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Abstract

I
n this thesis, a series of mathematical models suitable for describing biological tissue

growth are developed. The motivation for this work is a bioreactor system which

provides perfusion and compressive mechanical stimulation to a cell-seeded scaffold;

however, the formulation is sufficiently general to be applied to a vast range of tissue

engineering applications. Our models are used to investigate the influence of (i) cell-cell

and cell-scaffold interactions, and (ii) the mechanical environment, on tissue growth.

In the first part of the thesis, we extend a model due to Franks (2002) (in which the

cell and culture medium phases are represented by viscous fluids) by including perfusion

and coupling the cells’ response to their environment. Specifically, we consider the effect of

the cell density and pressure on tissue growth. We analyse the model using analytic and

numerical techniques; numerical simulations suggest that comparison of construct morphol-

ogy in the presence and absence of perfusion provides a means to identify the dominant

regulatory growth stimulus.

The solid characteristics of the construct and interactions between the cells and scaffold

are necessarily neglected in the two phase model. Guided by this, we develop more complex

three phase models. Using numerical simulations, the influence of cell-cell and cell-scaffold

interactions is investigated and less porous scaffolds are shown to improve control over cell

behaviour. We use the model to compare the cells’ response to different regulatory stimuli,

including flow-induced shear stress. Our results suggest that uniform initial cell seeding

and stimulating cell movement are crucial in maintaining the mechanical integrity of tissue

constructs.

We also study the effect of scaffold compression on the mechanical environment of the

cells contained within, developing both a classical Biot formulation and a multiphase model.

We demonstrate that the bioreactor geometry introduces significant spatial variation in the

mechanical stimuli relevant to tissue growth and that such considerations will play a key

role in comprehensive models of mechanotransduction-affected growth.
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Chapter1
Introduction

T
he growth of biological tissue is a complex phenomenon, resulting from the interac-

tion of numerous processes on several different spatio-temporal scales. Due to its

importance in the field of tissue engineering, the study of tissue growth processes

has been the subject of a huge range of experimental and theoretical studies (reviews are

given by Curtis & Riehle (2001), Sipe (2002), Araujo & McElwain (2004a), Cowin (2000,

2004)). Tissue engineering is the construction, repair or replacement of damaged or missing

tissue. This thesis is concerned with in vitro tissue engineering, which is the logical exten-

sion of transplant surgery, and involves growing replacement tissue outside the body in a

bioreactor from a sample of healthy cells (in the context of tissue engineering, a bioreactor

is an advanced tissue culture apparatus). This approach has the potential to alleviate the

chronic shortage of tissue available from donors.

The motivation for the work contained in this thesis is a bioreactor system being em-

ployed at the Institute for Science and Technology in Medicine (ISTM), Keele University,

which provides both perfusion and macroscale compression to a culture of human-derived

bone cells contained within a poly(L-lactide) (PLLA) scaffold. In a wider context, the appli-

cations of this study within the field of tissue engineering are myriad, aspects of the models

being relevant to biological systems in which the influence of the mechanical environment

on the cells’ response is of interest, such as bone, muscles and blood vessels. In the following

introduction, and in the remainder of this thesis, we concentrate upon the applications of

this work associated with the above bioreactor system and its pertinence to bone tissue

culture; however, the broader relevance of the model predictions to tissue engineering is

also discussed.

In this chapter, a general introduction to human bone physiology and tissue engineer-

ing is presented and the relevant experimental and theoretical literature is reviewed. In
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1.1 Biological background

addition, a general multiphase model is presented, and an illustrative derivation of the

volume-averaged mass and momentum conservation equations for a two phase system is

given; in each case, relevant modelling considerations are discussed. This multiphase for-

mulation (in a number of simplified incarnations) will be employed in subsequent chapters

of this thesis.

1.1 Biological background

The human skeletal system performs many important functions; in addition to providing

support, protection and allowing movement, it is responsible for blood cell production and

mineral storage. Human bone is organised into three distinct regions. The periosteum, a

dense membrane of fibrous tissue containing blood vessels and nerves, covers the outer sur-

face of all bone except the articular surfaces (the surfaces of joints), which are covered by

a synovial membrane. The next layer is cortical, or compact, bone which consists of closely

packed osteons and accounts for approximately 80% of skeletal bone mass (Salgado et al.,

2004). Osteons comprise a central Haversian canal containing blood vessels (which inter-

connect with vessels in the periosteum via Volkmann’s canals), surrounded by concentric

rings of matrix called lamellae; between the lamellae are small spaces known as lacunae,

connected by tiny channels known as canaliculi. The innermost layer is cancellous, or

spongy, bone which accounts for approximately 20% of bone mass and is less dense than

cortical bone, consisting of plates (trabeculae) and bars of bone. This organisation is shown

in figure 1.1a; a cross-section of cortical bone illustrating the central Haversian canal and

lamellar/lacunar structure is shown in figure 1.1b.

The remodelling of bone tissue results from the interaction of three cell types: os-

teoblasts, osteocytes and osteoclasts (Berne & Levy, 1993; Salgado et al., 2004). Bone re-

sorption (the destruction, disappearance, or dissolution of bone by biochemical activity) is

effected by osteoclasts, which adhere to the surface of cortical and cancellous bone on the

yet unmineralised matrix (Kaspar et al., 2000). These cells form a moving resorption front

in the existing bone, along the direction of dominant daily loading, which is subsequently

filled with new bone derived from osteoblasts. Osteoblasts are responsible for extracellular

matrix (ECM) deposition and mineralisation (Mullender et al., 2004; Salgado et al., 2004)

and extrude collagen into the adjacent extracellular space; the interaction between these

two cell types causes new osteons to be aligned along the direction of predominant loading

(Bakker et al., 2004). Slowly, mineralised bone accumulates around the osteoblast, which

2



1.2 Bone tissue engineering
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Figure 1.1: (a) A schematic showing the hierarchical structure of bone, illustrating its

layered and osteonic structure and, (b) a cross section of cortical bone show-

ing the Haversian canal and lamellar/lacunar structure. Figures taken from

Young et al. (2006) and Gray (2000) respectively.

decreases its synthetic activity causing it to become an interior osteocyte (Berne & Levy,

1993); osteocytes are terminally-differentiated human bone cells, located in the lacunae

of cortical bone. The interconnecting canaliculi are filled with interstitial fluid; addition-

ally, osteocytes have several thin cell processes which extend into these channels. The cell

processes are structurally similar to intestinal microvilli, although they are an order of mag-

nitude longer (Han et al., 2004). The canalicular system, therefore, enables osteocytes to

communicate with each other and to exchange substances via diffusion. The role of osteo-

cytes in bone remodelling is controversial; however, there is a growing consensus that they

are the most mechanosensitive cells in bone and direct the formation and resorption of bone

tissue at the microscopic level (Noble & Reeve, 2000).

1.2 Bone tissue engineering

Each year approximately one million cases of serious skeletal defect require a bone-graft

procedure (Salgado et al., 2004). Autologous bone grafts (taken from the patient’s own

body) provide the greatest percentage of success; however, both the range and type of cases

in which this technique may be applied are severely restricted due to limited graft avail-

ability and donor site morbidity. An alternative strategy is allograft (graft from another

individual); however, the rate of graft incorporation is lower and the possibility of immune

rejection and pathogen transmission is increased (Cerroni et al., 2002; Salgado et al., 2004).

In cases for which bone grafts are impractical, artificial implants, which are typically metal
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1.2 Bone tissue engineering

or ceramic, may be used. These materials present a number of disadvantages: metal im-

plants provide adequate mechanical support but exhibit poor integration with tissue and

can fail due to infection or fatigue loading; in contrast, ceramics are brittle, have low ten-

sile strength and may not be subjected to significant levels of torsion, bending or shear

(Salgado et al., 2004).

It is clear, therefore, that an adequate replacement for bone is urgently needed to

meet the demands of patients. Tissue engineering has the potential to provide a valid

solution to the problems discussed above. In contrast to the classic biomaterials approach,

tissue engineering is “based upon the understanding of tissue formation and regeneration,

and aims to induce new functional tissues, rather than just to implant new spare parts”

(Salgado et al., 2004). In the following sections, a brief introduction to tissue engineering

is given.

1.2.1 Tissue engineering - an introduction

The aim of tissue engineering is to repair or replace tissues and organs by delivering im-

planted cells, scaffolds, DNA and proteins at surgery (Butler et al., 2000). Broadly, there

are two approaches to tissue engineering: in vivo and in vitro tissue engineering.

In vitro tissue engineering is the logical extension of transplant surgery and involves

growing replacement tissue in a bioreactor from a sample of healthy cells (in the context

of tissue engineering, a bioreactor is an advanced tissue culture apparatus; bioreactors

for tissue engineering applications will be discussed in more detail in later sections of this

chapter). This approach has the potential to alleviate the chronic shortage of tissue available

from donors and, where autologous cells are used, allows replacement organs or tissues to be

implanted with reduced risk of rejection and disease transmission (Curtis & Riehle, 2001).

In contrast, in vivo tissue engineering uses the human body as a bioreactor. One

approach is to implant a biodegradable porous scaffold into the relevant area which is pop-

ulated by cells either spontaneously by the body or by cellular augmentation (the scaffold

is artificially seeded with cells prior to in vivo implantation) (Zdrahala & Zdrahala, 1999).

The scaffold then degrades, leaving a re-formed tissue behind. Alternative approaches in-

clude injecting cells contained within a gel into the affected area. The use of injectable gels

has some advantages over pre-formed scaffolds in the context of in vivo tissue engineering,

including the ability to fill any shape of defect and the ease of inclusion of agents such as

growth factors; see Gutowska et al. (2001) for a review of different gels and their applica-

tions in tissue engineering. Where in vivo defects are small and self-contained, introduction
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1.2 Bone tissue engineering

of tissue growth-inducing substances (such as growth and differentiation factors) to the ap-

propriate location may be sufficient (Ma, 2004). These approaches could have considerable

benefits over in vitro tissue engineering since the human body naturally offers the correct

physical and biochemical cues to enable creation of functional, viable tissue; however, the

mechanisms by which these cues are employed by the cells are not well understood. A thor-

ough review of in vivo tissue engineering considerations is given by Zdrahala & Zdrahala

(1999).

The engineering of scaffolds with appropriate physical and biochemical properties which

induce the cells to populate the scaffold and prevent de-differentiation (regression of cells

from a specialised state to an earlier developmental stage) poses significant challenges,

being hampered by both the lack of information about the regulation of cellular function

and problems with cell population expansion (Sipe, 2002). These challenges have inspired

many experimental studies, including the bioreactor system used in the ongoing study at

ISTM, Keele University which is the focus of the theoretical work contained in this thesis

(more details regarding this system will be given in §1.2.3).

The concept behind tissue engineering is relatively simple; however, practically it poses

a great many problems. In addition to the problems discussed above, procuring sufficient

numbers of cells whilst minimising morbidity at the donor site is a non-trivial process,

confounded by the fact that these cells may have insufficient ability to proliferate or undergo

differentiation. Consequently, research is increasingly being focused on tissue generation

using tissue precursor cells or multipotent stem cells (Risbud & Sittinger, 2002). These

cells have high proliferative capacity and can be induced to differentiate to a number of

different cell types; of particular interest to bone tissue engineering applications is the

study of Buttery et al. (2001) in which osteoblasts were derived from embryonic stem cells.

The literature regarding the use of stem cells in tissue engineering and, for instance, the

methods by which they can be induced to differentiate along different cell lines is extensive;

a good introduction to this field is given by Salgado et al. (2004) and references therein. We

choose not to give a thorough review of this literature here since implicit in the mathematical

models that we develop in this thesis are the assumptions that, on the timescale of interest,

the cell population has sufficient proliferative capacity and is unable to de-differentiate.

A wide variety of cell culture techniques is employed in in vitro tissue engineering.

Monolayer culture, which involves growing a single layer of cells on a two-dimensional

surface, is the simplest and cheapest method and has, therefore, been widely used; however,

it has been noted that a feature of this method is rapid cell de-differentiation and loss of
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1.2 Bone tissue engineering

tissue-specific function (e.g. Hamilton et al. (2001) and others, who observed that monolayer

culture of liver cells results in rapid loss of liver-specific function). It has been widely

reported that some semblance of in vivo cellular organisation is required in order that

viable tissue constructs be produced (Powers et al., 1997). To this end a number of authors

have investigated the benefits of the following culture techniques:

1. Co-culture of different cell types to mimic the in vivo environment (e.g. Yagi et al.

(1995), Yoffe et al. (1999), Bhandari et al. (2001), Riccalton-Banks et al. (2003) and

Higashiyama et al. (2004) in which the effect of co-culture of two types of liver cells

was investigated, finding that the longevity of liver-specific function was significantly

enhanced when co-culture was employed);

2. culture as multicellular spheroids, which maximises cell-cell contacts and has been

found to positively affect functionality and biochemical properties (e.g. Yoffe et al.

(1999), Hamilton et al. (2001), Ma et al. (2003) and Riccalton-Banks et al. (2003));

3. creation of engineered tissue constructs via culture on artificial scaffolds, whose surface

chemistry and pore size may be altered to encourage cell anchorage or increased

population of the scaffold by the cells and the use of which lends improved mechanical

integrity to the construct (e.g. Yamada et al. (2001) and Karp et al. (2004)).

The latter technique is especially important in bone tissue engineering applications where

the three-dimensional architecture and material properties of the tissue are important

(Salgado et al., 2004) and in the creation of engineered constructs of appropriate size for

implantation (Ma, 2004). Due to the importance of the scaffold to the creation of viable

tissue, we pause to highlight some of the key characteristics it must display for tissue en-

gineering applications. We remark that these include aspects of the scaffold relevant to

implantation in vivo.

The most obvious requirement is that of biocompatibility : the scaffold should per-

mit cell life and should not elicit an immune response in the host (Curtis & Riehle, 2001;

Salgado et al., 2004). Secondly, the scaffold must be porous. A highly porous, intercon-

nected structure facilitates cell penetration thoughout the scaffold and vascularisation of

the construct from surrounding tissue. Additionally, this promotes good transfer of nu-

trients and waste products through the scaffold; this is of particular importance to bone

tissue engineering (in contrast to, for instance, cartilage) where relatively high rates of

mass transfer are expected following in vivo implantation due to, for example, vascularisa-

tion (Freed & Vunjak-Novakovic, 1998). It is well accepted that a pore size of 200-900µm
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1.2 Bone tissue engineering

is appropriate for bone tissue engineering (Salgado et al. (2004) and references therein).

Cerroni et al. (2002) report a number of threshold pore size values: a pore size of less than

10µm inhibits cellular in-growth; 15–50µm helps vascular and fibrous tissue colonisation;

150µm or greater facilitates mineralised bone formation. Holy et al. (2000) report bone

tissue growth and mineralisation throughout three-dimensional scaffolds with macroporous

interconnected structure with pore size ranging from 1.5-2.2mm. These scaffolds allow cell,

tissue and blood vessel in-growth; however, the large pore size will have implications for the

mechanical properties of the scaffold which are clearly of great importance in bone tissue

engineering applications (Salgado et al., 2004).

As indicated above, the surface properties, both chemical and topographical, of the scaf-

fold are important. Most normal cells are anchorage-dependent, their growth being affected

by interaction with the ECM or a substrate (Freed & Vunjak-Novakovic, 1998). Indeed, it is

clear that the ECM is an important growth regulator; as a result of ECM attachments, cell-

surface receptors transduce biochemical signals to the nucleus using the same intracellular

signalling pathways as those used by growth factor receptors (Huang & Ingber, 1999). Cells

may adhere to surfaces with forces that are three or four orders of magnitude greater than

their own weight; furthermore, cells can control this adhesion and some have the ability to

detach from a surface of their own volition (Cowin, 2000). Appropriate surface chemistry

enables cells to adhere effectively to the scaffold as well as aiding cell/scaffold protein inter-

actions and directing cell differentiation (Salgado et al., 2004); for example, scaffolds may

be engineered to deliver growth factors or DNA (Sipe, 2002), or to contain specific cellular

recognition molecules (Freed & Vunjak-Novakovic, 1998). Additionally, the topographical

properties of the scaffold surface may be altered to encourage and direct cell movement; for

example, cell locomotion is guided and enhanced by straight edges or long fibres within the

scaffold. This phenomenon is known as contact guidance (Anselme, 2000; Cowin, 2000).

Lastly, the scaffold must be biodegradable; furthermore, the rate of degradation must match

that of nascent tissue growth so that the scaffold is completely degraded by the time the

injury site has fully regenerated (Ma, 2004; Salgado et al., 2004).

In addition to the biochemical environment, cell cultures are greatly affected by the

mechanical environment. In the following section we give a brief introduction to the

mechanosensory ability of bone tissue and its implications for the viability of bone tissue

cultures.
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1.2 Bone tissue engineering

1.2.2 Mechanotransduction

The mechanism by which forces are converted into biochemical signals and integrated into

cellular responses that influence, for example, gene expression, protein synthesis, cell prolif-

eration and morphogenesis, is referred to as mechanotransduction (Walsh et al., 2004). The

stresses experienced by cells can be residual, arising due to incompatibility of growth strains

in the tissue (Skalak et al., 1996; Araujo & McElwain, 2004b, 2005a); alternatively, they can

be the result of external loading. The importance of mechanical stimuli to tissue function

is noted by many authors including Fung (1991), who asserts that the correct function of

organs is dependent on the level of internal stress. Indeed, the way in which cells respond

to mechanical forces is “critical in homoeostasis and in many diseases” (Huang et al., 2004)

(homoeostasis is the term given to the regulation of a system’s internal environment to

maintain a stable state and is crucial in the functioning of biological organisms). For ex-

ample, the response of vascular endothelial cells to mechanical stimulation associated with

blood flow (e.g. cell remodelling) constitutes a homoeostatic mechanism which aids in the

prevention of atherosclerosis (an inflammatory vascular disease) (Chien, 2007).

Understanding the molecular basis for mechanotransduction requires detailed knowl-

edge of the force distribution within individual cells at a molecular level; the discovery

of the way in which these forces influence the cell response will provide new insight into

many tissue engineering applications. To this end, many authors have used a wide range

of techniques to investigate the effect of mechanical stimulation at the individual-cell level;

the cellular response is multifaceted and diverse. Furthermore, the mechanochemical envi-

ronment required for optimum growth will be peculiar to the tissue under consideration.

This inherent complexity is exacerbated by the non-linear nature of the cellular response to

mechanical stimulation. For example, Helmke et al. (2003) report that the displacements

within a cell resulting from haemodynamic shear stress occur in many directions, being only

weakly correlated with the direction of stress application, suggesting that the transmission

of force within a cell is highly complex. We do not give a thorough review of the literature

pertinent to intracellular force transduction pathways and their influence on cell response

since we employ a continuum model in this work, assuming that the gross result of these

effects is captured on the macroscale; however, the reader is directed to Huang et al. (2004)

for a review of some of this literature, including discussion of transduction pathways, cell

probing techniques and the molecular responses of cells and tissues to mechanical stimuli.

In summary, it is clear that mechanical stimuli are crucial in the formation of functional

tissue in vivo; despite a great many “proof of principle” studies illustrating the beneficial
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1.2 Bone tissue engineering

effect of mechanical conditioning on the structural and functional properties of engineered

tissues, little is known about either the manner in which these forces should be applied for

specific tissues or how these stimuli are employed by the cells (Martin et al., 2004). It is,

therefore, of great value to tissue engineers to identify these mechanisms (via theoretical and

experimental studies) so that appropriate methods can be employed to produce functional

tissues in vitro for implantation.

Under normal physiological conditions, bone tissue is inevitably exposed to a variety

of mechanical stresses and strains imposed by muscular contractions, body movement and

external loading and it has been widely reported that mechanical stimulation has an im-

portant effect on bone adaptation and formation (You et al., 2000). Placing patients with

broken limbs under traction to prevent incorrect bone repair or misshapen bones is a sim-

ple example of this phenomenon and has been practised in hospitals for many years. The

ability of bone tissue to adapt functionally to its mechanical environment depends upon the

ability of bone cells to sense and respond to mechanical stimuli. There are two theories in

the literature regarding these mechanosensory mechanisms. The first is that cells respond

directly to the mechanical strain they experience as a result of physiological loading. This

has been investigated by a number of authors using substrate deformation to stretch bone

cells with promising results (e.g. Kaspar et al. (2000, 2002) showed that cyclic substrate de-

formation of physiological magnitudes causes increased osteoblast proliferation); however,

many studies have been criticised for employing strains well in excess of those encountered

in vivo or for employing stimulatory systems that induce unintended physical effects such

as fluid flow (You et al., 2000).

Mineralisation of the ECM makes bone tissue extremely stiff; as a consequence, bone tis-

sue experiences very low strains (0.03–0.4%) under physiological loading (Rubin & Lanyon,

1984; Klein-Nulend et al., 1995b; Fritton et al., 2000). A fundamental paradox in bone tis-

sue remodelling is that these tissue-level strains resulting from physiological loading are far

smaller than those required to initiate cellular responses directly; using in vitro experiments,

many authors have reported that under substrate straining comparable to that encountered

in vivo during vigorous exercise, no biological response of the bone cells is observed and

substrate strains are required to be at least an order of magnitude larger (1-10%) in order

for a biological response to occur; such large strains in vivo would result in bone fracture

(Klein-Nulend et al., 1995b, 1998; You et al., 2000; Han et al., 2004). To resolve this, a sec-

ond theory has been proposed, summarised as follows. Mechanical loading of bone causes a

flow of interstitial fluid through the canalicular network and the resulting fluid drag forces,
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1.2 Bone tissue engineering

acting on osteocyte cell processes, allow these cells to amplify the small strains encountered

within the calcified matrix, encouraging increased metabolic activity and longevity of these

cells (Klein-Nulend et al., 1995b, 1998; You et al., 2000; Bakker et al., 2004; Han et al.,

2004).

A number of theoretical studies of bone tissue mechanosensory mechanisms strongly

indicate loading-induced fluid shear stress as a mechanical stimulus for bone remodelling; for

example, Weinbaum et al. (1994), You et al. (2001) and Han et al. (2004) show that fluid

drag forces acting on cell processes are able to produce cell-level circumferential strain of two

orders of magnitude greater than the whole tissue strain. This, along with ultrastructural

analysis of the structural components around osteocytes in vivo (You et al., 2004) and a

growing body of theoretical and experimental studies, suggests that the lacunar-canalicular

fluid flow is likely to be the dominant mechanosensory mechanism.

Experimental studies that directly compare the effects of fluid flow and mechanical

strain on bone cells include Owan et al. (1997), Smalt et al. (1997) and Mullender et al.

(2004) in which it is shown that cells are more sensitive to flow stimulation. These studies

employed monolayer culture; in the following section, we introduce a bioreactor system

which provides both perfusion with culture medium and compressive mechanical stimulation

to a three-dimensional tissue construct. This study is the motivation for the work contained

in this thesis.

1.2.3 A bioreactor system for bone tissue engineering

A significant problem with the three-dimensional culture techniques described above (§1.2.1)

is that limitations in the diffusion of nutrients and waste products through large constructs

often result in the formation of a tissue construct with viable, proliferating cells at its

periphery but a necrotic core. Necrosis refers to accidental cell death due to (for instance)

insufficient oxygen or nutrients, injury and infection, as distinct from apoptosis which is

part of programmed cell death. Early studies have shown that cellular spheroids of diameter

greater than 1mm generally develop a necrotic core (Sutherland et al., 1986). Engineered

constructs must be relatively large to serve as grafts for tissue replacement; it is clear,

therefore, that mass-transfer limitations represent one of the greatest challenges for in vitro

tissue engineers (Martin et al., 2004). To rectify this, bioreactors are widely used to improve

nutrient supply and waste removal, employing perfusion and circulation/mixing strategies

to improve mass transfer within the culture; additionally, bioreactors allow monitoring and

control of factors such as pH, and the provision of growth factors and other cell-signalling
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1.2 Bone tissue engineering

molecules.

For tissue engineering applications, bioreactors must fulfil a further requirement: they

must provide physiologically relevant loads to the tissue (Cartmell & El Haj, 2005) so that,

via the mechanotransduction process described above, functional, viable tissue constructs

are produced. This is particularly important in bone tissue engineering where load-bearing

is a major requirement for any replacement tissue (Cartmell & El Haj, 2005). A variety of

different bioreactor systems has been developed to provide mechanical stimuli to cells. A

common method of applying mechanical loading to cells is via fluid shear stress. A frequently

used example of this in monolayer culture is a parallel plate flow chamber in which the fluid

is forced across the cell monolayer by a pressure gradient; the flow may be steady, oscillatory

or pulsatile. In three-dimensional culture, fluid shear stimulation may be achieved using

spinner flasks, rotating wall vessels or perfusion systems. Macroscale mechanical stimulation

may also be provided via application of tensile or compressive forces to tissue constructs

or, in monolayer culture, by substrate deformation. Alternatively, cell-scale forces may be

applied via magnetic particles embedded in the cell membrane: application of an oscillatory

magnetic field causes a strain and torque to be applied to the cell (Hughes et al., 2007). A

thorough review of these bioreactor systems and others is given in Martin et al. (2004) and

Cartmell & El Haj (2005).

El-Haj et al. have employed a bioreactor system which allows a culture of cells in a

PLLA scaffold to be subjected to simultaneous perfusion with media and direct compression

using a piston (see, for example, El-Haj et al. (1990)); see figure 1.2. The system comprises a

cell-seeded scaffold within a culture medium-filled cylinder along which a flow is driven. This

system allows mechanical stimulation via fluid shear, pressure and direct mechanical force

application and is currently being applied to osteoblast cultures at ISTM, Keele University.

The cell-seeded PLLA scaffold has a diameter of 9mm, length 4mm and mean porosity

of 97% (Freyria et al., 2005). Perfusion is effected using a peristaltic pump at a rate of

0.1ml/min and the piston subjects the PLLA scaffold to a periodic strain of amplitude

1.5% at 1Hz. In this study, following three weeks of static culture, cell-seeded constructs

are placed in the bioreactor and subjected to compression for one hour per day for one

week.

The structure of the PLLA scaffold employed in this study is highly heterogeneous;

figure 1.3a shows the cross section-averaged porosity along the axial length of a typical

PLLA scaffold of the type employed in this study, evaluated using microfocus computer

tomography (µCT). Figure 1.3b shows the typical decrease in averaged porosity following
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culture, indicating the level of mineralisation in such a scaffold.1
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Figure 1.2: The compression/perfusion system of El-Haj et al.
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Figure 1.3: The axial variation of the cross section-averaged scaffold porosity (–) and the

mean scaffold porosity (· · · ) (a) before and, (b) after culture.

In this thesis we formulate a mathematical model relevant to the growth of a tissue

construct within such a dynamic culture environment. We neglect the effect of nutrient

availability on the growth and morphology of a tissue construct, assuming that perfusion

provides an abundant supply of nutrient; instead, our focus is on the effect of the mechanical

environment on tissue growth. Our modelling framework is used to investigate the influence

of (i) cell-cell and cell-scaffold interactions and, (ii) the local mechanical environment, on

the evolution and eventual morphology of a tissue construct. In particular, we consider in

detail the effect of flow-induced mechanical stimulation on the phenotypic progression of

the cells as well as macroscale mechanical compression. The results of our investigations

are interpreted in the context of the above tissue culture system but are also of relevance

1We are grateful to E. Baas, ISTM, Keele University for the provision of this data.
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to more general in vitro tissue engineering applications.

1.3 Mathematical background

In this section we review some of the mathematical models in the literature which are

pertinent to the modelling of tissue growth within a dynamic culture environment.

In constructing a deterministic mathematical model for the dynamics of a cell popula-

tion, one must decide whether to formulate it by considering the interactions between indi-

vidual cells in the population or whether to consider the system as a continuum. Stochastic

modelling of biological systems is a wide field of research, lending itself naturally to complex

biological systems such as the modelling of subcellular biology and gene networks; however,

we eschew a review of this literature here since we employ deterministic techniques in this

thesis.

Formulating a model based upon the interactions of individual cells, demands that

the position and velocity of each individual within the system must be considered, whilst

in the continuum case, “averaged” quantities are considered. Individual cell-based models

provide comprehensive and detailed information about the dynamics of the cell population

and offer distinct advantages over continuum-based modelling; for example, the ease of

inclusion of specific rules governing cell behaviour and the ability to track the movement of

individual cells (Armstrong et al., 2006); however, since the behaviour of each cell must be

considered (realistic simulations demand large numbers of cells), these models are extremely

complex and heavily reliant on numerical simulations. In contrast, continuum models may

be expressed in terms of a system of partial differential equations (PDEs), allowing the

mathematical techniques of PDE theory to be exploited, and in some cases this allows

analytic or asymptotic solutions to be obtained, as well as numerical simulations. We

therefore employ a continuum model in this thesis in order to exploit this ease of analysis.

We remark, however, that this approach can make validation difficult since experimental

data may be presented in terms of discrete individuals. In this case, the relevant model

parameters may be directly measureable, and an important consideration in continuum-

based modelling is relating these measureable individual-based parameters to those that

appear in continuum models.

Perhaps the most well-known subject for individual-based mathematical models is the

slime-mold Dictyostelium discoideum. This organism has been widely used as a model sys-

tem for studying many aspects of basic developmental processes including cell-cell signalling,
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signal transduction, pattern formation and cell motility and aggregation. Palsson & Othmer

(2000) and Palsson (2001) presented an individual-based model in which each cell can ad-

here to neighbouring cells, is able to generate an active motile force and may deform (whilst

conserving its volume); the individual cell’s response was determined by its internal pa-

rameter state and the external environment (which may include, for example, interactions

between adjacent cells, ECM or chemical signals). Additionally, a great many continuum

models have been presented to model this system, based on the chemotaxis-based model

of Keller & Segel (1970, 1971); see Luca et al. (2003) for a thorough review of chemotaxis

models.

Mathematical models which consider explicitly the mechanical forces experienced

by a single cell in the context of mechanotransduction include those developed by

Tracqui & Ohayon (2004), in which the distribution of intracellular stresses due to mag-

netic twisting cytometry was investigated; and McGarry et al. (2004) who compared the

deformation produced when a cell is exposed to fluid shear stress or substrate strain. Both

of these studies used a finite element method to compute the cellular response.

The finite element method has been widely used to compute the behaviour of tis-

sue engineered constructs; the ease with which three-dimensional simulations may be per-

formed allows consideration of complex geometrical factors such as pore size and shape.

Kelly & Prendergast (2003) investigated the effect of a core of underdeveloped tissue within

a construct on its material properties using a bi-phasic poroelastic model in the context of

cartilage tissue. Inhomogeneity of the construct was shown to reduce dramatically its me-

chanical integrity. Adachi et al. (2006) developed a poroelastic model to study the effect

of the interplay between bone tissue growth and scaffold degradation due to hydrolysis on

the mechanical function of the tissue/scaffold construct. The influence of pore shape on

the construct response was investigated and the results applied to create a framework for

optimal design of a porous scaffold microstructure. Jaecques et al. (2004) exploited µCT in

tandem with finite element solution techniques to calculate the stress and strain distribution

within bone; again, procedures to optimise scaffold design were discussed.

In this thesis, we analyse our model equations using a combination of analytic and nu-

merical techniques. In the main, numerical solutions are obtained using the finite-difference

method; however, the ease with which mesh-refinement may be performed using the finite-

element software COMSOL Multiphsyics is exploited in Appendix B.1 to validate our sim-

ulations.

A simple continuum model for ECM deposition by cells in response to the local concen-
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tration of a single diffusible nutrient (in this case, oxygen) within a polymeric scaffold was

presented by Obradovic et al. (2000), using the deposition of glycosaminoglycans (GAG)

as an indicator of matrix regeneration. The concentrations of oxygen (O2) and GAG were

modelled using diffusion equations as follows:

∂Ci
∂t

= Di∇2Ci + qi, (1.1)

wherein Ci represents the concentration and Di, the diffusion coefficients of each chemical

species (i = O2, G respectively). The oxygen consumption/GAG synthesis rates, qi, were

assumed to be of the following form:

qO2 = − ρQmCO2

Cm +CO2

, qG = ρk

(
1 − CG

C∞

)
CO2 , (1.2)

where ρ is the cell density, Qm is the maximum oxygen consumption rate, Cm is the CO2

concentration when the O2 consumption rate is half-maximal, k represents the rate of GAG

synthesis and C∞ is the maximum GAG concentration. The predicted GAG concentration

was shown to be in good qualitative agreement with experiment, and the study concluded

that variation in oxygen tension leads to the development of spatial heterogeneities in en-

gineered constructs. A similar mathematical model was employed by Lewis et al. (2005)

to show that cell-scaffold constructs which rely solely on diffusion for oxygen supply will

produce constructs with heterogeneous tissue growth concentrated around the construct

periphery. A great many other studies have considered the effect of limited nutrient avail-

ability and/or the presence of inhibitors on tissue growth (for example Greenspan (1972),

Maggelakis (1990) and Byrne & Chaplain (1995) have considered such effects in the context

of tumour growth). In this thesis, however, we consider tissue growth within a nutrient-rich

environment, neglecting the effect of nutrient availability on the growth and morphology of

a tissue construct.

Of greater relevance to the work contained in this thesis are models derived us-

ing a multiphase approach. The above studies (Greenspan, 1972; Maggelakis, 1990;

Byrne & Chaplain, 1995; Obradovic et al., 2000; Lewis et al., 2005) model the tissue as a ho-

mogeneous mass; however, biological tissue is a composite material, formed of “a collection

of cells and ECM” (Cowin, 2000) as well as accompanying interstitial fluid. A distinguish-

ing feature of many biological systems is the complex interaction between these different

constituent materials; furthermore, the tissue composition may change over time due, for

instance, to metabolism, mitosis, apoptosis, necrosis and (de-)differentiation (Lemon et al.,

2006). Multiphase models allow explicit consideration of these interactions. Each material
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constituent is considered as a distinct phase within a multiphase material with attendant

constitutive laws describing its material properties and its interactions with neighbouring

phases; the inherent complexity of this approach is reduced by an averaging process (a

discussion of the averaging method together with a derivation of averaged mass and mo-

mentum conservation equations for a multiphase material is given in §1.4), which effectively

removes the interfaces between the phases, the governing equations for each phase now

holding everywhere within the material. Derivation of multiphase models has been given

extensive treatment by many authors including Bowen (1982), Marle (1982), Whitaker

(2000), Kolev (2002), Araujo & McElwain (2005a), and for two-phase flows, Drew (1971,

1983), Drew & Segel (1971).

Galban & Locke (1999) analysed a simple two phase model for cell growth and nutri-

ent diffusion in a polymer scaffold. A single, averaged reaction-diffusion for the nutrient

concentration in the two phase system was derived using a volume-averaging method and

the effective diffusion coefficient and reaction rate was calculated as a function of the local

cell volume fraction. The cell volume fraction was determined (as a function of time) by

considering an appropriate cell mass balance equation. Many two phase fluid models for

tissue growth have been presented (e.g. Landman & Please (2001), Breward et al. (2002),

Franks (2002), Franks et al. (2003) and Byrne et al. (2003) which have investigated tumour

growth); however, the applicability of these fluid-based models is restricted to cases for

which the solid characteristics of the tissue are unimportant. Furthermore, these models

are unable to capture the genesis of residual stresses within a growing tissue which arise

due to incompatibility of growth strains (Skalak et al., 1996; Araujo & McElwain, 2004b,

2005a).

Jones et al. (2000) considered the stresses induced by non-uniform tissue growth within

a linear-elastic framework using a single phase model within the context of tumour growth.

The proliferation of the tumour cells was regulated by the availability of a single dif-

fusible nutrient and the calculation of the stress generated by this spatially-varying isotropic

growth was the novel aim of this study. Araujo & McElwain (2004b, 2005b) extended this

model to incorporate anisotropic growth, whilst adhering to the linear-elastic assumption

of Jones et al. (2000). The study showed that growth anisotropy can induce significant

stress-relaxation of the type observed in hydrated soft tissues (Araujo & McElwain, 2004b),

affording the model many of the advantages of more complex viscoelastic models.

Explicit consideration of the stresses induced by tissue growth within a multiphase

context has been investigated by Roose et al. (2003). The two phase tissue was modelled
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as a poroelastic material consisting of a solid phase, representing the cells and ECM, and

a fluid phase, representing the interstitial fluid. To describe the stresses created during

tissue growth, the standard stress-strain relationship for poroelastic materials was used and

combined with a volumetric tissue growth term as follows:

σ = −p I −Kη I +G
(
∇r + ∇rT

)
+

(
K − 2G

3

)
∇ · r I, (1.3)

wherein K and G are the bulk and shear moduli of the tissue respectively, p is the local

interstitial fluid pressure, r is the displacement, η represents volumetric growth and I is the

identity matrix. It was shown using this model and experimental evidence that tumour cell

size is reduced by internal solid stress build-up.

Araujo & McElwain (2005a) have presented a thorough derivation of the governing

equations which form the framework for a multiphase study of the genesis of residual

stresses, including the derivation of appropriate constitutive laws consistent with the sec-

ond law of thermodynamics; these equations were derived for n-phases and features of the

system were illustrated using a simple two phase mixture of a linear-elastic solid and an

inviscid fluid.

A weakness of the above models is that the polymer scaffold and/or ECM are not

treated as distinct phases; rather, many two phase models assume that they may be mod-

elled within a lumped “cell” phase. A multiphase model consisting of three or more phases

allows separate modelling of the ECM or polymer scaffold and can include, for example,

degradation of the polymer scaffold and deposition of ECM by cells. Lassuex et al. (2004)

studied a model for tissue growth on a polymer scaffold in which the cells, nutrient and

polymer scaffold were treated as distinct phases. Following Galban & Locke (1999), the

model was re-cast as a single reaction-diffusion equation governing the evolution of the nu-

trient concentration within the scaffold. The effective reaction rate and diffusion coefficients

appearing in this equation are related to the parameters associated with individual phases

through a closure problem. Lemon et al. (2006) presented a thorough derivation of the

governing equations for a multiphase mixture in which an arbitrary number of phases was

considered. Some general constitutive laws were suggested and the implications of including

a solid phase discussed. In addition, intraphase and interphase pressures were considered

and appropriate functional forms given; these pressures are a manifestation of the forces

generated by mechanically active phases. Within this model, intraphase pressures repre-

sented cell-cell interactions, whilst interphase pressures modelled cell-scaffold interactions.

The model behaviour was illustrated by performing a linear stability analysis (about a

constant, homogeneous cell distribution) on a three-phase system comprising a viscous cell
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phase, an inviscid interstitial fluid phase and an inert, rigid, scaffold phase. The interplay

between the stresses induced by cell-cell and cell-scaffold interactions results in two dynam-

ical regimes depending on the values of the model parameters: either the cells aggregate or

they diffuse to a uniform distribution. In a subsequent paper (Lemon & King, 2007), the

effect of nutrient depletion was analysed within this framework, showing that increasing cell

motility (by reducing the cell-scaffold drag) overcomes the effects of nutrient depletion.

1.3.1 Poroelasticity

To study the stresses induced by, for instance, volumetric tissue growth or mechanical

forcing and the effect of this on the cells, one must consider how the tissue deforms. The

theory of poroelasticity, which describes the mechanics of porous elastic solids with fluid-

filled pores has been widely exploited in soil consolidation, rock mechanics (Biot, 1941) and

industrial filtration (Barry & Holmes, 2001). More recently, many studies of biological soft

tissue have employed this formulation (e.g. Lai & Mow (1980), Gu et al. (1999) and many

others: some of these authors were cited in the preceding section).

The presence of a fluid within the porous material modifies its mechanical response in

the following manner. An increase in pore pressure causes the porous structure to dilate;

conversely, compression of the material causes the pore pressure to increase. If this pressure

is allowed to dissipate via fluid transport, further deformation of the material takes place

(Detournay & Cheng, 1993). A theory of three-dimensional linear poroelasticity consistent

with these concepts was first presented by Biot (1941) (and developed further in many

subsequent papers), as a theoretical extension of soil consolidation models (in one dimension,

Terzaghi (1923); and in three-dimensions, Rendulic (1936)).

The governing equations of Biot were derived using an “effective medium” approach

based on traditional solid mechanics theory. In forming a continuum model, an averag-

ing process over a Representative Volume Element (RVE) was used to develop constitutive

equations for the fluid-filled material and to determine effective material parameters; the

size of the RVE is assumed to be much larger than the lengthscale of the microstructure

(Cowin, 1999). Other authors have reformulated essentially the same theory using this ap-

proach in increasingly sophisticated forms (including, for example, Rice & Cleary (1976),

Carroll (1979) and Thompson & Willis (1991)). In contrast, equations governing the be-

haviour of fluid-saturated media have also been derived using mixture theory, or multiphase

methods; these studies contain the linear poroelasticity equations of Biot as a special case.

Much attention has been given to deriving models of multiphase flow in porous materi-

18



1.4 Averaged equations for a multiphase model

als, especially with respect to the choice of constitutive laws: many authors appeal to the

thermodynamics of the multiphase mixture in order to derive appropriate constitutive equa-

tions; see Bowen (1982), Katsube (1985), Katsube & Carroll (1987), De Boer (1998) and

Ahmadi et al. (2003) for a thorough derivation of the governing equations of mixture the-

ory and a discussion of thermodynamic considerations and their application to a fluid-filled

porous material.

The multiphase approach presents an advantage over the traditional effective medium

approach when a number of different interacting fluid phases are present and in relative

motion (Cowin, 1999) since the multiphase formulation naturally lends itself to these sys-

tems; self-evidently, this has considerable benefits when modelling biological systems and

has been used by many authors (including some mentioned in the literature review given

in the preceding section).

The validity of the equations of linear poroelasticity has been called into question

(Cleary, 1978). To address this, Burridge & Keller (1981) re-derived the equations of linear

poroelasticity using a homogenisation procedure in which the scale of the material’s pores

was assumed to be small in comparison to the macroscopic scale; periodicity of the material

is not assumed. The derivation of these equations is based upon the equations of linear

elasticity in the elastic matrix, the linearised Navier-Stokes equations in the pore fluid and

appropriate continuity conditions at the solid-fluid interface. It was shown that when the

dimensionless viscosity of the fluid is small the equations of Biot (1962a) are obtained;

furthermore, the constitutive relations assumed by Biot are confirmed. When the dimen-

sionless viscosity is of order one, the equations obtained are those of a viscoelastic solid,

as suggested by Cleary (1978). A similar derivation is given by Skotheim & Mahadevan

(2004).

The governing equations and modelling considerations of the Biot model as well as an

appropriate multiphase model are given in chapter 6 of this thesis.

1.4 Averaged equations for a multiphase tissue growth model

In many of the above studies, averaging techniques were used to derive the governing equa-

tions. In this thesis, we will exploit this method to derive equations which govern the

behaviour of the multiphase material. In this section, an illustrative derivation of mass and

momentum conservation equations is given using a volume-averaging method; alternative

averaging techniques are also briefly discussed.
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The aim of averaging is to derive a set of governing equations that describe adequately

the macroscopic properties of a multiphase material. The averaging process allows us to

obtain macroscopic, continuum-based equations for a multiphase material that do not con-

tain the precise details of the material at the microscopic level, but whose terms are shown

to arise from appropriate microscopic considerations (Drew, 1983). Insight can be gained

into the types of terms required in the macroscopic constitutive relations which specify

the behaviour of each phase (Drew, 1983); furthermore, the resulting macroscopic vari-

ables are related to microscopic variables. In classical models of some systems (especially

in modelling multiphase transport phenomena in porous media), consistency between the

well-understood microscale physics and the macroscale formulation is not achieved; the av-

eraging method ensures correspondence between the well-described microscale physics and

the formulation and closure of less-well-understood macroscale models (see Gray & Miller

(2005) for a thorough discussion of this issue).

The typical microscopic mass and momentum conservation equations for each phase

(in the absence of mass sources) have the form

∂ρ

∂t
+ ∇ · (ρu) = 0, (1.4)

∂

∂t
(ρu) + ∇ · (ρuu) = ∇ · σ + ρF, (1.5)

where ρ(x, t) is the density, u(x, t) is the velocity field, σ(x, t) is the stress tensor and

F(x, t) is a body force associated with each phase; x is the position vector and t represents

time. We remark that the microscopic equations (1.4) and (1.5) for each phase hold only

within the region occupied by that phase, whilst the averaged equations for each phase hold

everywhere in the material. The averaging process therefore smooths the discontinuities

present at the interface between phases.

There is a variety of ways in which the microscopic equations may be averaged:

Whitaker & Howes (1985) and Whitaker (2000) consider volume-averaged equations,

while Kolev (2002) considers volume- and subsequently time-averaged equations. Other

commonly-used averages are weighted spatial averages and ensemble averages. Denoting

the average of a microscopic scalar field, ψ(x, t), by 〈ψ〉(x, t), the aforementioned averages

are typically defined as follows:

Time average: 〈ψ〉1 =
1

T

∫ t

t−T
ψ(x, t′)dt′ (1.6)

Ensemble average: 〈ψ〉2 =
1

N

N∑

n=1

ψn(x, t) (1.7)
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1.4 Averaged equations for a multiphase model

Weighted space average: 〈ψ〉3 =

∫∫∫

R3

g(x − x′)ψ(x′, t)dx′ (1.8)

Spatial (volume) average: 〈ψ〉4 =
1

V

∫∫∫

Vα

ψ(x, t)dV (1.9)

In equation (1.6), T is an averaging timescale that is much smaller than the timescale char-

acterising the process in question; in (1.7), N is the number of realisations of the problem; in

(1.8), g is a weighting function; in (1.9), V denotes an averaging volume and Vα denotes the

part of that volume occupied by the α phase. Equation (1.9) is known as the “local volume

average” of a multiphase mixture; in the following, we derive averaged governing equations

using a volume-averaging technique. We remark that thermodynamic relations are not

considered in this formulation; in particular, we assume that the interfaces between phases

have no thermodynamic properties. For many multiphase flows these considerations are im-

portant, especially in the choice of constitutive laws; however, in the following illustrative

derivation, we neglect these effects for simplicity and consider a two phase system as in Drew

(1983). For a detailed derivation of multiphase flow equations including these considera-

tions see Hassanizadeh & Gray (1993), Gray & Hassanizadeh (1998), Araujo & McElwain

(2004b).

In deriving the volume-averaged governing equations for the two phase system de-

fined in figure 1.4, we employ the indicator function approach of Drew (1971, 1983),

Drew & Segel (1971) and Gray & Lee (1977) in preference to the “averaging theorem” ap-

proach of Whitaker & Howes (1985), Whitaker (2000) and Kolev (2002) since we consider

it to be more elegant. It remains to note that the averaging procedure has been shown

to yield meaningful results provided that the characteristic lengths, d (distance over which

variations in exact quantities occur), l (characteristic length for the averaging procedure)

and L (characteristic length for the process) obey d≪ l ≪ L (Whitaker, 2000).

Following Drew (1983), we consider hereafter the volume-averaging operator defined

by

〈··〉 =
1

V

∫∫∫

V
· · dV, (1.10)

where V is a fixed, bounded, and smooth control volume; thus, if f and g are smooth scalar

fields defined everywhere in space and c is a constant, then the following averaging identities

hold:

〈f + g〉 = 〈f〉 + 〈g〉, 〈〈f〉g〉 = 〈f〉〈g〉, (1.11a,b)

〈c〉 = c, 〈∂f
∂t

〉 =
∂

∂t
〈f〉, 〈∇f〉 = ∇〈f〉. (1.12a,b,c)
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β-phase
β-phase

α-phase

V

Vβ1

Vβ2

Vα

Vβ = Vβ1 + Vβ2

nβ

nα

Aαβ

Aαβ

Figure 1.4: A two phase system with averaging volume, V , phases denoted α, β and

interfaces Aαβ (after Gray & Lee (1977)).

We now introduce an indicator function for phase α, Iα(x, t), which ‘picks out’ phase

α from the two phase material and is defined by

Iα(x, t) =

{
1 if x is in phase α at time t,

0 otherwise,
(1.13)

and we remark that in view of our averaging operator (1.10) and (1.9), 〈ψ〉4 ≡ 〈Iαψ〉.
Assuming there are no voids within the material, we have the saturation constraint,

∑

α

Iα = 1, (1.14)

(except on interface between the phases, Aαβ) and the average local volume fraction occu-

pied by phase α is given by

φα(x, t) = 〈Iα〉. (1.15)

The spatial and temporal derivatives of Iα will feature in the averaging through two iden-

tities that we now describe briefly. Since the indicator function is constant except at the

interface between the two phases, where it has a jump of unit magnitude, ∇Iα is a delta-

function concentrated at the interface, Aαβ , and multiplied by the unit normal, nα, pointing

into phase α, i.e.

∇Iα = δ(x − xi)nα for xi ∈ Aαβ; (1.16)

see Gray & Lee (1977), Drew (1983), who also show that

∂Iα
∂t

= −ui · ∇Iα, (1.17)
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1.4 Averaged equations for a multiphase model

where ui is the velocity of the interface Aαβ . Result (1.17) is proved in Drew (1983), Fowler

(1997) as follows: if ϑ is a smooth test function with compact support in space and time,

then, using integration by parts,

∫∫
ϑ

[
∂Iα
∂t

+ ui · ∇Iα
]

dV dt =

∫

V

[
Iαϑ

∣∣∣∣
∞

0

−
∫
Iα
∂ϑ

∂t
dt

]
dV

+

∫ [
ϑuiIα

∣∣∣∣
∞

−∞

−
∫

V
Iα∇ · ϑuidV

]
dt

= −
∫∫

Iα

[
∂ϑ

∂t
+ ∇ · (ϑui)

]
dV dt

= −
∫ ∞

0

∫

Vα

[
∂ϑ

∂t
+ ∇ · (ϑui)

]
dV dt

= −
∫ ∞

0

d

dt

∫

Vα

ϑ dV dt

= −
∫

Vα

ϑdV

∣∣∣∣
∞

0

= 0.

We note also that it follows from the product rule that

〈Iα∇ψ〉 = ∇〈Iαψ〉 − 〈ψ∇Iα〉, (1.18)

〈Iα
∂ψ

∂t
〉 =

∂

∂t
〈Iαψ〉 − 〈ψ∂Iα

∂t
〉, (1.19)

wherein the spatial and temporal derivatives of Iα on the right-hand sides of these expres-

sions are given by (1.16) and (1.17), respectively.

Lastly, we define two closely related averages that we shall require shortly. The “phasic

average” for any field f is denoted f , and the “mass-weighted average” denoted f̂ , are

defined:

fα =
〈Iαf〉
φα

, (1.20)

f̂α =
〈Iαρf〉
φαρα

. (1.21)

We remark that the phasic average (1.20) differs from the local volume average (1.9) by a

factor φ−1
α . From these definitions and equation (1.12a), it can be seen that in the special

case in which the density in phase α is constant, we have

fα = f̂α =
〈Iαf〉
φα

.
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1.4 Averaged equations for a multiphase model

1.4.1 Averaged equations for a two phase material

Averaged conservation of mass equations

Multiplying equation (1.4) by the indicator function, Iα, and re-arranging using the product

rule of differentiation, we obtain

∂

∂t
(ρIα) + ∇ · (ρuIα) = ρ

(
∂Iα
∂t

+ u · ∇Iα
)
. (1.22)

Averaging (1.22) and appealing to equations (1.12c,d) we have

∂

∂t
〈ρIα〉 + ∇ · 〈ρuIα〉 =

〈
ρ

(
∂Iα
∂t

+ u · ∇Iα
)〉

. (1.23)

We then use (1.17) to eliminate ∂Iα/∂t from the right-hand side of (1.23), to find that the

“mass source” term (i.e. the averaged macroscopic rate at which mass is transferred into

phase α from phase β) is given by

Γα =

〈
ρ

(
∂Iα
∂t

+ u · ∇Iα
)〉

= 〈ρ (u − ui) · ∇Iα〉. (1.24)

In view of (1.24) and on invoking (1.20) and (1.21), we arrive at the averaged conservation

of mass expression:
∂

∂t
(ραφα) + ∇ · (ραûαφα) = Γα. (1.25)

Averaged conservation of momentum equations

Multiplying the microscopic conservation of momentum expression (1.5) by the indicator

function, applying the product rule of differentiation and averaging, we find that

∂

∂t
〈Iαρu〉+∇·〈Iαρuu〉 = ∇·〈Iασ〉+〈IαρF〉+

〈
ρu

∂Iα
∂t

〉
+〈ρuu ·∇Iα〉−〈σ ·∇Iα〉, (1.26)

wherein the final three terms arise from the three applications of the product rule that result

in the first three terms, respectively. We may now rewrite each term in (1.26) as follows.

For the first and fourth terms in (1.26) we write (employing (1.20), (1.21))

〈Iαρu〉 = φαραûα, 〈IαρF〉 = φαραF̂α. (1.27)

For the second term we separate the microscopic velocity in phase α into its (mass-weighted)

mean and fluctuating parts by writing

u = ûα + u′; (1.28)
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1.4 Averaged equations for a multiphase model

since 〈Iαρu′〉 = 0, we have, by (1.11a,b):

〈Iαρuu〉 = φαραûαûα + 〈Iαρu′u′〉; (1.29)

in (1.29), the second term is an averaged Reynolds stress, which we denote by −φατ ′
α =

〈Iαρu′u′〉. For the third term we begin by decomposing the microscopic stress tensor into

a pressure, p, and deviatoric stress, τ :

σ = −pI + τ ; (1.30)

thus

〈Iασ〉 = φασ̄α = −φαp̄αI + φατ̄α, (1.31)

and in the fifth-term, we substitute for ∂Iα/∂t using (1.17), to find that

〈
ρu

∂Iα
∂t

〉
= −〈ρuui · ∇Iα〉. (1.32)

Substituting (1.27), (1.29), (1.31) and (1.32) into (1.26), we find that

∂

∂t
(φαραûα) + ∇ · (φαραûαûα) = −∇(φαp̄α) + ∇ ·

(
φα(τα + τ ′

α)
)

+ φαραF̂α +

〈(ρu(u − ui) + pI− τ ) · ∇Iα〉; (1.33)

the “momentum source” term (i.e. the averaged macroscopic rate at which momentum is

transfer ed into phase α from phase β) is thus given by

Mα = 〈(ρu(u − ui) + pI− τ ) · ∇Iα〉, (1.34)

in which it is customary to decompose the various contributions as follows. The inertial

contribution is related to the mass source, Γα, and the “interfacial velocity” of phase α,

uα,i say, by

Γαuα,i = 〈ρu(u − ui) · ∇Iα〉. (1.35)

For the the remaining components of the momentum source term, namely 〈(pI− τ ) · ∇Iα〉,
the contribution to diffusive transport down the gradient of phase α is associated with the

interphase pressure of phase α, pα,i say, which is defined by

pα,i|∇φα|2 = 〈p∇Iα〉 · ∇φα, (1.36)

so that (since 〈∇Iα〉 = ∇φα)

〈(pI − τ ) · ∇Iα〉 = pα,i∇φα + Md
α; Md

α = 〈(p − pα,i)∇Iα − τ · ∇Iα〉, (1.37)

25



1.5 A multiphase tissue growth model

the latter term being the “interfacial force density”. Finally, substituting (1.35) and (1.37)

into (1.34), we find

Mα = Γαuα,i + pα,i∇φα + Md
α, (1.38)

so that (1.33) becomes

∂

∂t
(φαραûα) + ∇ · (φαραûαûα) = −φα∇p̄α + ∇ ·

(
φα(τα + τ ′)

)
+ φαραF̂α +

Γαuα,i + (pα,i − pα)∇φα + Md

α. (1.39)

1.5 Governing equations for multiphase tissue growth

In this section, the averaged equations for a multiphase model relevant to tissue engineering

applications are presented in generality and for an arbitrary number of phases. We remark

that the derivation presented in this section follows that given in Lemon et al. (2006). This

formulation (in a number of simplified incarnations) will be employed in subsequent chapters

of this thesis. The equations are averaged in the manner presented in §1.4 so we omit the

details here.

We consider a multiphase system comprising an arbitrary number of phases (N), each

of which occupies an averaged volume fraction, φi, where i = 1, . . . , N and we associate

with each phase a volume-averaged velocity, pressure, stress tensor and density (ui, pi,

σi, ρi). Following the averaging process described earlier, we obtain the following local

volume-averaged mass conservation equation:

∂φi
∂t

+ ∇ · (φiui) = Si ; Si =
∑

j 6=i

Sij
ρi
, (1.40)

where Sij/ρi is the net averaged macroscopic rate at which material is transferred into phase

i from phase j and the total rate of transfer into phase i is denoted Si. Comparison with

equation (1.25) shows that writing the mass conservation equation in this form carries the

tacit assumption that each phase is intrinsically incompressible with fixed density ρi. The

function Sij is given by

Sij = S̃ijρj − S̃jiρi, (1.41)

for transfer rates S̃ij and we remark here that for multiphase materials in which mass

transfer between phases involves negligible changes in density it may be assumed that

ρi = ρ. In general, these mass transfer rates vary both spatially and temporally and will

depend upon the cells’ mechanochemical environment; for instance, nutrient availability,

growth factors, local cell density, pressure or stress. Functional forms for the mass transfer
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1.5 A multiphase tissue growth model

rates Sij will be chosen to reflect different physical processes at various points in this thesis;

however, we remark here that the effect of nutrient availability on the growth of the tissue

will not be considered.

A conservation condition arises from the assumption that there are no voids within the

multiphase material (i.e. the mixture is saturated ; see equation (1.14)):

N∑

i=1

φi = 1. (1.42)

A further conservation condition may be obtained by summing equations (1.40) over

all phases and exploiting (1.42); this may be expressed:

N∑

i=1

∇ · (φiui) = 0, (1.43)

where we have assumed that the mass source terms obey
∑
Si = 0 so that mass is conserved.

Following Lemon et al. (2006) and others, a porous flow model is used to describe the

dynamics of the multiphase system. The momentum balance equation is derived using the

method outlined in §1.4.1 and is based upon the two-phase flow model of Drew (1983),

which we extend to an arbitrary number of phases. Neglecting inertial effects (including

mass transfer effects) and body forces, the momentum balance equation for each phase is

∇ · (φiσi) +
∑

j 6=i

Fij = 0, (1.44)

where Fij is the interphase force exerted by phase j on phase i and we assume Fij = −Fji.

The momentum balance for the multiphase mixture may be obtained by summing (1.44)

over all phases; exploiting the property of the interphase force terms described above, we

find:

∇ ·
{

N∑

i=1

φiσi

}
= 0. (1.45)

We pause here to discuss the implications of extending the derivation outlined in §1.4.1
to three or more phases. The main complications come from the choice of appropriate

interphase interaction terms and from the modelling of the interfacial regions which sep-

arate different phases at the microscale. In multiphase systems of three or more phases,

these regions may manifest themselves as surfaces, common lines (interfacial regions be-

tween three neighbouring phases) and common points (intersection of different common

lines). In a three phase system, only one type of common line may exist; in a four phase

system, four common lines types may exist (Gray & Hassanizadeh, 1998). As mentioned
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1.5 A multiphase tissue growth model

previously (§1.4), some modelling approaches consider these interfaces as singular surfaces

across which a discontinuity in phase properties occurs, with no thermodynamic proper-

ties of their own; however, citing a number of studies of two-phase processes and flow in

unsaturated media, Gray & Hassanizadeh (1998) contend that the “inclusion of interfacial

properties is essential if gross errors in the description of some multiphase systems are to

be avoided”; and furthermore, that “all features of a multiphase system that affect the

thermodynamic behaviour must be accounted for”.

Thermodynamic behaviour is considered in many studies (see Gray & Hassanizadeh

(1998), Araujo & McElwain (2005a), and others) to derive constraints on the constitutive

laws that are consistent with the second law of thermodynamics. Individual phases in

biological tissues may be considered separate and distinct and so we may appeal to the

Principle of Phase Separation. Under this principle, the material-specific dependent vari-

ables associated with each phase (such as stress) depend only on the variables of that

phase; interactive terms (such as the interphase momentum transfer term), may depend

upon all variables (Araujo & McElwain, 2005a); furthermore, these quantities must be ob-

jective (that is, they must be independent of the frame of reference). We do not treat these

considerations in great detail; however, we expect that the constitutive laws and interphase

momentum transfer terms chosen here and in the proceeding chapters will be consistent

with these assumptions. For more details see Drew & Segel (1971), Passman et al. (1984)

and Araujo & McElwain (2005a).

Following Lemon et al. (2006), the interphase forces are assumed to be of the form:

Fij = pijφj∇φi − pjiφi∇φj +Kij(uj − ui), (1.46)

where pij = pji is the interphase pressure exerted by phase j on i. The first two terms

in equation (1.46) represent the interfacial force exerted by phase j on i and the resulting

reactionary force supplied by phase i. The final term represents an interphase viscous drag,

where Kij = Kji is the drag coefficient which may depend upon φi and φj . We remark

that this form of interphase momentum transfer term is similar to that used in many other

multiphase models in the literature (e.g. Barocas & Tranquillo (1997), Barry & Holmes

(2001) and Ahmadi et al. (2003)); this form is, of course, objective.

The pressures pij, referred to above, represent the interphase forces generated by the

mechanically-active cellular components in our multiphase mixture; additionally, these com-

ponents may generate intraphase forces. Within our model, these forces manifest themselves

as pressure differences between the phases (we note that for a mixture comprised entirely
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of passive constituents, these pressures will tend to equilibrate (Lemon et al., 2006)). Fol-

lowing Lemon et al. (2006), the interphase pressure is assumed to have the form

pij = p+ ψij, (1.47)

for i 6= j, where p is a common “mixture” pressure and ψij = ψji is an extra pressure

contribution due to tractions between phases i and j. Additionally, the pressure in each

phase is assumed to have the form

pi = p+ Σi +
∑

j 6=i

φjψij, (1.48)

where Σi is an additional intraphase pressure resulting from interactions within phase i

such as osmotic stresses or surface tension within cell membranes. More detail regarding

the modelling considerations behind these choices is given in Lemon et al. (2006). We

remark here that surface tension within the interfaces between phases is neglected from this

work. Functional forms for the extra pressures described above will be specified together

with appropriate constitutive laws for each phase in later chapters when the general model

given here is applied to the study of in vitro tissue growth processes.

1.6 Thesis objectives and structure

The aim of this thesis is to present and analyse a general multiphase mathematical model

which provides the means to study the effect of dynamic culture conditions on the response

of a tissue construct. In the following analysis, this is illustrated by specialising the general

multiphase model derived above to a two-dimensional model of a cell population growing

within a porous scaffold; specifically, the effect of fluid flow and mechanical compression is

considered. The results of this model are interpreted in the context of the bioreactor system

of El Haj et al. (see §1.2.3) and of tissue engineering in general.

As we progress through the thesis, the mathematical models increase in complexity

towards a more realistic representation of a cell culture growing within a deformable porous

scaffold, which allows consideration of intraphase and interphase forces and the influence

of fluid flow, pressure, scaffold deformation and local cell density on the growth response of

the cell culture.

Following many studies of tissue growth which exploit a multiphase formulation (for ex-

ample, Landman & Please (2001), Breward et al. (2002), Franks (2002) and King & Franks

(2004) which investigate tumour growth), in chapter 2, we initially restrict attention to two
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viscous fluid phases and concentrate on the interaction between an imposed flow of pas-

sive culture medium and the response of the “cell phase”. In the context of the bioreactor

system discussed previously, this phase is interpreted as comprising cells and ECM; the

scaffold is neglected. The above studies are extended by the addition of an imposed flow

of culture medium (representing perfusion) and the coupling of the cells’ response to their

environment. Simplification of the field equations and reduction of the number of dependent

variables is achieved by exploiting the limit of large interphase viscous drag in which each

phase is subject to a common velocity and pressure field, recovering the model equations of

Franks (2002) and Franks & King (2003). The single velocity and pressure approximation

is valid for the outer flow in the bioreactor; the inner flow problem in a boundary layer near

the bioreactor walls requires consideration of the individual velocity and pressure fields of

each phase. Boundary conditions on the outer problem are derived via a boundary layer

analysis which deviate from those employed in Franks (2002) by the absence of slip. In the

interest of comparison with this study (and others) we permit slip in our analysis of the

model.

Employing both analytic and numerical techniques, we analyse the stability of a one-

dimensional growing tissue (defined by two sharp interfaces) to transverse perturbations,

showing that introducing a perturbation to the tissue density results in markedly different

behaviour to that presented by Franks (2002) in the case of uniform density. Considering

a tissue defined by diffuse boundaries and using numerical simulations in one and two

dimensions, we show that the one-dimensional, sharp interface model (for which we may

obtain analytic solutions) captures much of the behaviour of these more complex models.

The model is then developed to consider mechanotransduction-affected tissue growth. Using

numerical simulations in two dimensions, we demonstrate that comparison of construct

morphology in static and dynamic culture conditions provides a means to identify the

dominant regulatory growth stimulus.

In chapter 3, we develop a three phase model which allows the presence of the PLLA

scaffold to be considered, introducing a rigid porous phase (whose volume fraction is as-

sumed constant) in addition to the two viscous fluid phases. These phases are now inter-

preted as representing the cells and ECM (“cell phase”) and culture medium, respectively.

This allows explicit modelling of the interaction between the cells and the scaffold. The

long-wavelength limit is exploited to allow the three-phase system to be expressed as a pair

of coupled partial differential equations: a second order differential equation governs the

pressure of the culture medium and a parabolic equation governs the evolution of the cell
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phase volume fraction. We develop a numerical scheme for the solution of these equations

and validate the resulting numerical simulations using analytic solutions constructed in the

limit of asymptotically-small cell phase density. Our investigations reveal stark differences

in the behaviour of the cell phase depending upon the relative importance of cell aggregation

and attachment compared to repulsion.

This model is further analysed in chapter 4, where we exploit the numerical scheme

developed in chapter 3 to investigate the effect of varying key parameters associated with

cell aggregation and cell-scaffold interactions. We show that the manufacture of denser

scaffolds improves control over the aggregative/attachment behaviour of cells. In addition,

we present simulations demonstrating the effect of coupling the external fluid mechanics

and local cell density to the growth response of the cell population. As in chapter 3, we

conclude that the model provides a simple means to determine the dominant regulatory

stimulus.

In chapters 3 and 4, we model the scaffold phase as a rigid material of constant porosity.

This assumption is relaxed in chapter 5 and we re-interpret the scaffold phase as a lumped

scaffold and ECM phase, introducing an equation to govern its evolution in response to

scaffold degradation and ECM deposition. This modification enables modelling of the pro-

gression of cells from a proliferative to an ECM-depositing phenotype, without increasing

the total number of phases in the system. Adapting the numerical scheme developed in

chapter 3, we present numerical simulations which, in addition to the ability to isolate reg-

ulatory mechanisms, demonstrate that a uniform cell seeding and the encouragement of cell

penetration throughout the scaffold are crucial in maintaining the mechanical integrity of

engineered constructs.

In chapter 6, we further extend the model to accommodate the influence of the me-

chanical compression supplied by the piston on the cells’ response, developing a framework

to investigate the interplay between perfusion, mechanical compression and cell differentia-

tion. To do so, we exploit both a classical poroelasticity formulation as well as a multiphase

model of the type employed previously (with a poroelastic constitutive law for the scaffold

phase). Employing analytical and numerical techniques, we investigate the behaviour of a

scaffold subject to time-dependent compression, demonstrating that the bioreactor geome-

try has a dramatic effect on the mechanical environment of a cell population contained with

the scaffold.

We review the thesis and re-iterate the main conclusions in chapter 7; additionally, we

outline a number of possible extensions to this work.
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Chapter2
A two-fluid model for the growth of a tissue

construct

2.1 Introduction

W
e now formulate and analyse a mathematical model applicable to the compres-

sion/perfusion system introduced in §1.2.3 and tissue engineering in general,

based on the derivation presented in §1.5. As a first approximation, the pres-

ence of the scaffold and the mechanical forcing from the piston are neglected and we employ

a two phase formulation of the type presented in Drew (1983), Franks (2002), Byrne et al.

(2003), Franks et al. (2003), Franks & King (2003) and King & Franks (2004). We model

the bioreactor system as a rigid-walled, two-dimensional channel containing a two phase

fluid. The cells and extracellular matrix are modelled as one phase which grows in a pre-

scribed manner; the second phase represents the culture medium. Our model accommodates

cell proliferation and death as well as ECM deposition and degradation. Perfusion is rep-

resented by an imposed flow of culture medium.

In §2.2.1, the governing multiphase equations (§1.5) are simplified by exploiting the

limit of large interphase viscous drag in which the two phases are subject to a common ve-

locity and pressure field, recovering the model of Franks (2002) and Franks & King (2003).

In §2.3, the impact of an ambient flow on the growth of a one-dimensional tissue, whose

net rates of proliferation and ECM deposition are assumed constant, is investigated. An-

alytic solutions are presented in the limit for which the interfaces between the tissue and

surrounding culture medium are sharp and the stability of these interfaces to transverse

perturbations is investigated (§2.3.1). In §2.3.2, numerical simulations are presented corre-

sponding to a one-dimensional tissue defined by diffuse interfaces which grows at a constant

rate, and in §2.4.1, two-dimensional numerical simulations are presented. Lastly, in §2.4.2
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the model is extended by linking the cells’ proliferation and ECM deposition rate to the local

mechanical environment, thereby allowing consideration of a simple mechanotransduction

mechanism. We illustrate the effect of such a mechanism by coupling the cells’ proliferative

behaviour to (i) the local cell density and, (ii) the pressure, showing how comparison of

tissue construct morphology resulting from static and dynamic culture conditions provides

a simple way to identify the dominant regulatory tissue growth stimulus. A discussion of

our results and their applications within a tissue engineering context is presented in §2.5.

2.2 Model formulation

In this section, we apply the general multiphase formulation given in §1.5 to develop a

simple model for the bioreactor of El-Haj et al. (§1.2.3).

We consider the growth of a tissue construct within a nutrient-rich culture medium

and investigate the effect of an imposed flow on the response of the cells. The presence of

the scaffold and the mechanical forcing from the piston are neglected and we represent the

system as a two-dimensional channel containing a tissue construct surrounded by culture

medium. For simplicity, a two-dimensional Cartesian geometry is chosen; however, gener-

alisation to a cylindrical geometry is straightforward. The channel contents are modelled

as a two-phase mixture of interacting viscous fluids. The cells and extracellular matrix

(ECM) are modelled as a single phase (henceforth termed the “cell phase”); the second

phase represents the culture medium. Perfusion is represented by a flow of culture medium

generated by an imposed axial pressure drop. In the following we will employ the term

“tissue construct” to distinguish the region occupied by the interacting system of cell and

culture medium phases from the remainder of the channel containing only culture medium.

We remark here that at certain stages in this chapter, the interfaces between the construct

and the surrounding culture medium will be assumed to be sharp or diffuse to allow different

analyses to be performed.

A Cartesian coordinate system x∗ = (x∗, y∗) is chosen with corresponding coordinate

directions (x̂, ŷ) and the channel occupies 0 6 x∗ 6 L∗, 0 6 y∗ 6 h∗ (see figure 2.1). In this

thesis, asterisks distinguish dimensional quantities from their dimensionless equivalents.

We associate with the cell and culture medium phases a volume fraction denoted n,w,

respectively and a volume-averaged velocity, u∗
i = (u∗i , v

∗
i ), pressure, p∗i , stress tensor, σ∗

i

and density, ρ∗i (where i = n,w denotes variables associated with the cell and culture

medium phases, respectively) and assume that these are functions of x∗ and t∗, where t∗
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represents time.

Tissue construct Culture mediumCulture medium

w = 1w = 1 n+ w = 1

x∗

y∗

h∗

L∗

Figure 2.1: An idealised model of a perfusion bioreactor as a two-dimensional channel of

length L∗ and width h∗ containing a tissue construct.

The multiphase model outlined in §1.5 is simplified by assuming that the two phases are

incompressible with the same density, so that ρ∗i = ρ∗ (i = n,w). Under these assumptions,

in dimensional form, equations (1.40), (1.42), (1.43), (1.44) and (1.45) are as follows:

conservation of mass:
∂n

∂t∗
+ ∇∗ · (nu∗

n) = S∗
n +D∗

n∇∗2n, (2.1)

∇∗ · (nu∗
n + wu∗

w) = S∗
n + S∗

w; (2.2)

conservation of momentum: ∇∗ · (wσ∗
w) + F∗

wn = 0, (2.3)

∇∗ · (nσ∗
n + wσ∗

w) = 0; (2.4)

no voids: n+ w = 1, (2.5)

where S∗
i is the rate of material transfer into phase i and F∗

ij is the interphase force exerted

on phase i by phase j. We remark that a diffusive term has been added to the mass conserva-

tion equation (2.1); these terms are expected to be negligible in many cases (King & Franks,

2004) but are included for numerical convenience since they eliminate the moving bound-

aries which would otherwise require tracking (for simplicity, we choose D∗
i = D∗ as implied

by equation (2.2)). In the analysis for which the interface between the tissue construct and

culture medium is sharp, we set D∗ = 0.

To close equations (2.1)–(2.5), we require constitutive laws for the interphase forces

(F∗
ij), the stress tensors (σ∗

n, σ∗
w) and the transfer rates (S∗

n, S
∗
w), which describe the

behaviour of the cell and culture medium phases.

We simplify the formulation given in §1.5 by assuming that interphase tractions may be

neglected and that the culture medium acts as a “passive” phase, generating no intraphase
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pressures; we therefore set ψ∗
nw = 0 = Σ∗

w in equations (1.47) and (1.48). We further

assume that the common “mixture” pressure introduced in equation (1.47) is equal to the

fluid pressure so that p∗ = p∗w and that the coefficients of interphase viscous drag in (1.46)

obey K∗
nw = K∗

wn = k∗, where k∗ is constant. From equation (1.46), the interphase force is

therefore given by

F∗
wn = p∗w∇∗w + k∗(u∗

n − u∗
w). (2.6)

In view of the above assumptions, we find from equation (1.48) that the cell phase pressure

(p∗n) is related to that in the culture medium by:

p∗n = p∗w + Σ∗
n. (2.7)

In equation (2.7), Σ∗
n is an intraphase pressure function, representing cell-cell and cell-ECM

interactions.

We model the cell and culture medium phases as viscous fluids and therefore specify

the volume-averaged stress tensors for each phase in the following manner:

σ∗
i = −p∗i I + µ∗i (∇∗u∗

i + ∇∗u∗T
i ) + λ∗i (∇∗ · u∗

i )I; i = n,w, (2.8)

where µ∗i and λ∗i represent the dynamic shear and bulk viscosity coefficients of the ith phase

and I is the identity matrix. This model is of the form employed by, for instance, Franks

(2002) and Byrne et al. (2003). A functional form for the intraphase pressure function Σ∗
n

(e.g. that employed in Lemon et al. (2006)) is not specified here since, in this chapter, we

will employ a lumped pressure field which encapsulates this function (the fluid pressure

p∗w may, in principle, be calculated from our lumped pressure field on specification of an

appropriate form for Σ∗
n). Functional forms for the mass transfer rates S∗

n, S
∗
w will be

specified in the following section.

Appropriate boundary conditions on this problem are as follows:

∂n

∂y∗
= 0, u∗

w = 0 = u∗
n, on y∗ = 0, h∗, (2.9a,b)

n = 0, p∗w = P ∗
u , on x∗ = 0, (2.10a,b)

n = 0, p∗w = P ∗
d , on x∗ = L∗. (2.11a,b)

Equations (2.9) guarantee no-penetration and no-slip on the channel walls y∗ = 0, h∗.

Equations (2.10) and (2.11) ensure that the tissue construct does not extend along the

channel’s length and, additionally, define the imposed axial pressure drop, P ∗
u − P ∗

d , which

drives a flow. Initial cell phase distributions suitable for the analyses presented in this

chapter will be specified subsequently.
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The governing equations are non-dimensionalised by choosing the following dimension-

less variables

x∗ = L∗x, t∗ =
L∗

U∗
w

t, u∗
i = U∗

wui, (p∗w,Σ
∗
n) =

U∗
wµ

∗
w

L∗
(pw,Σn), S

∗
i =

U∗
w

L∗
Si, (2.12)

wherein U∗
w is a fluid velocity scale which will be determined subsequently. We have em-

ployed a viscous scaling for the culture medium and intraphase pressures (pw, Σn) since

we assume that viscous effects dominate inertia in the momentum equations. We pause

to remark here that in view of the non-dimensionalisation t∗ = L∗t/U∗
w, the timescale of

interest is the time taken for a fluid particle to travel along the length of the bioreactor.

The flow rate for the bioreactor system given in §1.2.3 is 0.1ml/min and the scaffold has

a diameter of 9mm and height 4mm, giving a timescale of approximately 2.5 minutes. We

note that this is very short in comparison to the duration of dynamic culture over which

tissue growth occurs (1 week) given in §1.2.3. We therefore expect the ratio of the growth

timescale to the flow timescale to be large; however, in this chapter (and the proceeding

chapters of this thesis), we consider this ratio to be of O(1), employing fast growth rates

to minimise computation time and to illustrate features of the system. Realistic growth

time-scales may be obtained by manipulating the problem parameters.

The dimensionless form of the conservation of mass and momentum equations (2.1)–

(2.4) is as follows:

∂n

∂t
+ ∇ · (nun) = Sn +D∇2n, (2.13)

∇ · (nun + wuw) = Sn + Sw, (2.14)

w∇pw + k(uw − un) −∇ ·
[
w(∇uw + ∇uTw) + γww(∇ · uw)I

]
= 0, (2.15)

∇ ·
[
−(pw + nΣn)I + µnn(∇un + ∇uTn ) + γnn(∇ · un)I

+ w(∇uw + ∇uTw) + γww(∇ · uw)I
]

= 0, (2.16)

and equation (2.5) is used to eliminate w. The boundary conditions (2.9)–(2.11) trans-

form naturally and are not repeated here. For clarity, the dimensionless upstream and

downstream pressures are defined as follows:

Pu =
P ∗
uL

∗

U∗
wµ

∗
w

, Pd =
P ∗
dL

∗

U∗
wµ

∗
w

. (2.17)

The dimensionless parameters D, µn, k, γw and γn are given by

D =
D∗

U∗
wL

∗
, µn =

µ∗n
µ∗w

, k =
k∗L∗2

µ∗w
, γw =

λ∗w
µ∗w

, γn =
λ∗n
µ∗w

, (2.18)
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and the channel now occupies 0 6 x 6 1, 0 6 y 6 h = h∗/L∗. The physical interpretation

of the dimensionless diffusion coefficient (or inverse Peclet number) D, relative viscosity

µn, and drag coefficient k is obvious. The parameter γi describes the relative importance

of the viscosity associated with the rate of change of volume of the ith phase compared to

that associated with fluid shear. It is usual to take λ∗i = −2µ∗i /3 implying γw = −2/3 and

γn = −2µ∗n/3µ
∗
w (Franks, 2002; Franks & King, 2003; King & Franks, 2004; Lemon et al.,

2006). We expect µ∗n > µ∗w and therefore assume γn 6 −2/3.

2.2.1 Large drag limit

By considering the Stokes drag due to water flowing past a sphere, Lubkin & Jackson

(2002) calculated the following estimate for the drag coefficient between cells and water:

k∗ = 4.5 × 107N · m−4 · s. Recalling that the lengthscale for the system is the bioreactor

length, L∗ (see figure 2.1), and assuming that this is of the same order as the scaffold length,

we choose L∗ = 4× 10−3m (see §1.2.3). Lastly, we take the culture medium viscosity to be

equal to that of water, µw = 1×10−3N·m−2 ·s (Lemon & King, 2007), and the dimensionless

drag coefficient may then be calculated from equation (2.18) to give:

k =
k∗L∗2

µ∗w
= 7.2 × 105. (2.19)

Motivated by this, we now consider the limit in which the interphase viscous drag is large

(k ≫ 1) and derive appropriate governing equations and boundary conditions.

We consider a power series expansion of the dependent variables as follows:

n(x, t) = n0(x, t) +
1√
k
n1(x, t) +

1

k
n2(x, t) + · · · , (2.20)

with similar expansions for un, uw, pw and Σn; at leading order, equation (2.15) gives

un0 = uw0 so that we may approximate the local velocity field of each phase with a common

velocity, denoted u0. As adopted ab initio in Franks (2002) and Franks & King (2003), we

assume that each phase has the same material properties (γi = −2/3, µn = 1) and that at

leading order the mass transfer terms Sn0, Sw0 are given by

Sn0 = (km − kd)n0, Sw0 = kdn0, (2.21)

in which km = (k∗mL
∗)/U∗

w represents the dimensionless rate of cell mitosis and ECM deposi-

tion, kd = (k∗dL
∗)/U∗

w represents the dimensionless rate of cell death and ECM degradation,

and k∗m, k∗d are the corresponding dimensional rates. For brevity, we will henceforth refer

to km and kd as the “growth rate” and “death rate”, respectively. In general, km and kd
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will depend upon the cells’ mechanochemical environment (e.g. nutrient availability, growth

factors, local cell density or stress) and in the following derivation we therefore allow both

spatial and temporal variation in these functions: km(x, t), kd(x, t). These choices im-

ply that cell death (and ECM degradation) results in a corresponding increase in culture

medium. We therefore view cells (and ECM) as constituting essentially the same matter as

the culture medium (which is consistent with our assumption of uniform material properties

in the two phase mixture). However, since these choices of mass transfer terms do not obey
∑
Si0 = 0, this model does not conserve mass and cell phase growth therefore represents

spontaneous mass generation in the system.

From (2.14)–(2.16), we obtain the following equations at leading order for p0 and u0:

∇ · u0 = kmn0, (2.22)

∇p0 = ∇2u0 +
1

3
∇ (∇ · u0) . (2.23)

In (2.23) we have introduced the lumped pressure field: p0 = pw0 + n0Σn0 and in the

following, we work in terms of this lumped pressure, obviating the need to specify Σn0.

Equation (2.22) states that the rate at which the tissue grows is determined by the rate

of cell proliferation and ECM deposition. Taking the divergence of equation (2.23) yields

an expression for ∇2(∇ · u0); substituting this into the Laplacian of (2.22) allows us to

eliminate u0, yielding an equation for the pressure in terms of the cell volume fraction only.

We may then express the model equations in the more natural form given in Franks (2002)

and Franks & King (2003):

∂n0

∂t
+ ∇ · (n0u0) = (km − kd)n0 +D∇2n0, (2.24)

∇2p0 =
4

3
∇2 (kmn0) , (2.25)

∇2u0 = ∇p0 −
1

3
∇ (kmn0) . (2.26)

Appropriate boundary conditions (e.g. those employed in Franks (2002)) for equations

(2.24)–(2.26) are not immediately obvious. Inspection of the large drag limit of the momen-

tum equations (2.14) and (2.15) indicates that in a boundary layer of thickness O(1/
√
k)

near the channel walls the large drag model (2.24)–(2.26) breaks down. We show below that

boundary conditions on the outer problem may be derived by considering the behaviour in

the boundary layer.
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Boundary layer analysis

We consider the behaviour in a boundary layer near the channel wall at y = 0 by in-

troducing a boundary layer coordinate, Y (y = Y/
√
k) and boundary layer variables N ,

U i = (Ui, Vi/
√
k), Pw and P = Pw +NΣ; P is the lumped pressure in the boundary layer

(cf. the outer variable, p0). The scaling Vi/
√
k is indicated by equation (2.14). As in (2.20),

we consider an expansion of our boundary layer variables of the form:

N(x, Y, t) = N0(x, Y, t) +
1√
k
N1(x, Y, t) +

1

k
N2(x, Y, t) + · · · , (2.27)

with similar expansions for U i, Pw and P . At leading order, the governing equations

(2.14)–(2.16) in the boundary layer yield:

KmN0 =
∂

∂x

[
N0Un0 + (1 −N0)Uw0

]
+

∂

∂Y

[
N0Vn0 + (1 −N0)Vw0

]
, (2.28)

Uw0 − Un0 = (1 −N0)
∂2Uw0

∂Y 2
− ∂Uw0

∂Y

∂N0

∂Y
, (2.29)

Vw0 − Vn0 = (1 −N0)

[
−∂Pw0

∂Y
+

4

3

∂2Vw0

∂Y 2
+

1

3

∂2Uw0

∂x∂Y

]
− ∂Uw0

∂Y

∂N0

∂x

− ∂N0

∂Y

[
4

3

∂V w0

∂Y
− 2

3

∂Uw0

∂x

]
, (2.30)

∂2Un0

∂Y 2
=

(N0 − 1)

N0

∂2Uw0

∂Y 2
+

1

N0

∂N0

∂Y

[
∂Uw0

∂Y
− ∂Un0

∂Y

]
, (2.31)

∂P0

∂Y
= N0

[
4

3

∂2Vn0

∂Y 2
+

1

3

∂2Un0

∂x∂Y

]
+ (1 −N0)

[
4

3

∂2Vw0

∂Y 2
+

1

3

∂2Uw0

∂x∂Y

]

+

[
4

3

(
∂Vn0

∂Y
− ∂Vw0

∂Y

)
− 2

3

(
∂Un0

∂x
− ∂Uw0

∂x

)]
∂N0

∂Y
,

+
∂N0

∂x

[
∂Un0

∂Y
− ∂Uw0

∂Y

]
. (2.32)

In equation (2.28), Km is the growth rate in the boundary layer (the corresponding death

rate is denoted Kd) which is assumed O(1). For simplicity, we consider rates of tissue growth

and death whose spatial variation is confined to the axial direction: Km(x, t), Kd(x, t).

We derive appropriate boundary conditions for the core flow equations (2.24)–(2.26)

by considering matching conditions at the boundary layer edge (Y → ∞):
{
n0 +

Y√
k

∂n0

∂y
+

1√
k
n1 + · · ·

} ∣∣∣∣
y=0

= lim
Y→∞

{
N0 +

1√
k
N1 + · · ·

}
, (2.33)

{
u0 +

Y√
k

∂u0

∂y
+

1√
k
u1 + · · ·

} ∣∣∣∣
y=0

= lim
Y→∞

{
U i0 +

1√
k
U i1 + · · ·

}
; i = n,w, (2.34)

{
p0 +

Y√
k

∂p0

∂y
+

1√
k
p1 + · · ·

} ∣∣∣∣
y=0

= lim
Y→∞

{
P0 +

1√
k
P1 + · · ·

}
. (2.35)
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These conditions ensure that the cell volume fraction, velocity of each phase and lumped

pressure within the boundary layer match with the cell volume fraction, common velocity

and lumped pressure in the core. Guided by these requirements, we postulate the following

forms for the leading-order velocities: U i0(x, Y, t) = Ũ(x, Y, t); Ũ = (Ũ , Ṽ ).

Equation (2.31) together with the no-slip condition (2.9b) yields Ũ = 0, in view of

which, equations (2.31) and (2.32) imply N0 = N0(x, t). This is consistent with the require-

ment that the volume fractions of the cell and culture medium phases remain bounded.

The mass conservation equation (2.28) may then be integrated, and on application of the

no-penetration condition (2.9b), yields Ṽ = KmN0Y , which in turn implies P0 = P0(x, t).

We now consider the solutions at next order since to these are required in order to

determine the appropriate boundary conditions on the leading order solutions N0 and P0

(see equations (2.33) and (2.35)). Taking into account the form of the leading order solutions

given above, we find that similar equations govern N1, U i1 and P1:

KmN1 =
∂

∂x
[N0Un1 + (1 −N0)Uw1] +

∂

∂Y
[N0Vn1 + (1 −N0)Vw1] , (2.36)

Uw1 − Un1 = (1 −N0)
∂2Uw1

∂Y
, (2.37)

Vn1 − Vw1 = (1 −N0)

[
∂Pw1

∂Y
− 4

3

∂2Vw1

∂Y 2
− 1

3

∂2Uw1

∂x∂Y

]
− ∂N0

∂x

∂Uw1

∂Y
− 4Km

3
N0

∂N1

∂Y
, (2.38)

∂2Un1

∂Y 2
=
N0 − 1

N0

∂2Uw1

∂Y 2
, (2.39)

∂P1

∂Y
=

∂

∂Y

[
N0

(
4

3

∂Vn1

∂Y
+

1

3

∂Un1

∂x

)
+ (1 −N0)

(
4

3

∂Vw1

∂Y
+

1

3

∂Uw1

∂x

)]

+
∂N0

∂x

(
∂Un1

∂Y
− ∂Uw1

∂Y

)
. (2.40)

Equations (2.37) and (2.39) together with no-slip indicate that the axial velocities are equal

and linear in Y : Ui1 = a(x, t)Y for arbitrary a(x, t). Motivated by this, we seek solutions

for the transverse velocity of the form: Vi1 = Ṽ1(x, Y, t). Consideration of (2.38) and (2.40)

then yields the following relation:
[
(N0 − 1)Λ′ − 4KmN0

3

]
∂N1

∂Y
− a

∂N0

∂x
= 0, (2.41)

where Λ is the O(1/
√
k) contribution to the lumped pressure from cell-cell and cell-ECM

interactions and ′ represents differentiation with respect to N . Applying (2.9a) implies

a(x, t) = 0. Since, in general, the expression in square brackets is non-zero, we conclude

N1 = N1(x, t). It is then straightforward to show P1 = P1(x, t) and Vi1 = kmN1Y (details

omitted for brevity).
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Using (2.33)–(2.35) to match these boundary layer solutions to the leading-order outer

solutions at y = 0, we ascertain the following boundary conditions (conditions on y = h are

obtained using an identical method):

u0 = 0,
∂n0

∂y
= 0,

∂p0

∂y
= 0, at y = 0, h, (2.42)

so that there is no-slip or penetration at the boundary layer edge. We remark that these

boundary conditions deviate from those employed by Franks (2002), in which slip was

permitted. In the remainder of this chapter, we employ the model of Franks (2002), allowing

slip along y = 0, h; for clarity, the boundary conditions to be employed henceforth are:

∂u0

∂x
= kmn0 −

∂v0
∂y

, v0 = 0,
∂n0

∂y
= 0,

∂p0

∂y
= 0, at y = 0, h. (2.43)

We pause here to highlight a restriction on the choice of the rates of growth and death.

For simplicity, we have assumed Km(x, t) and Kd(x, t). Since these must match with the

outer rates (km, kd) at y = 0, h, we require ∂km/∂y = 0 = ∂kd/∂y there; dependence of

the cells’ proliferative response on the velocity field (or its gradient) is therefore prohibited

and we may not include (for instance) fluid shear stress-enhanced proliferation pertinent to

the modelling of bone tissue engineering (see §1.2.2) in this formulation.

In summary, our model comprises equations (2.24)–(2.26) and the boundary condi-

tions given by the dimensionless versions of (2.10) and (2.11) and equations (2.43). In the

following sections, we present solutions to the model equations in various limits.

In an extension to Franks (2002) and Franks & King (2003), in §§2.3 and 2.4.1 we

investigate the effect of an ambient flow on a uniformly proliferating tissue, for which the

growth and death rates are constant. In §2.3, solutions are obtained in the one-dimensional

limit: in §2.3.1 analytic solutions are presented in the case for which the tissue is delineated

by two planar sharp interfaces (D = 0) and their stability to transverse perturbations is

determined; in §2.3.2, numerical solutions for a tissue defined by diffuse interfaces (D 6= 0)

are presented and compared with the analytic solutions from §2.3.1. In §2.4.1, corresponding

two-dimensional numerical solutions are presented. In §2.4.2, the model is further extended

by postulating functional forms for the growth rate, km(x, t), which allow the influence of

a range of mechanical stimuli on the growth response of the cells to be accommodated. For

simplicity, the death rate, kd, is kept constant in each case. The effect of these stimuli is

illustrated by considering the cells’ response to the local cell density and pressure using two-

dimensional simulations. We remark here that due to the absence of experimental data on

which to base our model parameter values and the fast timescale chosen, in all subsequent
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numerical simulations, the parameter values are selected to illustrate the behaviour of the

model under a particular growth regime.

2.3 One-dimensional growth

In this section, the formulation presented in §2.2.1 is simplified by assuming that the tissue

undergoes one-dimensional growth parallel to the x-axis and that the associated pressure

and velocity fields are functions of x and t only. For mathematical convenience, we initially

consider growth within a channel of infinite length. Dropping the subscript notation for

brevity, equations (2.24)–(2.26) reduce to give

∂n

∂t
+

∂

∂x
(nu) = (km − kd)n+D

∂2n

∂x2
, (2.44)

∂2p

∂x2
=

4km
3

∂2n

∂x2
, (2.45)

∂2u

∂x2
=
∂p

∂x
− km

3

∂n

∂x
, (2.46)

and we emphasise that we consider uniform growth here, for which km and kd are assumed

constant.

The axial boundary conditions presented in §2.2.1 require some modification since the

channel is now infinite in extent. Integration of equation (2.45) yields:

p =
4km
3
n+ α(t)x+ β(t), (2.47)

where α(t), β(t) are arbitrary functions of time; application of the boundary conditions

p = Pu, n = 0 at x = 0, p = Pd, n = 0 as x → ∞ indicates that we require α = 0,

β = Pu = Pd. A pressure drop-induced flow may therefore not be imposed. Instead,

we impose an upstream flow, U
∗
, corresponding to the condition u(x = 0, t) = U , where

U = U
∗
/U∗

w is the dimensionless upstream flowspeed. In the following, we choose U = 1

which implies that the velocity scale in the non-dimensionalisation (2.12) is U∗
w = U

∗
. The

value of the upstream and downstream pressure is arbitrary and we choose Pu = 0 = Pd

without loss of generality. In view of this, appropriate boundary conditions on this problem

are

p = 0, n = 0, u = 1, at x = 0, (2.48)

p = 0, n = 0,
∂u

∂x
= 0, as x→ ∞. (2.49)
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2.3 One-dimensional growth

From (2.47) (with α = β = 0), we deduce that the pressure is directly proportional to the

cell phase distribution, allowing us to obtain a reduced model in terms of the cell volume

fraction (n) and axial velocity (u) only (details omitted).

2.3.1 Sharp interface limit: D = 0

We now consider the regime in which the interfaces between the tissue construct and sur-

rounding culture medium are sharp, corresponding to the choice D = 0 in equation (2.44).

The domain is then separated into three distinct regions by two planar interfaces. We

denote the interfacial positions by x = L(t), R(t), across which we impose continuity of

velocity and normal stress:

[u]+− = 0,

[
−p+

4

3

∂u

∂x

]+

−

= 0 at x = L(t), R(t). (2.50)

In (2.50), we have adopted the notation [..]+− to denote the jump across an interface, the

superscript + indicating the limiting value x = L (or R) from within L(t) 6 x 6 R(t). The

evolution of the interfacial positions x = L(t), R(t) is determined by imposing the following

kinematic conditions which demand that particles on the interfaces remain there:

dL

dt
= u(L, t),

dR

dt
= u(R, t). (2.51)

For simplicity we consider a growing construct of spatially-uniform density, represented as

follows:

n(x, t) =

{
n(t) L(t) 6 x 6 R(t),

0 otherwise.
(2.52)

It is then trivial to integrate the one-dimensional equations in each region to determine:

u = 1, p = 0, 0 6 x < L(t), (2.53)

u = kmn (x− L(t)) + 1, p =
4

3
kmn, L(t) 6 x 6 R(t), (2.54)

u = kmn (R(t) − L(t)) + 1, p = 0, x > R(t). (2.55)

We remark that the linear velocity profile ensures that there are no viscous losses in this

model (see equation (2.46)), consistent with the absence of an imposed pressure drop.

The evolution of the cell distribution is determined from equation (2.44), which yields

the following well-known logistic growth behaviour:

n(t) =
n(0)Kert

K + n(0)(ert − 1)
, (2.56)
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2.3 One-dimensional growth

in which n(0) is the initial cell density, r = km − kd is the net growth rate and K =

1−kd/km is the carrying capacity which defines the stable steady-state density: if n(0) > K,

the cell density decreases monotonically to K; if K/2 < n(0) < K, the density increases

monotonically to K; if n(0) < K/2, the increase is sigmoidal (Murray, 2002).

The interfacial positions of the growing tissue construct are then given by equations

(2.51), from which we find:

L(t) = t+ L(0), R(t) =
R(0) − L(0)

K

[
K + n(0)

(
ert − 1

)]
+ t+ L(0), (2.57)

where L(0) and R(0) are the initial interfacial positions. These solutions show that the

construct is advected with the imposed flow (u(x = 0, t) = 1); furthermore, its width, given

by R(t) − L(t), increases exponentially due to cell proliferation and ECM deposition. We

note here that our model predicts axially asymmetric tissue growth: equations (2.57) show

that the upstream interface is advected at the speed of the imposed flow, whilst advection

of the downstream interface is augmented by tissue growth. This growth asymmetry is ev-

ident for both static and dynamic culture conditions. This is because we require continuity

of velocity on x = L(t) which, in the absence of an imposed flow, requires that the up-

stream interface remains stationary. The solutions (2.53)–(2.55) indicate that the pressure

is discontinuous across the interface between the tissue construct and surrounding culture

medium, with tissue growth responsible for the increased pressure. This behaviour is, of

course, an artefact of the sharp interface limit.

Linear stability analysis

The stability properties of such one-dimensional tissues have been analysed by a number of

authors, especially in the context of solid tumour growth; see, for example, Franks (2002),

Franks et al. (2003) and Franks & King (2003), in which the effect of nutrient limitations

and material properties on the stability of tumours of constant density is considered and

the results used to characterise to the malignancy and fingering instability of such tumours.

Here, we consider the effect of an imposed flow on the stability of a growing tissue to

disturbances in the transverse direction.

We perturb the interfaces L(t), R(t) as follows. Denoting the planar interfaces defined

in (2.57) by L0(t), R0(t), we introduce a transverse perturbation such that

L(y, t) = L0(t) + ǫL1(y, t) + · · · , (2.58)

R(y, t) = R0(t) + ǫR1(y, t) + · · · , (2.59)
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2.3 One-dimensional growth

where 0 < ǫ ≪ 1 and L1, R1 are perturbations. Correspondingly, we seek solutions to the

governing equations of the following form:

n(x, y, t) = n0(x, t) + ǫn1(x, y, t) + · · · , (2.60)

u(x, y, t) = u0(x, t) + ǫu1(x, y, t) + · · · , (2.61)

v(x, y, t) = ǫv1(x, y, t) + · · · , (2.62)

p(x, y, t) = p0(x, t) + ǫp1(x, y, t) + · · · , (2.63)

where n0, u0, p0 are the one-dimensional solutions (2.53)–(2.56) corresponding to the planar

interfaces. We remark that the subscript notation which previously indicated the terms in

the large drag expansion (2.27) has been replaced by subscripts denoting the solutions associ-

ated with the planar interfaces and perturbations. This calculation follows the methodology

presented in Franks (2002) and Franks & King (2003) and so much of the detail is omitted.

Returning to the two-dimensional system given by equations (2.22), (2.24) and (2.26),

we find that the perturbations to the cell volume fraction, pressure and velocity satisfy

∇ · u1 = kmn1, ∇2u1 = ∇p1 −
km
3
∇n1, (2.64)

∂n1

∂t
+ 2kmn0n1 + u0

∂n1

∂x
= (km − kd)n1. (2.65)

We note that following Franks (2002) we have employed equation (2.22) in preference to

(2.25). Appropriate boundary conditions, consistent with the leading-order axial conditions

(2.48) and (2.49) and the transverse conditions (2.43), are

u1 = 0, v1 = 0, p1 = 0, n1 = 0, at x = 0, (2.66)

∂u1

∂x
= 0, v1 = 0, p1 = 0, n1 = 0, as x→ ∞, (2.67)

∂u1

∂x
= kmn1 −

∂v1
∂y

, v1 = 0,
∂p1

∂y
= 0,

∂n1

∂y
= 0, at y = 0, h. (2.68)

Jump conditions on the moving boundary, x = L(y, t), are derived by Taylor-expanding

the following two-dimensional stress and velocity continuity conditions about the planar

interface x = L0(t):

[n̂ · σ · n̂]+− = 0,
[
t̂ · σ · n̂

]+
−

= 0, [u]+− = 0. (2.69)

In equations (2.69), σ is the stress tensor (2.8) defined in terms of the outer pressure and

velocity fields (p,u), [..]+− denotes the jump across the construct/fluid interface and n̂ and
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2.3 One-dimensional growth

t̂ are the unit normal and tangent to the interfaces, defined for x = L(y, t) as follows:

n̂ =

(
1,−∂L

∂y

)

√
1 +

(
∂L
∂y

)2
, t̂ =

(
∂L
∂y , 1

)

√
1 +

(
∂L
∂y

)2
, (2.70)

and similarly for the surface, x = R(y, t). At O(ǫ), we obtain the following conditions at

x = L0(t):
[
−p1 +

4

3

∂u1

∂x
− 2

3

∂v1
∂y

]+

−

= 0,

[
2kmn

∂L1

∂y
+
∂u1

∂y
+
∂v1
∂x

]+

−

= 0, (2.71)

u+
1 + kmnL1 = u−1 , [v1]

+
− = 0. (2.72)

Similar conditions apply at x = R0. The perturbations to the interfaces are governed by

the following kinematic conditions:

∂L1

∂t
= u−1 = u+

1 + kmnL1,
∂R1

∂t
= u−1 = u+

1 + kmnR1, (2.73)

which are applied at x = L0(t) and x = R0(t), respectively.

The stability of the one-dimensional tissue defined by equations (2.52) and (2.56) may

now be determined from solution of the system (2.64)–(2.73). We proceed by assuming that

the perturbations to the interfacial positions are separable, of the form

L1(y, t) = l1(t) cos(λy), R1(y, t) = r1(t) cos(λy), (2.74)

for arbitrary wavenumber, λ, and seek solutions for n1 of a like form:

n1(x, y, t) =

{
ñ(t) cos(λy) L(y, t) 6 x 6 R(y, t),

0 otherwise.
(2.75)

The temporal variation of n1 is determined from equation (2.65), yielding:

ñ(t) =
Gert

[K + n(0)(ert − 1)]2
, (2.76)

in which G is arbitrary (we set G = 1 in the following without loss of generality). In view

of the boundary condition (2.68), equation (2.75) indicates λ = mπ/h, for integer m.

We now introduce a subscript i to denote the region in which the solution is valid;

the regions i = 1, 2, 3 correspond to 0 6 x < L(y, t), L(y, t) 6 x 6 R(y, t), x > R(y, t),

respectively. Following Franks (2002), we write u1i = fi(x, t) cos(λy) and from equations

(2.64) we obtain

v12 =

(
kmñ− ∂f2

∂x

)
sin(λy)

λ
, p12 =

(
1

λ2

∂3f2

∂x3
− ∂f2

∂x
+

4kmñ

3

)
cos(λy), (2.77)

v1i = −∂fi
∂x

sin(λy)

λ
, p1i =

(
1

λ2

∂3fi
∂x3

− ∂fi
∂x

)
cos(λy); i = 1, 3, (2.78)
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which are consistent with the remaining transverse boundary conditions (2.68). Considering

the axial component of the second of (2.64), we find that the functions fi are given by:

fi(x, t) = [Ai(t) + Bi(t)x] eλx + [Ci(t) + Di(t)x] e
−λx. (2.79)

After some algebra, the twelve functions, Ai(t)–Di(t) may be specified in terms of the

planar interfaces L0(t), R0(t), the interface perturbation amplitudes l1(t), r1(t) and the cell

distributions n(t), ñ(t):

A1 =
kmn

2

(
l1e

−λL0 − r1e
−λR0

)
+
kmñ

2λ

(
e−λR0 − e−λL0

)
= −C1, (2.80)

A2 =
kme

−λR0

2λ
(λnr1 − ñ), (2.81)

C2 =
kmn

2

[
r1e

−λR0 − 2l1cosh(λL0)
]
− kmñ

2λ

[
2sinh(λL0) + e−λR0

]
, (2.82)

C3 = kmn [r1cosh(λR0) − l1cosh(λL0)] +
kmñ

λ
[sinh(λR0) − sinh(λL0)] , (2.83)

B1 = 0, D1 = 0, B2 = 0, D2 = 0, A3 = 0, B3 = 0, D3 = 0. (2.84)

As found for the one-dimensional base state of uniform density (equation (2.52)), it can

be shown that the perturbation to the pressure is directly proportional to the cell volume

fraction:

p1(x, y, t) =

{
4km

3 ñ(t)cos(λy) L(y, t) 6 x 6 R(y, t),

0 otherwise,
(2.85)

and the corresponding axial and transverse velocity perturbations ensure that the viscous

losses in the momentum equations (2.64) and (2.65) sum to zero, consistent with the absence

of a pressure drop.

Equations (2.73) then give

dl1
dt

= A1

[
eλL0 − e−λL0

]
,

dr1
dt

= C3e
−λR0 , (2.86)

where L0, R0 are defined by (2.57).

Equations (2.86) are solved numerically using the initial value problem solver, ode45

in MATLAB (which employs an explicit Runge-Kutta formula to compute the solution to

non-stiff problems) to determine the evolution of the perturbations. Numerical accuracy

checks are performed by refining error tolerance parameters (results omitted). Figure 2.2

shows how the perturbations evolve over time for different values of the growth rate, km.

We note from figure 2.2 that there are marked differences in the behaviour of the

perturbations to each interface: the amplitude of the upstream perturbation (l1) decreases
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Figure 2.2: The growth of the perturbation amplitudes l1 and r1 for different values

of the growth rate, km; the arrows indicate the direction of increasing km.

Parameter values: kd = 0.1, m = 2, h = 1, n(0) = 0.2, L0(0) = 4, R0(0) = 6.

Initial conditions: l1(0) = 0.2 = r1(0).

monotonically with time, passing through zero; conversely, the amplitude of the downstream

perturbation (r1) increases monotonically. The effect of this phenomenon on the behaviour

of the interfaces x = L(y, t), R(y, t) for the m = 2 mode is illustrated in figure 2.3, showing

how the reversal of sign of l1 corresponds to a dramatic difference in the behaviour of the

up- and downstream interfaces. This behaviour is a result of the transverse perturbation

to the cell volume fraction, n1 = ñ cos(λy). The transverse variation results in a tissue

with reduced density near y = (2q + 1)h/m and increased density near y = 2qh/m, for

integer q, causing invagination in the sparse regions and protrusion in the dense regions, as

depicted in figure 2.3. In the absence of transverse perturbations to the cell volume fraction

(n1 = 0), the tissue density is spatially uniform and the perturbations to each interface

do not exhibit this behaviour, both l1 and r1 increasing monotonically at exactly the same

rate (as reported by Franks (2002)); we note that in this case, the growth rate of the up-

and downstream perturbation amplitudes is lower than that observed for the downstream

interface in the regime for which n1 6= 0 (details omitted).

Inspection of equations (2.80), (2.83) and (2.86) indicates that the influence of the

transverse perturbation to the cell volume fraction (n1) on the stability of the interfaces di-

minishes with increasing wavenumber, λ(m): as λ increases, the growth of the perturbation

amplitudes (l1, r1) tends to that observed in the absence of perturbations to the cell volume

fraction (n1 = 0). Furthermore, equation (2.76) shows that for large time (t ≫ r−1), the

perturbation n1 decays to zero (in order that we remain within the linear regime we require
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2.3 One-dimensional growth

ǫ ert ≪ 1); indeed, for large time, the differential equations (2.86) reduce to

dl1
dt

∼
km − kd

2
l1,

dr1
dt

∼
km − kd

2
r1, (2.87)

and the one-dimensional solution for which n(x, t) = n(t), L0(t) 6 x 6 R0(t) is therefore

unstable to small transverse perturbations if the net growth rate is positive (we remark that

both the amplitude of the perturbations and the construct width increase exponentially

with time). It is interesting to note that the stability properties of the interfaces x = L0, R0

are largely unaffected by the presence of the ambient flow, which only enters the analysis

through the advection of the interfaces; see equation (2.57). Qualitatively similar results

are thus obtained in the zero flow regime (results omitted).

x

y

L0(t) R0(t)

L1(y, t) R1(y, t)

high density

high density

low
density

Figure 2.3: A diagram showing the effect of the transverse perturbation to the cell volume

fraction (n1) on the evolution of the perturbations L1(y, t) and R1(y, t) for

the m = 2 mode; the arrows show the direction of increasing time.

In the preceding analysis, we have considered the growth and stability of a tissue defined

by two planar interfaces within a perfusion bioreactor. For convenience, the bioreactor

was modelled as a channel of infinite length; the influence of considering a finite-length

bioreactor on the stability properties of this tissue is determined by performing a linear

stability analysis in an identical fashion to that given above, with the conditions at infinity

now imposed on the truncated boundary, x = X (for brevity, the details are omitted here).

Equations (2.73) are then integrated numerically to yield the behaviour of the perturbations.

We find that the up- and downstream planar interfaces are again unstable to transverse

perturbations; the growth rates of the perturbations, l1 and r1 match those predicted by the

linear stability analysis on an infinite domain provided that the interfaces do not approach

x = X (as reported in Franks (2002) and Franks & King (2003)). Figure 2.4 shows a

comparison between the growth of the perturbations l1 and r1 in the infinite and finite

domains; the divergent behaviour occurs when R0(t) approaches x = X.
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Figure 2.4: Comparison of the growth of the amplitude of the perturbations (l1, r1) for

the infinite and finite domains as the domain length, X , varies. km = 1, other

parameter values as in figure 2.2.

2.3.2 Numerical simulation: D 6= 0

We now present numerical solutions of the one-dimensional equations (2.44)–(2.46) on the

truncated domain 0 6 x 6 1 subject to (2.48) and (2.49); the conditions specified for x→ ∞
are imposed at x = 1. We emphasise that in contrast to the previous section, this system

represents a tissue construct defined by two diffuse interfaces. A suitably smooth initial

condition for n is chosen to be

n(x, 0) = 0.1 [tanh(50(x − 0.15)) − tanh(50(x− 0.2))] . (2.88)

Solutions to equations (2.44)–(2.46) are calculated with the NAG routine D03PCF which

uses a backward differentiation formula method to solve the system of ordinary differential

equations resulting from the application of the method of lines to a system of partial dif-

ferential equations. The evolution of n and u is shown in figure 2.5; the arrows indicate

the direction of increasing time. Results for the pressure, p, are omitted since it is directly

proportional to n (see equation (2.47)).

In figure 2.6, we compare the positions of the construct boundaries predicted by the

sharp interface analysis (equations (2.57)) and the numerically-calculated results for a dif-

fuse construct. The positions of the boundaries of the diffuse construct are taken to be

the up- and downstream half-maximal values of n; in equations (2.57), n(0) is approxi-

mated by the maximum value of n(x, 0). In figure 2.7, we compare the evolution of the

numerically-computed maximum cell volume fraction and the logistic growth predicted by

(2.56).
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Figure 2.5: A plot of (a) the cell volume fraction, n, and (b) the velocity, u, at t = 0−0.48

in steps of t = 0.04. Parameter values: D = 0.0005, km = 10, kd = 0.1.
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Figure 2.6: (a) A comparison between the numerically-computed positions of the up-

and downstream diffuse interfaces and those predicted by the sharp interface

analysis (L0(t), R0(t), equations (2.57)); (b) the % relative error between the

position of the diffuse up- and downstream interfaces and the corresponding

sharp interfaces.

Inspection of figures 2.5 and 2.6 shows that the analytical solutions (2.53)–(2.57), cor-

responding to a growing tissue construct of uniform density defined by two sharp interfaces,

capture much of the qualitative behaviour of the full one-dimensional model. Figure 2.5

shows how the cell population is advected downstream by the flow: the diffuse upstream

interface is advected at a constant rate, while the downstream interface is advected at a rate

which increases with increasing cell density, and the construct domain elongates accordingly.

Figure 2.6 shows that the numerically-calculated positions of these diffuse interfaces are in

good agreement with the sharp interfaces defined by equations (2.57). We highlight that,

as indicated by figure 2.5a, as t increases towards t = 0.48, the construct approaches the
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Figure 2.7: A comparison between the numerically-computed peak cell density (–) and

the logistic growth predicted by the sharp interface solution (2.56) (- -).

downstream domain boundary and meaningful comparison cannot be made. In addition,

figure 2.5a indicates that the time evolution of the peak cell density approximates the sig-

moidal growth profile predicted by the sharp interface solution (2.56): following the initial

fast growth phase, the peak cell density increases more slowly, tending towards the carrying

capacity, K = 1−kd/km; figure 2.7 shows a comparison between the numerically-calculated

peak cell density and that predicted by the solution (2.56) indicating good agreement. We

remark that the imposed flow advects the construct to the end of the domain before the

steady-state value n = K = 0.99 can be attained.

The numerically-computed velocity profile is constant prior to, and after, the tissue,

increasing approximately linearly within. It may be shown that the velocity increases with

gradient kmn(x, t) (cf. equation (2.54)) as demanded by the continuity equation (2.22);

the downstream velocity increases approximately exponentially with time, as predicted by

equations (2.55)–(2.57) (details omitted).

In this section, we have analysed the effect of an ambient flow on a one-dimensional

tissue construct whose rates of growth and death remain constant. Analytic solutions,

constructed in the limit for which the interfaces between the growing construct and the

surrounding culture medium are sharp, were shown to be in good qualitative agreement

with numerical simulations for a construct defined by two diffuse interfaces. In each case,

the effect of the flow is to advect the cells downstream. We find that the stability of

the sharp interfaces to transverse perturbations is largely unaffected by the imposed flow;

however, it is shown that the early-time behaviour of these interfaces is dramatically altered

by introducing a corresponding perturbation to the cell volume fraction.

In the context of the bioreactor system described in §1.2.3, this model predicts that

the cells and ECM will be advected through the bioreactor at the speed of the imposed
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perfusion. Very low flow rates are therefore required to prevent tissue from being flushed

out of the bioreactor before tissue growth can be achieved. This prediction is due to the

simplifying limit of large interphase drag employed in this chapter, in which each phase is

subject to a common velocity field.

2.4 Two-dimensional growth

2.4.1 Uniform growth

We now present numerical solutions to the two-dimensional equations (2.24)–(2.26) in the

domain 0 6 x 6 1, 0 6 y 6 h subject to the dimensionless versions of (2.10), (2.11) and

(2.43). Equation (2.24) is solved using a semi-implicit time-stepping method; the linear

systems associated with the discretised versions of equations (2.24)–(2.26) and correspond-

ing boundary conditions are solved using the Gaussian elimination routine in MATLAB at

each time step. The value of nk+1
i,j at each mesh point (i, j) and new time step, k + 1, is

computed from nki,j, u
k
i,j, v

k
i,j using the following semi-implicit approximation for equation

(2.24):

nk+1
i,j − nki,j

∆t
=

1

2

{(
km − kd −

uki+1,j − uki−1,j

2∆x
−
vki,j+1 − vki,j−1

2∆y

)
nk+1
i,j − uki,j

nk+1
i,j − nk+1

i−1,j

∆x

−vki,j
nk+1
i,j − nk+1

i,j−1

∆y
+D

(
nk+1
i+1,j − 2nk+1

i,j + nk+1
i−1,j

(∆x)2
+
nk+1
i,j+1 − 2nk+1

i,j + nk+1
i,j−1

(∆y)2

)

+

(
km − kd −

uki+1,j − uki−1,j

2∆x
−
vki,j+1 − vki,j−1

2∆y

)
nki,j − uki,j

nki,j − nki−1,j

∆x

−vki,j
nki,j − nki,j−1

∆y
+D

(
nki+1,j − 2nki,j + nki−1,j

(∆x)2
+
nki,j+1 − 2nki,j + nki,j−1

(∆y)2

)}
, (2.89)

wherein ∆t, ∆x, ∆y represent the size of the time step and the mesh spacing in the x-

and y- directions, respectively, and nki,j ≈ n(i∆x, j∆y, k∆t). We choose h = 1 and a

uniform spatial grid is chosen with ∆x = 5 × 10−3, ∆y = 1 × 10−2 and the time step is

∆t = 1×10−3. Convergence of the numerical scheme is ascertained via spatial and temporal

mesh refinement (the results of this are omitted here). We note that an upwind scheme is

used for the convective terms in equation (2.24): backward or forward differences are used

depending on the sign of the velocities u and v (in (2.89), the velocities are assumed to be

positive and so backward differences have been used).

Suitably smooth initial conditions for a y-independent cell population centred at x =
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2.4 Two-dimensional growth

0.45 read:

n(x, 0) = 0.1 [tanh(50(x − 0.4)) − tanh(50(x − 0.5))] , (2.90)

and a surface plot of these initial conditions is shown in figure 2.8.
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Figure 2.8: A surface plot showing the initial cell distribution n(x, t = 0) given by equa-

tion (2.90).

Plots of the cell volume fraction, pressure and axial and transverse velocity compo-

nents for the regime of dynamic culture conditions are shown in figures 2.9–2.12. Where

appropriate, surface and contour plots are included to add clarity. Figure 2.13 shows a

contour and surface plot of the predicted tissue construct for static culture conditions (in

which we choose Pu = Pd = 0). In the following (for dynamic culture conditions) we choose

Pu = 1, Pd = 0, h = 1, km = 4, kd = 0.2 and D = 0.001 and we emphasise that these

parameter values are not physiologically motivated, being chosen to illustrate the behaviour

of the model. We note that the choices Pu = 1, Pd = 0 set the velocity scale, U∗
w, used

in the non-dimensionalisation (2.12) to be U∗
w = P ∗

uL
∗/µ∗w; Pd = 0 corresponds to P ∗

d = 0

(see equations (2.17)). In the absence of cells, the maximum axial velocity is given by

u∗max = P ∗
uh

∗2/(8µ∗wL
∗); for the parameter choice given we therefore expect to see the max-

imum upstream dimensionless velocity to be u = 1/8. Inspection of figure (2.11) confirms

this.

Figure 2.9 shows how the initially small, y-independent construct given by (2.90) grows

and spreads through the channel. The cells are also advected along the channel to a limited

extent by the axial velocity, u, which is parabolic in y. This pressure-induced parabolic flow

causes increased advection in the channel centre where flow speed is maximal, introducing

significant transverse variation. We remark that the solution for the axial velocity, u, is

unique up to the addition of an arbitrary one-dimensional solution, û; we have chosen û = 0

so that no-slip is assured prior to the tissue; within and downstream from it, a significant

54



2.4 Two-dimensional growth

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

y

x

(a)

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

n

y
x

(b)

Figure 2.9: (a) A contour plot and (b) a surface plot of the cell volume fraction showing

the effect of a pressure-induced flow on tissue construct morphology at t = 0.6.

Parameter values: h = 1, km = 4, kd = 0.2, D = 0.001, Pu = 1, Pd = 0.
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Figure 2.10: (a) A contour plot and (b) a surface plot showing the pressure distribution

corresponding to the tissue construct in figure 2.9. Parameter values as

given in figure 2.9.

slip velocity is created.

The advection/growth behaviour of the tissue construct warrants further discussion.

Comparison of the profile shown in figure 2.9 and the initial condition illustrated in figure

2.8 shows that advection of the upstream periphery of the diffuse construct is confined to a

region near the channel centreline (y = 1/2) where the parabolic flow is maximal. Near the

channel walls, where the flow speed is low, limited upstream movement is observed due to

the presence of diffusion (for a higher diffusion coefficient than that employed in §2.3.2, this

behaviour is, of course, also observed in the case of a one-dimensional diffuse tissue). Advec-

tion of the downstream periphery introduces corresponding transverse variation; however,
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Figure 2.11: A surface plot of the axial velocity profile corresponding to the tissue con-

struct in figure 2.9. Parameter values as given in figure 2.9.
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Figure 2.12: (a) A contour plot and (b) a surface plot showing the transverse velocity

corresponding to the tissue construct in figure 2.9. Parameter values as

given in figure 2.9.

there is significantly greater axial advection due to the greater flow speed there. Figure

2.13 shows that in the absence of an imposed flow (Pu = 0 = Pd), the cell population

remains (almost) independent of the transverse coordinate (small transverse variation is

evident from close inspection of the contours in figure 2.13a). However, the population does

not grow in an axially-symmetric manner about the midpoint of the initial distribution:

the upstream periphery remains almost stationary (small upstream progression is made

due to diffusion) while the downstream periphery spreads downstream; furthermore, the

cell density gradient is greater on the upstream periphery. Mesh refinement and increasing

the diffusion coefficient, D, removes the transverse variation and reduces the axial growth

asymmetry; however, the construct still does not grow symmetrically about the midpoint

of the initial distribution. For both dynamic and static culture conditions, this type of
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Figure 2.13: (a) A contour plot and (b) a surface plot showing the predicted tissue con-

struct morphology for static culture conditions at t = 0.6. Pu − Pd = 0,

other parameter values as in figure 2.9.

axially asymmetric growth behaviour was predicted by the one-dimensional, sharp interface

analysis which indicated that the upstream interface moves at the speed of the imposed

flow, the advection of the downstream interface being increased by cell proliferation and

ECM deposition; see equation (2.57).

Figure 2.10 shows how the pressure distribution is affected by the cells. Up- and

downstream from the tissue the pressure field decreases linearly with x; an increase to

this culture medium pressure is observed in the area in which cells are present. As in the

one-dimensional case (§2.3), the deviation from the linear pressure profile mirrors the cell

distribution shown in figure 2.9. Similarly, the parabolic velocity distribution created by

this pressure gradient is greatly affected by the cells’ presence. Upstream, the cells do not

influence the flow and u remains x-invariant; however, where n 6= 0 the axial flow speed

increases with x in an approximately linear fashion, the gradient increasing over time with

increasing n. Again, this type of behaviour was indicated by the one-dimensional analysis;

see equations (2.53)–(2.55) and figure 2.5b, §2.3. We note that the maximum axial velocity

at x = 0 is u = 1/8 as expected. It may be shown (results omitted) that, as in the one-

dimensional case (§2.3), the gradient of the axial velocity (∂u/∂x) increases with the cell

density; however, in the two-dimensional case, this is now modified by the gradient of the

transverse velocity (∂v/∂y), as required by equation (2.22).

The transverse component of velocity (v) is initially small due to the one-dimensional

initial cell population. However, as n increases, transverse variation is introduced within

the tissue construct through the convective terms in the governing equation (2.24) and v
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increases, achieving maxima on the periphery of the construct (see figures 2.9 and 2.12).

We note that the magnitude of the axial velocity, u, is much greater than the transverse

velocity, v. This is because we impose an axial pressure gradient to drive the flow and,

due to the no-penetration boundary conditions, the resistance to transverse motion in the

channel is greater.

2.4.2 Mechanotransduction

We now further extend our model to investigate how coupling the growth rate of the cell

phase to the local mechanical environment affects the morphology of the tissue construct.

This is achieved by modifying the mass transfer term, Sn. For illustrative purposes, we

consider choices corresponding to the response of the cells to the following stimuli: contact

inhibition caused by cell-cell interactions, the effect of stress caused by increases in local

cell density and the influence of the external fluid dynamics. The first two stimuli are not

considered explicitly in this formulation; however, we consider that the gross effect of such

mechanisms is captured in the functional forms specified below. We remark that since the

“cell” phase comprises cells and ECM, modifying the growth and death rates (km, kd) in

response to local environmental factors enables crude modelling of a phenotypic switch due

to mechanical stimuli from, for instance, a proliferative phase to an ECM-producing phase.

The relevance of the following work hinges upon the appropriate choice of the mass

transfer term. As remarked previously (§2.2.1), for simplicity, the formulation employed here

precludes dependence of the cells’ proliferative response on the velocity field. Consideration

of shear stress-enhanced proliferation pertinent to the modelling of the bioreactor system

of El-Haj et al. (as discussed in §1.2.2) is therefore not included here. We restrict attention

to the following cell density and pressure-dependent responses.

1. Cell density-dependent response: Sn(n) = [km(n) − kd]n = κ(n)n;

2. pressure-dependent response: Sn(n, p) = [km(p) − kd]n = κ(p)n;

where km, kd are the rates of growth and death, respectively. More detail regarding the

effects that these functional forms capture is given below and we remark that for ease, the

death rate kd is kept constant in each case; the coupling of cell behaviour and the mechanical

environment is captured entirely through the growth rate, km.
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Cell density-dependent response: km(n)

We begin with the case for which Sn = Sn(n), motivated by the well-known phenomenon

of contact-inhibition (see Chaplain et al. (2006) and references therein), in which the pro-

liferation rate of cells decreases when they come into contact with other cells. In addition,

the level of residual stress induced by the growth of living tissues has a profound effect

on cell growth (Fung, 1991): a moderate level of stress appears to enhance cell growth

(Chaplain et al., 2006); however, Roose et al. (2003) observed that high stress levels created

within growing tumours may inhibit cell division. We emphasise that contact inhibition and

residual stresses are not considered explicitly within this model; however, the gross effect

of these phenomena may be incorporated by an appropriate choice of km(n).

As a simple model of the phenomena described above, we identify three distinct phases

in the behaviour of the cell population: (i) a proliferative phase, (ii) an ECM-producing

phase, and (iii) an apoptotic phase. At low density, the cells proliferate at a rate, km(n) =

k1n; at intermediate density, due to the additional production of ECM, the growth rate of

the cell phase is modified to a new value, km(n) = k2n (and we assume k2n > k1n); finally,

when the local density is too high, the cells enter an apoptotic phase (km(n) = 0). For

clarity, we remark that in each of these growth phases, cell phase death is occurring at a

rate, kd (we note that the “death rate”, kd, includes ECM degradation as well as cell death).

The threshold cell densities that separate the different types of behaviour are denoted n′1

and n′2. The variation of the net growth rate, κ(n) = km(n) − kd, corresponding to this

behaviour is illustrated in figure 2.14.

Pressure-dependent response: km(p)

An alternative way to model the tendency of cells to adapt their behaviour in response to

their local density is to consider the “lumped pressure” (defined as p = pw0 + n0Σn0; see

§2.2.1) as an indicator of cell density; i.e km(p). This choice has the added advantage of

including the response of cells to the local culture medium pressure. It has been widely

reported that bone cells are more sensitive to flow stimulation than hydrostatic loading and

a great many studies have shown this to be the case; however, certain studies have found

that bone cells also respond to hydrostatic loads. Klein-Nulend et al. (1995a) and references

therein have reported that intermittent hydrostatic compression “inhibits bone resorption

and stimulates bone formation”; Haskin et al. (1993) found that bone cells respond with

increased adhesion; and Owan et al. (1997) showed that increased osteopontin (a protein
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implicated in the bone remodelling process) expression is induced by fluid pressure. We

therefore modify the mass transfer term for the cell phase, Sn, that appears in our mathe-

matical model to illustrate the effect that this mechanism might have on the evolution of

the tissue construct and to demonstrate the versatility of the formulation.

To represent a simple pressure-dependent response, we assume that at intermediate

pressures, the cells exhibit enhanced proliferation and ECM deposition (km(p) = k2p); at

low pressures, the cells enter a quiescent state in which proliferation and ECM deposition is

greatly reduced (km(p) = k1p < k2p); at high pressures, the cells enter apoptosis (km(p) =

0). The corresponding thresholds are denoted p′1, p
′
2 and the net growth rate, κ(p) =

km(p) − kd, is shown in figure 2.14.

Numerical simulations

We now present numerical solutions of the two-dimensional equations (2.24)–(2.26) subject

to the boundary conditions (2.10), (2.11) and (2.43) in which we employ the above choices

for Sn. We assume that the rates of growth and death of the cell phase (k1n, k1p, k2n, k2p,

kd) are constant and represent the proliferative responses described above with a smoothed

step function, as defined below:

κ(ϕ) =
k2ϕ − k1ϕ

2

{
tanh

(
g
[
ϕ− ϕ′

1

])
− 1
}

−k2ϕ

2

{
tanh

(
g
[
ϕ− ϕ′

2

])
− 1
}
− kd, (2.91)

where ϕ = n, p represents the stimulus in question, with corresponding threshold values

ϕ′
1, ϕ

′
2, and the parameter, g, dictates the level of smoothing; we note that smoothing is

necessary to obtain numerical solution since spatial derivatives of km appear in the governing

equations. Figure 2.14 shows a sketch of the function k(ϕ), highlighting the progression from

one proliferative phase to the next.

The effect of these choices of mass transfer on the morphology of the resulting tissue

is shown in figures 2.15 and 2.16.

Figure 2.15 illustrates that when the cell proliferation is density-dependent, due to the

smoothed progression from cell proliferation to ECM production (κ(n) = k2n − kd) and

apoptosis (κ(n) = −kd), the growth of the cell phase is arrested at n = n′2. We note that

despite the presence of apoptosis in this formulation, regression back to the proliferative

phase ensures that, once reached, the cell density does not fall below n = n′2.

Figure 2.16 shows the response of the cell phase when proliferation is pressure-

dependent. Rather than being arrested at a threshold density, the cell density profile is
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Figure 2.14: Schematic representation of the growth behaviour defined by equation

(2.91), modelling the progression of a cell population through a number

of growth phases in response to a stimulus, ϕ = n, p.
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Figure 2.15: (a) A contour plot and (b) a surface plot showing the effect of the cell

density-dependent proliferative response given by (2.91) on tissue construct

morphology at t = 0.65. Parameter values: h = 1, k1n = 4, k2n = 5,

kd = 0.2, n′

1 = 0.5, n′

2 = 0.6, g = 60, D = 0.001, Pu = 1, Pd = 0.

distorted, with cells becoming apoptotic where the pressure is high (near the upstream

diffuse interface and in regions of high cell density; see figure 2.10) and proliferation is re-

duced near x = 1 (where the pressure is low); between these regions, growth is enhanced.

The result of this spatial variation in proliferative rate is that the tissue construct grows

preferentially downstream in the regions of intermediate pressure.

Comparison of the cell phase distribution in each of the above growth regimes with that

obtained in the case of constant growth and death rates (figures 2.9, 2.15 and 2.16) shows

that the composition of the tissue construct is dramatically affected by coupling the growth

response of the cells to their environment. When cell proliferation and ECM deposition is

density-dependent, a uniform tissue construct is obtained; in the pressure-dependent case,
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Figure 2.16: (a) A contour plot and (b) a surface plot showing the effect of the pressure-

dependent proliferative response given by (2.91) on tissue construct mor-

phology at t = 0.8. k1p = 5, k2p = 7, p′1 = 0.5, p′2 = 0.8, g = 15; other

parameter values as in figure 2.15.

the predicted tissue construct composition is far less uniform. It is interesting to note that

in the absence of an imposed flow, the pressure field is directly proportional to the cell phase

distribution (see equation (2.47)) and the cell density- and pressure-dependent responses

are identical.

2.4.3 Two-dimensional growth: summary

In this section, we have presented two-dimensional, time-dependent numerical solutions to

the large drag limit of a two phase model of tissue growth which show the effect of an

ambient pressure-driven flow on the growth of a tissue construct when the rates of tissue

growth and death are assumed constant. In addition, we have studied the effect on the tissue

construct morphology of assuming that the tissue growth rate depends upon environmental

stimuli; specifically, the cell density and pressure.

Our simulations showed that in the constant growth rate regime, the cells are advected

downstream by the ambient flow with the advection of the diffuse downstream periphery

being augmented by tissue growth. In the absence of an imposed flow, the tissue construct

still grows preferentially in the downstream direction. Comparison with previous analysis

suggested that this type of advection/growth behaviour is captured qualitatively by the

far simpler one-dimensional limit in which the tissue construct is defined by two sharp

interfaces, between which the cell density is spatially invariant. This advection behaviour

implies that a very low rate of perfusion is required to prevent the tissue from being flushed
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out of the bioreactor before tissue growth can occur. As remarked in §2.3, this behaviour

is a consequence of the limit of large interphase drag employed in this chapter.

By considering two illustrative models of mechanotransduction-affected growth, we

have further demonstrated that the composition of the tissue construct is profoundly affected

by coupling cell proliferation/ECM deposition to the mechanical environment. The prolifer-

ation/ECM deposition functions were chosen to reflect a simple mechanotransduction mech-

anism. Our model admits more complex functional forms and dependence on combinations

of the field variables; however, the simpler form employed here allows clearer illustration of

the importance of mechanotransduction-affected growth within a tissue growth modelling

framework. In the absence of perfusion, the density- and pressure-regulated proliferative

responses of the cells are indistinguishable; in principle, this model therefore provides a

means to form hypotheses regarding the dominant mechanotransduction mechanism in the

growth of a cell population simply by observing the tissue construct morphology resulting

from static and dynamic culture.

2.5 Summary

In this chapter, we have shown explicitly that the two-fluid model for tissue growth of Franks

(2002) and Franks & King (2003), may be recovered from a more general multiphase for-

mulation by taking the limit of large interphase viscous drag. We applied this framework to

tissue growth processes in a perfusion bioreactor, represented by a two-dimensional channel

containing a two-phase mixture of interacting viscous fluids. The cells and ECM were mod-

elled as a single phase, the second phase representing the culture medium. Motivated by

parameter estimation, we employed the simplifying limit of large interphase drag, in which

we may describe each phase as being subject to a common velocity and lumped pressure

field. At distances of O(1/
√
k) from the channel walls (where k is the coefficient of viscous

drag), this approximation is no longer valid, and we employed a boundary layer analysis

to derive boundary conditions on the outer flow. These conditions deviated from those

employed in Franks (2002) in which slip was permitted. For ease of comparison with Franks

(2002) (and other studies), we obtained solutions to the model equations in the presence of

slip.

We have considered the effect of a dynamic flow environment on tissue growth processes.

Analytic predictions were obtained in the limit of a one-dimensional growing tissue defined

by two sharp interfaces, between which the cell density remains spatially invariant. The
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cell phase displayed logistic growth, the interfaces were advected by the ambient flow and

the tissue width increased exponentially due to growth of the cell population. The stability

of this tissue to periodic transverse perturbations was investigated, and the interfaces were

found to be unstable, the long-time stability being regulated only by the net growth rate.

In the presence of a corresponding perturbation to the cell volume fraction, we observed

markedly different behaviour to that reported in Franks (2002) for a spatially-invariant tis-

sue construct: the perturbation to the upstream interface reversed sign due to the variation

in construct density. This effect diminished with increasing perturbation wavenumber and

decayed to zero for large time.

Using numerical simulations in one and two-dimensions, the behaviour of a tissue con-

struct defined by two diffuse interfaces subject to an ambient flow was calculated for constant

growth and death rates. In each case, the type of advection behaviour predicted by the

sharp interface analysis was observed, indicating that this simple limit captures much of the

qualitative behaviour of the full system. In the two-dimensional case, transverse variation in

the tissue construct was induced by the parabolic flow of culture medium; small transverse

flows were induced at the construct periphery.

Our analysis indicates that cells and ECM are advected through the bioreactor at the

speed of the imposed flow. This implies that a very low rate of perfusion is required in

order to prevent the tissue from being flushed from the scaffold before tissue growth can

occur. This is a consequence of the simplifying limit of large interphase drag employed

in this chapter which demands that the cell and culture medium phases are subject to a

common velocity field.

The model formulation was further extended to account for coupling between the cells’

proliferative response and their local environment. This was achieved by replacing the

constant growth and death rates (km, kd) with appropriate functional forms. Specifically,

motivated by a range of studies, we considered the response of a cell population to the local

density and the local pressure. Simulations were presented showing that the growth of the

cell population is profoundly altered by these effects, dramatically changing the composition

of the construct. These simulations clearly demonstrate the importance of considering the

effect of mechanotransduction mechanisms within tissue growth models. Furthermore, our

model suggests that in static culture, regulation of proliferative behaviour by cell density

and culture medium pressure results in indistinguishable tissue constructs. In principle,

this conclusion suggests that inspection of the morphology of tissue constructs produced in

static and dynamic culture provides a simple means for the identification of the dominant
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regulatory mechanism in a given cell population. We note that we have neglected the

effect of nutrient availability on the growth of the construct. This is expected to become

important in static culture conditions; an interesting extension to this work is to determine

the influence of such a consideration on the predicted construct morphology in static and

dynamic culture conditions.

We concede that we have employed highly simplified functional forms to model the

different growth effects and that they were considered in isolation; physiologically, these

effects will work together in a complex way to produce the cells’ overall response. However,

we remark that the mathematical formulation and numerical scheme developed is highly

versatile, permitting the study of more complex functional forms and an investigation of

the interplay between many competing growth stimuli should appropriate experimental data

become available.

Inspection of equation (2.22) shows that since the source terms of the conservation laws

(2.21) are not equal and opposite, mass is spontaneously generated at a rate km. This is

illustrated by figures 2.5b and 2.11 in which it is clear that the flux leaving the channel at

x = 1 exceeds that entering at x = 0. The required flux condition is

∂Q

∂x
+ v|h − v|0 =

∫ h

0
kmn dy, where Q =

∫ h

0
u dy. (2.92)

In numerical simulations, this condition was found to be satisfied to within 0.07% at all

time steps. This error can be reduced further by decreasing the mesh size; however, this is

computationally expensive.

An additional limitation of our model is that since we represent the contents of the

bioreactor by a multiphase fluid, we are unable to model any of the solid characteristics of

the system. The implications of this are threefold: firstly, we are unable to consider the

effect of the mechanical forcing from the piston; secondly, the residual stresses generated

from volumetric tissue growth must be neglected (see §1.3); and thirdly, the interaction

between cells and the scaffold is not considered.

In the chapters that follow, we relax the assumption of large interphase viscous drag

and develop mathematical models which allow retention of the individual phase variables

and consideration of the interaction between the cells and a solid scaffold, as well as the

effect of mechanical compression.
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Chapter3
A simplified three phase model for the growth

of a tissue construct

3.1 Introduction

T
he model presented in chapter 2 is now extended to include a third phase which

accounts for the solid characteristics of the PLLA scaffold used in the bioreactor

system introduced in §1.2.3. As a simple first approximation, we consider the

scaffold phase to be rigid and neglect the mechanical forcing provided by the piston; however,

the model of chapter 2 is extended by: (i) retention of the individual phase variables in the

formulation, and (ii) explicit consideration of interphase tractions and intraphase forces,

resulting in a more complex coupling between the dynamic culture environment and the

tissue response.

We consider the uniform growth of a tissue construct within a two-dimensional channel,

for which the rates of growth and death are constant. The governing equations are simplified

by considering the limit for which the aspect ratio of the channel is small and the interfaces

between the construct and the surrounding culture medium are sharp (§3.2.1), allowing the

equations to be solved in three distinct regions. The system then reduces to a second-order

differential equation for the culture medium pressure coupled to a parabolic equation for

the cell volume fraction (§3.3). These equations are solved numerically using a semi-implicit

method (§3.3.1); the numerical simulations are validated by studying the model equations

in the limit for which the volume fraction of the cell phase is asymptotically small (§3.3.2),

a limit for which analytic solutions can be constructed. In contrast to the results presented

in chapter 2, we show that in the absence of perfusion, this more complex model predicts

symmetric growth; in addition, by modelling cell-cell and cell-scaffold interactions, we find

that the advective behaviour reported in chapter 2 is curtailed by cell aggregation and
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attachment of cells to the scaffold. Furthermore, we reveal markedly different cell behaviour

depending upon the relative importance of cell aggregation and attachment forces compared

to those associated with cell-cell and cell-scaffold repulsion. The chapter concludes with

a brief discussion of the relevance of the model solutions to tissue engineering and the

bioreactor system introduced in §1.2.3.

3.2 Model formulation

We consider the growth of a tissue construct within a nutrient-rich culture medium and

investigate the effect of cell-cell and cell-scaffold interactions as well as perfusion on the

response of the cells. As in chapter 2, the mechanical forcing from the piston is neglected

and we represent this system as a two-dimensional rigid-walled channel containing a tissue

construct surrounded by fluid culture medium. The channel contents are modelled as a

three-phase mixture comprising two viscous fluids and one rigid phase; the “cell phase”

(constituting both cells and extracellular matrix) and the culture medium are modelled as

viscous fluids, whilst the PLLA scaffold is modelled as a rigid, porous material. Perfusion

is represented by a flow generated by an imposed axial pressure drop. The terminology

“tissue construct” will again be employed to distinguish the region occupied by the cell,

scaffold and culture medium phases from the remainder of the channel which contains only

culture medium. At certain stages in this chapter, the interfaces between the growing cell

phase (within the porous scaffold) and the surrounding culture medium will be assumed to

be sharp or diffuse to allow different analyses to be performed.

A Cartesian coordinate system x∗ = (x∗, y∗) is chosen with corresponding coordinate

directions (x̂, ŷ) and the channel occupies 0 6 x∗ 6 L∗, 0 6 y∗ 6 h∗. Perfusion is driven by

an imposed axial pressure drop, P ∗
u − P ∗

d . We adopt the same notation as previously and

associate with each phase a volume-averaged fraction, φi, pressure, p∗i , stress tensor, σ∗
i ,

velocity, u∗
i = (u∗i , v

∗
i ) and density, ρ∗i , and denote dimensional quantities with asterisks.

We employ the multiphase model presented in §1.5, with attention restricted to three

incompressible phases. The mass and momentum balance equations for the ith phase are

∂φi
∂t∗

+ ∇∗ · (φiu∗
i ) = S∗

i +D∗
i∇∗2φi, (3.1)

∇∗ · (φiσ∗
i ) +

∑

j 6=i

F∗
ij = 0, (3.2)

where S∗
i is the rate of material production associated with the ith phase and F∗

ij is the

interphase force exerted on phase i by phase j. We remark that we have again included
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diffusive effects for numerical ease; D∗
i are the diffusion coefficients for each phase. In

the proceeding analysis, we assume that the diffusion coefficients for the cell and culture

medium phases are small and equal so that D∗
w = D∗

n = D∗ (see §2.2, page 34). For

notational convenience and for consistency with the model presented in chapter 2, the

volume-averaged fractions, φi, are denoted n, w, s and associated variables are labelled

with a corresponding subscript, i = n,w, s.

We now specify how our multiphase system interacts. As a first approximation, we

simplify the three phase formulation by assuming that the scaffold phase neither deforms nor

degrades. We therefore consider the limit u∗
s −→ 0. Setting D∗

s = 0, S∗
s = 0, s = constant,

we find that equation (3.1) is redundant for this phase and the no-voids condition, equation

(1.42), becomes

n+ w = θ, (3.3)

where θ = 1 − s is the porosity of the scaffold phase, and in the following we work in

terms of θ in preference to s. We further assume that the culture medium is a “passive”

phase, and set Σ∗
w = 0 = Σ∗

s, so that the culture medium and scaffold phases generate no

intraphase pressures. In addition, we assume that the tractions exerted by the cells on the

culture medium and the extra pressure exerted by the culture medium on the scaffold are

negligible, leading to ψ∗
nw = 0 = ψ∗

ws (see equations (1.47) and (1.48), §1.5 for more details

regarding these choices). Under these assumptions, equations (1.47) and (1.48) reduce to

p∗ = p∗w = p∗s, p∗n = p∗w + Σ∗
n + (1 − θ)ψ∗

ns, (3.4)

p∗wn = p∗w = p∗ws, p∗ns = p∗w + ψ∗
ns, (3.5)

where the functions Σ∗
n and ψ∗

ns represent the intraphase pressure generated by the cell

phase and the interphase traction between the cell and scaffold phases. We further extend

the model presented in chapter 2 by assuming that the drag coefficients, K∗
ij (equation

(1.46), §1.5) are given by

K∗
ij = k∗φiφj , (3.6)

where k∗ is assumed constant. This simple form includes the necessary dependence of the

interphase drag on the degree of contact between the relevant phases (Lemon et al., 2006).

From equation (1.46) we find that the interphase forces F∗
ij are given by:

F∗
nw = θp∗w∇∗n+ k∗nw (u∗

w − u∗
n) = −F∗

wn, (3.7)

F∗
sw = p∗w(1 − θ)∇∗n+ k∗(θ − n)(1 − θ)u∗

w = −F∗
ws, (3.8)

F∗
ns = (p∗w + ψ∗

ns) (1 − θ)∇∗n− k∗n(1 − θ)u∗
n = −F∗

sn. (3.9)
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To close the model, it remains to specify constitutive laws for the stress tensors (σ∗
n, σ

∗
w,σ∗

s),

the mass transfer rates (S∗
n,S

∗
w) and the intraphase and interphase pressure functions

(Σ∗
n,ψ

∗
ns).

We model the cell and culture medium phases as viscous fluids and therefore use equa-

tions (2.8) to define the volume-averaged stress tensors for each phase, and we assume that

ρ∗i = ρ∗ (i = n,w). For consistency, we choose the same form for the stress tensor asso-

ciated with the scaffold phase and take the limit in which the scaffold viscosity is infinite:

µ∗s −→ ∞. Functional forms for the mass transfer rates and intraphase and interphase

pressure functions will be specified in §3.2.1.

Appropriate boundary conditions on this model are given by (2.9)–(2.11) and initial

cell distributions suitable for the analyses presented in this chapter will be specified subse-

quently.

We remark here that within this simplified three-phase formulation, the scaffold phase

enters into the governing equations only via the constant porosity, θ.

3.2.1 Non-dimensionalisation

As in chapter 2, the governing equations are non-dimensionalised by choosing the following

dimensionless variables:

x∗ = L∗x, t∗ =
L∗

U∗
w

t, u∗
i = U∗

wui, (p∗w,Σ
∗
n, ψ

∗
ns) =

U∗
wµ

∗
w

L∗
(pw,Σn, ψns), S∗

i =
U∗
w

L∗
Si,

(3.10)

wherein U∗
w is a velocity scale which will be determined subsequently. We have again

employed a viscous scaling for the pressure since we assume that viscous effects dominate

inertia in the momentum equations and we note that, as remarked in chapter 2, we consider

tissue growth on a fast flowspeed-based timescale. Using (3.3) and (3.10), the dimensionless

equations read:

∂n

∂t
+ ∇ · (nun) = Sn +D∇2n, (3.11a)

∇ · (nun + (θ − n)uw) = Sn + Sw, (3.11b)

(θ − n)∇pw + kn(θ − n)(uw − un) + k(1 − θ)(θ − n)uw −

∇ ·
[
(θ − n)(∇uw + ∇uTw) + γw(θ − n)∇ · uwI

]
= 0, (3.11c)

∇ ·
[
− (θpw + nΣn + n(1 − θ)ψns) I + µnn(∇un + ∇uTn ) +

γnn∇ · unI + (θ − n)(∇uw + ∇uTw) + γw(θ − n)∇ · uwI
]
+

∇n(1 − θ)ψns − kn(1 − θ)un − k(θ − n)(1 − θ)uw = 0. (3.11d)
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The dimensionless parameters D, µn, k, γw and γn are defined by equations (2.18), with

identical physical interpretation. Equations (3.11a) and (3.11b) are statements of conser-

vation of mass for the cell phase and the multiphase mixture respectively, (3.11c) expresses

conservation of momentum for the culture medium phase and (3.11d) is a statement of

conservation of momentum for the two-phase mixture of cells and culture medium obtained

by summing equations (3.2) over i = n, w. We employ this equation in preference to the

momentum balance equation for the three phase mixture (see (1.45), §1.5) since in the limit

us −→ 0, µs = µ∗s/µ
∗
w −→ ∞, the combination µs(∇us + ∇uTs ) gives a non-negligible

contribution to the stress; this is a consequence of the fact that although the scaffold does

not deform, it may still carry stress. The value of this contribution (in terms of the other

variables n, pi, ui; i = n,w) may, in principle, be determined by considering the momentum

balance of the three phase mixture.

The channel now occupies 0 6 x 6 1, 0 6 y 6 h = h∗/L∗ and the corresponding

dimensionless boundary conditions transform naturally and are not given; the dimensionless

up- and downstream pressures are given by equations (2.17).

In a departure from chapter 2, we assume that the mass transfer terms are given by

Sn = (km − kd)n = −Sw, where km = (k∗mL
∗)/U∗

w represents the rate of cell mitosis and

ECM deposition and kd = (k∗dL
∗)/U∗

w represents the dimensionless rate of cell death and

ECM degradation (with corresponding dimensional rates k∗m and k∗d). In the interests of

brevity, we refer to km and kd as the “growth rate” and “death rate” and in this chapter

we consider uniform growth for which these are constant. As in the previous chapter, these

choices correspond to assuming that the cell and culture medium phases are comprised of

essentially the same matter; the difference in material properties between the cell phase and

the culture medium is therefore attributed to the presence of the cells’ cytoskeleton, and it

is implicitly assumed that this breaks down upon cell death.

To simplify the model, we consider the limit in which the interface between the tissue

construct and the surrounding culture medium is “sharp”; however, since the tissue con-

struct is now defined by the region in which s > 0, we need not specify D = 0 as in the

two-fluid model (cf. chapter 2). For simplicity, we confine the tissue construct to the region

a 6 x 6 b (see figure 3.1) and stipulate that the cell phase must remain confined within

the scaffold (the values of a and b are arbitrary, provided that a < b < 1). We achieve

this by imposing a no-flux boundary condition on the cell phase, n at the scaffold edge.

Formulating the problem in this way allows us to simplify the governing equations (3.11)

in the up- and downstream regions, whilst retaining the full complexity of the three phase
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3.2 Model formulation

system within the construct region. The problem may then be solved separately in each

region, and the solutions coupled together via appropriate conditions; boundary conditions

for equations (3.11) will be considered in §3.2.3.

n+ w = θw = 1

pw = Pu

a b

x

y

h
uw

1

pw = Pd

Figure 3.1: Definition sketch for an idealised three phase model of a perfusion bioreactor.

It remains to define the functions ψns and Σn, which specify the extra pressure gener-

ated due to traction between the cell and scaffold phases and the intracellular pressure cre-

ated due to interactions within the cell phase, respectively. Following the approach given in

other multiphase modelling studies (Breward et al., 2002; Byrne et al., 2003; Lemon et al.,

2006), appropriate expressions are taken to be

Σn = −nν +
δan

m+1

(θ − n)m
, ψns = −χ+

δbn
m

(θ − n)m
, (3.12)

for constants ν, δa, χ, δb, m > 0. The first term in each of these expressions reflects the cells’

tendency to aggregate at low densities and their affinity for the scaffold, respectively. The

second term represents the repulsive forces between cells and between the cells and scaffold

which arise when they come into close contact (Lemon et al., 2006). To clarify, dominance

of the first term in the intraphase pressure function corresponds to Σn < 0, resulting in a

reduction in cell pressure and subsequent aggregation. The opposite behaviour is reflected

by dominance of the second term in Σn. A similar mechanism is modelled by the intraphase

traction function. The behaviour of these functions for different parameter values is shown

in figures 3.2–3.4. Figure 3.2a shows how increasing the “aggregation parameter”, ν, causes

the first term in Σn to dominate for small n; Σn becomes initially more negative. As

discussed above, this reflects the tendency of sparse cell populations to aggregate. As n

increases, repulsive forces begin to dominate and the function becomes singular when the

cells have filled all available pore space: n = θ. Similar behaviour is observed in figure

3.3a: as the “scaffold affinity parameter”, χ, increases, the cells exhibit a strong affinity
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for the scaffold when n is small; repulsive forces dominate when the cell density increases.

The effect of increasing the intraphase (δa) and interphase (δb) “repulsion parameters” is

shown in figures 3.2b and 3.3b: as these parameters are increased, the repulsive terms in Σn

and ψns dominate the behaviour at progressively smaller values of n. The influence of the

parameter, m is illustrated by figure 3.4: an increase in m corresponds to repulsive effects

dominating over cell aggregation or scaffold affinity at progressively smaller values of n.
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Figure 3.2: The behaviour of the intraphase pressure function, Σn for (a) ν =

0.1, 0.2, 0.3, 0.4, δa = 0.1, (b) δa = 0.1, 0.2, 0.3, 0.4, ν = 0.3; θ = 0.97, m = 1.

The arrows indicate the direction of increasing parameter values.
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Figure 3.3: The behaviour of the interphase traction function, ψns for (a) χ =

0.1, 0.2, 0.3, 0.4, δb = 0.1, (b) δb = 0.1, 0.2, 0.3, 0.4, χ = 0.3; θ = 0.97, m = 1.

The arrows indicate the direction of increasing parameter values.

Values for the parameters, m, ν, χ, δa, δb are not readily available in the literature

since they will depend upon the characteristics of the cell culture in question (including, for
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Figure 3.4: The influence of the parameter, m on the intraphase pressure and interphase

traction functions, Σn, ψns for ν = χ = 0.3, δa = δb = 0.1, θ = 0.97,

m = 1, 2, 3. The arrows indicate the direction of increasing m.

instance, the level of (de-)differentiation) and the topography and surface chemistry of the

scaffold in a complex way. In the following, we assume m = 1 for simplicity and we choose

δa = δb, so that the extra pressures arising from interphase and intraphase repulsions are

equal. Additionally, we choose ν = χ so that cell-scaffold and cell-cell affinity are the same;

furthermore, we expect that for n < θ, the extra pressures associated with aggregation

and cell-scaffold affinity dominate those associated with repulsion and we therefore specify

(ν, χ) > (δa, δb). In the following we arbitrarily choose δa = δb = 0.1, ν = χ = 0.3; however,

we emphasise that these parameter values are not physiologically motivated, being chosen

simply to illustrate the type of behaviour that can arise (a thorough investigation of the

effect of these parameters, as well as the relative viscosity µn, on the behaviour of the cell

population is presented in chapter 4).

We note that our model reduces to the simpler two-fluid model employed in chapter

2 (with the exception of the mass transfer terms) if we set θ = 1, we neglect interphase

tractions (ψij = 0) and assume that the drag coefficients are constant (K∗
ij = k∗).

3.2.2 Long wavelength limit

We may further simplify the governing equations by considering the limit for which the

aspect ratio of the channel is small, corresponding to h ≪ 1. We therefore choose the

following rescalings:

y = hŷ, vi = hv̂i, pw = p̂w/h
2, Σn = Σ̂n/h

2, ψns = ψ̂ns/h
2, (3.13)
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and the channel now occupies 0 6 x 6 1, 0 6 ŷ 6 1. The rescaling of the intraphase pressure

and interphase traction functions implies: (ν, δa, χ, δb) = (ν̂, δ̂a, χ̂, δ̂b)/h
2; the remaining

parameters km, kd, k, µn, γw and γn are O(1). This scaling ensures that the cell-cell and

cell-scaffold interactions are retained at leading order.

We deduce from the ŷ-component of the momentum equations (3.11c), (3.11d) that, at

leading order, the pressure (pw and pn) and the volume fraction (n and w) of each phase are

functions of x and t only. Neglecting terms of O(h2) and dropping the carets for brevity,

we obtain the following equations for n, uw, un and pw at leading order:

conservation of mass:

∂n

∂t
+ ∇ · (nun) = (km − kd)n+D

∂2n

∂x2
+D

∂2ñ

∂y2
, (3.14a)

∇ · (nun + (θ − n)uw) = 0; (3.14b)

conservation of culture medium momentum:

∂pw
∂x

=
∂2uw
∂y2

; (3.14c)

conservation of momentum for the culture medium/cell mixture:

θ
∂pw
∂x

+
∂

∂x
[nΣn + n(1 − θ)ψns] = µnn

∂2un
∂y2

+ (θ − n)
∂2uw
∂y2

+
∂n

∂x
(1 − θ)ψns. (3.14d)

In equation (3.14a), ñ(x, t) is the O(h2) term in the expansion for n.

We remark that the values x = a, b which define the construct width must now obey

a, b− a, 1 − b ≫ h. Additionally, in contrast to chapter 2, since we assume k = O(1), the

influence of interphase viscous drag is neglected in this formulation.

3.2.3 Boundary conditions

Boundary conditions at x = 0, 1 and y = 0, 1 are given by the dimensionless versions of

(2.9)–(2.11). To clarify, as indicated in figure 3.1, we impose a dimensionless pressure drop,

Pu − Pd along the channel to drive a flow; additionally, since the cell and culture medium

phases are modelled as viscous fluids, we impose no-slip and no-penetration (and no cell

flux) at the channel walls: uw = un = ∂n/∂y = ∂ñ/∂y = 0 at y = 0, h. Appropriate jump

conditions across the boundaries x = a, b may be constructed by imposing continuity of flux

and normal stress as follows. Averaging the conservation of mass equation (3.14b) across

the channel, we find that the flux, Q, in each region is independent of the axial coordinate,
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x, and is given by:

Q(t) = 〈uw〉, 0 6 x < a, (3.15)

Q(t) = 〈nun + (θ − n)uw〉, a 6 x 6 b, (3.16)

Q(t) = 〈uw〉, b < x 6 1, (3.17)

where 〈··〉 is the averaging operator defined as follows:

〈··〉 =

∫ 1

0
· · dy. (3.18)

The normal stress exerted on the interfaces at x = a, b is given by σxx = n̂ · σT · n̂, where

n̂ is the outward unit normal to the interfaces at x = a, b and σT = nσn + (θ−n)σw. The

leading-order normal stress exerted on x = a, b by the fluid exterior to the construct region

is found to be σxx = −pw; the interior stresses are found to be σxx = npn + (θ − n)pw.

By requiring continuity of flux and normal stress across the two boundaries, we obtain the

following jump conditions:

[pw]− = [npn + (θ − n)pw]+ , (3.19a)

[ 〈uw〉 ]− = [ n〈un〉 + (θ − n)〈uw〉 ]+ , (3.19b)

with pn given by (3.4) and, as in chapter 2, the superscript + indicates the limiting value

x = a (or b) from within a 6 x 6 b and the superscript − denotes the limiting value from

the exterior. An additional condition governing the behaviour of the cell volume fraction

at x = a, b may be derived by requiring that the cell phase be confined within the scaffold

region a 6 x 6 b as follows. Writing the conservation of mass equation for the cell phase

(3.11a) in conservative form and averaging across the channel, we obtain:

∂n

∂t
+

∂

∂x
〈 J 〉 = (km − kd)n, (3.20)

wherein 〈 J(x, t) 〉 = n〈un〉 −D∂n/∂x is the averaged flux of cells and we have employed

the no cell flux condition at y = 0, 1 to eliminate ñ. To ensure no efflux of cells from the

region a 6 x 6 b, we impose 〈 J 〉 = 0 at x = a, b, implying

n〈un〉 = D
∂n

∂x
on x = a, b. (3.21)

3.3 Solution

In this section, we reduce equations (3.14) to a pair of coupled partial differential equations

for the cell volume fraction (n) and the pressure in the culture medium phase (pw) and, using
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§3.2.3, derive appropriate boundary conditions. Numerical solutions are presented (§3.3.1)

and, in an appropriate asymptotic regime, analytical solutions are constructed (§3.3.2).

Integration of equations (3.14c) and (3.14d) yields expressions for the axial velocities

in each region. For clarity, the regions 0 6 x < a, a 6 x 6 b, b < x 6 1 are denoted 1,2 and

3, respectively, and the variables are labelled appropriately. We obtain:

uw1 =
1

2

∂pw1

∂x
y(y − 1), un1 = 0, (3.22)

uw2 =
1

2

∂pw2

∂x
y(y − 1), un2 =

1

2µn

∂p

∂x
y(y − 1), (3.23)

uw3 =
1

2

∂pw3

∂x
y(y − 1), un3 = 0, (3.24)

wherein the culture medium pressures pwi(x, t) are unknown and p(x, t) is given by

∂p

∂x
=
∂pw2

∂x
+

1

n

∂

∂x
(nΣn) + (1 − θ)

∂ψns
∂x

. (3.25)

Equations (3.23) and (3.25) indicate that the velocity of the cell phase is driven by a

combination of the culture medium pressure gradient and contributions from cell-cell and

cell-scaffold interactions rather than ∂pn/∂x; see equation (3.4).

In view of equations (3.15) and (3.17), continuity of total flux requires that the up- and

downstream pressures pw1, pw3 are linear in x with the same gradient:

pw1(x, t) = A(t)x+ Pu, pw3(x, t) = A(t)(x − 1) + Pd, (3.26)

for an arbitrary function, A(t). The temporal variation of A(t) reflects the adjustment of

the up- and downstream culture medium pressure in response to the growth of the tissue

construct. At leading order, the flow is unidirectional; however, the transverse velocities

vw2, vn2 may be obtained by solving the appropriate O(h2) momentum equation subject

to suitable boundary conditions (e.g. vi2 = 0 on y = 0, 1, and appropriate conditions on

x = a, b); we do not present results here since these solutions are not required in the

proceeding analysis.

Using (3.21)–(3.24), equation (3.19b) may be rewritten as a condition on the culture

medium pressure gradient. The jump conditions (3.19) are then:

pw1

∣∣
x=a

= (npn + (θ − n)pw2)
∣∣
x=a

, pw3

∣∣
x=b

= (npn + (θ − n)pw2)
∣∣
x=b

, (3.27)
[
∂pw1

∂x
+ 12D

∂n

∂x

]

x=a

= (θ − n)
∂pw2

∂x

∣∣∣∣
x=a

,

[
∂pw3

∂x
+ 12D

∂n

∂x

]

x=b

= (θ − n)
∂pw2

∂x

∣∣∣∣
x=b

. (3.28)

Additionally, the no cell efflux condition (3.21) may be re-written as a condition on the cell

volume fraction. By exploiting the definitions (3.12), (3.23) and (3.25) together with (3.26)
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and (3.28), we arrive at the following condition:

∂n

∂x
=

A(t)n

(θ − n)
[
2νn− 12µnD − δan3+(1−θ)δbn2

(θ−n)2
− 3δan2+[δb(1−θ)+12D]n

θ−n

] on x = a, b. (3.29)

We may now rewrite the system (3.14) in terms of pw2 and n in the region a 6 x 6 b

subject to appropriate boundary conditions on x = a and x = b. By averaging the conser-

vation of mass equation (3.14b) across the channel and using equation (3.23) together with

the no-penetration condition and equation (3.25), we find that pw2 satisfies the following

second order equation:

∂2pw2

∂x2
+

µ

µn+ θ

∂n

∂x

∂pw2

∂x
= − 1

µn(µn+ θ)

[
∂2 (nΣn)

∂x2
+ (1 − θ)

∂

∂x

(
n
∂ψns
∂x

)]
, (3.30)

where µ = 1/µn − 1 and Σn, ψns are given by (3.12). Equation (3.30) is coupled to an

equation for n, obtained by averaging the appropriate conservation of mass equation across

the channel to obtain:

∂n

∂t
+

1

12

∂

∂x

{
(θ − n)

∂pw2

∂x

}
= (km − kd)n +D

∂2n

∂x2
. (3.31)

For convenience, we have used the conservation of mass equation for the culture medium

phase and exploited the no-voids relationship (3.3) to eliminate w.

We remark that our system now comprises a second order differential equation for the

culture medium pressure (pw2) coupled to a parabolic equation for the cell volume fraction

(n). The boundary conditions on n are (3.29) and from equations (3.27), (3.28) we find

that pw2 must satisfy the following conditions:

pw2 =
A(t)a+ Pu − nΣn − (1 − θ)nψns

θ
,
∂pw2

∂x
=
A(t) + 12D ∂n

∂x

θ − n
on x = a, (3.32a,b)

pw2 =
A(t)(b− 1) + Pd − nΣn − (1 − θ)nψns

θ
,
∂pw2

∂x
=
A(t) + 12D ∂n

∂x

θ − n
on x = b,(3.33a,b)

two of which may be specified as boundary conditions, the remaining conditions serving

as constraints on the function, A(t). The apparent overspecification of A(t) is due to the

imposition of continuity of total flux which demands that the up- and downstream pressure

gradients are equal; see equation (3.26). Either of the remaining conditions may therefore be

used to specify A(t). In the proceeding analysis, we choose to impose equations (3.32a) and

(3.33a) as boundary conditions and use (3.32b) to determine A(t). The fourth condition

(3.33b) is employed as an additional accuracy check in the following numerical scheme,

ensuring that continuity of flux is obeyed.
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3.3.1 Numerical solution

In summary, our system comprises the equations (3.30) and (3.31) which we solve subject

to (3.29), (3.32a) and (3.33a); (3.32b) is used to determine A(t) and (3.33b) provides an

additional accuracy check. Suitable initial conditions read:

n(x, 0) = 0.1 [tanh(75(x − 0.48)) − tanh(75(x − 0.52))] , (3.34)

representing a small population of cells initially distributed in the channel’s axial centre (at

x = 0.5) and we arbitrarily choose a = 0.25, b = 0.75.

The above system is solved numerically as follows. Equation (3.30) is discretised using

central differences to obtain the following finite-difference equation which we use to calculate

the pressure, pkw2,j, at each mesh point, j, and time-step, k, from the cell volume fraction,

nkj :

pkw2,j+1 − 2pkw2,j + pkw2,j−1

(∆x)2
+

(
µ

µnkj + θ

nkj+1 − nkj−1

2∆x

)
pkw2,j+1 − pkw2,j−1

2∆x
= f(nkj ), (3.35)

where the function f(nkj ) denotes the right hand side of equation (3.30) evaluated at nkj , in

which Σn and ψns are defined by equations (3.12). As before, ∆t and ∆x represent the size

of the time-step and the mesh spacing in the x-direction, respectively: nkj ≈ n(j∆x, k∆t),

pkw2,j ≈ pw2(j∆x, k∆t). A shooting method is used to calculate Ak ≈ A(k∆t) at each time-

step via the constraint (3.32b) as follows. Equation (3.35) is solved subject to the boundary

conditions (3.32a), (3.33a) using an initial guess for Ak; the error is then calculated using

(3.32b) and a new value Ak chosen according to a simple bisection routine if the error is

too large. Lastly, continuity of flux is checked using equation (3.33b) and a refined mesh

is chosen according to a simple adaptive meshing routine with uniform spatial grid if this

condition is not satisfied.

Equation (3.31) is solved using the following semi-implicit predictor-corrector time-

stepping method (Peregrine, 1967) to give improved accuracy and stability over an explicit

scheme. Firstly, a semi-implicit scheme is used to calculate an approximation to the value
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nk+1
j (denoted n̂k+1

j ) using nkj , p
k
w2,j:

n̂k+1
j − nkj

∆t
=

1

2

{(
1

12

pkw2,j+1− pkw2,j−1

2∆x

n̂k+1
j − n̂k+1

j−1

∆x
−

(θ − n̂k+1
j )

12

pkw2,j+1− 2pkw2,j + pkw2,j−1

(∆x)2

+(km − kd)n̂
k+1
j +D

n̂k+1
j+1 − 2n̂k+1

j + n̂k+1
j−1

(∆x)2

)

+

(
1

12

pkw2,j+1 − pkw2,j−1

2∆x

nkj − nkj−1

∆x
−

(θ − nkj )

12

pkw2,j+1 − 2pkw2,j + pkw2,j−1

(∆x)2

+(km − kd)n
k
j +D

nkj+1 − 2nkj + nkj−1

(∆x)2

)}
. (3.36)

An approximation for the pressure, pk+1
w2,j (denoted p̂k+1

w2,j), may then be calculated using

(3.35). Lastly, the fully-implicit Crank-Nicholson scheme may be used to calculate an

improved value for nk+1
j from nkj , p

k
w2j, p̂

k+1
w2j :

nk+1
j − nkj

∆t
=

1

2

{(
1

12

p̂k+1
w2,j+1− p̂k+1

w2,j−1

2∆x

nk+1
j − nk+1

j−1

∆x
−

(θ − nk+1
j )

12

p̂k+1
w2,j+1− 2p̂k+1

w2,j + p̂k+1
w2,j−1

(∆x)2

+(km − kd)n
k+1
j +D

nk+1
j+1 − 2nk+1

j + nk+1
j−1

(∆x)2

)

+

(
1

12

pkw2,j+1 − pkw2,j−1

2∆x

nkj − nkj−1

∆x
−

(θ − nkj )

12

pkw2,j+1 − 2pkw2,j + pkw2,j−1

(∆x)2

+(km − kd)n
k
j +D

nkj+1 − 2nkj + nkj−1

(∆x)2

)}
, (3.37)

and the improved value for pk+1
w2,j corresponding to nk+1

j may be calculated using (3.35). For

simplicity, in each of the above schemes, (3.36) and (3.37), the boundary conditions (3.29)

are imposed using the value of nkj (or n̂kj ) from the previous (or intermediate) time-step.

An upwind scheme has been used for the convective term in equation (3.31): backward

or forward differences are used to approximate this term depending on the sign of the

gradient ∂pw2/∂x (in the above scheme, this gradient has been assumed to be negative and

so backward differences are used).

The initial grid spacing is ∆x = 5× 10−3 and the timestep chosen to be ∆t = 2(∆x)2.

Lastly, we note that the NAG routines DGETRI, DGETRF and DGETRS are employed in

this numerical scheme; DGETRI performs the matrix inversion required in the re-meshing

routine and DGETRS solves the linear systems associated with equations (3.35)–(3.37),

using the LU factorisation computed by DGETRF.
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In the following simulations, the dimensionless mitosis and death rates and the diffusion

coefficient are chosen to be km = 7.5, kd = 0.1, D = 0.01 and the uniform scaffold porosity

is taken to be the mean value of the heterogeneous PLLA scaffold porosity, θ = 0.97 (see

§1.2.3). The parameters governing the aggregation and repulsion of cells (see equation

(3.12)) are chosen to be ν = χ = 0.3, δa = δb = 0.1 and we reiterate that we have chosen

m = 1. The relative viscosity is chosen to be µn = 1.3. The choice of these parameter

values is not physiologically motivated; rather, they have been chosen to give insight into

the behaviour of the numerical simulations (see §3.2.1). A thorough parameter study is given

in chapter 4. Considering these parameter choices and the functions (3.12), we see that the

switch between aggregation/attachment and repulsion takes place at n = 0.73. Lastly,

we note that in the regime of dynamic culture conditions, we choose Pu = 1, Pd = 0.1;

these choices set the velocity scale, U∗
w, used in the non-dimensionalisation (3.10) to be

U∗
w = P ∗

uL
∗/µ∗w; Pd = 0.1 corresponds to P ∗

d = P ∗
u/10 (see equations (2.17)).

The time evolution of the cell volume fraction is shown in figure 3.5 for static (Pu−Pd =

0) and dynamic (Pu − Pd = 0.9) culture conditions; the arrows indicate the direction

of increasing time. The evolution of the culture medium and cell phase pressures (for

dynamic culture conditions) is shown in figures 3.6 and 3.7. The disturbance to the culture

medium pressure caused by the growth of the cell phase is shown separately for early

times (corresponding to n 6 0.7) and later times (for which nmax > 0.78); similarly, the

cell pressure is plotted separately for early times (for which n 6 0.4) and later times

(nmax > 0.6); we have adopted the notation nmax to denote the maximum value of the n

in the domain at each time-step. The results are presented in this way to prevent detail of

the solution being obscured as the transition between aggregative and repulsive behaviour

takes place. The corresponding cell phase and culture medium velocities at the channel

centreline are shown in figures 3.8 and 3.9. Surface plots of these parabolic velocities are

omitted so that interesting features of the solutions are not obscured. The evolution of the

function A(t) corresponding to the cell growth shown in figure 3.5b is presented in figure

3.10.

Figure 3.5 illustrates how the initial cell distribution given by (3.34) evolves under the

influence of the dynamic culture conditions. In figure 3.5a, where there is no imposed flow

(static culture), the cell population grows and spreads symmetrically under the influence of

the net growth rate, km−kd, and diffusion. This is in direct contrast to the results obtained

in chapter 2 in which axially asymmetric growth was predicted. Figure 3.5b illustrates the

effect of the imposed flow (dynamic culture) on the cell phase: the tissue is advected by a
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Figure 3.5: Evolution of the cell volume fraction n for (a) static culture: Pu − Pd = 0,

(b) dynamic culture: Pu = 1, Pd = 0.1, at t = 0−0.297 (in steps of t = 0.033).

Parameter values: km = 7.5, kd = 0.1, D = 0.01, θ = 0.97, ν = χ = 0.3,

δa = δb = 0.1, m = 1, µn = 1.3.
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Figure 3.6: Evolution of the culture medium pressure for (a) early times (small n):

t = 0 − 0.231 (in steps of t = 0.033); and (b) longer times (larger n):

t = 0.25, 0.27, 0.29, for dynamic culture conditions. Parameter values as

in figure 3.5.

small amount along the channel by the flow and a build-up of cells and ECM is observed

at x = b. The amount by which the cell phase is advected may be enhanced by increasing

the driving pressure gradient. The cell phase profiles in figure 3.5 indicate that spreading

of the cell phase is observed prior to the threshold value n = 0.73 due to the presence of

diffusion in the model; when n exceeds this value, diffusion is enhanced by repulsive forces

between cells and the cell population spreads more dramatically.

Figure 3.6 shows how the culture medium pressure is influenced by the presence of the
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Figure 3.7: Evolution of the cell pressure for (a) early times (small n): t = 0 − 0.13 (in

steps of t = 0.033); and (b) longer times (larger n): t = 0.2, 0.23, 0.27, 0.27,

for dynamic culture conditions. Parameter values as in figure 3.5.
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Figure 3.8: Evolution of the cell velocity at the channel centreline for (a) early times

(small n): t = 0.033, 0.066, 0.1; and (b) longer times (larger n): t =

0.2, 0.23, 0.25, 0.27, for dynamic culture conditions. Parameter values as in

figure 3.5.

cell population within the construct. In the up- and downstream regions where n is small,

equation (3.30) can be approximated as ∂2pw2/∂x
2 ≈ 0 so we obtain a linear pressure drop

prior to and after the dense cell population; a deviation from this linear profile is then

observed as the culture medium flows through the area in which cells are present. Figure

3.6a shows that, initially, when the density of the cell phase is relatively small, this deviation

closely mirrors the cell phase distribution (as found in chapter 2). This increase in pressure

is due to the aggregative terms in the intraphase and interphase pressure functions Σn, ψns

(see figures 3.2 and 3.3 and equations (3.12) and (3.30)) dominating at low density. The
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Figure 3.9: Evolution of the culture medium velocity at the channel centreline for (a) early

times (small n): t = 0.033−0.165 (in steps of t = 0.033); and (b) longer times

(larger n): t = 0.25, 0.27, 0.29, for dynamic culture conditions. Parameter

values as in figure 3.5.
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Figure 3.10: Evolution of the function A(t) for dynamic culture conditions. Parameter

values as in figure 3.5.

aggregation of cells requires that culture medium is expelled from this region and a positive

culture medium pressure gradient (which drives a flow of culture medium) is therefore

created at the upstream periphery of the construct (with the opposite behaviour evident

at the downstream periphery). As the cell phase becomes more dense, the disturbance in

the culture medium pressure distribution increases. The massive deviation from the linear

profile shown in figure 3.6b occurs when the repulsive terms in the intraphase and interphase

pressure functions become dominant as n approaches the scaffold porosity value, θ. As the

cells repel each other, mass conservation demands that culture medium be drawn in to

fill the void, corresponding to the reduction in pw observed in figure 3.6b. We note that

at the periphery, where the cell population remains sparse, an increase in pw is observed,
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corresponding to expulsion of culture medium due to cell aggregation and attachment.

The evolution of the cell phase pressure pn is shown in figure 3.7. We note that

although n > 0 in a 6 x 6 b (see equation (3.34)), we have employed numerical truncation

in evaluating the cell pressure (3.4) for consistency with the cell phase velocity (figure 3.8)

in which truncation is employed to ensure that the 1/n term does not blow up for small n.

As time progresses and the cell phase density increases throughout the scaffold, the region

in which pn is defined increases to fill the scaffold. The cell phase pressure is formed from a

combination of the culture medium pressure and contributions from the intraphase pressure

(from cell-cell interactions) and interphase tractions: pn = pw + Σn + (1 − θ)ψns. At early

times, when n is small, the behaviour is dominated by aggregative behaviour (Σn, ψns < 0)

and a small decrease in the cell phase pressure mirroring this cell distribution is observed.

At later times (see figure 3.7b), when the cell phase density grows, the contribution from

the repulsive behaviour terms becomes more important (Σn, ψns > 0) and a sharp increase

in cell pressure is observed.

The axial velocity of the cell phase (un) at the channel centreline is shown in figure

3.8 (we reiterate that the velocity of the cell phase is driven by (3.25) rather than ∂pn/∂x).

For low cell densities, 3.8a shows that cells move preferentially towards the centre to form

a dense cell aggregate which moves downstream due to the imposed flow. This movement

of the cells is due to the form of the intraphase and interphase pressure functions, Σn and

ψns, the choice of which causes aggregation/attachment to dominate at low cell densities

(Σn, ψns < 0); as the cell volume fraction increases, repulsive effects become more important

(Σn, ψns > 0) as described above. This effect is illustrated in figure 3.8b which shows that

cells move outwards from the centre of the aggregate causing increased spreading at later

times as observed in figure 3.5. Inspection of equations (3.25), (3.32a) and (3.33a) shows

that the influence of the cell-scaffold attachment parameter (χ) is only felt through the

boundary conditions. The aggregative behaviour described above is therefore dominated

by the cell-cell interactions (Σn).

Figure 3.9 shows how the centreline value of the parabolic velocity profile created by

the imposed culture medium pressure gradient is dramatically altered by the presence of

the cell phase. As in the two-fluid model, the flow profile remains x-independent, prior to

and after the region occupied by the cell phase, under the influence of the linear driving

pressure gradient. In regions where n > 0, the deviation to the flow corresponds to the

gradient of the culture medium pressure shown in figures 3.6. For both low (figure 3.9a)

and high (figure 3.9b) cell phase density, we observe that the flow speed is decreased from
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the upstream x-independent ambient flow velocity as the culture medium encounters the

construct; near the downstream periphery, an increase to the ambient flow is observed. For

low construct density, the culture medium flow increases monotonically between the up-

and downstream peripheries. As the construct density increases, the fluid flow in between

these peripheral regions changes markedly, reversing flow direction. This is due to the

switch between aggregative and repulsive behaviour of the cell phase described above; to

conserve mass, the culture medium velocity exhibits the opposite behaviour, being drawn

into the construct’s centre when cells repel each other. This results in the large variation

and back-flow predicted by figure 3.9b.

Inspection of figures 2.5, 2.11, 3.8 and 3.9 shows that consideration of cell-cell and

cell-scaffold interactions, together with relaxation of the large drag assumption, results

in starkly different behaviour to that predicted in chapter 2. Aggregation in regions of

sparse cell density acts to curtail advection; furthermore, due to mass conservation, the cell

and culture medium velocities exhibit opposite behaviour. We note that inspection of the

model equations has revealed that at low cell density, the cell behaviour is dominated by

cell aggregation with contributions from cell-scaffold attachment being small.

Figure 3.10 shows how the function A(t) evolves with time. Equations (3.26), (3.32b)

and (3.33b) show that A(t) determines the culture medium pressure and its gradient in

x < a and x > b and at the boundaries of the scaffold region x = a, b. Figure 3.10 shows

that as time progresses, the magnitude of the pressure gradient decreases, causing the up-

and downstream flow speed to reduce; we attribute this to the increase of cell volume

fraction which fills available pore space and provides increased resistance to flow.

To summarise, in contrast to the two phase model presented in chapter 2, this more-

complex model predicts symmetric tissue growth in the absence of perfusion, and shows that

advection of the tissue due to perfusion with culture medium is reduced by aggregation and

attachment. The stringent restriction on perfusion rate implied by the analysis in chapter

2 may therefore be relaxed. Furthermore, we demonstrate that cells display dramatically

different behaviour depending upon the relative importance of cell aggregation and repul-

sion. In addition, since no-slip boundary conditions are imposed at the channel walls, the

model does not predict a slip velocity. Lastly, since we choose Sw = −Sn (§3.2), mass is

conserved in this model.

We pause here to note that the results presented in figures 3.5–3.8 illustrate the be-

haviour of the relevant variables in the region a 6 x 6 b; up- and downstream from this

region we have n = 0, pn = 0, un = 0, and a linear pressure profile whose gradient changes
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over time as indicated by equation (3.26) and figure 3.10, which drives a parabolic culture

medium velocity (results omitted). Furthermore, discontinuities in the culture medium and

cell phase pressures (and their gradients) exist at x = a, b caused by the presence of the

porous scaffold, cells, ECM and the associated extra pressures Σn and ψns as indicated by

equations (3.32) and (3.33).

3.3.2 Asymptotically-small cell volume fraction

To validate the above numerical simulations and to provide insight into the behaviour of the

system, we consider the limit in which the volume fraction of the cell phase is asymptotically

small. We may then obtain analytic solutions to the simplified versions of (3.29)–(3.33) for

comparison with numerical predictions. We therefore choose the following rescalings:

n(x, t) = δn1(x, t) + δ2n2(x, t) + · · · , (3.38)

pw2(x, t) = p0(x, t) + δp1(x, t) + δ2p2(x, t) + · · · , (3.39)

where 0 < δ ≪ 1, and we remark that the subscript notation which indicates the region

in which the solution is valid has been replaced by subscripts denoting the terms in the

asymptotic expansion. For clarity, we emphasise that these expansions are valid in region

2: a 6 x 6 b.

We find that the leading-order term in the expansion for the culture medium pressure

obeys:
∂2p0

∂x2
= 0, (3.40)

and that the next-order corrections n1(x, t), p1(x, t) are given by

∂n1

∂t
+ γ

∂n1

∂x
= (km − kd)n1 +D

∂2n1

∂x2
, (3.41)

∂2p1

∂x2
= −β∂n1

∂x
, (3.42)

where γ and β are defined as follows:

γ = − 1

12µn

∂p0

∂x
, β =

µ

θ

∂p0

∂x
. (3.43)

We now consider the form of the boundary conditions (3.29), (3.32) and (3.33) in the limit

for which the cell volume fraction is asymptotically small. In addition to the rescalings

(3.38), (3.39), we expand the function, A(t) as follows:

A(t) = A0(t) + δA1(t) + · · · , (3.44)

86



3.3 Solution

and it may be shown that the appropriate conditions are:

at leading order:

∂p0

∂x

∣∣∣∣∣
x=a,b

=
A0

θ
, p0

∣∣∣
x=a

=
A0a+ Pu

θ
, p0

∣∣∣
x=b

=
A0(b− 1) + Pd

θ
; (3.45)

O(δ) correction:

∂n1

∂x

∣∣∣∣∣
x=a,b

= − A0n1

12θµnD
,

∂p1

∂x

∣∣∣∣∣
x=a,b

=
A1

θ
+
A0n1

θ2
+

12D

θ

∂n1

∂x
, (3.46)

p1

∣∣∣
x=a

=
A1a+ (1 − θ)χn1

θ
, p1

∣∣∣
x=b

=
A1(b− 1) + (1 − θ)χn1

θ
. (3.47)

We therefore have four conditions on each of the pressures p0, p1; two of which are imposed

as boundary conditions, the remaining equations being used to calculate A0 and A1. As

previously, the overspecification of the functions A0, A1 results from the imposition of

continuity of total flux which requires that the up- and downstream pressure gradients are

equal. When satisfied, the additional conditions ensure that the solution obeys continuity

of flux (see §3.3 for more details).

Sharp interface limit: D = 0

For simplicity, we consider the solution of equations (3.40)–(3.42) in the limit D = 0, for

which the interface between the cell phase and the surrounding culture medium is “sharp”.

The cell population is then confined within two moving boundaries, x = l(t), r(t), within

the scaffold region a 6 x 6 b.

It is a trivial calculation to show that A0 = Pd − Pu and the leading-order pressure in

the culture medium is given by

p0(x, t) =
(Pd − Pu)x+ Pu

θ
. (3.48)

We may now proceed with the solution of equation (3.41) with D = 0 since the constant,

γ, is given by equation (3.43). We first specify an appropriate initial cell phase distribution

as follows:

n1(x, 0) =

{
n(x) l(0) 6 x 6 r(0),

0 otherwise,
(3.49)

wherein n(x) is an as yet unspecified function and x = l(0), r(0) are the initial positions of

the interfaces l(t), r(t). We remark that the first of (3.46) is now redundant since n1 = 0
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for a 6 x < l, r < x 6 b. The solution, n1(x, t), may be determined using characteristic

methods, taking the form of a travelling-wave:

n1(x, t) =

{
n(x− γt)e(km−kd)t l(t) 6 x 6 r(t),

0 otherwise,
(3.50)

where l(t) = l(0) + γt, r(t) = r(0) + γt. This solution represents exponential growth of

a cell population at a rate km − kd which is advected along the channel at speed γ =

−(∂p0/∂x)/(12µn) > 0. We remark that, in contrast to the sharp interface limit of the

two-fluid model analysed in chapter 2, the width of the cell population does not change in

this model and the cell population displays exponential (rather than logistic) growth. This

behaviour is valid for the very early stages of cell population growth in which behaviour is

dominated by uniform proliferation and diffusion/spreading is unimportant.

The correction to the culture medium pressure p1 is given by equation (3.42); however,

in addition to the conditions (3.45)–(3.47) at x = a, b, p0 and p1 must obey the following

jump conditions across x = l(t), r(t):

[p0]
+
− = 0,

[
∂p0

∂x

]+

−

= 0, (3.51a)

[θp1]
+
− = [χ(1 − θ)n1]

+ ,

[
θ
∂p1

∂x

]+

−

=

[
(Pu − Pd)µn1

θ

]+

, (3.51b)

where [..]+ and [..]− denote the limiting values from the cell/culture medium/scaffold region

(l(t) 6 x 6 r(t)) and the culture medium/scaffold regions (a 6 x < l(t), r(t) < x 6 b),

respectively and [..]+− denotes the jump across either interface. These conditions are derived

using the method outlined previously, noting that the cell velocity on x = l(t), r(t) is un = γ.

We remark that the conditions (3.51a) on the leading-order solution, p0, are automatically

satisfied by equation (3.48).

To determine the correction to the pressure in the culture medium, we must specify the

initial cell phase distribution, n(x). For simplicity we choose n(x) = n̂, where n̂ is assumed

constant so that in each region, equation (3.42) is satisfied by a linear pressure distribution.

These are found to be

p1(x, t) =





P̃ ekt [l(t) − r(t)]x, a 6 x < l(t),

P̃ ekt [1 + l(t) − r(t)] x+ ekt(χ− P̃ l(t)), l(t) 6 x 6 r(t),

P̃ ekt [l(t) − r(t)] (x− 1), r(t) < x 6 b,

(3.52)

where k = km − kd, χ = χ(1 − θ)n̂/θ, µ = 1/µn − 1 and P̃ is given by

P̃ =
(Pu − Pd)µn̂

θ2
. (3.53)
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3.3 Solution

The evolution of the cell volume fraction, n1, and corresponding pressure correction, p1, is

shown in figure 3.11. The effect of this pressure correction is illustrated in figure 3.12 which

shows the variation of the pressure (to O(δ) accuracy) pw2 = p0 + δp1 over time; figure

3.12b shows this in more detail. We remark that the correction to the pressure (p1) is an

order of magnitude smaller than the leading-order pressure (p0); in order that the effects

are visible in figure 3.12, the small parameter is chosen to be δ = 1 (the arrows indicate the

direction of increasing dimensionless time). With the exception of the diffusion coefficient,

D, the parameter values are chosen to be the same as those used in §3.3.1.
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Figure 3.11: Evolution of (a) the cell volume fraction, n1, and (b) the pressure correction,

p1, for dynamic culture conditions at t = 0−0.2 (in steps of t = 0.04). D = 0,

other parameter values as in §3.3.1.

As noted above, the solution in the sharp interface limit predicts that the cell population

grows exponentially with growth rate km − kd, while being advected along the channel at

speed γ; the width of the population remains unchanged. For validation purposes, the

corresponding speed of advection predicted by the numerical scheme developed in §3.3.1
may be readily calculated by tracking the position of the maximum value of n. Figure

3.13a shows how the position of this numerically-calculated maximum value compares to

the position predicted by the travelling-wave solution (3.50), and figure 3.13b depicts the

% relative error between the numerically-calculated and theoretical positions over time for

different values of the small parameter, δ; the arrows indicate the direction of increasing

δ. It can be seen that as the value of δ is decreased, the numerical prediction for the

speed of advection of the cell culture approaches the predicted speed, γ, and the % relative

error decreases (for δ = 1/25, the % error is O(10−2)). The predicted advection speed

corresponding to the parameters chosen for the numerical simulations given in §3.3.1 is
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Figure 3.12: The evolution of the culture medium pressure, pw2 = p0 + δp1, for dynamic

culture conditions at t = 0 − 0.2 (in steps of t = 0.04) in (a) the construct

region a 6 x 6 b, and (b) a magnified region to show the detail more clearly.

D = 0, δ = 1, other parameter values as in §3.3.1.

γ = 0.0595; at early times, the average advection speed calculated from the simulations is

γ = 0.0657 (δ = 1), γ = 0.0607 (δ = 1/5), γ = 0.0601 (δ = 1/25). By comparing these

values and inspecting figure 3.13 it can be seen that the speed of advection does not exactly

match that predicted by the small-n analysis; however, we consider that the agreement

between the two advection speeds is good enough to indicate that we may have confidence

in the qualitative behaviour of our numerical simulations. We find that decreasing the size

of the small parameter, δ, below δ = 1/25, results in only a marginal reduction in the,

already small, relative error; we attribute the discrepancy between the predicted value and

those calculated from the numerical simulations to the coarseness of the spatial grid used

and the diffuse construct considered; however, refining the mesh and reducing the diffusion

coefficient are prohibitively expensive computationally.

The perturbation (p1) to the culture medium pressure is found to be piecewise linear,

with positive gradient in the up- and downstream regions where n1 = 0 and negative

gradient within the region where cells are present (l(t) 6 x 6 r(t)). Upstream, the sharp

interface limit predicts a small increase to the leading-order pressure; downstream, a small

decrease is observed. Comparison of the predicted pressure shown by figure 3.12 and the

culture medium pressure calculated in §3.3.1 (figure 3.6a) shows good qualitative agreement.
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Figure 3.13: (a) Comparison of the numerically-computed position of the maximum value

of n (–) compared to the predicted position of the travelling wave (- -),

and (b) the % relative error between calculated and predicted position for

δ = 1/25, 1/5, 1. The arrows indicate the direction of increasing δ.

Furthermore, considering the boundary conditions (3.32a) and (3.33a):

pw2 =
A(t)a+ Pu − nΣn − (1 − θ)nψns

θ
, on x = a, (3.54)

pw2 =
A(t)(b− 1) + Pd − nΣn − (1 − θ)nψns

θ
, on x = b, (3.55)

the behaviour of A(t) presented in figure 3.10 (which indicates that A(t) < 0 and that |A(t)|
decreases with time) and the fact that on x = a, b where n is small, the extra pressure

contributions are small and negative, we see that at x = a, the culture medium pressure

increases over time; at x = b, the pressure decreases. This comparison indicates that the

behaviour of the culture medium pressure (pw2 = p0 + δp1) predicted in this asymptotic

limit reproduces that of the system (3.30)–(3.33) for O(1) cell density.

We remark that the small parameter, δ has been chosen artificially large for illustrative

purposes; the deviation to the pressure corresponding to the small cell population repre-

sented by these solutions would be very small.

In this subsection, we have constructed analytic solutions in the limit of asymptotically-

small cell density in order to validate the numerical simulations presented in §3.3.1. We

have shown that the travelling-wave behaviour obtained in this asymptotic limit shows good

quantitative agreement by comparing the predicted wave speed with that calculated from

corresponding numerical simulations using the numerical scheme (3.35)–(3.37); we further

show that qualitative features of the analytic solutions correspond to those observed in
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numerical simulations. We therefore conclude that we may have confidence in the numerical

simulations presented in this chapter.

Travelling-wave solutions corresponding to a diffuse tissue construct which show better

qualitative agreement with the cell volume fraction profiles presented in §3.3.1 may be

obtained using Green’s functions. From a code-validation point of view, this is superfluous

and we therefore present these solutions in Appendix A for interest.

3.4 Summary

In this chapter, we have analysed a multiphase model that describes tissue growth within

a perfusion bioreactor, modelled as a two-dimensional channel containing a three phase

mixture. The inclusion of a third phase allowed consideration of the PLLA scaffold within

our model. The “cell phase” (comprising both cells and ECM) and the culture medium

were modelled as viscous fluids; as a first approximation, we simplified the three phase

formulation by considering the scaffold phase to be rigid and inert. This phase then en-

ters the governing equations through the constant porosity (θ) only. However, this model

represents a significant extension of that analysed in chapter 2 due to the retention of the

individual phase variables and consideration of interphase tractions and intraphase forces,

resulting in a more complex coupling between the dynamic culture environment and the

tissue response. Furthermore, modification to the choice of mass transfer terms ensures

that this model conserves mass. In contrast to the two-fluid model presented in chapter 2,

this more complex three phase model predicted axially-symmetric growth in the absence

of perfusion and showed that cell aggregation reduces the advection of the cell phase. The

stringent restriction on perfusion rate implied by the analysis in chapter 2 may therefore

be relaxed. Furthermore, by considering cell-cell and cell-scaffold interactions, we have

revealed markedly different cell behaviour depending upon the relative importance of cell

aggregation and repulsion.

By considering the limit in which the aspect ratio of the channel is small and the

interfaces between the tissue construct and surrounding culture medium are sharp, we

have shown that the mass and momentum balance equations for the multiphase system

reduce to a coupled system comprising a second order differential equation for the culture

medium pressure and a parabolic equation for the cell volume fraction. These equations were

analysed using a combination of analytic and numerical techniques. A similar multiphase

formulation has been analysed by Lemon et al. (2006) and Lemon & King (2007) in which
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the diffusive movement of each phase was neglected (D∗
i = 0), corresponding to sharp

interfaces between the cell and culture medium phases, and the long-wavelength limit was

not employed. In Lemon et al. (2006), aggregative and repulsive behaviour was investigated

using linear stability techniques; in Lemon & King (2007), the growth of the cell phase is

mediated by the supply of a diffusible nutrient.

From the preceding numerical results and analysis, it may be seen that the simplified

version of our three phase model predicts a plausible response of the tissue construct to

the dynamic culture conditions. The numerical simulations showed that the cell population

grows, spreads and is advected downstream to a limited extent within the scaffold. Further-

more, interactions within the cell phase and between the cells and the scaffold mean that,

at low cell density, the model predicts movement of cells from sparse peripheral regions

to form a dense aggregate; as the density increases, repulsive interactions cause cells to be

expelled from the aggregate. Inspection of the model equations revealed that at low density,

the cells’ behaviour is dominated by cell-cell interactions. We remark that for the tissue

engineering applications under consideration, the cell density is unlikely to attain such high

values (see §1.2.3, figure 1.3 which indicates that the level of mineralisation of the PLLA

scaffold is small); we therefore expect that the aggregative behaviour illustrated in §3.3.1
is appropriate. Further analysis of the cell behaviour under the influence of the intraphase

pressure and interphase traction functions is presented in chapter 4.

In the limit of asymptotically-small cell volume fraction, analytic solutions were con-

structed which take the form of a growing travelling-wave. Comparison of the predicted wave

speed with that calculated from numerical simulations showed good quantitative agreement;

qualitative agreement was observed in the behaviour of solutions. This analysis indicates

that we may have confidence in the behaviour of our numerical simulations.

The mathematical model used is limited since we have made a number of simplifica-

tions to facilitate construction of solutions. The scaffold porosity, θ, is assumed constant

and the scaffold neither deforms nor degrades, which prohibits consideration of the me-

chanical forcing aspect of the bioreactor system and of the influence on the construct’s

mechanical properties of scaffold degradation and cell phase growth. Additionally, we make

the long-wavelength assumption to simplify the equations. Consequently, at leading order,

the contribution of, for instance, interphase viscous drag terms are neglected from the mo-

mentum equations (3.11c,d). In view of the parameter estimation given in §2.2.1, this effect

should, perhaps, be considered since the drag coefficient, k is expected to be large (we note

that this may be remedied by choosing k = O(1/h2), where k is the coefficient of viscous
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drag and h is the channel aspect ratio). Furthermore, the physical dimensions of the system

given in §1.2.3 are inconsistent with the long-wavelength assumption. However, we consider

that the solutions obtained in this limit give adequate insight into the behaviour of the

O(1) system; the complexity of this problem preventing easy analysis. In a wider context,

this model has the potential to be directly applicable to other perfusion bioreactors which

have a low aspect ratio. Lastly, we have assumed that the rates of cell mitosis and death

are constant, thereby removing the coupling between the external fluid flow and the tissue

growth response.

In the proceeding chapters of this thesis, we develop models that accommodate spatio-

temporal variation of the scaffold volume fraction as well as direct coupling between the

phenotypic progression of the cell phase and its local environment.
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Chapter4
A simplified three phase model for the growth

of a tissue construct - a cell behaviour study

4.1 Introduction

W
e now present a detailed study of the behaviour of the solutions of the three

phase model developed in chapter 3. Using numerical simulations, we illustrate

the effect of varying the parameters associated with (i) the relative viscosity

and, (ii) the intraphase pressure and interphase traction functions on the construct mor-

phology. Additionally, the influence of coupling the cells’ proliferative behaviour with cell

density and the external fluid mechanics is investigated.

In order to provide insights into the factors that affect the behaviour of cells within

porous scaffolds, in §4.2, solutions to equations (3.30) and (3.31) are presented for a variety

of parameter regimes that highlight how the cells’ movement is influenced by their inter-

action with their environment. To improve understanding of the influence of intraphase

pressure and interphase traction, simple functional forms for these effects are employed,

allowing analytical progress to be made and, using numerical simulations, we investigate in

more detail the transition between aggregative and repulsive behaviour observed in chapter

3. Lastly, in §4.3, the model is extended to investigate the effect of a simple mechan-

otransduction mechanism, in which the cells’ proliferative response is coupled to the local

mechanical environment. In an extension to the mechanotransduction modelling of chap-

ter 2, the response to the local cell density, pressure and fluid shear stress is considered.

We again identify our model as a simple means to discern the dominant regulatory tissue

growth stimulus. The chapter concludes with a discussion of our results. Attention focusses

on their implications for the bioreactor system introduced in §1.2.3; however, their relevance

to more general tissue engineering applications is also discussed.
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4.2 Cell movement

4.2 Cell movement

4.2.1 Parameter study

We pause here to recapitulate the equations and boundary conditions which govern the

behaviour of the simplified three phase model presented in the chapter 3. The differential

equation governing the pressure in the culture medium (pw) and the coupled parabolic

equation governing the evolution of the cell phase volume fraction (n) are as follows:

∂2pw
∂x2

+
µ

µn+ θ

∂n

∂x

∂pw
∂x

= − 1

µn(µn+ θ)

[
∂2 (nΣn)

∂x2
+ (1 − θ)

∂

∂x

(
n
∂ψns
∂x

)]
, (4.1)

∂n

∂t
+

1

12

∂

∂x

{
(θ − n)

∂pw
∂x

}
= Sn +D

∂2n

∂x2
, (4.2)

where µ = 1/µn − 1, µn is the relative viscosity of the cell and culture medium phases,

Sn = (km − kd)n is the averaged mass transfer term for the cell phase, θ is the porosity

of the scaffold and Σn, ψns are intraphase pressure and interphase traction functions. The

parameter km represents cell mitosis and ECM deposition, whilst kd encompasses cell death

and ECM degradation. As in chapter 3, we henceforth refer to these as the “growth rate”

and “death rate”. We note that, for brevity, the subscript notation introduced in §3.3 which

indicates that these equations are valid in a 6 x 6 b has been dropped (as in chapter 3, we

assume a = 0.25, b = 0.75). The pressure in the culture medium is subject to the following

conditions

pw =
A(t)a+ Pu − nΣn − (1 − θ)nψns

θ
,

∂pw
∂x

=
A(t) + 12D ∂n

∂x

θ − n
on x = a, (4.3)

pw =
A(t)(b− 1) + Pd − nΣn − (1 − θ)nψns

θ
,

∂pw
∂x

=
A(t) + 12D ∂n

∂x

θ − n
on x = b, (4.4)

where Pu − Pd is the imposed axial pressure drop. The first of (4.3) and (4.4) are imposed

as boundary conditions and A(t) is determined from one of the remaining two conditions.

The fourth condition provides an additional accuracy check, which, when satisfied, ensures

that continuity of flux is obeyed in the numerical scheme (see §3.3, page 77).

As discussed in §3.2.1, the intraphase pressure, Σn, and interphase traction, ψns, de-

scribe the tendency of the cells to aggregate (or to exhibit an affinity for the scaffold phase)

at low cell densities, and to repel each other (or be repelled from the scaffold) at high cell

densities. These functions are specified as follows:

Σn = −nν +
δan

m+1

(θ − n)m
, ψns = −χ+

δbn
m

(θ − n)m
, (4.5)
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for constants ν, δa, χ, δb, m > 0; as in chapter 3, in the following, we choose m = 1 for

simplicity.

To ensure zero cell flux from the scaffold region, the cell volume fraction must obey:

∂n

∂x
=

A(t)n

(θ − n)
[
2νn− 12µnD − δan3+(1−θ)δbn2

(θ−n)2
− 3δan2+[δb(1−θ)+12D]n

θ−n

] on x = a, b, (4.6)

and a suitable initial cell distribution is given by

n(x, 0) = 0.1 [tanh(75(x − 0.48)) − tanh(75(x − 0.52))] , (4.7)

representing a small population of cells initially distributed in the channel’s axial centre (at

x = 0.5).

The model parameters pertinent to the study of cell movement (as distinct from those

associated with cell phase growth and death; namely, km and kd) are: µn (relative viscosity

of cell and culture medium phases), ν, χ (cell-cell and cell-scaffold affinity parameters,

respectively), δa, δb (cell-cell and cell-scaffold repulsion parameters, respectively) and D

(cellular diffusion coefficient). The effect of varying each the parameters µn, ν, δa, χ, δb is

investigated below, exploiting the numerical scheme developed in §3.3.1.

Relative viscosity: µn

Figure 4.1 shows how the distribution of the cell phase is affected by increasing its viscosity.

We observe that increasing µn reduces the rate at which cells are advected by the imposed

flow and leads to the formation of a more diffuse aggregate.
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Figure 4.1: The evolution of the cell volume fraction at t = 0 − 0.25 (in steps of t =

0.0625), for dynamic culture: Pu = 1, Pd = 0.1, km = 7.5, kd = 0.1, D = 0.01,

θ = 0.97. χ = ν = 0.3, δa = δb = 0.1, µn = 1–2.
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The viscosity of the cell phase represents the tendency of the cells to move in coupled

pairs or aggregates when they are sufficiently close to each other (this behaviour has been

reported by, for instance, Powers & Griffith-Cima (1996) in hepatocyte populations); an

increase in µn therefore represents an increased tendency to form (and move as) aggregates

rather than displaying single cell migration. In view of this, the reduction in advection and

the increase in diffusive effects illustrated by figure 4.1 is, perhaps, counter-intuitive. The

reason for this behaviour is as follows. As the viscosity of the cell phase is increased relative

to that of the culture medium, the importance of the viscous shear exerted by the flowing

culture medium on the cell phase is diminished, resulting in reduced advection; indeed,

inspection of equation (3.23), reveals that the velocity of the cell phase is proportional to

µ−1
n . Additionally, comparison of the positions of the up- and downstream peripheries of the

diffuse construct shown in figure 4.1 shows that as µn increases, the reduced advective effects

allow markedly increased diffusion of the upstream periphery, resulting in the construct as

a whole being less dense.

Aggregation and repulsion: ν, δa, χ, δb

We now consider the effect of varying the intraphase pressure and interphase traction pa-

rameters, ν, δa, χ, δb. Figure 4.2 shows the effect of increasing the cell aggregation and

scaffold affinity parameters, ν = χ, and the repulsion parameters, δa = δb, on the time-

evolution of the cell phase; these choices imply that the extra pressures associated with

cell-cell and cell-scaffold interactions in the functions Σn, ψns are equal. Figures 4.3 and

4.4 show the effect of increasing the aggregation, scaffold affinity and repulsion parameters

in isolation.

Inspection of figure 4.2 shows that as the aggregation and scaffold affinity parameters

(ν, χ) are increased, the cell population forms denser, more sharply-defined aggregates with

high cell density gradients at the peripheries. The opposite is true when the repulsive

parameters (δa, δb) are increased. This is intuitively plausible since increases in ν and χ

correspond to a cell phase which exerts greater attractive forces between adjacent cells and

between the cells and scaffold, this aggregative/attachment behaviour reducing the relative

importance of diffusive effects. Increases in δa and δb correspond to greater cell-cell and

cell-scaffold repulsion, leading to enhanced diffusion. This effect will be discussed in more

detail in §4.2.2 where we analyse a simplified model of cell behaviour.

Comparison of the effect of the parameters ν, δa and δb is shown in figures 4.3 and

4.4 in which these parameters are varied in isolation. As noted in chapter 3, inspection of
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Figure 4.2: The evolution of the cell volume fraction at t = 0−0.25 (in steps of t = 0.0625)

for (a) ν = χ = 0.1–0.3 (δa = δb = 0.1); (b) δa = δb = 0.1–0.3 (ν = χ = 0.3),

for dynamic culture (remaining parameters as given in figure 4.1).
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Figure 4.3: The evolution of the cell volume fraction at t = 0−0.25 (in steps of t = 0.0625)

for ν = 0.1–0.3 (χ = 0.3, δa = δb = 0.1), for dynamic culture (remaining

parameters as given in figure 4.1).

equations (4.1)–(4.6) indicates that the scaffold affinity parameter, χ, only enters the model

in the combination (1 − θ)nχ through the boundary conditions (4.3) and (4.4). In these

simulations, n and (1 − θ) are small; we therefore anticipate that its influence on the cell

behaviour is negligible and simulations in which χ is varied in isolation are not presented.

Comparison of figures 4.2a and 4.3 confirms that due to contributions from cell-scaffold

affinity entering the model only through the boundary conditions, cell aggregation domi-

nates cell-scaffold attachment. Figure 4.4 indicates that the intraphase pressure (Σn) gen-

erated within the cell phase due to repulsive effects dominates the interphase traction (ψns)

associated with cell-scaffold repulsion. This is due to the highly porous scaffold used in this
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Figure 4.4: The evolution of the cell volume fraction at t = 0−0.25 (in steps of t = 0.0625)

for (a) δa = 0.1–0.3 (χ = ν = 0.3, δb = 0.1); (b) δb = 0.1–0.3 (χ = ν = 0.3,

δa = 0.1), for dynamic culture (remaining parameters as given in figure 4.1).

analysis (we have chosen θ = 0.97; see §1.2.3); equations (3.23) and (3.25) indicate that the

influence of interphase tractions on cell movement scales linearly with the volume fraction

of the scaffold phase, which is small in the highly porous scaffold.

Summary

Taking elevated values of the cell viscosity parameter to be a reflection of the preference for

group locomotion over single-cell migration, the numerical simulations presented in figure

4.1 suggest that improved penetration (as indicated by the formation of a more diffuse

tissue construct) throughout the scaffold will be achieved for cells whose motile behaviour

is dominated by movement in coupled pairs or aggregates. Furthermore, such populations

will be less sensitive to the ambient flow.

Figures 4.2–4.4 indicate the crucial importance of cell-cell and cell-scaffold interactions

in a tissue engineering context; in principle, the effects predicted in this type of model could

inform the manufacture of scaffolds. The parameters χ, δb may be viewed as a reflection

of the surface chemical/topographical properties of the scaffold; ν, δa are characteristics

inherent to the cell population in question. Inspection of the model equations shows that

the influence of cell-scaffold attachment on the cells’ behaviour is very small; our simula-

tions further indicate that the cell behaviour is dominated by cell-cell interactions, with the

behaviour being only weakly affected by the scaffold properties. Contributions from cell-cell

and cell-scaffold interactions scale linearly with the relevant volume fractions, the dominance
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of cell-cell interactions is due to the large cell density predicted in these simulations and the

highly porous scaffold. For physiologically reasonable cell density values (see §1.2.3, figure

1.3 in which much lower density values are implied), alteration of the scaffold repulsion pa-

rameter is likely to be as significant as corresponding alteration in the parameters governing

cell population characteristics. In this way, the aggregative/attachment behaviour can be

controlled. Our model further implies that decreasing scaffold porosity will have a signifi-

cant effect on the behaviour of the cells. A denser scaffold will allow scaffold properties to

dominate over those associated with cells, for instance, preventing aggregation (as reported

in Lemon et al. (2006), in which linear stability analysis was employed to demonstrate this

phenomenon). This may, of course, have an adverse effect on cell penetration throughout

the scaffold.

4.2.2 Analysis of a simplified model of cell behaviour

To investigate further the effect of intraphase pressure and interphase traction on cell be-

haviour, especially the switch between aggregative and repulsive behaviour observed in the

numerical simulations presented in chapter 3 (see §3.3.1, figures 3.6–3.9), we now simplify

the intraphase pressure and interphase traction functions defined by equations (4.5), replac-

ing them with the following piecewise-constant forms:

Σn(n) =

{
−ν, n < NΣ,

δa, n > NΣ,
ψns(n) =

{
−χ, n < Nψ,

δb, n > Nψ,
(4.8)

where NΣ is the threshold value at which repulsive forces between cells dominate those

associated with aggregation; similarly, Nψ is the the threshold at which the cells become

repelled from the scaffold. For simplicity, in the following we will assume NΣ = Nψ = N .

The equation governing the pressure in the culture medium may then be written:

µn (µn+ θ)
∂2pw
∂x2

+ µnµ
∂n

∂x

∂pw
∂x

=

{
ν ∂2n
∂x2 , n < N,

−δa ∂2n
∂x2 , n > N,

(4.9)

indicating that the behaviour is dominated by cell-cell interactions as found in the preceding

parameter study. The equation governing the cell volume fraction is unchanged. We may

further simplify equation (4.9) by assuming that the viscosities of the culture medium and

cell phases are equal (so that µn = 1 which implies µ = 0). The simulations presented in

figure 4.1 indicate that the qualitative behaviour of the solutions is unchanged in this case

so we may focus on this limit without restricting the general applicability of our conclusions.
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4.2 Cell movement

Under this additional simplification, equation (4.9) reduces to:

θ
∂2pw
∂x2

=

{
ν ∂2n
∂x2 , n < N,

−δa ∂2n
∂x2 , n > N.

(4.10)

The corresponding boundary conditions (3.29), (3.32), (3.33) are then

pw
∣∣
x=a

=

{
A(t)a+Pu+αn(a,t)

θ , n < N
A(t)a+Pu−βn(a,t)

θ , n > N
, pw

∣∣
x=b

=

{
A(t)(b−1)+Pd+αn(b,t)

θ , n < N
A(t)(b−1)+Pd−βn(b,t)

θ , n > N
, (4.11)

∂pw
∂x

∣∣∣∣
x=a,b

=
A(t) + 12D ∂n

∂x

θ − n
,

∂n

∂x

∣∣∣∣
x=a,b

=





A(t)n
(θ−n)(ν−12D)−12Dn , n < N

A(t)n
−(θ−n)(δa+12D)−12Dn , n > N

, (4.12)

where α = ν + (1 − θ)χ and β = δa + (1 − θ)δb.

We proceed by decomposing the interval into three distinct regions denoted 1, 2 and

3 and the variables are labelled appropriately: region 1: a 6 x < â (n < N); region 2:

â 6 x 6 b̂ (n > N); region 3: b̂ < x 6 b (n < N), where x = â(t), b̂(t) denote the points at

which n = N . This decomposition ensures that n < N at the boundaries x = a, b and the

boundary conditions given in equations (4.11) and (4.12) for which n > N are redundant.

This geometry is illustrated by figure 4.5 where we have chosen N = 0.5. As implied

by figure 4.5, we will assume that n and ∂n/∂x are continuous across these boundaries;

furthermore, we assume that pw and ∂pw/∂x are also continuous.
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Figure 4.5: The cell distribution and the positions of the moving boundaries x = â(t), b̂(t)

(at which n = N = 0.5), used in the analysis of a simplified model of cell

behaviour.

Integrating equation (4.10) twice in each region, applying the conditions (4.11), (4.12)

and imposing continuity of pw, n and ∂pw/∂x, ∂n/∂x, we obtain the following solutions in
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each region.

pw1(x, t) =
νn1

θ
− γ(t)(x− a) +

A(t)a+ Pu + (1 − θ)χn(a, t)

θ
, (4.13a)

pw2(x, t) = −δan2

θ
+

[
(ν + δa)

θ

∂n2

∂x

∣∣∣∣
x=â

− γ(t)

]
(x− â) +

ν + δa
θ

N

− γ(t)(â− a) +
A(t)a+ Pu + (1 − θ)χn(a, t))

θ
, (4.13b)

pw3(x, t) =
νn3

θ
+

[
ν + δa
θ

(
∂n3

∂x

∣∣∣∣
x=â

− ∂n3

∂x

∣∣∣∣
x=b̂

)
− γ(t)

]
(x− b)

+
A(t)(b− 1) + Pd + (1 − θ)χn(b, t)

θ
. (4.13c)

Substitution of equations (4.13) into (4.2) yields the following equations for the cell volume

fraction:

∂n1

∂t
+

1

12

[
γ(t) − ν

θ

∂n1

∂x

]
∂n1

∂x
= (km − kd)n1 +Dν(n1)

∂2n1

∂x2
, (4.14a)

∂n2

∂t
+

1

12

[
γ(t) − ν + δa

θ

∂n2

∂x

∣∣∣∣
x=â

+
δa
θ

∂n2

∂x

]
∂n2

∂x
= (km − kd)n2 +Dδa(n2)

∂2n2

∂x2
,(4.14b)

∂n3

∂t
+

1

12

[
γ(t) − ν + δa

θ

(
∂n2

∂x

∣∣∣∣
x=â

− ∂n3

∂x

∣∣∣∣
x=b̂

)
− ν

θ

∂n3

∂x

]
∂n3

∂x

= (km − kd)n3 +Dν(n3)
∂2n3

∂x2
. (4.14c)

In (4.13) and (4.14), the functions γ, Dν , Dδa and A are defined as follows

γ(t) =

(
ν

θ

∂n1

∂x
− ∂p1

∂x

) ∣∣∣∣
x=a

, Dν(n) = D − (θ − n)ν

12θ
, Dδa(n) = D +

(θ − n)δa
12θ

,(4.15)

A(t) =
(ν + δa)

(
(â− b)∂n2

∂x

∣∣
x=â

− (b̂− b)∂n3
∂x

∣∣
x=b̂

)
− (∆P − χ[n(a, t) − n(b, t)])

1 + a− b+ θ(b− a)
[

1
θ−n +

(
12D
θ−n − ν

θ

)
n

(θ−n)(ν−12D)−12Dn

]
x=a

, (4.16)

in which ∂pw1(a, t)/∂x and ∂n1(a, t)/∂x are given by the boundary conditions (4.12) and

∆P = Pu − Pd, χ = (1 − θ)χ.

We remark that the gradients ∂n(â, t)/∂x, ∂n(b̂, t)/∂x, and the positions of the inter-

faces â(t), b̂(t), are undetermined at this stage. This system therefore requires non-trivial

numerical solution, offering little benefit over numerical solution of the original equations;

however, this analysis does provide some insight into the behaviour of the cells which is

obscured by the complexity of the previous choice of the functions Σn and ψns. The most

obvious effect of the switch between the different cell behaviour represented by equations

103



4.2 Cell movement

(4.8) is in the modified diffusion coefficients, Dν , Dδa . Since we have ν, δa > 0, when ag-

gregation dominates (n < N), the diffusive transport of the cells is reduced; conversely,

when n > N , repulsive effects dominate and the cellular diffusion coefficients are increased.

To avoid negative diffusion, the parameter ν, which describes the importance of cell-cell

aggregation, must obey ν < 12D. This condition ensures that aggregative effects do not

outweigh diffusion by more than one order of magnitude. A further remark is that in the

absence of an imposed flow, appropriate boundary conditions are

pw
∣∣
x=a,b

=
νn

θ
,

∂pw
∂x

∣∣∣∣
x=a,b

= 0,
∂n

∂x

∣∣∣∣
x=a,b

= 0, (4.17)

implying γ(t) = 0 = A(t). Furthermore, we expect symmetric solutions if no flow is imposed,

in which case n1 and n3 are governed by identical non-linear diffusion equations.

The change in diffusive behaviour across n = N highlights the influence of cell-cell inter-

actions on the diffusive behaviour of the cell phase as observed in the preceding parameter

study (§4.2.1). When aggregation dominates, diffusion of the cell population is reduced by

the attractive forces between cells; as a result, a dense aggregate is formed (see figures 4.2a,

4.3 and 4.4a). Conversely, when repulsive behaviour dominates, diffusion is augmented by

the repulsive forces between cells and a more diffuse cell population is observed (see figures

4.2b and 4.4b).

Accurate comparison of the behaviour of this model with the numerical simulations pre-

sented in §§3.3.1 and 4.2.1 requires numerical solution of the piecewise equations (4.14); in-

stead, we exploit the numerical scheme developed in §3.3.1, employing the following smooth

approximations to the functions Σn and ψns:

Σn(n) =
ν

2
(tanh [g(n−N)] − 1) +

δa
2

(tanh [g(n−N)] + 1) , (4.18)

ψns(n) =
χ

2
(tanh [g(n −N)] − 1) +

δb
2

(tanh [g(n−N)] + 1) , (4.19)

where g is a parameter which determines the steepness of the gradient between the limiting

values Σn = −ν, δa and ψns = −χ, δb and the larger the value of g, the closer the approxi-

mation to the step function analysis given above (this approximation is necessary since the

use of the step functions given by (4.8) causes the numerical scheme to fail). Figure 4.6

shows a plot of these functions illustrating the effect of increasing g; the arrow shows the

direction of increasing g. The parameter values are chosen to be N = 0.5 and ν = χ = 0.2,

δa = δb = 0.1 so the behaviour of the functions is identical, i.e. Σn(n) = ψns(n). In a tissue

engineering context, this choice implies that the interactive forces between adjacent cells

and between the cells and scaffold are equal.
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Figure 4.6: The behaviour of the smooth approximations (4.18) and (4.19) to the sim-

plified functions Σn and ψns given by (4.8). Parameter values: N = 0.5,

ν = χ = 0.2, δa = δb = 0.1, g = 10, 20, 30, 40, 50.

Approximate solutions are obtained by solving equations (4.1) and (4.2) subject to

(4.3), (4.4) and (4.6) in the same manner as described in §3.3.1. We note here that the

values of the diffusion coefficient (D) and the aggregation parameter (ν) are modified from

those given in previous chapters to ensure that the condition ν < 12D is not violated; the

values of the parameters δa, δb are the same as those used in chapter 3 (we choose D = 0.02,

ν = χ = 0.2, δa = δb = 0.1, µn = 1). Figure 4.7 illustrates how the approximation to the

numerical solution of equations (4.14) evolves over time; figure 4.8 depicts the evolution of

the corresponding culture medium and cell pressures and figure 4.9 shows two illustrative

plots of the cell phase velocity at the channel centreline, highlighting the change from

aggregative to repulsive behaviour.
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Figure 4.7: The evolution of the cell volume fraction at t = 0 − 0.18 (in steps of t =

0.03), obtained using simplified intraphase pressure and interphase traction

functions. Parameter values: Pu = 1, Pd = 0.1, km = 7.5, kd = 0.1, D = 0.02,

ν = χ = 0.2, δa = δb = 0.1, θ = 0.97, g = 80, N = 0.5.
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Figure 4.8: Evolution of (a) the culture medium pressure, and (b) the cell pressure, with

simplified intraphase pressure and interphase traction functions t = 0 − 0.18

(in steps of t = 0.03). Parameter values as in figure 4.7. n < N , (–); n > N ,

(- -).
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Figure 4.9: An illustrative plot of the cell phase velocity at the channel centreline corre-

sponding to figure 4.7 at t = 0.06, n < N (–), and t = 0.18, nmax > N (- -).

Parameter values as in figure 4.7.

Figure 4.7 illustrates the modified diffusion feature of equations (4.14) discussed above.

For early times, when n < N , aggregation dominates and diffusion is inhibited. When

n crosses the threshold value n = N , diffusive effects increase due to the dominance of

repulsive forces and the cell population spreads, leading to a dramatic increase in the width

of the aggregate. We remark that aggregation still dominates at the scaffold periphery,

resulting in a “sharply-defined” aggregate with high gradients in density at the up- and

downstream peripheries. As the cell density continues to increase, a clear peak forms at the

centre of the aggregate (see the last line on figure 4.7, corresponding to t = 0.18).

The pressures of each phase, illustrated in figure 4.8, are consistent with the change
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from aggregation-dominated to repulsion-dominated behaviour shown in §3.3.1 (figures 3.6,

3.7). We now discuss their behaviour in turn. The culture medium pressure is in good

qualitative agreement with that shown in figure 3.6: an initial increase in pw is observed as

fluid is ejected from the construct region due to aggregation; as the density increases, and

repulsive cell behaviour dominates, pw falls, corresponding to an influx of fluid. The cell

phase pressure (given by pn = pw + Σn + (1− θ)ψns) exhibits corresponding behaviour: for

low cell phase density, pn is given by pn ≈ pw−ν−(1−θ)χ, corresponding to aggregation and

attachment; in regions of higher density, repulsive contributions from Σn and ψns dominate

and an increase is observed: pn ≈ pw + δa + (1 − θ)δb. However, comparison of figures 3.7

and 4.8b shows a marked difference in the form of pn. This is due to the simplified form

of Σn and ψns employed here (equations (4.18) and (4.19)) in contrast to that employed

in chapter 3 (equations (4.5)). As discussed above, for n < N , aggregative behaviour

dominates, leading to a reduction in pn relative to pw; however, since the magnitudes of the

(smoothed) simplified versions of Σn and ψns decrease with n (for n . N), the reduction

in pn is minimal in the centre of the construct, where the cell density is highest, leading

to the “bump” in pn. In contrast, the magnitude of the more complex form (4.5) for Σn

(in the aggregation-dominated regime) increases with n, leading to the opposite behaviour

(see figures 3.7a and 4.8b). We emphasise, however, that since the cell phase velocity is not

driven by ∂pn/∂x (the driving pressure gradient is a combination of the culture medium

pressure gradient and contributions from cell-cell and cell-scaffold interaction terms; see

equation (3.25)), this does not correspond to cell efflux. The cell phase velocity will be

discussed in more detail below. As n increases, exceeding the threshold n = N , repulsive

behaviour causes an increase in pn. The “dip” witnessed here (again, the opposite of the

behaviour shown in 3.7b) is due to the simplified extra pressures, which have achieved their

maximal (constant) values (Σ = δa, ψns = δb), competing with pw which (for n > N)

achieves a minimum where the cell phase is most dense (see the dashed lines in figure 4.8).

We remark also that the switch in diffusive behaviour may be observed prior to the

threshold n = N in figures 4.7 and 4.8 due to the approximation (4.18) and (4.19) to the

step functions (4.8). In figure 4.8a this effect is indicated by the third-to-last line which

shows that the decrease in culture medium pressure occurs prior to the threshold n = N .

This effect may be reduced by increasing the parameter, g; however, this increases the

difficulty of numerical solution.

The cell phase behaviour illustrated in figure 4.7 is most clearly illustrated by con-

sidering the behaviour of the corresponding cell velocity shown in figure 4.9. At low cell
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density, the cells aggregate, moving into the centre of the construct, as evidenced by the

positive velocity at the upstream periphery and negative velocity downstream. The dashed

line in figure 4.9 shows that when the cell density crosses the threshold n = N , repulsion

causes this flow to reverse; aggregation is still evident at the construct edge in areas of low

density. Additionally, as remarked above, the negative velocity gradient at the centre of

the construct corresponds to aggregation here, leading to the formation of a peak in cell

density. This behaviour corresponds to the large variation in cell phase pressure observed

at later times (see figure 4.8b).

Lastly, we note that the cell phase velocity is calculated using equations (3.23) and

(3.25), employing the simplified intraphase pressure and interphase traction functions (4.18)

and (4.19). In view of these simplified functional forms, the cell velocity at the channel

centreline for n < N is given by

un ≈ − 1

8µn

(
∂pw
∂x

− ν

n

∂n

∂x

)
, (4.20)

so that for small n, (i.e. at the construct periphery) the second term dominates and cells

tend to move up gradients of cell density.

4.3 Mechanotransduction

We now extend the model derived in chapter 3, to include a simple mechanotransduction

mechanism which regulates the cells’ proliferative response. In a similar manner to that

presented in chapter 2, we couple the growth of the cell population to the following stimuli:

contact inhibition caused by cell-cell interactions, the effect of stress caused by increases in

local cell density and the influence of the external fluid dynamics. The first two stimuli are

not considered explicitly in this formulation; however, we consider that the gross effect of

such mechanisms is captured in the functional forms specified below. The motivation for

including such stimuli in a model of mechanotransduction-affected tissue growth has been

outlined in chapter 2 so we do not discuss it in detail here.

The relevance of our modelling framework hinges on the appropriate choice of the mass

transfer term for the cell phase, Sn; we pause here to highlight an important restriction on its

form in this three-phase model. In order to utilise the numerical scheme developed in §3.3.1
with minimal modifications, we note that equation (4.2) is derived by taking the average

(in the transverse direction) of the conservation of mass equation for the culture medium

phase in the long-wavelength approximation (see §1.5 and chapter 3 for more details). The
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4.3 Mechanotransduction

averaged mass transfer term is therefore Sn = Sn(x, t); consequently, explicit coupling

between the shear stress induced by the culture medium (which is dependent on y) and the

cell growth response is prohibited. The gross effect of this coupling may still be incorporated

into the cell response by noting that the averaged flow-induced shear stress experienced by

the cells is proportional to the culture medium velocity. In view of equations (3.22)–(3.24),

we therefore model the shear stress as being proportional to the gradient of the culture

medium pressure. The “intraphase” shear stress produced by the movement of the cells

themselves may be modelled in a similar way; however, we consider that, physiologically,

the shear stress induced by the cell movement will be negligible in comparison to the flow-

induced shear and this effect is neglected from the model. Further coupling between cell

proliferation and the cells’ mechanical environment may be achieved by incorporating the

effect on the cells’ behaviour of the pressure of the surrounding culture medium, the pressure

in the cell phase and the local cell density. In the following, we therefore restrict attention

to a cell growth rate of the following form:

Sn = Sn

(
n, pw, pn,

∂pw
∂x

)
, (4.21)

and for clarity, we consider the effect of each of these stimuli on the growth of the cell

population in isolation. When adapting the numerical scheme developed in §3.3.1, we must

evaluate the source term Sknj at each mesh point, j, and time-step, k and include this

appropriately in the semi-implicit Crank-Nicholson scheme represented by equations (3.36)

and (3.37).

4.3.1 Cell density dependence: Sn = Sn(n)

We employ the same modelling techniques used in chapter 2, identifying three distinct

phases in the behaviour of the cell population: (i) a proliferative phase, Sn = k1nn; (ii)

an ECM-producing phase, Sn = k2nn; and (iii) an apoptotic phase, Sn = −kdn. These

phases represent the effects of contact inhibition and residual stresses caused by growth on

the phenotypic progression of cells. As discussed in chapter 2, contact inhibition and high

stress levels inhibit cell division, whilst a moderate level of stress appears to enhance tissue

growth (Roose et al., 2003; Chaplain et al., 2006). We therefore choose k2n > k1n so that

the rate of cell phase growth is increased during the ECM-production phase. For simplicity,

we assume that the rates of growth and death (k1n, k2n, kd) are constant. The threshold

cell densities that separate these three types of behaviour are denoted n′1 and n′2.

We employ step functions to represent this behaviour; the net rate of growth and death
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4.3 Mechanotransduction

of the cell phase, denoted κ(n), is illustrated by figure 4.10 and is related to Sn as follows:

Sn(n) =
[
k1nH(n′1 − n) + k2nH(n− n′1) − (k2n + kd) H(n− n′2)

]
n = κ(n)n, (4.22)

where H(n) is the Heaviside step function. We note that we may employ a step function for

the switch between each growth phase since, in contrast to the two-fluid model, we are not

required to evaluate gradients of Sn (see equations (4.1), (4.2) and (2.24)–(2.26)). To clarify,

within our numerical scheme, we choose κ(n) = k2n at the threshold values n = n′1,n
′
2.

n

n′1 n′2

κ(n)

k1n

k2n

−kd

proliferation

apoptosis

proliferation and
ECM deposition︷ ︸︸ ︷ ︷ ︸︸ ︷

︷ ︸︸ ︷

Figure 4.10: Schematic representation of the progression of the cells from a proliferative

phase to an apoptotic phase, via an extracellular matrix-producing phase in

response to the local cell density.

Figure 4.11a shows the effect of this modified mass transfer term on the evolution of

the cell phase for dynamic culture, and the regions in which each of the different growth

responses are exhibited. The corresponding culture medium and cell phase pressures are

shown in figures 4.11b and 4.12. The evolution of the velocity of each phase at the channel

centreline is shown in figure 4.13; for clarity, only the velocities where n has reached the

threshold value n = n′2 are shown. We emphasise that in the following simulations the

parameter choices are not physiologically motivated, being chosen to best illustrate the

behaviour of the model under such a growth regime.

Figure 4.11a shows that the choice of mass transfer term arrests the growth of the cell

phase at the threshold cell density, n′2, due to the progression from the proliferative to the

apoptotic phase. We note that, as in chapter 2, despite the presence of apoptosis in our

model, re-entry into the proliferative phase ensures that, once attained, the density of the

cell phase does not fall below n = n′2. Figures 4.11b, 4.12 and 4.13 indicate that due to the

cell phase being prevented from achieving high densities, the pressure and velocity of each

phase exhibit qualitatively similar behaviour to that shown in figures 3.6a, 3.7a, 3.8a and

3.9a. Since excessive cell proliferation is prevented, the repulsive terms in the intraphase

pressure and interphase traction functions are unable to dominate and the cells aggregate
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Figure 4.11: The evolution of (a) the cell volume fraction, n < n′

1 and n > n′

2, (–); n′

1 6

n 6 n′

2, (· · · ), and (b) the pressure of the culture medium, at t = 0 − 0.35

(in steps of t ≈ 0.038) for growth behaviour defined by (4.22) and dynamic

culture: Pu = 1, Pd = 0.1, k1n = 6.5, k2n = 7.5, kd = 1, D = 0.01, θ = 0.97,

n′

1 = 0.4, n′

2 = 0.6.
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Figure 4.12: The evolution of the pressure of the cell phase for (a) early times (small

n: t = 0 − 0.15, in steps of t = 0.0375), and (b) longer times (larger n:

t = 0.2 − 0.35 in steps of t = 0.05), for growth behaviour defined by (4.22)

and dynamic culture. Parameter values as per figure 4.11.

to a form a dense population, which is advected under the imposed flow. As remarked in

chapter 3, figure 3.9b shows that advection is reduced by cell aggregation.

Due to this curtailed cell phase growth, the dramatic increase in cell phase pressure

due to cell-cell repulsion observed in chapter 3 is prevented (see figures 3.7b and 4.12b).

Similarly, the dramatic flow reversal observed in figures 3.8b and 3.9b does not occur (lim-

ited upstream flow of culture medium due to cell aggregation is observed at the upstream
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Figure 4.13: The evolution of (a) the velocity profile of the culture medium, (b) the

velocity profile of the cell phase (at the channel centreline), at t = 0.2−0.35

(in steps of t = 0.05) for growth behaviour defined by (4.22) and dynamic

culture. Parameter values as per figure 4.11.

periphery of the construct as in figure 3.9a); rather, the flow attains a constant value in the

region where n = n′2. This is indicated by the presence of flat lines in the central regions of

figures 4.13a and 4.13b (cf. the cell density profiles shown in figure 4.11a).

4.3.2 Cell density dependence: Sn = Sn(n, pn)

An alternative way to model the tendency of cells to adapt their behaviour in response to

their local density is to consider the pressure of the cell phase as an indicator of cell density;

i.e. Sn(n, pn). Since pn is intimately connected to the pressure of the culture medium, this

choice has the added advantage of including the response of cells to the local fluid dynamics.

We therefore modify the mass transfer term for the cell phase, Sn to investigate the effect

that this mechanism has on the evolution of the tissue construct and to demonstrate the

versatility of our model.

As discussed in §2.4.2, a number of studies have shown improved bone formation as a

result of stimulation by culture medium pressure (Haskin et al., 1993; Klein-Nulend et al.,

1995a; Owan et al., 1997). We represent the cells’ pressure-dependent response in a similar

manner to that outlined in chapter 2 and assume that at intermediate pressures, the cells

exhibit enhanced proliferation and ECM deposition; at low pressures, the cells enter a state

of relative quiescence in which proliferation and ECM deposition are greatly reduced; at

high pressures, the cells enter apoptosis. Introducing threshold cell pressures at which the

cell proliferation is heightened (p′n1) and the apoptotic phase is entered (p′n2), we represent
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the mass transfer term with step functions, as defined below and illustrated by figure 4.14:

Sn(n, pn) =
[
k1pH(p′n1 − pn) + k2pH(pn− p′n1)− (k2p + kd) H(pn− p′n2)

]
n = κ(pn)n. (4.23)

For clarity, we remark that within our numerical scheme, we choose κ(pn) = k2p at pn =

p′n1, p
′
n2.

pn

p′n1 p′n2

κ(pn)

k2p

k1p

−kd

quiescence

apoptosis

proliferation and
ECM deposition︷ ︸︸ ︷ ︷ ︸︸ ︷

︷ ︸︸ ︷

Figure 4.14: Schematic representation of the progression of the cells from a (relatively)

quiescent phase to an apoptotic phase, via a proliferative phase in response

to the pressure of the cell phase, pn.

Figure 4.15 shows the effect of the cell pressure-dependent mass transfer term on the

growth of the cell phase for dynamic culture. Also shown are the regions in which each of

the different growth phases occur; the evolution of the culture medium pressure is shown

in figure 4.16 and the pressure of the cell phase (together with the threshold values p′n1,

p′n2) is shown in figure 4.17. As in chapter 3, the pressure of the culture medium is plotted

separately for n 6 0.6, nmax > 0.7 to best illustrate the transition behaviour of the solution;

similarly, the pressure of the cell phase is plotted for n 6 0.5, nmax > 0.6. Figure 4.18 shows

the predicted tissue construct obtained in static culture conditions.

Comparison of figures 4.11a and 4.15 demonstrates the effect of the chosen form of

pressure-dependent mass transfer term on the growth of the cell phase: rather than simply

being arrested at a threshold density, the growth of the cell phase is skewed towards the

downstream boundary x = b. This is due to the interplay between the imposed pressure,

pw, (which dominates the cell pressure, pn = pw + Σn + (1 − θ)ψns when n is small)

and the repulsive intraphase pressure and interphase traction contributions (which cause a

dramatic increase in cell pressure when n becomes larger; see equation (4.5)). Growth of

the cell phase near x = a is inhibited because the culture medium pressure is high there

(κ(pn) = −kd); near x = b, growth is reduced (κ(pn) = k1p < k2p); and between these two

regions, enhanced growth is initially observed until the cell pressure increases above the

threshold p′n2. Comparison between figures 3.7 and 4.17 shows that the cell pressure is not
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Figure 4.15: The evolution of the cell volume fraction at t = 0 − 0.3 (in steps of t =

0.0375), pn > p′n2, (-.-); p′n1 6 pn 6 p′n2, (–); pn < p′n1, (· · · ), for growth

behaviour defined by (4.23) and dynamic culture: Pu = 1, Pd = 0.1, k1p = 4,

k2p = 7.5, kd = 2, D = 0.01, θ = 0.97, p′n1 = 0.35, p′n2 = 0.6.
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Figure 4.16: The evolution of the pressure of the culture medium for (a) early times

(small n): t = 0 − 0.2 (in steps of t = 0.04), (b) longer times (larger n):

t = 0.15−0.35 (in steps of t = 0.05), for growth behaviour defined by (4.23)

and dynamic culture. Parameter values as per figure 4.15.

dramatically affected by this changed cell distribution; similarly, figures 3.6 and 4.16 show

that the culture medium pressure is qualitatively similar to that found previously. The

velocities of each phase are therefore not given here since they will be qualitatively similar

to those found in §3.3.1.

Figure 4.18 shows the predicted construct morphology obtained in static culture con-

ditions (Pu = 0 = Pd). Comparison with figure 4.11a (which depicts the construct mor-

phology resulting from density-regulated growth in dynamic culture conditions) shows that,

as remarked in the simpler two-fluid model, in the absence of perfusion, pressure-regulated
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Figure 4.17: The evolution of the pressure of the cell phase for (a) early times (small n):

t = 0−0.15 (in steps of t = 0.0375), (b) longer times (larger n): t = 0.2−0.35

(in steps of t = 0.05), for growth behaviour defined by (4.23) and dynamic

culture. Parameter values as per figure 4.15.
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Figure 4.18: The evolution of the cell volume fraction at t = 0−0.3 (in steps of t = 0.033),

pn < p′n1, pn > p′n2, (-); p′n1 6 pn 6 p′n2, (· · · ), for growth behaviour defined

by (4.23) and static culture: Pu = 0 = Pd, k1p = 7.5, k2p = 9, pn1 = 0,

p′n2 = 0.01, other parameters as in figure 4.15.

growth results in a construct which is almost indistinguishable from that obtained in the

density-regulated growth regime. In this three phase model, in which cell growth is per-

mitted at the scaffold edge (x = a, b), the only differentiating factor between cell density-

regulated (dynamic culture) and pressure-regulated (static culture) growth is the asymmetry

introduced by the imposed flow in the former case. Removal of the imposed flow results in

indistinguishable constructs (results omitted).

In chapter 2, the similarity of the constructs produced in each case was a consequence

of the simplified model in which the pressure was directly proportional to the cell distri-
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bution in the absence of a flow (see equation (2.47)). In this three phase model, where

the relationship between the cell phase distribution and its pressure is more complex, the

net result is the same; however, the mechanism is different. In static culture, dominance

of the aggregation and scaffold affinity parameters at low cell density ensures that pn < 0

and tissue growth is determined by the reduced growth rate, κ(pn) = k1p; as the density

increases, the repulsive terms become important, causing an increase in cell phase pressure

until pn exceeds the upper threshold and the cells enter an apoptotic phase, preventing the

cell density from further increase. Cells near the periphery of the aggregate (where the

density and associated cell pressure are lower) proliferate at a rate k1p or k2p depending

upon the value of pn (cells proliferating at κ(pn) = k2p are indicated by the dotted line in

figure 4.18). Eventually, these cells achieve sufficiently high density to cause the pressure

to exceed the upper threshold, resulting in curtailed growth. In this way, a construct whose

density is approximately uniform is attained. The higher cell density attained under static

culture (figure 4.18) is due to the thresholds p′n1, p
′
n2 chosen.

The effect of culture medium pressure on the growth response of the tissue construct is

embodied within the above choice of mass transfer term, Sn. We therefore do not present

the results for the case Sn = Sn(n, pw) since these will exhibit similar behaviour to those

given above and reflect similar modelling considerations.

4.3.3 Shear stress dependence: Sn = Sn(n,
∣∣∂pw/∂x

∣∣)

We now consider the effect of coupling the growth of the cell phase to the shear stress induced

by the external fluid dynamics; i.e. Sn(n,
∣∣∂pw/∂x

∣∣). The motivation for such a mass transfer

term is strong: as discussed in §1.2.2, a great many studies (see Klein-Nulend et al. (1998,

1995b), You et al. (2000), Bakker et al. (2004), Han et al. (2004) and others) have reported

that bone cells are highly sensitive to stimulation via fluid flow-induced shear stress. We

therefore employ the same simplistic modelling techniques as previously, and assume that

in the presence of an intermediate level of shear stress, the rates of proliferation and ECM

deposition are heightened; for low shear stress, the proliferation and ECM deposition rates

are reduced; and for excessively high shear stresses the cells become damaged and enter

a necrotic phase. In this case, however, we find that to ensure stability of the numerical

scheme, we must employ a smoothed version of the functional form for the mass transfer

term, Sn(n,
∣∣∂pw/∂x

∣∣). The reason for this is unclear. This function is defined as follows,
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and depicted in figure 4.19:

Sn

(
n,

∣∣∣∣
∂pw
∂x

∣∣∣∣
)

=

{
−km − km

2

(
tanh

[
g

(∣∣∣∣
∂pw
∂x

∣∣∣∣− P ′
1

)]
− 1

)

−km + kd
2

(
tanh

[
g

(∣∣∣∣
∂pw
∂x

∣∣∣∣− P ′
2

)]
− 1

)
− kd

}
n

= κ

(∣∣∣∣
∂pw
∂x

∣∣∣∣
)
n. (4.24)

In (4.24), the threshold values at which the rate of cell proliferation and ECM deposi-

tion are heightened and the necrotic phase is entered are denoted P ′
1 and P ′

2 respectively

and the parameter, g, determines the closeness of the approximation to the step-function

behaviour used previously. To avoid confusion with the previous notation (k1p, k2p), we

employ growth rates km, km here (km > km). Figure 4.20 illustrates the effect of the shear

stress-dependent mass transfer term, Sn(n,
∣∣∂pw/∂x

∣∣) on the growth of the cell phase and

highlights the regions in which each of the different growth phases occur. Figure 4.21 shows

the corresponding culture medium pressure gradient (which is proportional to the average

flow-induced shear stress) together with the threshold values; the pressure gradient is plot-

ted separately for n 6 0.58 and nmax > 0.64 to more clearly illustrate the behaviour as the

cell volume fraction, n, increases.

km

kd

km

κ(
∣∣∂pw

∂x

∣∣)

∣∣∂pw

∂x

∣∣

P ′
1 P ′

2

quiescence

apoptosis

proliferation and
ECM deposition

︷ ︸︸ ︷

︷ ︸︸ ︷︷ ︸︸ ︷

Figure 4.19: Schematic representation of the progression of the cells from a (relatively)

quiescent phase to a necrotic phase via an proliferative phase in response to

the level of flow-induced shear stress.

Inspection of figures 4.20 and 4.21 shows how the cell phase is affected by shear-

dependent mass transfer. When the cell population is relatively small, disturbance to

the culture medium flow is small and the shear remains within the proliferative region:

P ′
1 6

∣∣∂pw/∂x
∣∣ 6 P ′

2. As the cell population increases, the increased construct density

causes a reduction in uw near the upstream periphery, and an increase downstream (cf. fig-

ures 3.9a and 4.21a), causing the upstream shear to fall below the P ′
1 threshold and resulting
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in decreased proliferation there. A further increase in the cell population causes the flow

disturbance to increase (see figure 3.9b) resulting in flow reversals at a number of points

within the domain. This causes the shear to increase to the P ′
2 threshold and to cross the

P ′
1 threshold repeatedly (see figure 4.21b), resulting in cell death and reduced cell growth

at various regions within the cell population. Inspection of figure 4.21b shows that the

influence of fluid shear stress on cell phase growth is clearest at late times. The high level

of shear near the construct centre and reduced shear near the upstream periphery cause cell

phase growth to be skewed in the downstream direction (see the last line in figure 4.20).
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Figure 4.20: The evolution of the cell volume fraction,
∣∣pwx
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2,

(–);
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2, (· · · ), at t = 0 − 0.4 (in steps of t = 0.05) for growth

behaviour defined by (4.24) and dynamic culture: Pu = 1, Pd = 0.1, km =

7.5, km = 4, kd = 2, D = 0.01, θ = 0.97, P ′

1 = 0.5, P ′

2 = 1.5, g = 60.
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Figure 4.21: The evolution of the pressure gradient of the culture medium for (a) early

times (small n: t = 0.02− 0.22 in steps of t = 0.05), (b) longer times (larger

n: t = 0.25, 0.3.0.35), for growth behaviour defined by (4.24) and dynamic

culture. Parameter values as per figure 4.20.
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4.4 Relevance to tissue engineering

4.3.4 Mechanotransduction: summary

In the preceding sections (§§4.3.1–4.3.3), we have investigated the response of the cell

phase to three different mechanotransduction mechanisms. To model the effect of contact-

inhibition and the stress induced by tissue growth on the proliferative response, we consid-

ered first the response to local cell density, employing a simple step function form for the

mass transfer term, Sn(n), representing the progression from a proliferative to an apoptotic

phase via an ECM-producing phase. Similar forms were employed for pressure-dependent

and flow-induced shear stress-dependent responses, modelling elevated proliferation in the

presence of an intermediate level of culture medium pressure or flow-induced shear stress.

The morphology of the resulting tissue construct is highly sensitive to these choices: in

the density-dependent case, apoptosis prevents the cell population exceeding the threshold

density, leading to a tissue construct with a sparse periphery and a uniformly dense core

(see figure 4.11a). In comparison, under the pressure-dependent growth regime and dy-

namic culture conditions, a construct is created which bears far more resemblance to that

obtained for constant rates of mitosis and death. In this case, the effect of coupling cell

proliferation to the pressure is to cause the cell phase to grow preferentially in a downstream

direction due to excessive upstream pressure (see figures 3.5 and 4.15). Under static culture

conditions, our numerical simulations suggest that pressure-dependent tissue growth results

in a construct that is almost indistinguishable from that obtained under density-regulated

growth (cf. figures 4.11 and 4.18), the distinguishing factor being the symmetrical construct

predicted under static conditions. Lastly, shear stress-dependent growth has a profound ef-

fect on the composition of the tissue construct; due to the variations in shear stress (viewed

as proportional to the gradient of the culture medium pressure), the tissue construct is

highly heterogeneous, with sharp variations between regions of cell apoptosis and growth

(see figure 4.20).

4.4 Relevance to tissue engineering

We now pause to explain how the above work may provide insight into in vitro tissue

engineering processes. Using numerical solution of the simplified model equations, we have

demonstrated a plausible gross response of the cell population under various parameter

regimes associated with the cells’ interaction with their environment and under the influence

of a number of growth stimuli.

The results and analysis presented in §4.2.2 (and §3.3.1) illustrate the profound effect
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that changes in the aggregative and repulsive properties of the cell/scaffold system have

upon the dynamics of the tissue construct. In our simple model, the parameters controlling

the tendency of cells to aggregate or repel each other (ν, δa) are dependent upon the

characteristics of the cell culture in question; the affinity the cell population feels for the

scaffold (controlled by the parameters χ, δb) may be controlled by altering the topography

or surface chemistry of the scaffold. The results of this model may therefore be employed

by tissue engineers to predict how changes in the properties of the cell/scaffold system

may affect the characteristics of the resulting tissue construct. Our model indicates that

decreasing the porosity of the scaffold allows better control of cell behaviour, such as cell

aggregation or attachment.

The versatile multiphase model employed in this analysis allows the influence on the

cells’ proliferative response of a wide variety of stimuli to be studied. To illustrate this, we

have considered the response to three different stimuli; in each case, we assumed a simple

functional dependence of the cells’ response on the model variables relevant to bone tissue

engineering applications (specifically, the local cell density, pressure and flow-induced shear

stress). As noted in chapter 2, the difference in the tissue construct morphology predicted

by our model under the influence of each of the mechanotransduction mechanisms studied in

dynamic and static culture, provides a simple means for the identification of the dominant

regulatory growth mechanism in a cell culture.

We consider that this simplified three phase model represents a realistic model of tis-

sue growth within a dynamic fluid environment relevant to in vitro tissue engineering ap-

plications. Given appropriate data which would allow model parameter specification, this

framework represents a simple mechanism for testing hypotheses about the behaviour of

cell cultures subject to various physical growth stimuli; furthermore, it would be relatively

straightforward to adapt the model to investigate the effect of a chemical stimulus such as

growth factors or a diffusible nutrient on the cells’ response. Such a framework is presented

in Lemon & King (2007).

4.5 Summary

In this chapter we have illustrated, using numerical solution of the model equations, the

effect on the behaviour of the solutions of varying parameters associated with the viscosity

of the constituent phases and the intraphase pressure and interphase traction functions.

The implications of our results in the context of tissue engineering were also discussed,
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specifically with reference to the manufacture of appropriate scaffolds to control the relative

strength of cell-cell and cell-scaffold interactions and the effect on the dynamics of the

resulting tissue construct.

Employing numerical simulations, we demonstrated that cell populations which exhibit

a preference for group locomotion will display enhanced penetration through the scaffold.

Furthermore, our results indicated that increasing scaffold density lends tissue engineers

improved control over cells’ aggregation and attachment. The switch between aggregative

and repulsive behaviour as cell density increases was highlighted and analysed by using

a simplified form for the relevant functions: Σn, ψns. This simple analysis showed how

the diffusive behaviour of the cells is reduced or augmented depending upon the relative

importance of cell aggregation and repulsion.

In addition, we have demonstrated how the mathematical model may be adapted to

account for coupling between the cells’ proliferative response and their local environment.

This was achieved by replacing the constant growth and death rates (km, kd) with appropri-

ate functional forms. Specifically, motivated by a range of studies (e.g. Haskin et al. (1993),

Klein-Nulend et al. (1995a), Bakker et al. (2004), Han et al. (2004) and Chaplain et al.

(2006)), we considered the response of the cells to their local density, pressure and flow-

induced shear stress. Simulations were presented showing that the growth and resulting

morphology of the tissue construct is dramatically altered by these effects. On provision of

appropriate experimental data, these predictions provide a means of identifying the dom-

inant regulatory growth mechanism in a cell population. We remark that we have not

considered nutrient-limited growth; as noted in chapter 2, this effect is likely to be signifi-

cant during static culture. An interesting extension to this work is to see how our predictions

in static and dynamic culture are affected by such a consideration.

We concede that highly simplified functional forms for the different growth effects

were employed and that they were considered in isolation; physiologically, it is expected

that these effects work together in a complex way to produce the cells’ overall response to

the stimuli they experience. However, we remark that the mathematical formulation and

numerical scheme developed is highly versatile, admitting more complex functional forms

and interplay between many competing growth stimuli should appropriate data become

available.

Lastly, we note that we have modelled the cells and ECM as a lumped “cell” phase; this

prevents us from distinguishing between ECM deposition and cell proliferation; furthermore,

we have assumed that the degradation of the scaffold phase is negligible on the timescale of
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interest. In the following chapter, we develop and study a model in which cell proliferation,

ECM deposition and scaffold degradation are treated separately.
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Chapter5
A three phase model for the growth of a

tissue construct

5.1 Introduction

I
n this chapter, we extend the model developed chapters 3 and 4 by treating separately

the cell population and ECM, without increasing the total number of phases in the

system. The mechanical forcing provided by the piston is neglected allowing us to

focus, once again, on the effect of the imposed flow on the cells’ response.

The interplay between scaffold degradation and nascent tissue growth is of key impor-

tance in tissue engineering applications, both in maintaining the mechanical integrity of

engineered constructs and with respect to in vivo implantation (proper injury repair de-

mands that total degradation of scaffold in vivo must be matched by tissue growth). To

investigate this, we re-interpret the scaffold phase as a lumped scaffold and ECM phase and

introduce an equation to govern its spatio-temporal evolution as a result of ECM deposition

and scaffold degradation; the cell phase now comprises only cells. We employ the method

presented in chapter 3 to derive a system of equations which describes how the pressure in

the culture medium and the volume fractions of the cell and “scaffold” phases evolve. As

in previous chapters, the cell and culture medium phases are modelled as viscous fluids and

the lumped scaffold/ECM phase is represented by a rigid porous material.

The ability of the model to accommodate interplay between cell proliferation, ECM

deposition and the mechanical environment is illustrated by considering a phenotypic switch

in the cells’ behaviour in response to the local cell density and the external fluid mechanics in

a similar manner to that presented in §4.3. Numerical solutions of the model equations are

presented and their biological relevance briefly discussed; the complexity of the governing

equations prevents significant analytical progress.
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5.2 Model formulation

5.2 Model formulation

As in chapters 2, 3 and 4, a Cartesian coordinate system x∗ = (x∗, y∗) is chosen with

corresponding coordinate directions (x̂, ŷ). We consider a rigid-walled, two-dimensional

channel occupying 0 6 x∗ 6 L∗, 0 6 y∗ 6 h∗, which contains a multiphase mixture

subject to a flow generated by an imposed axial pressure drop, P ∗
u − P ∗

d . The multiphase

mixture comprises two viscous fluids and one rigid phase; the cell population and the culture

medium are modelled as viscous fluids whilst the “scaffold phase” (now comprising both the

PLLA scaffold and the ECM deposited by the cells) is modelled as a rigid porous material.

We adopt the same notation as used previously and associate with each phase a volume-

averaged fraction (which we denote n, w, s for consistency with previous chapters), pressure,

p∗i , velocity, u∗
i = (u∗i , v

∗
i ), and stress tensor, σ∗

i , where the subscript i = n, w, s denotes

variables associated with the cell, culture medium and scaffold phases, respectively.

The derivation of the governing equations follows exactly the same process as given

in chapter 3, and we introduce an additional mass conservation equation for the scaffold

phase describing the deposition of ECM within the porous scaffold and the degradation of

the scaffold. For clarity, we reiterate here that, as in the previous chapters, we treat the

scaffold phase as a rigid porous material and therefore set u∗
s −→ 0, µ∗s −→ ∞, D∗

s = 0 in the

conservation of mass and momentum equations (3.1), (3.2); however, we now include a non-

zero mass transfer term for the scaffold phase: Ss(x, t). We choose to employ the momentum

balance equation for the two phase mixture of cells and culture medium in preference to

the balance equation for the system as a whole; more detail regarding this choice is given in

§3.2.1. To avoid repetition, details of the derivation are omitted here. For ease of comparison

with the equations given previously (chapters 3 and 4), we express the equation governing

the growth of the scaffold phase in terms of the porosity, θ(x, t) = 1 − s(x, t), and employ

θ in preference to s in the remainder of this chapter.

We make the same constitutive assumptions as in chapter 3, employing the viscous

stress tensor (2.8) for the cell and culture medium phases, defining the intraphase and

interphase pressures according to equations (3.4) and (3.5) and assuming that the interphase

viscous drag coefficient scales linearly with the relevant phases; see equation (3.6). Lastly,

non-dimensionalising according to (3.10), we obtain the following dimensionless governing
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equations for the three phase system:

∂θ

∂t
= −Ss, (5.1a)

∂n

∂t
−∇ · [(θ − n)uw] =

∂θ

∂t
− Sw −D∇2(θ − n), (5.1b)

∇ · (nun + (θ − n)uw) =
∑

i=n,w,s

Si +D∇2θ, (5.1c)

(θ − n)∇pw + kn(θ − n)(uw − un) + k(1 − θ)(θ − n)uw −

∇ ·
[
(θ − n)(∇uw + ∇uTw) + γw(θ − n)∇ · uwI

]
= 0, (5.1d)

∇ ·
[
− (θpw + nΣn + n(1 − θ)ψns) I + µnn(∇un + ∇uTn ) +

γnn∇ · unI + (θ − n)(∇uw + ∇uTw) + γw(θ − n)∇ · uwI
]
+

∇n(1 − θ)ψns − kn(1 − θ)un − k(θ − n)(1 − θ)uw = 0, (5.1e)

in which we have employed the no-voids condition n + w = θ (where θ = 1 − s) to write

the system in terms of n and θ only. We remark that the channel now occupies 0 6 x 6 1,

0 6 y 6 h = h∗/L∗.

Equations (5.1a)–(5.1c) are statements of conservation of mass for the scaffold phase,

culture medium phase (written in terms of n and θ) and the multiphase mixture. We use the

mass conservation equation for the culture medium phase in preference to the cell phase for

convenience (see §3.3). Equation (5.1d) expresses conservation of momentum for the culture

medium and (5.1e) is the momentum equation for the two phase mixture of cells and culture

medium. In equation (5.1a), Ss is the mass transfer term associated with the scaffold phase,

representing the net increase in the scaffold volume fraction due to ECM deposition by the

cell population and scaffold degradation. The remaining notation employed in equations

(5.1) is identical to that used in chapters 3 and 4: the rates of mass transfer into the cell and

culture medium phases are denoted Sn, Sw, the dimensionless parameters D, µn, k, γw and

γn are defined by equations (2.18) and Σn, ψns are the intraphase pressure and interphase

traction functions introduced in §1.5 and defined by equations (3.12).

Functional forms for the mass transfer rates for each phase (Sn, Sw, Ss) reflecting

various mechanotransduction mechanisms will be specified in §5.2.1 and suitable initial

conditions given in §5.3. Boundary conditions are given by the dimensionless versions of

(2.9)–(2.11).

We solve equations (5.1) in the same geometry as used previously, confining the tissue

construct to a region a 6 x 6 b and we stipulate that the cell phase may not leave this

region (see figure 3.1). The values of a and b are arbitrary (provided a < b < 1) and, as in

chapters 3 and 4, we choose a = 0.25, b = 0.75.

125



5.2 Model formulation

The equations are simplified by exploiting the long-wavelength limit (h≪ 1; see §3.2.2
for more details) to deduce from the y-component of the momentum equations (5.1d) and

(5.1e) that the volume fractions and pressures of each phase are independent of the trans-

verse coordinate at leading order. Integrating the x-component of the momentum equations

yields expressions for the axial velocities, uw and un. Averaging the conservation of mass

equations (5.1a)–(5.1c) across the channel and eliminating the axial velocities in the same

manner as previously (see §3.3), we may then rewrite the system (5.1) as a coupled system

of equations for θ(x, t), pw(x, t) and n(x, t). We obtain:

∂θ

∂t
= −Ss, (5.2a)

∂n

∂t
+

1

12

∂

∂x

{
(θ − n)

∂pw
∂x

}
= Sn − Ss +D

(
∂2n

∂x2
− ∂2θ

∂x2

)
, (5.2b)

∂2pw
∂x2

+
1

µn+ θ

{[
µ
∂n

∂x
+

(
1

µn
+ 1

)
∂θ

∂x

]
∂pw
∂x

+
∂2θ

∂x2

pw
µn

}
=

− 1

µn(µn+ θ)

[
∂2(nΣn)

∂x2
+ (1 − θ)

∂

∂x

(
n
∂ψns
∂x

)]
− 12

µn+ θ

(
Ss +D

∂2θ

∂x2

)
, (5.2c)

where µ = 1/µn−1 and Si(x, t) now denote the averaged mass transfer terms for each phase.

We note that we have used (5.2a) to eliminate ∂θ/∂t from (5.2b). We have additionally

assumed Sw = −Sn for consistency with chapters 3 and 4, and consequently have
∑
Si = Ss;

deposition of ECM by the cells or degradation of scaffold therefore represents spontaneous

mass generation or loss in the system. A discussion of this feature of our model and

suggestions to correct it are given in §5.4. Comparing equations (5.2b) and (5.2c) and those

employed in the lumped cell/ECM phase model (equations (4.1) and (4.2)) shows that the

introduction of spatio-temporal variation of scaffold volume fraction results in a number of

additional terms. Notable additions include a reduction in cell phase growth and modified

diffusion.

Appropriate boundary conditions on (5.2) are derived in chapter 3 by considering con-

tinuity of normal stress and flux at x = a, b, and requiring that the cells remain confined

within the region a 6 x 6 b. For brevity, we do not discuss the method here. The culture

medium pressure obeys the following conditions:

pw =
A(t)a+ Pu − nΣn − (1 − θ)nψns

θ
,

∂pw
∂x

=
A(t) + 12D ∂n

∂x

θ − n
on x = a, (5.3a,b)

pw =
A(t)(b − 1) + Pd − nΣn − (1 − θ)nψns

θ
,
∂pw
∂x

=
A(t) + 12D ∂n

∂x

θ − n
on x = b, (5.4a,b)

where Pu−Pd is the imposed dimensionless axial pressure drop (the dimensionless pressures

Pu, Pd are defined by equation (2.17)). Equations (5.3a) and (5.4a) are imposed as boundary
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conditions, the remaining equations are constraints which A(t) must satisfy; in the following

numerical simulations, we employ (5.3b) to determine A(t) and (5.4b) is employed as an

additional accuracy check, ensuring that continuity of flux is obeyed (see §3.3 for more

details). To ensure zero cell flux on x = a, b, the gradient of the cell volume fraction must

obey

∂n

∂x
=

1

12D

n− θ

n+ µn(θ − n)

{
pw
∂θ

∂x
+

A(t)n

(θ − n)
+
∂ (nΣn)

∂x
+ (1 − θ)n

∂ψns
∂x

}
on x = a, b.

(5.5)

Equations (5.2)–(5.5) allow us to simulate more clearly the interplay between cell prolifer-

ation, ECM deposition and the mechanical environment. To model this behaviour, we now

specify the mass transfer rates Sn, Ss which determine the response of the cell phase to its

environment.

5.2.1 Specification of mass transfer rates

In this section, we define the mass transfer rates for the cell and scaffold phases: Sn, Ss.

We first consider the growth of the tissue construct in the regime for which the rates of

cell proliferation, death, ECM deposition and scaffold degradation (km, kd, kecm, kdeg)

are constant. The model is then extended to accommodate coupling between the cells’

proliferative response and the local environment. To illustrate the influence of environmental

stimuli, we consider a cell density and fluid shear-dependent response. The effect of such

proliferative mechanisms was analysed in some detail in chapter 4, considering density,

pressure and shear-dependence on the growth of a lumped cell/ECM phase. For brevity, we

consider density and shear-dependence only. In each case, the motivation for such a growth

response is outlined in §§1.2.2, 2.4.2 and 4.3 and we employ the same simple modelling

approach, leading to mass transfer rates of the following form.

Uniform growth:

Sn(n) = (km − kd)n, Ss(n, θ) = kecmn− kdeg(1 − θ); (5.6)

cell density-dependent growth:

Sn(n) =
[
kmH(n′1 − n) − kdH(n− n′2)

]
n = κn(n)n, (5.7)

Ss(n, θ) = kecmn
[
H(n − n′1) − H(n− n′2)

]
− kdeg(1 − θ) = κs(n)n− kdeg(1 − θ); (5.8)
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fluid shear-dependent growth:

Sn

(
n,

∣∣∣∣
∂pw
∂x

∣∣∣∣
)

=

{
km1 − km

2

(
tanh

[
g

(∣∣∣∣
∂pw
∂x

∣∣∣∣− P ′
1

)]
− 1

)

−km + kd
2

(
tanh

[
g

(∣∣∣∣
∂pw
∂x

∣∣∣∣− P ′
2

)]
− 1

)
− kd

}
n

= κn

(∣∣∣∣
∂pw
∂x

∣∣∣∣
)
n, (5.9)

Ss

(
n, θ,

∣∣∣∣
∂pw
∂x

∣∣∣∣
)

=

{
kecm,1

2

(
tanh

[
g

(
P ′

1 −
∣∣∣∣
∂pw
∂x

∣∣∣∣
)]

+ 1

)

−kecm
2

(
tanh

[
g

(∣∣∣∣
∂pw
∂x

∣∣∣∣− P ′
1

)]
− tanh

[
g

(∣∣∣∣
∂pw
∂x

∣∣∣∣− P ′
2

)])}
n− kdeg(1 − θ)

= κs

(∣∣∣∣
∂pw
∂x

∣∣∣∣
)
n− kdeg(1 − θ). (5.10)

As remarked in §4.3.3, we must employ a smoothed functional form for the shear-dependent

regime; for simplicity, as in §4.3.1, we employ step functions to represent the density-

dependent growth response.

Equations (5.6) represent uniform tissue growth similar to that considered in chapter

3; however, we may now explicitly model the deposition of ECM and degradation of the

scaffold.

The mass transfer rates given by equation (5.7) and (5.8) model a cell density-dependent

phenotypic change from a proliferative phase to an apoptotic phase via an ECM-producing

phase; the threshold cell densities that separate these three types of behaviour are denoted

n′1 and n′2. Figure 5.1 shows how the net rate of cell proliferation (κn) and scaffold phase

production (κs(n) − (1 − θ)kdeg) varies with the cell density, n, at fixed θ (θ = θ0). We

remark here that, in contrast to the cell density-dependent growth responses presented in

the lumped cell and ECM model (§§2.4.2 and 4.3), during the ECM deposition stage, we

have κn(n) = 0, κs(n) = kecm since the cell phase now comprises only cells; in the former

cases, ECM deposition was represented by a heightened level of cell phase growth (see

figures 2.14 and 4.10). To clarify, within our numerical scheme, we choose κn(n
′
1) = km,

κn(n
′
2) = −kd, κs = k̂ecm at n = n′1, n

′
2.

Equations (5.9) and (5.10) define the rates of mass transfer corresponding to a shear

stress-dependent phenotypic change from a quiescent phase to an apoptotic phase via an

ECM-producing phase. This functional form describes a cell phase whose proliferation

and ECM deposition is heightened in the presence of an intermediate level of shear stress;

for low shear stress, the proliferation and ECM deposition is reduced; and for excessively

high shear stresses the cells become damaged and enter an apoptotic phase. The threshold
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km

−kd

κn(n)

n

n′1 n′2

quiescence apoptosis

proliferation︷ ︸︸ ︷

︷ ︸︸ ︷ ︷︸︸︷

(a)

k̂ecm

−kdegs0

κs(n) − kdegs0

n

n′1 n′2

scaffoldscaffold
degradationdegradation

ECM
deposition︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷︸︸︷

(b)

Figure 5.1: Schematic representation of the progression of the cells from a proliferative

phase (n < n′

1) to an apoptotic phase (n > n′

2) via an extracellular matrix-

producing phase (n′

1 < n < n′

2) in response to the local cell density at fixed

θ = θ0 (s0 = 1 − θ0); k̂ecm = kecm − kdegs0.

pressure gradients separating these phases are denoted P ′
1 and P ′

2 and the reduced rates of

cell proliferation and ECM production in the quiescent phase are denoted km1 and kecm,1,

respectively. Figure 5.2 illustrates the dependence of the net rate of cell proliferation and

scaffold phase production upon the local shear stress. As in §§2.4.2 and 4.3.3, we employ

smooth functions to ensure numerical stability; the parameter g determines the sharpness

of the switch between the different growth responses.

km

km1

−kd
P ′

1 P ′
2

κn(
∣∣∂pw

∂x

∣∣)

∣∣∂pw

∂x

∣∣︷ ︸︸ ︷

︷ ︸︸ ︷︷ ︸︸ ︷quiescence

apoptosis

proliferation

(a)

P ′
1 P ′

2

k̂ecm

k̃ecm

−kdegs0

κs(
∣∣∂pw

∂x

∣∣) − kdegs0

∣∣∂pw

∂x

∣∣︷ ︸︸ ︷

︷ ︸︸ ︷︷ ︸︸ ︷quiescence

degradation

ECM deposition

(b)

Figure 5.2: Schematic representation of the progression of the cells from a quiescent phase
(∣∣∂pw

∂x

∣∣ < P ′

1

)
to a necrotic phase

(∣∣∂pw

∂x

∣∣ > P ′

2

)
via an proliferative phase

(
P ′

1 <
∣∣∂pw

∂x

∣∣ < P ′

2

)
in response to the level of flow-induced shear stress at

fixed θ = θ0 (s0 = 1 − θ0); k̂ecm = kecm − kdegs0, k̃ecm = kecm,1 − kdegs0.

In the following section, we will use numerical simulations to illustrate the interplay

between cell proliferation, ECM deposition and the mechanical environment under the dif-

ferent growth regimes represented by equations (5.6)–(5.10) and depicted by figures 5.1 and
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5.2. Emphasis will be placed upon the response of the cell phase (both in terms of pro-

liferation and ECM deposition) to the mechanical environment; the remaining features of

the system will be similar to that discussed in §4.2 and the culture medium and cell phase

velocities (uw, un) are, therefore, not presented.

5.3 Numerical simulation

The system of equations (5.2a)–(5.2c) subject to the boundary conditions (5.3)–(5.5) is

solved numerically using a method identical to that described in §3.3.1; to avoid repetition,

only a brief outline of the numerical scheme for these equations is given.

Suitable initial conditions for the cell volume fraction are given by (3.34) and we choose

an initially uniform scaffold volume fraction: θ(x, 0) = 0.97. Equation (5.2c) is discretised

using central differences to obtain a finite-difference equation which is used to calculate the

pressure, pkw,j, at each mesh point, j, and time-step, k, from the cell volume fraction, nkj and

scaffold porosity, θkj . The value of the function Ak at each time-step is calculated using a

parameter shooting method as described in §3.3.1. Equation (5.2a) is solved for θk+1
j using

an explicit time-stepping routine and equation (5.2b) is then solved for nk+1
j using the same

semi-implicit method as described previously. The discretised equations are not stated here

in the interests of brevity; instead, a brief recapitulation of the method is given:

1. The value of θk+1
j is calculated using an explicit scheme;

2. an approximation to nk+1
j (denoted n̂k+1

j ) is calculated from nkj , p
k
w,j, θ

k
j using a

semi-implicit Crank-Nicholson scheme;

3. an approximation to pk+1
w,j (denoted p̂k+1

w,j ) is calculated from n̂k+1
j and θk+1

j ;

4. an improved estimate for nk+1
j is calculated from nkj , p

k
w,j, θ

k
j , p̂

k+1
w,j , θk+1

j using a fully

implicit Crank-Nicholson scheme;

5. an improved approximation for the pressure, pk+1
w,j is calculated using nk+1

j , θk+1
j .

As in earlier chapters, we employ an upwind scheme for the convective terms in (5.2b)

and the boundary conditions (5.5) are imposed using nkj (or n̂kj ) from the previous (or

intermediate) time-step for simplicity. Furthermore, as remarked in §4.3, when a more

complex growth response is considered, we must ensure that the mass transfer terms, Skn,j,

Sks,j are included appropriately in our Crank-Nicholson scheme (equations (3.36) and (3.37)).
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5.3.1 Uniform cell proliferation, death, ECM deposition and scaffold

degradation: Sn = (km − kd)n, Ss = kecmn − kdeg(1 − θ)

The evolution of the cell and scaffold volume fractions for dynamic culture conditions (Pu =

1, Pd = 0.1) is shown in figure 5.3; the corresponding pressure in the culture medium and

cell phases is shown in figure 5.4. We remark that although we have formulated the model

in terms of the porosity, θ for consistency with previous chapters, we present results for the

scaffold volume fraction, s, which more naturally illustrates the effect of ECM deposition

and scaffold degradation.
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Figure 5.3: The evolution of (a) the cell volume fraction, and (b) the scaffold volume

fractions at t = 0 − 0.25 (in steps of t = 0.05) for constant proliferation,

death, ECM deposition and scaffold degradation rates: km = 7.5, kd = 0.1,

kecm = 0.1, kdeg = 0.01 and D = 0.01; remaining parameters as in §3.3.

The results presented in figures 5.3 and 5.4 show how the volume fractions of the cell and

scaffold phases evolve and the effect this has on the cell and culture medium pressures. This

simple model of ECM deposition and scaffold degradation yields similar behaviour to that

observed in chapters 3 and 4 where we assumed θ = constant: the cell population proliferates

and spreads along the channel under the influence of diffusion and advection. Figure 4.2a

(dashed line) shows the growth of the cell volume fraction for constant scaffold density at

t = 0 − 0.25. Comparison of figures 5.3a and 4.2a shows that due to the small variation of

scaffold density, the additional terms in equation (5.2b) have little influence on cell phase

growth. Similarly, the culture medium and cell phase pressures are not dramatically affected

by the small variations in scaffold density, showing qualitatively similar behaviour to that

observed in chapter 3 (see figures 3.6 and 3.7); the corresponding culture medium and cell

phase velocities are therefore similar to those given previously and are not shown here.
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Figure 5.4: The evolution of (a) the culture medium pressure, and (b) the cell phase

pressure at t = 0 − 0.25 (in steps of t = 0.05) for constant proliferation,

death, ECM deposition and scaffold degradation rates. Parameter values as

in figure 5.3.

Figure 5.3b shows that at the edges of the construct, where n is small, scaffold degrada-

tion dominates ECM deposition and the scaffold volume fraction falls; in the regions where

n is relatively large (so that deposition dominates over degradation) the evolution of the

scaffold phase mirrors that of the cell volume fraction.

We remark that in these simulations, the cell density achieves high values, the scaffold

density remaining small. As discussed in chapter 3, the cell density is unlikely to achieve

such high values and we present these results to illustrate the behaviour of the system. The

increase in scaffold volume fraction corresponding to this cell density is, however, consistent

with the typical level of mineralisation in a PLLA scaffold found in experiments at ISTM,

Keele University (see figure 1.3). Appropriate cell and scaffold densities may, of course, be

obtained by manipulating the model parameters km, kd, kecm and kdeg.

The separate modelling of the scaffold phase has revealed some interesting behaviour:

the model predicts significant scaffold degradation in regions where the cell density is low.

In regions of higher cell density, the scaffold degradation is counterbalanced by ECM depo-

sition. Associating degradation of the scaffold with a reduction in the mechanical integrity

of the construct, and assuming that deposition of ECM compensates for such a reduction,

the results indicate that for cell populations which do not display significant scaffold pene-

tration, non-uniform initial cell seeding will cause a notable reduction in the resulting tissue

construct’s material properties. In the above simulations, due to the centrally-located ini-

tial cell phase distribution, scaffold degradation is observed at the periphery of the scaffold.
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Sporadic or peripheral cell seeding will have similarly detrimental consequences. Similar

conclusions have been drawn by other studies; for instance, Kelly & Prendergast (2003)

have shown that spatial inhomogeneity in the development of tissue within a construct dra-

matically reduces material properties (specifically, the P-wave modulus of the construct,

which is a measure of compressibility, relating axial stress to axial strain).

Our simulations clearly demonstrate the importance of achieving a uniform initial cell

seeding and encouraging cell penetration throughout the scaffold to maintain the mechan-

ical integrity of the construct, which is of crucial importance in bone tissue engineering

applications, especially with regard to in vivo implantation.

5.3.2 Cell density-dependent growth: Sn = kn(pn)n , Ss = κs(n)n−(1−θ)kdeg

In this section, the effect of the cell density-dependent phenotypic switch represented by

equations (5.7) and (5.8) is investigated. Figure 5.5 shows how the cell density-dependent

behaviour influences the time-evolution of the cell population for static (Pu − Pd = 0) and

dynamic (Pu−Pd = 0.9) culture conditions; in figure 5.6a we compare the cell distributions

for static and dynamic culture conditions. A comparison of the corresponding scaffold

phase volume fraction for static and dynamic culture conditions is shown in figure 5.6b.

The evolution of the pressures of the culture medium and cell phases for dynamic culture

conditions is qualitatively similar to that reported in previous chapters (and shown in figure

5.4) and is therefore not given here.
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Figure 5.5: The evolution of the cell volume fraction at t = 0− 0.28 (in steps of t = 0.04)

for (a) static culture: Pu − Pd = 0, (b) dynamic culture: Pu = 1, Pd = 0.1,

for growth behaviour defined by (5.7) and (5.8). Parameter values: km = 7.5,

kd = 0.1, kecm = 0.1, kdeg = 0.05 D = 0.01, n′

1 = 0.4, n′

2 = 0.6.
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Figure 5.6: The evolution of (a) the cell volume fraction, and (b) the scaffold volume

fraction at t = 0 − 0.28 (in steps of t = 0.04) for static culture, Pu − Pd = 0

(–) and dynamic culture, Pu = 1, Pd = 0.1 (- -) and for growth behaviour

defined by (5.7) and (5.8); parameter values as in figure 5.5.

Inspection of figures 5.5 and 5.6a shows the effect of the imposed flow on the cell

population. In the absence of flow, the chosen form of the mass transfer function Sn causes

behaviour much like that observed previously (see figure 4.11a, §4.3): the cell population is

prevented from exceeding the threshold value n = n′1 due to the switch from proliferative

to ECM-depositing behaviour and spreads due to diffusion. In contrast to previous results,

however, under dynamic culture conditions, a small build up of cells is observed above the

threshold n = n′1. Figure 5.6b shows that this does not affect the ECM deposition/scaffold

degradation behaviour due to the relatively small cell density increase and the choice of kecm.

This accumulation is reduced by mesh refinement and eradicated by employing smoothed

functional forms for the mass transfer terms Sn and Ss in the same manner as indicated

for the shear stress-dependent response (equations (5.9) and (5.10)), which suggests that it

is an artefact of the use of step functions rather than the result of a physical mechanism.

Figure 5.7 shows the predicted time-evolution of the construct morphology when a smoothed

function is used and when a step function with a refined spatial mesh (∆x = 6 × 10−4) is

employed. Figure 5.8 shows the effect of refining the mesh in detail. These simulations

suggest that a smoothed functional form is more appropriate for the mass transfer terms.

The effect of the perfusion is best illustrated by figure 5.6a which shows that the cell

population under dynamic conditions takes longer to reach the threshold value n = n′1,

forming a more diffuse population due to advection of cells and subsequent increase in

density at x = b.
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The switch from a proliferative to an ECM-depositing phase is reflected in the evolution

of the scaffold volume fraction shown in figure 5.6b. Initially, for both static and dynamic

culture conditions, uniform degradation of the scaffold is observed; when the cell volume

fraction reaches the threshold n = n′1, deposition of ECM by the cells begins. The density

of ECM deposited under dynamic culture conditions is less than that deposited under

static conditions since the rate of deposition is proportional to n; as discussed above, under

dynamic culture conditions, the high cell density values are achieved at later times due to

increased cell density at x = b and the formation of a more diffuse construct. In view of

the importance of cell motility and construct uniformity discussed in §5.3.1 in the context

of mechanical integrity of constructs, the more diffuse nature of constructs produced under

dynamic culture conditions indicates they are likely to be more mechanically stable.
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Figure 5.7: The evolution of the cell volume fraction at t = 0 − 0.3 (in steps of t = 0.05)

for dynamic culture: Pu = 1, Pd = 0.1, for (a) smoothed growth behaviour,

and (b) growth behaviour defined by (5.7) and (5.8) with a refined mesh.

Parameter values: km = 7.5, kd = 0.1, kecm = 0.1, kdeg = 0.05 D = 0.01,

n′

1 = 0.3, n′

2 = 0.6, smoothing parameter, g = 60.

5.3.3 Shear stress dependence: Sn = κn
(∣∣∂pw

∂x

∣∣)n, Ss = κs
(∣∣∂pw

∂x

∣∣)n− (1−θ)kdeg

We now illustrate the effect of coupling the proliferation of the cells, the deposition of ECM

and the local shear stress induced by the imposed flow, as represented by equations (5.9)

and (5.10) and depicted by figure 5.2. The evolution of the cell and scaffold volume fractions

for dynamic culture conditions (Pu − Pd = 0.9) is shown in figure 5.9; the corresponding

pressures in the culture medium and cell phases are qualitatively similar to those presented

above (figure 5.4) and so in the interests of brevity are not given here. The culture medium
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Figure 5.8: The effect on the build-up of cells of refining the spatial mesh; the arrow

indicates the direction of increasing ∆x. ∆x = 0.5/(nx− 1); number of mesh

points: nx = 300, 400, 500, 600, other parameter values as in figure 5.5.

pressure gradient (which we view as being proportional to the flow-induced shear stress; see

§4.3) is shown in figure 5.10 together with the threshold values, P ′
1, P

′
2 which we arbitrarily

choose to be P ′
1 = 0.5, P ′

2 = 1.5 as in §4.3.3; the smoothness parameter is chosen to be

g = 20.
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Figure 5.9: The evolution of (a) the cell volume fraction, and (b) the scaffold volume

fraction at t = 0 − 0.3 (in steps of t = 0.05) for growth behaviour defined by

(5.9) and (5.10). Parameter values: km = 7.5, km,1 = 5, kd = 0.1, kecm = 0.1,

kecm,1 = 0.05, kdeg = 0.05 D = 0.01, P ′

1 = 0.5, P ′

2 = 1.5.

Figures 5.9 and 5.10 show how the chosen forms of the shear stress-dependent mass

transfer terms affect the growth of the cell phase and the deposition of ECM. Initially, the

shear stress falls within the proliferative range P ′
1 6

∣∣∂pw/∂x
∣∣ 6 P ′

2 and the cell phase

proliferates and deposits ECM at the heightened rates km, kecm. As the cell population

increases, the disturbance to the flow is increased (cf. figures 3.9a and 3.9a), causing the
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Figure 5.10: The evolution of the pressure gradient in the culture medium t = 0.05−0.25

(in steps of t = 0.05) for growth behaviour defined by (5.9) and (5.10):

parameter values as in figure 5.9.

shear stress to cross the upper and lower thresholds (more discussion of this is given in

§4.3.3). This causes variations in the rates of cell proliferation and ECM deposition resulting

in the distorted cell and scaffold distributions shown in figures 5.9. As observed previously,

far upstream and downstream, degradation of the scaffold dominates due to the sparse

cell population there; at later times when significant accumulation of cells is observed near

x = b, ECM deposition increases.

5.4 Summary

In this chapter, we have presented a three phase model for tissue construct growth in which

cell proliferation, ECM deposition and scaffold degradation are treated separately. Numer-

ical solutions of the model equations are presented for constant cell proliferation, death,

ECM deposition and scaffold degradation rates and comparisons are drawn between these

and the solutions to the simplified three phase model presented in chapter 3. The ability

of the model to include the interplay between the cell population’s proliferative response

and its mechanical environment is illustrated by considering a phenotypic progression from

a proliferative phase to an apoptotic phase via an ECM-producing phase in response to

increases in the local cell density; a similar response to the flow-induced shear stress is also

considered. It is shown using simplified functional forms for the appropriate mass trans-

fer terms that these stimuli have a profound effect on the resulting evolution of the cell

population and the distribution of ECM deposited. As remarked in the previous chap-

ter, on provision of appropriate experimental data, the morphological differences observed

in these distributions provide a means of identifying the dominant stimuli controlling cell
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proliferation and ECM deposition in a cell population.

The separate modelling of the ECM and scaffold dynamics has revealed an important

facet of the system. Our model predicts that scaffold degradation is significant in regions

of low cell density, corresponding to a marked reduction in construct material properties

(deposition of ECM offsets the scaffold degradation in regions of high cell density and we

assume that this improves mechanical integrity in these regions). This prediction has impor-

tant implications for tissue engineering applications, suggesting that a uniform initial cell

seeding and encouragement of cell penetration throughout the scaffold are crucial in main-

taining the mechanical integrity of engineered constructs. Our model associates scaffold

degradation with a reduction in scaffold phase volume fraction, from which we infer delete-

rious effects on material properties. Private communication with Prof. El-Haj indicates that

the reduction in scaffold mass associated with degradation of the PLLA scaffold (e.g. due

to hydrolysis) is negligible; however, the reduction in the construct material properties is

physically reasonable.

As in the previous chapter, for clarity, we have considered a highly simplified response

and presented the effect of these stimuli in isolation; we recognise that, physiologically, these

stimuli will work together in a complex manner to produce the overall cell response. Fur-

thermore, nutrient-limited growth is not considered; this is expected to become significant

in the case of static culture conditions and provides an interesting extension to this work.

We have chosen Sn = −Sw for consistency with the previous sections and the mass

transfer term for the scaffold phase, Ss, therefore represents spontaneous mass generation

(or loss) from the system. This flaw could be easily corrected by more careful definition

of these mass transfer terms so that, for instance, deposition of ECM is balanced by a

reduction in growth rate of cell volume fraction and degradation of the scaffold results in

an increase in culture medium volume fraction. For example, for constant rates of growth,

death, ECM deposition and degradation (km, kd, kecm, kdeg):

Sn = (km − kecm − kd)n, Sw = (kd − km)n+ kdeg(1− θ), Ss = kecmn− kdeg(1− θ). (5.11)

These choices are equivalent to assuming that the production of ECM results in reduced cell

proliferation and that the scaffold degrades to increase the culture medium volume fraction.

An interesting extension to the work presented in this chapter is to consider in more

detail the interplay between the cell phase growth, ECM deposition and scaffold degenera-

tion. A sensitivity analysis could be employed to determine appropriate parameter regimes

which lead to optimum tissue growth to offset scaffold degradation. Such considerations
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are of great importance to the mechanical properties of engineered constructs and their

implantation in vivo.

Lastly, we remark that we have modelled the “scaffold” phase as a rigid porous material.

For this model to be applicable to the compression/perfusion bioreactor system introduced

in §1.2.3 and to in vitro tissue engineering more generally, we must take into account

the deformation of the construct under an applied load or due to residual stresses (see

§1.2.2) brought about by tissue growth. Furthermore, such a model provides a means to

investigate the effect of the interplay between scaffold degradation and ECM deposition

on the mechanical properties of an engineered tissue construct. As a first step towards

modelling these effects, in the following chapter we develop and analyse a simple poroelastic

model relevant to biological tissue growth.
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Chapter6
A poroelastic model for the growth and

deformation of a tissue construct

6.1 Introduction

I
n this chapter, we develop mathematical models applicable to the perfusion/compression

bioreactor system introduced in §1.2.3, which accommodate deformation of the tissue

construct due to macro-scale mechanical forcing supplied by the piston as well as the

attendant fluid flow. We use the models to study the effect of periodic compression on the

solid stress distribution and fluid flow within the construct. We develop a classical Biot

poroelasticity formulation and a multiphase model of the type presented in preceding chap-

ters. This represents a first step towards the development of a comprehensive model which

can be used to investigate the combined effect of deformation and fluid flow on the growth

and differentiation of a population of cells contained within an engineered tissue construct.

In §6.2, the governing equations of the Biot formulation are given and the relevant

modelling considerations are discussed. In addition, we adapt the multiphase formulation

presented in §1.5 to accommodate a poroelastic scaffold saturated with a multiphase fluid.

Comparisons are drawn between this model and similar models in the literature and it is

shown that the Biot model may be obtained as a special case. In §6.3, we present analytical

and numerical solutions to the Biot model to show the effect that mechanical forcing and the

resulting fluid flow has on the stress and flow field within the poroelastic scaffold. In §6.4,

numerical solutions are presented to the multiphase model outlined in §6.2. For simplicity,

the model equations are analysed in the absence of a cell phase in each case, with a view to

employing the predicted solid stress and fluid flow distributions in future models which will

link mechanical stimulation to cell behaviour within a deformable poroelastic scaffold. The

chapter ends with a discussion of the models employed and suggestions for further work.
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6.2 The equations of poroelasticity

In this section, we present the governing equations of the Biot model of linear poroelasticity

and a multiphase model suitable for studying a poroelastic scaffold saturated with a mul-

tiphase fluid. In each case, the derivation of the governing equations has been presented in

scores of papers and much of the detail is omitted here; however, a discussion of the key

modelling considerations is given and relevant literature is cited.

6.2.1 The Biot model of linear poroelasticity

The notation used to derive the Biot model of linear poroelasticity varies widely; the nota-

tion employed below is consistent with that used by Detournay & Cheng (1993) and Cowin

(1999). In particular, we remark that in contrast to preceding chapters of this thesis,

henceforth, we denote a displacement field by u and a velocity field by v.

We consider an isotropic elastic material containing a single pore fluid. There is a well-

developed formulation for anisotropic poroelastic media (Carroll, 1979; Thompson & Willis,

1991) and, given the heterogeneous nature of the PLLA scaffold and associated variation

in mechanical properties (see §1.2.3, figure 1.3), this formulation is likely to be more ap-

propriate; however, we present the isotropic case here for simplicity. The variables used to

describe the poroelastic material are: the total stress σ∗, the pore fluid pressure p∗, the

strain in the solid phase ε and the variation in fluid content ζ (which is analogous to the

change in fluid volume fraction employed in previous chapters). Each of these variables is

defined by its average over a suitable control volume. We remark that in the following,

the equations are given in dimensional form and the asterisks are omitted for brevity. In

this formulation, the following conventions apply: σij < 0 implies compression and ζ > 0

corresponds to an increase in fluid content. The variation in fluid content is defined as “the

volume of fluid imported into a control volume normalised by the control volume” due to a

combination of the following three interconnected effects: (i) deformation of the material,

(ii) a change in fluid pressure (which, for a compressible fluid leads to a change in fluid

volume), and (iii) the presence of a source (Wang, 2000). It is defined by Berryman (1992)

(after Biot (1962b), Biot (1973)) as follows:

ζ =
δVp − δVw

V
, (6.1)

where δVp denotes the change in the pore volume and δVw, the change in fluid volume as a

result of deformation of the poroelastic material; V is the reference volume. This definition
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is equivalent to that given by Biot (1962b, 1973) in which ζ was defined as “the fluid

mass injected into a unit element of unit initial volume divided by the initial fluid density”

(Berryman, 1992). For an incompressible fluid, δVw = 0 and the variation in fluid content

of the scaffold is determined by the change in pore volume; in this case, ζ is equivalent to

the change in pore fluid volume fraction.

The governing equations are derived by considering the conservation of linear momen-

tum for the fluid-filled material and conservation of mass for the pore fluid, obtaining:

∇ · σ + b = 0,
∂ζ

∂t
+ ∇ · q = γ, (6.2a,b)

where b is a body force, γ is a fluid source (the rate of injected fluid volume per unit volume

of the porous solid) and q is the fluid flow rate which describes the movement of the fluid

relative to that of the solid (qi is formally defined as the rate of fluid volume crossing a

unit area of porous solid with normal n̂i (Detournay & Cheng, 1993)). We remark that the

quasi-static form of the momentum equation has been chosen here and inertial effects have

been neglected for simplicity. Since the pore pressure must equilibrate over the averaging

length scale, restrictions are placed upon the time-scale over which diffusion/deformation

processes may be analysed and Detournay & Cheng (1993) note that it is “in the modelling

of quasi-static processes that the Biot model finds its full justification even though it has

been extended to the dynamic range.”

There are many ways in which the constitutive laws of poroelasticity may be expressed.

In the following, we choose the solid displacement (u) and pore pressure (p) as dependent

variables and now consider appropriate constitutive laws for the terms in equations (6.2).

The deformations of the porous material are assumed to be small and the strain is therefore

related to the displacement of the solid, u, by the infinitesimal strain tensor:

ε =
1

2

(
∇u + ∇uT

)
. (6.3)

We write the stress-strain relation1 as follows:

σ = −αp I +G
(
∇u + ∇uT

)
+

2Gν

1 − 2ν
(∇ · u) I. (6.4)

in which G and ν are the shear modulus and the Poisson’s ratio of the elastic material in

the absence of a pore fluid and I is the identity matrix. The shear modulus (or modulus

of rigidity) is the ratio of applied shear stress to shear strain; Poisson’s ratio describes the

compressibility of the material and is defined as the ratio of transverse contraction strain

1This may be interpreted as a constitutive law for the fluid-filled porous material.
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(normal to the applied load) to longitudinal extension strain (in the direction of the applied

load). The constitutive law for the fluid is as follows:

p = M(ζ − α∇ · u), (6.5)

in which M is the Biot modulus and α is the Biot-Willis coefficient (which also appears in

(6.4)). The quantity 1/M is the storage coefficient at constant strain, defined as the increase

in the amount of fluid per unit volume of porous material as a result of a unit increase of

pore pressure at constant strain. The coefficient α is the ratio of the reduction (or gain)

in fluid volume to the change in bulk volume due to compression (or extension) while the

fluid is free to escape (the fluid pressure is kept constant). It may also be interpreted as

an effective stress coefficient since the stress-strain relation (6.4) corresponds to that for an

elastic material if we define (σ +αp I) to be an effective stress. The Biot modulus, M may

be expressed in terms of material parameters as follows (Detournay & Cheng, 1993):

M =
2G(νu − ν)

α2(1 − 2νu)(1 − 2ν)
, (6.6)

where νu is the Poisson’s ratio of the material in the undrained state, which describes the

influence of the compressibility of the pore fluid on that of the poroelastic material. The

undrained state refers to the scenario where the fluid is trapped in the porous solid: ζ = 0.

Lastly, we assume that the fluid transport in the pore space can be described by Darcy’s

law which relates the fluid flow rate to the gradient of the pore pressure:

q = −κ∇p− f ; κ =
k

µ
, (6.7)

wherein κ is the coefficient of permeability, k is the permeability of the porous material (a

function of the porosity, θ), µ is the viscosity of the fluid and f is a body force term. We

note that this body force term will, in general, be a constant and will therefore not appear

in the final governing equation (6.2b).

The governing equations (6.2) may be written in terms of the dependent variables u and

p using the above relations. Substituting the constitutive relation (6.4) into the momentum

equation (6.2a) yields the following Navier-type equation for the solid displacement:

G∇2u +
G

1 − 2ν
∇ (∇ · u) = α∇p − b. (6.8)

Similarly, combining Darcy’s law (6.7), the constitutive relation (6.5) and the mass conser-

vation equation (6.2b) yields a diffusion equation for the pore fluid pressure:

∂p

∂t
− κM∇2p = M(γ + ∇ · f) − αM

∂

∂t
∇ · u, (6.9)
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6.2 The equations of poroelasticity

in which we have retained the force term f for the sake of generality. The terms b and f

are generally interpreted as body forces due to gravity per unit volume of bulk material and

fluid, respectively and are defined as follows:

b =
[
(1 − θ)ρs + θρw

]
g, f = ρwg, (6.10)

where g is the force due to gravity, ρw is the density of the pore fluid, ρs is the density of

the elastic solid and θ is the porosity.

A similar pair of equations may be derived for the displacement and variation in fluid

content, ζ; see Detournay & Cheng (1993) for more details. Lastly, we remark that if the

stress, σ, rather than the displacement is taken as the dependent variable, the follow-

ing compatibility condition must be satisfied to ensure a single-valued displacement field

(Detournay & Cheng, 1993; Cowin, 1999):

εij,jl + εkl,ij = εik,jl + εjl,ik. (6.11)

In what follows we work with equations (6.8) and (6.9).

The constants ν, νu and α are dimensionless; the shear modulus, G, and Biot modulus,

M , have units of pressure. Re-introducing asterisks to denote dimensional quantities, equa-

tions (6.8) and (6.9) may be non-dimensionalised by choosing the following dimensionless

variables:

x∗ = L∗x, t∗ =
L∗2

κ∗P ∗
t, u∗ = δL∗u, p∗ = P ∗p, (6.12)

where L∗ is a characteristic lengthscale (e.g. the length of the PLLA scaffold; see figure

1.2), δ ≪ 1 is a small parameter introduced so that the dimensionless displacement (u) is

of order one, and P ∗ is a pore fluid pressure scaling, determined below. For completeness,

we note that we non-dimensionalise the pore fluid flux (given by equation (6.7)) as follows:

q∗ =
κ∗P ∗

L∗
q. (6.13)

We remark that in order that the linear elasticity assumption (6.3) holds, we must have

u∗ ≪ 1; as discussed in §1.2.3, the PLLA scaffold is subject to relatively small strains

(approximately 1.5%) so this is a reasonable assumption.

In the absence of body forces (b = f = 0) and mass sources (γ = 0), the dimensionless

governing equations (6.8) and (6.9) are

δG∇2u +
δG

1 − 2ν
∇ (∇ · u) = α ∇p, (6.14)

∂p

∂t
−M∇2p = −αδM ∂

∂t
∇ · u, (6.15)
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6.2 The equations of poroelasticity

in which the constants (G,M) = (G∗,M∗)/P ∗ are the dimensionless shear and Biot moduli,

respectively. The pressure scaling P ∗ is arbitrary, and in the following we choose P ∗ = M∗,

implying M = 1 and G = G∗/M∗. In order that terms in equations (6.14) and (6.15)

balance and in view of (6.7), we rescale (p,q) = δ(p̂, q̂). Dropping the carets yields the

following governing equations:

G∇2u +
G

1 − 2ν
∇ (∇ · u) = α ∇p, (6.16)

∂p

∂t
−∇2p = −α ∂

∂t
∇ · u. (6.17)

The dimensionless parameters in this model are G, ν, and α. The magnitude of poroe-

lastic effects is controlled by α and G since equation (6.6) indicates that given α and ν,

the choice of G defines νu. The parameter ν is a drained material property; ν > −1 is a

standard constraint in the theory of elasticity and an incompressible elastic material has

ν = 0.5. Materials with negative Poisson’s ratio (first reported by Lakes (1987)) are known

as auxetics and exhibit transverse expansion (compression) when stretched (compressed)

longitudinally. The range of the Biot-Willis coefficient is α ∈ [0, 1] and, since the pres-

ence of pore fluid decreases compressibility, we note also that the undrained Poisson’s ratio

introduced in equation (6.6) is νu ∈ [ν, 0.5].

Lastly, we note that for incompressible constituents (compression of the material may

still arise via redistribution of fluid and solid components), we have α = 1, ν = 0.5.

Returning to equation (6.6), we find that this implies M −→ ∞ and the constitutive

law (6.5) for the fluid response therefore reduces to ζ = ∇ · u implying that the change

of volume of the porous solid and the variation in fluid content balance (cf. equation (6.1)

with δVw = 0).

6.2.2 A multiphase model for construct growth and deformation

In this section, the general multiphase formulation given in §1.5 is specialised to model

the interaction between a multiphase fluid and a poroelastic material. Similar models have

been given extensive treatment in the literature; see, for instance, De Boer (1998), Ambrosi

(2002) and Ahmadi et al. (2003) and we draw on these studies and others to motivate our

constitutive modelling assumptions in the following derivation.

We consider a multiphase fluid comprising an arbitrary number of phases (N) contained

within a deformable porous medium. We denote the averaged volume fraction of each

phase by φi and associate with each phase a volume-averaged displacement, ui, velocity, vi,
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6.2 The equations of poroelasticity

pressure, pi and stress tensor, σi; i = s, 1, . . . , N , where s denotes the poroelastic scaffold.

The averaged governing equations are as follows (see §1.5):

no voids (saturation):
N∑

i=s,1

φi = 1, (6.18)

conservation of mass:
∂φi
∂t

+ ∇ · (φivi) = Si ; Si =
∑

j 6=i

Sij
ρi
, (6.19)

N∑

i=s,1

∇ · (φivi) = 0, (6.20)

conservation of momentum:

∇ · (φiσi) +
∑

j 6=i

Fij = 0, (6.21)

∇ ·





N∑

i=s,1

φiσi



 = 0. (6.22)

In equation (6.19), Sij/ρi is the net averaged macroscopic rate at which material is

transferred into phase i from phase j, the total rate of transfer into phase i is denoted

Si (which we assume obeys
∑
Si = 0 as implied by equation (6.20)) and ρi denotes the

density of phase i. For multiphase systems in which mass transfer between phases involves

negligible changes in density, it may be assumed that ρi = ρ. In (6.21), Fij is the interphase

force exerted by phase j on phase i and we assume that Fij = −Fji as implied by (6.22).

We now turn our attention to specifying appropriate constitutive laws for each phase.

To model the behaviour of the poroelastic matrix, we employ the standard constitutive

relation of linear poroelasticity, and we assume that each of the fluid phases contained

within the poroelastic material is viscous. The stress tensors for each phase are therefore

as follows:

σs = −ps I +G
(
∇us + ∇uTs

)
+

2Gν

1 − 2ν
(∇ · us) I, (6.23a)

σi = −pi I + µi
(
∇vi + ∇vTi

)
+ λi∇ · vi I; i = 1, . . . , N. (6.23b)

We note here that although we employ an elastic constitutive relation for the solid phase,

equations (6.19) carry the tacit assumption that each phase is intrinsically incompressible

(see §§1.4 and 1.5); within this model, compression of the material therefore arises from

redistribution of fluid and solid components (Barry & Holmes, 2001). The parameters µi,

λi G, ν have the same meanings as previously (chapters 2, 3 and §6.2.1). Since the elastic
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6.2 The equations of poroelasticity

porous material is incompressible we have ν = 0.5; however, since ∇·us = 0, the final term

in (6.23a) remains finite and we absorb this into ps so that

σs = −ps I +G
(
∇us + ∇uTs

)
I. (6.24)

Finally, employing equations (1.46)–(1.48) (see §1.5), we arrive at the following forms

for the interphase force terms (Fij), interphase pressures (pij) and intraphase pressure in

the fluid phases (pi):

Fij = pijφj∇φi − pjiφi∇φj +Kij(vj − vi), (6.25)

pij = p+ ψij , (6.26)

pi = p+ Σi +
∑

j 6=i

φjψij , (6.27)

in which pij = pji is the interphase pressure exerted by phase j on i, Kij = Kji is the coeffi-

cient of viscous drag and p is a common “mixture” pressure. The function, ps, is interpreted

as the pressure exerted by the multiphase fluid on the poroelastic matrix and often defined

in terms of this mixture pressure: ps = φsp (Barry & Holmes, 2001; Ambrosi, 2002). The

functions ψij = ψji and Σi are additional contributions to the pressure resulting from in-

terphase tractions and intraphase interactions respectively, whose definition (together with

appropriate initial and boundary conditions) completes the model.

We remark here that this formulation follows the methodology of Lemon et al. (2006)

and others (see §1.5 for appropriate references) and is consistent with that employed by

(for instance) Katsube (1985), Katsube & Carroll (1987) and Barocas & Tranquillo (1997);

however, it deviates from many similar mixture theory models of poroelastic materials in the

form of the momentum equation (6.21) and constitutive laws (6.23) employed. For instance,

defining the intraphase pressures by pi = φip (where p is a common mixture pressure) in

the constitutive equations (6.23) and writing the momentum equations as follows:

∇ · σi +
∑

j 6=i

Fij = 0; i = s, 1, . . . , N, (6.28)

yields a model whose form is similar to that employed by Preziosi et al. (1996), De Boer

(1998), Lai & Mow (1999) and Ambrosi (2002). We remark that these authors (and others)

derive their constitutive laws via thermodynamic considerations and appeal to the second

law of thermodynamics to constrain their constitutive choices. Additionally, the method of

Lagrange multipliers is used to motivate the inclusion of the pore pressure in the above form.

As previously, we do not treat thermodynamical considerations in detail in this derivation,
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nor is a discussion of the Lagrange multiplier method given. We remark, however, that

the pressure, p, given above may be interpreted as a Lagrange multiplier that enables the

constraint (6.20) to be satisfied (Ambrosi, 2002). The constitutive laws (6.23) employed

here are considerably simpler than those derived via thermodynamical considerations in,

for example, Bowen (1982) or Ahmadi et al. (2003), allowing analysis of the model to be

undertaken more easily.

Correspondence between this formulation, with (6.28) used in preference to (6.21), and

that of Biot may be demonstrated by considering a two-phase mixture of a deformable solid

(s) and fluid (w) with no sources or sinks. We assume that the viscosity of the fluid is

negligible compared to momentum transfer terms (Fij) in the momentum equations and

therefore set µw = λw = 0 (Barry & Holmes, 2001). We further assume that the two phases

interact only through the interphase drag term in equation (6.28) so that ψws = 0 = Σw.

Interpreting the “mixture pressure” introduced in (6.26) as the pore fluid pressure and

employing the momentum equations in the form given in equation (6.28) we obtain the

following equations:

Mass conservation:
∂w

∂t
+ ∇ · (wvw) = 0, (6.29)

∇ · (wvw + s
∂u

∂t
) = 0. (6.30)

Conservation of momentum: κ∇p =
∂u

∂t
− vw, (6.31)

∇p = G∇2u. (6.32)

It may be readily observed that these are the equations of linear poroelasticity for incom-

pressible constituents (where the coefficient of permeability is given by κ = w/Kws).

In the proceeding sections of this chapter, we present solutions to these two models

subject to appropriate boundary and initial conditions relevant to the bioreactor system

introduced in §1.2.3. In §6.3, we present solutions to equations (6.16) and (6.17); ana-

lytic solutions are obtained in the uniaxial limit in §6.3.1 and numerical simulations of the

full two-dimensional problem are presented in §6.3.2. In §6.4 one-dimensional numerical

solutions to the multiphase model (6.29)–(6.32) are presented.

6.3 Solution: The Biot model of linear poroelasticity

We now investigate the effect of the periodic compression of the PLLA scaffold outlined

in §1.2.3 on the solid stress distribution and fluid flow within the scaffold. Analytic and
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numerical solutions to the Biot model of linear poroelasticity (see equations (6.16) and

(6.17)) are presented and their relevance discussed.

To represent the perfusion/compression system of El-Haj et al., we choose a (dimension-

less) Cartesian coordinate system x = (x, y) with corresponding coordinate directions (x̂, ŷ)

and we consider a two-dimensional, rigid-walled channel occupying 0 6 x 6 1, 0 6 y 6 1

containing a PLLA scaffold saturated with culture medium; for simplicity, we neglect the

presence of the cells in this model. Modelling a cell population within the scaffold is nat-

urally accommodated by the multiphase formulation given above, in which (for instance)

a viscous cell phase may be considered in addition to the pore fluid. We model the PLLA

scaffold as a poroelastic solid and assume that viscous effects associated with the culture

medium may be adequately represented by a Darcy-type model, allowing us to exploit the

Biot formulation given in §6.2.1. Compression of the scaffold by the piston is modelled by

an imposed periodic displacement at x = 0; perfusion may be incorporated via an imposed

pressure-driven flow. The geometry, dimensionless governing equations (in the absence of

mass sources and body forces) and appropriate boundary conditions are illustrated in figure

6.1.

G∇2u + G
1−2ν

∇ (∇ · u) = α ∇p

∂p
∂t

−∇2p = −α ∂
∂t
∇ · u

(1 − f1)
[
n̂ · σ · n̂ − βxu

]

+ f1 [u− u(t)] = 0

[f1β1 + (1 − f1)β2] v

+ t̂ · σ · n̂ = 0

(1 − f1) [p− Pu] + f1
∂p
∂x

= 0

+ f2u = 0

(1 − f2)
[
n̂ · σ · n̂ − βxu

]

(1 − f2)p+ f2
∂p
∂x

= 0

[f2β1 + (1 − f2)β2] v

+ t̂ · σ · n̂ = 0

∂u
∂y = v = ∂p

∂y = 0

∂u
∂y = v = ∂p

∂y = 0

x

y

Figure 6.1: The dimensionless governing equations and general boundary conditions for

the poroelastic scaffold model. The functions f1(y) and f2(y) distinguish the

regions occupied by the perforations and outlet from the wall.

We now pause to explain the significance of the boundary conditions prescribed in figure
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6.1. Since the channel walls (y = 0, 1) are rigid and impermeable, we require no transverse

displacement (v = 0) and no-penetration of fluid there (we emphasise here that u = (u, v)

represents displacement). In view of equation (6.7), ∂p/∂y = 0 ensures no-penetration. In

addition, we demand that the tangential stress at the channel wall is zero. The stresses in

the poroelastic material (normal and tangential to the channel walls) are defined:

n̂ · σ · n̂ = −αδp +
2δG(1 − ν)

1 − 2ν

∂u

∂x
+

2δGν

1 − 2ν

∂v

∂y
, (6.33)

t̂ · σ · n̂ = −δG
(
∂u

∂y
+
∂v

∂x

)
, (6.34)

for unit inward normal and tangent vectors n̂, t̂. Taking the zero transverse displacement

condition into account, imposing ∂u/∂y = 0 on y = 0, 1, ensures that the tangential stress

at the channel walls is zero. We note that for O(1) pressure and displacement gradient,

equations (6.33) and (6.34) indicate that the solid stress induced is O(δ); in the following,

we therefore rescale σ = δσ̂.

As illustrated in figure 6.1, the bioreactor system contains a perforated piston, allowing

both compression and perfusion; downstream, the scaffold is constrained by an impermeable

wall, with a fluid outlet at its centre. To model these features, we impose discontinuous

boundary conditions on the pressure and displacement at x = 0, 1. We introduce two

functions f1(y) and f2(y) which distinguish the regions occupied by the piston (or wall)

from those occupied by a perforation (or the outlet):

f1(y) =

{
0 if y is within a perforation,

1 otherwise.
(6.35)

The function f2(y) is defined similarly to distinguish the downstream constraining wall

from the outlet. In regions where there are perforations, we impose p = Pu so that the

flow through the perforations is determined by the difference between Pu and the pore

fluid pressure in the scaffold (Pu = 0 allows unrestricted flow through the perforations upon

compression due to the absence of an imposed upstream pressure); elsewhere, we require that

∂p/∂x = 0 since, aside from the perforations, no fluid flows through the piston. In addition,

we prescribe a time-dependent displacement, u = u(t) to represent the compression of the

piston. A suitable choice for this time-dependent displacement is u = ℜ
{
Ueiωt

}
, where

U is the amplitude and ω, the dimensionless frequency of the forcing. In the perforated

regions, where the piston is not in contact with the scaffold, we allow the axial displacement

to adjust according to the normal stress experienced by the scaffold. Dropping the carets
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for brevity, we obtain:

n̂ · σ · n̂ = βxu, (6.36)

yielding

− αPu +
2G(1 − ν)

1 − 2ν

∂u

∂x
+

2G

1 − 2ν

∂v

∂y
= βxu, (6.37)

wherein βx is the axial “slip coefficient”. Slip is allowed in the transverse direction on

x = 0, 1 so, in a similar manner, we allow the transverse displacement to adjust according

to the tangential stress as follows:

t̂ · σ · n̂ = βy(y)v, (6.38)

to give

G

(
∂u

∂y
+
∂v

∂x

)
= βy(y)v, (6.39)

where the slip coefficient βy takes the value βy = β1 within a perforation (or the outlet)

and βy = β2 on the piston (or the wall) and β2 = 0 implies that the tangential stress at

x = 0, 1 is zero and the scaffold is free to slip along the piston (or wall) as on y = 0, 1.

6.3.1 Uniaxial model simplification

We simplify the two-dimensional system described above by assuming that all variables vary

in the axial direction only. The y-dependent boundary conditions at x = 0, 1 representing

the piston and outlet will therefore require modification. Appropriate conditions are dis-

cussed later in this section. We note that the steps involved in this derivation are straightfor-

ward and stated in many studies of classical poroelasticity, for example, Detournay & Cheng

(1993) and Wang (2000) and so much of the detail is omitted.

Assuming axial variations only, equations (6.16) and (6.17) reduce to give:

2G(1 − ν)

1 − 2ν

∂2u

∂x2
= α

∂p

∂x
,

∂p

∂t
− ∂2p

∂x2
= −α ∂2u

∂x∂t
. (6.40a,b)

Taking a first integral of equation (6.40a) and substituting into (6.40b) yields:

∂p

∂t
− 1

S

∂2p

∂x2
= −α

S

dg

dt
, (6.41)

where g(t) is an arbitrary function of time arising from the integration, and the dimensionless

storage coefficient for uniaxial strain, S, is defined as follows:

S = 1 +
α2(1 − 2ν)

2G(1 − ν)
. (6.42)
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By considering the stress tensor (6.4) and equation (6.40a), it is possible to show that

the function g(t) is related to the stress tensor via:

σkk = −α(1 − 2ν)

(1 − ν)
p+

2G

1 − 2ν
g(t), (6.43)

where the repeated subscript, k, indicates the summation convention. Noting further that

the components of the stress σyy, σxx are as follows:

σyy = −αp+
2Gν

1 − 2ν

∂u

∂x
, σxx = −αp+

2G(1 − ν)

1 − 2ν

∂u

∂x
, (6.44)

and eliminating ∂u/∂x, we deduce that

σkk =
1

(1 − ν)
σxx −

α(1 − 2ν)

(1 − ν)
p. (6.45)

The equation for the pore pressure may then be expressed:

∂p

∂t
− 1

S

∂2p

∂x2
= −γ d

dt
(σxx), (6.46)

where, from the one-dimensional momentum equation (6.2) in the absence of body forces,

the axial stress is σxx = σxx(t). The parameter, γ is known as the “loading efficiency”

(Wang, 2000) and is given by

γ =
α(1 − 2ν)

2GS(1 − ν)
. (6.47)

Lastly, integrating (6.40a) and using equations (6.43) and (6.45) to determine g(t), it may

be shown that the axial displacement is governed by the following equation:

∂u

∂x
=
α(1 − 2ν)

2G(1 − ν)
p+

1 − 2ν

2G(1 − ν)
σxx. (6.48)

We emphasise that this derivation is not new and merely recapitulates that given in, for

instance, Wang (2000).

Returning to the problem illustrated by figure 6.1, we may exploit the above formu-

lation to obtain analytic solutions to a simplified version of this problem. The governing

equations are (6.46) and (6.48). Since the governing equation for the pore pressure (6.46) is

expressed in terms of the axial stress (which, as remarked above, is independent of the axial

coordinate), we reformulate the problem in terms of an applied periodic stress at x = 0 in

place of an imposed displacement, and appropriate boundary conditions are:

σxx = −σ ℜ
{
eiωt
}
, p = Pu, at x = 0, (6.49a,b)

u = 0, p = 0, at x = 1. (6.50a,b)

152



6.3 Solution: Biot model

These boundary conditions define a system that is similar to that illustrated by figure

6.1, representing a one-dimensional scaffold subject to an imposed pressure-driven flow and

periodic stress (of amplitude σ) supplied via a permeable piston at x = 0 and restrained

by a permeable barrier at x = 1. Recalling that σxx = σxx(t), equation (6.49a) defines

the axial stress along the scaffold length; (6.46) may then be solved subject to (6.49b) and

(6.50b) to yield the pore pressure; (6.48) together with the zero displacement condition at

x = 1 then defines the corresponding displacement field. We remark that the material is

initially under compression since σxx(t = 0) < 0.

Guided by the periodicity of the imposed stress (6.49a), we simplify the analysis by

seeking separable solutions for the pressure and displacement of the following form:

p(x, t) = ℜ
{
p̃(x)eiωt

}
, u(x, t) = ℜ

{
ũ(x)eiωt

}
, (6.51)

and note that this expansion is consistent with (6.49b) only in the case Pu = 0. We therefore

neglect the effect of imposed perfusion in this analysis. It is a simple calculation to solve

the resulting ordinary differential equation for p̃ subject to the boundary conditions (6.49b),

(6.50b) (for Pu = 0) to obtain:

p̃(x) = −γσ
{
cosh(λx) +

[
cosech(λ) − coth(λ)

]
sinh(λx) − 1

}
, (6.52)

where the complex wavenumber, λ, is defined λ =
√
iωS. The corresponding displacement

may be obtained by integrating equation (6.48) and imposing (6.50a) to yield:

ũ(x) =
γσ

λ

α(1 − 2ν)

2G(1 − ν)

{[
cosech(λ) − coth(λ)

][
cosh(λ) − cosh(λx)

]

−
[
sinh(λx) − sinh(λ)

]}
− σ(1 − 2ν)

2G(1 − ν)
(1 − γα) (x− 1). (6.53)

Solutions for the scenario in which the scaffold is subjected to periodic forcing with no

flow permitted at the downstream end may be obtained in a similar manner. We denote the

pressure and displacement fields in this regime by p̃nf , ũnf and solve equations (6.46) and

(6.48) subject to (6.49a), (6.49b), (6.50a) and ∂p̃nf/∂x = 0 at x = 1, yielding the following

solutions (this case has been treated in some detail in the literature; see, for example,

Detournay & Cheng (1993) and Wang (2000)):

p̃nf (x) = γσ
[
tanh(λ)sinh(λx) − cosh(λx) + 1

]
, (6.54)

ũnf (x) = = −α(1 − 2ν)

2G(1 − ν)

γσ

λ

[
sinh(λx) − tanh(λ)cosh(λx)

]

− σ(1 − 2ν)

2G(1 − ν)
(1 − γα) (x− 1). (6.55)
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In a tissue-engineering context, solutions (6.52) and (6.53) represent the displacement

and pressure in the situation where the compression-induced flow is free to perfuse the entire

scaffold, through the perforated piston at x = 0 and the outlet at x = 1. In contrast, (6.54)

and (6.55) represent the behaviour when flow through the outlet is precluded. Henceforth,

we refer to these cases as periodic compression coupled with free perfusion and hydrostatic

loading, respectively.

Insight may be gained into the nature of the frequency-dependent poroelastic response

in each case by considering the displacement of the poroelastic scaffold at x = 0 in the

high frequency (λ(ω) −→ ∞) and low frequency (λ(ω) −→ 0) limits. Re-introducing the

undrained Poisson’s ratio, νu, through the relationship (equation (3.81), Wang (2000)):

γ
α(1 − 2ν)

2G(1 − ν)
=

1

Kv
− 1

K
(u)
v

, (6.56)

in which the dimensionless drained and undrained uniaxial compressibility are defined

(Wang, 2000):

Kv =
2G(1 − ν)

1 − 2ν
, K(u)

v =
2G(1 − νu)

1 − 2νu
, (6.57)

we find that for both the free-perfusion and hydrostatic loading regimes described above,

the displacement at x = 0 is

ω −→ 0 : ũ(0) =
σ

Kv
; ω −→ ∞ : ũ(0) =

σ

K
(u)
v

, (6.58)

as given in Wang (2000) for the hydrostatic loading case. This analysis indicates that for

high frequency loading, the compressibility of the poroelastic material is regulated by the

undrained Poisson’s ratio, νu, since there is insufficient time for pore fluid flow to take place;

conversely, for low frequency loading, the drained Poisson’s ratio, ν, governs the material’s

compressibility. It should be remarked that in the high frequency case, inertial effects will

become important (see Detournay & Cheng (1993) and references therein); however, we do

not consider their influence here.

In figure 6.2, we compare the predicted solid displacement field in the poroelastic

material under compression for the cases of free-perfusion (6.53) and hydrostatic loading

(6.55) over one compression-extension cycle (t = 0 corresponds to compression: σxx = −σ;

t = π/2ω corresponds to no applied load; t = πω corresponds to extension: σxx = σ).

In figure 6.3 we present the corresponding pressure profiles; and in figure 6.4 we compare

the evolution of the maximum (absolute) value of the displacement and pressure in each

case. Figures 6.5a,b show an illustrative fluid flux profile at t = 0 and the shear stress
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associated with each case. As in previous chapters, the compression-induced fluid shear (τ)

is assumed to be proportional to the pressure gradient (τ = |∂p/∂x|). The pore fluid flux is

determined by the pressure gradient and, although not explicitly captured in this macroscale

one-dimensional model, the level of fluid shear stress at the pore surface is proportional to

the fluid flux. We therefore consider that τ = |∂p/∂x| is an appropriate measure of shear

stress.

Mechanical testing undertaken at ISTM, Keele University indicates that, since the scaf-

fold is highly porous (see §1.2.3), axial compression results in minimal transverse expansion

(µCT scans at a resolution of 15µm yielded no observable expansion2) and the effective

Poisson’s ratio for the scaffold is therefore ν ≪ 1. In the following we therefore choose

ν = 0.1. Upon specification of the Biot-Willis coefficient (α) and the dimensionless shear

modulus (G) the dimensionless version of equation (6.6) yields the undrained Poisson’s ra-

tio, νu. In the results presented in figures 6.2–6.5, we choose α = 0.7, G = 1 which implies

νu = 0.21. We emphasise that the values for the parameters G and α are not known; rather

they are chosen to illustrate the behaviour of the system.

In figures 6.6–6.8 we demonstrate the effect of varying the dimensionless shear modulus

(G), Poisson’s ratio (ν) and Biot-Willis coefficient (α) on the material’s behaviour in the

free-perfusion regime.
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Figure 6.2: A comparison of the solid displacement in a poroelastic material subject to

periodic forcing and, either free-perfusion (- -) (equation (6.53)) or hydrostatic

loading (–) (equation (6.55)) at t = 0, π/4, π/2, 3π/4, π. Parameter values:

G = 1.176, ν = 0.1, α = 0.7, σ = 2, ω = 1, Pu = 0.

Figure 6.2 indicates that the poroelastic material is less compliant under hydrostatic

loading than free-perfusion, as evidenced by the reduced displacement in the former case.

Due to inhibited pore fluid flow through the material, the time-dependent behaviour of

the material under periodic forcing lags behind that predicted for the free-perfusion regime.

2We are grateful to E. Baas, ISTM, Keele University for the provision of this data.
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Figure 6.3: A comparison of pore fluid pressure in a poroelastic material subject to peri-

odic forcing and (a) free perfusion (equation (6.52)), (b) hydrostatic loading

(equation (6.54)) at t = 0, π/4, π/2, 3π/4, π. Parameter values as in figure

6.2.
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Figure 6.4: A comparison of the temporal variation of the maximum (absolute) value of

the displacement and pressure (normalised on the maximum amplitude of u or

p) in a poroelastic material subject to periodic forcing and, (a) free-perfusion

and (b) hydrostatic loading. Parameter values as in figure 6.2.

Comparison of the predicted displacement fields in the poroelastic material shows that under

hydrostatic loading, the level of initial compression is reduced and the material relaxes more

slowly on removal of this load (0 < t < π/2); under extension (π/2 < t < π) the material

exhibits corresponding behaviour. The displacement field is approximately linear in each

loading regime. Figures 6.3a,b show the dramatic difference in pore pressure in each case.

Under compression and free perfusion, a parabolic profile is obtained since the pressure

must equalise with the exterior at x = 0, 1. We remark that under hydrostatic loading,

the pore pressure is an order of magnitude larger than that obtained under free perfusion.

Comparison between the periodicity of the applied load given by (6.49a) and the evolution
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Figure 6.5: A comparison of (a) the fluid flux; and (b) an approximation to the fluid shear

stress in a poroelastic material subject to periodic forcing and, free-perfusion

(- -) or hydrostatic loading (–) at t = 0. Parameter values as in figure 6.2.

of the displacement and pressure (figures 6.2 and 6.3) shows that there is a time lag between

the applied load (and the resulting displacement) and the dissipation of pore fluid pressure.

Figure 6.4 clearly shows the phase difference between the displacement (which is in phase

with the imposed stress) and the corresponding pore fluid pressure in each loading regime,

indicating that this effect is more pronounced in the free-perfusion case.

The differences in the pore pressure in each loading regime clearly have a profound im-

pact on the induced fluid flux (q = −∂p/∂x). The flux in each case is shown in figure 6.5a. In

the free-perfusion case, fluid escapes upstream through the piston and downstream through

the outlet symmetrically; in the hydrostatic loading case, flow is only in the upstream di-

rection with no flow permitted at x = 1. In the context of in vitro tissue engineering, the

compression-induced mechanostimulation provided to the cells is therefore very different in

each case. For example, from figure 6.5b, which shows the shear stress in each regime, it

is clear that the maximum shear stress induced in the hydrostatic loading regime is greater

than that in the free-perfusion case, in which maxima are achieved at the piston and outlet.

We note also that within this one-dimensional framework, the solid stress is prescribed by

equation (6.49a) and is constant throughout the material.

The rigidity of the material is controlled by G; figure 6.6 shows that increasing the

shear modulus of the poroelastic matrix dramatically reduces the degree of compression

in response to the applied load, the corresponding pore pressure being reduced also. The

value of Poisson’s ratio characterises the compressibility of the material. Figure 6.7 shows

that increasing ν causes a small reduction in the displacement, and corresponding reduction

in pore fluid pressure. The Biot-Willis coefficient is an effective stress coefficient for the
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poroelastic material; an increase in α therefore results in increased stress and greater pore

fluid pressure. We note that the solid displacement is very weakly affected by varying the

Biot-Willis coefficient (α) and so those results are not presented here.
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Figure 6.6: The effect of varying the shear modulus, G, on the displacement and pore

fluid pressure in a poroelastic material subject to periodic forcing and free-

perfusion at t = 0; G = 1, 2, 3, 4. The arrows show the direction of increasing

G, other parameter values as in figure 6.2.
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Figure 6.7: The effect of varying the Poisson’s ratio (ν) on the displacement and pore

fluid pressure in a poroelastic material subject to periodic forcing and free-

perfusion at t = 0; ν = 0.1, 0.2, 0.3. The arrows show the direction of increas-

ing ν, other parameter values as in figure 6.2.

Relevance to tissue engineering

The results presented in figures 6.2–6.8 illustrate how the loading regime and scaffold ma-

terial parameters may influence mechanotransduction processes in tissue engineering.

Figures 6.2–6.5 indicate that the presence of an outlet in the bioreactor system results in
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Figure 6.8: The effect of varying the Biot-Willis coefficient (α) on the pore fluid pressure

in a poroelastic material subject to periodic forcing and free-perfusion at

t = 0; α = 0.2, 0.4, 0.6, 0.8. The arrows show the direction of increasing α,

other parameter values as in figure 6.2.

dramatically reduced culture medium pressure, flux and shear stress (apart from near x = 1

where the flow through the outlet ensures that the flux and shear stress are larger than that

at the impermeable wall) and marginally increased scaffold compliance. Self-evidently, this

will have a marked impact on the growth and differentiation of the cell population contained

within the scaffold. Depending upon the mechanosensory properties of the cells, tissue

engineers may find it beneficial to employ the free-perfusion or hydrostatic compression

system; indeed, a bioreactor system in which the loading regime can be easily altered

by opening or closing the outlet would provide a measure of control over the mechanical

stimulation supplied to the cells, allowing differentiation of the cells to be directed.

Inspection of figures 6.6–6.8 reveals the crucial role that the scaffold material proper-

ties play in determining the mechanical environment of a cell population contained within

the scaffold. Reducing the compliance of the scaffold by increasing the shear modulus or

reducing the compressibility, causes a reduction in solid displacement and culture medium

pressure, with associated downstream effects on mechanotransduction-affected phenotypic

progression. These properties may, in principle, be controlled by tissue engineers when man-

ufacturing scaffolds; our analysis provides information regarding the effect of such changes in

material properties on the relevant stimuli associated with mechanotransduction processes.

In this analysis, we have considered the scaffold material parameters to be constant;

however, simulations presented in chapter 5 indicated that the interplay between scaffold

degradation and deposition of ECM by cells will result in spatially inhomogeneous mechan-

ical properties which will have a profound impact on the mechanical cues which the cells

experience. Such considerations represent an intriguing extension to this analysis.
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6.3.2 Two-dimensional numerical solution

We now return to our two-dimensional model of a fluid-filled poroelastic scaffold (see equa-

tions (6.16) and (6.17) and figure 6.1). The solution is decomposed in the same manner as

previously:

p(x, t) = ℜ
{
p̃(x)eiωt

}
, u(x, t) = ℜ

{
ũ(x)eiωt

}
, (6.59)

wherein ũ and p̃ satisfy:

G∇2ũ +
G

1 − 2ν
∇ (∇ · ũ) = α∇p̃, (6.60)

p̃+
i

ω
∇2p̃ = −α∇ · ũ. (6.61)

We solve these equations subject to the boundary conditions stated in figure 6.1, except

that in order to exploit the decomposition (6.59), we must once again choose Pu = 0, in

which case the flow of fluid through the perforations in the piston is not influenced by an

upstream pressure.

This coupled system is solved numerically as follows. Equations (6.60) and (6.61)

are discretised using a second-order-accurate finite-difference scheme on a uniform mesh to

obtain the following equations for the solid displacement (ũr,j, ṽr,j) and pore pressure p̃r,j

at each mesh point, (r, j):

2G(1 − ν)

1 − 2ν

ũr+1,j − 2ũr,j + ũr−1,j

(∆x)2
+G

ũr,j+1 − 2ũr,j + ũr,j−1

(∆y)2

+
G

1 − 2ν

ṽr+1,j+1 − ṽr−1,j+1 − ṽr+1,j−1 + ṽr−1,j−1

4∆x∆y
− α

p̃r+1,j − p̃r−1,j

2∆x
= 0, (6.62)

G
ṽr+1,j − 2ṽr,j + ṽr−1,j

(∆x)2
+

2G(1 − ν)

1 − 2ν

ṽr,j+1 − 2ṽr,j + ṽr,j−1

(∆y)2

+
G

1 − 2ν

ũr+1,j+1 − ũr−1,j+1 − ũr+1,j−1 + ũr−1,j−1

4∆x∆y
− α

p̃r,j+1 − p̃r,j−1

2∆y
= 0, (6.63)

p̃r,j +
i

ω

{
p̃r+1,j − 2p̃r,j + p̃r−1,j

(∆x)2
+
p̃r,j+1 − 2p̃r,j + p̃r,j−1

(∆y)2

}

+ α

{
ũr+1,j − ũr−1,j

2∆x
+
ṽr,j+1 − ṽr,j−1

2∆y

}
= 0. (6.64)

The parameters ∆x and ∆y represent the mesh spacing in the x- and y-directions, respec-

tively: i.e. ũr,j ≈ ũ(r∆x, j∆y).

Equations (6.62)–(6.64) and the boundary conditions given in figure 6.1 constitute a

linear system which we solve using MATLAB’s Gaussian elimination scheme. The uniform

mesh spacing is chosen to be ∆x = 1 × 10−2 and ∆y = 5 × 10−3. Qualitative comparisons
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with solutions obtained using the finite element package COMSOL in which mesh refine-

ment was performed around the discontinuities in the boundary show good agreement (see

Appendix B.1).

Figures 6.9 and 6.10 show the displacement and pressure profiles obtained in the free-

perfusion regime (fluid is free to escape through the piston perforations and outlet); detail

obscured by the 3D projection is enhanced by a contour plot. In each case, the solution is

plotted at t = 0 (the full time-dependent behaviour is not presented since it is similar to

that found in the uniaxial limit). Figure 6.11 depicts the pore fluid pressure at y = 0 and

y = 0.5. The dimensionless fluid flux vector q = (qx, qy), calculated using the dimensionless

version of equation (6.7): q = −∇p, is visualised in the two-dimensional domain in figure

6.12.
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Figure 6.9: Surface plot of (a) the axial and (b) the transverse displacement of a poroe-

lastic scaffold in response to compression at t = 0. Parameter values: G = 1,

ν = 0.1, α = 0.7, U = 0.85, ω = 1, βx = 1 = β1 = β2.

The simulations presented in figures 6.9–6.12 show the predicted response of the scaffold

to periodic compression by a piston (with four perforations) constrained within a rigid chan-

nel with one outlet. Figure 6.9 shows that the presence of the perforations and the outlet

causes the displacement to deviate from the linear profile obtained in the one-dimensional

case by an amount which depends upon the magnitude of the parameters βx, β1, β2. These

parameters control the displacement at x = 0, 1 according to the normal and tangential

stresses (see equations (6.37) and (6.39)). Within the piston perforations, the axial dis-

placement is reduced from its imposed value u = U by an amount which depends on the

stiffness of the poroelastic material (and the value of the parameter βx); at x = 1, the

axial displacement increases towards the centre of the outlet and must remain zero on the

rigid wall. The transverse displacement exhibits similar behaviour, achieving maxima and
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Figure 6.10: (a) A visualisation of the solid displacement vector in which the length of

the arrow represents its magnitude; (b) surface plot of the pore pressure in

a compressed poroelastic scaffold at t = 0. Parameters as in figure 6.9.
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Figure 6.11: A plot of the pore pressure at y = 0 (–) and y = 0.5 (- -) in a compressed

poroelastic scaffold at t = 0. Parameters as in figure 6.9.

minima at the edges of the perforations and the outlet, but remaining small everywhere

else. This behaviour is highlighted in figure 6.10a where we visualise the displacement vec-

tor, u = (u, v) in the x, y domain. We see that the scaffold splays and bulges out of the

piston perforations and outlet, with small transverse displacement introduced there. We

note also that the axial displacement profile is approximately linear, with axial compression

dominating and deviation from this linear behaviour becoming important only near the

perforations and outlet. From figure 6.10b we observe that the pressure equalises with the

external environment in the perforations and outlet (where p = 0) and satisfies ∂p/∂x = 0

on the remainder of the piston and the constraining wall. We obtain a profile similar to

that presented in figure 6.3a in the perforation/outlet regions, and similar to 6.3b elsewhere.

This is shown more clearly in figure 6.11 which shows that at y = 0, ∂p/∂x = 0 on the pis-
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Figure 6.12: A visualisation of the flux vector q in the x, y domain at t = 0 in which the

length of the arrow represents its magnitude. Parameters as in figure 6.9.

ton and constraining wall, corresponding to no-penetration; at y = 0.5, we have ∂p/∂x = 0

on the piston and p = 0 in the outlet. It may be readily observed from figure 6.10b that

the pore pressure achieves maxima on the downstream wall at (x, y) = (1, 0) and (1, 1).

The corresponding fluid flux, presented in figure 6.12, shows that fluid escapes through

the perforations and outlet, flowing upstream near the piston and downstream near the

outlet. The flow achieves highest values at the edges of the perforations and outlet; this

unusual flow profile is due to the discontinuity in the boundary conditions which induces

large pressure gradients there.

In addition to the field variables illustrated above, we may calculate the solid stress (σ)

and the fluid shear stress (τ) associated with compression-induced fluid flow. As discussed

in previous chapters (see §§1.2.2, 4.3, 5.2.1), these stimuli are of key relevance to the study

of the effect of mechanotransduction on tissue growth processes and are defined as follows:

σ = −αp I +G
(
∇u + ∇uT

)
+

2Gν

1 − 2ν
∇ · u I, (6.65)

τ =
∂qx
∂y

+
∂qy
∂x

. (6.66)

We note that in contrast to the uniaxial approximation in which we approximated the fluid

shear stress as proportional to the pressure gradient, in this two-dimensional model, we may

calculate the fluid shear stress explicitly using (6.66). Contour plots of the solid stress and

fluid shear stress induced by compression are shown in figures 6.13 and 6.14.

Comparison of figures 6.13 and 6.14 shows that the solid and fluid shear stresses induced

by compression of the scaffold are concentrated around the perforations in the piston and
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Figure 6.13: Contour plots of (a) the principle stress component (σxx = σyy); (b) the

shear stress component (σxy = σyx) in the poroelastic matrix. Parameters

as in figure 6.9.
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Figure 6.14: A contour plot of the fluid-induced shear stress (τ) in the x, y domain.

Parameters as in figure 6.9.

the downstream outlet and exhibit marked transverse variation. We remark also that the

fluid shear stress is an order of magnitude larger than the solid stress.

Relevance to tissue engineering

The model predictions presented in figures 6.9–6.14 clearly indicate the significant spatial

variation in the mechanical stimuli relevant to tissue engineering. We have shown that,

in addition to the axial variation discussed in §6.3.1, consideration of the two-dimensional

geometry of the bioreactor system (including both the piston and the outlet) results in

marked transverse variation in the mechanical stimuli experienced by the cells within the

scaffold. Considering the mechanotransduction-affected proliferative behaviour examined

in chapter 5, this phenomenon will result in a heterogeneous distribution of cell phenotype
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within the population. The resulting inhomogeneity in scaffold degradation and ECM

deposition will cause spatial variation in material properties and could potentially have

detrimental effects on the mechanical integrity of the resulting tissue construct.

6.3.3 Summary

In this section, we have used a classical Biot formulation to compute the displacement and

fluid flow associated with the periodic compression of a poroelastic scaffold in the absence

of an ambient flow as a simple model for the compression/perfusion bioreactor system of

El-Haj et al.

Analytic solutions, constructed in the uniaxial limit, predicted an approximately linear

displacement profile, with the compliance of the scaffold being marginally increased in the

presence of a downstream fluid outlet (as evidenced by increased solid displacement). The

pore fluid flux and an approximation to the fluid shear stress were also computed with a view

to employing this data in a cell growth response model. The flux and associated fluid shear

stress were found to attain maxima at the piston face and outlet. Marked differences were

observed in these stimuli in the presence and absence of an outlet, which could provide a

simple method for tissue engineers to change the local mechanical environment and thereby

encourage differentiation of cells.

The full two-dimensional system was investigated in §6.3.2 allowing the effect of the

geometry of the piston and outlet to be included. Numerical simulations were used to show

that the displacement of the poroelastic solid is dominated by axial compression, small

transverse displacements being introduced due to the perforations in the piston and by the

outlet. Similarly, the fluid flow is dominated by behaviour of the type found in the uniaxial

limit, with small transverse flows being introduced around the perforations and outlet.

Using this model, we were able to calculate both the solid stress and the fluid shear

stress distribution due to compression. It was again found that the fluid shear stress is

maximal near the piston and outlet, and similar behaviour is observed in the solid stress

distribution. We remark that the fluid shear stress is an order of magnitude larger than

the solid stress. Furthermore, strong transverse variation in the mechanical stimuli relevant

to tissue engineering processes (pore fluid pressure, solid stress and fluid shear stress) is

predicted by this model, suggesting that spatial effects in at least two-dimensions will be

important in the modelling of tissue growth. In view of the mechanotransduction mod-

elling undertaken in chapter 5, we conclude that the spatial variation in mechanical stimuli

will result in a heterogeneous distribution of cell phenotype within the scaffold, leading
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to inhomogeneous scaffold degradation and ECM deposition, causing deterioration of the

mechanical integrity of the scaffold. Consideration of these effects will form the basis for

future work.

6.4 Solution: A multiphase model for flow in a poroelastic

material

In this section, we compute solutions to the multiphase model for flow within a poroelastic

material presented in §6.2.2 and compare them with the predictions of the Biot model

analysed in §6.3.

To recapitulate, the multiphase model under consideration is given by the following

(dimensional) equations:

∂w

∂t∗
+ ∇∗ · (wv∗

w) = 0, (6.67)

∇∗ · (wv∗
w + s

∂u∗

∂t∗
) = 0. (6.68)

∇∗p∗ =
K∗
ws

w

(
∂u∗

∂t∗
− v∗

w

)
, (6.69)

∇∗p∗ = G∗∇∗2u∗, (6.70)

in which the fluid volume fraction is denoted by w. As a consequence of the no-voids

equation (6.18) w is equivalent to the porosity of the scaffold. The pressure and velocity of

the pore fluid are denoted p∗, v∗
w respectively, and u∗ is the solid displacement; K∗

ws is the

interphase drag coefficient (related to the coefficient of permeability by κ∗ = w/K∗
ws) andG∗

is the shear modulus for the porous material. We have employed the multiphase formulation

due to Preziosi et al. (1996), De Boer (1998) in preference to that of Lemon et al. (2006)

(see §6.2.2) for numerical ease; employing the momentum equations in the form (6.28) in

preference to (6.21) simplifies considerably the resulting model equations.

We consider a one-dimensional scaffold of length L∗ subject to time-dependent compres-

sion by a permeable piston at x∗ = 0 and restrained by an impermeable barrier at x∗ = L∗,

corresponding to the “hydrostatic compression” regime described in §6.3.1. To clarify, the

axial displacement is denoted u∗ and the axial fluid velocity, v∗w. We non-dimensionalise as

follows:

x∗ = L∗x, t∗ =
L∗2

K∗
wsP

∗
t, u∗ = δL∗u, p∗ = P ∗p, v∗w =

K∗
wsP

∗

L∗
vw, (6.71)
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and rescale (p, vw) = δ(p̂, v̂w). In (6.71), δ ≪ 1 is a small parameter introduced so that the

dimensionless displacement (u) is of order one, and P ∗ is a pore fluid pressure scaling, de-

termined below. Dropping the carets for brevity, the one-dimensional versions of equations

(6.67)–(6.70) yield:

∂w

∂t
+ δ

∂

∂x
(wvw) = 0,

∂

∂x
(wvw + (1 − w)

∂u

∂t
) = 0, (6.72a,b)

∂p

∂x
=

1

w

(
∂u

∂t
− vw

)
,

∂p

∂x
= G

∂2u

∂x2
, (6.73a,b)

and the scaffold now occupies 0 6 x 6 1. The dimensionless shear modulus is given by

G = G∗/P ∗ and the pressure scaling P ∗ in (6.12) is therefore defined by our choice of G;

for instance, choosing G = 1 implies P ∗ = G∗. Appropriate boundary conditions for this

problem are:

u(x = 0, t) = u(t), vw(x = 1, t) = 0, u(x = 1, t) = 0. (6.74)

Appropriate conditions on w will be discussed below, where (through elimination of p and

vw) equations (6.72) and (6.73) are reduced to a pair of equations governing the solid

displacement (u) and fluid volume fraction (w).

In view of the boundary conditions (6.74), equations (6.72b) and (6.73a) imply that

the fluid velocity is related to the gradient of the pore pressure as follows:

vw = w(w − 1)
∂p

∂x
, (6.75)

from which it is clear that vw(x = 1, t) = 0 if ∂p/∂x = 0 or w = 0 at x = 1. We remark that

the choice w(x = 1, t) = 0 implies that we the pore fluid pressure is undefined at x = 1.

Equations (6.72a) and (6.73b) then yield the following equation for the volume fraction of

pore fluid:
∂w

∂t
+ δG

∂

∂x

(
w2(w − 1)

∂2u

∂x2

)
= 0. (6.76)

Employing equations (6.75) and (6.73b) in (6.73a) then supplies a coupled non-linear diffu-

sion equation for the displacement:

∂u

∂t
= Gw2 ∂

2u

∂x2
. (6.77)

The displacement boundary conditions corresponding to (6.77) are given above; an

appropriate boundary condition on the hyperbolic partial differential equation (6.76) is

derived below.
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Since the pore fluid volume fraction at x = 0 will vary due to compression, we impose

a condition at x = 1. To ensure solution, we require the characteristics of equation (6.76)

to propagate information from the right hand boundary into the remainder of the domain.

The characteristics are defined:

dx

dt
= δG(3w − 2)w

∂2u

∂x2
, (6.78)

along which w is given by
dw

dt
= −δGw2(w − 1)

∂3u

∂x3
. (6.79)

Choosing initial data such that w(x = 1, t = 0) = 0 ensures that x = 1 is a characteristic,

obviating the need to impose a boundary condition there; this condition is also consistent

with vw(x = 1, t) = 0. Furthermore, we must ensure ∂2u
∂x2 > 0 (provided w < 2/3). An

appropriate choice for the imposed compression is a saturating function of the form

u(t) = U

[
2eωt

1 + eωt
− 1

]
, (6.80)

in which U is the maximum amplitude and ω dictates the rate of compression.

In summary, our system comprises the pair of coupled partial differential equations

(6.76) and (6.77) which govern the volume fraction of pore fluid (porosity) and the solid

displacement. Boundary conditions representing a one-dimensional scaffold subject to time-

dependent compression by a permeable piston at x = 0 and restrained by an impermeable

barrier at x = 1 are:

u(x = 0, t) = u(t), u(x = 1, t) = 0, (6.81)

where u(t) is defined by (6.80). A suitable initial condition on the pore fluid volume fraction

is:

w(x, t = 0) =
1 − x

2
, (6.82)

representing a scaffold whose porosity decreases linearly to zero at x = 1 from a maximum

of 50% at x = 0.

We solve this system using an explicit time-stepping method to compute the solution for

the displacement and the hpde software package (Shampine, 2005) to solve the hyperbolic

equation (6.76) at each timestep. The hpde package solves hyperbolic partial differential

equations (in MATLAB) of the form:

∂a

∂t
=

∂

∂x
f(x, t, a) + s(x, t, a), (6.83)
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using the Lax-Wendroff method. The displacement uk+1
j at each mesh point j and new

time-step, k + 1 is calculated from ukj and wkj as follows:

uk+1
j = ukj + ∆tG(wkj )

2
ukj+1 − 2ukj + ukj−1

(∆x)2
, (6.84)

where ∆t, ∆x represent the size of the time-step and mesh spacing, respectively: ukj ≈
u(j∆x, k∆t), wkj ≈ w(j∆x, k∆t). Numerical accuracy is tested via mesh refinement and

comparison with a simple scheme which uses explicit schemes for equations (6.76) and

(6.77); see appendix B.2 for more details.

The remaining dependent variables (p, vw) are calculated from equations (6.73b) and

(6.75). Noting that the pore pressure must equalise with the external environment at x = 0,

we require p(x = 0, t) = 0; integrating equation (6.73b), we obtain

p = G

(
∂u

∂x
− ∂u

∂x

∣∣∣∣
x=0

)
. (6.85)

The spatial mesh spacing is chosen to be ∆x = 5 × 10−3, and guided by stability

requirement of the uncoupled explicit scheme for the displacement, the timestep is defined

according to ∆t = (∆x)2/(2G). The small parameter is chosen to be δ = 10−2.

The time evolution of the solid displacement, pore fluid pressure and flux is depicted in

figures 6.15–6.17. Figure 6.18a shows the evolution of the pore fluid volume fraction in the

scaffold, while figure 6.18b depicts the variation in pore fluid volume fraction at x = 0. So

that variations in w are visible, the results presented in figure 6.18a correspond to δ = 0.5.
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Figure 6.15: The evolution of the solid displacement at t = 0–6.4 (in steps of t = 0.4) in a

poroelastic material subject to time-dependent forcing at x = 0. Parameter

values: G = 1, ν = 0.1, U = 0.85, ω = 1, δ = 10−2.

Comparison of figures 6.2 and 6.15 demonstrates that in this multiphase formulation,

non-linear effects are more pronounced. Deviation from the approximately linear profile
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Figure 6.16: The evolution of the pore fluid pressure for (a) early times (t = 0–0.45 in

steps of t = 0.05), and (b) later times (t = 2.5–11 in steps of t = 1.7) in a

poroelastic material subject to time-dependent forcing at x = 0. Parameter

values as in figure 6.15.
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Figure 6.17: The evolution of the pore fluid flux for (a) early times (t = 0–0.5 in steps

of t = 0.05), and (b) later times (t = 2.5–9.3 in steps of t = 0.85) in a

poroelastic material subject to time-dependent forcing at x = 0. Parameter

values as in figure 6.15.

predicted in the Biot formulation is evident at early times. As the function u(t) saturates

(see equation (6.80)) and the rate of compression reduces, the displacement tends towards

a linear profile. Correspondingly, as the poroelastic material is compressed, the pore fluid

pressure increases in a similar manner to that observed in the uniaxial limit (§6.3) for the

case of hydrostatic compression (see figure 6.3b); as the compression rate reduces, the flow

of fluid out of the perforated piston at x = 0 allows this pressure to dissipate and the
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Figure 6.18: The evolution of (a) the pore fluid volume fraction at t = 0, 1, 2, 3, 4, 5,

(b) the pore fluid volume fraction at x = 0 (for δ = 0.5), in a poroelastic

material subject to time-dependent forcing at x = 0. Parameter values as

in figure 6.15.

pressure in the scaffold is small everywhere except near the impermeable wall at x = 1. For

very long times, this pressure tends to zero (results omitted). We remark that the pressure

gradient at x = 1 shown in figure 6.16b does not violate vw(x = 1, t) = 0 since we have

w = 0 there (see equations (6.74) and (6.75)).

The pressure gradient in the scaffold drives a flow of fluid upstream, through the per-

forated piston, which gradually decreases as the compression rate reduces and the pressure

equalises with the exterior. The fluid flow profile initially follows a similar profile to that

predicted in the uniaxial limit; as time progresses, the flow near the piston reduces and

the maximal flow is near the downstream end x = 1 where the gradient of the pore fluid

pressure is greatest.

The pore fluid volume fraction (scaffold porosity) follows a similarly non-linear evolu-

tion. Initially, as the material is compressed, the porosity falls from its initial linear profile,

with reduction in pore space being most pronounced in the neighbourhood of the piston.

As the compression extends across the whole of the scaffold, and the rate of compression

reduces, the porosity near the piston reaches a minimum and settles to a steady state (after

a short period of expansion) as the scaffold relaxes. This behaviour is illustrated by figures

6.18a,b. A physical explanation for this behaviour is not obvious.

We now consider the behaviour of the additional mechanical stimuli relevant to tis-

sue engineering applications. The solid stress may be calculated according to the one-
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dimensional version of equation (6.24)

σ = −p+G
∂u

∂x
, (6.86)

and in view of equation (6.85), we obtain

σ = G
∂u

∂x

∣∣∣∣
x=0

. (6.87)

In a similar manner to previously, we view the fluid shear stress as being proportional to

the pore fluid flux: τ = |vw| (see 6.3.1). Figures 6.19 and 6.20 show the evolution of the

solid and fluid shear stresses. We remark that as in the uniaxial limit of the Biot model,

the solid stress is invariant along the length of the scaffold.
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Figure 6.19: The evolution of the solid stress in a poroelastic material subject to time-

dependent forcing at x = 0. Parameter values as in figure 6.15.

Our multiphase model predicts that the solid stress induced by compression does not

vary along the scaffold length, and increases with scaffold compression, reaching a constant

value σ = −0.85 as the rate of compression falls to zero. This value is attained since as the

rate of compression falls, the solid displacement tends to a linear profile with gradient, U ;

for the parameter choices given in figure 6.15, this corresponds to σ = −0.85. As in the

uniaxial limit we have assumed that the magnitude of the fluid velocity is a suitable measure

of the fluid shear stress. It is interesting to note that our model predicts a complex shear

stress evolution within the poroelastic scaffold: at early times we obtain a similar profile

to that found in the uniaxial limit (§6.3), with maximal shear stress near the piston. As

the compression progresses and non-linear effects become important, the fluid shear stress

distribution changes to achieve a maximum near the downstream end of the scaffold.

In contrast to the results presented in §6.3.1, this more complex model suggests that

the distribution of shear stress within the scaffold evolves over time in a complex way.
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Figure 6.20: The evolution of the compression-induced fluid shear stress for (a) early

times (t = 0–0.5 in steps of t = 0.05), and (b) later times (t = 2.5–9.3 in

steps of t = 0.85) in a poroelastic material subject to time-dependent forcing

at x = 0. Parameter values as in figure 6.15.

This is due to difference between the time-dependence of the loading supplied in each

case: in §6.3.1, we consider periodic displacement, whilst in this section we have imposed

a monotonically-increasing displacement. Due to the complexity of the multiphase system,

we do not analyse the behaviour of the poroelastic scaffold and pore fluid in the presence of

a downstream outlet; ascertaining the importance of the disparity between the predictions

of this model and those presented in §6.3.1 requires further analysis which is beyond the

scope of this thesis.

6.5 Summary

In this chapter, we have presented two different formulations suitable for modelling

macroscale mechanical forcing in the bioreactor system of El-Haj et al. (§1.2.3). In princi-

ple, the multiphase modelling framework presented here allows full coupling of tissue growth

processes to the mechanical stimulation provided by the compression/perfusion bioreactor.

However, this is beyond the scope of this work; instead we concentrated on the response of

the PLLA scaffold to compression in the absence of a cell population. This is equivalent to

assuming that the volume occupied by the cells is much smaller than the scaffold volume

fraction; this may be reasonable in the early stages following cell seeding. We employed

both a classical Biot formulation and a multiphase model; in each case, the perfusive aspect

of the bioreactor system was neglected for simplicity.
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The response to periodic compression was calculated using the Biot formulation. Ana-

lytic solutions were constructed in the uniaxial limit, for which the bioreactor system may

be modelled as a one-dimensional scaffold undergoing periodic compression by a permeable

piston. The effect of constraining the downstream end by a permeable or impermeable

barrier was investigated as a model for the presence/absence of an outlet. The model pre-

dicted an approximately linear displacement profile, with the stiffness of the material being

marginally decreased in the presence of a downstream fluid outlet. The effect of varying

the material properties of the scaffold on the predicted response was also investigated and

the resulting displacement and pore pressure fields calculated. The pore fluid flux and an

approximation to the fluid shear stress were computed, both being shown to attain maxima

at the piston face and outlet. Additionally, the pore fluid pressure is increased throughout

the scaffold by removal of the outlet.

In light of the marked differences in pressure and fluid shear stress in the presence and

absence of an outlet, we concluded that a bioreactor system in which the loading regime

can be easily altered by opening or closing the outlet would provide a measure of control

over the mechanical stimulation supplied to the cells, allowing differentiation of the cells to

be directed.

The effect of the geometry of the piston and outlet was investigated by performing two-

dimensional numerical simulations. The displacement of the poroelastic solid was found to

be dominated by the axial compression, with small transverse displacements associated

with the perforations in the piston and the outlet. The fluid flow is similarly dominated by

behaviour of the type found in the uniaxial limit, with small transverse flows in a neighbour-

hood of the perforations and outlet. Using this model, we calculated both the solid stress

and fluid shear stress distribution as a result of compression. Again, the fluid shear stress

is maximal near the piston and outlet, and similar behaviour is exhibited by the solid stress

distribution. We remark that the fluid shear stress is an order of magnitude larger than

the solid stress. Furthermore, strong transverse variation in the mechanical stimuli relevant

to tissue engineering processes (pore fluid pressure, solid stress and fluid shear stress) was

predicted by this model, suggesting that spatial effects in at least two-dimensions will be

important in the modelling of tissue growth. In light of the mechanotransduction-affected

behaviour observed in chapter 5, this spatial variation is likely to result in a heterogeneous

distribution of cell phenotype within the scaffold, leading to inhomogeneous scaffold degra-

dation and ECM deposition which causes deterioration in the mechanical integrity of the

scaffold.
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The behaviour of the PLLA scaffold as predicted by our multiphase formulation was

illustrated using one-dimensional simulations in the absence of cells. In this case, the

model reduced to a non-linear diffusion equation describing the displacement coupled to a

hyperbolic equation governing the volume fraction of fluid (this is equivalent to the porosity

of the scaffold). The pore pressure was related to the displacement in the same manner as

in the Biot formulation. Comparisons with the Biot model were drawn and the two models

were shown to exhibit similar behaviour; due to the different loading regimes employed,

long-time response of the system was found to be more complex.

The results presented in this chapter illustrate two approaches that may be used to

model mechanotransduction processes and their effect on macroscale tissue growth, high-

lighting the importance of these phenomena in tissue engineering. The spatial variation in

the relevant mechanical stimuli, illustrated by the two-dimensional Biot formulation high-

lights the need to investigate the effect of bioreactor geometry within the comprehensive

mechanotransduction modelling framework presented in chapters 4 and 5; the multiphase

formulation outlined in the chapter provides a framework in which this could be achieved.

This will be the subject of future work.

175



Chapter7
Conclusions and further work

7.1 Concluding discussion

I
n this thesis we have considered a continuum multiphase framework suitable for

macroscale modelling of in vitro tissue growth. The motivation for this work was

the compression/perfusion bioreactor system of El-Haj et al. which provides both per-

fusion with culture medium and macroscale mechanical stimulation to an osteoblast-seeded

PLLA scaffold; however, the formulation is sufficiently general to be applied to a vast range

of tissue engineering applications.

The growth of biological tissue is a complex phenomenon, the modelling of which

has been the subject of a great deal of attention, especially the study of tumour growth

and stability, angiogenesis, wound healing and, more recently, in vitro and in vivo tissue

engineering processes. Motivated by a range of experimental studies, we isolated two crucial

factors which are of key importance in the growth and adaptation of engineered tissue

constructs: (i) the interaction between adjacent cells and between cells and the scaffold,

and (ii) the impact of mechanotransduction mechanisms (that is, the process by which

forces are converted into biological signals influencing, for example, cell proliferation and

morphogenesis) on tissue construct morphology. The emphasis of this thesis was on the

study of these factors. The formulation employed was necessarily complex, and we therefore

considered a series of mathematical models, building in complexity as we progressed through

the thesis.

After introducing the key biological considerations for the modelling of in vitro bone

tissue growth and reviewing the large and diverse mathematical literature relating to tissue

growth modelling, we outlined the general multiphase formulation which forms the basis for

the subsequent series of models.
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Following many studies of tumour growth which exploit a multiphase formulation, in

chapter 2, we initially restricted attention to two viscous fluid phases and concentrated

on the interaction between perfusion of culture medium and the cells’ response. Guided

by parameter estimation, we employed the simplifying limit of large interphase viscous

drag, recovering the model equations of Franks (2002) and Franks & King (2003) in which

each phase is subject to a common velocity and pressure field. In a similar manner to

that presented in Franks (2002), we analysed the stability to transverse perturbations of

analytic solutions obtained in the limit of a one-dimensional, spatially-invariant growing

tissue defined by two planar interfaces which are advected with the flow. We demonstrated

that introducing a perturbation to the cell density results in markedly different behaviour

to that to that reported in Franks (2002) for a spatially-invariant tissue construct. Using

numerical simulations in one and two-dimensions, we showed that the analytic solutions

obtained in the sharp interface limit capture much of the behaviour of the more complex

one- and two-dimensional models.

Of greater relevance to in vitro tissue engineering systems are the numerical simulations

presented in chapter 2 which considered two illustrative models of mechanotransduction-

affected tissue growth. Specifically, we studied the response of a cell population to its local

density and pressure, showing that the growth of the cell population is profoundly altered

by these effects, dramatically changing the composition of the construct. Furthermore, our

model suggests that in static culture, regulation of proliferative behaviour by cell density

and pressure results in indistinguishable tissue constructs. In principle, this conclusion

provides a means for the identification of the dominant regulatory mechanism in a given

cell population, simply by observing the construct morphology resulting from static and

dynamic culture conditions.

The two-fluid model is not entirely appropriate for modelling the growth of a tissue

construct, since the solid characteristics of the bioreactor system are necessarily neglected.

The interactions between the PLLA scaffold and the cells contained within, as well as the

mechanical stimulation from the piston, must therefore be ignored. Furthermore, due to

the simplifying limit of large interphase drag employed, which demands that each phase be

subject to a common velocity field, our model predicts that cells and ECM are advected

through the bioreactor at the speed of the imposed flow. This implies that a very low rate

of perfusion is required to prevent the tissue from being flushed from the scaffold before

growth can be achieved. To rectify this, in chapters 3 and 4, we relax the assumption

of large interphase drag and develop a three phase model, introducing a rigid, porous
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phase to represent the scaffold, and explicitly model the interaction between the cells and

the scaffold and between adjacent cells. Furthermore, in this formulation, we retain the

individual phase variables rather than considering common velocity and pressure fields.

Simplifying this model using the long-wavelength approximation, we employed a range of

analytical and numerical techniques to thoroughly analyse the behaviour of this model.

The effect of varying key parameters associated with the cell’s motile behaviour and their

aggregative or adhesive properties was investigated and we concluded that employing denser

scaffolds allows greater control over cell aggregation and scaffold attachment. Additionally,

to elucidate the aggregative/repulsive behaviour displayed by the cells, we employed a

simplified form of the relevant cell-cell and cell-scaffold interaction functions finding that

diffusive behaviour is reduced or augmented depending upon the dominance of these effects.

Using similar modelling techniques to that employed in chapter 2, we considered the

effect of mechanotransduction-affected growth, studying the response of a cell population to

the local density, pressure and shear stress, again concluding that on provision of suitable

experimental data, the predictions of our model provide a method for the identification of

the dominant regulatory mechanisms for tissue growth.

In chapter 5, we reinterpreted the scaffold phase as a lumped scaffold and ECM phase

whose volume fraction varies spatially and temporally due to a combination of ECM de-

position and scaffold degradation. This modification allowed explicit modelling of the pro-

gression of cells from a proliferative to an ECM-depositing phenotype, without increasing

the number of phases in the system. In addition to the possibility of using the model results

to isolate regulatory mechanisms, from numerical simulations, we concluded that uniform

initial cell seeding and the encouragement of cell penetration throughout the scaffold are

crucial in maintaining the mechanical integrity of engineered constructs.

Lastly, in chapter 6, we studied the mechanics of the scaffold in response to imposed

mechanical compression and associated fluid flow. To do so, we employed first, a classical

Biot poroelasticity formulation to determine the effect that mechanical forcing has on the

stress and flow field within the poroelastic scaffold. The presence of a cell population was

not considered in this model. Analytical solutions, constructed in the uniaxial limit, indi-

cated that the presence of an outlet in the bioreactor system results in marked differences

in mechanical stimuli relevant to tissue engineering processes, indicating that a bioreactor

system in which the loading regime may be changed by opening or closing a fluid outlet

provides a mechanism through which the phenotypic progression may be controlled. Us-

ing two-dimensional numerical simulations, we demonstrated strong transverse variation in
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these mechanical stimuli; in view of the mechanotransduction modelling presented in chap-

ter 4, this suggests that spatial effects in at least two dimensions are important in tissue

growth modelling. Furthermore, in view of the model analysed in chapter 5, we deduced

that mechanotransduction-mediated differentiation will result in a highly heterogeneous dis-

tribution of cell phenotype leading to inhomogeneous ECM deposition and deterioration in

the mechanical integrity of the scaffold.

We then adapted our general multiphase formulation to model the interactions in a

poroelastic solid saturated with a multiphase fluid. Comparisons were made with other

similar models in the literature and we show that the Biot model may be obtained as a

special case. This formulation provides the means to investigate the interplay between

perfusion, mechanical stimulation and cell differentiation; however the model developed

is highly complex, and to illustrate its behaviour we presented one-dimensional numerical

simulations of a system comprising a single fluid within a poroelastic solid, neglecting spatial

variation in two dimensions and the presence of a cell population. Comparisons with the

Biot model were drawn and the two models were shown to exhibit similar behaviour; due

to the different loading regimes employed, the long-time response of the multiphase system

was found to be more complex.

7.2 Further work

The models analysed within this thesis were necessarily complex since they attempted to

capture the complex interplay between a number of phases within a biologically relevant

framework. We have therefore employed certain simplifying limits (such as the large drag

and long-wavelength limits). Furthermore, due to lack of experimental data, we have made

a number of biologically-motivated (if not biologically accurate) constitutive and modelling

choices and estimated many of the parameter values. These approximations point the way

to a myriad of interesting and challenging extensions, many of which were mentioned in this

thesis. We remark that we are concerned only with extensions to the three phase model

analysed from chapter 3 onwards, since this represents a more appropriate model for the

biological systems under consideration.

In developing our three phase model we exploited the long-wavelength limit, in which

the pressures and volume fractions of each phase are independent of the transverse coordi-

nate. As remarked in chapter 3, in this approximation, the interphase viscous drag term

is neglected; in light of the parameter estimation given in chapter 2, this effect should,
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7.2 Further work

perhaps, be considered. Rescaling the drag coefficient such that it enters the leading order

equations provides a simple extension to this model (an appropriate choice is k = O(1/h2),

where k is the coefficient of viscous drag and h is the channel aspect ratio). As well as

introducing an additional parameter with which we may study the model dynamics, this

modification provides an interesting opportunity to compare the behaviour of solutions in

this limit with those obtained from the two-fluid model in the limit of large interphase

viscous drag.

In exploiting the long-wavelength limit, the influence of variations in the transverse

direction upon the behaviour of the system was neglected. As indicated in chapter 6, the

geometry of the bioreactor system has a marked influence on the mechanical environment

of the cells, with effects in at least two dimensions being important. Consideration of the

full two-dimensional system represents a challenging extension to this work.

In chapter 6, we also developed a multiphase formulation which provides a framework

to investigate the influence of scaffold deformation upon the cells contained within. Using

similar mechanotransduction modelling techniques as employed in previous chapters, this

model provides an exciting opportunity to thoroughly investigate the effect of the mechanical

environment on the growth and differentiation of a cell population. In chapter 5, scaffold

degradation and ECM deposition were considered and inferences were drawn concerning

the mechanical properties of the tissue construct. The framework presented in chapter 6

provides a means to study the influence of these factors on the mechanical properties of

engineered tissue constructs in a more realistic manner. We anticipate that these extensions

will be largely numerical exercises with little analytic progress possible.

A simpler way to increase the realism of the models developed in this thesis is to work

more closely with tissue engineers to obtain better estimates of the parameters for specific

tissue engineering applications. Furthermore, such collaboration would allow estimation

of more biologically accurate functional forms for our constitutive modelling choices, such

as the cell-cell and cell-scaffold interaction functions (Σn, ψns) and the consideration of

more complex or appropriate functional forms for the mechanotransduction-affected cell

proliferation and ECM deposition rates (km, kd). The biological relevance of this model

could be further improved by considering the effect of nutrient-limited construct growth;

the effect of such a consideration is likely to be significant in static culture conditions.

This could be achieved with minor modifications to the framework presented in this the-

sis by including an additional nutrient transport equation to the multiphase system and

postulating nutrient-dependent functional forms for the cell phase growth and death rates.
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7.2 Further work

Lemon & King (2007) have presented such a model, and the importance of this addition

within the mechanotransduction modelling framework given in this thesis, especially with

regard to the models’ predictions regarding tissue growth regulation, presents an interesting

avenue of research.
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AppendixA
Asymptotically-small cell volume fraction:

Green’s function solution

W
e now consider the solution of (3.41) and (3.42) subject to the boundary con-

ditions (3.46) and (3.47) without additional simplification. Noting that the

constant, γ is given by equations (3.43) and (3.48), we make the following

transformation:

n1(x, t) = e(km−kd)tφ(ξ, τ), ξ = x− γt, τ = Dt, (A.1)

and we may then express equation (3.41) and its attendant boundary conditions as follows:

∂φ

∂τ
=
∂2φ

∂ξ2
, ξ ∈ Ω, (A.2a)

∂φ

∂ξ
= Ã φ, on ∂Ω, (A.2b)

where Ã = −A0/[12µnθD] and the region of interest, ξ ∈ [L,R], is denoted Ω with moving

boundary ∂Ω; L(τ) = a− γ τ/D and R(τ) = b− γ τ/D.

A solution to (A.2) may be constructed by considering the free-space Green’s function

of the simpler problem:

∂φ

∂τ
=
∂2φ

∂ξ2
, φ(±∞, τ), φξ(±∞, τ) → 0, (A.3)

which is found to be:

GF (ξ, τ ; η,T) =
H(T − τ)√
4π(T − τ)

exp

[
− (ξ − η)2

4(T − τ)

]
, (A.4)

where η is an arbitrary point in the domain and T > τ (see, for example, Zauderer (1989)).

The Green’s function for the problem (A.2) can then be expressed in the form

G(ξ, τ ; η,T) = GF (ξ, τ ; η,T) +GB(ξ, τ ; η,T), (A.5)
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Appendix A: Green’s function solution

where GF is the free-space Green’s function defined above and GB is specified via the

method of images to satisfy the boundary conditions. Unlike the Neumann or Dirichlet

problems, the function GB may not be obtained entirely in terms of an image source point.

Instead, to satisfy the Robin boundary condition at ξ = L(τ), we consider a source point at

ξ = L(τ)+η and introduce an image at L(τ)−η and a line of image sources extending from

our image point, ξ = L(τ)− η (denoted Γ), to ξ = −∞, weighted by a density function, ρ−,

to be determined (Zauderer, 1989):

GB = GF (ξ, τ ; Γ,T) +

∫ Γ

−∞

ρ−(s) GF (ξ, τ ; s,T) ds. (A.6)

In order that the condition at ξ = R(τ) is satisfied, we must add images with respect to

ξ = R(τ) of the source and images points at ξ = L(τ)±η and a second line of image sources

extending from the point ξ = 2R(τ)−L(τ)−η (denoted ζ) to ξ = ∞, weighted by a density

function, ρ+(s), to be determined. Each of these images must, in turn, have images with

respect to L(τ), R(τ) and we are led to consider an infinite sequence of image source points

and image source lines. By considering the boundary condition (A.2b), we find that the

weighting functions for each image are as follows:

ρ−(s) = −2Ã exp
[
Ã(s− Γn)

]
, (A.7)

ρ+(s) = −2Ã exp
[
Ã(ζn − s)

]
, (A.8)

Γn = −2nR+ (2n + 1)L− η, n = 0, 1, 2, . . . , (A.9)

ζn = 2nR− (2n − 1)L− η, n = 1, 2, 3, . . . (A.10)

The source point and some of the images are shown in figure A.1.

ξ

L R

L + η

2L-R3L-2R4L-3R5L-4R6L-5R 2R-L 3R-2L 4R-3L 5R-4L 6R-5L

image 1

image 2

image 3

image 4

image 5

Figure A.1: The source point (◦), image sources (•) and image source lines (–) employed

in the solution of (A.2).
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Appendix A: Green’s function solution

The Green’s function, G, may then be expressed as follows:

G(ξ, τ ; η,T) =
H(T − τ)√
4π(T − τ)

{
∞∑

n=0

exp

[
−(ξ ± η − 2nR+ (2n − 1)L)2

4(T − τ)

]

− 2Ã

∫ Γn

−∞

exp
[
Ã(s− Γn)

]
exp

[
− (ξ − s)2

4(T − τ)

]
ds

+
∞∑

n=1

exp

[
−(ξ ± η + 2nR− (2n + 1)L)2

4(T − τ)

]

− 2Ã

∫ ∞

ζn

exp
[
Ã(ζn − s)

]
exp

[
− (ξ − s)2

4(T − τ)

]
ds

}
, (A.11)

with Γn and ζn defined by equations (A.9) and (A.10). By evaluating the two integrals in

equation (A.11) we obtain the following form for G(ξ, τ ; η,T):

G(ξ, τ ; η,T) =
H(T − τ)√
4π(T − τ)

{
∞∑

n=0

exp

[
−(ξ ± η − 2nR+ (2n − 1)L)2

4(T − τ)

]

+ 2Ã
√
π (T − τ) exp

[
Ã
(
Ã(T − τ) + ξ − Γn

)][
erf

(
ξ + 2Ã(T − τ) − Γn

2
√

T − τ

)
− 1

]

+
∞∑

n=1

exp

[
−(ξ ± η + 2nR− (2n + 1)L)2

4(T − τ)

]

− 2Ã
√
π (T − τ) exp

[
Ã
(
Ã(T − τ) − ξ + ζn

)][
erf

(
ξ − 2Ã(T − τ) − ζn

2
√

T − τ

)
+ 1

]}
. (A.12)

Noting that the Green’s function for the problem (A.2) satisfies the following equation:

− ∂G

∂τ
− ∂2G

∂ξ2
= δ(ξ − η)δ(τ − T), ξ, η ∈ Ω; τ,T < T̃ ,T > 0, (A.13)

(where T̃ is the temporal end point) with end and boundary conditions:

G(ξ, T̃ ; η,T) = 0, G− Ã
∂G

∂ξ

∣∣∣∣∣
∂Ω

= 0, (A.14)

it can be shown, (see, for example, Zauderer (1989)) that the solution, φ, at an arbitrary

point (η,T) is given by the following formula:

φ(η,T) =

∫

∂Ω0

φ(ξ, 0)G(ξ, 0; η,T) dξ −
∫

∂Ω
T̃

φ(ξ, T̃ )G(ξ, T̃ ; η,T) dξ

−
∫

∂Ω
φ(ξ, τ)

∂

∂n
G(ξ, τ ; η,T) −G(ξ, τ ; η,T)

∂

∂n
φ(ξ, τ) dS, (A.15)

where ∂/∂n represents the (outward) normal derivative (with respect to the coordinate, ξ)

and the boundaries ∂Ω0, ∂Ω and ∂ΩT̃ are defined in (ξ, τ) space by figure A.2.
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a b
ξ

τ

Ω

∂Ω0

∂ΩT̃

T̃

∂Ω

Figure A.2: The region Ω.

In view of the end and boundary conditions (A.14), we obtain

φ(η,T) =

∫

∂Ω0

φ(ξ, 0)G(ξ, 0; η,T) dξ. (A.16)

Using initial conditions given by (3.34), equation (A.16) may be evaluated numerically.

Transforming back to original variables, we obtain a diffusing, growing, travelling-wave

solution for n1. The corresponding correction to the pressure may be calculated by solving

equation (3.42) subject to the boundary conditions (3.46) and (3.47); a parameter shooting

method method is used to calculate the value of the function A1(t) at each time-step in the

same way as before (see §3.3.1). The evolution of the cell volume fraction, n1, and pressure

correction, p1, are shown in figure A.3 and the parameter values used correspond to those

used in the numerical simulations presented in §3.3.1. The arrows indicate the direction of

increasing dimensionless time.
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Figure A.3: The evolution of (a) the cell volume fraction, n1, and (b) the pressure correc-

tion, p1, at t = 0−0.25 (in steps of t ≈ 0.028) for dynamic culture conditions.

Parameter values as in §3.3.1.
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We now compare the solutions obtained for a diffuse construct with those obtained

in §3.3.2. The solutions obtained for the diffuse construct (D 6= 0) predict that at early

times, the cell population grows at an exponential rate, spreads along the channel under

the action of diffusion and is advected due to the imposed flow at speed γ. In the sharp

interface limit similar behaviour was observed; however, diffusion is, of course, absent. The

growth/advection behaviour displayed in each regime is valid during the exponential growth

stage, as indicated previously.

By comparing figures 3.11b and A.3b it may be observed that the behaviour of the

perturbation to the pressure is similar in each regime: upstream from the cell population,

the perturbation to the pressure is positive; downstream, it is negative. We remark that

in contrast to the sharp interface solution shown in figure 3.11b, for the case of a diffuse

construct, the perturbation to the pressure changes from positive to negative at the centre of

the cell phase distribution. This is a consequence of the fact that in this case, the transition

from the upstream increase in pressure to the downstream decrease must be continuous.

This behaviour corresponds to a small increase to the linear leading-order pressure upstream,

and a decrease downstream from the construct. Consideration of the boundary conditions

(3.32a), (3.33a) shows that this behaviour is displayed in numerical simulations presented

in §3.3.1 (see §3.3.2, page 91 for more details).

Lastly we note that the culture medium velocity is proportional to the culture medium

pressure gradient: uw ∝ −∂/∂x(p0 + δp1), both the sharp interface and diffuse solutions

therefore correspond to a decrease in flow speed up- and downstream from the construct;

within, the flow speed is increased.
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AppendixB
Poroelasticity - numerical accuracy

comparisons

B.1 Biot model - COMSOL solution

I
n §6.3.2 we considered a two-dimensional model of our bioreactor scaffold, employing a

Biot formulation to model the deformation (u) and pore fluid pressure (p) in a porous

scaffold subject to periodic compression. Employing the decomposition:

p(x, t) = R
{
p̃(x)eiωt

}
, u(x, t) = R

{
ũ(x)eiωt

}
, (B.1)

where ω is the dimensionless frequency of compression, we arrive at the following two-

dimensional system:

G∇2ũ +
G

1 − 2ν
∇ (∇ · ũ) = α∇p̃, (B.2)

p̃+
i

ω
∇2p̃ = −α∇ · ũ, (B.3)

in which G is the dimensionless shear modulus, ν is the Poisson’s ratio and α is the Biot

modulus. The second-order-accurate finite-difference scheme given by equations (6.62)–

(6.64) was employed to determine the solid displacement (ũ, ṽ) and the pore pressure p̃.

The geometry of the bioreactor system was accounted for by the imposition of discon-

tinuous boundary conditions, as indicated by figure 6.1. These discontinuities introduced

sharp variation in the solutions. In order to validate the qualitative behaviour of our solu-

tions, we now compare the solutions obtained using the finite-difference scheme on a uniform

spatial mesh with others generate by the finite-element package, COMSOL, in which mesh

refinement was performed around these discontinuities1.

1We are grateful to H. Woollard for the use of this software.
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B.1 Biot model - COMSOL solution

For ease of implementation, we simplify the geometry, removing the downstream outlet

and including one perforation in the upstream piston. Furthermore, we prohibit transverse

displacement on the downstream constraining wall and on the piston face. As before, we

allow the axial displacement within the perforation to relax according to the normal stress,

employing the function f1(y) to distinguish the region occupied by the perforation from

that occupied by the piston:

f1(y) =

{
0 if y is within a perforation,

1 otherwise.
(B.4)

In the absence of an outlet, the function f2(y) introduced in §6.3 is f2(y) = 1. The geometry

and boundary conditions are shown in figure B.1.

G∇2u + G
1−2ν

∇ (∇ · u) = α ∇p

∂p
∂t

−∇2p = −α ∂
∂t
∇ · u

(1 − f1)
[ 2G(1−ν)

1−2ν
∂u
∂x

− βxu
]

+ f1 [u− u(t)] = 0

v = 0

(1 − f1)p+ f1
∂p
∂x

= 0

u = 0

∂p
∂x = 0

v = 0

∂u
∂y = v = ∂p

∂y = 0

∂u
∂y = v = ∂p

∂y = 0

x

y

Figure B.1: The dimensionless governing equations and boundary conditions for the sim-

plified poroelastic scaffold model.

Figures B.2–B.4 show surface and corresponding contour plots of the solutions obtained

using the finite-difference scheme on a uniform mesh. As in §6.3.2, the mesh spacing is

∆x = 1 × 10−2, ∆y = 5 × 10−3 and the parameters values are chosen to be G = 1,

ν = 0.1, νu = 0.21, α = 0.7, U = 0.85, ω = 1, βx = 1. Figures B.5–B.7 show the

corresponding solutions calculated using the finite-element package COMSOL. Figure B.8

shows a comparison between the predicted displacement and pressure at x = 0.

Comparison of the finite difference solutions (figures B.2–B.4) and the COMSOL so-

lutions (figures B.5–B.7) shows that qualitatively similar behaviour is predicted by both
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Figure B.2: Surface and contour plot of the axial displacement in a compressed poroe-

lastic scaffold at t = 0. Parameter values: G = 1, ν = 0.1, νu = 0.2, α = 0.7,

U = 0.85, ω = 1, βx = 1.
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Figure B.3: Surface and contour plot of the transverse displacement in a compressed

poroelastic scaffold at t = 0. Parameters as in figure B.2.
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Figure B.4: Surface and contour plot of the pore pressure in a compressed poroelastic

scaffold at t = 0. Parameters as in figure B.2.
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Figure B.5: Surface and contour plot of the axial displacement of a poroelastic scaffold

in response to compression at t = 0 calculated with COMSOL. Parameters

as in figure B.2.
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Figure B.6: Surface and contour plot of the transverse displacement in a compressed

poroelastic scaffold at t = 0 calculated with COMSOL. Parameters as in

figure B.2.
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Figure B.7: Surface and contour plot of the pore pressure in a compressed poroelastic

scaffold at t = 0 calculated with COMSOL. Parameters as in figure B.2.

190



B.2 Multiphase model - finite difference solution
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Figure B.8: A comparison between (a) the displacement, and (b) the pressure at x = 0

predicted by COMSOL (-) and the finite-difference solver (- -). Parameters

as in figure B.2.

solutions methods. In each case, our simulations predict an approximately linear axial dis-

placement profile with non-linearity (and small transverse displacement) being introduced

around the perforation. The pressure achieves a maximum on the impermeable constraining

wall at x = 1, and equalises with the exterior in the perforation.

Qualitative comparison reveals close agreement. Small discrepancies are evident in

the predicted value of the maximum pressure at x = 1. In figure B.8 we compare the

predicted displacement and pressure at x = 0. It can be seen that the two methods show

good qualitative agreement. The disparity between solutions may be reduced via mesh

refinement of the finite-difference scheme (details omitted).

Comparison of the two different solution methods gives us confidence in the accuracy

of the simulations presented in §6.3.2.

B.2 Multiphase model - finite difference solution

In §6.4, we employed a multiphase formulation to calculate the response of our poroelastic

material to time-dependent compression. We considered a poroelastic scaffold saturated

with a single, freely-moving pore fluid. Both phases were assumed to be incompressible;

however, compression may still occur via redistribution of solid and fluid components. Due

to the complexity of the formulation, we are led to consider a one-dimensional scaffold

subject to time-dependent compression by a permeable piston at x = 0 and restrained by

an impermeable barrier at x = 1.

Equations (6.72) and (6.73) were reduced to a pair of partial differential equations
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B.2 Multiphase model - finite difference solution

governing the pore fluid volume fraction (w) and the axial solid displacement (u), obtaining:

∂w

∂t
+ δG

∂

∂x

(
w2(w − 1)

∂2u

∂x2

)
= 0, (B.5)

∂u

∂t
= Gw2 ∂

2u

∂x2
(B.6)

where G is the dimensionless shear modulus of the scaffold. These equations are subject to

the following boundary and initial conditions:

u(x = 0, t) = U

[
2eωt

1 + eωt
− 1

]
, u(x = 1, t) = 0, (B.7)

w(x, t = 0) =
1 − x

2
, u(x, t = 0) = 0, (B.8)

and we remark that the choice of a saturating functional form for the upstream imposed

displacement and the initial fluid volume fraction distribution (representing a scaffold whose

porosity decreases linearly to zero from a maximum of 50% at x = 0) obviates the need to

specify a boundary condition for w (more discussion of this formulation is given in §6.4).

The displacement uk+1
j at each mesh point j and new time-step, k + 1 is calculated

from ukj and wkj as follows:

uk+1
j = ukj + ∆tG(wkj )

2
ukj+1 − 2ukj + ukj−1

(∆x)2
, (B.9)

and the corresponding fluid volume fraction calculated from:

wk+1
j = wkj + ∆tδG

fkj+1 − fkj−1

2∆x
, (B.10)

where fkj is the flux term in equation (B.5) evaluated at wkj and ukj . The mesh spacing is

chosen to be ∆x = 1 × 10−3 and the timestep is ∆t = (∆x)2/2G.

Figure B.9 shows a comparison of the predicted pore fluid volume fraction at x = 0

computed using each solution method and the % relative error between these two solutions.

Figure B.10a shows the evolution of the solid displacement calculated using the finite dif-

ference scheme (B.9) and (B.10). A comparison between this solution and that predicted

by hpde is not shown since the difference between the two solutions is small and hard to

discern; figure B.10b shows the absolute error between the two solutions, defined as the

difference between the hpde and the finite-difference solutions at each mesh point, j, and

timestep, k.

Inspection of figures B.9 and B.10 shows that the hpde and explicit finite-difference

solution methods are in good agreement and we may have confidence in the behaviour of

our solutions presented in §6.4. The discrepancy observed in figure B.9a may be reduced

by further mesh refinement.
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B.2 Multiphase model - finite difference solution
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Figure B.9: (a) Comparison of the predicted pore fluid volume fraction at x = 0 computed

using an explicit finite-difference method (- -) and hpde (–), and (b) the %

relative error between the volume fraction calculated using the two solution

methods. Parameter values G = 1, ω = 1, U = 0.85, δ = 10−2.
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Figure B.10: (a) The predicted solid displacement profile computed using an explicit fi-

nite difference method, and (b) the absolute error between the displacement

calculated using the finite difference and hpde solution methods. Parameter

values as in figure B.9; t = 0–3.5 in steps of t = 0.5.
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