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Abstract

Self-assembly is a ubiquitous process in nature in which a disordered set of com-

ponents autonomously assemble into a complex and more ordered structure. Components

interact with each other without the presence of central control or external intervention.

Self-assembly is a rapidly growing research topic and has been studied in various domains in-

cluding nano-science and technology, robotics, micro-electro-mechanical systems, etc. Soft-

ware self-assembly, on the other hand, has been lacking in research efforts.

In this research, I introduced Automated Self-Assembly Programming Paradigm

(ASAP 2), a software self-assembly system whereby a set of human made components are

collected in a software repository and later integrated through self-assembly into a specific

software architecture. The goal of this research is to push the understanding of software self-

assembly and investigate if it can complement current automatic programming approaches

such as Genetic Programming.

The research begins by studying the behaviour of unguided software self-assembly,

a process loosely inspired by ideal gases. The effect of the externally defined environmental

parameters are then examined against the diversity of the assembled programs and the time

needed for the system to reach its equilibrium. These analysis on software self-assembly then

leads to a further investigation by using a particle swarm optimization based embodiment

for ASAP 2. In addition, a family of network structures is studied to examine how various

network properties affect the course and result of software self-assembly. The thesis ends

by examining software self-assembly far from equilibrium, embedded in assorted network

structures.
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The main contributions of this thesis are: (1) a literature review on various ap-

proaches to the design of self-assembly systems, as well as some popular automatic pro-

gramming approaches such as Genetic Programming; (2) a software self-assembly model in

which software components move and interact with each other and eventually autonomously

assemble into programs. This self-assembly process is an entirely new approach to auto-

matic programming; (3) a detailed investigation on how the process and results of software

self-assembly can be affected. This is tackled by deploying a variety of embodiments as well

as a range of externally defined environmental variables. To the best of my knowledge, this

is the first study on software self-assembly.
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Chapter 1

Introduction

This thesis examines the development of software self-assembly. Self-assembly is a ubiqui-

tous process in nature in which a disordered set of components autonomously assemble into

a complex and more ordered structure. Components interact with each other without the

presence of central control or external intervention. I present in this thesis the Automated

Self-Assembly Programming Paradigm (ASAP 2), a software self-assembly model that sim-

ulates a self-assembly process for software components. An introduction to self-assembly is

given next, followed by an explanation of the research goals in this thesis.

1.1 Dissertation Scope and Goals

Self-assembly is a general term used across various domains from molecular nano-science to

biology and astronomy. Self-assembly is a process generally recognized as the autonomous

formation of complex structures using elementary components.

Molecular self-assembly [23, 95] is one of most popular studied fields of self-

assembly. As a design and engineering principle, self-assembly has been applied to robotics
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[84, 97], mechanical systems [80], nanotechnology [23, 69, 95], and in a variety of other fields

[61, 83, 94]. Although self-assembly has been studied in many research areas, there has been

a lack of research effort on software self-assembly. The work on self-reconfigurable software

[5, 48] and self-adaptive software [24], are few examples of recent efforts from a software

engineering perspective. These incorporate some, but not all of the potentially appealing

features behind self-assembly.

Although there has been an enormous amount of research on the evolvablity of

complex program structures (for example all the research on genetic programming (http:

//www.cs.bham.ac.uk/~wbl/biblio/), here I propose to take a step back from the in-

vestigation of automatic program synthesis by evolutionary methods such as Genetic Pro-

gramming [49, 78], or grammatical evolution [79] and to focus instead on the role that

self-assembly could have in the automatic synthesis of program parse trees. The moti-

vation for this is that there are strong arguments claiming that life originated from the

interactions of inanimate matters through self-assembly. And that self-assembly preceded

evolution: replicators undergoing natural selection needed for evolution to be kick started

by self-assembly first. Hence, rather than using an evolutionary approach, I intend to focus

on software self-assembly instead.

I propose in this thesis that software self-assembly should be vigorously investi-

gated. The investigations shall not only aid the understanding of how self-assembly can

be used in the automatic generation of programs, but also provide insights into how self-

assembly can be complementary to existing automatic programming methodologies such as

GP and grammatical evolution. To be more specific, this thesis is composed of the following
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studies:

• Propose a software self-assembly model that mimics the self-assembly of systems, both

natural and artificial. Software self-assembly is expected to inherit some, but probably

not all, of the features in natural self-assembly.

• Study software self-assembly using different embodiments, as well as different envi-

ronments.

• Investigate static (i.e. close to equilibrium) software self-assembly and dynamic (i.e.

far from equilibrium) software self-assembly.

1.2 A Note on Methodology

To study the points mentioned above, different methodologies are used.

The first point is tackled by a literature review. This includes examples of both

natural and artificial self-assembly systems, as well as self-assembly as a design principle.

The background knowledge obtained from the literature review is then integrated into a

model for the automatic generation of programs using self-assembly.

The second and third points, are carried out by systematic experimentation and

analysis of the models proposed. In order to gain a good understanding of software self-

assembly in different circumstances, a range of embodiments are used to guide the software

self-assembly process, as well as a variety of environments where self-assembly takes place.

1.3 Structure of Thesis

This thesis is organized as follows:
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Chapter 1 gives a brief introduction on the objectives and contributions of this

thesis (this chapter).

Chapter 2 gives an overview and background information on self-assembly.

Chapter 3 introduces the Automated Software Self-Assembly Programming Paradigm

(ASAP 2), a model that simulates a self-assembly process for software components. Soft-

ware components are treated as gas molecules and their interactions, within a confined

area with specific temperature and pressure constraints. This gives rise to a variety of pro-

gram architectures. Experimental results are presented to show how different factors affect

the efficiency of the software self-assembly process and the diversity of the self-assembled

programs.

Chapter 4 presents an extended ASAP 2 model based on particle swarm intelli-

gence, illustrating how software self-assembly can be guided using different embodiments.

Experimental results indicate an improvement in software self-assembly efficiency in terms

of average time to equilibrium at the expense of diversity of generated structures.

Chapter 5 extends the ASAP 2 model, by embedding it into a network of compart-

ments. A family of graph structures is used to illustrates what and how various network

properties affect the course and evolution of software self-assembly.

Chapter 6 shows how the self-assembly dynamics of software components change

within a network that is kept far from equilibrium.

Hence the dissertation progresses from simple to complex settings by first consid-

ering a single compartment and total random walks. Then it introduces swarming, followed

by a complex network structure. But all of these systems are near equilibrium. Finally the
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network topology is pushed far from equilibrium and the impact on ASAP 2 investigated.

Chapter 7 summarizes this thesis and overviews various possible future work on

software self-assembly.

1.4 Contributions

This thesis has made the following contributions:

1. A survey and review of natural and artificial self-assembly systems demonstrates the

issues and advantages of self-assembly as a design and engineering principle for soft-

ware engineering.

2. A software self-assembly model is presented, in which software components interact

with each other and self-assemble into programs.

3. An analysis using various embodiments demonstrates how software self-assembly is

affected under different externally defined environments.

4. An analysis of the topological impacts on software self-assembly suggests that network

properties can affect the results of self-assembled programs.

5. ASAP 2 model is developed to study on software self-assembly close to equilibrium,

as well as far from equilibrium.

To the best of my knowledge this is the first time that self-assembly - a ubiquitous

natural phenomenon - has been proposed and studied as a (potentially) viable alternative to

other automated program synthesis methodologies like, for example, genetic programming.
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Chapter 2

Background Information

In this chapter, a brief review of self-assembly is presented. This chapter starts with an

overview of the concepts and features of self-assembly in section 1. In section 2, a taxonomy

of self-assembly systems categorized by their design in various domains is reviewed, thus

giving an overview on (possible) design of software self-assembly systems. In section 3,

current popular automatic programming approaches are briefly reviewed. The aim is to

find out how self-assembly can be used to complement the existing automatic programming

approaches. In Section 4, software self-assembly is introduced, with the research motivation,

scope and goals explained. And section 5 summarizes this chapter.

2.1 Overview of Self-assembly

2.1.1 Introduction

Self-assembly is a ubiquitous process in nature in which a set of disordered pre-existing

components assemble to one or more complex and ordered structures. The final structure is

encoded in the design of components, in their interactions and in the environment in which
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the components live. Neither a central control mechanism nor human intervention is needed

in this process. Components are generally autonomous and do not have pre-existing plans

of how to reach the final structure. During the self-assembly process, components can only

interact with each other and their local environment.

The self-assembled structures are determined by the statistical exploration of al-

ternative configurations among components. More specifically, the information on how to

assemble the final products is implicitly encoded in the way components interact with each

other, and these interactions are embodied in the structures and properties of the individual

components and the environment where they live in. Hence, as an engineering methodol-

ogy, the design of the individual components and their environment is the key to successful

control of self-assembling systems.

Nature presents vast examples of both organic and inorganic self-assembly systems

at all scales. Amphiphilic molecules is one popular example of molecular self-assembly.

These are comprised of two ends: the hydrophobic ends tend to repel water molecules and

to be close to similar chains. On the contrary, the hydrophilic heads tend to be close to

water molecules. As can be seen from Fig. 2.1, the circle-shaped ends are hydrophilic heads

and the tails are hydrophobic heads. As a result, various structures can be self-assembled

when amphiphilic molecules are placed into water, like for example lipid membrane, giant

vesicles, micelles, bilayers, etc [35, 36, 42, 91].

Protein folding [81] is another example of organic self-assembly: the sequentially

arranged amino acids self-assemble (i.e. folds) into a three-dimensional shape of the protein

known as the native or tertiary structure. The final three dimensional folded structure
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(a) (b)

Figure 2.1: (a) Miscelle structure and (b) Bilayer structure formed by amphiphilic
molecules when they are placed into water

is determined by the amino acids sequence as well as their interacting environment (e.g.

solvent molecules, temperature, etc). In turn, the amino acids interactions are constrained

by their polarities relative affinity [56].

On the other hand, flocking birds and schooling fish are examples of self-assembly

systems in a macroscopic scale in nature. The movement of individuals in the group is de-

pendent on the other members of the group as well as its own experience. Thus, individuals

self-assemble to form a movement pattern as an emergent behaviour.

2.1.2 A closer look at the features of self-assembly

Although systems where self-assembling processes manifest themselves are remarkably var-

ied, some common principles for self-assembly are starting to be discerned [44, 90]. Systems

that self-assemble have some basic features in common: (A) Firstly, the system must be

decomposable into 2 or more components. (A system of one component is, by definition,

already assembled.) (B) Under certain circumstances the same set of components could
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be used to build a variety of structures and a goal structure can be composed by different

combinations of components. (C) Each component should have the ability to compute and

communicate (albeit in a limited way) with other components. (D) The constituent compo-

nents are assembled together in various configurations, so that stable configurations form,

tend to persist, and eventually become predominant [15]. The self-assembled system can

be thought as the “halting state” of a distributed computation.

Self-assembly can be seen as an advantageous manufacturing process because given

an appropriate selection of components and careful design of their interactions, components

will autonomously assembly into a desired system. In addition, self-assembly systems are

regarded as being robust and versatile [37]. These two features come from the fact that

self-assembly involves the utilization of a potentially large, perhaps simple, set of compo-

nents where only some will be involved in constructing the final structure. Self-assembly

systems are versatile because a given structure can be achieved using different configura-

tions of components, that is, it may be prone to alternative specifications [37]. Self-assembly

systems are also considered to be robust because, if a certain part of the system fails, other

components can be used to replace the failed part so as to ensure the functionality and

integrity of the system as a whole.

In addition, systems that are sufficiently large and connected are usually complex.

While current engineering methodologies uses a “top-down” approach which rely heavily

on the precise design of each components and their interactions, it can be even harder to

model the components and their interactions if these systems exhibit emergent behaviour.

Self-assembly on the other hand can be seen as a distributed, not necessarily synchronous
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“bottom-up” design principle. There is no central control mechanism or master plan for

components to follow in order to achieve the intended system. Instead, the control mecha-

nism is distributed across the components, which have very limited computational capability

and local sensing to instruct their behaviour under a reduced set of well defined conditions.

It has been argued in [3] that “intricate self-assembly processes will ultimately be used in

circuit fabrication, nano-robotics, DNA computation [54], amorphous computing [3] etc”.

Albeit the advantages of self-assembly as a design process described above, there

are a number of difficulties in the design of self-assembly model. Some basic issues in

self-assembly research are illustrated in [37]:

• How to define a precise set of components and interactions that will result in a given

global structure.

• How to avoid local optimal. (i.e. undesirable intermediate states)

• How to achieve robustness of the self-assembly system. The nature of self-assembly

systems brings the advantage that the same set of components can form different goal

structures. However, this can also mean that an optimal global structure may easily

”downgrade” to a less satisfying structure due to environmental disturbances.

The first two can be summarized as the difficulty of “getting there”, where the third one

can be seen as the difficulty of “staying there”.

2.2 A Brief Review on Self-Assembly Applications

Self-assembly is currently an active research area that has been studied in a wide range of

areas including nanotechnology [23, 69, 95], biochemistry [23], artificial physical life forms
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[33], mechanical system [80], robotics [7, 84, 86], network design [61, 83]. Albeit the large

amount of research on self-assembly in literature, they can be categorized in certain ways.

In this section, I introduce a conceptual framework for the design of self-assembly systems,

followed by a short review on the design of self-assembly systems in various domains.

2.2.1 Conceptual framework

Whitesides and Grzybowski [94] divided self-assembly systems into 2 main categories: static

or dynamic. In static self-assembly systems, an equilibrium will eventually be reached

when either the minimum energy has been achieved or no more binding among components

is possible. Dynamic self-assembly does not have equilibrium of state and the ordered

assembled structure occurs while minimum energy is obtained.

Besides the modeling and simulation of self-assembly systems in nature [42, 69],

self-assembly is studied as a powerful engineering methodology. Hence, self-assembly can

also be categorized according to the design approach. As has been mentioned before, the

final self-assembled product is encoded in the interactions among the components themselves

as well as the interactions with the external environment. The design of these interactions

is usually either embedded into the careful design of each components (i.e. the geometry

or the binding sites of components) or by specifying rules (with constraints) for the self-

assembling components to follow. The latter approach uses different rules on the same

components with a given goal, while the former approach focuses on the configuration of

components with a given goal while the interaction rules do not change.

The reviewed systems below are among the vast number of self-assembly design

problems in literature, but they are what I believe to be the most illustrative examples
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of self-assembly achieved by a taxonomy of design approaches. The software self-assembly

system presented in this thesis is inspired from some but not all of those design principles,

and I believe the ideas presented in these reviewed systems can provide insights for future

research on software self-assembly.

2.2.2 Self-assembly by manual design of rules / constraints

Self-assembly in robotics is a relatively new concept. Such robotic systems consist of simple

identical modules usually limited to local sensing. Modules can attach and detach from

each other to alter their emergent overall shape / structure. Each robot uses a simple

and distributed mechanism to enable communication. These robots dynamically adapt

their shapes to achieve locomotion or desired structures as an emergent self-assembling

behaviour.

In [97], a self-assembling robotic system capable of constructing three-dimensional

shapes is presented. The system is composed of a large number of robots of rhombic

dodecahedron shapes, a three-dimensional equivalent of hexagon. The system is based on

a three-dimensional grid and the objective is to have all the goal slots on the grid filled by

modules. Modules maneuver around each other and move toward the closest available goal

location while receiving information from adjacent robots about the status of that goal. The

various constraints placed on the robots are the key to the design of this self-assembling

robotic system.

A goal ordering constraint, for example, ensures that all goal positions can be filled

by specifying the order of the locations to be visited by modules. Moreover, in order to

avoid modules moving to a same goal and collide with each other, a module can reserve a
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certain goal if it is near the goal location. If a goal is reserved by a certain module, other

modules that take the same goal are forced to take another goal. In this way, the module

that reserves the goal can eventually fill the location. Figure 2.2 is an example illustrating

the process of components self-assembling into a cup shape structure in the 3-dimensional

grid structure. Components that have not reached a goal location are shown in pink wired

frames, and white solid objects otherwise.

Figure 2.2: Rhombic dodecahedron robots self-assemble from a square place into a tea
cup shape. (This figure is illustrated from [97].)

Bojinov et al. demonstrates another example of self-assembly applied in robotics

in [7]. The goal is to have a set of dodecahedron shaped robots self-assemble to create a

structure with the correct properties. The problem is tackled by manually providing a set

of rules for modules, which in turn self-reconfigure themselves to a set of modes based on

the rules. A mode is a set of pre-specified primitive operations including waiting, growing,

and communicating with other modules. Results have shown that the developed system is

capable of self-assembling into a range of structures aimed at satisfying a given task such as

gripping an object. A similar approach is adopted in [86], where robots are assigned different

roles in the system. A role represents the motion of a module and how it synchronizes with

connected robots. It has been shown in [86] that caterpillar-like, snake-like quadruped
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walker locomotion has been successfully performed.

The self-assembly robotic systems presented in [7, 86] demonstrate self-reconfiguration

properties of individual modules. The self-reconfiguration approach based on a set of man-

ually specified rules has been shown to be capable of generating robust self-assembled struc-

tures. However, those self-assembly systems tackle very specific class of problems. This is

because a set of rules have to be manually provided for the modules to work out its role /

mode for every structure to be self-assembled.

2.2.3 A global-to-local compiler approach for self-assembly design

In [68], the authors present a programming methodology for self-assembling complex struc-

tures from vast numbers of locally-interacting and identically-programmed agents. The

notion of morphogenesis and developmental biology is used to translate the global goal to

local behaviour in order to achieve the global goal. Two examples are given to illustrate this

methodology towards the design of robust self-assembling systems in [68]. In each case, the

desired goal shapes are compiled to yield programs for the components, which then execute

the generated program to self-assemble into the target shape.

The first example is to form shapes on a reconfigurable sheet composed of vast

amount of simple, identical, and interacting agents. Those agents coordinate and fold the

sheet along straight lines. In this system, the desired global shape is specified as a folding

construction on a continuous sheet using an abstract geometry based programming lan-

guage. The program for an individual agent is then automatically compiled from the global

shape description. The agent program is composed of a set of primitives: gradients, neigh-

bourhood query, cell-to-cell contact, polarity inversion and flexible folding. These primitives
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(a) (b)

Figure 2.3: Programmable sheet: (a) Agents fold a programmable sheet into a cup struc-
ture (b) The corresponding program to create the folding. (This example figure is illustrated
from [68].)

are used for communication between agents, measuring distance, as well as ascertaining lo-

cal directions. Figure 2.3(a) illustrates this reconfigurable sheet folding into a cup shape,

and the folding operations can be defined using a programming language called the Origami

Shape Language (OSL) as shown in Fig. 2.3(b). OSL is based on a set of paper-folding

rules and can be used to fold a large class of shapes [40].

The second example is self-assembling two dimensional structures through repli-

cation. A predetermined global shape is compiled to produce a program for a seed agent

that grows the structure. The goal shape is represented as a network of overlapping circles,

which is directly compiled from a graphical description of the goal shape. Agents replicate

themselves to “grow” into this network of overlapping circles. Figure 2.4 illustrates this

process in which agents replicate themselves and create a cross shape.

Both examples of self-assembly systems introduced in [68] compile the goal shape
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Figure 2.4: An example of components “grow” into a target structure using the compiler
approach. (This example figure is illustrated from [68].)

and produce rules for components to coordinate themselves and self-assemble into the target

structure. This self-assembly system has the important self-healing property that, if certain

components fail, the remaining components will still adjust their interactions (as in the first

example) or replicate themselves in the correct direction (as in the second example) to reach

the desired shape.

A similar global-to-local compiler approach is presented in [43], where assembly

components move to specific locations in 2D square lattices and connect to each other to

achieve a pre-specified shape. Components move around randomly in the square lattices

until an assembly has been formed. Each component has a state value and a look up

table for the transition rule set (TRS). Components connect to each other according to the

transition rules, which specify under what conditions the rules should be executed and the

state value of the component is after executing the rule.

The TRS compiler specifies which of the neighbouring positions must be already
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connected in order for a component to be connected at that position. Firstly, components

are assigned an identical state value. Next, a transition rule is randomly generated for each

component and added to the TRS. The rule is then checked for consistency by verifying

that only one transition rule is active at any location at any stage. This process repeats to

update any inconsistent locations until a consistent TRS is built.

Experimental results shown in [43] indicate that the TRS compiler approach is

capable of generating a consistent transition rule set for a variety of structures. However,

this approach cannot handle some structures, for example those that do not have any

adjacent neighbours.

The compiler approach has the advantage of modeling complex behaviour by spec-

ifying the desired goal structure at an abstract level. However, this approach can again have

the danger of being domain-specific because the translation between the final structure and

rules for components are entirely dependent on the problem it is working on.

2.2.4 Automated self-assembly design by evolutionary algorithms

Although major advances in robust self-assembly systems have been reported and reviewed

as above, those self-assembly systems all tackle a very specific class of problems bound

to analytical solution. It has been argued in [53, 88] that “it is unrealistic to expect that

each and every self-assembly system will have properties that make it agreeable to a manual

design. And as the number of applications for self-assembly (and their complexity) increases

in the near future, a point will be reached where humans cannot design the set of components

and their interactions”.

What follows are a set of automated self-assembly designs using evolutionary algo-
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rithms. An evolutionary algorithm is a population based approach aiming to find a solution

in the search space to a given problem by means of evolution. The principle of an evolution-

ary algorithm is based on the Darwinian theory of survival of the fittest and uses biological

mechanisms such as recombination and mutation. Recombination is used to generate new

solutions that are biased towards regions of the promising search space which has already

been explored, and mutation is used to avoid local optima by exploring new regions. The

following are some illustrative examples of using genetic algorithm to model self-assembly

behaviour or to use self-assembly as a design methodology. Similarly to other problems

tackled by evolutionary algorithm, the key is how to translate the design of self-assembly

into an individual, as well as an evaluation function to measure the fitness of solutions

represented by individuals in the population.

Protein folding prediction with Self-assembly

Protein folding prediction [81] is one of the most challenging problems in molecular biology.

Protein folding can be regarded as an instance of self-assembly. Protein structure prediction

is concerned with how the three dimensional folded structure is derived from the linear

string of amino acids that constitute it. There are various approaches to the problem such

as [6, 52, 89]. In [51, 52], the protein folding prediction problem is addressed by means

of genetic algorithm applied to the automated design of protein self-assembly by Cellular

Automata (CA). A cellular automaton consists of a collection of cells and a set of transition

rules. Each cell has a state associated and transition rules update cell states depending on

the state of the neighbours. CA are commonly used to model natural phenomena involving

sophisticated rules. CA will not be introduced in great detail here as this is not the main
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focus and is not directly related to the research presented in this thesis. A brief review of

cellular automata can be found in [66].

In [51], protein folding prediction is represented in a two dimensional lattice model,

called the HP model, in which amino acids are classified in a simple manner, whether they

are hydrophobic (H) or hydrophilic (P). Proteins are embedded in this model where the

constituent amino acids are shown as squares (Fig 2.5).

Figure 2.5: HP model based on rectangular lattices. White squares represent hydrophilics
and black squares represent hydrophobics. (This figure is from [51].)

The operation that guides a linear sequence of amino acids into the folded structure

is considered to be the transition rules of the CA. The states of a cell represent (A). the

type of the amino acid, H or P, (B). move of the amino acid relative to the position of the

previous one in the sequence, which are: Up, Down, Left, and Right. A rule determines a

cell’s relative position in the next time step. In turn, each rule depends on the neighbour’s

type and relative position. The aim is to find the set of transition rules that leads to the

minimum energy of final folded structures.

A genetic algorithm is used to evolve the transition rule set, where each individual

in the GA represents a set of rules. An individual is evaluated by running the CA on the

sequential amino acids and obtaining the corresponding energy value of the folded structure,

and the energy is determined by the number of bonds, number of collisions and compactness
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of the amino acids. Experimental results indicate that the genetic algorithm evolves rules

from which the CA can reach high conformation values. The protein folding system reviewed

here shows the automated design of self-assembling rules using an evolutionary approach

can yield promising results.

Wang tiles self-assembly

Wang tiles [92] is a popular model used to study the complexity of self-assembly [85] as

well as self-assembly as a design methodology [3, 54, 88]. A Wang tile system consists of

a population of two dimensional squares, with a specific glue type associated to each side.

Wang tile self-assembly model is initialized with system’s temperature and an interaction

matrix for the binding strength for each glue type. Tiles perform random motion in the plane

and when two tiles collide, they will either self-assemble into an aggregate compound or

continue their Brownian motion. That is, two components remain stationary if an assembly

has been made. The decision on whether they will self-assemble is based on their glue types

and strength on their colliding edges in relation to the system temperature. Figure 2.6

illustrates a snapshot of an example Wang tile system with some partially self-assembled

structures.

In [87, 88], a genetic algorithm is used for the design of Wang tiles for the successful

assembly towards the target shape. The population (Pop) is randomly initialized with a set

of tiles with random colors associated to each side. That is, Pop = {Ind1, Ind2, ..., Indn}

with Indi = {T1, T2, ..., Tj}, where Tk = {t|t = (c1, c2, c3, c4)} with ci representing glue

type on each side of the tile. The goal of the genetic algorithm is to find the population of

components that will self-assemble into the desired shape. The evolutionary algorithm uses



2. background information 21

Figure 2.6: An illustration of a Wang tile self-assembly model. (This figure is from [88].)

the Morphological Image Analysis method as a fitness function. The simulation runs for a

fixed number of steps, and the assembled shapes are compared with the target shape using

compressing algorithms. The experimental results presented illustrates automated design

of self-assembly components which yield successful self-assembly patterns.

As can be seen from the two self-assembly systems mentioned above, with a set

of carefully defined individuals and fitness function, the evolutionary approach for the au-

tomated design of self-assembling systems is capable of finding a family of binding rules or

components for the successful assembly of a target structure / shape. This self-assembly

design principle is a potential research avenue for software self-assembly.

2.3 Current Automated Program Synthesis Methodologies

In this section, some of the most popular automatic programming techniques are reviewed.

By studying how software self-assembly differ from them, I seek to answer how software

self-assembly can complement and provide any insights to those existing techniques.
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2.3.1 Genetic programming

A brief introduction on GP

Genetic programming (GP) is an evolutionary algorithm that generally breeds populations

of computer programs to solve user specified problems. Genetic programming was pioneered

by J. Koza [49] and has become one of the most popular methodologies for automated pro-

gram synthesis since then [1]. Genetic programming is applied to a wide range of problems

[2, 4, 50, 62].

Genetic programming uses a similar approach to genetic algorithms by using

crossover and mutation on members of the population. The feature that makes genetic

programming different from genetic algorithms is that the chromosomes use a program rep-

resentation, i.e. syntax trees, and special operators rather than the simple sequential string

representation as in genetic algorithm. Thus, the crossover operation is applied on an indi-

vidual by replacing one of its nodes with a node from another individual in the population.

As the individuals are based on a tree representation, replacing a node means replacing the

(sub)branch of the tree.

As in a genetic algorithm, the population is initialized for GP to evolve the so-

lutions. There are various methods to initialize the initial population and the common

practice is to have a random and uniform distribution. With crossover and mutation, new

individuals are generated at each time step and evaluated by a fitness function. The fit-

ness function is the most important part in genetic programming and usually takes most of

the computational time. The fitness function measures how well a program solves a given

problem and it varies greatly depending on the problem it tries to solve. A fitness of an
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individual is typically decided by running the solution through one or more fitness case(s).

This process is iterated until the termination condition is satisfied. The termination condi-

tion can either be specified by a maximum number of iterations or when an ideal solution

has been found. The following algorithm describes the above process.

Algorithm 1 Genetic Programming

1: Genetic Programming
2: Initialize the population of solutions
3: At each time step
4: while Termination condition not met do

5: Produce new individuals with the existing population and operators
6: Place new individuals into the existing populations
7: Assign fitness values to individuals and update the population
8: Test termination condition
9: end while

10: Return the best (set of) solution(s)

Diversity in GP studies

One of the main challenges in tackling various GP issues is to avoid local optima. The loss of

diversity during a GP run is regarded as the main reason behind premature convergence to

local optima [12, 22, 30, 41]. This is because the individuals of the population get arbitrarily

close to each other in the search space and converge to a local extreme.

Diversity in genetic programming thus measures the amount of variety between

individuals of a population. A large variety of diversity measures exist to identify differ-

ent aspects of the population structure in order to investigate the potential causes for the

premature convergence that leads to local optima. For example, genetic variety [49] mea-

sures the number of genotypes in the population. The tree distance measure compares the

syntactic difference between programs [74]. Diversity can also be measured as a proportion
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of the number of unique measure individuals over population size [45]. Finally, the pheno-

typic measure compares the number of unique fitness values in the population. It has been

suggested that the phenotype diversity measure is more useful than genotype diversity in

capturing the dynamics of the population [11, 45].

Various techniques are used to maintain and encourage diversity. One of the

most popular techniques is fitness sharing [22], in which fitness is regarded as a shared

resource of the population. Similar individuals share their fitness, and therefore the fitness

of each individual is inversely proportional to the number of neighbours in the search space.

Moreover, a fitness uniform selection strategy [39] was presented to encourage diversity.

Island models are another commonly suggested ways to improve diversity [10].

2.3.2 Grammatical Evolution

Grammatical Evolution (GE) is a relatively new evolutionary computation technique pi-

oneered by Conor Ryan, JJ Collins and Michael O’Neill. Grammatical evolution is an

evolutionary algorithm that “evolves complete programs in an arbitrary language using a

variable length linear genome to govern the mapping of a Backus Naur Form grammar

definition to a program.” [72, 79].

A Backus Naur Form grammar can be represented by a system (N,T,R, S), where

N and T represent the set of non-terminals and terminals respectively. R is a set of deriva-

tion rules that map the elements in N to T . S is subset of N , and it is a start symbol

from which all programs are constructed. A simple example of Backus Naur form can be

described as follows:
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T = {+,−,×, /, log, x, 1}

N = {< expression >,< binary operator >,< unary operator >,< var >}

S = {< expression >}

R is thus defined as:

< expression > ::=< expression >< binary operator >< expression > (0)

| < unary operator >< expression > (1)

| < var > (2)

< binary operator >::= + (0)

| − (1)

| × (2)

| / (3)

< unary operator >::= log (0)

< var >::= x (0)

| 1 (1)
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Figure 2.7: An example individual in GE

In GE, a chromosome consists of a sequence of binary codons, each of which

denotes a selection of production rule. Figure 2.7 shows an example individual, where each

number is the integer equivalent of the binary codon. The selection of a production rule is

an iterative process on the specified grammar based on the codons in the chromosome. The

mapping between codon and a production rule can be described as:

selected production rule = (codon integer) MOD (number of rule instances),

where the selected production rule denotes a selected rule in the current non-

temerinal, and number of rule instances is the number of choices of rules for the current non-

terminal. Given the example described in the above grammar, if the current non-terminal is

< expression >, the selected production rule can be < expression >< binary operator ><

expression >, < unary operator >< expression >, or < var >. The number of production

rule instances for < expression > is 3.

The iterative mapping process starts from S, and at the end of this rule selection

process, the phenotype (final program) is generated. The following is a simple example to

illustrate the mapping between the codons of integer and the selection of the production

rules. Given the simple grammar described above and an individual as shown in Fig. 2.7,

< expression > has three rules to choose from and the first codon 210 gives selection rule

210 MOD 3 = 0. Hence rule 0 is used. Next choice for the first expression in the rule
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< expression >< binary operator >< expression >, 32 MOD 3 = 2, therefore < var >

is used. This rule selection mechanism iteratively executes encodings in the gene until a

complete program is formed.

A genetic algorithm is used to control the selection of rules in GE. GE separates

genotype and phenotype by using linear genome rather than tree structure as in GP. In GP,

the search algorithm operates on the same objects as the fitness function. In GE, however,

while the fitness function is operating on the same phenotype (generated programs) as in

GP, the search algorithm operates on the specified grammar, and hence reduces the search

space. In addition, domain knowledge can be more easily incorporated by carefully user

specified grammar.

2.4 Software Self-Assembly: Research Perspective

Inspired from a myriad of both natural and artificial self-assembly systems, I propose in

this thesis a preliminary study on software self-assembly. Software self-assembly can be

explicitly recognized as a process within which software components autonomously integrate

into one or more complex program architectures (parsing trees) using natural self-assembly

as a metaphor. Software self-assembly can be seen as a “bottom-up” manufacturing

methodology as opposed to traditional software engineering techniques. I intend to push

forward the understanding on software self-assembly, which breaks the tradition of static

and pre-specified software architectures.

Software self-assembly differs from evolutionary approaches for automatic pro-

gramming such as GP and GE in the following two main aspects. Firstly, software self-
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assembly depends on a set of assembling principles to guide the construction process while

GP and GE is based on evolution of programs / grammars. As can be seen from the previous

sections, evolutionary means is merely one of the embodiments that can be used to guide the

self-assembly process. Various self-assembly design principles and approaches exist to guide

a self-assembly process. Hence, it can be argued that software self-assembly is more general

than Genetic Programming. Secondly, rather than trying to “evolve” simultaneously the

components and the architecture as GP suggests, software self-assembly relies on a set of

human made software components and subcomponents from where it can select the useful

ones and search for the best architecture to integrate those components. The concept of a

software component is general, such that it can be as simple as an assignment operation or

arbitrarily large, such as a software package that takes user inputs and performs complex

operations.

2.4.1 Research aims and motivations

This study, the first attempt at software self-assembly, is specifically concerned with struc-

ture rather than function of the assembled programs, given the persistent effort in the GP

literature to improve trees’ diversity. The functionality of assembled programs is clearly

the ultimate and more challenging goal. Although the functionality of assembled programs

is not dealt with in this thesis, the important correlation between structural diversity and

quality of the solutions has already been pointed out in [30, 31].

In addition, it is widely argued that in nature, structure precedes function. There

are strong arguments claiming that self-assembly occurs before evolution starts and the

self-assembled structures provide the essential material for evolution to start [16, 63, 73].
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It has been suggested that diversity and complexity of genomes arises from a hierarchy of

interactions between genes and between interacting genes complexes [29, 64]. While Genetic

Programming and Grammatical Evolution uses evolutionary means to achieve automatic

program generation, I take “a step back in time” and focus on structure in software self-

assembly as a precursor for novel functionality.

In particular, diversity of generated structures is important in the context of soft-

ware self-assembly because it is expected that by being able to understand and control

diversity, one could explore a larger sample of the space of potential program structures.

This, in turn, could prove to be a key step towards achieving specific program functionality,

as indeed has been shown for the case of GP [30, 31, 32]. Thus, the point I make in this

dissertation is that what is important is to be able to predict, and ultimately control diver-

sity. In turn this would allow to either increase it or decrease it depending on the specific

requirement of the problem at hand.

2.4.2 Research methodology in details

I propose in this thesis a software self-assembly model which collects a set of human-made

(or otherwise) software components from a software repository. Software components are

later integrated through self-assembly into a software architecture. In this way, software

self-assembly produces programs automatically without external intervention other than

the pre-specification of the component set.

I systematically analyze how various embodiments and environments affect soft-

ware self-assembly in terms of its process and the resulting program architectures. To be

more specific, the following approaches are adopted to compare and analyze the dynamics
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of ASAP 2:

1. program gases versus PSO inspired approach: Program gas is a metaphor used for

software components such that components perform random walk and their behaviour

is similar (but not identical) to ideal gas molecules. PSO inspired approach introduces

leaders and dynamic neighourhood.

2. single compartment versus a network of compartments: In a single compartment,

software components move around in a single confined area and self-assemble to au-

tonomously build programs. In a network of compartments, software self-assembly

occurs simultaneously in the network and software components can freely move to a

neighbouring compartment via a connecting edge.

3. close system versus open system: In a close software self-assembly system, software

components are initialized at the beginning of the simulation and no components

will be added or removed during the assembly process. Hence, an equilibrium will

eventually be reached in a closed system. In an open system, on the other hand,

software components are continuously added and removed from the system. Hence,

the system is far from equilibrium.

The diversity of the assembled programs and the so-called “time to equilibrium”

are tested under each comparison mentioned above 1. I explain in detail the research

motivation, system implementation and experimental results and analysis in the following

chapters.

1Time to equilibrium analysis is replaced with diversity analysis at various time step in an open (dynamic)
software self-assembly system because the system will not reach stable equilibrium while components are
added and removed constantly
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2.5 Summary

In this chapter, we concentrated on the study of self-assembly as a natural phenomenon as

well as an engineering principle. Self-assembly is a robust and versatile process to build

complex structures in nature, and it is also an advantageous fabrication process as an

engineering methodology.

A taxonomy of design principles for self-assembly systems is studied. And it can

be concluded that one of the most important issues in the design of a self-assembly system

is to understand and utilize the translation from the interactions among a large set of

components to the global behaviour of the system (i.e. the final assembled structure). While

each component remains autonomous, limited to interactions in local environment, and

with no pre-programmed master plan of the assembly of the final structure, the translation

from global behaviour to local interaction is successfully handled by the design of rules or

components that are involved in the self-assembly process.

It can be summarized that self-assembly can be achieved by the careful design of

either the assembly components or their interaction rules. These can in turn be achieved

by a taxonomy of approaches. As shown in [7, 86], manual design of assembly rules yields

robust self-assembly results, however the systems lack generality and are usually highly

problem specific. In [43, 68], a compiler approach is presented to translate the global goal

into program / rules. Assembly components then execute the compiled rules to realize

self-assembly of the goal structure. On the other hand, [52, 88] illustrate examples of

automated self-assembly design using evolutionary approaches. The reviewed taxonomy of

self-assembly design provides ideas and inspiration for the current development proposed in
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the following chapters, as well as ideas of possible future research on software self-assembly.

In addition, we surveyed current automatic programming approaches (GP and

GE). In particular, diversity studies in GP is reviewed. This explains how studies on the

diversity of self-assembled programs presented in the following chapters fit with the current

research on automatic programming.
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Chapter 3

Program Gases: A Software Self-assembly

Approach with Unguided Dynamics

In this chapter, we introduce the Automated Self-Assembly Programming Paradigm (ASAP 2),

a software self-assembly model which integrates software components and automatically

builds program structures. The research focus at this preliminary stage is to study the

behaviour of software self-assembly using simple dynamics. As ideal gases resemble to our

desired system, the first ASAP 2 is based on a loose version of ideal gases. We show how

different environments (as defined in details in the following sections) affect an unguided

process of programs collisions and (eventual) self-assembly.

This chapter is organized as follows. In Section 1, we introduce ideal gas as

a metaphor for our software self-assembly model. The ASAP 2 model and the system

implementations are described in detail in Section 2. We explain how experiments are

conducted and present results in Section 3. In Section 4, a predictive model for ASAP 2 is

introduced and statistics to evaluate this predictive model are illustrated. Finally, Section

5 summarizes this chapter.
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3.1 Program Gases: A Metaphor for Software Self-Assembly Based on

the Equation of State for Ideal Gases

3.1.1 Kinetic theory of ideal gas

In 1738, Bernoulli published Hydrodynamica, explaining air pressure from a molecular point

of view. Hydrodynamics laid the foundation of kinetic theory of gases by arguing that a

gas consists of a great number of molecules performing random motion. Their interaction

and motion results in pressure on the surface of the container of the gas, and the kinetic

energy of their motion is perceived as heat. In 1857 German physicist Clausius published a

theory that is nowadays known as kinetic theory.

An ideal gas (also called perfect gas) is one that exactly conforms to the kinetic

theory. Kinetic theory of ideal gases is a theoretical model to study the behaviour of gas

molecules[9, 98]. In this model, a large number of ideal gas molecules perform random

motion in a closed container. Ideal gas molecules collide with each other and with the walls

of the container. As molecules collide with the walls of the container, the collision results

in a measurable pressure.

Ideal gas is a theoretical model and it differs from real gas molecules. The ideal

gas model is based on the following assumptions:

• The total volume of particles are negligible in comparison with the size of the con-

tainer, which means the average distance between molecules is significantly greater

than their sizes.

• The collisions of gas molecules with each other and the wall of the container holding
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them are elastic. That is, the energy of the gas molecules is entirely translational

kinetic energy as no deformation or chemical reaction is modeled.

• The molecules are perfectly spherical in shape, and elastic in nature.

• The average kinetic energy of the gas molecules depends only on the temperature of the

system, meaning that molecules have a higher kinetic energy at a higher temperature.

• The time during collision of molecule with the container’s wall is negligible as com-

parable to the time between successive collisions.

• The equations of motion of the molecules are time-reversible.

• The space is isotropic, i.e. it looks the same in any direction.

As is well-known, ideal gases have a simple equation of state relating the pressure

on the wall of the container P , absolute temperature T , volume V and number of molecules

n:

PV = nRT, (3.1)

where R is a constant for each particular gas. This law describes the following rela-

tionship between Pressure (P ) and the other environment variables: (1) If the temperature

and volume remain constant, then the pressure of the gas changes is directly proportional

to the number of molecules of gas present. (2) If the number of gas molecules and the

temperature remain constant, then the pressure is inversely proportional to the volume. (3)

If the volume and the number of gas molecules are kept constant, then the pressure will
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change in direct proportion to the temperature. 1

3.1.2 Program gases

A loose version of ideal gases is used as a metaphor for ASAP 2 at the preliminary stage of

the research [59]. This software self-assembly model was developed in order to study the

behaviour of software self-assembly and how it can be affected by numerous factors.

In this ASAP 2 model, software components are treated as ideal gas molecules

and the ASAP 2 model behaves in similar patterns. The interactions between software

components gives rise to a variety of program architectures. More specifically:

• Software components are placed into a compartment within which they move ran-

domly. The compartment used in software self-assembly plays the same role as a

gas container. However, in order to simplify the domain, the compartment is two-

dimensional rather than three-dimensional as in ideal gas theory.

• Software components are linked to molecules for which the probability of movement

rises with temperature.

• The area of the compartment is a free parameter of the model.

• The temperature is another free parameter of the model.

• Finally, the number of copies of components placed within the compartment is the

third and last parameter.

1However, note that real gases do not exhibit the properties listed in the above assumptions, and their
behaviour deviates significantly from ideal gases at high pressure or low temperatures.
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We measured to what degree this equation holds for ASAP 2. We investigated how

the free parameters temperature, area, and number of components affect both the speed and

diversity of self-assembled programs. Because ideal gas is used as a metaphor for ASAP 2,

the equation of states for ideal gases is used as a crude approximation to link the three free

parameters described above to the dependent variable, i.e. the pressure in the walls of the

compartment exerted by the software components.

Although software components in ASAP 2 resembles the kinetic theory of perfect

gases, it must be noted that program gases differ from an ideal gas in the following ways.

Firstly, unlike the kinetic theory of a perfect gas where it is assumed that the physical system

contains a large number of molecules, our software self-assembly system has a more limited

number of software components. Moreover, software components may bind as a result

of collisions within the compartment thus violating the assumptions of elastic collisions

and chemical reactions in kinetic theory. Also, the sizes of the (partially) self-assembled

components of a program gas grow as more components collide and get attached during the

self-assembling process. Consequently, the assumption that the distance between molecules

is far greater than their sizes is also violated. Therefore, it is expected that our software

system is affected by the environment in a similar but not identical way as a perfect gas

which follows Eq. 3.1.

3.2 System Implementation

Self-assembly is a process in which a disordered set of components self-organize into a

specific structure. Components interact with each other and form the global structure
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without external control. Software self-assembly simulates a self-assembly process for soft-

ware components. Software components interact with each other within this process and

are autonomously integrated into certain architectures.

The conventional definition of software components comes from software engineer-

ing discipline. A software component is a system element offering a predefined service and

able to communicate with other components [65]. A software component in software engi-

neering usually refers to service object written to some specification such as COM or Java

beans.

In software self-assembly, software components are more general. In addition to the

description given as a software engineering discipline, a software component can be referred

to as blocks of specific code decomposed from a program. Hence, a software component

can be arbitrarily large or small. A large software component can be a service provider in

the form of an EJB object for a database connection, and a conditional statement is an

example of a small software component. Albeit their difference in size, software components

in software self-assembly should provide means for communicating and connecting to each

other. In this research, however, the term software component refers to software codes

decomposed from a given program. As the focus of this research is on the diversity and

complexity of self-assembled programs, it is easier to measure various properties of self-

assembled programs using small software components.

A software program can be syntactically represented by a hierarchical tree struc-

ture. Nodes in this parse tree represent software components. Figure 3.1 shows a bubble

sort program with its corresponding tree representation. The construction of the tree is de-
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Figure 3.1: Bubble sort program code and its parsing tree

pendent on the ways software components are categorized and defined. An example Backus

Naur Form is illustrated to show the productions rules upon which the parsing tree shown

in Fig. 3.1 is constructed.
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< Method > ::= < V ar >< CodeBlock >< expression >

< CodeBlock > ::= < Assignment >< Iteration >< Assignment >

| < Iteration >

| < Comparison >

| < Swap >

| < Assignment >

< Iteration > ::= < LoopAssignment >< CodeBlock >

< Comparsion > ::= < Condition >< CodeBlock >

< Swap > ::= < Assignment >< CodeBlock >< Assignment >

< V ar > ::= int array[]

< Condition > ::= a[j] > a[j+1]

< LoopAssignment > ::= int i = a.length; –i>=0;

| int j=0; j<i; j++

< Assignment > ::= System.out.println(”bubble sort”);

| int a[] = array;

| return a;

| int T = a[j];

| a[j+1] = T;

| a[j] = a[j+1];
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Three standard sorting algorithms are used as software repositories of components

for all the simulations and experiments in this thesis. Hence, software components are

categorized and defined based on the structure of these sorting algorithm: Comparison,

Iteration, Method, Swap, CodeBlock, Assignment, Condition, LoopAssignment. Among the

8 component types, Assignment, LoopAssignment and Condition are the leaf nodes in the

parse tree representation. Figure 3.2 shows a mapping of a node on the parse tree to the

original insertion sort program.

Figure 3.2: Mapping between a software component of type Iteration and its code in the
original insertion sort program.

Software components are manually decomposed from the three sorting algorithms

and are stored into a software repository. Software components are then retrieved from

this repository and later integrated through self-assembly. In turn a software component is

represented by a “wrapper” that is used to mediate the (eventual) assembly of a component
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with another component. A wrapper consists of a software component that is “wrapped”

inside and ports that act as loci where other wrappers bind. There are two types of ports,

input ports and output ports, and all ports have a corresponding data type. The data

type on the output port is associated with the type of the software component, and the

data types on the input ports are determined by the types associated with their expected

child nodes in the parse tree representation. In order to study only valid or meaningful

configurations, an input port can only connect with an output port of the same data type.

That is, the system components are “non-elastic” when their ports are incompatible and

“elastic” in the other case. A wrapper can have only one output port and any number of

input ports (including zero). Those wrappers that have one or more input ports can be seen

as the internal nodes in the parse tree. On the contrary, wrappers with zero input ports

are leaf nodes. Figure 3.3 illustrates an abstract view of a wrapper.

Figure 3.3: A wrapper that represents the node Swap in the tree

Figure 3.4 provides an overview of the ASAP 2 system. Software self-assembly

starts by placing all the wrappers (i.e. software components) from a given software com-

ponents repository into the compartment. Once in the compartment, the wrappers move
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Figure 3.4: Flow chart for ASAP 2 system implementation.

randomly with a probability that is a function of the temperature. Each wrapper has a

spatial coordinate value (x, y) to record its position at time ti. When two wrappers are

within certain Euclidean distance dδ and the data types on their vacant input and output

ports match, they self-assemble. In this way, a data type constraint is imposed to the model

in such a way that if two wrappers with incompatible ports collide they repel each other.

The threshold distance (dδ) is directly proportional to the wrappers’ size (i.e. number of

nodes in their tree representation). The binding algorithm is formally detailed as follows:

In the graphical user interface shown in 3.5, 3.6, a circle represents a wrapper, and

different colours are used to represent different wrappers classes. The class of a wrapper is

determined by the type of software components it represents, i.e. one of the types illustrated

in Table 3.4. The left panels in Fig. 3.5, 3.6 show the container where software self-

assembly occurs, while in the right panels the program code associated to a user-selected

self-assembled program are displayed. As an example of the software self-assembly process,
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Algorithm 2 Binding algorithm: dδ is a threshold distance for components to bind, and
µi indicates displacement of component Ci

1: for (every pair of components c1 and c2 in the component set SA) do

2: dδ = max( size(c1), size(c2) )
3: if ( distance (c1, c2) ≤ dδ ) then

4: success = attemptBind(c1, c2)
5: if ( success == true ) then

6: add assembled component to the set SA and delete c1, c2.
7: else

8: c1.move(currentLocation, µ1)
9: c2.move(currentLocation, µ2)

10: end if

11: end if

12: end for

Fig. 3.5 shows an early stage of software self-assembly where few partially self-assembled

programs are formed. Figure 3.6 shows a latter stage of software self-assembly where several

larger tree-shaped aggregated structures have been formed. The simulation is deemed to

have reached equilibrium when no more bindings can occur between the remaining (partial)

self-assembled parse trees thus equilibrium is the stopping condition for the simulations.

Checking whether equilibrium has been reached, i.e. no pair of components can bind, could

be a computationally expensive task, especially when a large number of components exist

in the compartment. Hence, some caution must be used when checking for equilibrium so

as to avoid incurring an O(n2) cost at each iteration.

Formally, a system has reached its equilibrium if for any of the output ports of

type ti, there are no available input ports of the same type to bind with, and vice versa.

Hence, evaluation on whether the system has reached its equilibrium can be expressed

mathematically as:
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Figure 3.5: Early stage of software self-assembly.

Figure 3.6: Latter stage of software self-assembly.

Equilibrium = (input port(t1) == 0 ∨ output port(t1) == 0)

∧ (input port(t2) == 0 ∨ output port(t2) == 0)

∧ (input port(t3) == 0 ∨ output port(t3) == 0)

∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

∧ (input port(tn) == 0 ∨ output port(tn) == 0) ,
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where input port(ti), output port(ti) represents the number of available input and

output ports of type ti respectively. The number of available input / output ports of each

type are stored in a table and initialized at the start of the simulation when components

are placed into the compartment. The table is updated while binding action occurs. To

examine whether the system has reached its equilibrium, the above mathematical expression

is evaluated and this makes the computational cost linear in the number of port types,

rather than square as a function of components as a naive implementation could require.

However, there is a problem associated with this method. An example is shown in Fig. 3.7,

supposing the aggregate structure being the only remaining wrapper in the compartment. In

this example, the number of available input port and output port of type Iteration are both

equal to one. According to the above algorithm, the equilibrium condition is not satisfied.

However, the system has reached equilibrium because there are no other wrappers to bind

with and this remaining wrapper cannot bind to itself.

Figure 3.7: An example to show why merely keeping record of available input ports and
remaining wrappers is insufficient.

As no recursive binding is allowed, the problem is due to having available input

and output ports of the same type existing in the same structure. In order to solve this, the
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number of input ports falling into the above category should be monitored while binding

actions occur. Those input ports that match the type on the output port in the same

structure are referred as “circular port”. The modified algorithm for testing the equilibrium

condition is shown as the following:

Equilibrium = (input port(t1) − circular port(t1) == 0 ∨ output port(t1) == 0)

∧ (input port(t2) − circular port(t2) == 0 ∨ output port(t2) == 0)

∧ (input port(t3) − circular port(t3) == 0 ∨ output port(t3) == 0)

∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

∧ (input port(tn) − circular port(tn) == 0 ∨ output port(tn) == 0) ,

where circular port(ti) gives the number of available input ports that have the same type

as the output port in the wrapper.

A step-by-step example is illustrated in order to explain how the equilibrium condi-

tion is evaluated based on the above formulae. Figure 3.8 shows a compartment containing

initially wrappers of types Comparison, CodeBlock and Condition, with Table 3.1 recording

the ports information accordingly. It can be known that time to equilibrium has not been

reached as there are available input and output ports of type Comparison, CodeBlock and

Condition without circular ports of the same type.

Figure 3.9 shows an intermediate stage where the wrappers of type Comparison

and Condition have self-assembled. The input and output port of type Condition are no
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Figure 3.8: Illustrative example to show how equilibrium is reached: Step 1 with three
intial wrappers in the compartment

Table 3.1: An example data structure to observe whether the system has reached its
equilibrium at step 1

Available Output Ports Available Input Ports Circular Ports

Comparison 1 1 0
Swap 0 1 0

CodeBlock 1 1 0
Condition 1 1 0

longer available as a result. The corresponding ports information is updated in Table 3.2.

It can be known that equilibrium has not been reached because there exists available input

and output port of type Comparison and CodeBlock without circular ports of the same

type.

Figure 3.9: Illustrative example to show how equilibrium is reached: Step 2 with the
wrappers of type Comparison and Condition self-assembled

Figure 3.10 shows the self-assembled product while the two wrappers left in the
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Table 3.2: An example data structure to observe whether the system has reached its
equilibrium at step 2

Available Output Ports Available Input Ports Circular Ports

Comparison 1 1 0
Swap 0 1 0

CodeBlock 1 1 0
Condition 0 0 0

compartment bind with each other via the port of type CodeBlock. According to the ports

information updated in Table 3.3, the equilibrium has been reached with the calculation

results shown below:

Equilibrium = (input port(Comparison)− circular port(Comparison) = 1 − 1 == 0)

∧ (output port(Swap) == 0)

∧ (output port(CodeBlock) == 0)

∧ (output port(Condition) == 0)

= true

Table 3.3: An example data structure to observe whether the system has reached its
equilibrium at step 3

Available Output Ports Available Input Ports Circular Ports

Comparison 1 1 1
Swap 0 1 0

CodeBlock 0 0 0
Condition 0 0 0
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Figure 3.10: Illustrative example to show how equilibrium is reached: Step 3 with all the
three initial wrappers self-assembled together

3.3 Methods

We aim to find out what is the relation between temperature (T ), area (A), number of

copies of software components in the compartment (N), pressure (P ), time to equilibrium

(tε) and diversity of the self-assembled trees at equilibrium (Dε). That is we would like

to assess to what degree Eq. 3.1 holds in ASAP 2. More specifically, P is measured by

counting the number of wrappers that hit one of the four walls of the compartment per

unit of time. As mentioned above, T is a free parameter and it affects a wrapper’s moving

probability, p(M), where p(M) = 1 − e−T . The area A of the compartment and number of

copies of each wrapper, N , are the other two free parameters of the model.

Besides P , we also measure “time to equilibrium” (tε), which records how long it

takes the system to reach equilibrium, and the total number of different parse tree classes

(Dε) at equilibrium. Dε is used to assess the diversity of the emergent parse trees under

different settings of N,A and T . For measuring diversity, two trees are considered to belong

to the same parse tree class if both their structures and content are identical, following
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the recommendation in [11, 22]. Pressure (P ), time to equilibrium (tε) and diversity of the

self-assembled trees at equilibrium (Dε) are the three observed variables for the experiments.

Three standard sorting algorithms, namely, bubble sort, insertion sort and selec-

tion sort are used as sources of software components for the experiments. Each of these, in

turn, were cut in an ad hoc manner into software components and placed into a component

repository of their own. For each of the three software component repositories we executed

20 replicas for each (A,T,N) triplet studied measuring the dependent variables. The ranges

for A,T and N were: A ∈ {160k, 250k, 360k, 490k} arbitrary square units, T ∈ {0.25, . . . , 4}

arbitrary temperature units in 0.25 increments and N ∈ {1, 2, 3, 4, 8, 16, 24, 32} copies of

each components retrieved from the repository. Table 3.4 shows the total number and

classes of wrappers in each repository.

Table 3.4: Number of different types of components from insertion sort, bubble sort and
selections sort

Bubble Sort Insertion Sort Selection Sort

CodeBlock 5 4 5
Iteration 2 2 2

Comparison 1 0 1
Swap 1 1 1

Condition 1 1 1
Assignment 6 8 9

LoopAssignment 2 1 2

Total Number of Components 18 17 21
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3.4 Results

3.4.1 Bubble Sort

The software components used in this experiment arise from the bubble sort related repos-

itory. Figure 3.11 shows the relationship between pressure and temperature, and in this

experiment, the area of the compartment is fixed to 360k (600*600) units. As can be seen

from Figure 3.11, regardless of the number of copies of components that are present in the

compartment, the pressure on the walls of the compartment increases as the temperature

rises. This is due to the increase in p(M) that in turn affects the kinetic energy of a wrapper

increasing the likelihood a component hitting one of the compartment’s borders. Eq. 3.1

suggests a linear relation between P and T, however, Figure 3.11 illustrates that the rate

of increase of pressure declines as temperature rises. This is because programme gas differs

from an ideal gas as has been previously explained.

Figure 3.11: Relationship between pressure and temperature with different number of
copies of components from bubble sort program

Figure 3.12 illustrates the relation between time to equilibrium and temperature

using software components from this repository. A shorter time to equilibrium is more desir-
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Figure 3.12: Relationship between time to equilibrium and temperature with different
number of copies of components from bubble sort program

able for fast self-assembly. As can be seen from Figure 3.12, the average time to equilibrium

decreases as temperature increases. When temperature rises, components are more likely

to move and hence collide and possibly bind with each other. The increase in pressure and

decrease in time to equilibrium is dramatic from temperature 0.25 to temperature 1.0. This

is because move probability of each component rises significantly while temperature rises

from 0.25 to 1.0. It can also be seen from Figure 3.12 that with an increase in the number

of components, the time required for the system to reach its equilibrium, tε decreases as it

is more likely for a component to meet with another component when the pool is densely

populated. Moreover, during the course of the simulations it is possible to observe a “run-

away” effect: as the size of the (partially) self-assembled structure increases the distance

cut-off for binding also increases, which in turn makes it even more likely to collide (and

eventually assemble) with other components.

The pressure in the environment will decrease when the area of the container

increases, roughly according to Eq. (3.1). Figure 3.13(a) is the experimental result that
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(a)

(b)

Figure 3.13: (a) Relationship between pressure and area with different number of copies
of components extracted from bubble sort program. (b) Relationship between time to
equilibrium and area with different number of copies of components extracted from bubble
sort program.

illustrates the relation between area of the pool and pressure of the environment. In this

experiment, the temperature is fixed to 2.0. Figure 3.13(a) shows that pressure decreases

as area increases. Figure 3.13(b) shows how average tε is affected by area. As the area of

the pool increases, the average time to equilibrium increases as well. The reason is rather

straightforward, the pool becomes larger and the probability for a component to bind with

another component decreases.
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(a)

(b)

Figure 3.14: Using components extracted from bubble sort program: (a) Relationship
between total different tree classes and number of copies (A = 360k); (b) Relationship
between total number of different tree classes and number of copies (T = 2.0).

Figure 3.14(a) shows the relation between the total number of different parse tree

classes (Dε) in 20 replicas and the number of copies of components in different temperature

settings for an area fixed to 360k (600*600) arbitrary units of area. Fig. 3.14(b) shows the

relation between Dε and N for various area settings and temperature fixed to 2.0 arbitrary

temperature units. Generally, it can be seen that the diversity of assembled parse tree classes

rises as more components are put into the pool. However, Fig. 3.14(a) and 3.14(b) show

that the diversity of the self-assembled trees is not greatly affected by either temperature

or pool area. We show a “forest” of self-assembled program trees when the temperature is

set to 2.0, and the area is set to 360k units with 8 copies of each component decomposed
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from the original bubble sort program in Fig. 3.15.

3.4.2 Insertion Sort

A similar set of experiments has also been carried out using components obtained from the

insertion sort repository. Figure 3.16 shows the relation between pressure and temperature.

Similar to the case of bubble sort, pressure rises steadily as more copies of components are

placed into the pool. Figure 3.17 shows that time to equilibrium decreases as temperature

increases. Figure 3.18(a) shows that pressure decreases as area of the pool increases. The

decrease in pressure becomes steadier with fewer number of copies of components. Figure

3.18(b) illustrates that the average equilibrium time increases as the area of the pool be-

comes greater. Figure 3.19(a) illustrates total number of different parse tree classes in the

20 replicas against number of copies of components for different temperature setting with a

fixed 360k arbitrary area units. The results are similar to the ones obtained for the bubble

sort repository, that is, diversity is mainly affected by the number of copies of components

placed into the pool. Figure 3.19(b) shows the relation between the number of copies of

components and diversity using different areas when temperature is set to 2.0 arbitrary

temperature units.

3.4.3 Selection Sort

Same experiments are performed with the selection sort repository. Figure 3.20 shows how

pressure is affected by temperature and the number of copies of each component. Similar

to the results shown in the previous experiments on bubble sort and insertion sort, given

a fixed number of components, pressure rises as temperature rises. Moreover, given a fixed
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Figure 3.15: A “forest” of self-assembled parse trees using components from bubble sort
repository, and under the environment settings A = 360k, T = 2.0, N = 8. The number
on top of each tree indicates the number of occurrences of that tree in the 20 experimental
replicas.
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Figure 3.16: Relationship between pressure and temperature with different number of
copies of components from insertion sort program

Figure 3.17: Relationship between time to equilibrium and temperature with different
number of copies of components from insertion sort program

temperature, pressure rises as more components are placed into the pool. However, with

the same number of copies and same temperature, pressure in the pool is generally higher

than pressure in the pool for insertion sort and bubble sort. This difference becomes more

obvious when more copies of components are placed into the pool as is shown in Figure 3.20.

Figure 3.21 shows the relation between time to equilibrium and temperature for insertion

sort. Generally, the average time required to reach equilibrium decreases as a result of an

increase in temperature. Figures 3.22(a) and 3.22(b) show the relation between pressure and

area; and time to equilibrium and area respectively. It can be seen that as area increases,
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(a)

(b)

Figure 3.18: (a) Relationship between pressure and area with different number of copies
of components extracted from insertion sort program. (b) Relationship between time to
equilibrium and area with different number of copies of components extracted from insertion
sort program

time to equilibrium increases and pressure decreases. However, with the number of copies

of components and area of the pool fixed, pressure in the pool for selection sort is slightly

higher than that of insertion sort and bubble sort, and this is also because of the larger size

of the repository.

Figure 3.23(a) shows that with more copies of components, the total number of

different parse tree classes rise when area is set to 360k arbitrary area units. Figure 3.23(b)

illustrates the relation between diversity of the formed parse trees and the number of copies

of components with temperature fixed to 2.0. Similar to the results obtained from bubble

sort and insertion sort, diversity is mainly influenced by the number of copies of components.
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(a)

(b)

Figure 3.19: Using components extracted from insertion sort program: (a) Relationship
between the total number of different tree classes and number of copies (A = 360k); (b)
Relationship between total number different tree classes and the number of copies (T = 2.0).

Figure 3.20: Relationship between pressure and temperature with different number of
copies of components decomposed from selection sort program

Tables 3.5, 3.6, and 3.7 illustrate the R values computed with different environment

parameters for bubble sort, insertion sort and selection sort program respectively, i.e. R =

PV/nT . As has been discussed before in the previous section, programme gas differs from
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Figure 3.21: Relationship between time to equilibrium and temperature with different
number of copies of components decomposed from selection sort program

(a)

(b)

Figure 3.22: (a) Relationship between pressure and area with different number of copies
of components decomposed from selection sort program. (b) Relationship between time
to equilibrium and area with different number of copies of components decomposed from
selection sort program.
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(a)

(b)

Figure 3.23: Using components decomposed from selection sort program: (a) Relationship
between total different tree classes and number of copies (A = 360k). (b) Relationship
between total number of different tree classes and number of copies (T = 2.0).

an ideal gas. In an ideal gas, the R is a constant value. However, it can be seen from Tables

3.5, 3.6, and 3.7 that R values for ASAP 2 do not stay constant as opposed to ideal gases. In

order to measure how statistically different the R values attained from the three programs

are, ANOVA analysis is performed under the same (T, V, n). The computed p-value from

the ANOVA test is the probability that the variation between groups may have occurred by

chance. The null hypothesis is used to test differences among groups, and the assumption

that no difference exists between groups for the variable being compared. By convention,

the null hypothesis is rejected if the p-value is smaller than or equal to the significance

level 0.05 [13]. Hence, a high p-value therefore indicates the difference between groups
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Table 3.5: R value computed from different environment parameters for bubble sort
program

T V n P R

0.25 160 1 0.176649802 113.0558736
0.5 160 1 0.311645187 99.72645977
0.75 160 1 0.392366822 83.70492208
1 160 1 0.477072752 76.33164027

1.25 160 1 0.509688654 65.24014767
1.5 160 1 0.613259763 65.41437476
1.75 160 1 0.666353766 60.92377291
2 160 1 0.598151136 47.85209085

2.25 160 1 0.594808557 42.29749742
2.5 160 1 0.620507593 39.71248598
2.75 160 1 0.772877163 44.96739856
3 160 1 0.740508553 39.4937895

3.25 160 1 0.673260397 33.14512722
3.5 160 1 0.706946771 32.31756666
3.75 160 1 0.702513062 29.97389064
4 160 1 0.695453068 27.8181227

Table 3.6: R value computed from different environment parameters for insertion sort
program

T V n P R

0.25 160 1 0.159352116 101.9853542
0.5 160 1 0.530052968 169.6169497
0.75 160 1 0.382439856 81.58716922
1 160 1 0.492226003 78.75616051

1.25 160 1 0.49292456 63.09434368
1.5 160 1 0.523136365 55.8012123
1.75 160 1 0.573825845 52.46407729
2 160 1 0.594619024 47.56952194

2.25 160 1 0.626837524 44.57511283
2.5 160 1 0.698775841 44.72165382
2.75 160 1 0.669286865 38.94032669
3 160 1 0.668869555 35.67304293

3.25 160 1 0.648874518 31.94459165
3.5 160 1 0.647836647 29.61538956
3.75 160 1 0.692331722 29.53948682
4 160 1 0.753522834 30.14091334



3. program gases: a software self-assembly approach with unguided dynamics 64

Table 3.7: R value computed from different environment parameters for insertion sort
program

T V n P R

0.25 160 1 0.18346635 117.4184642
0.5 160 1 0.358986948 114.8758232
0.75 160 1 0.413102263 88.1284828
1 160 1 0.499091046 79.85456739

1.25 160 1 0.556439759 71.22428914
1.5 160 1 0.638777477 68.13626421
1.75 160 1 0.654263144 59.81834456
2 160 1 0.691053549 55.2842839

2.25 160 1 0.696325818 49.51650264
2.5 160 1 0.701287535 44.88240226
2.75 160 1 0.817719929 47.57643222
3 160 1 0.77585109 41.37872481

3.25 160 1 0.762574606 37.54213444
3.5 160 1 0.795425819 36.36232316
3.75 160 1 0.780521731 33.30226051
4 160 1 0.812693773 32.50775094

are insignificant. The p-value computed from the ANOVA test for the three groups of R

values is 0.90577, which is substantially greater than the acceptance level. This indicates

the null hypothesis cannot be rejected, meaning little or no difference exists between the

distributions for R as computed from bubble sort, insertion sort and selection sort program.

In addition, with the experimental results on the three sorting algorithms, it can be seen that

the environment parameters (A,T,N) affect time to equilibrium and diversity of generated

programs in a very similar pattern for all the three sorting algorithms.

3.5 Predictive Formulae

We introduced a mathematical model that can be used to predict both tε and Dε for

the standard ASAP 2 implementation as a function of (A,N, T ). This was summarized
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in [58] with a regression software. Formulae are produced to predict tε having one of the

three free environment parameters fixed to a pre-specified value (T = 2.0, N = 8, A = 360

respectively). These predictive models are presented in Eq. 3.2, 3.3 and 3.4. Figure 3.24

depicts how accurately Eq. 3.2, 3.3 and 3.4 predict tε in comparison with the average of

the 20 replicas.

tε(A,N) =
(7.05 × A) + 321.2

N
+ (3.91 × A) − 593.71 (3.2)

tε(A,T ) =
(5.21672 × A) − 659.015

T
+ (3.7274 × A) − 416.114 (3.3)

tε(T,N) = (
1

T
+ 1) × (

1726

N
+ 637.325) (3.4)

Figure 3.24 shows that the predictions are fairly accurate as experimental data

follow the same trend as predicted by the formulae although errors exist between predictions

and experimental results. The errors are quantified by calculating the average and standard

deviation of errors rate for each formula (Table 3.8). Table 3.8 shows average and standard

deviation of errors rate for each equation in different parameter settings. With a lower area

setting in Eq. 3.2 and Eq. 3.3, the equations predict more accurately having a smaller

average error rate. In additions, Eq. 3.2 and 3.3 predict better than Eq. 3.4 because they

report a smaller average error rate.

Dε(N) = 15 ∗ N + 16.6 (3.5)
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Figure 3.24: Prediction model assessment on (a) time to equilibrium with T=2.0 (b)
time to equilibrium with N=8 (c) time to equilibrium with A = 360k (d) diversity of the
generated programs with A = 360k, T = 0.25. Triangles represent experimental data, and
circles represent the corresponding data obtained from our predictive model.
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Table 3.8: Error statistics for predictive model on ASAP 2

equation category average error rate standard deviation

Eq. 3.2 A = 160 0.208 0.148
A = 250 0.425 0.525
A = 360 0.389 0.473
A = 490 0.261 0.374

Eq. 3.3 A=160 0.242 0.145
A=250 0.152 0.146
A=360 0.192 0.098
A=490 0.097 0.090

Eq. 3.4 N = 1 0.106 0.106
N = 2 0.129 0.089
N = 3 0.181 0.108
N = 4 0.263 0.095
N = 8 0.224 0.144
N = 16 0.219 0.189
N = 24 0.733 0.207
N = 32 1.190 0.521

Eq. 3.5 N/A 0.039 0.010

As has been shown in Fig. 3.14, diversity of self-assembled programs is not greatly

affected by temperature nor by area of the pool. Hence, we present Eq. 3.5 to predict

program diversity in relation to number of copies of components only. Figure 3.24(d)

illustrates predicted and the observed experimental results, and the obtained experimental

data agree quite well with the model predictions. This can also be seen from Table 3.8,

which shows a small average error rate. This interpolation for (tε, Dε) can already be seen

as an advance since similar predictive performance is yet to be achieved with GP.

3.6 Summary

In this chapter, we presented the Automated Self-Assembly Programming Paradigm (ASAP 2).

The initial experiments are reported with a naive implementation of “program gases”. Pro-

gram gases is a metaphor for a software self-assembly system that takes a set of software
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components from a given repository and places them into a finite area container where they

perform a random walk and sometimes they will bind to each other. While Genetic Program-

ming evolves both the structure and the content of the parse trees simultaneously, ASAP 2

is aimed at reusing the content of previously built software components by self-assembling a

suitable structure. A program gas component can be as simple as an assignment statement

or arbitrarily large, such as a program that takes a user input and produces some complex

output. Hence, software self-assembly concentrates more on exploring and discovering the

architecture of programs. The kinetic theory of perfect gases was used as an approxima-

tion of the behaviour of the system. The R values computed for program gas suggest that

it is not constant, as opposed to ideal gases, and hence prove that program gas behaves

in a similar yet different way to ideal gases. We measured the relation between different

settings of the environment, i.e. A,T,N , with pressure, time to equilibrium and diversity

of assembled structures when equilibrium is reached thus assessing how well this partic-

ular implementation of ASAP 2 explores the space of all program architectures. Unlike

genetic programming that uses an evolutionary metaphor to guide the process of automatic

programming, ASAP 2 relies on natural metaphors of self-assembly for the exploration of

programs space, thus we expect to have very different kinds of limitations and potentials.

In addition, we have presented a predictive model to interpolate software self-

assembly efficiency and diversity for a given set of environment parameters (A,T,N). We

can predict the time needed for ASAP 2 to reach its equilibrium and the resulting diversity

of the generated populations, given the available number of copies of components and other

environmental conditions. In contrast, there is no GP theory that can predict diversity or
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time to local optima.
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Chapter 4

A Particle Swarm Realization of Software

Self-Assembly

In the previous chapter, we introduced the Automated Self-Assembly Programming Paradigm

(ASAP 2), a software self-assembly system inspired by natural and artificial self-assembly

systems. We presented ASAP 2 using the kinetic theory of ideal gases as a metaphor. In

ASAP 2, a set of human made components are collected in a software repository and later

integrated through self-assembly into a software program. Manually decomposed software

components are placed in a confined area with specific temperature and pressure constraints,

giving rise to a variety of program architectures. We investigated and discovered different

factors that influence the efficiency of software self-assembly and the diversity of the gener-

ated programs using unguided self-assembly.

Self-assembly systems can be guided using various methodologies. Wang tiles [92]

is a prime example of computational self-assembly. A Wang tile system consists of square

tiles maneuvering on a two dimensional plane. Each side of the tile has a colour associated

with it. A table is used to record the binding strength between every pair of colours. As
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tiles perform Brownian motion in the plane, they may either self-assemble or continue their

random movement depending on the binding strength on their colliding side. In [88], an

evolutionary algorithm is used to evolve a family of tiles together with the colour associated

with them so that they self-assemble into a target shape.

In [43], a different approach is used to guide the self-assembly process. Simple and

identical components autonomously grow into a desired shape on a two-dimensional square

lattice by connecting of components around a single initial seed component. The successful

assembly lies in the generation of appropriate rules that are executed by the components.

In turn, the set of rules for the components to follow is compiled based on the given goal

structure. As can be seen, various approaches can be used to construct a self-assembly

system. However, the key to the successful assembly of the goal structure lies in the careful

design of components and their interactions.

As ASAP 2 is inspired by those natural and artificial self-assembly systems, soft-

ware self-assembly process can also be guided using various metaphors. This chapter intro-

duces a different metaphor to guide the self-assembly process for ASAP 2. The extended

model is based on particle swarm intelligence, and the concepts of leaders and dynamic

neighbourhood is introduced into ASAP 2. The extended model is inspired by previous

works in PSO [14, 38, 75]. The swarm based approach changes the way software compo-

nents interact with each other, and we are thus interested in investigating how this affects

time to equilibrium, while at the same time observing how diversity of the generated pro-

grams is affected. With the extended system, we performed the same set of experiments as

presented in the previous chapter [59].
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This chapter is organized as follows. In section 1, we briefly introduce artificial

life and particle swarm optimization (PSO) in particular. In section 2, we present our

software self-assembly system inspired by PSO. Section 3 illustrates experimental results

and analysis, and the comparison between the two different approaches for ASAP 2. Finally,

Section 4 gives a summary of this chapter.

4.1 Particle Swarm Optimization

There is a vast multitude of computational techniques inspired by natural living systems.

For example, genetic algorithm is inspired by the evolutionary process of living species.

Neural network simulates the central nervous systems and the information processing of

neurons. Artificial life [8] is the term used to describe research and man-made systems

that mimic the behaviour of living entities and hence capture certain properties of life.

Besides the purpose of enriching the knowledge about nature, artificial life helps to find

new computational techniques such as swarm intelligence. The artificial life models we

describe here are restricted to social learning systems. More specifically, those systems that

exhibit high level of emergent behaviour as a result of the interaction between individuals

of the population and the environment.

Social learning systems tend to concentrate on how complex natural organisms

achieve sophisticated group behaviours, or deal with abstract agents that are difficult to

be manually constructed [34]. Swarm intelligence is one of the metaphors that mostly

attract interest of the social learning modelling community. Swarm intelligence refers to

phenomena where natural creatures behave as a swarm with individuals following simple
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rules, but leading to complex, adaptive behaviour of the swarm [21]. There are two main

variants of swarm inspired methods within the social learning areas: one is to mimic the

flocking of birds (particle swarm optimization), and the other is inspired by the co-operative

behaviour of ant colonies (ant colony optimization) [17]. In this chapter, we concentrate on

the former, as a metaphor to guide software self-assembly.

Particle swarm optimization (PSO) was first introduced by Kennedy and Eberhart

[19, 20]. PSO mimics the behaviour of bird flocking and fish schooling. Individuals in a

swarm exchange previous experiences whilst the randomness of moving in the embedding

space is maintained. In PSO, each individual in the population is called a particle which

represents a solution to a given problem. Particles are modelled with their positions and

velocities. At each iteration of the algorithm, each particle’s velocity is stochastically ac-

celerated towards its previous best position and towards a global best position among the

population. Particles then adjust their velocities according to their personal best position

and the global best position. The fundamental concept behind PSO algorithm is that in-

dividuals exchange previous experience whilst maintaining random movement in the search

space.

Let X[i][j] be the current location of particle i in dimension j, P [i][j] be the current

best location for particle i, Vi be the velocity of particle i and G be the global best location.

The following shows a pseudo code for the PSO algorithm, where Γ1,Γ2 are uniform random

numbers between 0 and 1. C1, C2 and ω are pre-specified parameters for the algorithm.

ω describes how much particles’ previous velocity affects their current velocity. C1 and C2

are constants that reflect how much particles’ velocities are influenced by the individual’s
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best and the global best respectively. “Best” in this context is a problem / domain specific

measure of preference.

Algorithm 3 PSO algorithm

1: Initialise the population of particles with X and V
2: At each time step k
3: for each particle i do

4: for each dimension j do

5: V [i][j] = ω × V [i][j] + C1 × Γ1 × (P [i][j] − X[i][j]) + C2 × Γ2 × (G[j] − X[i][j])
6: X[i][j] = X[i][j] + V [i][j]
7: end for

8: end for

In [14, 75], fitter particles are recorded into a leader set. Non-leader particles

randomly select a leader from the leader set and follows the leader. In [38], particles

determine and change their neighbours dynamically according to the distances in each gen-

eration. Those previous works on PSO have shown encouraging outcomes on fitness and

diversity of the generated results. Recent studies [70, 71] by O’Neil and Brabazon have

also demonstrated that it is possible to generate programs by using grammatical swarm, a

PSO inspired automatic programming methodology which uses grammars to guide the con-

struction of programs for specific task. Here we borrow the idea of using PSO to synthesize

programs and we hybridize it with our ASAP 2 concept.

4.2 ASAP 2 with Dynamic Leaders and Neighbourhood

4.2.1 Model description

Inspired by PSO algorithm and grammatical swarm, we extended the ASAP 2 model pre-

sented in [59] by introducing leaders in the software self-assembly process in an attempt to
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shorten time to equilibrium. In this extended system [58], neighbourhood structures and

movements of software components are influenced by leader components in a similar pattern

as in [14, 75]. Figures 4.1 and 4.2 are screenshots of the system. The left panels show the

compartment in which software self-assembly takes place. The difference from the original

model is that leader components are introduced in the pool, and they can be identified by

circles or tree structures with white borders in Fig. 4.1 and 4.2.

Figure 4.1: Early stage of software self-assembly, where circles with white borders are
leader components.

Algorithm 4 describes the implementation of the PSO inspired ASAP 2 system in

pseudo-code. As in the unguided ASAP 2 model, software components are retrieved from

a software repository and placed into the compartment. An initial proportion of software

components are then randomly selected as leaders. Software components perform random

walk in the compartment as they do in [59]. However, when a non-leading component

is within a distance threshold (Dα) to a leader, it will follow the leader component. If
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Figure 4.2: Latter stage of software self-assembly, where circles with white borders are
leader components

more than one leader is within the threshold range (Dα) of a non-leading component, there

needs to be a way to decide which leader to follow. To do that an attractive force (F )

of a leader component is introduced. Non-leader components follow a leader component

that exhibits the greatest attractive force. In this way, a non-leader component changes its

leader dynamically. The attractive force of a leader component is in direct proportion to the

number of available ports it contains and its distance to a following component. Algorithm

5 formally describes this process.

When a certain component binds with a leader component, the self-assembled

structure also becomes a leader. In this way, the proportion of leader components in the

compartment increases as more components are self-assembled and non-leader components

disappear. The motivation behind this is that the self-assembly process could be made more

efficient by introducing leaders since components will attract each other and form groups
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Algorithm 4 Algorithm for PSO inspired ASAP 2

1: C = RETRIEVE COMPONENTS(number of copies)
2: L = DETERMINE LEADERS(C)
3: N = non-leading components
4: while (equilibrium not reached) do

5: for (every component Ci ∈ C) do

6: if (Ci ∈ N) then

7: if ( Ci.canFindLeader(L,Dα) ) then

8: Ci.followLeader()
9: else

10: Ci.move()
11: end if

12: else

13: Ci.move()
14: end if

15: end for

16: attemptBinding()
17: end while

Algorithm 5 Algorithm to find a leader component within threshold range Dα for a non-
leader component Ni

1: initialize current leader
2: initialize F max
3: for ( every leader component Li in the component set C ) do

4: if ( distance (Ni, Li) ≤ Dα ) then

5: F = distance(Ni, Li) × availablePorts(Li)
6: if ( F ≤ F max ) then

7: F max = F , currentLeader = Li

8: end if

9: end if

10: end for

rather than getting stuck in distant areas of the pool. Figure 4.1 shows an early stage of

software self-assembly process in which a small proportion of leader components are present

in the compartment. At a latter stage of self-assembly, Fig. 4.2 shows the proportion of

leader components in the pool increases significantly.

The particle swarm based approach for ASAP 2 is a simplified version of PSO. Al-

though it mimics PSO algorithm such that components follow leaders and dynamic neigh-
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bour will gradually form, it differs with the original PSO algorithm in two main aspects: (1)

each particle is “flying” over search space in PSO, whereas software components are moving

on a two-dimensional “physical” compartment in ASAP 2. (2) Each particle represents a

solution in PSO and is evaluated by an objective function. The flying of particles in the

problem space is controlled by velocities, which in turn is determined by each individual’s

experience and the best solution found in the entire population. In swarm based ASAP 2,

however, the interactions between components are not determined by evaluation function.

The interactions between components are determined by leader’s attractive force and their

relative distance. Components merely follow a leader component which exhibits the great-

est attractive force given by ports number (i.e. a leader with more available ports is more

attractive) in an attempt to shorten time to equilibrium.

4.3 Experimental Results and Analysis

4.3.1 Methods

We compared how PSO inspired ASAP 2 differs from the unguided approach. Hence, the

same set of experiments as we did for the unguided ASAP 2 are performed for the swarm

based system. The fixed parameters in our experiments are distance threshold (Dα) for

attractive force, and proportion of leader components (lτ ) at the start of the simulation.

Temperature (T ), area (A), number of copies of software components in the compartment

(N) are the free parameters for the simulation. lτ is fixed to 0.1 so that the influence

of leaders are unbiased while more components are placed into the compartment. The

threshold distance ensures that a component with arbitrarily large attractive force will not
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attract everything in the compartment. T affects wrappers’ moving probability the same

way as in unguided ASAP 2, i.e. p(M) = 1 − e−T .

With the above parameters, the same experiment data as we measured for un-

guided ASAP 2 are observed: pressure (P ), time to equilibrium (tε) and diversity of the

self-assembled trees at equilibrium (Dε). These observed experiment data are measured in

the same way as in [59] for unguided dynamics. That is, P is measured by the number

of hits on the borders of compartment caused by wrappers’ movements per unit of time.

Time to equilibrium (tε) measures the number of time units recorded before equilibrium

is reached. The diversity of assembled program (Dε) is measured by the total number of

different parse tree classes at equilibrium.

4.3.2 Results and Analysis

Figure 4.3 shows the comparison of how pressure is affected in relation to temperature be-

tween unguided ASAP 2 and swarm based ASAP 2. And Fig. 4.4 illustrates the relationship

between pressure and area of the pool. As can be seen, pressure in the compartment is af-

fected in similar patterns as the unguided software self-assembly system. That is, pressure

increases with more number of components, higher temperature or smaller area of the pool.

In addition, it can be seen (Fig. 4.3(a) v.s Fig. 4.3(b), and Fig.4.4(a) v.s Fig. 4.4(b))

that comparing with unguided software self-assembly, the overall pressure on the wall drops

significantly. This is because more components are following leaders instead of moving

randomly in the compartment and hitting the walls.

Figures 4.5 and 4.6 show how tε is affected by T and A under various N respectively.

Fig. 4.5, 4.6 suggest that area of the pool and temperature have a similar influence on time to
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(a) (b)

Figure 4.3: Relationship between pressure and temperature with different number of
copies of components with (a) unguided ASAP 2, (b) swarm based ASAP 2

(a) (b)

Figure 4.4: Relationship between pressure and area with T = 2.0, (a) unguided ASAP 2,
(b) swarm based ASAP 2

equilibrium for unguided and swarm based software self-assembly. Figure 4.5 indicates that

temperature only affects time to equilibrium at a low range (from 0.25 to approximately

1.0) such that tε decreases as T increases. This is because the moving probability of a

component is determined by temperature, and move probability of each component rises

significantly while temperature rises from 0.25 to 1.0. Furthermore, Fig. 4.6 shows that

it takes longer for the system to reach equilibrium with a larger pool. This is because the

average density of components decreases with a larger compartment, and therefore takes

longer for components to form bindings.
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(a) (b)

Figure 4.5: Relationship between time to equilibrium and temperature with A = 360k,
(a) unguided ASAP 2, (b) swarm based ASAP 2

(a) (b)

Figure 4.6: Relationship between time to equilibrium and area with T = 2.0, (a) unguided
ASAP 2, (b) swarm based ASAP 2

Comparing swarm based ASAP 2 with unguided ASAP 2, time to equilibrium is

influenced by N in an utterly different way. It can be seen from Fig. 4.5(b), 4.6(b) that N

does not play an important role in tε for swarm based ASAP 2. As the proportion of leader

selected at the beginning of the simulation is a fixed parameter, an increase in N results

in an even increase in the number of leader components as well as non-leader components.

Hence, leader components are attracting the same amount of non-leader components as N

increases. Experimental results (Fig. 4.5(a) v.s Fig. 4.5(b), and Fig.4.6(a) v.s Fig. 4.6(b))

show that time to equilibrium has been significantly reduced from a maximum of 11000 to
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a maximum of 6500 when leaders are introduced into the system under N ∈ {1, 2, 3, 4}.

However, unguided ASAP 2 reaches time to equilibrium faster than swarm based ASAP 2

with a large number of components, i.e. N ∈ {24, 32}.

The reason for this is the following: under unguided ASAP 2 the more components

there are in the compartment, the higher the number of collisions between components.

Moreover this collision happens without a preferred position or direction in compartment

(i.e, the space is isotropic in what pertains to direction of movements). On the other hand,

in the PSO ASAP 2 the presence of a large number of leaders, which incidentally change

with time, severely distorts the space isotropy and introduces non-linear feedbacks into the

dynamics of the simulation. For example, one way in which the above consideration could

affect tε is this: if there are 2 or more leaders and a non-leader component C, it is possible

for C to follow leader L1 for a long time, because L1 has more ports available than Li

(with i 6= 1), but not being able to bind as C and Li do not have compatible ports. This

pseudo-deadlock would only be broken if L1 gets self-assembled with another leader or if C

falls within the basin of attraction of Li (with i 6= 1).

As can be seen from Fig. 4.7, 4.8, diversity of the generated population is influ-

enced primarily by the number of copies of components. Comparing with unguided ASAP 2,

the swarm based approach generate fewer parse tree classes than unguided software self-

assembly(Fig. 4.7(a) versus Fig. 4.7(b), and Fig. 4.8(a) versus Fig. 4.8(b)).

To confirm unguided ASAP 2 and extended ASAP 2 exhibit different behaviour in

terms of time to equilibrium and diversity of the generated programs, t-tests are performed

on the experimental data obtained from the two models. Table 4.1 shows (for A = 360), all
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(a) (b)

Figure 4.7: Relationship between total tree classes and number of copies in different
temperature settings, (a) unguided ASAP 2, (b) swarm based ASAP 2

(a) (b)

Figure 4.8: Relationship between total tree classes and number of copies in different area
settings: (a) unguided ASAP 2, (b) swarm based ASAP 2

p-values generated by t-test are smaller than 0.05. By convention, this is considered strong

evidence that the results are statistically different, namely PSO ASAP 2 is statistically

significantly faster but also statistically significantly poorer in terms of diversity of assembled

program structures.

As diversity is mainly affected by the number of copies in both systems, we present

three-dimensional charts to show how it can influence the diversity along with time to

equilibrium at the same time. Figure 4.9 are three-dimensional charts to show its tendency,

each of which is under an identical pre-specified environment setting. As can be seen,

software self-assembly with leader reaches equilibrium much quicker but produces a less
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Table 4.1: t-test performed for ASAP 2 v.s. extended ASAP 2 with area set to 360 for
both models

time to equilibrium diversity

N=1 2.61 ∗ 10−5 0.0088
N=2 0.0044 1.76 ∗ 10−5

N=3 0.0097 0.0017
N=4 0.0086 0.0003
N=8 0.0191 3.61 ∗ 10−5

N=16 4.71 ∗ 10−9 3.30 ∗ 10−11

N=24 9.33 ∗ 10−11 2.54 ∗ 10−13

N=32 9.06 ∗ 10−11 1.47 ∗ 10−15

(a) (b)

Figure 4.9: 3-d chart indicating the inter-relation between total tree classes, time to
equilibrium and copies of components in different temperature settings using (a) unguided
self-assembly (b) dynamic leaders and neighbourhood

diverse population.

4.3.3 Assessment of the predictive model on extended ASAP 2

In the previous chapter, a predictive model is introduced to interpolate time to equilibrium

and diversity of assembled programs with the environment parameters for unguided ASAP 2.

We examine next this predictive model for experimental data obtained with the swarm
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intelligence inspired system to show how much the dynamics of the ASAP 2 has changed.

As can be seen from Fig. 4.10, greater errors occur between the average of the 20 replicas

and predicted outcomes. This can also be seen from Table 4.2, where the average error

rate figures become greater compared with Table 3.8. Although unguided ASAP 2 deviates

from the behaviour of perfect gases, its dynamics could still be modelled with a few simple

equations. On the other hand, for PSO ASAP 2 this cannot be done any more.
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Figure 4.10: Prediction model assessment using extended ASAP 2 on (a) time to equi-
librium with T = 2.0 (b) time to equilibrium with N = 8 (c) time to equilibrium with
A = 360k (d) diversity of the generated programs with A = 360k, T = 0.25. Triangles
represent experimental data, and circles represent the corresponding data obtained from
our predictive model.
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Table 4.2: Error statistics for predictive model on extended ASAP 2

equation category average error rate standard deviation

Eq. 3.2 A = 160 0.706 0.475
A = 250 0.518 0.445
A = 360 0.493 0.354
A = 490 0.289 0.197

Eq. 3.3 A = 160 0.568 0.135
A = 250 0.196 0.154
A = 360 0.209 0.166
A = 490 0.275 0.247

Eq. 3.4 N = 1 0.824 0.299
N = 2 0.363 0.247
N = 3 0.161 0.134
N = 4 0.157 0.136
N = 8 0.442 0.161
N = 16 0.462 0.150
N = 24 0.440 0.208
N = 32 0.561 0.183

Eq. 3.5 N/A 0.167 0.115

4.4 Summary

In the previous chapter, program gas is used as a metaphor for software components. Soft-

ware components are placed into a pre-specified area container and perform Brownian mo-

tions. In this chapter, we present an extended ASAP 2 model inspired by particle swarm

optimization. The concepts of leaders and dynamic neighbourhood are introduced in soft-

ware self-assembly. We illustrate how diversity of the population and software self-assembly

efficiency is affected under the particle swarm regime under the same set of environment

parameters (A,T,N). We report the experiments conducted on the extended system, which

have shown a significant improvement in software self-assembly efficiency, i.e. time to equi-

librium, at the expense of a decrease in diversity of the generated population.

Furthermore, we have assessed our prediction model based on the extended ASAP 2.
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Results have shown greater prediction errors as the behaviour of the system has been altered

when leaders are introduced.
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Chapter 5

The Impact of Network Topology on Software

Self-Assembly

In previous chapters, we have introduced the Automated Self-Assembly Programming Paradigm

(ASAP 2), a software self-assembly system in which software components move and interact

with each other and eventually self-assemble into programs. Software self-assembly can be

embodied using various metaphors and we introduced program gas and Particle Swarm Op-

timization inspired approaches for this purpose. We investigated and analyzed how different

factors can affect the course of self-assembly and the diversity of the generated systems in

both methodologies.

Our previous investigations have focused on software self-assembly in an unstruc-

tured environment, where components self-assemble in a single confined space and can bind

with other components provided that these are of the correct types. This chapter extends

our previous studies by addressing the issue of structured environments. How a struc-

tured network of compartments affects the course and result of software self-assembly is

the driving research question here. In this chapter, a diversified compartment approach is
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introduced to investigate the impact of network structures on software self-assembly. The

diversified compartments are embedded in a variety of tree structures, as well as arbitrary

graphs, in which each compartment can be seen as a node in the network with each node

having similar characteristics to the (unique) compartment of previous chapters. Software

self-assembly occurs asynchronously and in parallel within various compartments in the

network. We observe how various network properties affect time to equilibrium, diversity

and complexity of self-assembled programs under the new settings.

5.1 Motivation

The research we present next has two main motivations. One is the compartmentalistic

approach on the origin of life: self-assembly plays an important role in nature not least

in its purported role in the origin of life. There are strong arguments claiming that life

originated from inanimate matter through a spontaneous and gradual increase of molecular

complexity [16, 63, 73]. One such model that seeks to explain the origin of life is called the

compartmentalistic approach. The compartmentalistic theory on the origin of life argues that

compartment structures form spontaneously through self-assembly processes, and perhaps

provided the original membrane-bounded environment required for cellular life to begin

[18, 67]. The main concept behind the compartmentalistic approach is the fact that known

life forms are based on cells, i.e. closed compartments that can keep inside of themselves

a running metabolism and information polymers. 1 Compartment structures are believed

to have a vital importance during this self-assembly process. The main function of life

can be viewed as an interaction between the compartment and the external medium, the

1A virus does not have a metabolism.
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interaction being realized by the flux of information and material exchanged through the

boundaries of the compartments. The compartmentalistic approach is reinforced by the fact

that molecules of prebiotic origin are thought to have self-assembled and formed cell-like

compartments as the miscelle structures formed by amphiphilic molecules.

Although previous work on ASAP 2 [58, 59] resembles this compartmentalistic

approach such that self-assembly takes place in a confined area, no information exchange

occurs from the inside to the outside of compartments. This important aspect of com-

partmentalistic approach is captured by introducing a diversified compartments structure,

where a network of compartments are embedded in a graph and software self-assembly

takes place simultaneously in each compartment with the possibility of migration between

compartments.

In the graph structure in which the self-assembly process is embedded, each vertex

represents a compartment, and components can freely move to another compartment pro-

vided that the two are connected by an edge. This allows software components to hop from

compartment to compartment within the network. A large variety of graph topologies are

investigated, ranging from simple tree structures to general graph structures covering the

transition from random to ordered graphs. We are interested in how different topologies

and average inter-connection distances within the network can have an influence (if any) on

the software self-assembly process, along with the resulting complexity and diversity of the

generated programs.

A second motivation to use a diversified compartment approach, and one that is

more closely related to computer science, is that network structures such as those studied
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here allow to abstract the “Internet” and study ASAP 2 as a phenomenon of mobile and

adaptive computer code embedded in the web / grid. The network structure can be seen

as a LAN (Local Area Network) or a WAN (Wide Area Network), where each node repre-

sents a computer server. While software self-assembly occurs simultaneously in each node,

(partially) self-assembled programs are exchanged within the network. Thus this model is

a very abstract and coarse approximation to the emergence of software structures in the

“infosphere”.

The diversified compartment approach is based on graphs. A graph refers to a set

of vertices and a set of edges that connect pairs of vertices. The formal definition of a graph

is given by Wilson and Watkins [96] as:

“A graph G consists of a nonempty set of elements, called vertices, and a list of

unordered pairs of these elements, called edges. The set of vertices of the graph G is called

the vertex set of G, denoted by V (G), and the list of edges is called the edge list of G, denoted

by E(G). An edge of the form ij is said to join or connect i and j if i and j ∈ V (G).”

(a) (b) (c)

Figure 5.1: Example of graph structures: (a) an undirected, unweighted, non-simple
(with parallel edges connecting same pair of vertices) graph; (b) a directed, unweighted,
non-simple (with vertex connecting to itself) graph; (c) an undirected, weighted, simple
graph
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Graphs can be categorized in various ways and Fig. 5.1 illustrate examples of

different graph structures. For the purpose of this research, the graphs used in the diversified

compartment approach are restricted in the following ways:

• The graph is simple, that is, multiple edges between the same pair of vertices or edges

connecting a vertex to itself are forbidden.

• The graph has to be connected, i.e, no isolated compartment exists. Please note

that this implies that under the ASAP 2 model studied so far, a network-wide global

equilibrium will eventually be reached.

• The graph is assumed to be undirected. Hence, software components can flow in and

out of any vertex in the graph.

• The graph is unweighted because we are merely taking into account the relation be-

tween the vertices on the graphs and the connections themselves, while ignoring con-

straints such as distances between vertices or link capacity (for example, bandwidth,

noise, etc).

Recent studies by Farley [25] have shown the impact of different population struc-

tures on the artificial evolutionary process. In [25], a variety of graph structures are used

as population structures for a genetic algorithm. Individuals reside at vertices of the graph

and can only choose their mating partners among their neighbours in the graph. It has been

shown that the diversity and the fitness of genes can be greatly influenced with a graph

embedded genetic algorithm.
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5.2 Initial investigations on specific network topologies

Inspired by the studies into the topological impact upon the evolutionary process [25], it

is already possible to start our investigations with some special graph structures. The aim

is to find out whether software self-assembly can be affected by network structures. To

do this, trees are selected as the graph structure for the ASAP 2 network because trees

are minimally connected graphs, which means the graph is no longer connected if any one

edge of the tree is removed. Three tree structures, namely string, star, and binary tree are

chosen as an initial investigation on the ASAP 2 in a network. Figure 5.2 shows the three

topologies where each compartment is represented by a square.

(a)

(b)

(c)

Figure 5.2: Trees with 7 vertices, and each vertex represents a compartment: (a) string;
(b) star; (c) binary tree
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5.2.1 The model

The diversified compartment approach can be explained as follows. Firstly, a graph G of

a graph type g type is created with a set of externally provided graph parameters. In the

initial investigation where the three specific tree structures are used, the graph parameter

is solely the size of the graph, i.e, the number of compartments, which are identified in a

one to one fashion with vertices V in G. With the compartment set C embedded into G,

software components are distributed evenly in each compartment Ci. If two compartments

Ci and Cj are directly connected via an edge, Ci and Cj are identified as neighbouring

compartments.

Previous work [58, 59] has suggested that the environment has a more obvious im-

pact on software self-assembly with unguided dynamics than with a swarm based method-

ology. As we seek to find out how the environment (i.e, the network structure at this

stage) affects software self-assembly, the diversified compartment approach is based on the

unguided ASAP 2 presented in [59]. Thus, software components perform a random walk

in the compartment where they “live”. When a component hits a border, it is randomly

transferred to one of its neighbouring compartments with equal probability.

The simulation finishes when there are no more possible binding actions between

the remaining self-assembled trees in the whole graph. That is, global equilibrium on the

network rather than local equilibrium of each compartment is the terminating condition for

our simulations. 2 Algorithm 6 presents the pseudo code for the above described process.

2Please note that global equilibrium of the complete graph implies equilibrium at local level but not vice
versa.
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Algorithm 6 Graph Embedded ASAP 2

1: G = GENERATE GRAPH(g type, graph parameters)
2: C = RETRIEVE COMPONENTS(number of copies)
3: while (GLOBAL EQUILIBRIUM NOT REACHED in G) do

4: for each compartment Vi on G do

5: for each component Cj in Vi do

6: MOVE COMPONENTS(Cj, Vi)
7: Vi = ATTEMPT BINDINGS(Vi)
8: end for

9: end for

10: end while

5.2.2 Experiments

There are several fixed parameters throughout the conducted experiments. The total area

(A) is fixed to 360k arbitrarily squared units (AU2), and the temperature (T) is fixed to

2.0. We observe time to equilibrium (tε) in relation to number of compartments (V ) in the

graph. In addition, (tε) are compared between the three tree topologies versus a complete

graph. A complete graph is one in which every pair of distinct vertices is connected by an

edge. The complete graph G with V compartments has V (V −1)
2 edges.

5.2.3 Results

Figure 5.3 summarizes our findings. It can be seen that tε is influenced in different ways

using different topologies. Figure 5.3(a) shows that tε increases with more vertices in the

graph using string topology. This is because, in the worst scenario, it takes longer for a

component to traverse from one end of the string topology to the other. Similarly, tε also

increases as V increases with the binary tree topology as Fig. 5.3(c) illustrates. This is

because the average length increases with more vertices introduced in the string and binary

topology. Obviously the longest path length in a binary tree topology grows logarithmically,
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while in the string topology it grows linearly. However, Fig. 5.3(b) shows that tε is influenced

in an opposite manner with star topology, i.e. tε decreases while V increases. This is because

while more vertices are introduced into the network, the average path length of the graph

remains constant, and components can exploit more compartments in the network to find

another to bind with.

5.3 Systematic experiments with tunable graphs

5.3.1 β-graph and graph statistics

As the preliminary experiments with the simple tree topologies suggest, the dynamics of

ASAP 2 are changed when the process of software self-assembly occurs within a network

of compartments. Furthermore, the network structure where ASAP 2 is embedded greatly

influences its dynamics. As the relationship between V and tε indicates, dynamics of ASAP 2

is influenced by the number of compartments and the topology of the graph where the

compartments are embedded. In what follows, a systematic study is conducted into how the

topology of the graph affects time to equilibrium, diversity and complexity of self-assembled

programs for a family of graphs.

We consider length and clustering properties as a measure of graph characteristics.

Studies into the length properties of a graph have been an active research area and have

been performed for a number of different problem classes, for example, the performance

of computer networks [26], tele-communication network [61], chemical functions, and etc

[77]. Characteristic Path Length (CPL) is one of the most important statistics used to

measure the shortest distance between every pair of vertex (i, j) in a graph, representing
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(a)

(b)

(c)

Figure 5.3: Time to equilibrium in relation to number of vertices in the graph: (a) string,
(b) star, (c) binary tree
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the minimum number of edges to traverse in order to reach vertex j from vertex i. The

formal definition of CPL based on a graph G is given by Watt [93] as:

“The characteristic path length (CPL) of a graph G is the median of the means

of the shortest path lengths connecting each vertex i ∈ V (G) to all other vertices. That

is, calculate d(i, j) ∀i, j ∈ V (G) and find d̄v for each v ∈ V (G). Then define CPL as the

median of {d̄v}.”

Figure 5.4 shows an example to illustrate how the CPL is computed. Assuming

all edges have an equal length of 1, the shortest distance between A and all other vertices

are 1, 2, 1, 2. In turn, the average of the shortest distance between node A to every other

vertices (d̄A) in the graph is 1.5. This process is repeated for all the nodes i in the graph

to calculate d̄i. As is recorded in Table 5.1, the CPL of the graph is the median of all d̄i,

which is 1.5.

Figure 5.4: An example graph to show how CPL and CC are computed

Table 5.1: The shortest distance d between every pair of vertex (i, j) and the average
shortest distance for every vertex i in the example graph

A B C D E d̄i

A - 1 2 1 2 1.5
B 1 - 1 1 2 1.25
C 2 1 - 2 3 2
D 1 1 2 - 1 1.25
E 2 2 3 1 - 2
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While the CPL is used to characterize (on average) the length of a graph, the

“cliquishness” of a graph is measured by its clustering co-efficient (CC). The following terms

need to be explained before the CC can be defined. The neighbourhood Γv of a vertex is

defined as the subgraph that contains its directly connected neighbours. The degree of a

vertex kv describes the number of neighbours Γv. Thus, the definition of the CC is given

[93] by:

“The CC γv of Γv characterizes the extent to which vertices adjacent to any vertex

v are adjacent to each other.” With |E(Γv)| denoting the number of edges in Γv and
(

kv

2

)

giving the total number of possible edges in Γv, the clustering coefficient γv of a vertex can

be formally represented as:

γv =
|E(Γv)|

(

kv

2

)

where kv ≥ 2. The term γv can be defined to be either 0 or 1 [82] when kv < 2. In this

thesis, we define γv = 1 when kv < 2. Table 5.2 shows the clustering coefficient for each

node in Fig. 5.4. For example, the neighbours of vertex B are A,C,D. The total number

of possible connections in ΓB is 3 and number of edges in ΓB is 1. Therefore, γA equals to

1
3 . The clustering coefficient γv of a vertex describes the likelihood of the neighbours of v

being connected. γv is 1 if every neighbour connected to v is also connected to every other

vertex within Γv, and 0 if no vertex that is connected to v connects to any other vertex

within Γv. The CC of G is γ = γv averaged over all v ∈ V (G). The computed CC for

the example graph in Fig. 5.4 is 0.7333.
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Table 5.2: Number of edges in Γv, number of possible connections in Γv, and the computed
clustering coefficient for node v.

node neighbours |E(Γv)|
(

kv

2

)

γv

A {B,D} 1 1 1
B {A,C,D} 1 3 1

3
C {B} - - 1
D {A,B,E} 1 3 1

3
E {D} - - 1

In order to systematically generate a large number of graph instances with a range

of CPL and CC values, a graph model called β-graphs is used. This allows us to produce, for

example, sparse or dense, highly ordered or random graphs. β-graph originates from Watts’s

proposal to analyze small world phenomena [93]. The question Watts tries to answer can

be briefly explained as: What are the most general conditions under which the elements of

a large, sparsely connect network will be “close” to each other? Based on β-graphs, we seek

to answer what impact, if any, the closeness between compartments and the neighbourhood

structure of the graph have on the process and results of software self-assembly.

A β-graph is represented as a ring that according to certain parameters can change

from a highly ordered to a completely random graph. Three parameters are used to define

the properties of graphs generated by the β-graph model.

• V : the number of vertices in the graph. Each vertex represents a compartment.

• k: determines the initial number of nearest neighbours each vertex has.

• β: a probability value that determines the rewiring rate of the model, and hence

randomness of the graph. In our case, this represents a connection between two

neighbouring compartments.
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(a) β = 0 (b) β = 0.2

(c) β = 0.6 (d) β = 1.0

Figure 5.5: Exemplar β-graphs with V = 20, k = 4, β ∈ {0.0, 0.2, 0.6, 1.0}

With the parameters mentioned above defining the topology of β-graphs, the model

starts with a perfect ring structure, where each node has precisely k-neighbours (k
2 on either

side, and hence we restrict k to be an even number). Then with a given probability β, the

graph is randomly rewired as follows: (1) Each vertex i and the edge which connects it to

its nearest neighbour is chosen in turn in a clockwise fashion. (2) A random deviator γ is

generated. If γ < β, then the edge connects vertex i and i + 1 is removed and rewired as

(i, j), where vertex j is randomly chosen from the entire graph (excluding self-connection

and repeated connections). Otherwise, the connection is unaltered. (3) This process is
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repeated for all vertices in the graph (4) After all vertices have been considered, the above

procedure is repeated for edges that connect each vertex to its next closest neighbour, i.e.

(i, i + 2), until all edges have been considered to be rewired once.

Figure 5.5 shows some β-graphs constructed in this fashion with V = 20, k = 4,

and β ∈ {0.0, 0.2, 0.6, 1.0}. On the one extreme, β is set to 0 and the original structure is

unaltered, and a highly ordered structure is obtained (Fig. 5.5(a)). At the other extreme,

with β = 1.0, a stochastic graph with all edges randomly rewired is produced (Fig. 5.5(d)).

Fig. 5.5(b) and Fig. 5.5(c) show intermediate structures. Thus, β-graphs can be gradually

transformed from ordered graphs to random graphs with increasing β value. As Fig. 5.5

suggests, the properties of randomness and order are controlled by this single parameter β.

β-graph captures a variety of general graph structures, and the simple population structures

investigated in the previous section (i.e. string, star and binary tree topology) can be seen

as specific instances of the β-graph model (Fig. 5.6).

(a) (b) (c)

Figure 5.6: β-graph for specific topologies: (a) string, (b) star, (c) binary tree

5.3.2 Graph properties

Watt investigated in [93] how length and clustering properties, i.e. the CPL and the CC,

are affected by β under fixed k and V values. Figure 5.7 illustrates the relationship that
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exists between the CPL of a graph and parameters (β, k, V ) used to construct it. It can be

seen from the figures that the CPL of a graph decreases with a higher β value. And this

effect is more pronounced for sparsely connected graphs (lower k). Hence, a graph with a

more ordered structure results in a greater average length than a random graph does. The

transition of the CPL value occurs when β is greater than 0.01 regardless of k. In addition,

the decrease in CPL value against β becomes more obvious with a larger graph, i.e. a

greater V value. Moreover, the CPL increases with a larger graph as Fig. 5.7 suggests.

Finally, the CPL decreases when k value increases.

(a) (b)

(c) (d)

Figure 5.7: Relationship between CPL and β, k with: (a) k = 2; (b) k = 4; (c) k = 6; (d)
k = 8

Hence, it can be concluded that, in general, a β-graph starting with higher k, β

and lower V value will result in a graph with a lower average graph length. On the contrary,
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(a) (b)

(c) (d)

Figure 5.8: Relationship between CC and β, k with: (a) k = 2; (b) k = 4; (c) k = 6; (d)
k = 8

a graph with high CPL value has a greater probability of being the result of a low k, β, or

high V value.

Figure 5.8 illustrates the relationship between the CC and the three graph param-

eters (β, k, V ). It can be seen that the CC behaves dramatically different with different

k. When k ∈ {4, 6, 8}, the CC decreases as β increases. The decrease on CC becomes

more significant and obvious with a higher V . In addition, CC increases as k increases

while the opposite is true for k = 2. For all k and β, increasing V decreases the clustering

co-efficiency.
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5.4 Experiment

We describe next the experiments we have conducted on embodying ASAP 2 within β-

graphs.

5.4.1 Methods

Based on the knowledge of how (β, k, V ) influences the characteristic path length and clus-

tering properties of a graph, we aim to find out the relationship between the CPL, the

CC, the number of components (N), time to equilibrium (tǫ), the diversity (Dǫ) and the

complexity of the generated programs at equilibrium.

We fix some of the model parameters to: Temperature (T ) to be 2.25, as this is

the median temperature value we used in our previous work [58, 59]. The total area (A)

is 5000 × 5000 AU2, which is 10 times the size we used in [58, 59]. The total area (A)

in the simulations is constant regardless of the number of compartments. The size of each

compartment (Ai) is hence inversely proportional to the total number of compartments

involved in the graph, i.e. Ai = A/V . Hence, the software components concentration in

the compartment could increase with more compartments added to the network. However,

note that for the V values used in our experiments the size of Ai is never smaller than the

area of the single compartment used in the previous chapters.

Since a particular β-graph is constructed by rewiring edges in a stochastic fash-

ion, each (β, k, V ) triplet represents a family of graphs for which an average CPL and

CC must be computed. We construct 5 graphs in each (β, k, V ) triplet, with different

number of copies (N) placed into each graph and run 20 replicas of the self-assembly
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process. The ranges for k, V,N are: k ∈ {2, 4, 6, 8}, V ∈ {10, 15, 20, 25, 30, 35}, and

N ∈ {10, 25, 40, 55, 70, 85, 100}. As [93] suggests, a significant transition in CPL and CC

occurs when β ranges from 0.0001 to 0.1. Hence, β is set in a detailed full scale, i.e.

β ∈ {0, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}. That is, a total of 151200 experiments

are conducted. The average of time to equilibrium, the diversity and the complexity are

calculated for each run. The complexity of a program is measured by the height and number

of nodes contained in its tree representation.

5.4.2 Results

Time to equilibrium analysis

Figures 5.9 and 5.10 shows for a different number of copies of components how time to equi-

librium (tε) is influenced by CPL and CC respectively. Most of the β-graphs constructed

have CPL values less than 4 and CC values ranging from 0.2 to 0.6 as indicated in Fig.

5.9, 5.10. We wish to see how software self-assembly with multiple compartment struc-

tures differs from software self-assembly with single compartment. In order to do that, we

compared the experimental results with predicted tε using Eqs. 3.2 and 3.3 for a single

compartment structure. Each prediction data uses the same parameter settings {β, k, V }

as the corresponding experimental data. We take two complementary view points. First a

“local” viewpoint where we would like to compare ASAP 2 in structured networks against

the prediction obtained by a “single” compartment of equivalent size to the ones within a

network. From this local view point, other compartments in the network act as the external

environment. The global view point takes into account the total area of the network.
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For the global view case, we set the area (A) in Eqs. 3.2 and 3.3 to be the total

area of the compartments in the network. The predicted results are shown as � and +

sign for Eqs. 3.2 and 3.3 respectively. Figure 5.9 illustrates the predictive outcome differ

slightly between Eqs. 3.2 and 3.3. Moreover, as the CPL increases, tε gradually becomes

lower than the corresponding predicted results.

For the local view point, we use as area (A) for Eqs. 3.2 and 3.3 the size of each

sub-compartments in the network, that is Ai = A/V . The predicted results from Eqs.

3.2 and 3.3 are indicated in Fig. 5.9 as △ and × sign respectively. It can be seen that

the predicted results of Eqs. 3.2 and 3.3 are similar. The corresponding scattered points

are situated at the bottom of the figures, showing a faster time to equilibrium is expected

using a single compartment structure with (Ai = A/V ), thus grossly underestimating tε

for structured compartments, precisely because it ignores the existence of other sources of

components in the network. On the other hand, Eqs 3.2 and 3.3 with A = ΣAi estimates,

albeit with a large deviation, the median tε.

Comparing across panels in Fig. 5.9, it can be seen that tε decreases significantly

from 1.2 · 106 to 3.5 · 105 as more components are placed into the network. This behaviour

is similar to what we observed in the single compartment approach [59].

Figures 5.9(a), (b) also show that for N = 10, N = 25, tǫ increases to maximum

when the CPL approaches 4, and then decreases for values greater than 4. On the other

hand, Fig. 5.9 (c), (d), (e), (f), (g) indicate that tǫ on average decreases with larger

CPL values, with the transition somewhere between CPL=4 and 5. The decrease in tε is

counter-intuitive as it suggests that a network with longer average path length results in
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.9: Relationship between time to equilibrium and CPL for runs with: (a) N = 10
(b) N = 25 (c) N = 40 (d) N = 55 (e) N = 70 (f) N = 85 (g) N = 100. Comparisons are
made between the experimental data and predicted time to equilibrium using Eq. 3.2 (△ and
×) and Eq. 3.3 (� and +) under the same environment parameters of the experimental data,
i.e. using the same temperature (T = 2.25) & Area (A = 5000×5000, Ai = 5000×5000/V ).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.10: Relationship between time to equilibrium and CC for runs with: (a) N = 10
(b) N = 25 (c) N = 40 (d) N = 55 (e) N = 70 (f) N = 85 (g) N = 100. Comparisons are
made between the experimental data and predicted time to equilibrium using Eq. 3.2 (△
and ×) and Eq. 3.3 (� and +) under the same environment parameters of the experimental
data as before.
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faster software self-assembly. This phenomenon is possibly due to the decrease in the size

of the sub-compartments in the network. As the total area is fixed to 5000 × 5000AU2 in

our experiments, a larger network with greater V will have smaller individual compartment

size and hence have a higher pressure and concentration. As the results in [59] suggests,

higher pressure leads to a smaller tε. Hence, software components find possible binding

components faster in local compartments. Furthermore, taking into account Fig. 5.8, a

network with more compartments tends to have smaller CC (for sufficiently large k). And

as shown in Fig. 5.10, smaller CC results in faster tε (with a peak around 0.6).

Figure 5.10 shows how tε is influenced by the clustering features of the graphs. It

can be seen that tε increases to maximum while CC approaches 0.5 - 0.6 regardless of N . In

addition, Fig. 5.10 suggests that tε is higher than the predicted results with area equals to

the size of sub-compartments, i.e. Ai = A/V . Also, tε gradually increases and eventually

exceeds the predicted data as CC increases from 0 to 0.6 even when using the total area.

In order to have a clearer idea of how tε is affected by the free experiment param-

eters (V, β, k), Fig. 5.11 shows tε in relation to β with different k values (N = 100). It can

be seen that tε increases as β grows and the increase on tε becomes more obvious as β rises

to 0.1. This suggests that an ordered graph results in a faster time to equilibrium than

a random one. Figure 5.11 is split into two panels, with β ∈ {0.0001, 0.001, 0.01, 0.1}

on the left panel and β ∈ {0.2, 0.4, 0.6, 0.8, 1.0} on the right. Comparing across pan-

els in Fig. 5.11, it can be seen that under the same β value, tε is lower with a higher

k with β ∈ {0.0001, 0.001, 0.01, 0.1}. However, a higher k manifests a lower tε with

β ∈ 0.2, 0.4, 0.6, 0.8, 1.0. Therefore, it can be concluded that given two ordered graphs,
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Figure 5.11: Relationship between tε and β, k with N = 100 and: (a) V = 20 (b) V = 25
(c) V = 30 (d) V = 35

the system will reach time to equilibrium faster in a densely connected one than a sparsely

connected one. On the contrary, given two random graphs, software self-assembly running

in the sparse graph will reach time to equilibrium faster than the one in the dense graph.

Diversity analysis

Figure 5.12 illustrates how the CPL and the number of copies of components affect the

diversity of the generated programs. As can be seen, the total number of assembled tree

classes rises with more copies of components placed into the system. In addition, fluctu-

ations occur in the number of total distinct assembled tree classes when the CPL value
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ranges from 2 to 4, and the fluctuation is more obvious with a greater N .

Figure 5.12: Relationship between Dε and number of copies and CPL

Figure 5.13: Relationship between Dε and number of copies and CC

Figure 5.13 shows how CC and number of copies of components affect the diversity

of the generated programs. The fluctuations in the number of total assembled trees occur

under all number of copies of components. However, under a greater number of copies, the

fluctuations becomes more obvious (when CC value ranges from 0.5 to 0.8) than under a
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small number of copies.

While N is fixed to 100, Fig. 5.14 illustrates how Dε is affected by β, k with V ∈

{25, 30, 35}. It can be seen that diversity of generated programs decreases with an increase

in β. When β ranges from 0.2 to 1.0, a higher k value results in a greater Dε. However,

under a given β value, Dε is higher with a lower k value when β ∈ {0.0001, 0.001, 0.01, 0.1},

again showing the switching between low / high k values for the 0.01 - 0.1 transition.
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Figure 5.14: Relationship between Dε and β, k with N = 100: (a) V = 20 (b) V = 25 (c)
V = 30 (d) V = 35
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Analysis of emergent complexity

As has been mentioned, the complexity of a program tree is measured by its height, hε, and

the number of nodes it contains, nε, at equilibrium. Figure 5.15 presents the histograms

of the number of assembled trees versus the complexity bins for different number of copies.

For each copy number we differentiate graphs based on their CPL and CC. In Fig. 5.15 we

can see that there is an exponentially larger number of simple, small trees than complex

and large ones. Figure 5.15 shows that in general, a smaller CPL value results in a greater

nε. Therefore, a sparsely connected network structure yields less complex programs than a

densely connected network. Moreover, with a larger number of copies placed into the system,

the growth rate on nε increases; nε grows linearly with the increase in the number of copies.

This result matches the diversity analysis, where the total number of distinct assembled

trees increases with the number of copies in a linear fashion. Figure 5.16 illustrates that hε

behaves similarly yet not identical to nε. The only difference is that the growth rate of the

number of assembled trees is greater with hε than with nε.

Figures 5.17 and 5.18 show the histograms for the generated programs as a function

of the network’s CC along with number of copies of components. The figures suggest that

the number of simple and small trees is exponentially larger than the number of complex

and large ones. In addition, it can be seen that the smallest and greatest CC value results

in the greatest complexity (nε and hε).
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Figure 5.15: Histogram of average number of trees assembled in different nodes bin size
and in different CPL categories

Figure 5.16: Histogram of average number of trees assembled in different tree height bin
size and in different CPL categories
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Figure 5.17: Histogram of average number of trees assembled in different nodes bin size
and in different CC range

Figure 5.18: Histogram of average number of trees assembled in different tree height bin
size and in different CC range
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ANOVA analysis

In order to assess whether the number of assembled trees varies significantly for different CC

and CPL, ANOVA analysis is performed on the experimental data for each copy number.

The computed p-value from the ANOVA test is the probability that the variation between

groups may have occurred by chance, hence a smaller p-value indicate a more significant

difference. By convention, p-values below 0.05 are considered to be statistically significant.

Table 5.3 illustrates the p-values grouped by CPL and CC under different number of copies

of components (N), where the figures in bold indicate p-values below the conventional

threshold 0.05. As can be seen, p-values are close to 1 for a small number of copies, and as

N increases, p-value decreases. This means that the difference between nε (hε) in different

CPL or CC groups becomes more significant with larger N . Moreover, Table 5.3 shows

that CC p-values become significant earlier, i.e. with smaller N , than CPL p-values. This

indicates that CC is perhaps a more important factor for software self-assembly in terms of

the complexity of the self-assembled programs.

Table 5.3: Anova analysis for nε and hε under different number of copies. The figures in
bold are those p-values close to or smaller than the threshold (0.05).

N = 10 N = 25 N = 40 N = 55 N = 70 N = 85 N = 100

nε grouped by CPL 0.99287 0.98592 0.80157 0.3715 0.32458 0.24854 0.05604
hε grouped by CPL 0.98344 0.9581 0.59761 0.14386 0.13001 0.05601 0.00697

nε grouped by CC 0.97513 0.82167 0.35649 0.0576 0.04857 0.02995 0.0139

hε grouped by CC 0.93468 0.651 0.12889 0.0451 0.03301 0.00116 3.2 · 10−5
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5.5 Summary

In the previous chapters, unguided dynamics and the PSO driven approach were presented

for software self-assembly simulations within unstructured compartments. In this chapter,

we study the impacts of network topologies on software self-assembly.

The investigations begin with examining the use of three specific tree topologies,

i.e. string, star and binary tree. It can be concluded from the experimental results that

network topologies change the software self-assembly dynamics significantly. Time to equi-

librium is influenced by various graph topologies in different ways. With the pre-specified

ordered graph structures, time to equilibrium increases while the average length of the graph

increases.

Thus, a diversified compartment approach for ASAP 2 was introduced [57, 60] to

study the topological impacts on software self-assembly in greater details. The diversified

compartments are based on β-graphs, a graph theoretic model that uses one parameter, β,

to control the complexity of the generated graphs ranging from highly ordered to totally

random ones. The graph constructed by the β-model represents a software self-assembly

network system, in which each vertex in the network can be seen as a compartment where

software components self-assemble locally. Components can migrate into another compart-

ment by a connecting edge in the graph.

We overviewed how the length and the clustering property of a graph, measured

by the characteristic path length (CPL) and clustering coefficient (CC) of the graph, are

affected by the β-graph parameters (β, k, V ). Based on the knowledge of the relationship

between (β, k, V ), the CPL, and the CC, we investigated how the length and clustering
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properties of a graph and the number of software components involved can affect the process

of software self-assembly within a network. We measured: time to equilibrium, the diversity

and the complexity of the generated programs. We reported the experiments conducted on

the extended system, which have shown that the complexity of self-assembled programs

rises with more copies of components.

Experimental results also show a counter intuitive behaviour: on average a higher

CPL of the graph leads to a lower time to equilibrium. Furthermore, time to equilibrium

decreases as the number of components increases, which matches our previous results based

on ASAP 2 with single compartment structure. Moreover, regardless the number of com-

ponents placed into the system, a fluctuation in diversity of the generated programs is

observed when the CPL ranges from 2 to 4. The fluctuation in the total number of distinct

assembled trees is also observed when the CC ranges from 0.5 to 0.8. A possible explanation

for the unexpected experimental results in the analysis of time to equilibrium and diversity

of generated programs is that the concentration in each compartment is changed because

of the change in the CPL and the CC.

In addition, as the experimental results suggest, given two ordered graphs, sparsely

connected graphs yield more diversed programs, also taking longer to reach time to equi-

librium, than densely connected graphs. On the limit a densely connected graph would

behave as a simple large compartment. On the contrary, given two random graphs, ASAP 2

produces less diversed programs and takes shorter time to reach equilibrium in sparsely

connected graphs than in densely connected graphs. Together these two observations would

seem to suggest that posing the network at the “edge of chaos” [55], i.e. neither too random
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nor too ordered, might be the optimal choice for achieving maximum diversity.

Experimental results have also indicated that a sparsely connected network struc-

ture (larger CPL values) yields less complex programs than a densely connected network

(small CPL values). In addition, a network structure with CC ranging from either 0 to 0.2

or from 0.8 to 1.0 manifests greatest complexity of the generated programs.

The ASAP 2 systems introduced so far are based on static self-assembly in which

an equilibrium state will eventually be reached. In the next chapter, we investigate software

self-assembly far from equilibrium. The dynamic ASAP 2 system introduces a permanent

state of dis-equilibrium by imposing a flow of software components by means of source and

sink compartments, thus resulting in a different concentration of components in different

parts of the network.
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Chapter 6

The Impact of Open Network Topology on

Software Self-Assembly

Self-assembly systems can be categorized in various ways. Whitesides and Grzybowski

[94] categorize self-assembly systems into static self-assembly and dynamic self-assembly.

Dynamic self-assembly systems involve dissipation of energies. A final structure is self-

assembled while the minimum energy form is obtained. Examples of these self-assembly

systems can be found in weather and solar systems. In static self-assembly, an equilibrium

will eventually be reached, and the final assembled structure is stable at equilibrium.

Previous chapters focus on a static software self-assembly system in which an equi-

librium will eventually be reached when no further binding actions between software compo-

nents is possible. To complete this preliminary stage of research for software self-assembly,

we introduce dynamic software self-assembly in this chapter. The extended ASAP 2 is based

on the diversified population structure introduced in the last chapter. Software components

are added from the influx pool and removed from the outflux pool based on a pre-defined

probability during the self-assembly process. We observe how the dynamics of ASAP 2
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far from equilibrium have changed. We do this by studying how diversity and complexity

of self-assembled program structures are affected by flux rate as well as a range of graph

parameters used in the previous chapter to make the comparisons.

6.1 Motivation

Prior to the emergence of evolutionary processes, it has been widely argued that elementary

and replicative objects relied upon a basic mechanism of interaction in order to self-assemble

to form highly sophisticated entities for evolution to begin [76]. The transition between raw

interactions of rudimentary components to evolutionary change has been a widely discussed

research topic. The compartmentalistic theory on the origin of life argues that compartment

structures form spontaneously through self-assembly processes, and perhaps provided the

original membrane-bounded environment required for cellular life to begin [18, 67].

In addition, recent studies on genomes from various species have suggested that

the functional characteristics of organisms are not directly related to the number of genes

encoded within the organism [29, 64]. In [29], Görnerup and Crutchfield presented finitary

process soup to study the hypothesis that diversity and complexity of genomes arises from a

hierarchy of interactions between genes and between interacting gene complexes. The fini-

tary process soup involves a set of elementary objects called σ-machines that perform local

and elementary operations. A new σ-machine can be generated as a result of interactions

between two smaller σ-machines. The finitary process soup model seeks to answer how

the transition between raw interactions of rudimentary components to evolutionary change

occurs in terms of structural complexity. When dynamic influx and outflux is introduced,
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it has been shown that the global complexity in the finitary process soup is mainly related

to the emergence of higher levels of organization.

In the previous chapter, we have presented automated self-assembly programming

paradigm (ASAP 2) based on a network of compartments. Software components can be

exchanged between compartments in this network via edges. An equilibrium will eventually

be reached in this close system when no more binding is possible. Inspired by Görnerup

and Crutchfield’s work and the compartmentalistic approach on the origin of life, we extend

ASAP 2 and investigate the impact of open network topology on complexity and diversity

of self-assembled programs.

6.2 Model Descriptions

6.2.1 β-graph model

The extended system is based on the diversified compartment approach on ASAP 2, where

β-graphs [93] are used to produce a family of network topologies, ranging from completely

random graphs to highly ordered graphs. The β parameter is a probability value that

determines the random rewiring rate of edges from an initially completely ordered ring

structure.

Figure 6.1 shows examples of β-graphs constructed with β ∈ {0.0, 0.2, 0.6, 1.0}. As

can be seen from Fig. 6.1, β-graphs can be gradually transformed from ordered graphs to

random graphs with increasing β value. A highly ordered structure is shown in Fig. 6.1(a)

where β is set to 0. On the other extreme, Fig. 6.1(d) illustrates a complete stochastic

graph with all edges rewired when β is set to 1.0.
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(a) β = 0 (b) β = 0.2

(c) β = 0.6 (d) β = 1.0

Figure 6.1: Exemplar β-graphs with β ∈ {0.0, 0.2, 0.6, 1.0}, where influx and outflux
compartments are indicated by arrows pointing to and coming out from them.

6.2.2 Implementation

We introduce a dynamic flow of software components in the network such that the resulting

software self-assembly system is far from equilibrium. When a β-graph is constructed, a

random node in the graph is selected as an influx compartment. The outflux compartment

is selected such that it has the greatest distance to the influx compartment in the network.

As can be seen in Fig. 6.1, an influx compartment is represented by a node with an

arrow pointing at it, whereas an outflux compartment is indicated by a node with an

arrow pointing to the opposite direction. Influx and outflux of components introduce local
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gradient of concentration of components in each compartment. The concentration level in

each compartment is dependent on its distance to the source.

The simulation starts by distributing software components retrieved from the soft-

ware repository evenly into each compartment in the network. The dynamics of the pop-

ulation is iteratively ruled by introducing new components at the influx compartment and

removing old components at the outflux compartment as follows.

At each time step t, a randomly generated software component Cr is added to the

system from the influx compartment (Vin) with an externally defined probability value Φin.

The size of Cr is determined by a roulette wheel selection from 1 to the size of the largest

component in the compartment. The roulette wheel is constructed such that a smaller

component size has a significantly greater chance to be selected than a large component

size. When Cr is added in the influx compartment, a component of the same size (i.e. same

number of nodes) will be taken out from the outflux pool (Vout). However, if there are no

components of the same size as Cr in the outflux compartment, no software components

will be removed (i.e. the influx and outflux of components are not always balanced). Hence,

the system is far from equilibrium and does not follow a dynamic self-assembly process 1.

Algorithm 7 formally describes the process in pseudo-code.

1Hence it is impossible to define tε for Dε as for static ASAP 2
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Algorithm 7 Graph embedded ASAP 2 with dynamic influx and outflux of components,
where Vin and Vout indicate influx and outflux compartment respectively

1: G = GENERATE GRAPH(graph type, graph parameters)
2: Vin = random compartment in G
3: Vout = furthest node from Vin in G
4: while (termination condition not satisfied) do

5: C = RETRIEVE COMPONENTS(number of copies)
6: Φin = components influx rate
7: At each time step t
8: r = uniform random number between 0 and 1
9: if (r < Φin) then

10: add a random component Cr in Vin

11: remove component of the same size as Cr in Vout

12: end if

13: for (each compartment Vi on G) do

14: for (each component Cj in Vi) do

15: MOVE COMPONENTS(Cj, Vi)
16: Vi = ATTEMPT BINDINGS(Vi)
17: end for

18: end for

19: end while

6.3 Experiment

6.3.1 Methods

The extended ASAP 2 is based on the diversified compartment approach presented in [57].

In order to compare the difference between ASAP 2 close to equilibrium and far from equi-

librium, we use the same fixed environment settings as in [57]; that is, T = 2.25, A =

5000 × 5000AU2. In addition, the number of copies (N) and the number of compartments

in the network (V ) are also fixed parameters for our simulation.

The free model parameters of the simulation are β, k, and influx rate Φin. β

and k determine the graph properties (i.e, CPL, CC), Φin controls the likelihood of a

new component being introduced into the system. The ranges for β, k, φin are: β ∈
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{0.1, 0.4, 0.6, 1.0}, k ∈ {2, 4, 6}, φin ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

With N = 100 and V = 30, we measured: the complexity and diversity of gen-

erated programs over time (t) in each compartment, which is characterized by its shortest

distance to the influx compartment (dα). Then we observe how complexity and diversity

vary under a range of β-graphs, parameterized by the set of β and k settings. Diversity

of self-assembled programs (Dϕ) is assessed by the total number of different tree classes.

The diversity measure is used to keep consistent with the investigations presented in the

previous chapters. That is, two programs are considered to belong to the same parse tree

class if their structures and content are both identical [11]. The complexity of a program

tree is measured by its height and the number of nodes it contains as in [57].

6.3.2 Results and analysis

Diversity analysis

The following figures from Fig. 6.2 to Fig. 6.13 illustrate how Dϕ is influenced by t and

dα under each external parameters settings: {φin, k, β}. β values are grouped by different

coloured sub-charts for Fig. 6.2 to Fig. 6.13. In general, it can be seen that the diversity

of the self-assembled programs increases as software self-assembly progresses over time. In

addition, compartment locations in relation to the source in the network plays an important

role in the diversity of assembled programs.
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(a) (b)

(c) (d)

Figure 6.2: Dϕ in relation to t and dα, with k = 2, β = 0.1,Φin ∈ {0.1, 0.4, 0.7, 1.0}
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(a) (b)

(c) (d)

Figure 6.3: Dϕ in relation to t and dα, with k = 2, β = 0.4,Φin ∈ {0.1, 0.4, 0.7, 1.0}
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(a) (b)

(c) (d)

Figure 6.4: Dϕ in relation to t and dα, with k = 2, β = 0.6,Φin ∈ {0.1, 0.4, 0.7, 1.0}
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(a) (b)

(c) (d)

Figure 6.5: Dϕ in relation to t and dα, with k = 2, β = 1.0,Φin ∈ {0.1, 0.4, 0.7, 1.0}
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(a) (b)

(c) (d)

Figure 6.6: Dϕ in relation to t and dα, with k = 4, β = 0.1,Φin ∈ {0.1, 0.4, 0.7, 1.0}
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(a) (b)

(c) (d)

Figure 6.7: Dϕ in relation to t and dα, with k = 4, β = 0.4,Φin ∈ {0.1, 0.4, 0.7, 1.0}
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(a) (b)

(c) (d)

Figure 6.8: Dϕ in relation to t and dα, with k = 4, β = 0.6,Φin ∈ {0.1, 0.4, 0.7, 1.0}
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(a) (b)

(c) (d)

Figure 6.9: Dϕ in relation to t and dα, with k = 4, β = 1.0,Φin ∈ {0.1, 0.4, 0.7, 1.0}
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(a) (b)

(c) (d)

Figure 6.10: Dϕ in relation to t and dα, with k = 6, β = 0.1,Φin ∈ {0.1, 0.4, 0.7, 1.0}
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(a) (b)

(c) (d)

Figure 6.11: Dϕ in relation to t and dα, with k = 6, β = 0.4,Φin ∈ {0.1, 0.4, 0.7, 1.0}
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(a) (b)

(c) (d)

Figure 6.12: Dϕ in relation to t and dα, with k = 6, β = 0.6,Φin ∈ {0.1, 0.4, 0.7, 1.0}



6. the impact of open network topology on software self-assembly 139

(a) (b)

(c) (d)

Figure 6.13: Dϕ in relation to t and dα, with k = 6, β = 1.0,Φin ∈ {0.1, 0.4, 0.7, 1.0}
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Comparing across figures from Fig. 6.2 to Fig. 6.13, it can be seen that dα has a

more obvious impact on Dϕ with a lower k value. This is because a longer distance between

the source and the sink leads to a greater transition of concentration of software components

in the network. As has been shown in the previous chapter, a higher k value directly results

in a lower CPL value. While the CPL value represents the average path length of the graph,

a decrease in the CPL value results in the decrease in distance between the source and the

sink.

In addition, dα influences Dϕ in two different patterns. In one case, diversity is

higher at the source (dα = 0) and decreases as dα increases (for example, Fig. 6.3(a),(b),

6.4(a),(b), 6.5(a),(b)). In another case, Dϕ increases as the observed compartment is further

away from the source until it reaches a local peak and decreases again (for example, Fig.

6.3(c),(d), 6.4(c),(d), 6.5(c),(d)).

Despite the different ways in which Dϕ is affected by dα, some common patterns

can be observed. It can be seen that the diversity of assembled trees reaches a minimum

at the sink. Moreover, a local peak of Dϕ can be observed at dα which roughly equals the

CPL value, and this means the diversity reaches a peak at the compartments located at the

middle between the source and the sink in the network. This phenomena is more obvious

with a lower k value as the distance between source and sink is greater with a lower k.

Table 6.1 illustrates the number of distinct trees assembled averaged over each

compartment for dynamic and static ASAP 2 categorized by k 2. Table 6.1 also shows the

average time at which dynamic ASAP 2 reaches the level of diversity attained for static

2The reason we categorize the average number by k is that k has a more obvious impact than β and Φin

on Dε, as shown in the previous analysis
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ASAP 2. It can be seen that while components are continuously added into the system,

the total number of distinct program trees generated by dynamic ASAP 2 quickly surpasses

the static model. And it takes the dynamic system less time to surpass Dε with a lower k

value. As the termination time for the simulation is fixed to 100000 in the open system, the

average diversity of assembled programs is higher with a lower k value as shown in Table

6.1.

Table 6.1: Open ASAP 2 and close ASAP 2: comparison of assembled programs diversity

close system open system

Dε tε time that Dϕ sur-
passes Dε

Dϕ at termination

k = 2 41.475 89145.75 2350 148.97
k = 4 42.541 89347.75 2775 145.28
k = 6 43.542 136554 3675 122.26

Analysis of emergent complexity

The complexity of a self-assembled program is measured by the number of nodes contained in

its tree representation and the height of the tree. We produce a large set of node histograms

and height histograms, each showing the relationship between the number of assembled trees

versus time and distance to source, grouped by node / height complexity bins under the

experimental parameters in {β, k,Φin}. Due to the large number of histogram figures with

the experimental settings (4× 3× 10× 2 = 240), the following figures are a careful selection

of histogram figures that we believe best reflect the phenomenon of how the complexity

of generated programs is affected by {k, β,Φin}. As the height of a tree is logarithmically

related to the number of nodes it contains, we present here only the node histogram for the
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analysis of emergent complexity of self-assembled trees. The experimental figures for the

complete range of {k, β,Φin} parameters settings, as well as the tree height histograms can

be referenced at: http://www.cs.nott.ac.uk/~lxl/complexity_figures/home.html.

Figures 6.14 and 6.15 indicate that the emergent complexity of self-assembled

programs is influenced by flux probability in opposite ways under different CPL value of

the graph. In a graph (Fig. 6.14) with longer path length, the number of assembled

programs increase with a higher influx rate. More complex tree structures are formed as a

result. On the other hand, the complexity of generated programs decreases as influx rate

increases in a graph with shorter path length. Figure 6.15 indicates that the CPL values of

the constructed graphs are significantly lower than those in Fig. 6.14. As a result, it can

be seen that nϕ decreases as Φin increases.

The reason behind the above phenomena is due to the design of the dynamic flow

of components. While the probability of introducing a new component in the influx com-

partment increases, the probability of removing a component from the outflux compartment

increases at the same time. Nevertheless, no components will be removed if there are no

components of the same size in the outflux compartment, thus the distance between sink

and source plays an important role in in the outflux rate of components. As the sink com-

partment is chosen to have the longest path length to the source compartment, the distance

between sink and source compartments are directly proportional to the average path length

of the graph. Thus, under the same influx rate, the outflux rate is inversely proportional

to the CPL of the graph. The outflux rate is not significantly influenced by the influx rate

in a graph with greater average length than in a graph with a shorter average path length.
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nodes histogram, k=2, beta=0.1, flux rate=0.1, CPL=6.74,CC=0.06
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(a) β = 0.1,Φin = 0.1
nodes histogram, k=2, beta=0.1, flux rate=0.5, CPL=6.06,CC=0.1
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(b) β = 0.1,Φin = 0.5
nodes histogram, k=2, beta=0.1, flux rate=0.8, CPL=8.89,CC=0.1
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(c) β = 0.1,Φin = 0.8

Figure 6.14: Node histogram for ASAP 2 far from equilibrium
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nodes histogram, k=6, beta=0.4, flux rate=0.2, CPL=2.1,CC=0.24
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(a) β = 0.4,Φin = 0.2
nodes histogram, k=6, beta=0.4, flux rate=0.5, CPL=2.08,CC=0.27
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(b) β = 0.4,Φin = 0.5
nodes histogram, k=6, beta=0.4, flux rate=0.8, CPL=2.03,CC=0.18

nodes <= 150
150 < nodes<= 300
300 < nodes<= 450
450 < nodes<= 600

 0

 20000

 40000

 60000

 80000

 100000

Time

 0
 0.5

 1
 1.5

 2
 2.5

 3

Distance to Source

 0

 1

 2

 3

 4

 5

 6

 7

Number of Assembled Trees

(c) β = 0.1,Φin = 0.8

Figure 6.15: Node histogram for ASAP 2 far from equilibrium
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nodes histogram, k=2, beta=0.6, flux rate=0.3, CPL=7.46,CC=0.28
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nodes histogram, k=2, beta=1.0, flux rate=0.7, CPL=5.32,CC=0.36
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(a) CPL=7.46 (b) CPL=5.32
nodes histogram, k=4, beta=0.1, flux rate=0.6, CPL=3.46,CC=0.41
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nodes histogram, k=4, beta=0.4, flux rate=0.6, CPL=2.65,CC=0.29
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(c) CPL=3.46 (d) CPL=2.65
nodes histogram, k=6, beta=0.6, flux rate=0.7, CPL=2.0,CC=0.19
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nodes histogram, k=6, beta=1.0, flux rate=0.4, CPL=1.98,CC=0.21
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(e) CPL=2.43 CPL =1.98

Figure 6.16: Node histogram for ASAP 2 far from equilibrium
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Hence, the complexity of self-assembled programs increase while the influx rate

increases in a graph with greater path length (CPL>6). On the contrary, the complexity of

generated programs decreases with an increase in influx rate in a graph with shorter path

length (CPL<3).

Figure 6.16 shows a general phenomenon that the length property of the graph

plays a significant role in the complexity of the generated programs. As can be seen, more

variety of trees can be observed with a larger CPL. Table 6.2 concludes our major findings

on diversity and complexity of assembled programs for open ASAP 2.

Table 6.2: Conclusions of findings on open ASAP 2

diversity complexity

time increases over time increases over time

CPL increases with larger CPL increases with larger CPL

Φin no obvious impacts increases with higher influx rate if
CPL>6; decreases with higher in-
flux rate if CPL<3

dα a local peak of diversity can be ob-
served at dα=CPL

no obvious impacts

6.4 Summary

In previous chapters, we systematically and intensively studied software self-assembly close

to equilibrium using various embodiments and a wide range of external environment param-

eters. The static ASAP 2 we presented in previous chapters can be seen as a close software

self-assembly system. In this chapter, we studied the impact of open network topology on

software self-assembly. The extended ASAP 2 model imposes a constant flow of software

components by introducing source and sink compartments on the network ASAP 2 [57].

Based on an external specified influx rate, software components are added into the source
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compartment and are taken out from the sink compartment, thus introducing a dynamic

flow of components and different concentration across the network. As a design choice, the

influx rate is always higher or equal to the outflux rate, hence the extended ASAP 2 is far

from equilibrium.

We investigated how graph properties as well as influx rate affect the diversity and

complexity of generated programs. In general, the diversity and complexity of generated

structures increases as software self-assembly progresses over time. Moreover, it has been

shown that the average diversity and complexity of assembled programs is higher with a

lower k value.

Experimental results also indicate that compartment locations in relation to source

in the network plays an important role in diversity of assembled programs. One interesting

finding is that a local peak of program diversity can be observed at dα roughly equaling

that in CPL, which suggests it is more likely to find greater diversity of assembled programs

in those compartments that are located in the middle between the source and the sink.

In addition, the influx rate affects the complexity of assembled programs in dif-

ferent ways depending on the length property of the graph. In one case with longer graph

path length (CPL>6), the emergent complexity of assembled programs (both simple and

complex) increases as the influx rate rises. On the contrary, in a graph with shorter path

length (CPL<3), the emergent complexity decreases when the influx rate rises.
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Chapter 7

Conclusions and Future Work

This chapter summarizes this thesis by reviewing the main contributions and conclusions

that can be learned, as well as a selection of future work that can be extended from this

work.

7.1 Conclusions

In this thesis, I presented software self-assembly as a new approach to automatic program-

ming. This first research attempt on software self-assembly gives a new vision on automatic

program generation. In this preliminary stage of research on software self-assembly, I inves-

tigated the development of software self-assembly. I presented the Automated Self-Assembly

Programming Paradigm (ASAP 2), a software self-assembly model in which software com-

ponents autonomously integrate into programs. I examined how various embodiments affect

the process and results of software self-assembly under what condition software self-assembly

yields more diversified programs.

In chapter 2, we analyzed various self-assembling system features, and reviewed a
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selection of self-assembly systems applied as an engineering discipline in various domains,

thus giving an overview of features, advantages and limitations of self-assembly as a design

methodology.

In addition, we briefly reviewed popular current automatic programming approaches,

i.e. Genetic Programming and Grammatical Evolution. While Genetic Programming

evolves both the structure and the content of the parse trees simultaneously, software self-

assembly is aimed at reusing the content of previously built software components by self-

assembling a suitable structure. Unlike GP or GE, that uses an evolutionary metaphor

to guide the process of automatic programming, software self-assembly relies on natural

metaphors of self-assembly for the exploration of programs space, thus we expect to have

very different kinds of limitations and potentials. The literature review concluded by a

detailed explanation on our research motivation and research scope on this thesis.

In chapter 3, we introduced “program gases”, a metaphor for software self-assembly

system in which software components perform a random walk. We observed the similarities

between an unguided software self-assembly process and an ideal gas environment. However,

unlike pure collisions in ideal gas, in program gas software components will sometimes self-

assemble to one aggregate structure as a result of their interactions.

We observed the dynamics of ASAP 2 using the kinetic theory of ideal gas as a

crude approximation on program gas. The same set of external environment parameters as

in ideal gas (i.e. Area, Temperature, Number of components) were introduced to assess how

program gas differs from ideal gas. In order to investigate how this particular implementa-

tion of ASAP 2 explores the space of all program architectures, we measured how pressure,
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time to equilibrium and diversity of assembled structures is affected by the environment

parameters at equilibrium. Experimental results indicate an interesting finding that with

unguided dynamics, an increase in the number of copies of components lead to a shorter

time to equilibrium with program gas. Temperature and area only affect time to equilibrium

and not diversity of self-assembled programs.

In addition, mathematical formulae were presented to predict time to equilibrium

and diversity of assembled programs. That is, we can interpolate the time needed for

ASAP 2 to reach its equilibrium and the resulting diversity of the assembled populations

for a given set of environment parameter (A,T,N).

To investigate software self-assembly using a different embodiment, a different

ASAP 2 model inspired from particle swarm optimization is presented in Chapter 4. Leader

components were introduced in software self-assembly and software components follow lead-

ers that exhibit the greatest attractive force. As a result of these changed dynamics, an

emergent dynamic neighbourhood is formed. We compared the program gas and PSO

inspired implementation and experimental results by illustrating time to equilibrium and

diversity of generated programs under the same set of environment parameters (A,T,N).

Although an improvement can be made on the average time to equilibrium, a decrease in

diversity of the generated population is observed as a result of deploying the PSO inspired

approach. The comparisons between the two implementations is also assessed by the pre-

diction model presented in Chapter 3. Results have shown greater prediction errors as the

behaviour of the system has been altered when leaders are introduced, which again proves

the extended ASAP 2 system behaves differently from the original program gas implemen-
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tation.

In chapter 5, we examined the impact of network topology on software self-

assembly by presenting a diversified compartment approach for ASAP 2. This approach

introduces a network of compartments embedded in a graph and software self-assembly

takes place simultaneously in each compartment. Components can migrate into another

compartment via a connecting edge in the graph.

We examined how length and clustering property of a graph (measured by CPL

and CC) and the amount of software components involved can affect software self-assembly

within the network in terms of time to equilibrium, diversity and complexity of the generated

programs. Experimental results have indicated that on average a higher CPL of the graph

leads to a lower time to equilibrium. It can also be concluded from experimental results that

given two ordered graphs, a sparsely connected graph will take longer to reach equilibrium

and result in greater diversity of assembled programs than a densely connected graph. On

the contrary, given two random graphs, a sparsely connected network results in shorter time

to equilibrium and lower diversity of assembled programs than a densely connected graph.

Last but not least, a sparsely connected graph yields less complex programs than a densely

one.

Chapter 3, 4 and 5 present a complete study on static software self-assembly, i.e. a

closed system that will eventually reach equilibrium. Chapter 6 focuses on the investigation

of open software self-assembly system far from equilibrium. The dynamic ASAP 2 is based

on the static network ASAP 2model with a possibility of adding and removing software

components from the sink and source compartment. Thus, this extended system imposes a
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constant flow of software components resulting in a different concentration of components

in different parts of the network.

It can be concluded that the length property of the graph plays the most impor-

tant role in diversity and the emergent complexity of the assembled structures in dynamic

ASAP 2. First of all, the influx rate affects the complexity of assembled programs in dif-

ferent ways depending on the length property of the graph. In one case with longer graph

path length (CPL>6), the emergent complexity of assembled programs (both simple and

complex) increases as the influx rate rises. On the contrary, in a graph with shorter path

length (CPL<3), the emergent complexity decreases when the influx rate rises. Secondly,

a local peak can be observed at the compartments located in the middle between the sink

and source compartments. Last but not least, a lower k value (which leads to a higher CPL

value) results in a greater diversity of assembled programs.

This first research on software self-assembly studied how its behaviour and results

are affected by using a range of approaches and embodiments. This covers unguided to

PSO inspired approach, software self-assembly in a single compartment to a network of

compartments, and finally software self-assembly in an open environment.

In the long run, software self-assembly is expected to complement current auto-

matic programming methodologies such as Genetic Programming and Grammatical Evo-

lution, as well as aid the understanding on advantageous properties such as self-healing or

self-reconfiguring exhibited in many natural and artificial self-assembly systems.
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7.2 Future work

There are several directions of future work that can be followed from this dissertation.

The diversified compartment approach introduced in Chapter 5 is used to repre-

sent the “Internet” and investigates the network topological impacts on ASAP 2, in our

experiments with the diversified compartment approach, only unweighted graphs are con-

sidered, meaning the connection probability and speed are unbiased between any pair of

compartments connected by an edge. One possible future work for this research is to inves-

tigate in greater detail how computer network factors impact the system and the generated

programs. One network factor worth investigating on is the bandwidth. This can be real-

ized by implementing a queue on each edge holding software components migrating from

one compartment to another. Instead of using an unweighted graph as in Chapter 5 and

6, a weighted graph can be used to represent the bandwidth of connections between two

nodes (computers). Therefore, the speed of removing components from the queue can be

proportional to the weight on its edge.

In our experiments with ASAP 2, we covered software self-assembly in an open

and closed environment (i.e. dynamic and static software self-assembly) with the network

approach. It has been shown in this thesis that the behaviour and results are dramatically

different between the open and close environments. To study how the transition occurs,

another possible future avenue is to study an intermediate software self-assembly system,

i.e. a “semi”-dynamic system which can be close to or far from equilibrium depending on

the requirement. This can be realized by introducing mutation rates. At any time step, a

mutation of software component can occur during a transfer between compartments. This
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mutation may or may not change the component type. Thus, the system can be easily

tuned towards far from or close to equilibrium with this mutation parameter. That is, if

the mutation rate is high and if it constantly changes the type of the software component,

the system is far from equilibrium. However, if the mutation rate is low and the mutation

of the component does not involve a type change, the system will eventually reach its

equilibrium.

In addition, further research can be proposed to investigate how gradient of con-

centrations of software components affects software self-assembly. One possible approach is

to introduce nested compartments in which information between compartments can flow to

the inner/outer world through its border. Each compartment can have a different migration

probability based on its size.

Although the swarm based approach introduced in chapter 4 may greatly improve

the performance of the self-assembly process, it is unlikely that this alone will be able

to overcome the combinatorial nature of programs’ space exploration. Instead, more “in-

telligent” self-assembly should be investigated. Possible solutions may be based on graph

grammars for directed self-assembly [46, 47] or the use of a tabu list [28] to ban the bindings

between certain components if the binding product is unlikely to be of use.

Finally, future research on software self-assembly could aid the understanding of

self-healing [27] and self-reconfigurable [86] software. Software self-assembly is expected

to inherit some, if not all, of the advantages of the self-assembly systems reviewed in the

previous section.
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