare Type Theory 119

9.3 Comparison . 124

10 Discussion 127

10.1 Overview . 127

10.2 Further work . 128

10.3 Conclusions . 130

iv

Acknowledgements

I would like to thank my supervisor, Thorsten Altenkirch, for his guidance.

Thorsten not only provided me with inspiration and ideas, but also gave

me the freedom to pursue my own research interests – even those not di-

rectly related to my thesis.

I would like to thank my examiners, Graham Hutton and Greg Mor-

risett, for taking the time to read this dissertation and for providing many

suggestions for improvement. Peter Hancock and Iain Lane also provided

valuable feedback on parts of this dissertation, for which I am grateful.

I would like to thank my office mates in Nottingham over the years

for their company and friendship: James Chapman, Peter Hancock, Mauro

Jaskelioff, Conor McBride, Peter Morris, Nicolas Oury, and Rawle Prince.

Finally, I would like to thank Sanne for her love and support.

v

Chapter 1

Introduction

In the light of the ubiquity of modern information technology, it is rather

worrying that large software systems are rarely free of bugs. Developing

robust software systems is one of the major challenges of the 21st century.

One promising approach to more reliable software is strong static typ-

ing. Mainstream object-oriented languages such as C# (Microsoft, 2001) or

Java (Gosling et al., 1996), enforce a more stringent type discipline than

their low-level predecessors. This trend is even more evident in functional

languages. The Haskell (Peyton Jones, 2003) type system, for example, is

constantly being refined in pursuit of increasingly strong static guarantees.

At the very end of the correctness spectrum, theorem provers such as

Coq (Bertot and Castéran, 2004), Isabelle/HOL (Nipkow et al., 2002), and

PVS (Owre et al., 1992) are used to verify properties of computer programs.

These systems typically use an abstract model to represent the software

system. Such tools, however, have not been designed for programming.

These two avenues of research converge in dependently typed program-

ming, where the language of proofs and programs coincide. Martin-Löf

type theory (Martin-Löf, 1984) was originally proposed as a foundation of

constructive mathematics. In such a type theory, you can view a type as

a program’s specification; the inhabitants of a type correspond to the pro-

grams that satisfy the corresponding specification (Nordström et al., 1990).

Despite its obvious virtues, dependently typed programming is still in

its infancy. There are many hurdles that must be overcome before program-

ming languages based on dependent types can be suitable for mainstream

adoption. This thesis tackles one of them.

1

1.1 Effects

Martin-Löf type theory is nothing like a modern programming language.

There are no floating point numbers, exceptions, concurrency, GUIs, data-

base bindings, or any kind of Input/Output. The type theory itself is noth-

ing more than a typed lambda calculus.

Yet functional programming languages, such as Haskell or ML (Milner

et al., 1997), demonstrate how a functional programming language may

be constructed on top of a small, core lambda calculus. If we intend to

program in type theory, we would do well to start by studying how modern

functional programming languages incorporate such features.

Before we can do so, we need to fix some terminology. Broadly speak-

ing, an effect is any consequence of executing an expression besides return-

ing a result. Forking a thread, throwing an exception, writing to a file, or

updating mutable state are all examples of effects.

A function is called pure if it satisfies the following two properties:

• Executing the function has no observable effects, besides returning its

result.

• The result of the function only depends on the value of its arguments.

This forbids functions that consult data on the web, measure the tem-

perature of the CPU, etc.

A programming language is called pure if all defined functions are pure

functions by default.

1.1.1 A brief history

Early functional languages, such as Lisp (McCarthy et al., 1962), have a sim-

ple treatment of I/O. Automatic garbage collection precludes many low-

level memory errors. Compilers provide a handful of primitive functions,

such as print and read to interact with the user, to perform effects. These

functions are impure: when they are executed, they have additional side ef-

fects besides returning a value. Many modern functional languages, such

as ML, have a similar policy regarding effects: they do not distinguish be-

tween pure and impure functions.

2

This approach is less suitable for non-strict functional languages, where

it is unclear when an expression will be evaluated. Consider the following

list in Haskell:

xs = [print "Hello", print "Dave"]

In a non-strict language it is not clear what text, if any, will get printed. If

we only compute the length of the list, for example, neither element of the

list need be evaluated further. Consequently, nothing will be printed. On

the other hand, pattern matching on value stored in the head of the list will

trigger the evaluation of the first print statement. Finally, we could also

compare all the elements of the list to the unit value, which would require

the entire list to be fully evaluated.

To predict the order that effects occur, you need to know the exact order

in which expressions are evaluated. This is relatively easy to predict in a

strict language, such as Lisp or ML, but much harder in lazy languages. For

that reason, Haskell pursued alternative approaches to dealing with I/O.

The very first installments of Haskell provided side-effecting programs

that had the following type:

type Dialogue = [Request]→ [Response]

A Request might ask the operating system to write a String to a file or read

input from a handle. In a Response, the operating system may, for exam-

ple, acknowledge the request, report an error, or return the String a user

entered. The idea of that effectful functional programs can be modelled as

stream processors can be traced back to Landin (1965).

While this approach is conceptually quite simple, it does have several

serious drawbacks.

• It is easy to make a synchronization error. You have to carefully keep

track of those responses in which you are interested. In large pro-

grams, the number of responses can be quite substantial: is the infor-

mation for which you are looking in the 26th or 27th response from

the operating system?

• It is quite easy to examine the answer to a question that you have not

yet asked. Depending on the exact semantics, this will cause your

program to crash or diverge.

3

• Furthermore, this simple model cannot cope well with concurrency:

if two processes each request information from the operating system,

there is no way to predict which question the operating system will

answer first.

• Most importantly, however, such programs are non-compositional:

there is no way to compose two Dialogue functions to construct a

larger Dialogue.

Although solutions have been proposed to overcome some of these re-

strictions, this approach to I/O was abandoned after Haskell version 1.3.

1.1.2 Monadic I/O

In the late 1980’s, Moggi (1989, 1991) observed that the denotational seman-

tics of many effects shared a common structure: all these semantics formed

a categorical structure known as a monad. A monad is a functor m together

with a pair of operations:

return :: a→ m a

join :: m (m a)→ m a

Initially monads were used to study homological algebra (Mac Lane, 1971)

but they soon found other applications, most notably in universal algebra.

Moggi was the first to apply monads to the study of programming lan-

guage semantics.

At the same time in the functional programming community, several

people stumbled upon monadic structures. According to Wadler (1992),

Spivey (1990) used monads at the same time to structure exception han-

dling in pure functional languages. Thompson (1990) was one of the first

to develop a semantics of I/O for lazy languages. In particular, Thomp-

son presents several combinators for composing interactive programs that

we would nowadays recognise as being monadic. Gordon (1994) mentions

how Cupitt refined Thompson’s combinators when developing the Kent

Applicative Operating System (Cupitt, 1989; Turner, 1987). Cupitt discov-

ered the following two primitive combinators:

return :: a→ interact a

comp :: (a→ interact b)→ interact a→ interact b

4

These two combinators correspond exactly to the unit and Kleisli-composi-

tion of a monad.

All these ideas were brought together by Wadler (1990, 1992). Initially,

he proposed to use a generalised version of list comprehensions to write

monadic expressions. Later Peyton Jones and Wadler (1993) showed how

monads could be used to structure functional programs in an imperative

fashion. These ideas were subsequently implemented in the Glasgow Has-

kell Compiler. When the final version of the Haskell Report (Peyton Jones,

2003) was written, monadic I/O was the established method of incorporat-

ing effects in a non-strict language.

Since then, Haskell’s I/O has been augmented with a foreign function

interface (Chakravarty, 2002), concurrency (Peyton Jones et al., 1996), soft-

ware transactional memory (Harris et al., 2005), and many other features.

Despite these new features, the underlying concept of monadic I/O has

remained unchanged.

1.1.3 The challenge ahead

Although one might be tempted to use Haskell’s monadic approach to I/O

in a dependently typed programming language, there are good reasons to

explore alternatives.

Dependently typed programming languages constitute a single frame-

work for both proofs and programs. Haskell’s monadic I/O shows how to

safely incorporate effects in a pure functional language, but it does not give

effects meaning. If we wish to write verified effectful programs we must

know how effects behave. This is the central problem this thesis addresses.

1.2 Related work

There is a large body of research into suitable logics for reasoning about

effects. Indeed, one of the earliest challenges for computer science was to

find semantics for concepts such as mutable state, concurrency, and inter-

rupts. We will briefly sketch the wider context of this work. We will give a

more detailed comparison to closely related work in the latter chapters of

this thesis.

5

1.2.1 Tackling the Awkward Squad

Peyton Jones (2001) has given semantics for several effects in Haskell’s IO

monad. This semantics is given by a process calculus, leaving the pure part

of the language unspecified. Evaluation of pure functions corresponds to a

silent transition; executing effects give rise to more interesting transitions.

For instance, the transition rule for putChar is:

{E[putChar c]}
!c
−→ {E[return ()]}

This rule states that if the next effect to execute is putChar c, the program

prints c and continues by executing E[return ()]. The notation E[m] is used

to denote an evaluation context where the m is the next expression to exe-

cute. The shorthand !c is used to denote that the character c is printed to

standard output.

Two processes P and Q can be composed in parallel, written P | Q. This

makes it possible to give a straightforward treatment of concurrency. The

same operator is used to record information about the computer’s memory.

For instance, P | 〈M〉r expresses that there is a process P running and that

the expression M is stored at the memory location r.

Peyton Jones’s semantics form an excellent tutorial on monadic I/O in

general, but there are several reasons to investigate alternative semantics.

The semantics leaves the pure fragment of the language unspecified.

While giving a complete semantics of Haskell is certainly beyond the scope

of the paper, it leaves some important questions unanswered. When may a

pure function be evaluated silently? What happens when the evaluation of

a pure function fails to terminate? When is an expression pure or impure?

Such questions must be addressed before the semantics can be used for the

formal study of effectful programs.

Furthermore, the treatment of binding and scoping is rather ad hoc.

Peyton Jones introduces an explicit ‘end of scope’ operator to limit the

scope of freshly allocated references. There are several rules to shuffle such

operators through a process expression. The application of such rules will

introduce a substantial overhead to the verification of programs that allo-

cate several references.

It certainly bears repeating that Peyton Jones (2001) presents a clear in-

troduction to the semantics of various effects and monadic I/O in general.

The points outlined above, however, make it unsuitable for our purpose.

6

1.2.2 Hoare Type Theory

Hoare Type Theory (Nanevski and Morrisett, 2005; Nanevski et al., 2006)

extends traditional type theory with a new type constructor to decorate

computations with preconditions and postconditions. Inhabitants of the

Hoare type {P} x : A {Q} correspond to computations that, provided the

precondition P holds and the computation terminates, will return a value x

of type A satisfying the postcondition Q.

Hoare Type Theory has been implemented as an axiomatic extension to

Coq (Nanevski et al., 2008). The resulting system, Ynot, consists of a col-

lection of axioms that postulate the existence of the Hoare type and several

primitive functions that inhabit this type. Programmers can then use these

functions to write effectful expressions, prove properties of these programs

in Coq, and extract verified programs to Haskell or ML.

In contrast to Hoare Type Theory, we will focus on a specification of

effects that does not extend our type theory with new axioms. As a result

we will not have to show that our axioms preserve consistency; on the other

hand, we will be more constrained by the theory in which we work – our

programs will not be able to use general recursion or higher-order store.

We will discuss the relation between the functional specifications pre-

sented in this thesis and Hoare Type Theory in greater depth in Chapters 8

and 9. There we will show how our functional specifications form a model

of (the core of) Hoare Type Theory.

1.2.3 Interactive programs in dependent type theory

Hancock and Setzer (2000) have given a type-theoretic description of inter-

action structures. They propose to model interactive interfaces by a four-

tuple (S, C, R, n):

• The type S corresponds to the set of all possible states;

• For every state s : S, there is a set of valid commands C s;

• Every command c : C s induces a set of valid responses R s c;

• Given an initial state s, command c, and response r, the function n

will compute the next state of the system.

7

Hancock and Setzer show how such interaction structures give rise to pred-

icate transformers. Hancock (2000) has shown that such structures are

closed under many familiar operations from the refinement calculus (Back

and von Wright, 1998).

Some of the functional specifications we present in this thesis could also

be written as such interaction structures. By doing so, we could then use

the various combinators to build larger, more complex systems. While this

is certainly a promising direction for further research, it is beyond the scope

of this thesis.

1.2.4 The essence of multitasking

Harrison (2006) has described how to use the resumption monad (Papaspy-

rou, 2001) to give a specification in Haskell of an operating system ker-

nel. Such a kernel must deal with asynchronous exceptions, preemption,

message passing, and other effects associated with operating systems. In

this thesis we are more concerned with the effects relevant to program-

ming, rather than the design of operating systems. Indeed, Harrison men-

tions that ‘it is not the intention of the current work to model the awkward

squad,’ and does not explore this line of research further. This is precisely

the goal of this thesis.

1.3 Overview

Synopsis Following this chapter, we will give an introduction to func-

tional specifications of effects in Haskell (Chapter 2). More specifically, we

will give functional specifications of mutable state, teletype interactions,

and concurrency. We assume a basic familiarity with functional program-

ming and Haskell in particular. Having read any introductory textbook on

Haskell (Bird and Wadler, 1988; Hutton, 2007) should be sufficient. Chap-

ter 2 not only serves to introduce the general direction of research, but also

highlights the limitations of trying to write such specifications in a lan-

guage without dependent types.

Chapter 2 gives separate functional specifications of various effects in

isolation. Yet many programs rely on several different kinds of effects. To

tackle this problem, we will discuss how to combine the specification of

8

different effects in a modular fashion and describe a virtual machine on

which different effects may be executed (Chapter 3). We will illustrate how

to define new specifications in this framework by giving a functional spec-

ification of software transactional memory (Chapter 4).

Before we resolve some of the limitations of our specifications in the

earlier chapters, we give a brief introduction to dependently typed pro-

gramming in Agda (Chapter 5). We will not assume any familiarity with

the language.

Using Agda we will give a total functional specification of mutable state

(Chapter 6), thereby resolving many of the problems of the corresponding

Haskell specification presented in Chapter 2. Besides implementing the

specification itself, we will show how smart constructors that automate the

weakening of references facilitate programming with our specification.

The specification in Chapter 6 can be extended to incorporate more

static information. In Chapter 7 we illustrate how to constrain array ac-

cess operations to write efficient distributed algorithms.

In Chapter 8 we will describe the Hoare state monad, a general ab-

straction for writing verified stateful programs. We will illustrate its use

by proving that a simple tree relabeling function satisfies its specification.

Furthermore, it forms a crucial part of our model of Hoare Type Theory in

Chapter 9.

Theses Together these individual chapters support the four main theses

borne out by this dissertation:

• Functional specifications can provide a formal semantics of the ‘Awk-

ward Squad.’

• To write precise functional specifications, we need to work in a pro-

gramming language with dependent types.

• These specifications are a viable alternative to the axiomatic approach

to side effects that is put forward by Hoare Type Theory and Haskell.

• Such functional specifications may provide the interface to the real

world for tomorrow’s dependently typed programming languages.

9

Contributions This dissertation makes several novel contributions, some

of which have been published previously:

• This dissertation presents functional specifications of mutable state,

teletype I/O, concurrency and transactional memory in Haskell. Por-

tions of Chapter 2 have been published previously (Swierstra and Al-

tenkirch, 2007).

• Chapter 3 describes a general technique for combining data struc-

tures and free monads in Haskell. It is loosely based on previous

work (Swierstra, 2008). Neither the virtual machine in Chapter 3

nor the functional specification of software transactional memory in

Chapter 4 have been published separately.

• Chapter 6 presents a novel, total specification of mutable state.

• Based on existing work (Swierstra and Altenkirch, 2008), Chapter 7

presents a total specification of mutable arrays and distributed arrays.

It illustrates how a language with dependent types may be used to

enforce domain specific invariants.

• The Hoare state monad in Chapter 8 and its application in the im-

plementation of Hoare Type Theory in Chapter 9 have not been pub-

lished previously.

The following chapters will deliver these contributions and support the

four central theses.

10

Chapter 2

Functional specifications

2.1 Purely functional data structures

We have a solid mathematical understanding of functions that are both

pure and total. As a result, it is relatively easy to test, debug, and formalise

the properties of these functions. To illustrate this point we will start this

chapter by implementing several well-known data structures in Haskell.

A simple data structure to implement in any functional language is a

stack. We can represent a stack using a list; the various operations on stacks

are straightforward to implement by pattern-matching on the list:

type Stack a = [a]

push :: Stack a→ a→ Stack a

push xs x = x : xs

top :: Stack a→ Maybe a

top [] = Nothing

top (x : xs) = Just x

pop :: Stack a→ Maybe (Stack a)

pop [] = Nothing

pop (x : xs) = Just xs

We can formulate properties that our stacks should satisfy. For instance,

the characteristic property of a stack is that the last element to be added to

the stack is the first element that will be popped.

lifoProp :: Int→ Stack Int→ Bool

lifoProp x xs = top (push xs x) ≡ Just x

11

By using automated testing tools such as QuickCheck (Claessen and

Hughes, 2000), we can check such properties of our implementation of

stacks:

*Main> quickCheck lifoProp

OK, passed 100 tests.

This gives us some degree of certainty that this property does hold.

To convince ourselves further, we can prove such properties using equa-

tional reasoning:

top (push xs x)

≡ {definition of push}

top (x : xs)

≡ {definition of top}

Just x

These proofs of properties of pure and total functions are especially amen-

able to mechanised verification in proof assistants such as Coq (Bertot and

Castéran, 2004) or Agda (Norell, 2008, 2007).

This example serves to illustrate the wide range of techniques available

to debug, test, and reason about pure functional programs.

In a similar vein, we can use lists to implement queues:

type Queue a = [a]

enqueue :: Queue a→ a→ Queue a

enqueue xs x = xs ++ [x]

front :: Queue a→ Maybe a

front [] = Nothing

front (x : xs) = Just x

dequeue :: Queue a→ Maybe (Queue a)

dequeue [] = Nothing

dequeue (x : xs) = Just xs

However, there is a problem with this definition. When we enqueue a new

element, we need to traverse the entire queue. For a queue with n elements,

enqueue is O(n). For simple data structures such as queues, we should re-

ally be able to do better.

12

Okasaki (1998) has shown how to give a more efficient purely functional

implementation of queues. Here we will take a slightly different approach.

We will give an impure functional implementation of queues using mutable

references.

2.2 The IO monad

In Haskell, a value of type IORef a is a mutable reference to a value of type

a. There are three basic functions to manipulate such mutable references:

newIORef :: a→ IO (IORef a)

readIORef :: IORef a→ IO a

writeIORef :: IORef a→ a→ IO ()

Given an initial value, the newIORef function creates a reference storing

that value; the readIORef function reads the value stored in its argument

reference; finally, the writeIORef function writes a new value to a reference,

overwriting any previous value stored therein. Note that these functions

have no pure definition, but are primitives provided by a Haskell compiler.

These three functions return values in the IO monad. In the context of

Haskell, a monad is any type constructor m that supports the following two

operations, subject to certain coherence conditions:

return :: a→ m a

(>>=) :: m a→ (a→ m b)→ m b

The return function lifts a pure value into the monad. The operator >>=,

usually pronounced ‘bind,’ performs the computation associated with its

first argument and passes the result to its second argument. As these are

the only functions available to manipulate monads, programmers must se-

quence computations explicitly using the bind operator. In the case of the

IO monad, return and bind are primitive functions.

As computations are first class values, we can define new control struc-

tures. Consider the following examples:

(>>) :: IO a→ IO b→ IO b

p >> q = p >>= λx→ q

13

The >> operator sequences two computations, but discards the result of the

first.

sequence :: [IO a]→ IO [a]

sequence [] = return []

sequence (io : ios) = io >>= λx→

sequence ios >>= λxs→

return (x : xs)

The sequence combinator takes a list of IO actions, and performs them one

by one, returning a list of their results.

Using these combinators, we can write functional programs in an im-

perative style. The incr function, for example, increments its argument ref-

erence and returns the reference’s previous value:

incr :: IORef Int→ IO Int

incr ref =

readIORef ref >>= λx→

writeIORef ref (x + 1) >>

return x

Haskell provides some syntactic sugar to program with monads. For

example, our incr function could also be written as:

incr :: IORef Int→ IO Int

incr ref = do

x← readIORef ref

writeIORef ref (x + 1)

return x

For a complete description of the desugaring from the do-notation and a

more thorough treatment of the IO monad, we refer to Peyton Jones’s tuto-

rial (Peyton Jones, 2001).

2.3 Implementing queues

The impure implementation of queues uses two mutable references to point

to the front and back of the queue. The queue itself is represented by a

14

52 8

front back

Figure 2.1: An example queue

linked list, where every cell contains an element of the queue and a pointer

to the next cell:

data Data = Cell Int (IORef Data) | NULL

type Queue = (IORef Data, IORef Data)

Figure 2.1 contains an example queue corresponding to the list [2, 5, 8]; List-

ing 2.3 contains a standard implementation of functions to dequeue an ele-

ment, to enqueue an element, and to create an empty queue.

This implementation of enqueue is much more efficient than the pure

function we implemented previously. Unfortunately, this does come at a

cost. Using QuickCheck, we would like to check the following property:

enqDeq :: [Int]→ IO ([Maybe Int])

enqDeq xs = do

q← emptyQueue

sequence (map (enqueue q) xs)

sequence (map (λx→ dequeue q) xs)

fifoProp :: [Int]→ Bool

fifoProp xs = return (map Just xs) ≡ enqDeq xs

The fifoProp property, however, fails to type check: there is no way to com-

pare if two computations in the IO monad are equal.

As a last resort, we could use the unsafePerformIO function that has type

IO a→ a:

fifoProp :: [Int]→ Bool

fifoProp xs =

map Just xs ≡ unsafePerformIO (enqDeq xs)

15

Listing 1 An implementation of queues

emptyQueue :: IO Queue

emptyQueue = do

front← newIORef NULL

back← newIORef NULL

return (front, back)

enqueue :: Queue→ Int→ IO ()

enqueue (front, back) x = do

newBack← newIORef NULL

let cell = Cell x newBack

c← readIORef back

writeIORef back cell

case c of

NULL→ writeIORef front cell

Cell y t→ writeIORef t cell

dequeue :: Queue→ IO (Maybe Int)

dequeue (front, back) = do

c← readIORef front

case c of

NULL→ return Nothing

(Cell x nextRef)→ do

next← readIORef nextRef

writeIORef front next

return (Just x)

16

As its name suggests, however, unsafePerformIO is rather hazardous. By

using unsafePerformIO we may introduce all kinds of problems: a compu-

tation could be inlined by the compiler, causing I/O to be performed more

than once; the exact semantics of unsafePerformIO depends on the Haskell

compiler; most importantly, we lose type safety. This last point is illustrated

by the following example:

ref :: IORef [a]

ref = unsafePerformIO (newIORef [])

ouch = do

writeIORef ref [42]

bang← readIORef ref

print (bang :: [Char])

This program is well-typed, but does ‘go wrong’ – in this instance the result

is the character with the same binary representation as the integer 42. There

is, however, no guarantee that such a character exists for every integer;

in that case, this program would crash. Clearly, we should try to avoid

functions such as unsafePerformIO.

In this chapter, we present a more viable alternative: pure specifications

of impure functions.

2.4 Mutable state

The key idea throughout this thesis is to provide functional specifications of

such effects by defining pure functions, indistinguishable from their impure

counterparts. In the case of mutable references, this amounts to defining

a pure model of a computer’s memory.

We begin by modelling memory locations:

type Loc = Int

newtype IORef a = IORef Loc

A location is simply an integer. Making references and integers synony-

mous is rather perilous. Users might abuse this specific representation by

inventing their own locations, performing pointer arithmetic, or accessing

unallocated memory. To hide our internal representation, we introduce a

17

new type for references. The library we propose exports the type IORef ,

but hides its implementation.

The type parameter of the IORef data type does not occur on the right

hand side: this is called a phantom type (Leijen and Meijer, 1999). For the

moment, we will only implement references storing the Data type we used

in our implementation of queues. At the end of this section, however, we

will use this phantom type to overcome this limitation.

Now we can define the syntax of our operations by defining the IOs

data type. It has one constructor for every operation on mutable refer-

ences. Lastly, the Return constructor lifts any pure value to a stateful one.

Note that IOs is a monad. To facilitate programming with the IOs type

we define smart constructors, i.e., functions which help build IOs terms.

The smart constructors newIORef , readIORef , and writeIORef provide ex-

actly the same interface as the IO monad. Using these smart constructors

and the do-notation, we can write imperative programs such as our imple-

mentation of queues. The difference is that our definitions correspond to

pure terms.

Yet the pure syntactic terms in the IOs monad do not have any meaning

yet. Before we can define the specification, we need to develop our model

of the computer’s memory further.

We keep track of two pieces of information to represent the state of the

memory: the next available memory location and the current contents of

the allocated memory. These are both captured by the Store data type:

data Store = Store { fresh :: Loc, heap :: Heap}

type Heap = Loc→ Data

emptyStore :: Store

emptyStore = Store { fresh = 0}

Initially, we have no allocated references, so the next available location

is zero. We leave the heap undefined: it should not be possible to ac-

cess unallocated memory. Indeed, provided programmers only use the

newIORef , readIORef , and writeIORef functions they will never access unal-

located memory.

The complete pure specification of mutable state is in Listing 3. Haskell

already has a very convenient library for writing stateful computations that

revolves around the state monad:

18

Listing 2 The syntax of mutable state

data IOs a =

NewIORef Data (Loc→ IOs a)

| ReadIORef Loc (Data→ IOs a)

| WriteIORef Loc Data (IOs a)

| Return a

instance Functor IOs where

fmap f (NewIORef d io) = NewIORef d (fmap f ◦ io)

fmap f (ReadIORef l io) = ReadIORef l (fmap f ◦ io)

fmap f (WriteIORef l d io) = WriteIORef l d (fmap f io)

fmap f (Return x) = Return (f x)

instance Monad IOs where

return = Return

(Return a) >>= g = g a

(NewIORef d f) >>= g = NewIORef d (λl→ f l >>= g)

(ReadIORef l f) >>= g = ReadIORef l (λd→ f d >>= g)

(WriteIORef l d s) >>= g = WriteIORef l d (s >>= g)

newIORef :: Data→ IOs (IORef Data)

newIORef d = NewIORef d (Return ◦ IORef)

readIORef :: IORef Data→ IOs Data

readIORef (IORef l) = ReadIORef l Return

writeIORef :: IORef Data→ Data→ IOs ()

writeIORef (IORef l) d = WriteIORef l d (Return ())

19

newtype State s a = State {runState :: (s→ (a, s))}

The state monad has several functions to manipulate the otherwise im-

plicit state. In particular, we will make use the following functions:

get :: State s s

gets :: (s→ a)→ State s a

put :: s→ State s ()

evalState :: State s a→ s→ a

execState :: State s a→ s→ s

To access the hidden state, we use the get and gets functions that respec-

tively return the hidden state and project value from it. The put function

updates the state. Finally, the functions evalState and execState run a stateful

computation, and project out the final result and the final state respectively.

In addition to these functions from the Haskell libraries, we use the

following functions to modify any particular part of the Store:

modifyHeap :: (Heap→ Heap)→ State Store ()

modifyHeap f = do

s← get

put (s {heap = f (heap s)})

modifyFresh :: (Loc→ Loc)→ State Store ()

modifyFresh f = do

s← get

put (s { fresh = f (fresh s)})

Now we can begin defining the function runs that evaluates the stateful

computation described by a value of type IOs. We begin by constructing

a value of type State Store a, and subsequently evaluate this computation,

starting with an empty store.

The Return case ends the stateful computation. Creating a new IORef

involves allocating memory and extending the heap with the new data.

Reading from an IORef looks up the data stored at the relevant location.

Writing to an IORef updates the heap with the new data. Although we

require a few auxiliary functions to manipulate the state and the heap, the

code in Listing 3 should contain few surprises.

20

Listing 3 The semantics of mutable state

runs :: IOs a→ a

runs io = evalState (runIOState io) emptyStore

runIOState :: IOs a→ State Store a

runIOState (Return a) = return a

runIOState (NewIORef d g) =

do loc← alloc

extendHeap loc d

runIOState (g loc)

runIOState (ReadIORef l g) =

do d← lookupHeap l

runIOState (g d)

runIOState (WriteIORef l d p) =

do extendHeap l d

runIOState p

alloc :: State Store Loc

alloc =

do loc← gets fresh

modifyFresh ((+) 1)

return loc

lookupHeap :: Loc→ State Store Data

lookupHeap l =

do h← gets heap

return (h l)

extendHeap :: Loc→ Data→ State Store ()

extendHeap l d = modifyHeap (update l d)

update :: Loc→ Data→ Heap→ Heap

update l d h k

| l ≡ k = d

| otherwise = h k

21

Applications Now we can actually use these functions to test our imple-

mentation of queues. We can formulate and test the following property:

fifoProp :: [Int]→ Bool

fifoProp xs = map Just xs ≡ runs (enqDeq xs)

And indeed, QuickCheck fails to find a counterexample for this property.

These specifications can also be used to reason about imperative pro-

grams. Bird (2001) has shown how to prove properties of well-known

pointer algorithms such as the Schorr-Waite marking algorithm. The proof

Bird presents revolves around having a pair of functions with the following

types:

next :: IORef Data→ IO (Maybe (IORef Data))

data :: IORef Data→ IO (Maybe Int)

Rather than postulate their existence and the properties they satisfy, we

can indeed implement these functions. For example, we can define the next

function as follows:

next ref = do

x← readIORef ref

case x of

NULL→ return Nothing

Cell nextRef → return (Just nextRef)

We hope that these functional specifications may provide the foundations

for the high-level abstractions such as those that Bird has proposed.

Limitations We restricted ourselves to mutable variables storing the Data

type. A more flexible approach would be to use Haskell’s support for dy-

namic types (Cheney and Hinze, 2002; Baars and Swierstra, 2002) to allow

references to different types. Concretely, this would involve the following

changes:

• Replacing the occurrences of Data in the IOs type with Dynamic and

adapting the smart constructors to have the following type:

newIORef :: Typeable a⇒ a→ IO (IORef a)

22

• Representing the heap as a function Loc→ Dynamic;

• Coercing to and from dynamic types explicitly when the heap is up-

dated or read.

This does make reasoning about our programs much more difficult as

the implementation of dynamic types relies on compiler specific primitives

such as unsafeCoerce. For the sake of presentation, we therefore choose to

only handle references storing a fixed Data type. The price we pay is, of

course, having to change this type every time we wish to change the types

stored in mutable references. When we move to a richer type theory in

Chapter 6, we will show how to overcome this limitation partially without

requiring compiler support.

Of course, Haskell already has a monad encapsulating local mutable

state, the ST monad. The approach we sketched here, however, is not just

limited to dealing with mutable references. The same techniques can be

used to give specifications of many different kinds of effects.

2.5 Teletype interactions

We will now present a functional specification of simple textual interactions

where a process may display text to the user or prompt the user to enter

text. Such interactions may be defined using the following two primitive

functions:

getChar :: IO Char

putChar :: Char→ IO ()

The getChar function reads a character that the user enters from stdin; the

putChar function prints a given character to stdout. Using these functions

and the combinators we saw from the previous section, we can define more

complex interactions:

echo :: IO ()

echo = do c← getChar

putChar c

echo

The echo function simply echoes any character entered in stdin to stdout.

23

Listing 4 Teletype IO

data IOtt a =

GetChar (Char→ IOtt a)

| PutChar Char (IOtt a)

| Return a

instance Functor IOtt where

fmap f (GetChar io) = GetChar (fmap f ◦ io)

fmap f (PutChar c io) = PutChar c (fmap f io)

fmap f (Return x) = Return (f x)

instance Monad IOtt where

return = Return

(GetChar f) >>= g = GetChar (λc→ f c >>= g)

(PutChar c a) >>= g = PutChar c (a >>= g)

(Return a) >>= g = g a

getChar :: IOtt Char

getChar = GetChar Return

putChar :: Char→ IOtt ()

putChar c = PutChar c (Return ())

To provide a pure specification of putChar and getChar, we begin by

defining a data type IOtt that captures the syntax of the primitive interac-

tions that can take place with the teletype in Listing 4. Besides getting and

putting a single character, we can end the interaction by returning a value.

Once again, we can show that the IOtt type is a monad and define smart

constructors for the functions it supports.

Using this data type we can define the getChar and putChar functions as

if they were any other functions in our language. Although they will not

actually print characters to the teletype, we can use them to specify any

interaction.

Given a value of type IOtt a, we can calculate its behaviour. What

should the result of an interaction be? From a user’s point of view one

of three things may happen: either a value of type a is returned, ending

the interaction; or the interaction continues after a character is read from

24

Listing 5 Teletype IO – semantics

data Output a =

Read (Output a)

| Print Char (Output a)

| Finish a

data Stream a = Cons {hd :: a, tl :: Stream a}

runtt :: IOtt a→ (Stream Char→ Output a)

runtt (Return a) cs = Finish a

runtt (GetChar f) cs = Read (runtt (f (hd cs)) (tl cs))

runtt (PutChar c p) cs = Print c (runtt p cs)

the teletype or printed to the screen. Our Output data type in Listing 5

captures exactly these three cases.

Once we have fixed the type of Output, writing the runtt function that

models the behaviour of a given interaction is straightforward. We assume

that we have a stream of characters that have been entered by the user.

Whenever our interaction gets a character, we read the head of the stream

and continue the interaction with the tail.

Using the putChar and getChar functions that we have defined, we can

write the same code for teletype interactions as before, but we now have a

specification with which we can reason.

Example: echo Using our semantics, we can prove once and for all that

echo prints out any character entered at the teletype. In particular, we can

define the following function that exhibits the behaviour we expect echo to

have:

copy :: Stream Char→ Output ()

copy (Cons x xs) = Read (Print x (copy xs))

The copy function simply copies the stream of characters entered at the

teletype to the stream of characters printed to the teletype one at a time. The

Read constructor is important here: a variation of the echo function that re-

quired two characters to be typed before producing any output would not

25

satisfy this specification. We can now prove that running echo will behave

exactly like the copy function.

Using a variation of the take lemma (Bird and Wadler, 1988), we show

that copy cs and the result of running echo on cs are identical, for every input

stream cs. The proof requires us to define an extra take function, analogous

to the one for lists:

take :: Int→ Output ()→ Output ()

take (n + 1) (Print x xs) = Print x (take n xs)

take (n + 1) (Read xs) = Read (take (n + 1) xs)

take 0 = Finish ()

We can now prove that:

take n (runtt echo xs) = take n (copy xs)

The proof proceeds by induction on n. The base case is trivial; the induction

step is in Listing 6.

Discussion In the specification we have given here, the Read constructor

explicitly marks when the input stream is consumed. If the input stream is

stdin, for example, this makes perfect sense. After all, asking the user for

input is certainly an observable effect. In general, however, the handle in

question may be a private communication channel between two processes.

In that case, reading input is not observable. The result should be a stream

of characters, rather than the Output data type defined above.

There is an interesting question of whether the IOtt data type is induc-

tive or coinductive. If the data type were inductive, we could only produce

a finite list of output. If the data type were coinductive, we could write a

program that reads its input infinitely, but never produces a value. Call-

ing the runtt function on such a program would cause it to diverge. One

solution is to define IOtt as a mixed inductive-coinductive type: it should

only consume a finite amount of input before producing potentially infinite

output. Ghani et al. (Ghani et al., 2006) have shown how such types can be

used to represent continuous functions on streams.

26

Listing 6 The behaviour of echo

take (n + 1) (runtt echo (Cons x xs))

≡ {definition of echo, putChar and getChar}

take (n + 1) (runtt (GetChar Return

>>= λc→ PutChar c (Return ())

>> echo)

(Cons x xs))

≡ {definition of runtt and (>>=)}

take (n + 1)

(Read (runtt (Return x

>>= λc→ PutChar c (Return ())

>> echo)

xs))

≡ {definition of (>>=)}

take (n + 1)

(Read (runtt (PutChar x (Return () >> echo)) xs))

≡ {definition of (>>)}

take (n + 1) (Read (runtt (PutChar x echo) xs))

≡ {definition of runtt}

take (n + 1) (Read (Print x (runtt echo xs)))

≡ {definition of take}

Read (Print x (take n (runtt echo xs)))

≡ {induction hypothesis}

Read (Print x (take n (copy xs)))

≡ {definition of take}

take (n + 1) (Read (Print x (copy xs)))

≡ {definition of copy}

take (n + 1) (copy (Cons x xs))

27

2.6 Concurrency

Although the models for mutable state and teletype interactions were rel-

atively straightforward, concurrency poses a more challenging problem.

Concurrent Haskell (Peyton Jones et al., 1996) enables programmers to fork

off a new thread with the forkIO function:

forkIO :: IO a→ IO ThreadId

The new thread that is forked off will be concurrently perform the com-

putation passed as an argument to the forkIO function. The programmer

can subsequently use the ThreadId returned by the forkIO function to kill a

thread or throw an exception to a specific thread.

Threads can communicate with one another using a synchronised ver-

sion of an IORef called an MVar. As with an IORef there are three functions

to create, write to and read from an MVar:

newEmptyMVar :: IO (MVar a)

putMVar :: MVar a→ a→ IO ()

takeMVar :: MVar a→ IO a

Unlike an IORef , an MVar can be empty. Initially, there is no value stored

in an MVar. An empty MVar can be filled using the function putMVar. A

filled MVar can be emptied using the function takeMVar. If a thread tries to

fill a non-empty MVar, the thread is blocked until another thread empties

the MVar using takeMVar. Dually, when a thread tries to take a value from

an empty MVar, the thread is blocked until another thread puts a value into

the MVar.

Although there are several other functions in Haskell’s concurrency li-

brary, we choose to restrict ourselves to the four functions described above

for the moment.

In what should now be a familiar pattern, we begin by defining the data

type IOc for concurrent input/output in Listing 7. Once again, we add a

constructor for every primitive function together with an additional Return

constructor. As is the case in our IORef implementation, we model memory

addresses and the data stored there as integers. Forked off threads have a

unique identifier, or ThreadId, which we also model as an integer. The type

of Fork is interesting as it will take an IOc b as its first argument, regardless

28

of what b is. This corresponds to the parametric polymorphism that the

forkIO function exhibits – it will fork off a new thread, regardless of the

value that the new thread returns.

Once we have defined the data type IOc, we can show it is a monad just

in the same fashion that IOs and IOtt are monads. We continue by defining

the basic functions, corresponding to the constructors.

Running the computation described by a value of type IOc a is not as

straightforward as the other models we have seen so far. Our model of

concurrency revolves around a scheduler that determines which thread is

entitled to run. The Scheduler is a function that, given an integer n, returns

a number between 0 and n− 1, together with a new scheduler. Intuitively,

we inform the scheduler how many threads are active and it returns the

scheduled thread and a new scheduler. Listing 8 describes how initially to

set up the semantics of our concurrency operations.

Besides the scheduler, we also need to keep track of the threads that

could potentially be running. The thread soup is a finite map taking a

ThreadId to a ThreadStatus. Typically, such a ThreadStatus consists of the pro-

cess associated with a given ThreadId. Note, however, that once a thread is

finished, there is no value of IOc that we could associate with its ThreadId

so we have an additional Finished constructor to deal with this situation.

Besides the thread soup we also store an integer, nextTid, that represents

the next unassigned ThreadId.

In addition to information required to deal with concurrency, we also

need a considerable amount of machinery to cope with mutable state. In

particular, we keep track of a heap and fresh just as we did for our model

of mutable state. Unlike an IORef , an MVar can be empty; hence the heap

maps locations to Maybe Data, using Nothing to represent an empty MVar.

All these ingredients together form the Store.

To interpret a value of type IOc a, we define a function that will run the

concurrent process that it represents. Once again, we use Haskell’s state

monad to encapsulate the implicit plumbing involved with passing around

the Store. To run a concurrent process we must tackle two more or less

separate issues: how to perform a single step of computation and how to

interleave these individual steps. We will begin defining the single steps in

Listing 9, leaving the interleave function undefined for the moment.

The step function closely resembles our semantics for mutable variables,

29

Listing 7 Concurrency – data type

type ThreadId = Int

type Data = Int

type Loc = Int

data IOc a =

NewEmptyMVar (Loc→ IOc a)

| TakeMVar Loc (Data→ IOc a)

| PutMVar Loc Data (IOc a)

| ∀b . Fork (IOc b) (ThreadId→ IOc a)

| Return a

newtype MVar = MVar Loc

instance Monad IOc where

return = Return

Return x >>= g = g x

NewEmptyMVar f >>= g = NewEmptyMVar (λl→ f l >>= g)

TakeMVar l f >>= g = TakeMVar l (λd→ f d >>= g)

PutMVar c d f >>= g = PutMVar c d (f >>= g)

Fork p1 p2 >>= g = Fork p1 (λtid→ p2 tid >>= g)

newEmptyMVar :: IOc MVar

newEmptyMVar = NewEmptyMVar (Return ◦MVar)

takeMVar :: MVar→ IOc Data

takeMVar (MVar l) = TakeMVar l Return

putMVar :: MVar→ Data→ IOc ()

putMVar (MVar l) d = PutMVar l d (Return ())

forkIO :: IOc a→ IOc ThreadId

forkIO p = Fork p Return

30

Listing 8 Concurrency – initialisation

newtype Scheduler =

Scheduler (Int→ (Int, Scheduler))

data ThreadStatus =

∀b . Running (IOc b)

| Finished

data Store = Store { fresh :: Loc

, heap :: Loc→ Maybe Data

, nextTid :: ThreadId

, soup :: ThreadId→ ThreadStatus

, scheduler :: Scheduler

}

initStore :: Scheduler→ Store

initStore s = Store { fresh = 0

, nextTid = 1

, scheduler = s

}

runIOc :: IOc a→ (Scheduler→ a)

runIOc io s = evalState (interleave io) (initStore s)

with a few minor adjustments. Listing 10 contains a few auxiliary defini-

tions. In contrast to the situation for mutable variables, performing a step

may result in three different outcomes.

First of all, a thread might terminate and produce a result. Secondly, a

thread might have a side-effect, such as taking the value stored in an MVar,

and return a new, shorter process. Finally, a thread might be blocked, for

instance when it tries to take a value from an empty MVar. These three

cases together form the Status data type that is returned by the step function.

Note that we have omitted a few functions that modify a specific part

of the state, analogous to modifyFresh and modifyHeap in Listing 3.

There are a few differences with the model of mutable state. When we

return a value, the thread is finished and we wrap our result in a Stop con-

structor. Creating a new MVar is almost identical to creating a new IORef .

31

Listing 9 Concurrency – performing a single step

data Status a = Stop a | Step (IOc a) | Blocked

step :: IOc a→ State Store (Status a)

step (Return a) = return (Stop a)

step (NewEmptyMVar f) =

do loc← alloc

modifyHeap (update loc Nothing)

return (Step (f loc))

step (TakeMVar l f) =

do var← lookupHeap l

case var of

Nothing→ return Blocked

(Just d) → do emptyMVar l

return (Step (f d))

step (PutMVar l d p) =

do var← lookupHeap l

case var of

Nothing→ do fillMVar l d

return (Step p)

(Just d) → return Blocked

step (Fork l r) =

do tid← freshThreadId

extendSoup l tid

return (Step (r tid))

32

Listing 10 Concurrency – auxiliary definitions

lookupHeap :: Loc→ State Store (Maybe Data)

lookupHeap l = do h← gets heap

return (h l)

freshThreadId :: State Store ThreadId

freshThreadId = do tid← gets nextTid

modifyTid ((+) 1)

return tid

emptyMVar :: Loc→ State Store ()

emptyMVar l = modifyHeap (update l Nothing)

fillMVar :: Loc→ Data→ State Store ()

fillMVar l d = modifyHeap (update l (Just d))

extendSoup :: IOc a→ ThreadId→ State Store ()

extendSoup p tid = modifySoup (update tid (Running p))

The only difference is that an MVar is initially empty, so we extend the heap

with Nothing at the appropriate location.

The case for TakeMVar and PutMVar is more interesting. When we read

an MVar we look up the appropriate information in the heap. If the MVar

is filled, we empty it and perform a single step. When the MVar is empty,

the thread is blocked and we cannot make any progress. The situation for

writing to an MVar is dual.

The final case of the step function deals with forking off new threads.

We begin by generating a ThreadId for the newly created thread. Subse-

quently, we extend the thread soup with the new thread. Finally, we return

the parent thread wrapped in the Step constructor as the thread has made

progress, but is not yet finished.

Although it was relatively easy to perform a single step, the interleaving

of separate threads is more involved. Listing 11 finally defines the interleave

function. Different threads may return different types. In particular the

main thread has type IOc a, but auxiliary threads have type IOc b for some

unknown type b. To make this distinction, we introduce the Process data

type.

33

Listing 11 Concurrency – interleaving

data Process a = Main (IOc a)

| ∀b . Aux (IOc b)

interleave :: IOc a→ State Store a

interleave main =

do (tid, t)← schedule main

case t of

Main p→ do x← step p

case x of

Stop r → return r

Step p → interleave p

Blocked → interleave main

Aux p→ do x← step p

case x of

Stop → finishThread tid >> interleave main

Step q → extendSoup q tid >> interleave main

Blocked→ interleave main

finishThread tid = modifySoup (update tid Finished)

schedule :: IOc a→ State Store (ThreadId, Process a)

schedule main = do tid← getNextThreadId

if tid ≡ 0

then return (0, Main main)

else do tsoup← gets soup

case tsoup tid of

Finished→ schedule main

Running p→ return (tid, Aux p)

getNextThreadId :: State Store ThreadId

getNextThreadId = do Scheduler sch← gets scheduler

n← gets nextTid

let (tid, s) = sch n

modifyScheduler (const s)

return tid

34

Essentially, to interleave a concurrent process we begin by consulting

the scheduler to determine the next active thread. Initially, this will always

be the main process. Once the main process forks off child threads, how-

ever, such threads may be scheduled instead.

The schedule function consults the scheduler for the next ThreadId, and

returns that ThreadId and the process associated with it. We need to pass the

main process to the scheduler as it is not in the thread soup, but could still

be scheduled. The result of scheduling is a value of type Process a together

with the ThreadId of the thread that has been scheduled.

If we want to use the Process returned by the scheduler, we need to be

careful. We would like to allow the scheduled process to perform a single

step – but what should we do with the result? If the main thread returns

a final value, we can wrap things up and return that value. If an auxiliary

thread returns a value, we are not particularly interested in its result, but

rather want to terminate the thread. As we want to treat the main and

auxiliary threads differently, we need to pattern match on the scheduled

process.

Regardless of which thread was scheduled, we allow it to perform a

single step. There are five possible outcomes of this step, that we cover one

by one:

The main thread stops When the main thread terminates, the entire con-

current process is finished. We simply return the value that the step

produced. Any auxiliary threads that are still active will never be

scheduled.

An auxiliary thread stops If an auxiliary thread finished its computation

and returns a value, we discard this value and finish the thread. We

update the thread soup to indicate that this thread is finished and

continue the interleaving.

The main threads performs a step When the main thread manages to suc-

cessfully perform a single step, we continue by calling the interleave

function again. The argument we pass to the interleave function is the

new main process that was wrapped in a Step constructor.

An auxiliary thread performs a step When an auxiliary thread makes pro-

gress, we proceed much in the same way as we do for the main

35

5 82

Read end Write end

Figure 2.2: An example channel

thread. Instead of passing the new computation to interleave, how-

ever, we update the thread soup. Once the soup has been updated,

we continue by interleaving with the same main thread as we started

with.

Blocked If the scheduled thread can make no progress, for instance be-

cause it is waiting for an empty MVar to be filled, scheduling that

thread will return Blocked. In that case, we schedule a new thread,

until progress is made.

If all threads are blocked, the program reaches a deadlock and the spec-

ification diverges.

The semantics for concurrency are more complicated than those for tele-

type IO and mutable state. Actually using it to test concurrent programs,

however, is no more difficult.

Example: channels

When Peyton Jones describes the semantics of concurrency in Haskell (Pey-

ton Jones, 2001), he illustrates how to program with MVars by giving an

implementation of channels.

Channels enable separate threads to communicate safely. They gen-

eralise the queues we have seen previously, as a channel allows multiple

processes to read from and write to it. This is accomplished by having a

pair of MVars storing pointers to the read end and write end of the chan-

nel. Whenever a process wants to read from or write to the channel, it must

first acquire access to the appropriate end of the queue. Storing these point-

ers in MVars ensures that separate writes or reads can never interfere with

one another. One example of a channel is illustrated in Figure 2.2.

Peyton Jones claims that:

36

Listing 12 Channels

type Channel = (MVar, MVar)

data Data =

Cell Int MVar

| Ref MVar

| Res [Int]

newChan :: IOc Channel

putChan :: Channel→ Int→ IOc ()

getChan :: Channel→ IOc Int

. . . each value read will go to exactly one process.

Unfortunately, there is no justification of this claim. Proving such state-

ments can, of course, be rather difficult. In fact, it is already hard to formu-

late precisely what it means for data to be lost or duplicated.

Listing 12 gives the types of channels and the data stored by refer-

ences, together with the type signatures of the channel operations. We

refer to Peyton Jones’s implementation (Peyton Jones, 2001) for a more

thorough description of the implementation, and focus here on how to use

QuickCheck to demonstrate that certain properties are at least plausible.

Before we can implement the channel operations, we need to fix the

data type Data, i.e. the type of data stored in an MVar. As we can see from

Figure 2.2, the data stored in an MVar is not always a cell. In particular, the

references to the read end and write end of the channel are also stored in

an MVar. Therefore, we need to add an extra constructor Ref to our Data

data type. Finally, we will later use an MVar to store a list of integers in the

test we propose to run; therefore, we add a final constructor Res.

Listing 13 shows the test we would like to run. The chanTest function

takes a list of integers, and forks off a thread for each integer that will write

that integer to an initially empty channel. It also forks off a thread for each

integer that attempts to read from the channel. Once a thread manages to

read from the channel, it records the value read in a shared MVar called

result. The main thread then waits until every thread has successfully read

from the channel, and concludes by returning the list of all values that have

37

Listing 13 Testing the implementation of channels

chanTest :: [Int]→ IOc [Int]

chanTest ints

= do ch← newChan

result← newEmptyMVar

putMVar result (Res [])

forM ints (λi→ forkIO (putChan ch i))

replicateM (length ints) (forkIO (reader ch result))

wait result ints

reader :: Channel→ MVar→ IOc ()

reader channel var

= do x← getChan channel

(Res xs)← takeMVar var

putMVar var (Res (x : xs))

wait :: MVar→ [Int]→ IOc [Int]

wait var xs

= do (Res r)← takeMVar var

if length r ≡ length xs

then return r

else do putMVar var (Res r)

wait var xs

been read. This final result should, of course, be a permutation of our orig-

inal list.

The semantics of concurrency we have presented abstracts over the

scheduling algorithm. Before we can run the test we have in mind, we

must therefore decide what scheduler to use. As we are already using

QuickCheck, we implement a random scheduling algorithm in an attempt

to maximise the number of interleavings. Listing 14 gives one possible im-

plementation of such a scheduler.

The streamSch function defines a scheduler, given a stream of integers.

The definition of the Stream data type can be found in Listing 5. Whenever

it is asked to schedule a thread, it uses the appropriate modulus on the

38

Listing 14 Random scheduling

streamSch :: Stream Int→ Scheduler

streamSch xs =

Scheduler (λk→ (hd xs ‘mod‘ k, streamSch (tl xs)))

instance Arbitrary a⇒ Arbitrary (Stream a) where

arbitrary = do x← arbitrary

xs← arbitrary

return (Cons x xs)

head of the stream and continues scheduling with its tail. As we can use

QuickCheck to generate a random stream of integers, we use the streamSch

to produce a random scheduler.

The following property should hold:

chanProp ints stream =

sort (runIOc (chanTest ints) (streamSch stream))

≡ sort ints

Once again, QuickCheck informs us that the above property holds for

100 test runs. When we classify the input lists according to their length, it

is reassuring to see that this property even holds for lists of more than 90

elements – which corresponds to 200 randomly scheduled pseudothreads

vying for access to a single channel.

Clearly, this property is insufficient to verify Peyton Jones’s claim. We

should also check that the resulting channel is empty and all the threads

are finished. Even then, we have only checked one kind of scenario, where

every thread either writes or reads a single value. Yet our semantics are

capable of providing some form of sanity check. It is not clear how such a

check could be realised using Peyton Jones’s semantics.

It may not be a surprise that the implementation of channels using

MVars is correct. Running this test, however, found a very subtle bug in our

scheduling function. Recall that the schedule function returns the ThreadId

and process of the scheduled thread. If we schedule a finished thread, we

call the schedule function again, in search of a thread that is not yet finished.

39

In a faulty version of our specification, if we encountered a finished thread,

we called the schedule function again, but returned the ThreadId of the fin-

ished thread. This caused quite some chaos in the thread soup, as threads

were lost and duplicated.

As the entire state of concurrent computations is a pure value, we can

access otherwise inaccessible data, such as the size of the heap or the num-

ber of threads that have finished. In particular, abstracting over the sched-

uler allows us to check certain algorithms with specific schedulers or check

a large number of interleavings using a random scheduler as we see fit.

2.7 Discussion

Related work Similar functional specifications to those presented have

appeared previously. Reynolds (1998), for example, gives an untyped ver-

sion of the functional specification of mutable state. Gordon has described

teletype IO in his thesis (Gordon, 1994) and cites related work dating back

more than twenty years (Holmström, 1983; Karlsson, 1981). Claessen (1999)

has presented an alternative pure specification of concurrency, based on

continuations. Our specification, explicitly parametrised by a scheduler,

makes it easier to experiment with different scheduling strategies.

Further work We have not given functional specifications of the entire

‘Awkward Squad.’ There are several functions from Haskell’s concurrency

libraries that we have not covered. It should not be too difficult to do so

– we do not need to extend the code that deals with the interleaving and

scheduling, but can restrict ourselves to adapting the IOc data type and the

step function. For instance, it is fairly straightforward to give a specification

of functions such as:

killThread :: ThreadId→ IO ()

yield :: IO ()

The killThread function removes a certain thread from the thread soup; the

yield function passes control to some other thread.

We have chosen to define a separate data type to represent the syntac-

tical terms, before assigning these terms semantics. Sometimes it may be

easier to define the semantics directly. For example, we could have the

40

newIORef constructor return a computation in the state monad, rather than

the IOs data type. This extra level of indirection, however, is crucial when

combining different effects, as we shall see shortly.

This work presented in this chapter may be improved in several differ-

ent ways:

Modularity We have treated the specifications of mutable state, teletype

interactions, and concurrency in isolation. The next chapter will de-

scribe how to structure functional specifications modularly.

Totality The specifications we have given are not total: the initial heap is

undefined; the conversion to and from Haskell’s Dynamic types may

fail; the interleave function may diverge if all threads are blocked. We

will address most of these points in Chapter 6, where we present a

total functional specification of mutable state.

Efficiency The specifications we have presented in this chapter have been

designed to be as simple as possible. We could drastically improve

the efficiency of our specifications, for example, by using (balanced)

binary trees to model the heap. While this may make it more diffi-

cult to reason with our specifications, it makes viable the automatic

testing of large programs that require many, many threads and ref-

erences. Furthermore, we have chosen to distinguish between the

syntactic data types and the monadic specification. While this may

introduce substantial overhead (Voigtländer, 2008), it forms the ba-

sis of our approach to modular specifications discussed in the next

chapter.

Correctness In this chapter we have given functional specifications. It is

up to compiler implementors to prove that an implementation sat-

isfies these specifications. Verifying a complete compiler is no easy

task(Leroy, 2006). Instead of completely verifying a compiler, we

could already gain a greater amount of faith in our specifications by

proving them equivalent to the semantics set forth by Peyton Jones

(2001).

41

Chapter 3

Structuring Functional

Specifications

In the previous chapter we presented the functional specification of differ-

ent effects in isolation. Many programs however, do not use a single kind

of effect but some mix of mutable state, interactions, and concurrency. To

allow such larger programs to be written, we need to investigate how func-

tional specifications may be combined.

Based on previous work on defining Haskell data types and functions in

a modular fashion (Swierstra, 2008), we show how to structure functional

specifications.

3.1 The Expression Problem

Implementing an evaluator for simple arithmetic expressions in Haskell is

entirely straightforward.

data Expr = Val Int

| Add Expr Expr

eval :: Expr→ Int

eval (Val x) = x

eval (Add x y) = eval x + eval y

Once we have chosen the data type of our expression language, we are free

to define new functions over the Expr data type. For instance, we might

want to define the following function to render an expression as a string:

42

render :: Expr→ String

render (Val x) = show x

render (Add x y) = "("++ render x ++ " + "++ render y ++ ")"

If we want to add new operators to our expression language, such as mul-

tiplication, we run into trouble. While we could extend our data type for

expressions, this will require additional cases for the functions we have de-

fined so far. Wadler (1998) has dubbed this the Expression Problem:

The goal is to define a data type by cases, where one can add

new cases to the data type and new functions over the data type,

without recompiling existing code, and while retaining static

type safety.

As the above example illustrates, Haskell can cope quite nicely with new

function definitions; adding new constructors, however, forces us to mod-

ify existing code.

In what follows we will outline an alternative, yet equivalent, definition

of the Expr data type that supports both the addition of new constructors

and the definition of new functions over expressions.

So what should the data type for expressions be? If we fix the construc-

tors in advance, we will run into the same problems as before. Rather than

choose any particular constructors, we parameterise the expression data

type as follows:

data Expr f = In (f (Expr f))

One can think of the type parameter f as the signature of the constructors.

Intuitively, the type constructor f takes a type parameter corresponding to

the expressions that occur as the subtrees of constructors. The Expr data

type then ties the recursive knot, replacing the argument of f with Expr f .

The Expr data type is best understood by studying some examples. For

instance, if we wanted expressions that only consisted of integers, we could

write:

data Val e = Val Int

type IntExpr = Expr Val

43

The only valid expressions would then have the form In (Val x) for some

integer x. The Val data type does not use its type parameter e, as the con-

structor does not have any expressions as subtrees.

Similarly, we might be interested in expressions consisting only of ad-

dition:

data Add e = Add e e

type AddExpr = Expr Add

In contrast to the Val constructor, the Add constructor does use its type pa-

rameter. Addition is a binary operation; correspondingly, the Add construc-

tor takes two arguments of type e. Values of type AddExpr must be of the

form In (Add x y), where x and y are themselves of type AddExpr. As there

is no base case, such values must be infinitely deep binary trees.

Neither values nor addition are particularly interesting in isolation. The

big challenge, of course, is to combine the ValExpr and AddExpr types some-

how.

The key idea is to combine expressions by taking the coproduct of their signatures.

The coproduct of two signatures is straightforward to define in Haskell.

It is very similar to the Either data type; the only difference is that it does

not combine two base types, but two type constructors.

data (f :+: g) e = Inl (f e) | Inr (g e)

An expression of type Expr (Val :+ : Add) is either a value or the sum of

two such expressions; it is isomorphic to the original Expr data type in the

introduction.

Combining data types using the coproduct of their signatures comes at

a price. It becomes much more cumbersome to write expressions. Even a

simple addition of two numbers becomes an unwieldy jumble of construc-

tors:

addExample :: Expr (Val :+: Add)

addExample = In (Inr (Add (In (Inl (Val 118))) (In (Inl (Val 1219)))))

Obviously, writing such expressions by hand is simply not an option for

anything other than small examples. Furthermore, if we choose to extend

44

our expression language even further by constructing larger coproducts,

we will need to update any values we have written: the injections Inl and

Inr may no longer be the right injection into the coproduct. Before we deal

with these problems, however, we consider the more pressing issue of how

to evaluate such expressions.

3.1.1 Evaluation

The first observation we make, is that the types we defined to form the

signatures of an Expr are both functors.

instance Functor Val where

fmap f (Val x) = Val x

instance Functor Add where

fmap f (Add e1 e2) = Add (f e1) (f e2)

Furthermore, the coproduct of two functors, is itself a functor.

instance (Functor g, Functor h)⇒ Functor (g :+: h) where

fmap f (Inl e1) = Inl (fmap f e1)

fmap f (Inr e2) = Inr (fmap f e2)

These are crucial observations. If f is a functor, we can fold over any value

of type Expr f as follows:

foldExpr :: Functor f ⇒ (f a→ a)→ Expr f → a

foldExpr f (In t) = f (fmap (foldExpr f) t)

The first argument of the fold is called an algebra. An algebra of type f a→ a

determines how the different constructors of a data type affect the final

outcome: it specifies one step of recursion, turning a value of type f a into

the desired result a. The fold itself uniformly applies these operations to

an entire expression. This definition of the generic fold over any data type

arising as a fixed-point of a functor can be traced back to Meijer et al. (1991).

Using Haskell’s type class system, we can define and assemble algebras

in a modular fashion. We begin by introducing a separate class correspond-

ing to the algebra we aim to define.

class Functor f ⇒ Eval f where

evalAlgebra :: f Int→ Int

45

The result of evaluation should be an integer; this is reflected in our choice

of algebra. As we want to evaluate expressions consisting of values and

addition, we need to define the following two instances:

instance Eval Val where

evalAlgebra (Val x) = x

instance Eval Add where

evalAlgebra (Add x y) = x + y

These instances correspond exactly to the cases from our original definition

of evaluation in the introduction. In the case for addition, the variables x

and y are not expressions, but the result of a recursive call.

Last of all, we also need to evaluate composite functors built from co-

products. Defining an algebra for the coproduct f : + : g boils down to

defining an algebra for the individual functors f and g.

instance (Eval f , Eval g)⇒ Eval (f :+: g) where

evalAlgebra (Inl x) = evalAlgebra x

evalAlgebra (Inr y) = evalAlgebra y

With all these ingredients in place, we can finally define evaluation by fold-

ing over an expression with the algebra we have defined above.

eval :: Eval f ⇒ Expr f → Int

eval expr = foldExpr evalAlgebra expr

Using eval we can indeed evaluate simple expressions.

Main〉 eval addExample

1337

Although we can now define functions over expressions using folds,

actually writing expressions such as addExample, is still rather impractical

to say the least. Fortunately, we can automate most of the overhead intro-

duced by coproducts.

3.1.2 Automating injections

The definition of addExample illustrates how messy expressions can easily

become. In this section, we remedy the situation by introducing smart con-

structors for addition and values.

46

As a first attempt, we might try writing:

val :: Int→ Expr Val

val x = In (Val x)

(⊕) :: Expr Add→ Expr Add→ Expr Add

x⊕ y = In (Add x y)

While this is certainly a step in the right direction, writing val 1⊕ val 3 will

result in a type error. The smart constructor⊕ expects two expressions that

must themselves solely consist of additions, rather than values.

We need our smart constructors to be more general. We will define

smart constructors with the following types:

(⊕) :: (Add :≺: f)⇒ Expr f → Expr f → Expr f

val :: (Val :≺: f)⇒ Int→ Expr f

You may want to read the type constraint Add :≺: f as ‘any signature f that

supports addition.’

The constraint sub :≺: sup should only be satisfied if there is some injec-

tion from sub a to sup a. Rather than write the injections using Inr and Inl

by hand, the injections will be inferred using this type class.

class (Functor sub, Functor sup)⇒ sub :≺: sup where

inj :: sub a→ sup a

The (:≺:) class only has three instances. These instances are not valid ac-

cording to the Haskell 98 standard (Peyton Jones, 2003), as there is some

overlap between the second and third instance definition. Later on, we will

see why this should not result in any unexpected behaviour.

instance Functor f ⇒ f :≺: f where

inj = id

instance (Functor f , Functor g)⇒ f :≺: (f :+: g) where

inj = Inl

instance (Functor f , Functor g, Functor h, f :≺: g)⇒

f :≺: (h :+: g) where

inj = Inr ◦ inj

The first instance states that (:≺:) is reflexive. The second instance explains

how to inject any value of type f a to a value of type (f :+: g) a, regardless

47

of g. The third instance asserts that provided we can inject a value of type

f a into one of type g a, we can also inject f a into a larger type (h :+: g) a

by composing the first injection with an additional Inr.

We use coproducts in a list-like fashion: the third instance only searches

through the right-hand side of coproduct. Although this simplifies the

search and we never perform any backtracking, it may fail to find an in-

jection, even if one does exists. For example, the following constraint will

not be satisfied:

f :≺: ((f :+: g) :+: h)

Yet clearly Inl ◦ Inl would be a suitable candidate injection. Users should

never encounter these limitations, provided their coproducts are not explic-

itly nested. By declaring the type constructor (:+:) to associate to the right,

types such as f :+: g :+: h are parsed in a suitable fashion.

Using this type class, we define our smart constructors as follows:

inject :: (g :≺: f)⇒ g (Expr f)→ Expr f

inject = In ◦ inj

val :: (Val :≺: f)⇒ Int→ Expr f

val x = inject (Val x)

(⊕) :: (Add :≺: f)⇒ Expr f → Expr f → Expr f

x⊕ y = inject (Add x y)

Now we can easily construct and evaluate expressions:

Main〉 let x :: Expr (Add :+: Val) = val 30000⊕ val 1330⊕ val 7

Main〉 eval x

31337

The type signature of x is very important. We exploit the type signature

to figure out the injection into a coproduct: if we fail to provide the type

signature, a compiler cannot infer the right injection.

As we mentioned previously, there is some overlap between the in-

stances of the (:≺:) class. Consider the following example:

inVal :: Int→ Expr (Val :+: Val)

inVal i = inject (Val i)

48

Which injection should be inferred, Inl or Inr? There is no reason to prefer

one over the other—both choices are justified by the above instance defini-

tions. The functions we present here, however, do not inspect where some-

thing occurs in a coproduct. Indeed, we can readily check that calling eval

on (In (Inl (Val x))) and (In (Inr (Val x))) yields the same result for all in-

tegers x as the instance of the Eval class for coproducts does not distinguish

between Inl and Inr. In other words, the result of eval will never depend on

the choice of injection. Although we need to allow overlapping instances to

compile this class, it should only result in unpredictable behaviour if you

abuse the information you have about the order of the constructors of an

expression.

3.1.3 Examples

So far we have done quite some work to write code equivalent to the evalu-

ation function defined in introduction. It is now time to reap the rewards of

our investment. How much effort is it to add multiplication to our little ex-

pression language? We begin by defining a new type and its corresponding

functor instance.

data Mul x = Mul x x

instance Functor Mul where

fmap f (Mul x y) = Mul (f x) (f y)

Next, we define how to evaluate multiplication and add a smart con-

structor.

instance Eval Mul where

evalAlgebra (Mul x y) = x ∗ y

infixl 7⊗

(⊗) :: (Mul :≺: f)⇒ Expr f → Expr f → Expr f

x⊗ y = inject (Mul x y)

With these pieces in place, we can evaluate expressions:

Main〉 let x :: Expr (Val :+: Add :+: Mul) = val 80⊗ val 5⊕ val 4

Main〉 eval x

404

49

Main〉 let y :: Expr (Val :+: Mul) = val 6⊗ val 7

Main〉 eval y

42

As the second example illustrates, we can also write and evaluate expres-

sions of type Expr (Val : + : Mul), thereby leaving out addition. In fact,

once we have a menu of expression building blocks, we can assemble our

own data types à la carte. This is not even possible with proposed language

extensions for open data types (Löh and Hinze, 2006).

Adding new functions is not much more difficult. As a second example,

we show how to render an expression as a string. Instead of writing this

as a fold, we give an example of how to write open-ended functions using

recursion directly.

We begin by introducing a class, corresponding to the function we want

to write. An obvious candidate for this class is:

class Render f where

render :: f (Expr f)→ String

The type of render, however, is not general enough. To see this, consider

the instance definition for Add. We would like to make recursive calls to

the subtrees, which themselves might be values, for instance. The above

type for render, however, requires that all subtrees of Add are themselves

additions. Clearly this is undesirable. A better choice for the type of render

is:

class Render f where

render :: Render g⇒ f (Expr g)→ String

This more general type allows us to make recursive calls to any subexpres-

sions of an addition, even if these subexpressions are not additions them-

selves.

Assuming we have defined instances of the Render class, we can write a

function that calls render to pretty print an expression.

pretty :: Render f ⇒ Expr f → String

pretty (In t) = render t

All that remains, is to define the desired instances of the Render class. These

instances closely resemble the original render function defined in the intro-

duction; there should be no surprises here.

50

instance Render Val where

render (Val i) = show i

instance Render Add where

render (Add x y) = "("++ pretty x ++ " + "++ pretty y ++ ")"

instance Render Mul where

render (Mul x y) = "("++ pretty x ++ " * "++ pretty y ++ ")"

instance (Render f , Render g)⇒ Render (f :+: g) where

render (Inl x) = render x

render (Inr y) = render y

Sure enough, we can now pretty-print our expressions:

Main〉 let x :: Expr (Val :+: Add :+: Mul) = val 80⊗ val 5⊕ val 4

Main〉 pretty x

"((80 * 5) + 4)"

3.2 Structuring syntax

In the previous section we showed how to combine simple Haskell data

types. How can we apply these techniques to combine our functional spec-

ifications?

In general, the coproduct of two monads is fairly complicated (Lüth and

Ghani, 2002). Fortunately, all our syntactical data types from the previous

chapter have the same shape: a constructor for every effectful operation

together with a single Return constructor. Each of these data types can be

defined as a particular instance of the following Term data type:

data Term f a =

Pure a

| Impure (f (Term f a))

The type argument f abstracts over the constructors corresponding to the

effectful operations, just as the Expr data type in the previous section. These

terms consist of either pure values or an impure effect, constructed using f .

We can express all the data types representing the syntax of effectful

computations using the Term data type. For example, we could define the

syntax of computations using mutable state as follows:

51

data IOs t = NewIORef Dynamic (Loc→ t)

| ReadIORef Loc (Dynamic→ t)

| WriteIORef Dynamic Loc t

Note that we have replaced the Data type with Haskell’s built-in Dynamic

type. We discussed ramifications of this choice in Section 2.4.

When f is a functor, Term f is a monad. This is illustrated by the follow-

ing two instance definitions.

instance Functor f ⇒ Functor (Term f) where

fmap f (Pure x) = Pure (f x)

fmap f (Impure t) = Impure (fmap (fmap f) t)

instance Functor f ⇒ Monad (Term f) where

return x = Pure x

(Pure x) >>= f = f x

(Impure t) >>= f = Impure (fmap (>>=f) t)

These monads are known as free monads (Awodey, 2006). In general, a struc-

ture is called free when it is left-adjoint to a forgetful functor. In this specific

instance, the Term data type is a higher-order functor that maps a functor

f to the monad Term f ; this is illustrated by the above two instance defini-

tions. This Term functor is left-adjoint to the forgetful functor from monads

to their underlying functors.

All left-adjoint functors preserve coproducts. In particular, computing

the coproduct of two free monads reduces to computing the coproduct of

their underlying functors, which is exactly what we achieved in the previ-

ous section.

Just as we did previously, we can define smart constructors for the dif-

ferent effectful operations. These smart constructors in Listing 15 use the

inject function to build terms, inserting the necessary injections automati-

cally.

Listing 15 uses the following pair of functions to convert to and from

dynamic types:

fromDynamic :: Typeable a⇒ Dynamic→ Maybe a

toDyn :: Typeable a⇒ a→ Dynamic

The fromJust function in the definition of readIORef may fail. However, the

phantom types carried in the IORef data type, guarantees that the coercion

52

Listing 15 Smart constructors for mutable state

data IORef a = IORef Loc

inject :: (g :≺: f)⇒ g (Term f a)→ Term f a

inject = Impure ◦ inj

newIORef :: (IOs :≺: f , Typeable a)⇒ a→ Term f (IORef a)

newIORef d =

inject (NewIORef (toDyn d) (Pure ◦ IORef))

readIORef :: (IOs :≺: f , Typeable a)⇒ IORef a→ Term f a

readIORef (IORef l) =

inject (ReadIORef l (Pure ◦ fromJust ◦ fromDynamic))

writeIORef :: (IOs :≺: f , Typeable a)⇒ a→ IORef a→ Term f ()

writeIORef d (IORef l) =

inject (WriteIORef (toDyn d) l (Pure ()))

will succeed, provided the user only uses the smart constructors to write

effectful programs.

Of course we can define similar smart constructors for other specifica-

tions from the previous chapter. Using these smart constructors, we can

then write terms that use different specifications. For example, the follow-

ing function reads a character from stdin and stores it in a mutable refer-

ence:

readToRef :: Term (IOs :+: IOtt) (IORef Char)

readToRef = do

c← getChar

newIORef c

Note that we could equally well have given readToRef the following, more

general type:

(IOs :≺: f , IOtt :≺: f)⇒ Term f (IORef Char)

There is a clear choice here. We could choose to let readToRef work in any

Term that supports these two operations; or we could want to explicitly

state that readToRef should only work in the Term (Recall :+: Incr) monad.

53

Now all that remains is to define the specification of these operations.

3.3 Virtual machine

To write functions over terms, we define the following fold:

foldTerm :: Functor f ⇒ (a→ b)→ (f b→ b)→ Term f a→ b

foldTerm pure impure (Pure x) = pure x

foldTerm pure impure (Impure t) =

impure (fmap (foldTerm pure impure) t)

The first argument, pure, is applied to pure values; the case for impure

terms closely resembles the fold over expressions.

Although combining the syntactic structure of programs is fairly easy,

modularly combining the semantics is much more difficult (Jaskelioff et al.,

2008). Instead of trying to combine the specifications themselves, we take

a more pragmatic approach: we define a small, fixed virtual machine and

show how all our specifications are interpreted on this machine. The disad-

vantage of this approach is that if we need to modify the virtual machine if

we wish to define new specifications of effects that it cannot handle. Fixing

the virtual machine finds a middle ground between modularity and com-

plexity: the syntax is perfectly modular, but we do not need to implement

the complex coproduct of two specifications.

Essentially, the virtual machine, VM, we define consists of the state

monad transformer layered on top of some primitive effects.

type VM a = StateT Store Effect a

data Effect a =

Done a

| ReadChar (Char→ Effect a)

| Print Char (Effect a)

| Fail String

We have chosen a small number of fixed effects. As a result, we would

need to extend the Effect data type if we want to add new specifications.

For example, to add interactions with the file system, we would need to

adapt the Effect data type accordingly.

54

The Store data type encapsulates the state of the virtual machine. We

defer the definition of the Store data type for the moment.

Now to execute our syntactical terms on the virtual machine, we need

to define suitable instances of the following class:

class Functor f ⇒ Executable f where

step :: f a→ VM (Step a)

data Step a = Step a | Block

For every specification, we should describe how to make an atomic step.

A scheduler will then interleave the steps, in the same fashion we accom-

plished in the specification of concurrency from the previous chapter.

The definition of the Store data type is in Listing 16. It closely follows

the store of the concurrency specification. Note that the ThreadSoup consists

of executable terms: when the scheduler chooses a particular thread we

allow that thread to perform a single atomic action. This Store data type

also keeps track of the blocked threads and finished threads for efficiency

reasons.

The code to execute any term in the VM monad is in Listing 17. Here

schedule consults the scheduler to determine the next thread. We have made

a minor refinement compared with the previous definition: we keep track

of two lists of those threads that we know to be blocked or finished. We no

longer schedule threads whose ThreadId occurs in one of these lists. If all

the threads are blocked or finished, we have reached a deadlock. Instead of

diverging as we did in the previous chapter, we can now fail with a more

informative error message.

Every time a thread makes progress, we reset the list of blocked threads;

every time a thread fails to make progress, we add it to the list of blocked

threads and do not attempt to schedule it again until it becomes unblocked.

Besides this minor refinement, the code is extremely similar to the interleave

function from the previous chapter.

It should be fairly obvious how to adapt the functional specifications

from the previous chapter to target the VM monad. Once we have defined

suitable instances of the Executable class for all our syntactic terms, we can

simulate the execution of any combination of effects using this virtual ma-

chine.

55

Listing 16 The store of our virtual machine

type Data = Dynamic

type Loc = Int

type Heap = Loc→ Maybe Data

newtype ThreadId = ThreadId Int

data ThreadStatus =

∀ f b . Executable f ⇒ Running (Term f b)

| Finished

type ThreadSoup = ThreadId→ ThreadStatus

newtype Scheduler =

Scheduler (Int→ (Int, Scheduler))

data Store =

Store { fresh :: Loc

, heap :: Heap

, nextTid :: ThreadId

, scheduler :: Scheduler

, threadSoup :: ThreadSoup

, blockedThreads :: [ThreadId]

, finishedThreads :: [ThreadId]

}

56

Listing 17 Executing a term on the virtual machine

data Process a =

∀ f . Executable f ⇒ Main (Term f a)

| ∀ f b . Executable f ⇒ Aux (Term f b)

execVM :: Executable f ⇒ Term f a→ VM a

execVM main = do

(tid, t)← schedule main

case t of

(Main (Pure x))→ return x

(Main (Impure p))→

do x← step p

case x of

Step y→ resetBlockedThreads >> execVM y

Block→ blockThread mainTid >> execVM main

(Aux (Pure))→ finishThread tid >>

execVM main

(Aux (Impure p))→ do x← step p

case x of

Step y→ resetBlockedThreads >>

updateSoup tid y >>

execVM main

Block→ blockThread tid >>

execVM main

57

Conclusion This chapter shows how the functional specifications from

the previous chapter may be structured in Haskell. In the next chapter, we

will put our virtual machine to the test to see just how hard it is to define

new specifications.

58

Chapter 4

Software transactional memory

How general is the virtual machine presented in the previous chapter? To

evaluate the design of the virtual machine, we show how to give a speci-

fication for software transactional memory (Harris et al., 2005). Before we

give our specification, we will give a brief introduction to software trans-

actional memory by studying the following problem, taken from Peyton

Jones (2007):

Write a procedure to transfer money from one bank account

to another. To keep things simple, both accounts are held in

memory: no interaction with databases is required. The proce-

dure must operate correctly in a concurrent program, in which

many threads may transfer money simultaneously. No thread

should be able to observe a state in which the money has left

one account, but not arrived in the other (or vice versa).

The problem is actually quite a bit harder than you may think. A tradi-

tional solution would use locks to guarantee that transactions are atomic.

As Peyton Jones points out, such lock-based programs are not modular: it

is all too easy to take too few locks, take too many locks, take the wrong

locks, or take locks in the wrong order.

Software transactional memory provides a controlled form of shared

memory. Programmers may group sequences of read and write operations

into atomic blocks. The intermediate states that arise during the execution of

an atomic block are never exposed to other threads that have access to the

same shared memory.

59

While this atomicity makes programming with shared memory eas-

ier, efficient implementations of transactional memory are quite complex.

Executing atomic blocks one by one fails to utilise much of the potential

speedup that modern multi-core computers provide. Instead, an atomic

block is speculatively executed, maintaining a log of all the read and writes

to shared memory. At the end of an atomic block, the resulting changes are

committed to the shared memory provided that they do not break atomicity.

Validating when such changes are safe to commit is still a subject of active

research (Hu and Hutton, 2008).

In Haskell, transactional memory is implemented by introducing a sep-

arate monad, distinct from the IO monad, in which memory transactions

can be constructed. There are three primitive operations to manipulate

transactional memory:

newTVar :: a→ STM (TVar a)

readTVar :: TVar a→ STM a

writeTVar :: TVar a→ a→ STM ()

A transactional variable, or TVar, is created and manipulated in the same

way as a an IORef or MVar. The crucial difference is that these operations

live in the STM monad, and do not perform any I/O. To execute a transac-

tion atomically, there is one other operation:

atomically :: STM a→ IO a

For any transaction t in the STM monad, atomically t executes t in one

atomic step.

Using these functions, we could now implement the transfer procedure

as follows:

transfer :: TVar Int→ TVar Int→ Int→ IO ()

transfer from to amount = atomically transaction

where

transaction = do

fromBalance← readTVar from

toBalance← readTVar to

writeTVar from (fromBalance− amount)

writeTVar to (toBalance + amount)

60

The central idea is to separate the construction of atomic transactions in the

STM monad from their execution in the IO monad.

Many concurrent programs require two other operations: blocking and

choice. There are situations in which a transaction may not be possible: you

may attempt to read from an empty channel; debit an already overdrawn

bank account; or write to an overflowing buffer. To deal with these cases,

there is a special operation retry:

retry :: STM a

When retry is called, the current transaction is abandoned. As the name

suggests, it will be retried at some later time.

Finally, the orElse operation lets you ‘handle‘ a retry.

orElse :: STM a→ STM a→ STM a

Given two transactions, orElse tries to execute its first argument. If the first

argument calls retry – either explicitly, or implicitly as a result of failing to

commit – it will try to execute its second argument. If the second transac-

tion also retries, the whole computation retries.

For example, when withdrawing money from an account we may want

to ensure it is never overdrawn. To do so, we call retry if the transaction

would result in an overdrawn account:

withdraw :: TVar Int→ Int→ STM ()

withdraw account amount = do

balance← readTVar account

if amount > 0 ∧ amount > balance

then retry

else writeTVar account (balance− amount)

These six operations constitute the core of software transactional mem-

ory in Haskell. We will now present a functional specification of these op-

erations that makes the informal description rigorous.

4.1 Syntax

We begin by fixing the syntax for transactions. Once again we define a

data type, STM, with constructors for all the transactional operations and

corresponding smart constructors.

61

data STM a =

STMReturn a

| NewTVar Data (Loc→ STM a)

| ReadTVar Loc (Data→ STM a)

| WriteTVar Loc Data (STM a)

| Retry

| OrElse (STM a) (STM a)

newTVar :: Typeable a⇒ a→ STM (TVar a)

newTVar d = NewTVar (toDyn d) (STMReturn ◦ TVar)

readTVar :: Typeable a⇒ TVar a→ STM a

readTVar (TVar l) =

ReadTVar l (STMReturn ◦ fromJust ◦ fromDynamic)

writeTVar :: Typeable a⇒ TVar a→ a→ STM ()

writeTVar (TVar l) d = WriteTVar l (toDyn d) (STMReturn ())

retry :: STM a

retry = Retry

orElse :: STM a→ STM a→ STM a

orElse p q = OrElse p q

It is easy to show that the STM type constructor is a monad.

Choosing how to represent the atomically operation is a bit more inter-

esting:

data Transaction t = ∀b . Atomically (STM b) (b→ t)

atomically :: (Transaction :<: f)⇒ STM a→ Term f a

atomically stm = inject (Atomically stm (return))

Clearly, the Atomically constructor should take a transaction as its first ar-

gument. What type should this transaction return? Here we have chosen

to allow the transaction to return any type. Consequently, we universally

quantify over the type the transaction returns. The second argument of the

Atomically constructor corresponds to the rest of the computation, that may

use the result of the atomic action. We can use the inject function from the

previous chapter to define a smart constructor.

62

4.2 Specification

Now that we have fixed the syntax of our computations, we can describe

how to execute transactions on our virtual machine. We will begin by

defining an executeSTM function that runs any transaction on our virtual

machine. Using this function, we can then give a specification of atomically.

The executeSTM function in Listing 18 takes a transaction of type STM a

and runs it on the virtual machine to produce a result of type Maybe a.

Here we will use Nothing to represent a transaction that calls retry; on the

other hand, Just x will correspond to a transaction that returns the value x

without retrying.

Listing 18 Executing transactions on the virtual machine

executeSTM :: STM a→ VM (Maybe a)

executeSTM (STMReturn x) = return (Just x)

executeSTM (NewTVar d io) =

do loc← alloc

updateHeap loc d

executeSTM (io loc)

executeSTM (ReadTVar l io) =

do (Just d)← lookupHeap l

executeSTM (io d)

executeSTM (WriteTVar l d io) =

do updateHeap l d

executeSTM io

executeSTM Retry = return Nothing

executeSTM (OrElse p q) =

do state← get

case runStateT (executeSTM p) state of

Done (Nothing,)→ executeSTM q

Done (Just x, s) → put s >> return (Just x)

The cases of the executeSTM function that deal with transactional vari-

ables should be familiar. They closely follow the specification of mutable

state from the previous two chapters. The cases for Retry and OrElse are

63

more interesting.

If a transaction calls Retry, we simply return Nothing. The whole com-

putation must be retried at some later point. In the case for OrElse, we begin

by requesting a copy of the current store. We proceed by executing the first

argument of OrElse, starting from the current store. If this transaction re-

tries and returns Nothing, we continue by executing the second transaction

and discard any changes to the store the first transaction may have made. If

the transaction succeeds, on the other hand, it will return a result together

with a new store that is the result of committing the transaction. In that

case, we overwrite the old state with this new store and return the result of

the first transaction.

Finally, we give the specification of Atomically. We begin by creating

a copy of the current store and attempt to run the argument transaction

against that store.

instance Executable Transaction where

step (Atomically stm io) = do

state← get

case runStateT (executeSTM stm) state of

Done (Nothing,) → return Block

Done (Just x, finalState)→ put finalState >> return (Step (io x))

If the transaction fails, we return the Block constructor of the Step data type

to indicate that this thread cannot currently make progress. If the transac-

tion succeeds, we overwrite the current store; the result of our transaction is

then fed to the remaining computation io and wrapped in a Step constructor

to indicate that progress has been made.

Note that this specification models the simple ‘stop-the-world’ seman-

tics of transactional memory. It does not speculatively evaluate threads in

parallel in the hope that their results may be reconciled, but rather executes

individual atomic blocks in one step.

This specification makes quite heavy use of the functionality provided

by the virtual machine. Instead of rewriting all the code to interleave con-

current processes, we only need to specify the behaviour of a single atomic

step. Implementing the behaviour of a TVar shares a lot of functions with

the specifications of IORefs and MVars. This gives us some degree of con-

fidence that the virtual machine provides useful functionality that can be

64

used to implement the specification of other effects.

Testing transfers money Just as we have seen previously, we can now

employ QuickCheck to test Haskell functions that use software transac-

tional memory. One crucial property of the transfer function, for example,

is that it should never change the total amount of money in the two ac-

counts.

To test that this property is maintained, we can define the following test:

transferTest init1 init2 trans1 trans2 = do

var1 ← atomically (newTVar init1)

var2 ← atomically (newTVar init2)

forM trans1 (forkIO ◦ transfer var1 var2)

forM trans2 (forkIO ◦ transfer var2 var1)

atomically (liftM2 (,) (readTVar var1) (readTVar var2))

The transferTest takes four arguments: two integers and two lists of integers,

trans1 and trans2. The function begins by initialising two transactional vari-

ables storing the two integer arguments. It then proceeds by forking off a

threads to transfer money between these two variables. For every integer

i in trans1, there will be a thread that transfers i from one account to the

other; the integers in trans2 give rise to transfers in the other direction. The

transferTest concludes by atomically reading the two transactional variables

and returning this result. Note that not all transactions will necessarily be

completed when the transferTest function returns its result.

We can now test that the transfer function does satisfies the following

property:

transferProp :: Int→ Int→ [Int]→ [Int]→ Scheduler→ Bool

transferProp i1 i2 trans1 trans2 s =

let Done (res1, res2) = evalVM (transferTest i1 i2 trans1 trans2) s

in i1 + i2 ≡ res1 + res2

Put in words, no number of transactions between the two accounts should

change the sum of money in the two accounts. We use the evalVM function

to run a computation in the VM monad that we saw in the previous chapter.

Reassuringly, QuickCheck fails to find a counterexample after one hundred

tests.

65

Conclusion In the first chapters of this dissertation, we have shown how

functional specifications may be implemented and structured in Haskell.

We still need to address one of the major shortcomings of these specifica-

tions: they do not correspond to total functions. In order to accomplish

this, however, we need to shift to a different language.

66

Chapter 5

Dependently typed

programming in Agda

At the end of Chapter 2, we identified several problems with the functional

specifications we have seen so far. Crucially, the Haskell specifications pre-

sented in Chapter 2 are partial. In the remainder of this dissertation we will

show how such specifications can be made total in a richer type theory.

Before we do so, we will explore the dependently typed programming

language Agda. This chapter will only cover the features of Agda used in

the rest of this thesis. There are several other tutorials (Bove and Dybjer,

2008; Norell, 2008) that give a more complete overview of the language.

Norell’s thesis (Norell, 2007) documents many of the more technical issues.

5.1 Agda basics

Agda is both a pure programming language and a consistent type theory.

In other words, Agda functions must be pure and total and may not contain

undefined values; any well-typed Agda term corresponds to a proof that its

type is inhabited.

To enforce totality, Agda has a coverage checker and a termination checker.

The coverage checker ensures that there are no missing cases when pattern

matching. The termination checker ensures that all functions are obviously

structurally recursive. Both these problems are undecidable in general, so

it is up to the programmer to define functions in such a manner that they

do pass the required checks.

67

Data types in Agda can be defined using a similar syntax to that for

Generalized Algebraic Data Types, or GADTs, in Haskell (Peyton Jones

et al., 2006). For example, consider the following definition of the natural

numbers.

data Nat : Set where

Zero : Nat

Succ : Nat→ Nat

There is one important difference with Haskell. We must explicitly state the

kind of the data type that we are introducing; in particular, the declaration

Nat : Set states that Nat is a base type.

We can define functions by pattern matching and recursion, just as in

any other functional language. To define addition of natural numbers, for

instance, we could write:

+ : Nat→ Nat→ Nat

Zero + m = m

Succ n + m = Succ (n + m)

Note that Agda uses underscores to denote the positions of arguments

when defining new operators. Using this notation you can also define pre-

fix, postfix, or even mix-fix operators.

Polymorphic lists are slightly more interesting than natural numbers:

data List (a : Set) : Set where

Nil : List a

Cons : a→ List a→ List a

To uniformly parameterise a data type, we can write additional arguments

to the left of the colon. In this case, we add (a : Set) to our data type dec-

laration to state that lists are type constructors, parameterised over a type

variable a of kind Set. By convention, we will capitalise data constructors

throughout this thesis, although this is not required by Agda.

Just as we defined addition for natural numbers, we can define a func-

tion that appends one list to another:

append : (a : Set)→ List a→ List a→ List a

append a Nil ys = ys

append a (Cons x xs) ys = Cons x (append a xs ys)

68

The append function is polymorphic. In Agda, such polymorphism can be

introduced via the dependent function space, written (x : a) → y, where the

variable x may occur in the type y. This particular example of the depen-

dent function space is not terribly interesting: it corresponds to parametric

polymorphism. Later we will encounter more interesting examples, where

types depend on values.

5.1.1 Implicit arguments

One drawback of using the dependent function space for such paramet-

ric polymorphism, is that we must explicitly instantiate polymorphic func-

tions. For example, the recursive call to append in the Cons case takes a type

as its first argument. Fortunately, Agda allows us to mark certain argu-

ments as implicit. Using implicit arguments, we could also define append as

in any other functional language:

append : {a : Set} → List a→ List a→ List a

append Nil ys = ys

append (Cons x xs) ys = Cons x (append xs ys)

Arguments enclosed in curly brackets, such as {a : Set}, are implicit: we do

not write a to the left of the equals sign and do not pass a type argument

when we call the make a recursive call. Provided the value of an implicit

argument is determined by the other arguments of a function, the Agda

type checker will automatically instantiate this function whenever we call

it, much in the same way as type variables are automatically instantiated in

Haskell. Note that we can explicitly pass implicit arguments by enclosing a

function’s arguments in curly brackets. For example, the appendNats func-

tion specialises the append function to take two lists of natural numbers as

its arguments:

appendNats : List Nat→ List Nat→ List Nat

appendNats = append {Nat}

This notation for implicit arguments can be rather cumbersome. For

example, if we wish to define the S combinator in Haskell, we would write:

s : (a→ b→ c)→ (a→ b)→ a→ c

s f g x = f x (g x)

69

In Agda we would need to explicitly quantify over all three type variables:

s : {a : Set} → {b : Set} → {c : Set} → ...

Agda provides a shorthand for grouping together several implicit argu-

ments. We could also write:

s : forall {a b c} → ...

The type checker will try to infer the types of a, b, and c.

Similarly, we will sometimes group several variables of the same type

in a single set of parentheses, for example writing (n m : Nat) → P n m

rather than the more verbose (n : Nat)→ (m : Nat)→ P n m.

5.1.2 Indexed families

Besides polymorphic data types, Agda also supports indexed families, simi-

lar to Haskell’s GADTs. In Haskell, you can define a GADT to represent a

small expression language as follows:

data Expr a where

Lit :: Int→ Expr Int

Add :: Expr Int→ Expr Int→ Expr Int

IsZero :: Expr Int→ Expr Bool

If :: Expr Bool→ Expr a→ Expr a→ Expr a

Here the data type Expr is parameterised by a type variable a. When defin-

ing conventional Haskell data types, such as lists, the result type of all the

constructors must be the type constructor applied to the type parameters

of the data type. For example, both the Nil and Cons constructor return a

value of type List a. The constructors of a GADT, on the other hand, are free

to specialise the arguments to the type constructor. In the above GADT, for

example, the Lit constructor takes any integer literal and returns a value of

type Expr Int.

We can now define an evaluation function for our expression language

without any dynamic checks. By pattern matching on the Expr argument, we

learn the required type of the case branch. Bearing this in mind, we can

define the evaluation function as follows:

70

eval : Expr a→ a

eval (Lit x) = x

eval (Add l r) = eval l + eval r

eval (IsZero e) = eval e ≡ 0

eval (If c t e) = if eval c then eval t else eval e

Note that the Lit branch, for example, has type Int because the Lit construc-

tor returns a value of type Expr Int. The IsZero branch, on the other hand,

returns a boolean.

Indexed families in Agda differ from GADTs as they may indexed by

any value and not just types. For example, we can define the family of

finite types:

data Fin : Nat→ Set where

Fz : forall {n} → Fin (Succ n)

Fs : forall {n} → Fin n→ Fin (Succ n)

The type Fin n corresponds to a finite type with n distinct values. For ex-

ample, Fin 1 is isomorphic to the unit type; Fin 2 is isomorphic to Bool. Note

that the argument n is left implicit in both the constructors of Fin. It is easy

to see that Fin n does indeed have n elements by a simple inductive argu-

ment. From the types of these constructors, it is clear that Fin Zero is unin-

habited. For every n, the Fs constructor embeds Fin n into Fin (Succ n); the

Fz constructor, on the other hand, adds a single new element to Fin (Succ n)

that was not in Fin n. Hence for every natural number n, the type Fin n has

exactly n inhabitants.

We can freely mix parameterised and indexed data types. The classic

example is that of vectors, or list of some fixed length:

data Vec (a : Set) : Nat→ Set where

Nil : Vec a Zero

Cons : forall {n} → a→ Vec a n→ Vec a (Succ n)

Vectors are parameterised by a type variable a : Set, representing the ele-

ments of the vector, and indexed by a natural number, corresponding to

the vector’s length.

71

5.2 Pattern matching

In the presence of inductive families, pattern matching becomes rather sub-

tle. This section illustrates various aspects of pattern matching in Agda by

means of several examples.

First of all, we will occasionally pattern match on implicit arguments.

To do so, we simply enclose the pattern of the implicit argument in curly

brackets. For example, we may define the largest element of Fin n by in-

duction on an implicit argument n as follows:

fmax : {n : Nat} → Fin (Succ n)

fmax {Zero} = Fz

fmax {Succ k} = Fs fmax

With the definition of finite types and vectors from the previous section,

we can define the following operation that takes a vector of length n and

an element of Fin n as its arguments. It returns the element of the vector at

index Fin n:

! : forall {n a} → Vec a n→ Fin n→ a

Nil ! ()

(Cons x xs) ! Fz = x

(Cons x xs) ! (Fs i) = xs ! i

The two latter cases for a non-empty vector are relatively straightforward:

Fz returns the first element of the list; Fs i continues recursively. In the

case for the empty vector, however, there is no element to return – but if

the vector is empty, the second argument must be of type Fin Zero, which

is uninhabited. Agda allows us to write the special pattern () to ‘kill off’

impossible case branches. When we match on an uninhabited type, we

have no obligation to provide a right-hand side of the function definition –

after all, there is no way this function can be called with that argument.

The definition of the !-operator illustrates an important point: when we

pattern matched on the empty vector, we learned that the second argument

must be uninhabited: pattern matching on dependent types may introduce

equations between values. This crucial point is probably best illustrated

with another example.

Suppose we define the following data type:

72

data ≡ {a : Set} (x : a) : a→ Prop where

Refl : x ≡ x

A value of type (x ≡ y) corresponds to a proof that x and y are equal. The

≡-type is parameterised by an implicit type a and a value x of type a, but

is indexed by a second argument of type a. It has a single constructor, Refl,

that corresponds to a proof that any x is equal to itself. This type plays a

fundamental role in intensional type theory (Nordström et al., 1990).

Note that the x ≡ y is a value of type Prop and not Set. Although there

is a subtle difference, you may want to think of Prop as a synonym for Set

for the moment. We will come back to this point in Section 5.4.

Whenever we pattern match on such a proof, we learn how two values

are related. For example, suppose we want to write the following function:

subst : {a : Set} → (P : a→ Prop)→

(x : a)→ (y : a)→ x ≡ y→ P x→ P y

What patterns should we write on the left-hand side of the definition?

Clearly, any argument of type x ≡ y must be Refl. As soon as we match

on that argument, however, we learn something about x and y, i.e., they

must be the same. We will write this as follows:

subst P x ⌊x⌋ Refl px = ...

The pattern ⌊x⌋means ‘the value of this argument can only be equal to x.’

In Agda you must currently write out how the different patterns re-

late by hand – that is, you must explicitly mark such forced patterns. Epi-

gram (McBride and McKinna, 2004), on the other hand, demonstrated that

this process can be automated.

Occasionally, we may not be interested in the information we learn, in

which case we will use the underscore as a wildcard pattern:

f x Refl = ...

While not necessary, we believe that writing out patterns such as ⌊x⌋ ex-

plicitly serves as important, machine-checked documentation of what we

learn during pattern matching.

73

5.3 Proofs

As we have mentioned previously, dependently typed programming lan-

guages such as Agda provide a unified framework for proofs and pro-

grams. We briefly give a taste of how to write such proofs in Agda, but

refer to existing literature (Nordström et al., 1990) for a more thorough

treatment.

Suppose we want to prove that n ≡ n + 0 for all natural numbers n.

One way to prove this is by using the following property of equality:

cong : forall {a b x y} (f : a→ b)→ x ≡ y→ f x ≡ f y

cong f Refl = Refl

That is to say, if we have a proof that x ≡ y then f x ≡ f y for all functions

f : a→ b.

Using cong we can now prove our lemma as follows:

plusZero : (n : Nat)→ n ≡ (n + 0)

plusZero Zero = Refl

plusZero (Succ k) = cong Succ (plusZero k)

In the base case we must show 0 ≡ 0 + 0. As Agda’s type checker auto-

matically unfolds the definition of addition, this reduces to showing 0 ≡ 0,

which itself holds by reflexivity.

To show (Succ k) ≡ (Succ k + 0), we make a recursive call to plusZero to

produce a proof that k ≡ k + 0. Now applying cong Succ to this proof yields

a proof that Succ k ≡ Succ (k + 0), as required.

The proof of non-trivial theorems can become rather large. Sometimes

it is a bit more convenient to write out such proofs differently. Alternatively

we could have proven the plusZero theorem as follows:

plusZero : (n : Nat)→ n ≡ (n + 0)

plusZero Zero = Refl

plusZero (Succ k) with k + 0 | plusZero k

plusZero (Succ k) | ⌊k⌋ | Refl = Refl

Although the base case is unchanged, the inductive step is somewhat dif-

ferent. The with-rule introduces a local pattern match, similar to Haskell’s

case-expressions. Here we pattern match on two expressions: k + 0 and

74

plusZero k. On the next line we repeat the left-hand side of the function def-

inition, followed by the new patterns ⌊k⌋ and Refl. We separate the new pat-

terns by a vertical bar. Once we match on plusZero k we learn that k ≡ k + 0.

Correspondingly, the proof that Succ k ≡ Succ (k + 0) becomes trivial.

The with-rule does much more than introduce a simple case expression.

It generates an auxiliary function with a type that abstracts over all occur-

rences of the expression on which we wish to pattern match. In order for

this type to be well-formed we may need to abstract over additional ex-

pressions. In our example, we matched on both k + 0 and plusZero k. If we

had matched on just plusZero k, the auxiliary function that Agda generates

would not generalise over k + 0 and correspondingly not recognise Refl as

a proof that k ≡ k + 0. For a more thorough description of the with-rule we

refer to Norell’s thesis (2007).

5.4 Dependent pairs

Besides the dependent function space, there is a second dependent type

that will play an important part throughout this thesis. We can define a

pair of two types as follows:

data Pair (A : Set) (B : Set) : Set where

, : A→ B→ Pair A B

A Pair of two types A and B consists of a value of type A and a value of

type B.

In a theory with dependent types, we can generalise this as follows:

data Sigma (A : Set) (B : A→ Set) : Set where

, : (x : A)→ B x→ Sigma A B

In such a dependent pair, or Sigma type, the type of the second component

of the pair may depend on the value of the first component. This is reflected

in the two type arguments of the Sigma type: a set A and function B from A

to Set.

Such dependent pairs arise quite naturally. For example, we may be

interested in all the natural numbers larger than 3. One way to represent

such numbers in Agda would be as a dependent pair of a number n and

75

a proof that n > 3. This pattern appears frequently enough to warrant a

variation of the above definition:

data Spec (A : Set) (P : A→ Prop) : Set where

Satisfies : (x : A)→ P x→ Spec A P

Rather than a pair of two values, the inhabitants of this type consist of a

value x and a proof that x satisfies some property P. Here we distinguish

between propositions and types. In contrast to types in Set, a proposition

of type Prop has no computational content: we are not interested in the

exact value of the proof, but only care about whether a proposition is true

or not. We will use notation reminiscent of set comprehensions and write

{n : Nat | n > 3} rather than the more verbose Spec Nat (λn→ n > 3).

The idea of tightly coupling code and proof has emerged in many dif-

ferent settings (McKinna, 1992; Necula, 1997; Sozeau, 2007). In this disser-

tation, such dependent pairs will play a central role in the Chapters 8 and

9 when we discuss the relation between our functional specifications and

Hoare Type Theory.

5.5 Universes

Universes are a fundamental concept in type theory (Martin-Löf, 1984). We

explain what a universe is using a concrete example that should be familiar

to Haskell programmers.

Agda does not have type classes. Yet years of experience with Haskell

has underlined the importance of ad hoc polymorphism. How might we

achieve the same in a dependently typed programming language?

Type classes are used to describe the collection of types that support

certain operations, such as a decidable equality. The same issue also arises

in type theory, where you may be interested in a certain collection of types

that share some property, such as having a finite number of inhabitants. It

is unsurprising that the techniques from type theory for describing such

collections of types can be used to model type classes.

A universe consists of a pair of a type U and a function el : U → Set.

Intuitively, the data type U contains ‘codes’ for typs; the function el maps

these codes to their corresponding type. This is best illustrated with an

example.

76

Consider the following type U:

data U : Set where

CHAR : U

NAT : U

VEC : U→ Nat→ U

Every data constructor of U corresponds to some type constructor. In de-

pendently typed programming languages such as Agda, we can define the

decoding function el that makes this relationship precise.

el : U→ Set

el CHAR = Char

el NAT = Nat

el (VEC u n) = Vec (el u) n

We can now define operations on the types in this universe by induction on

U. For example, every type represented by U can be rendered as a String:

show : {u : U} → el u→ String

show {CHAR} c = charToString c

show {NAT} Zero = "Zero"

show {NAT} (Succ k) = "Succ "++ parens (show k)

show {VEC u Zero} Nil = "Nil"

show {VEC u (Succ k)} (Cons x xs)

= parens (show x) ++ " : "++ parens (show xs)

parens : String→ String

parens str = "("++ str ++ ")"

The show function takes two arguments: an implicit argument u of type U;

and a second argument of type el u. Pattern matching on u determines the

type of the data that must be rendered. For instance, if u is the code for

natural numbers NAT, the second argument must be Zero or Succ k. This

definition overloads the show function – enabling the same function to work

on different types, just as Haskell’s type classes.

When we call show, Agda will fill in the implicit argument of type U for

us. This allows us to use the same name, show, for a function that operates

on different types. This is illustrated by the following interaction with the

Agda prompt:

77

Main> show 2

"Succ (Succ (Zero))"

Main> show ’c’

"c"

Note that, in contrast to Haskell’s type classes, the data type U is closed.

We cannot add new types to the universe without extending the data type

U and the function el.

Such universes can been used for generic programming (Altenkirch and

McBride, 2003; Morris et al., 2007; Morris, 2007) or interfacing to foreign

data (Oury and Swierstra, 2008). We will encounter another application in

the next chapter.

78

Chapter 6

A Total Specification of

Mutable State

There are two important problems with the specification of mutable state

in Chapter 2:

• All references must store data of a single, fixed type. We can circum-

vent this issue to some extent by using Haskell’s support for dynamic

typing, but by doing so we sacrifice the ability to do any kind of equa-

tional reasoning about effectful programs. Furthermore we have not

provided any justification for why the phantom types associated with

memory locations preclude failing downcasts.

• The specification relies on using partial functions. For example, the

initial heap is left undefined. As a result, any proof using the specifi-

cation may be unsound.

In this chapter we show how both these issues can readily be fixed by mov-

ing to Agda’s richer type theory. The key idea is to assign the specifications

from Chapter 2 more precise types, thereby demonstrating these specifica-

tions are indeed total functions.

6.1 Syntax and semantics of mutable state

We begin by choosing the types that may be stored in a mutable reference.

Rather than fix any particular set of types, we can parameterise the module

we are defining by some universe:

79

module Refs (U : Set) (el : U→ Set) where

When programmers import this module, they will need to instantiate U

and el to a universe that suits their purpose. For example, you might define

the universe of Gödel’s System T as follows:

data U : Set where

NAT : U

⇒ : U→ U→ U

el : U→ Set

el NAT = Nat

el (u⇒ v) = el u→ el v

For example, with this choice of universe you may store natural numbers

or functions of type Nat → Nat in references. Note that the universe is

not limited to these two types. For instance, (NAT ⇒ NAT) ⇒ NAT or

NAT ⇒ NAT ⇒ NAT are also inhabitants of U.

Heaps and references How should we implement the heap? If we allow

values of different types to be stored on the heap a simple list will no longer

suffice. To handle heterogeneous values stored on the heap, we begin by

defining the following type:

Shape : Set

Shape = List U

The Shape of a heap determines the type of the data stored at every memory

location.

The heap itself is indexed by a Shape. We define it here as a heteroge-

neous list of values, in accordance with the types prescribed by its shape:

data Heap : Shape→ Set where

Empty : Heap Nil

Alloc : forall {u s} → el u→ Heap s→ Heap (Cons u s)

The Empty constructor corresponds to an empty heap; the Alloc constructor

extends a heap of shape s with a value of type el u to construct a heap of

shape Cons u s.

80

Next, we model references that denote locations in the heap. A value of

type Ref u s corresponds to a reference to a value of type el u in a heap of

shape s.

data Ref : U→ Shape→ Set where

Top : forall {u s} → Ref u (Cons u s)

Pop : forall {u v s} → Ref u s→ Ref u (Cons v s)

These references share a great deal of structure with the Fin type we saw

in the previous chapter. For every non-empty heap, there is a reference to

the first element Top; we can weaken any reference to denote a location in a

larger heap using the Pop constructor.

Syntax With these data types in place, we define a data type capturing the

syntax of the permissible operations that manipulate the heap. Crucially,

the IO type is indexed by two shapes: a value of type IO a s t denotes a

computation that takes a heap of shape s to a heap of shape t and returns a

result of type a. This pattern of indexing operations by an initial and final

state is a common pattern in dependently typed programming (McKinna

and Wright, 2006; Altenkirch and Reus, 1999).

data IO (a : Set) : Shape→ Shape→ Set where

Return : forall {s} → a→ IO a s s

Write : forall {s t u} → Ref u s→ el u→ IO a s t→ IO a s t

Read : forall {s t u} → Ref u s→ (el u→ IO a s t)→ IO a s t

New : forall {s t u} →

el u→ (Ref u (Cons u s)→ IO a (Cons u s) t)→ IO a s t

The IO type has four constructors. The Return constructor returns a pure

value of type a without modifying the heap. The Write constructor takes

three arguments: a reference to a value of type el u; the value to write

to that reference; and the rest of the computation. The Read constructor

also takes a reference as its first argument. The result of reading the value

stored in this reference may be used in the remaining computation. Finally,

the New constructor actually changes the size of the heap. Given a value of

type el u, it extends the heap with this value; the second argument of New

may then use this fresh reference to continue the computation in a larger

heap.

81

The IO data type is a parameterised monad (Atkey, 2006) – a monad with

return and bind operators that satisfy certain coherence conditions with re-

spect to the Shape indices.

return : forall {s a} → a→ IO a s s

return = Return

>>= : forall {s t u a b} → IO a s t→ (a→ IO b t u)→ IO b s u

Return x >>= f = f x

Write l d wr >>= f = Write l d (wr >>= f)

Read l rd >>= f = Read l (λd→ rd d >>= f)

New d io >>= f = New d (λl→ io l >>= f)

The return of the IO data type lifts a pure value into a computation that can

run on a heap of any size. Furthermore, return does not modify the shape

of the heap. The bind operator, >>=, can be used to compose monadic com-

putations. To sequence two computations, the heap resulting from the first

computation must be a suitable starting point for the second computation.

This condition is enforced by the type of the bind operator.

Semantics We have described the syntax of array computations using the

IO data type above, but we have not specified how these computation be-

have. Before we do so, we will define two auxiliary functions to update and

lookup mutable references.

! : forall {s u} → Heap s→ Ref u s→ el u

! Empty ()

Alloc x ! Top = x

Alloc h ! Pop k = h ! k

update : forall {s u} → Heap s→ Ref u s→ el u→ Heap s

update Empty () d

update (Alloc heap) Top d = Alloc d heap

update (Alloc x heap) (Pop i) d = Alloc x (update heap i d)

The !-operator dereferences a Ref by traversing the heap and reference si-

multaneously until we reach a Top constructor. Note that if the heap is

empty, there are no valid references that can be passed as arguments to the

!-operator. We omit the right-hand side of the definition accordingly. The

82

update function takes a heap, a reference, and a value as its three arguments.

It returns a new heap, identical to its first argument, except that for the data

stored at the argument reference is overwritten. Just as we saw for the def-

inition of the dereferencing operator, we can safely omit the case for the

empty heap.

We now have all the pieces in place to assign semantics to IO compu-

tations. The run function below takes a computation of type IO a s t and

an initial heap of shape s as arguments, and returns a pair consisting of the

result of the computation and the final heap of shape t.

run : forall {a s t} → IO a s t→ Heap s→ Pair a (Heap t)

run (Return x) h = (x, h)

run (Write loc d io) h = run io (update h loc d)

run (Read loc io) h = run (io (h ! loc)) h

run (New d io) h = run (io Top) (Alloc d h)

The code here closely follows the partial semantics from Chapter 2. The

Return constructor simply pairs the result and heap. For the Write con-

structor, we recurse with an appropriately updated heap. In the Read case,

we lookup the data from the heap and recurse with the same heap. Finally,

when a new array is created, we extend the heap with a new value and

continue recursively.

The run function is total. By parameterising the IO type by the shape of

the initial and final heap, we can be explicit about the shape of the heaps

that the run function expects and returns. The corresponding Haskell spec-

ification in Chapter 2, on the other hand, did not make this distinction and

treated all heaps equally. Furthermore, by parametrising the specification

by a universe we can store different types of data on the heap. To accom-

plish this in Haskell, we needed to use the built-in compiler support for

dynamic types.

There is a problem with this specification. We always allocate new val-

ues on the top of the heap. By convention, the Top constructor always refers

to the most recently created reference. This convention creates some prob-

lems, as we shall see in the next section.

83

6.2 Automatic weakening

Previously, we introduced smart constructors to make it easier to write syn-

tactic terms. Suppose, however, we were to define the following smart con-

structors:

newRef : forall {u s} → el u→ IO (Ref u (Cons u s)) s (Cons u s)

newRef x = New x Return

writeRef : forall {u s} → Ref u s→ el u→ IO Unit s s

writeRef ref x = Write ref x (Return void)

readRef : forall {u s} → Ref u s→ IO (el u) s s

readRef ref = Read ref Return

While these definitions are correct, using them can be somewhat problem-

atic. This is best illustrated with an example.

Suppose we have chosen the following universe U as the code for the

types we wish to store in memory:

data U : Set where

NAT : U

⇒ : U→ U→ U

el : U→ Set

el NAT = Nat

el (u⇒ v) = el u→ el v

Now the following function fails to type check:

f : IO Unit Nil (Cons NAT (Cons NAT Nil))

f = newRef 1 >>= λref 1 →

newRef 2 >>= λref 2 →

writeRef ref 1 3

The problem lies with the call to writeRef . The WriteRef constructor requires

a reference to a value in a heap of shape Cons NAT (Cons NAT Nil). Yet the

first reference we created, ref 1, is a reference to a value in a heap of shape

Cons NAT Nil. To fix this, we need to wrap an additional Pop constructor

around ref 1:

84

f = newRef 1 >>= λref 1 →

newRef 2 >>= λref 2 →

writeRef (Pop ref 1) 3

While this solution is correct, it can be rather cumbersome to weaken ref-

erences manually every time new memory is allocated. Fortunately this

process can be automated.

6.2.1 Manual weakening

Before we revisit our smart constructors, we need to develop a bit of ma-

chinery. We need to decide how many Pop constructors are necessary to

weaken a reference to denote a position in a larger heap. This corresponds

to proving that one shape is a suffix of a larger shape. One way to represent

such a proof is using an inductive data type:

data IsSuffix : Shape→ Shape→ Set where

Base : forall {s} → IsSuffix s s

Step : forall {u s t} → IsSuffix s t→ IsSuffix s (Cons u t)

Every proof that s is a suffix of t is built from two constructors Base and

Step. The base case corresponds to stating that every list is a suffix of itself;

the step case states that if s is a suffix of t then s is also a suffix of Cons u t

for any u.

If we have such a proof that s is a suffix of t, we can weaken any ref-

erence of type Ref u s to make a reference of type Ref u t. The weaken

function does exactly this:

weaken : forall {s t u} → IsSuffix s t→ Ref u s→ Ref u t

weaken Base ref = ref

weaken (Step i) ref = Pop (weaken i ref)

It proceeds by induction over the proof argument, adding a Pop constructor

for every step.

While the weaken function adds the necessary Pop constructors, there is

still no way to compute its proof argument automatically. There is an alter-

native representation of such proofs that does facilitate such automation.

85

6.2.2 An alternative proof

Suppose that our universe supports the following operation:

decEqU : (u : U)→ (v : U)→ Either (u ≡ v) ((u ≡ v)→ ⊥)

That is, for every two codes u and v we either prove that u and v are equal

or we show that no such proof can exist. Here ⊥ corresponds to the unin-

habited type.

Note that we do not require that the equality on the inhabitants of this

universe is decidable. For instance, we can easily decide when two codes

of type U in the example universe with natural numbers and the function

space are equal; however, there is no there is no algorithm that decides

when two functions of type Nat→ Nat are equal.

Using our assumption about our universe of types U, we can define the

function with the following type:

decEqShape : (s : Shape)→ (t : Shape)

→ Either (s ≡ t) ((s ≡ t)→ ⊥)

The definition is fairly unremarkable. We traverse the lists s and t, compar-

ing every element. If the elements of both lists are equal at every position,

the entire lists are equal; if the lists have different lengths or store different

elements, the two shapes are distinct.

Using this function, we can define the following function that checks

whether or not one list is a suffix of another:

6 : Shape→ Shape→ Bool

Nil 6 s = True

Cons u s 6 Nil = False

Cons u s 6 Cons v t with decEqShape (Cons u s) (Cons v t)

Cons u s 6 Cons ⌊u⌋ ⌊s⌋ | Inl Refl = True

Cons u s 6 Cons v t | Inr q = (Cons u s) 6 t

Now we can reflect any Bool into Set as follows:

So : Bool→ Prop

So True = Unit

So False = ⊥

86

Finally, we give an alternative definition of the IsSuffix predicate: a

shape s is a suffix of a shape t if and only if So (s 6 t) is inhabited. This

alternative definition is equivalent to the definition using IsSuffix. We can

prove the equivalence in one direction as follows:

equiv : (s : Shape)→ (t : Shape)→ So (s 6 t)→ IsSuffix s t

equiv Nil Nil p = Base

equiv (Cons u s) Nil ()

equiv Nil (Cons v t) p = Step (equiv Nil t p)

equiv (Cons u s) (Cons v t) p with decEqShape (Cons u s) (Cons v t)

equiv (Cons u s) (Cons ⌊u⌋ ⌊s⌋) p | Inl Refl = Base

equiv (Cons u s) (Cons v t) p | Inr q = Step (equiv (Cons u s) t p)

The equivalence in the other direction is similar. We have omitted it as we

will not need it.

So why go through all this effort to write an equivalent representation

of the inductive IsSuffix data type? The two forms of proof are useful for

different reasons:

IsSuffix s t By defining the proof as an inductive data type, we can pattern

match on proofs. We use this to define the weaken function. Unfortu-

nately, we need to write an inhabitant of IsSuffix by hand to pass to

the weaken function.

So (s 6 t) By defining the 6-operator we have written a function that de-

cides when one list is a suffix of another. In particular, for any pair of

closed shapes s 6 t reduces to either True or False. Correspondingly,

the type So (s 6 t) is either trivial or uninhabited.

The central idea behind our smarter constructors is to weaken using the

inductive representation, but to require a trivial implicit witness.

6.2.3 Smarter constructors

With this in mind, we revise our smart constructors for reading from and

writing to references. These smarter constructors now require an implicit

proof that s is a suffix of t. Using our equiv function, we can compute the in-

ductive representation of such a proof. Using this inductive representation,

we can weaken references as necessary.

87

writeRef : {s : Shape} → {t : Shape} → {p : So (s 6 t)} → {u : U} →

Ref u s→ el u→ IO Unit t t

writeRef {s} {t} {p} {u} ref d = Write wkRef d (Return void)

where

wkRef = weaken (equiv s t p) ref

readRef : {s : Shape} → {t : Shape} → {p : So (s 6 t)} → {u : U} →

Ref u s→ IO (el u) t t

readRef {s} {t} {p} {u} ref = Read wkRef Return

where

wkRef = weaken (equiv s t p) ref

The beauty of this solution is that Agda will automatically instantiate

implicit arguments of type Unit. In other words, for any closed IO term a

programmer need not worry about passing proof arguments. For example,

we can now write:

f : IO Unit Nil (Cons NAT (Cons NAT Nil))

f = newRef 1 >>= λref 1 →

newRef 2 >>= λref 2 →

writeRef ref 1 3

The smarter constructors will now automatically weaken ref 1 after ref 2 has

been allocated.

Unfortunately, not all in the garden is rosy. If we have an open term,

Agda will warn you that it cannot find a suitable proof argument. For

example, consider the following function that increments the value stored

in a reference:

inc : {s : Shape} → Ref NAT s→ IO Unit s s

inc ref = read ref >>= λx→

write ref (Succ x)

While any particular call to inc is safe, Agda fails to automatically deduce

that So (s 6 s) reduces to the unit type. Even though it is clearly true for

any particular choice of s and we can fill in the proof argument manually,

the techniques we have outlined here fail to provide the required proof

automatically.

88

Without more language support it is unlikely that we can avoid this

restriction. There is still much work to be done in designing some means

to customise the inference process of implicit arguments.

6.3 Discussion

Related work There have been several proposals for region-based type

systems that strive to provide programmers type safe control of memory

management (Tofte and Talpin, 1997; Fluet and Morrisett, 2004). The Shape

data type presented here closely resembles such regions. More recently,

Kiselyov and Shan have used similar techniques to those described in this

chapter to embed such region-based type systems in Haskell (Kiselyov and

chieh Shan, 2008).

Further work The specification we have sketched here does have its lim-

itations. First of all, although we have parameterised the specification by

the universe that represents the types stored in references, we cannot store

effectful computations in a reference. We will discuss this point in greater

detail in Chapter 10.

Furthermore, the automatic weakening of references requires a decid-

able equality on our universe. This excludes references storing dependent

types, such as dependent pairs or dependent functions. It would be inter-

esting to investigate how to remove this restriction and better support the

automatic weakening of functions that are polymorphic with respect to the

shape of the heap, such as the inc function above.

The interface that our functions provide expose a great deal of infor-

mation about the structure of the heap. In the future we would like to

explore how to hide some of this type information from the user. Haskell

has already shown that existentially quantifying over the state safely en-

capsulates stateful computations (Launchbury and Peyton Jones, 1994). We

would like to extend Launchbury and Peyton Jones’s parametricity result

to our specification.

This chapter has focused on mutable state. Yet we have already seen

Haskell specifications in the earlier chapters of this dissertation for other

effects, most notably concurrency and teletype I/O. It should certainly be

possible to develop similar total specifications for these effects, even if there

89

are some technical problems that must be overcome.

In the case of concurrency, we need to provide a formal account for why

our specification terminates. As we saw in the Haskell specification of con-

currency in Chapter 3, every time we schedule an active thread it will either

be blocked or make progress. If the thread makes progress, we make a re-

cursive call to a structurally smaller computation. If the thread is blocked,

however, we make a recursive call to a smaller pool of active threads. For-

malising this informal argument in such a way that the specification passes

Agda’s termination checker is still quite some work.

The specification of teletype I/O gives rise to different problems. We

could quite easily give a specification of finite interactions, i.e., those tele-

type interactions that will only produce finite output and consume finite

input. Many teletype interactions, however, are designed to indefinitely

produce output. Giving a total specification of such processes would re-

quire a better understanding of how to incorporate coinductive data types

in type theory which is still a field of active research (Coquand, 1993).

Finally, the specification is fairly low-level. There are many high-level

logical systems for reasoning about imperative languages. In Chapter 8 we

will show how this specification forms a model of Hoare Type Theory. Be-

fore we do so, however, we extend our specification in an entirely different

direction.

90

Chapter 7

Distributed Arrays

Computer processors are not becoming significantly faster. To satisfy the

demand for more and more computational power, manufacturers are now

assembling computers with multiple microprocessors. It is hard to exag-

gerate the impact this will have on software development: tomorrow’s

programming languages must embrace parallel programming on multicore

machines (Sutter, 2005).

Researchers have proposed several new languages to maximise the po-

tential speedup that multicore processors offer (Allen et al., 2005; Chamber-

lain et al., 2005, 2000; Charles et al., 2005; Scholz, 2003). Although all these

languages are different, they share the central notion of a distributed array,

where the elements of an array may be distributed over separate proces-

sors or even over separate machines. To write efficient code, programmers

must ensure that processors only access local parts of a distributed array –

it is much faster to access data stored locally than remote data on another

core.

When writing such locality-aware algorithms it is all too easy to make

subtle mistakes. Programming languages such as X10 require all arrays op-

erations to be local (Charles et al., 2005). Any attempt to access non-local

data results in an exception. To preclude such errors, Grothoff et al. (2007)

have designed a type system, based on a dependently typed lambda calcu-

lus, for a small core language resembling X10 that is specifically designed

to guarantee that programs only access local parts of a distributed array.

Their proposed system is rather intricate and consists of a substantial num-

ber of intricate type rules that keep track of locality information.

91

In this chapter, we explore an alternative avenue of research. Designing

and implementing a type system from scratch is a lot of work. New type

systems typically require extensive proofs of various soundness, complete-

ness, principle typing, and decidability theorems. Instead, we show how

to tailor a general purpose dependently typed programming language to

enforce certain domain-specific properties – resulting in a domain-specific

embedded type system. We no longer need to prove any meta-theoretical re-

sults, but immediately inherit all the desirable properties of our depen-

dently typed host type system, such as decidable type checking and sub-

ject reduction. This illustrates how our functional specifications may be

extended with domain-specific properties, such as locality constraints.

7.1 Mutable arrays

Before we study distributed arrays, we will briefly describe how the speci-

fication from the previous chapter can be adapted to cover mutable arrays.

Just as before we will give the specification of three operations: the cre-

ation of new arrays; reading from an array; and updating a value stored in

an array.

To keep things simple, we will only work with flat arrays storing natu-

ral numbers. This is, of course, an oversimplification. Using the universe

construction we presented in the previous chapter, however, we could eas-

ily give specifications of arrays storing different types. We have chosen to

work in this simple setting to accentuate the locality constraints in the next

section.

To avoid confusion between numbers denoting the size of an array and

the data stored in an array, we introduce the Data type synonym. Through-

out the rest of this chapter, we will use Data to refer to the data stored in

arrays; the Nat type will always refer to the size of an array.

Data : Set

Data = Nat

Using the Fin type, we can give a functional specification of arrays of a

fixed size by mapping every index to the corresponding value.

Array : Nat→ Set

Array n = Fin n→ Data

92

As the heap will store arrays of different sizes, its type should explicitly

state how many arrays it stores and how large each array is. To accomplish

this, we represent the shape of the heap as a list of numbers:

Shape : Set

Shape = List Nat

The Shape of the heap represents the size of the arrays stored in memory.

Next, we define the Heap and Ref data types in the same vein as we saw

previously:

data Heap : Shape→ Set where

Empty : Heap Nil

Alloc : {n : Nat} → {ns : Shape} →

Array n→ Heap ns→ Heap (Cons n ns)

data Ref : Nat→ Shape→ Set where

Top : {n : Nat} → {ns : Shape} → Ref n (Cons n ns)

Pop : forall {n k ns} → Ref n ns→ Ref n (Cons k ns)

The only differences with the previous chapter are an immediate conse-

quence of our choice of Shape. By choosing to store only arrays on the heap,

we effectively restrict ourself to the universe where the codes are Nat and

the decoding function is Array.

The constructors for the IO data type should be familiar.

data IO (a : Set) : Shape→ Shape→ Set where

Return : {ns : Shape} → a→ IO a ns ns

Write : forall {n ns ms} →

Ref n ns→ Fin n→ Data→ IO a ns ms→ IO a ns ms

Read : forall {n ns ms} →

Ref n ns→ Fin n→ (Data→ IO a ns ms)→ IO a ns ms

New : forall {ns ms} →

(n : Nat)→ (Ref n (Cons n ns)→ IO a (Cons n ns) ms)→

IO a ns ms

Note that we require an additional argument to the Read and Write con-

structors corresponding to the index in the array to read from or write to

respectively. The New constructor requires a natural number n. It allocates

an array of size n with all its indices initially set to zero.

93

Once again, this IO data type forms a parameterised monad. We can

define return and bind operators just as we did in the previous chapter.

Semantics We have described the syntax of array computations using

the IO data type; now we shall give a functional specification of their be-

haviour. Recall that we can model arrays as functions from indices to nat-

ural numbers:

Array : Nat→ Set

Array n = Fin n→ Data

Before specifying the behaviour of IO computations, we define several aux-

iliary functions to update an array and lookup a value stored in an array.

lookup : forall {n ns} → Ref n ns→ Fin n→ Heap ns→ Data

lookup Top i (Alloc a) = a i

lookup (Pop k) i (Alloc h) = lookup k i h

The lookup function takes a reference to an array l, an index i in the array

at location l, and a heap, and returns the value stored in the array at index

i. It dereferences l, resulting in a function of type Fin n → Data; the value

stored at index i is the result of applying this function to i.

Next, we define a pair of functions to update the contents of an array.

updateArray : {n : Nat} → Fin n→ Data→ Array n→ Array n

updateArray i d a = λj→ if i ≡ j then d else a j

updateHeap : forall {n ns} →

Ref n ns→ Fin n→ Data→ Heap ns→ Heap ns

updateHeap Top i x (Alloc a h) = Alloc (updateArray i x a) h

updateHeap (Pop k) i x (Alloc a h) = Alloc a (updateHeap k i x h)

The updateArray function overwrites the data stored at a single index. The

function updateHeap updates a single index of an array stored in the heap. It

proceeds by dereferencing the location on the heap where the desired array

is stored and updates it accordingly, leaving the rest of the heap unchanged.

Now we can define the run function that takes a computation of type

IO a ns ms and an initial heap of shape ns as arguments, and returns a

pair consisting of the result of the computation and the final heap of shape

94

ms. This specification closely follows the one we have seen in the previous

chapter. The only real difference is in the allocation of new arrays. When a

new array is created, we extend the heap with a new array that stores Zero

at every index, and continue recursively.

run : forall {a ns ms} → IO a ns ms→ Heap ns→ Pair a (Heap ms)

run (Return x) h = (x, h)

run (Read a i rd) h = run (rd (lookup a i h)) h

run (Write a i x wr) h = run wr (updateHeap a i x h)

run (New n io) h = run (io Top) (Alloc (λi→ Zero) h)

Just as we did previously, the Top reference refers to the most recently al-

located memory. We can define smart constructors to wrap additional Pop

constructors around existing references.

7.2 Distributed arrays

Arrays are usually represented by a continuous block of memory. Dis-

tributed arrays, however, can be distributed over different places – where

every place may correspond to a different core on a multiprocessor ma-

chine, a different machine on the same network, or any other configuration

of interconnected computers.

We begin by determining the type of places where data is stored and

code is executed. Obviously, we do not want to fix the type of all possible

places prematurely: you may want to execute the same program in differ-

ent environments. Yet regardless of the exact number of places, there are

certain operations you will always want to perform, such as iterating over

all places, or checking when two places are equal.

We therefore choose to abstract over the number of places in the module

we will define in the coming section. With this in mind, we parameterise

over the module we are defining as follows:

module DistrArray (placeCount : Nat) where

When programmers import the DistrArray module, they are obliged to

choose the number of places. Typically, there will be one place for every

available processor. From this number, we can define a data type corre-

sponding to the available places:

95

Place : Set

Place = Fin placeCount

The key idea underlying our model of locality-aware algorithms is to

index computations by the place where they are executed. The new type

declaration for the IO monad corresponding to operations on distributed

arrays will become:

data DIO (a : Set) : Shape→ Place→ Shape→ Set where

You may want to think of a value of type DIO a ns p ms as a computation

that can be executed at place p and will take a heap of shape ns to a heap of

shape ms, yielding a final value of type a.

We strive to ensure that any well-typed program written in the DIO

monad will never access data that is not local. The specification of dis-

tributed arrays now poses a twofold problem: we want to ensure that the

array manipulations from the previous section are ‘locality-aware,’ that is,

we must somehow restrict the array indices that can be accessed from a cer-

tain place; furthermore, X10 facilitates several place-shifting operations that

change the place where certain chunks of code are executed.

Regions and Points Before we define the DIO monad, we need to intro-

duce several new concepts. In what follows, we will try to stick closely to

X10’s terminology for distributed arrays. Every array is said to have a re-

gion associated with it. A region is a set of valid index points. A distribution

specifies a place for every index point in a region.

Once again, we will only treat flat arrays storing natural numbers and

defer any discussion about how to deal with more complicated data struc-

tures for the moment. In this simple case, a region merely determines the

size of the array.

Region : Set

Region = Nat

As we have seen in the previous section, we can model array indices using

the Fin data type:

Point : Region→ Set

Point n = Fin n

96

To model distributed arrays, we now need to consider the distribution that

specifies where this data is stored. In line with existing work (Grothoff et al.,

2007), we assume the existence of a fixed distribution.

postulate

distr : forall {n ns} → Ref n ns→ Point n→ Place

X10 provides several combinators for defining such distributions. Rather

than covering them here, we postulate that some distribution exists for the

sake of simplicity.

Syntax We proceed by defining the DIO monad:

data DIO (a : Set) : Shape→ Place→ Shape→ Set where

As it is a bit more complex than the data types we have seen so far, we will

discuss every constructor individually.

The Return constructor is analogous to one we have seen previously: it

lifts any pure value into the DIO monad.

Return : {p : Place} → {ns : Shape} → a→ DIO a ns p ns

The Read and Write operations are more interesting. Although they corre-

spond closely to the operations we have seen in the previous section, their

type now keeps track of the place where they are executed. Any read or

write operation to point pt of an array l can only be executed at the place

specified by the distribution. This invariant is enforced by the types of our

constructors:

Read : forall {n ns ms} →

(l : Ref n ns)→ (pt : Point n)→

(Data→ DIO a ns (distr l pt) ms)→

DIO a ns (distr l pt) ms

Write : forall {n ns ms} →

(l : Ref n ns)→ (pt : Point n)→ Data→

DIO a ns (distr l pt) ms→

DIO a ns (distr l pt) ms

In contrast to Read and Write, new arrays can be allocated at any place.

97

New : forall {p ns ms} →

(n : Nat)→ (Ref n (Cons n ns)→ DIO a (Cons n ns) p ms)→

DIO a ns p ms

Finally, we add a constructor for the place-shifting operator At:

At : forall {p ns ms ps} →

(q : Place)→ DIO Unit ns q ms→ DIO a ms p ps→ DIO a ns p ps

The At operator lets us execute a computation at another place. As we will

discard the result of this computation, we require it to return an element of

the unit type.

We can now define appropriate return and bind operations for the DIO

monad.

return : {ns : Shape} {a : Set} {p : Place} → a→ DIO a ns p ns

return x = Return x

>>= : {ns ms ks : Shape} {a b : Set} {p : Place} →

DIO a ns p ms→ (a→ DIO b ms p ks)→ DIO b ns p ks

(Return x) >>= f = f x

(Read l i io) >>= f = Read l i (λx→ io x >>= f)

(Write l i x io) >>= f = Write l i x (io >>= f)

(New n io) >>= f = New n (λl→ io l >>= f)

(At q there here) >>= f = At q there (here >>= f)

It is worth noting that the bind operator >>= can only be used to sequence

operations at the same place.

Semantics To run a computation in the DIO monad, we follow the run

function defined in the previous section closely.

run : forall {a ns ms} →

(p : Place)→ DIO a ns p ms→ Heap ns→ Pair a (Heap ms)

run p (Return x) h = (x, h)

run ⌊distr l i⌋ (Read l i rd) h = run (distr l i) (rd (lookup l i h)) h

run ⌊distr l i⌋ (Write l i x wr) h = let h′ = updateHeap l i x h

in run (distr l i) wr h′

run p (New n io) h = run p (io Top) (Alloc (λi→ Zero) h)

run p (At q io1 io2) h = run p io2 (snd (run q io1 h))

98

Our new run function, however, must be locality-aware. Therefore, we pa-

rameterise the run function explicitly by the place where the computation

is executed.

Now we can see that the Read and Write operations may not be exe-

cuted at any place. Recall that the Read and Write constructors both return

computations at the place distr l i. When we pattern match on a Read or

Write, we know exactly what the place argument of the run function must

be. Correspondingly, we do not pattern match on the place argument – we

know that the place can only be distr l i.

The other difference with respect to the previous run function, is the

new case for the At constructor. In that case, we sequence the two com-

putations io1 and io2. To do so, we first execute the io1 at q, but discard

its result; we continue executing the second computation io2 with the heap

resulting from the execution of io1 at the location p. In line with existing

research (Grothoff et al., 2007), we have assumed that io1 and io2 are per-

formed synchronously – executing io1 before continuing with the rest of

the computation. Using techniques to model concurrency that we have

presented in Chapter 2, we believe we could give a more refined treatment

of the X10’s globally asynchronous/locally synchronous semantics and provide

specifications for X10’s clocks, finish, and force constructs.

Locality-aware combinators Using the place-shifting operator at, we can

define several locality-aware control structures. With our first-class distri-

bution and definition of Place, we believe there is no need to define more

primitive operations.

We can begin by defining it an auxiliary function, for, that iterates over

all the indices of an array:

for : forall {n ns p} →

(Point n→ DIO Unit ns p ns)→ DIO Unit ns p ns

for {Succ k} dio = dio Fz >> (for {k} (dio ◦ Fs))

for {Zero} dio = return void

Using the for function we define a distributed map, that applies a func-

tion to all the elements of a distributed array at the place where they are

stored:

99

dmap : forall {n ns p} →

(Data→ Data)→ Ref n ns→ DIO Unit ns p ns

dmap f l = for (λi→ at (distr l i) (readArray l i >>= λx→

writeArray l i (f x)))

Besides dmap, we implement two other combinators: forallplaces and

ateach. The forallplaces operation executes its argument computation at all

available places. We define it using the for function to iterate over all places.

The ateach function, on the other hand, is a generalisation of the distributed

map operation. It iterates over an array, executing its argument operation

once for every index of the array, at the place where that index is stored.

forallplaces : forall {p ns} →

((q : Place)→ DIO Unit ns q ns)→ DIO Unit ns p ns

forallplaces io = for (λi→ at i (io i))

ateach : forall {n ns p} →

(l : Ref n ns)→ ((pt : Point n)→ DIO Unit ns (distr l pt) ns)→

DIO Unit ns p ns

ateach l io = for (λi→ at (distr l i) (io i))

Example: distributed sum We will now show how to write a simple algo-

rithm that sums all the elements of a distributed array. To do so efficiently,

we first locally sum all the values at every place. To compute the total sum

of all the elements of the array, we add together all these local sums. In

what follows, we will need the following auxiliary function, increment:

increment : forall {n ns p} →

(l : Ref n ns)→ (i : Fin n)→ Nat→ (distr l i ≡ p)→

DIO Unit ns p ns

increment l i x Refl = readArray l i >>= λy→ writeArray l i (x + y)

Note that increment is a bit more general than strictly necessary. We could

return a computation at distr l i, but instead we choose to be a little more

general: increment can be executed at any place, as long as we have a proof

that this place is equal to distr l i.

We can use the increment function to define a simple sequential sum

function:

100

sum : forall {n ns p} → Ref n ns→ Ref 1 ns→ DIO Unit ns p ns

sum l out = ateach l (λi→ readArray l i >>= λn→

at (distr out Fz) (increment out Fz n Refl))

The sum function takes an array as its argument, together with a reference

to a single-celled array, out. It reads every element of the array, and incre-

ments out accordingly.

Finally, we can use both these functions to define a parallel sum. The

psum function takes four arguments: the array l whose elements you would

like to sum; an array localSums that will store the intermediate sums; an

assumption regarding the distribution of this array; and finally, the single-

celled array to which we write the result.

psum : forall {n ns} →

(l : Ref n ns)→ (localSums : Ref placeCount ns)→

((i : Place)→ distr localSums i ≡ i)→

(out : Ref 1 ns)→ DIO Nat ns (distr out Fz) ns

psum l localSums ldistr out =

ateach l (λi→ (readArray l i >>= λn→

increment localSums (distr l i) n (ldistr (distr l i))))

>> sum localSums out

>> readArray out Fz

For every index i of the array l, we read the value stored at index i, and in-

crement the corresponding local sum. We then add together the local sums

using our previous sequential sum function, and return the final result. We

use our assumption about the distribution of the localSums array when call-

ing the increment function. Without this assumption, we would have to

use the place-shifting operation at to update a (potentially) non-local array

index.

There are several interesting issues that these examples highlight. First

of all, as our at function only works on computations returning a unit type,

the results of intermediate computations must be collected in intermediate

arrays.

More importantly, however, whenever we want to rely on properties of

the global distribution, we need to make explicit assumptions in the form

of proof arguments. This is rather unfortunate: it would be interesting to

research how a specific distribution can be associated with an array when

101

it is created. This would hopefully allow for a more fine-grained treatment

of distributions and eliminate the need for explicit proof arguments.

7.3 Discussion

There are clearly several serious limitations of this work as it stands. We

have had to make several simplifying assumptions. First and foremost, we

have assumed that every array only stores natural numbers, disallowing

more complex structures such as multi-dimensional arrays. This can be

easily fixed by defining a more elaborate Shape data type – as we have seen

in the previous chapter.

We could extend our model of the heap even further by having every

place maintain its own local heap. As our example in the previous section

illustrated, assuming the presence of a global distribution does not scale

well. Decorating every array with a distribution upon its creation should

help provide locality-information when it is needed.

We have not discussed how code in the IO or DIO monad is actually

compiled. At the moment, Agda can only be compiled to Haskell. Agda

does provide several pragmas to customise how Agda functions are trans-

lated to their Haskell counterparts. The ongoing effort to support data par-

allelism in Haskell (Chakravarty et al., 2001, 2007) may therefore provide

us with a most welcome foothold.

There are many features of X10 that we have not discussed here at all.

Most notably, we have refrained from modelling many of X10’s constructs

that enable asynchronous communication between locations, even though

we would like to do so in the future.

102

Chapter 8

The Hoare state monad

In the previous chapters, we proposed to use functional specifications to

program with and reason about mutable state. This is not the whole story.

There are a great many logics designed to facilitate reasoning about mu-

table state (Floyd, 1967; Hoare, 1969; Ishtiaq and O’Hearn, 2001; Reynolds,

2002). Compared with such logics, our functional specifications are rather

low-level. Inspired by work on Hoare Type Theory (Nanevski and Mor-

risett, 2005; Nanevski et al., 2006, 2008), we will explore how to reason with

Hoare logic in Agda in this chapter. The next chapter will discuss the pre-

cise relation with Hoare Type Theory in greater detail.

8.1 A problem of relabelling

Before we demonstrate how to reason with Hoare logic in type theory, we

will introduce a verification challenge posed by Hutton and Fulger (2008).

Consider the following Haskell data type:

data Tree a = Leaf a | Node (Tree a) (Tree a)

We will now show how to use the state monad is to traverse such a tree and

assign a unique integer to every leaf. Recall that the state monad has type:

newtype State s a = State {runState :: (s→ (a, s))}

The return of the state monad leaves the state unchanged; the bind threads

the state from the first computation to the next.

Using the state monad, we can define a function relabel as follows:

103

relabel :: Tree a→ State Int (Tree Int)

relabel (Leaf) = do x← get

put (x + 1)

return (Leaf x)

relabel (Node l r) = do l′ ← relabel l

r′ ← relabel r

return (Node l′ r′)

If we encounter a Leaf , we use the current state as the new label and incre-

ment the state accordingly. In the case for a Node, we relabel both subtrees.

The bind of thet state monad ensures that the state arising from the first

recursive call is passed to the second recursive call.

How can we prove that this function is correct? Before we can talk about

correctness, we need to establish the specification that we expect the relabel

function to satisfy. One way of formulating the desired specification is by

defining the following auxiliary functions:

flatten :: Tree a→ [a]

flatten (Leaf x) = [x]

flatten (Node l r) = flatten l ++ flatten r

size :: Tree a→ Int

size (Leaf x) = 1

size (Node l r) = size l + size r

sequence :: Int→ Int→ [Int]

sequence x n = if n 6 0 then []

else x : sequence (x + 1) (n− 1)

We can define the desired property of our relabel function as follows:

flatten (evalState (relabel t) i) = sequence i (size t)

That is, flattening a tree labelled with the initial integer i should produce

the sequence [i ... i + size t− 1]. The usual way to reason about functions

in the state monad is to desugar the do-notation and expand the defini-

tions of return and bind. Hutton and Fulger (2008) propose this problem

as a benchmark of high-level reasoning techniques about state and give an

equational proof. Their proof, however, revolves around defining an inter-

mediate function:

104

label′ :: Tree a→ State [b] (Tree b)

The label′ function carries around an (infinite) list of fresh labels that are

used to relabel the leaves of the argument tree. To prove that label meets

the above specification, Hutton and Fulger need to prove various lemmas

relating label and label′. It is not clear how to extend their technique to other

functions in the state monad, in contrast to the approach we will take in

this chapter.

8.2 A direct proof

Before we can attempt to prove any property of the relabel function, we

must define both it and its specification in Agda. For the most part, this

simply consists of transcribing the functions size, flatten, and sequence from

the previous section in Agda.

Now rather than write a simply-typed relabel function that happens to

satisfy the desired specification, we will engineer a dependently typed def-

inition that satisfies the specification by construction. The type of the relabel

function carries information about its behaviour.

We choose the following type for the relabelling function:

relabel : forall {a} → Tree a→ (i : Nat)→

{(t, f) : Pair (Tree Nat) Nat |

f ≡ i + size t ∧ flatten t ≡ sequence i (size t)}

Recall that we use the notation {x : a | P x} to denote a dependent pair of a

value x of type a together with a proof that x satisfies some property P.

Given a tree and initial natural number i, our relabelling function re-

turns a relabeled tree and new number f . The final tree and output number

should satisfy a post-condition. At this point, we are free to choose the

post-condition as we see fit: when defining the function we must then pro-

vide the proof that our definition satisfies our choice of post-condition.

Besides the obvious condition that flatten t ≡ sequence i (size t), we

also require a second condition: the final state f should be exactly size t

larger than the initial state i. The importance of this tighter specification

will become apparent once we try to prove that the relabelling function

satisfies the first part of the specification.

105

The code for the relabel is in Listing 21; several auxiliary definitions and

lemmas can be found in Listing 19 and Listing 20.

Before we cover it in greater detail, it is worth looking at the computa-

tional fragment. Recall that Satisfies, the constructor of a dependent pair, is

defined in Section 5.4. If we omit the proofs – that is, the second component

of the dependent pairs – we have this simple definition left:

relabel (Leaf) s = (Leaf s, Succ s)

relabel (Node l r) s1 with relabel l s1

relabel (Node l r) s1 | (l′, s2) with relabel r s2

relabel (Node l r) s1 | (l′, s2) | (r′, s3) = (Node l′ r′, s3)

This definition closely follows what you might write in Haskell without

using the state monad. Instead of repeating the exact same left-hand side

of a function definition when using the with-rule, Agda allows us to replace

these left-hand sides with an ellipsis which we do in Listing 21.

The proof that this definition satisfies the desired post-condition is rel-

atively straightforward. In the base case, we need to prove the following

statement:

Succ s ≡ s + 1 ∧ Cons s Nil ≡ Cons s Nil

The first conjunct follows from the commutativity of addition; the proof of

the second conjunct is trivial.

The case for nodes is a bit trickier. We need to provide a proof of the

following proposition:

s3 ≡ s1 + size l′ + size r′

∧ flatten l′ ++ flatten r′ ≡ sequence s1 (size l′ + size r′)

After applying our induction hypotheses, the first conjunct reduces to:

(s1 + size l′) + size r′ ≡ s1 + (size l′ + size r′)

Which is follows immediately from the associativity of addition. Similarly

the second conjunct reduces to:

sequence s1 (size l′) ++ sequence s2 (size r′)

≡ sequence s1 (size l′ + r′)

106

Listing 19 Auxiliary definitions

subst : {a : Set} → {x y : a} → (P : a→ Prop)→ x ≡ y→ P x→ P y

subst P Refl px = px

cong : {a b : Set} → {x y : a} → (f : a→ b)→ x ≡ y→ f x ≡ f y

cong f Refl = Refl

trans : {a : Set} → {x y z : a} → x ≡ y→ y ≡ z→ x ≡ z

trans Refl Refl = Refl

sym : {a : Set} → {x y : a} → x ≡ y→ y ≡ x

sym Refl = Refl

data ∧ (p : Prop) (q : Prop) : Prop where

, : p→ q→ p ∧ q

infix 10 ∧

assocAdd : (x y z : Nat)→ (x + y) + z ≡ x + (y + z)

assocAdd Zero y z = Refl

assocAdd (Succ k) y z = cong Succ (assocAdd k y z)

succLemma : (n m : Nat)→ n + Succ m ≡ Succ (n + m)

succLemma Zero m = Refl

succLemma (Succ k) m = cong Succ (succLemma k m)

plusZero : (n : Nat)→ n ≡ n + 0

plusZero Zero = Refl

plusZero (Succ k) = cong Succ (plusZero k)

commAdd : (x y : Nat)→ x + y ≡ y + x

commAdd m Zero = sym (plusZero m)

commAdd x (Succ y) =

trans (succLemma x y) (cong Succ (commAdd x y))

107

Listing 20 The seqLemma

seqLemma : (x y z : Nat)→

sequence x y ++ sequence (x + y) z ≡ sequence x (y + z)

seqLemma x Zero z with (x + Zero) | plusZero x

seqLemma x Zero z | ⌊x⌋ | Refl = Refl

seqLemma x (Succ k) z = cong (λxs→ Cons x xs) ih

where

ih : sequence (Succ x) k ++ sequence (x + Succ k) z

≡ sequence (Succ x) (k + z)

ih with x + Succ k | succLemma x k

ih | ⌊Succ x + k⌋ | Refl = seqLemma (Succ x) k z

We now need to use our assumption that s2 ≡ size l′. Without this stronger

post-condition it is impossible to complete the proof. After this last step, we

complete the proof using the auxiliary lemma about sequence in Listing 20.

This, however, does not complete our original goal: a verified monadic

relabelling function that does not expand the definitions of return and bind.

8.3 The Hoare state monad

One might define the state monad in Haskell as follows:

type State s a = s→ (a, s)

This does not suit our purposes: we want to write a verified program by

construction. We need to refine this definition slightly, and define a slightly

different monad HoareState, directly inspired by the work on Hoare Type

Theory (Nanevski and Morrisett, 2005; Nanevski et al., 2006, 2008).

A computation of type HoareState P a Q does not accept any state of

type s, but instead requires the initial state to satisfy the precondition P.

Given an initial state i that satisfies the precondition, the computation will

return a value x of type a and final state f such that the predicate Q i x f

holds. Bearing these two points in mind, we arrive at the following defini-

tion of our augmented state monad over some state of type S:

108

Listing 21 The relabelling function

relabel : forall {a} → Tree a→ (i : Nat)→

{(t, f) : (Pair (Tree Nat) Nat) |

f ≡ i + size t ∧ flatten t ≡ sequence i (size t)}

relabel (Leaf) s = Satisfies (Leaf s, Succ s) prfLeaf

where

prfLeaf : Succ s ≡ s + 1 ∧ Cons s Nil ≡ Cons s Nil

prfLeaf = (subst (λn→ Succ s ≡ n) Refl (commAdd 1 s), Refl)

relabel (Node l r) s1 with relabel l s1

... | Satisfies (l′, s2) (sizeL, treeL) with relabel r s2

... | Satisfies (r′, s3) (sizeR, treeR) = Satisfies (Node l′ r′, s3) prfNode

where

prfSize : s3 ≡ s1 + size l′ + size r′

prfSize with s3 | s2 | sizeR | sizeL

prfSize | ⌊(s1 + size l′) + size r′⌋ | ⌊s1 + size l′⌋ | Refl | Refl

= assocAdd s1 (size l′) (size r′)

prfTree : flatten l′ ++ flatten r′ ≡ sequence s1 (size l′ + size r′)

prfTree with flatten l′ | flatten r′ | treeL | treeR

prfTree | ⌊sequence s1 (size l′)⌋ | ⌊sequence s2 (size r′)⌋ | Refl | Refl

with s2 | sizeL

... | ⌊s1 + size l′⌋ | Refl = seqLemma s1 (size l′) (size r′)

prfNode = (prfSize, prfTree)

109

Pre : Set1

Pre = S→ Prop

Post : Set→ Set1

Post a = S→ a→ S→ Prop

HoareState : Pre→ (a : Set)→ Post a→ Set

HoareState pre a post = { i : S | pre i} → {(x, f) : Pair a S | post i x f }

Note that a postcondition is a property that may refer to the input state,

result, and output state.

We refer to this as the Hoare state monad as it enables reasoning about

computations in the state monad using Hoare logic.

We still need to define the return and bind functions for the Hoare state

monad. The return function does not place any restriction on the input

state, it simply returns its argument leaving the state intact:

top : Pre

top = λs→ Unit

return : {a : Set} → (y : a)→ HoareState top a (λi x f → i ≡ f ∧ x ≡ y)

return y (Satisfies s) = Satisfies (y, s) (Refl, Refl)

Here the precondition top places no constraints on the input state. Note

that the definition of the return of the Hoare state monad is identical to

the corresponding definition of the state monad: we have only made its

behaviour evident from its type.

The bind of the Hoare state monad is a bit more subtle. Recall that the

bind of a monad m has the following type:

m a→ (a→ m b)→ m b

We would expect the definition of the bind of the Hoare state monad to

have the type:

HoareState P1 a Q1 → (a→ HoareState P2 b Q2)→ HoareState ... b ...

Before we consider the precondition and postcondition of the resulting

computation, we note that we can generalise this slightly. In the above

type signature, the second argument of bind is not dependent. We can be

slightly more general and parameterise P2 and Q2 by the result of the first

computation:

110

HoareState P1 a Q1

→ ((x : a)→ HoareState (P2 x) b (Q2 x))

→ HoareState ... b ...

Now we need to choose suitable preconditions and postconditions for the

composite computation returned by the bind function.

The bind of the state monad is defined as follows:

c1 >>= c2 = λs1 → case c1 s1 of

(x, s2)→ c2 x s2

The bind of the state monad starts by running the first computation, and

subsequently feeds its result to the second computation. So clearly the pre-

condition of the composite computation should imply the precondition of

the first computation c1, otherwise we could not justify running c1 with

the initial state s. Furthermore the postcondition of the first computation

should imply the precondition of the second computation. If this wasn’t

the case, the call to c2 would be unjustifiable. These considerations lead to

the following choice of precondition for the composite computation:

(λs1 → P1 s1 ∧ ((x : a)→ (s2 : S)→ Q1 s1 x s2 → P2 x s2))

In words, the precondition of the composite computation is the precondi-

tion P1 of the first computation together with a proof that any state s2 and

result x satisfying the postcondition of the first computation, Q1, also sat-

isfy the precondition P2 of the second computation.

What about the postcondition? Recall that a postcondition is a predicate

on the initial state, resulting value, and the final state. We would expect the

postcondition of the second argument computation to hold after executing

the composite computation. However, we also know that the postcondi-

tion of the first computation holds for the intermediate state, after the first

computation has been completed. To record this information in the post-

condition of the composite computation, we existentially quantify over the

results of first computation, yielding the following postcondition for the

bind operation:

(λs1 x s3 → {(y, s2) : Pair a S | Q1 s1 y s2 ∧ Q2 y s2 x s3}))

In words, the postcondition of the composite computation states that there

is an intermediate state s2 and a value y resulting from the first computa-

tion, such that these satisfy the postcondition of the first computation Q1.

111

Listing 22 The bind of the Hoare state monad

bind : forall {a b P1 Q1} → {P2 : a→ Pre} → {Q2 : a→ Post b} →

HoareState P1 a Q1 →

((x : a)→ HoareState (P2 x) b (Q2 x))→

HoareState

(λs1 → P1 s1 ∧ ((x : a)→ (s2 : S)→ Q1 s1 x s2 → P2 x s2))

b

(λs1 x s3 → {(y, s2) : Pair a S | Q1 s1 y s2 ∧ Q2 y s2 x s3})

bind c1 c2 (Satisfies s1 pre) with c1 (Satisfies s1 (fst pre))

... | (Satisfies (x, s2) p) with c2 x (Satisfies s2 (snd pre x s2 p))

... | (Satisfies (y, s3) q) = Satisfies (y, s3) (Satisfies (x, s2) (p, q))

Furthermore, the postcondition of the second computation Q2 relates these

intermediate results and the final state s3 and final value x.

Once we have chosen the desired precondition and postcondition of

bind we can define the bind in Listing 22. If we ignore all the propositional

information, however, this definition is identical to the bind of the state

monad. The definition of bind runs the first computation c1 against the

initial state s1. The resulting value x and state s2 are passed to the second

computation c2. The overhead compared with the usual definition of bind

is largely a consequence of the pre- and postconditions.

In a similar vein, we can define the operations get and put that respec-

tively read and overwrite the current state:

get : HoareState top S (λi x f → i ≡ f ∧ x ≡ i)

get (Satisfies s) = Satisfies (s, s) (Refl, Refl)

put : (s : S)→ HoareState top Unit (λi x f → f ≡ s)

put s = Satisfies (void, s) Refl

The get and put functions have trivial preconditions. The postcondition of

the get function guarantees to leave the state intact and return the current

state. The postcondition of the put function on the other hand states that

the final state is equal to its first argument.

112

8.4 Relabelling revisited

Having defined the Hoare state monad, we can now write a different ver-

sion of the relabelling function that more closely resembles the original

Haskell definition. We begin by defining the postcondition that our rela-

belling function must satisfy:

relabelPost : Post (Tree Int)

relabelPost = λi t f → f ≡ i + size t

∧ flatten t ≡ sequence i (size t)

Using the Hoare state monad, the definition of our relabel function now

becomes:

relabel : forall {a} → Tree a→ HoareState top (Tree Nat) relabelPost

relabel (Leaf) =

get >>= λfresh→

put (Succ fresh) >>

return (Leaf fresh)

relabel (Node l r) =

relabel l >>= λl′ →

relabel r >>= λr′ →

return (Node l′ r′)

Unfortunately, this definition is still flawed. There are two reasons that

Agda does not accept this definition.

First of all, the preconditions and postconditions of our definition do

not match the precondition and postcondition that we have assigned our

relabel function. For example, the precondition of the Leaf branch is:

(Pair Unit ((n : Nat) (h : Nat)→ i ≡ h ∧ n ≡ i→

Pair Unit ((n′ : Unit) (h′ : Nat)→ (h′ ≡ Succ n)→ Unit)))

As we have used the bind operator to construct composite computations,

this is reflected in the type of the conditions Agda infers. Fortunately, we

can solve this problem by explicitly strengthening the precondition and

weakening the postcondition. In line with Hoare Type Theory, we name

this operation do:

113

do : forall {a P1 P2 Q1 Q2} →

((i : S)→ P2 i→ P1 i)→

((i : S)→ (x : a)→ (f : S)→ P2 i→ Q1 i x f → Q2 i x f)→

HoareState P1 a Q1 → HoareState P2 a Q2

do str wkn c (Satisfies i p) with c (Satisfies i (str i p))

... | (Satisfies (a, f) q) = Satisfies (a, f) (wkn i a f p q)

The do function takes three arguments: a proof that the precondition P2

is stronger than the precondition P1; a proof that the postcondition Q2 is

weaker than the postcondition Q1; and a computation of type HoareState P1

a Q2. The do function uses these proof arguments to construct a computa-

tion of type HoareState P2 a Q2 that has the same computational behaviour

as the original computation.

Although it has no computational content, the do function is necessary

to ensure that the inferred pre- and postconditions match the ones stated in

the type signature of the relabel function.

The second problem with this definition is more subtle and harder to

resolve. Let’s have a closer look at the arguments to the bind operator:

bind : forall {a b P1 Q1} →

{P2 : a→ Pre} → {Q2 : a→ Post b} →

HoareState P1 a Q1 →

((x : a)→ HoareState (P2 x) b (Q2 x))→

...

When we sequence two computations using the bind operator, it must infer

how to instantiate the implicit arguments. For some arguments, such as P1

and Q1, this is not a problem: they are uniquely determined by the type of

the first computation. Unfortunately, this is not the case for P2 and Q2. For

example, consider the following code fragment:

get >>= λfresh→

put (Succ fresh)

Although Agda knows the types of get and put it cannot infer how to gener-

alise the pre- and postcondition of put to instantiate the appropriate argu-

ments of bind. Filling these arguments in manually however pollutes our

code with implicit arguments of little relevance. This is a rather unfortu-

nate limitation of Agda’s inference mechanism for implicit arguments.

114

8.5 Discussion

The two issues outlined in the previous section make it rather difficult to

complete the version of the relabelling function that uses the Hoare state

monad. This is a shortcoming of Agda, that has not been designed for this

style of programming. In comparison, the entire proof is less than 120 lines

in Coq using Sozeau’s Program tactic (Sozeau, 2007). We have refrained

from presenting that proof here, as it would require the reader to learn yet

another proof assistant.

We believe that the Hoare state monad presented in this chapter has

much wider applications: it seems to be a useful abstraction to facilitate the

writing of verified stateful programs.

Related work Outside of Hoare Type Theory, similar techniques have

been used by others to incorporate some form of pre- and postcondition

reasoning in a proof assistant. Leroy (2006) has developed similar tech-

niques in the Compcert project. His solution revolves around defining an

auxiliary data type:

data Res {s : Set} (a : Set) (x : s) : Set :=

Error : Res a x

OK : a→ forall (y : s), R x y→ Res a x.

Here R is some relation between states. Unfortunately, the bind of this

monad yields less efficient extracted code, as it requires an additional pat-

tern match on the Res resulting from the first computation. Furthermore,

the Hoare state monad presented here is slightly more general as its post-

condition may also refer to the result of the computation.

Cock et al. (2008) have used a similar monad in the verification of the

seL4 microkernel. There are a few differences between their monad and

the one presented here. Firstly, we have chosen the postconditions to be

ternary relations between the initial state, result, and final state. As a re-

sult, we do not need to introduce ‘ghost variables’ to relate intermediate

results. Furthermore, their rules are presented as predicate transformers,

using Isabelle/HOL’s verification condition generator to infer the weakest

precondition of a computation.

115

Chapter 9

Implementing Hoare Type

Theory

The functional specifications we have seen so far are not the only way to

incorporate effects in type theory. Hoare Type Theory (Nanevski and Mor-

risett, 2005; Nanevski et al., 2006, 2008) takes a different approach from the

functional specifications we have seen in the previous chapters. In partic-

ular, Hoare Type Theory adds new axioms to the type theory in which we

work. These axioms postulate the existence of primitive effectful functions

– much in the same way primitive functions are introduced in Haskell. For

example, there are three axioms that postulate that the three functions for

manipulating mutable state from Chapter 6 exist. As we shall see, the types

of these functions carry all the information about how they behave. This

still makes it possible to reason with such primitive functions, even if they

have no definition in the type theory.

In this chapter we will give a pure implementation of some of the func-

tions postulated by Hoare Type Theory. By implementing these functions

we no longer need to worry about whether postulating their existence re-

sults in an inconsistent type theory, a point we will discuss in greater detail

in Section 9.3.

9.1 An overview of Hoare Type Theory

Hoare Type Theory extends a ‘vanilla’ type theory, such as the Calculus of

Inductive Constructions (Coquand and Huet, 1988) or Martin-Löf’s Theory

116

Listing 23 The ST type of Hoare Type Theory

postulate

Loc : Set

data Dyn : Set where

dyn : (a : Set)→ a→ Dyn

Heap : Set

Heap = Loc→ Maybe Dyn

Pre : Set

Pre = Heap→ Prop

Post : Set→ Set

Post a = Heap→ a→ Heap→ Prop

postulate

ST : Pre→ (a : Set)→ Post a→ Set

of Types (Martin-Löf, 1984), with several new constructs. Listing 23 gives

an overview of the new types and memory model; Listing 24 contains the

functions of Hoare Type Theory that we will implement in this chapter.

Before discussing our implementation, however, we will briefly explain the

types and functions in these two listings.

First of all, Hoare Type Theory constructs a simple memory model.

Rather than fixing the type of locations in memory to be natural num-

bers, it is kept abstract. The heap itself is a function from such locations

to Maybe Dyn, where Dyn is a pair of a type a and a value of type a. These

dynamic types replace the explicit universe we have seen previously.

Besides postulating some type of locations, Hoare Type Theory assumes

the existence of a type constructor ST. You may want to think of a value

of type ST P a Q as a computation that, provided the heap satisfies the

precondition P, will produce a value of type a and a heap satisfying the

postcondition Q. The definitions of Pre and Post are identical to those we

have seen in the previous chapter where the state has been instantiated to

the Heap type.

There are several functions that can be used to yield programs with this

ST type. Their type signatures, together with several auxiliary definitions

117

Listing 24 The core definitions and postulates of Hoare Type Theory.

data Sigma (a : Set) (b : a→ Set) : Set where

Exists : (x : a)→ b x→ Sigma a b

Refs : Loc→ (a : Set)→ a→ Pre

Refs l a x = λh→ h l ≡ Just (dyn a x)

RefsType : Loc→ Set→ Pre

RefsType l a = λh→ Sigma a (λx→ Refs l a x h)

IsRef : Loc→ Pre

IsRef l = λh→ Sigma Dyn (λd→ h l ≡ Just d)

update : forall {a} → Heap→ Loc→ a→ Heap

update {a} h l x = λl′ → if l ≡ l′ then Just (dyn a x) else h l′

postulate

return : {a : Set} → (x : a)→ ST top a (λi y f → f ≡ i ∧ y ≡ x)

bind : forall {a b P1 Q1} {P2 : a→ Pre} {Q2 : a→ Post b} →

ST P1 a Q1 → ((x : a)→ ST (P2 x) b (Q2 x))→

ST (λs1 → P1 s1 ∧ (forall x s2 → Q1 s1 x s2 → P2 x s2))

b

(λs1 x s3 → {(y, s2) : Pair a Heap | Q1 s1 y s2 ∧ Q2 y s2 x s3})

new : {a : Set} → (x : a)→

ST top Loc (λi l f → i l ≡ Nothing ∧ f ≡ update i l x)

read : (a : Set)→ (l : Loc)→

ST (RefsType l a) a

(λi x f → f ≡ i ∧ ((y : a)→ Refs l a y i→ y ≡ x))

write : (a : Set)→ (l : Loc)→ (x : a)→

ST (IsRef l) Unit (λi x f → f ≡ update i l x)

118

are in Listing 24. Besides the monadic functions we have seen previously,

there are three functions to read from, write to, and create mutable refer-

ences. Each of these functions returns a value in the ST, with pre- and

postconditions explaining how they effect the heap.

New references are created using the new function. It has a trivial pre-

condition and returns a fresh location. Its postcondition states that the

memory location returned was previously unallocated and the new heap

is identical to the previous heap, except that the freshly allocated location.

The read and write functions have more interesting preconditions. The

read function requires a location that references a value of type a and re-

turns the value stored at that location, while leaving the heap intact. The

write function takes a valid reference of any type and a value of any type

as arguments. It overwrites its argument reference with its second argu-

ment, returning the unit type. Note that the value written to the reference

need not have the same type as the value currently stored there, a property

sometimes referred to as strong updates.

Hoare Type Theory has been implemented as an axiomatic extension to

Coq (Nanevski et al., 2008). There are also similar functions to free mem-

ory, throw and handle exceptions, and a fixpoint combinators. We will not

deal with these just yet, and defer the discussion to the end of this chapter.

Besides the version we present here, there is also a richer version designed

to support separation logic (Nanevski et al., 2006).

9.2 An implementation of Hoare Type Theory

One way to prove that Hoare Type Theory is consistent is by providing

a definition for all the functions in Listings 23 and 24 in Agda, thereby

constructing a model in Agda’s underlying type theory.

First of all, note that the Hoare state monad from the previous chapter

provides the ST type and the monadic functions return and bind, together

with the do operator to strengthen preconditions and weaken postcondi-

tions. All we need to do is choose a suitable state to use for the Hoare state

monad and implement the remaining functions.

In our model we diverge a bit from Hoare Type Theory in our choice

of heap. Instead of choosing a function Loc → Maybe Dyn, we choose a

simpler List Dyn. By doing so, we will avoid running into the limitations

119

of the intensional type theory underlying Agda and Coq.

Furthermore, we do not use the same definition of Dyn. The defini-

tion of Dyn used in Hoare Type Theory is justified by a pen and paper

model construction (Petersen et al., 2008). Simply transcribing the defini-

tion from Hoare Type Theory to Agda will introduce a technical problem.

There is type theoretic equivalent of Russell’s paradox known as Girard’s

paradox (Girard, 1972; Coquand, 1986). It revolves around constructing a

‘type of all types,’ much as Russell’s paradox constructs a set of all sets.

To preserve a consistency many type theories maintain that the type of all

types should be itself not be a type. For this reason, the type of Set in Agda

is a new type Set1, which itself has type Set2, and so forth.

To accommodate different types in our references, we therefore param-

eterise our implementation of Hoare Type Theory by a universe U:

module HTT (U : Set) (el : U→ Set) where

Using this universe, we can define Dyn, the heap, and locations as follows:

Dyn : Set

Dyn = Sigma U el

Heap : Set

Heap = List Dyn

Loc : Set

Loc = Nat

In line with the functional specification we have seen in Chapter 2 we use

natural numbers to represent locations in the heap.

As we have chosen to model the heap slightly differently using a list

rather than a function, we will implement a slight adaptation of the func-

tions and types of Hoare Type Theory that we saw in the previous section.

To begin with, a location is a valid reference if it is less than the length of

the heap:

IsRef : Loc→ Heap→ Set

IsRef l h = So (l < length h)

Recall that So : Bool → Set from Chapter 5 reflects booleans as types, map-

ping True to the unit type and False to the empty type.

120

Before we give the definition of the other predicates from Listing 24, we

need to define the following lookup function:

lookup : (l : Loc)→ (h : Heap)→ IsRef l h→ Dyn

lookup Zero Nil ()

lookup Zero (Cons x xs) p = x

lookup (Succ) Nil ()

lookup (Succ k) (Cons x xs) p = lookup k xs p

Here we use the proof IsRef l h to kill off the unreachable branches.

Using this function, we can define the RefsType predicate that states a

location l is a valid reference of type u in the heap h:

RefsType : Loc→ U→ Heap→ Set

RefsType l u h = Sigma (IsRef l h) (λp→ fst (lookup l h p) ≡ u)

Here we use the proof that the location is a valid reference in order to per-

form the lookup on the heap to find its type.

Besides looking up values, we can also update values on the heap:

update : (l : Loc)→ (h : Heap)→ (d : Dyn)→ IsRef l h→ Heap

update Zero Nil d ()

update Zero (Cons x xs) d p = Cons d xs

update (Succ k) Nil d ()

update (Succ k) (Cons x xs) d p = Cons x (update k xs d p)

A call to update l h d p proceeds by traversing the heap, replacing the value

stored at location l with the dynamic value d. Note that there is no relation

between the type of the previous and new value on the heap at location l.

We now define read, write, and new functions in Listing 26. To complete

these definition we require several small lemmas in Listing 25. The proofs

of all these lemmas are reassuringly simple: they all proceed by straight-

forward induction. The definitions in Listing 26 require a bit more expla-

nation.

Compared to the functions postulated in Listing 24, the types of the

functions in Listing 26 are rather verbose. This is largely a result of our

choice to model the heap as a list rather than a function. Instead of a sim-

ple application, looking up the value stored on the heap requires a proof

121

Listing 25 Auxiliary lemmas necessary for the definitions in Listing 26.

lengthLemma : {a : Set} → (xs : List a)→ (y : a)

→ So (length xs < length (xs ++ Cons y Nil))

lengthLemma Nil y = void

lengthLemma (Cons x xs) y = lengthLemma xs y

leqIrref : (n : Nat)→ So (n < n)→ ⊥

leqIrref Zero ()

leqIrref (Succ k) p = leqIrref k p

surjectivePairing : forall {a b} →

(x : Sigma a b)→ (Exists (fst x) (snd x)) ≡ x

surjectivePairing (Exists a b) = Refl

leqLt : (n m : Nat)→ So (n < m)→ So (n 6 m)

leqLt Zero Zero p = void

leqLt Zero (Succ) p = void

leqLt (Succ k) Zero ()

leqLt (Succ k) (Succ y) p = leqLt k y p

lookupLast : forall h x→

lookup (length h) (h ++ Cons x Nil) (lengthLemma h x) ≡ x

lookupLast Nil x = Refl

lookupLast (Cons y ys) x = lookupLast ys x

lookupInit : forall h d l p q→

lookup l (h ++ Cons d Nil) p ≡ lookup l h q

lookupInit Nil d Zero p ()

lookupInit (Cons y ys) d Zero p q = Refl

lookupInit Nil d (Succ y) p ()

lookupInit (Cons y ys) d (Succ k) p q = lookupInit ys d k p q

122

Listing 26 Implementing read, write, and new

read : forall {u} → (l : Loc)→

HoareState (RefsType l u) (el u)

(λi x f → i ≡ f

∧ (Sigma (IsRef l i) (λp→ Exists u x ≡ lookup l i p)))

read l (Satisfies heap (Exists p Refl)) =

Satisfies (snd dyn, heap) (Refl, Exists p (surjectivePairing dyn))

where

dyn = lookup l heap p

write : forall {u} → (l : Loc)→ (x : el u)→

HoareState (λi→ IsRef l i) Unit

(λi f → Sigma (IsRef l i) (λp→ f ≡ update l i (Exists u x) p))

write {u} l x (Satisfies h p) =

Satisfies (void, update l h (Exists u x) p) (Exists p Refl)

new : forall {u} → (x : el u)→

HoareState top Loc

(λi l f → (IsRef l i→ ⊥)

∧ (forall l p q→ lookup l f p ≡ lookup l i q)

∧ (Sigma (So (l < length f)) (λp→ lookup l f p ≡ Exists u x)))

new {u} x (Satisfies h p) =

Satisfies (length h, h ++ (Cons dyn Nil)) prfs

where

dyn = Exists u x

isFreshPrf = leqIrref (length h)

initPrf = lookupInit h dyn

lastPrf = Exists (lengthLemma h dyn) (lookupLast h dyn)

prfs = (isFreshPrf , initPrf , lastPrf)

123

that the location being dereferenced is indeed valid. Passing these proofs

around introduces a bit of overhead.

The read function calls the lookup function we defined previously. This

returns a pair of a dynamic value. We project out the second component

and return it together with the unchanged heap. The postcondition re-

quires a proof that the heap is untouched and that the value returned is the

result of performing a lookup with the argument location. Proving both

these statements is trivial.

Implementing the write function is similar. We compute a new heap by

calling the update function. The only interesting part of the postcondition

states that the new heap is the result of appropriately updating the initial

heap. As our implementation closely follows this specification, this proof

is simply Refl.

The new function is a bit more complicated. We extend the heap by

adding a new element to the end. Besides the extended heap, we need to

return a location, i.e., a natural number, that indicates where to find the

latest addition to the heap. As we have added a new element to the end of

the heap h, the number we return is length h.

The postcondition of the new function consists of three conjuncts: the

new location must be fresh; existing locations must not be overwritten;

dereferencing the new location must yield the appropriate value. Each of

these individual propositions requires a lemma that can be found in List-

ing 25. The proof of all three lemmas proceeds by straightforward induc-

tion.

9.3 Comparison

There are several important differences between the functional specifica-

tions presented in this thesis and the axiomatic approach to effects as set

forth by Hoare Type Theory.

The functional specifications in this dissertation are defined in the type

theory. This is a mixed blessing. On the one hand, we are bound by theory

in which we work; on the other, the specifications are no different from any

other function in our theory.

Hoare Type Theory takes a different approach. It postulates the exis-

tence of new type formers and functions, thereby extending the type theory.

124

Hence some form of justification is required to guarantee that the extended

theory is still consistent. The flip side is that it is usually much easier to

formulate new axioms than to implement them in the type theory.

There are clear advantages to working with functional specifications.

As they have a definition in the type theory, they can be used to test code

automatically, as we have seen in the earlier chapters of this dissertation.

This is particularly valuable when you are unsure about which properties

should hold. Such automatic testing can provide a sanity check before you

decide to invest a great deal of effort into proving a property, that may turn

out to be false.

There is a second advantage to our functional specifications that is a bit

more subtle. Proofs in type theory can be very hard. The only thing you

ever get ‘for free’ is that definitions automatically expand. Unfortunately,

the Hoare Type Theory postulates have no associated definition. Despite

their richer logic, this may make some programs and proofs more difficult.

Furthermore, once you postulate the existence of the ST type, the only way

to prove new properties of this type is by adding new postulates. There is

no definition you can work with; inhabitants of the ST type do not compute

to values.

Hoare Type Theory, on the other hand, is much more readily extensible.

For example, it postulates a fixpoint combinator with the following type:

(((x : a)→ ST (p x) (b x) (q x))→ ((x : a)→ ST (p x) (b x) (q x)))

→ (x : a)→ ST (p x) (b x) (q x)

In general, such fixed point combinators lead to an inconsistent type theory.

In this instance, however, because the combinator is limited to the ST type

it does not introduce such an inconsistency.

This an important drawback of the functional specifications. It is quite

difficult to define a fixed point combinator within the type theory. Al-

though there are recent proposals to specify fixed point combinators using

coinduction (Capretta, 2005), these proposals entail much more effort than

formulating a postulate.

When Hoare Type Theory introduces new postulates, there must be

some justification. After all, the postulates could lead to an inconsistent

type theory. One way to prove that the postulates preserve consistency is

to define the ST type and its associated primitive functions in our type the-

125

ory. If you are only interested in proving consistency of your axioms, you

could define the ST type as follows:

ST : Pre→ (a : Set)→ Post a→ Set

ST pre a post = Unit

Now it is easy to give a trivial implementation of a fixed point combinator

and all the other functions we have seen in this chapter.

Such a simple choice for the ST type does have its disadvantages. While

it does show that the postulated functions do not give rise to an inconsistent

type theory, it creates a semantic gap between the actual definition of ST

and its intended meaning. For instance, we could now define an operation:

oops : ST top Unit (λi x f → ⊥)

oops = void

Using this function we can show that a computation in the ST type satisfies

any postcondition. Although the type theory remains consistent, the pred-

icates attached to the ST type have become meaningless. To make matters

worse, we can prove that any pair of computations that inhabit the ST type

are equal. Clearly, such trivial implementations of the ST type have enor-

mous drawbacks.

By starting from a definition in the type theory, as our functional spec-

ifications do, it becomes much harder to introduce undesirable primitives.

It is impossible to provide an implementation for the oops function in the

functional specification we have seen in this chapter.

As an alternative to such a trivial model, there have been recent pen-

and-paper proofs of consistency (Petersen et al., 2008). Such proofs require

substantial effort. If you decide to add a new axiom at a later date, you

are required to redo the entire proof. Such a proof is far removed from the

programming language. If nothing else, this seems to go against the spirit

of type theory: should the language of proofs and programs not coincide?

These points are all quite subtle. We need more experience with the

two approaches to find some middle ground, combining the benefits of

both Hoare Type Theory and the functional specifications.

126

Chapter 10

Discussion

10.1 Overview

What have we achieved in this thesis? Before discussing any further work

and conclusions, I will briefly summarise the individual chapters.

Chapter 2 presents functional specifications of several different effects

in Haskell. These functional specifications are useful for debugging and

testing impure code. In particular, we have shown how such functional

specifications may be used in tandem with tools such as QuickCheck to

check properties of effectful functions.

The individual functional specifications in Chapter 2 are described in

isolation. We have shown how the syntax of different effects may be com-

bined (Chapter 3). By interpreting the syntax in terms of a fixed virtual

machine, we avoid having to consider combining the semantics of differ-

ent effects.

Using this approach, it can be straightforward to define new specifica-

tions that run on this virtual machine. We have demonstrated this in Chap-

ter 4, where we present a functional specification of software transactional

memory.

Although these functional specifications presented in Haskell are cer-

tainly useful for debugging and testing, there is a problem. The specifica-

tions we have presented are not total: the programmer may access unallo-

cated memory and type casts may fail. This makes them inappropriate for

formal reasoning.

We show how the functional specification of mutable state can be made

127

total in the dependently typed programming language Agda. Chapter 5

introduces Agda; the specification is given in Chapter 6. This is total func-

tional specification of mutable state is one of the central results of this dis-

sertation.

Besides ensuring totality, dependent types may be used to enforce do-

main specific invariants. This is illustrated in Chapter 7, where we show

how to constrain array access operations in order to write efficient dis-

tributed algorithms.

The last chapters of this dissertation relate these results to recent work

on Hoare Type Theory. Chapter 8 shows how the return and bind of the

Hoare Type can be implemented in Agda by decorating the state monad

with propositional information. We use this to complete our implementa-

tion of Hoare Type Theory in Chapter 9.

10.2 Further work

This thesis is by no means the final word on effects in type theory. There

are plenty of directions for further research. Although some individual

chapters discussed limitations and further work, there are a few issues I

would like to mention separately.

Higher-order store Our functional specification of mutable state in Chap-

ter 6 is parameterised by a universe representing the types of those values

that may be stored in references. It is, however, not possible to store com-

putations themselves in references.

The reason for this is rather subtle. Recall that the Read constructor of

the IO type in Chapter 6 had the following type:

forall {s t u} → Ref u s→ (el u→ IO a s t)→ IO a s t

Now if the decoding function el were allowed to produce values of type IO,

this would introduce a negative occurrence of the data type we were defin-

ing. Such negative occurrences can be used to write arbitrary fixed-point

combinators, leading to an inconsistent type theory. Negative data types

are forbidden in Agda. This complication should not come as a surprise:

Landin observed that if you can store procedures in the store, you can write

generally recursive functions.

128

To allow procedures to be stored in references, we need to develop a

stratified model of the IO type. In such a model, we would construct a

sequence of IO types. The first IO type stores values on the heap; the second

type may stores procedures of the first IO type on the heap; the third IO

type may store procedures of the second IO type on the second heap; etc.

By doing this, we avoid the negative occurrence in the Read constructor we

saw above. This solution is reminiscent of the stratified universe of types

that many type theories support, e.g., in Agda Set has type Set1, Set1 has

type Set2, and so forth. It would be interesting to investigate how to reduce

the overhead that such a model would introduce, making programming

with this advanced model no more difficult than with the specification we

have seen already.

Case studies Although this thesis has developed the framework in which

we can reason about effectful programs, we have yet to apply them to sub-

stantial examples. There are plenty of well-established pointer algorithms,

such as the Schorr-Waite marking algorithm (Schorr and Waite, 1967) or

the implementation of queues from Chapter 2, that would make interest-

ing case studies.

Other effects The second half of this dissertation focused on the seman-

tics of mutable state. The earlier chapters established functional specifica-

tions in Haskell of various other effects, including concurrency and soft-

ware transactional memory. Solidifying these specifications in a depen-

dently typed language and proving that they can be made total is an im-

portant next step.

Verifying specifications Although we have defined semantics for tele-

type IO, mutable state, and concurrency, we do not know if our specifi-

cations are a faithful representation of the real side-effects in Haskell. We

need to guarantee that that the semantics we have presented here can actu-

ally be trusted.

We could try prove that our semantics are equivalent to those presented

by Peyton Jones (Peyton Jones, 2001). This would certainly reaffirm our

conviction that these functional semantics are correct. This still does not

guarantee that our specifications are semantically equivalent to the code

129

produced by a Haskell compiler, but merely proves the two sets of seman-

tics are equivalent.

An alternative approach would be to describe how Haskell compiles

to code for some low-level machine code. We could then compare the be-

haviour of the primitive readIORef with the readIORef we have defined. If

these two are semantically equivalent on the machine level, we know that

it is safe to reason using the functions we have defined. Hutton and Wright

take a very similar approach to proving the correctness of a compiler for a

simple language with exceptions (Hutton and Wright, 2004).

Combining specifications In Chapter 3 we discussed techniques that can

be used to combine the syntax of effectful operations. These compound

syntactical terms could then be executed on a fixed virtual machine. We

did not, however, discuss how to combine the specifications themselves.

Combining monadic semantics is a notoriously hard problem that is still

subject to active research (King and Wadler, 1992; Liang et al., 1995; Lüth

and Ghani, 2002). Yet many programs rely on a combination of several

different effects. Further research is warranted, both in the study of mod-

ular semantics and in the design of dependently typed programming lan-

guages, before it is possible to assemble more complex specifications from

those presented in this dissertation.

10.3 Conclusions

In the first chapter we formulated the four theses that this dissertation de-

fends:

• Functional specifications can provide a formal semantics of the ‘Awk-

ward Squad.’

• To write precise functional specifications, we need to work in a pro-

gramming language with dependent types.

• These specifications are a viable alternative to the axiomatic approach

to side effects that is put forward by Hoare Type Theory and Haskell.

• Such functional specifications may provide the interface to the real

world for tomorrow’s dependently typed programming languages.

130

In this final section, I will reflect on these four points one last time.

There are many different functional specifications presented in this the-

sis: mutable state, concurrency, teletype I/O, and software transactional

memory (Chapter 2 and Chapter 4). Although there are some members

of the ‘Awkward Squad’ that we have not covered, such as asynchronous

exceptions or the foreign function interface, the functional specifications

presented here capture a wide spectrum of different effects. This provides

evidence supporting our first claim: functional specifications can provide a

formal semantics of effects.

The functional specifications written in Haskell are not total. There-

fore they are unsuitable for the formal verification of impure programs. As

this dissertation shows, this partiality is not an inherent shortcoming but

merely highlights the limitations of Haskell’s type system. This disserta-

tion demonstrates that the specification of mutable state can be made total

in Agda: by programming in a language with dependent types we can

make the totality of our specifications manifest.

Hoare Type Theory extends the ambient type theory with new postu-

lates. The implementation of Hoare Type Theory presented in the latter

chapters of this thesis shows that this is not always necessary. Although it

is more work to write a functional specification than formulate a postulate,

the result is more rewarding: the corresponding functional specification is

executable and guaranteed to preserve consistency.

There is much work to be done before the functional specifications pre-

sented in this dissertation may be used by laymen to verify complex effect-

ful programs. These specifications do, however, provide the foundations

on which richer logics can be built. Such functional specifications are a first

step towards effectful dependently typed programming, but certainly not

the last.

131

Bibliography

Eric Allen, David Chase, Victor Luchangco, Jan-Willem Maessen, Suky-

oung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt. The Fortress

language specification. Technical report, Sun Microsystems, Inc., 2005.

Thorsten Altenkirch and Conor McBride. Generic programming within

dependently typed programming. In Proceedings of the IFIP TC2 Working

Conference on Generic Programming, 2003.

Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda

terms using generalized inductive types. In Computer Science Logic, 13th

International Workshop, CSL ’99, pages 453–468, 1999.

Robert Atkey. Parameterised notions of computation. In Proceedings of the

Workshop on Mathematically Structured Functional Programming, 2006.

Steve Awodey. Category Theory, volume 49 of Oxford Logic Guides. Oxford

University Press, 2006.

Arthur I. Baars and S. Doaitse Swierstra. Typing Dynamic Typing. In ICFP

’02: Proceedings of the Seventh ACM SIGPLAN International Conference on

Functional Programming, 2002.

Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic

Introduction. Graduate Texts in Computer Science. Springer-Verlag, 1998.

Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program

Development. Coq’Art: The Calculus of Inductive Constructions. Texts in The-

oretical Computer Science. Springer Verlag, 2004.

Richard Bird. Functional Pearl: Unfolding pointer algorithms. Journal of

Functional Programming, 11(3):347–358, 2001.

132

Richard Bird and Philip Wadler. An Introduction to Functional Programming.

Prentice Hall, 1988.

Ana Bove and Peter Dybjer. Dependent types at work. In Lecture Notes for

the LerNET Summer School, 2008.

Venanzio Capretta. General recursion via coinductive types. Logical Meth-

ods in Computer Science, 1(2):1–18, 2005.

Manuel Chakravarty, editor. The Haskell 98 Foreign Function Interface 1.0,

2002. An Addendum to the Haskell 98 Report.

Manuel M.T. Chakravarty, Gabriele Keller, Roman Lechtchinsky, and Wolf

Pfannenstiel. Nepal – Nested Data-Parallelism in Haskell. In Euro-Par

2001: Parallel Processing, 7th International Euro-Par Conference, volume

LNCS 2150, 2001.

Manuel M.T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones,

Gabriele Keller, and Simon Marlow. Data Parallel Haskell: a status re-

port. Proceedings of the 2007 Workshop on Declarative Aspects of Multicore

Programming, 2007.

Brad Chamberlain, Steve Deitz, Mary Beth Hribar, and Wayne Wong.

Chapel. Technical report, Cray Inc., 2005.

Bradford L. Chamberlain, Sung-Eun Choi, E. Christopher Lewis, Calvin

Lin, Lawrence Snyder, and Derrick Weathersby. ZPL: A machine inde-

pendent programming language for parallel computers. Software Engi-

neering, 26(3), 2000.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa,

Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar.

X10: an object-oriented approach to non-uniform cluster computing. In

OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN Conference on

Object-oriented Programming, Systems, Languages, and Applications, 2005.

James Cheney and Ralf Hinze. A Lightweight Implementation of Gener-

ics and Dynamics. In Manuel Chakravarty, editor, Proceedings of the

2002 ACM SIGPLAN Haskell Workshop, pages 90–104. ACM-Press, Octo-

ber 2002.

133

Koen Claessen. A Poor Man’s Concurrency Monad. Journal of Functional

Programming, 9(3):313–323, May 1999.

Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool for

Random Testing of Haskell Programs. In ICFP ’00: Proceedings of the Fifth

ACM SIGPLAN International Conference on Functional Programming, 2000.

David Cock, Gerwin Klein, and Thomas Sewell. Secure microkernels, state

monads and scalable refinement. In TPHOLs ’08: Proceedings of the 21st

International Conference on Theorem Proving in Higher Order Logics, Lecture

Notes in Computer Science. Springer-Verlag, 2008.

Thierry Coquand. Infinite objects in type theory. In Types for Proofs and

Programs (TYPES ’93), volume 806 of Lecture Notes in Computer Science,

pages 62–78. Springer-Verlag, 1993.

Thierry Coquand. An analysis of Girard’s Paradox. In In Symposium on

Logic in Computer Science, pages 227–236, 1986.

Thierry Coquand and Gerard Huet. The calculus of constructions. Informa-

tion and Computation, 76(2/3), 1988.

John Cupitt. A brief walk through KAOS. Technical Report 58, Computing

Laboratory, University of Kent, 1989.

Robert W. Floyd. Assigning meanings to programs. Mathematical Aspects of

Computer Science, 19, 1967.

Matthew Fluet and Greg Morrisett. Monadic regions. In ICFP ’04: Pro-

ceedings of the Ninth ACM SIGPLAN International Conference on Functional

Programming, pages 103–114, New York, NY, USA, 2004. ACM. ISBN

1-58113-905-5.

Neil Ghani, Peter Hancock, and Dirk Pattinson. Continuous Functions on

Final Coalgebras. Electronic Notes in Theoretical Computer Science, 164(1):

141–155, 2006.

J.Y. Girard. Interpretation fonctionnelle et elimination des coupures de l’arith-

metique d’orde superieur. PhD thesis, Paris VII, 1972.

134

Andrew D. Gordon. Functional Programming and Input/Output. Distin-

guished Dissertations in Computer Science. Cambridge University Press,

1994.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.

Prentice Hall, 1996.

Christian Grothoff, Jens Palsberg, and Vijay Saraswat. Safe arrays via re-

gions and dependent types. Submitted for publication, 2007.

Peter Hancock. Ordinals and Interactive Programs. PhD thesis, School of

Informatics at the University of Edinburgh, 2000.

Peter Hancock and Anton Setzer. Interactive programs in dependent type

theory. In P. Clote and H. Schwichtenberg, editors, Computer Science Logic,

volume 1862 of Springer Lecture Notes in Computer Science, pages 317–331,

2000.

Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy.

Composable Memory Transactions. In Proceedings of the Tenth ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming, pages

48–60, 2005.

William L. Harrison. Cheap (but functional) threads. Submitted to Journal

of Functional Programming, 2005.

William L. Harrison. The Essence of Multitasking. In Michael Johnson

and Varmo Vene, editors, Proceedings of the 11th International Conference

on Algebraic Methodology and Software Technology, volume 4019 of Lecture

Notes in Computer Science, pages 158–172. Springer, 2006.

C. A. R. Hoare. An axiomatic basis for computer programming. Communi-

cations of the ACM, 12(10):576–580, 1969.

Sören Holmström. PFL: A Functional Language for Parallel Programming.

In Declarative Programming Workshop, pages 114–139, 1983.

Liyang Hu and Graham Hutton. Towards a Verified Implementation of

Software Transactional Memory. In Proceedings of the Symposium on Trends

in Functional Programming, 2008.

135

Graham Hutton. Programming in Haskell. Cambridge University Press,

2007.

Graham Hutton and Diana Fulger. Reasoning about effects: Seeing the

wood through the trees. In Proceedings of the Ninth Symposium on Trends

in Functional Programming, 2008.

Graham Hutton and Joel Wright. Compiling Exceptions Correctly. In Pro-

ceedings of the 7th International Conference on Mathematics of Program Con-

struction, volume 3125 of Lecture Notes in Computer Science. Springer, 2004.

S.S. Ishtiaq and P.W. O’Hearn. BI as an assertion language for mutable data

structures. ACM SIGPLAN Notices, 36(3):14–26, 2001.

Mauro Jaskelioff, Neil Ghani, and Graham Hutton. Modularity and imple-

mentation of mathematical operational semantics. In Proceedings of the

2nd Workshop on Mathematicall Structured Functional Programming, 2008.

Kent Karlsson. Nebula: A Functional Operating System. Technical report,

Chalmers University of Technology, 1981.

David J. King and Philip Wadler. Combining monads. In John Launchbury

and Patrick M. Sansom, editors, Proceedings of the Glasgow Workshop on

Functional Programming, pages 134–143, Glasgow, 1992. Springer.

Oleg Kiselyov and Chung chieh Shan. Lightweight monadic regions. In

Haskell ’08: Proceedings of the first ACM SIGPLAN Symposium on Haskell,

pages 1–12, 2008. ISBN 978-1-60558-064-7.

P. J. Landin. A correspondence between ALGOL 60 and Church’s lambda-

notation: Parts I and II. Communications of the ACM, 8(2,3), 1965.

John Launchbury and Simon L. Peyton Jones. Lazy functional state threads.

SIGPLAN Not., 29(6):24–35, 1994.

Daan Leijen and Erik Meijer. Domain Specific Embedded Compilers. In 2nd

USENIX Conference on Domain Specific Languages (DSL’99), pages 109–122,

1999.

Xavier Leroy. Formal certification of a compiler back-end, or: program-

ming a compiler with a proof assistant. In POPL ’06: 33rd Symposium on

Principles of Programming Languages, pages 42–54, 2006.

136

Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and

modular interpreters. In POPL ’95: Conference record of the 22nd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

pages 333–343, 1995.

Andres Löh and Ralf Hinze. Open data types and open functions. In Prin-

ciples and Practice of Declarative Programming, 2006.

Christoph Lüth and Neil Ghani. Composing monads using coproducts. In

ICFP ’02: Proceedings of the Seventh ACM SIGPLAN International Confer-

ence on Functional Programming, 2002.

Saunders Mac Lane. Categories for the Working Mathematician. Springer-

Verlag, 1971.

Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

Conor McBride and James McKinna. The view from the left. Journal of

Functional Programming, 14(1):69–111, 2004.

John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart,

and Michael I. Leving. LISP 1.5 Programmer’s Manual. MIT Press, 1962.

James McKinna. Deliverables: a categorical approach to program development in

type theory. PhD thesis, School of Informatics at the University of Edin-

burgh, 1992.

James McKinna and Joel Wright. A type-correct, stack-safe, provably cor-

rect, expression compiler in Epigram. Accepted for publication in the

Journal of Functional Programming, 2006.

Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional program-

ming with bananas, lenses, envelopes and barbed wire. In Proceedings

ACM Conference on Functional Programming Languages and Computer Ar-

chitecture, 1991.

Microsoft. Microsoft C# Language Specifications. Microsoft Press, 2001.

Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard

ML. MIT Press, 1997.

137

Eugenio Moggi. Computational lambda-calculus and monads. In Sympo-

sium on Logic in Computer Science, 1989.

Eugenio Moggi. Notions of computation and monads. Information and Com-

putation, 93(1):55–92, 1991.

Peter Morris. Constructing Universes for Generic Programming. PhD thesis,

University of Nottingham, 2007.

Peter Morris, Thorsten Altenkirch, and Neil Ghani. A universe of strictly

positive families. Theory of Computation, 2007.

Aleksandar Nanevski and Greg Morrisett. Dependent type theory of state-

ful higher-order functions. Technical Report TR-24-05, Harvard Univer-

sity, 2005.

Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism

and separation in Hoare Type Theory. In ICPF ’06: Proceedings of the

Eleventh ACM SIGPLAN Internation Conference on Functional Programming,

2006.

Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau, and

Lars Birkedal. Ynot: Reasoning with the awkward squad. In ICFP ’08:

Proceedings of the Twelfth ACM SIGPLAN Internation Conference on Func-

tional Programming, 2008.

George C. Necula. Proof-carrying code. In POPL ’97: Proceedings of the

24th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-

guages, pages 106–119, 1997.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL —

A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,

2002.

Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in

Martin-Löf’s Type Theory: An Introduction. Oxford University Press, 1990.

Ulf Norell. Dependently typed programming in Agda. In 6th International

School on Advanced Functional Programming, 2008.

Ulf Norell. Towards a practical programming language based on dependent type

theory. PhD thesis, Chalmers University of Technology, 2007.

138

Chris Okasaki. Purely Functional Data Structures. Cambridge University

Press, 1998.

Nicolas Oury and Wouter Swierstra. The Power of Pi. In ICFP ’08: Pro-

ceedings of the Twelfth ACM SIGPLAN Internation Conference on Functional

Programming, 2008.

S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification sys-

tem. In Deepak Kapur, editor, 11th International Conference on Automated

Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,

pages 748–752. Springer-Verlag, 1992.

Nikolaos S. Papaspyrou. A resumption monad transformer and its appli-

cations in the semantics of concurrency. In In Proceedings of the 3rd Pan-

hellenic Logic Symposium, 2001.

R.L. Petersen, L. Birkedal, A. Nanevski, and G. Morrisett. A Realizability

Model of Impredicative Hoare Type Theory. In Proceedings of the European

Symposion on Programming, 2008.

Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised

Report. Cambridge University Press, 2003.

Simon Peyton Jones. Tackling the awkward squad: monadic input/output,

concurrency, exceptions, and foreign-language calls in Haskell. In Tony

Hoare, Manfred Broy, and Ralf Steinbruggen, editors, Engineering theories

of software construction. IOS Press, 2001.

Simon Peyton Jones. Beautiful concurrency. In Andy Oram and Greg Wil-

son, editors, Beautiful Code. O’Reilly, 2007.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent

Haskell. In POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 295–308, 1996.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey

Washburn. Simple unification-based type inference for GADTs. In ICFP

’06: Proceedings of the Eleventh ACM SIGPLAN Internation Conference on

Functional Programming, 2006.

139

Simon L. Peyton Jones and Philip Wadler. Imperative functional program-

ming. In POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT Sym-

posium on Principles of programming languages, pages 71–84, 1993.

John C. Reynolds. Definitional interpreters for higher-order programming

languages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998.

Reprinted from the proceedings of the 25th ACM National Conference

(1972).

John C. Reynolds. Separation logic: A logic for shared mutable data struc-

tures. In Proceedings of the Seventeenth Annual IEEE Symposium on Logic in

Computer Science, 2002.

Sven-Bodo Scholz. Single Assignment C — efficient support for high-level

array operations in a functional setting. Journal of Functional Program-

ming, 13(6):1005–1059, 2003.

H. Schorr and W. M. Waite. An efficient machine-independent procedure

for garbage collection in various list structures. Communications of the

ACM, 1967.

Matthieu Sozeau. Subset coercions in Coq. In Types for Proofs and Programs,

volume 4502 of Lecture Notes in Computer Science. Springer-Verlag, 2007.

M. Spivey. A functional theory of exceptions. Science of Computer Program-

ming, 14(1):25–42, 1990.

Herb Sutter. The free lunch is over: A fundamental turn toward concur-

rency in software. Dr. Dobb’s Journal, 30(3), 2005.

Wouter Swierstra. Data types à la carte. Journal of Functional Programming,

18(4):423–436, July 2008.

Wouter Swierstra and Thorsten Altenkirch. Beauty in the Beast: A func-

tional semantics of the awkward squad. In Haskell ’07: Proceedings of the

ACM SIGPLAN Workshop on Haskell, 2007.

Wouter Swierstra and Thorsten Altenkirch. Dependent types for dis-

tributed arrays. In Proceedings of the Ninth Symposium on Trends in Func-

tional Programming, 2008.

140

Simon Thompson. Interactive functional programs. In Research topics in

functional programming, pages 249–285, 1990.

Mads Tofte and J.-P. Talpin. Region-based memory management. Informa-

tion and Computation, 132(2):109–176, Feb 1997.

David Turner. Functional programming and communicating processes. In

Volume II: Parallel Languages on PARLE: Parallel Architectures and Languages

Europe, pages 54–74. Springer-Verlag, 1987.

Janis Voigtländer. Asymptotic improvement of computations over free

monads. In Christine Paulin-Mohring and Philippe Audebaud, editors,

Mathematics of Program Construction, volume 5133 of Lecture Notes in Com-

puter Science, pages 388–403. Springer-Verlag, 2008.

Philip Wadler. Comprehending monads. In LFP ’90: Proceedings of the 1990

ACM conference on LISP and functional programming, pages 61–78, 1990.

Philip Wadler. The essence of functional programming. In POPL ’92: Con-

ference Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, pages 1–14, 1992.

Philip Wadler. The Expression Problem. E-mail message available from

http://homepages.inf.ed.ac.uk/wadler/papers/expression/, 1998.

141

