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ABSTRACT

Characterisation of the complex geomorphological and ecological structure of river

channels into workable units of instream habitat is a key step in enabling the

assessment of habitat ‘quality’ for river management purposes.  The research

presented in this thesis uses a range of methodological approaches at a variety of

spatial scales in order to improve the conceptual basis of habitat characterisation at the

reach and sub-reach scale.  An appraisal of published works is used in conjunction

with an extensive analysis of habitat features for sites across the UK, and intensive

field studies on the River Tern, Shropshire, to improve the conceptual basis and

ecological validity of the ‘physical biotope’ as the basic unit of instream habitat.

Physical biotopes demonstrate correlations with biologically functional habitat units at

relatively broad scales, suggesting that assemblages of habitat units may provide the

most appropriate level of simplification of aquatic habitat structure.  A simplified, but

more transferable classification using biotope assemblages is suggested, with potential

application to a range of instream assessment and river design needs.  Reach-scale

field surveys reveal complex and dynamic relationships between channel hydraulics

and morphology and highlight the influence of sampling design and hydrological

context on the outcomes of rapid field surveys.  A microscale research component

addresses within-biotope variation at small scales by focusing on high frequency flow

behaviour and sediment transport mechanisms which have, to date, been largely

overlooked in biotope studies.  This provides both detailed descriptions of hydraulic

behaviour, and an indication of differences in internal spatial and temporal

heterogeneity between biotopes, with implications for instream biota.

KEYWORDS: physical biotope; functional habitat; eco-hydraulics, River Habitat

Survey, river restoration, habitat quality.



ii

ACKNOWLEDGEMENTS

This research was undertaken whilst in receipt of a studentship from the University of

Nottingham at the School of Geography, University of Nottingham.

The research is affiliated with the Natural Environment Research Council (NERC)

Lowland Catchment Research (LOCAR) research project ‘Vegetation influences on

fine sediment and propagule dynamics in groundwater-fed rivers: Implications for

river management, restoration and riparian biodiversity’ (NER/T/S/2001/00930). Data

sets available both from the LOCAR data centre and the instrumented field sites have

provided valuable contextual information for the field research.  I would also like

express my thanks to Peter Shaw and Freddie Fisher for their co-operation regarding

access to the ‘Oakley Hall’ field site, and to Simon Furnival at Napely Lodge Farm.

Many of the staff and postgraduate students at Nottingham have provided help

throughout the project.  In particular I would like to thank Professor Nick Clifford for

providing the opportunity to undertake the research and for his continued enthusiasm,

encouragement, support and guidance throughout the project.  Special thanks also go

to Professor Angela Gurnell (Kings College London) and Dr Bob Abrahart for

providing valuable suggestions and stimulating discussions.  I am also very grateful to

Ian Conway, Teresa Needham and Graham Morris for their help and advice with field

kit and lab work, and to the various people who have provided invaluable help with

fieldwork: Alex Henshaw, Kelly Watson, Jo Goodson, Ian Conway, Zoe Gardner and

Chris Parker.

I would also like to thank my family and friends for all their support over the past

three years.  In particular, thanks to my parents, Anne and Robert Howie, and my

sisters, Lizzie and Alice, for all their encouragement and for proof reading various

chapters.  Finally my thanks go to Jon, for all his help with fieldwork and proof

reading, but above all for his continual support, patience and encouragement.



 iii  

CONTENTS 

 

List of Figures………………………………………………………………….. vi 

List of Tables…………………………………………………………………... xvii 

List of Plates…………………………………………………………………… xx 

  

CHAPTER 1    INTRODUCTION 1 

   

1.1 RESEARCH AIMS AND OBJECTIVES…………………...…... 1 
1.2 THE RESEARCH CONTEXT…………………………………... 2 

1.2.1 Directions in river research and management………………..…... 4 
1.2.2 Habitat hierarchies and the mesoscale……………………….…... 6 
1.2.3 Habitat inventory and assessment………………………………... 11 
1.2.4 Enhancement, rehabilitation and restoration……………………... 12 
1.2.5 The LOCAR research programme…………………………...…... 14 

1.3 THESIS STRUCTURE…………………………………………... 15 
   

   

CHAPTER 2    RESEARCH DESIGN AND FIELD SITES 19 

   

2.1 CHAPTER SYNOPSIS……………………………………...…... 19 
2.2 METHODOLOGICAL FRAMEWORK………………….……... 19 

2.2.1 Scientific approach…………………………………………..…... 19 
2.2.2 Methods and data sets…………………………………….….…... 22 

2.3 FIELD SITE CHARACTERISTICS………………….……..…... 25 
2.3.1 Geological context…………………………………………...…... 25 
2.3.2 Catchment topography and land use ………………………...…... 28 
2.3.3 Reach morphology…………………………………………...…... 30 
2.3.4 Sedimentology……………………………………………….…... 33 
2.3.5 Hydrology………………………………………………………... 35 
2.3.6 Habitat features…………………………………………………... 43 

   

CHAPTER 3    BIOTOPES AND HABITATS: TOWARDS AN 
IMPROVED CONCEPTUAL BASE 

50 

   

3.1 CHAPTER SYNOPSIS……………………………………...…... 50 
3.2 PHYSICAL BIOTOPES: IDENTIFICATION AND 

CHARACTERISATION…………………………………….…... 
50 



 iv 

3.2.1 The biotope approach………………………………………...…... 50 
3.2.2 Theoretical and methodological issues…………………………... 51 
3.2.3 Biotope characterisation: a review of previous approaches….…... 55 

3.3 BIOLOGICALLY FUNCTIONAL HABITAT……………...…... 61 
3.3.1 Aquatic invertebrates and habitat functionality……………...…... 61 
3.3.2 Linking biotopes and functional habitats…………………….…... 64 

3.4 A NATIONAL DATA SET………………………………….…... 68 
3.4.1 Data extraction…..…………………………………………...…... 68 
3.4.2 Variable extraction…………………………………………...…... 72 

3.5 FLOW TYPES AND FUNCTIONAL HABITATS IN THE 
UK………………………………………………………………... 

74 

3.5.1 National frequency distributions……………………………..…... 74 
3.5.2 Macroscale controls on mesoscale habitat features………….…... 77 
3.5.3 Habitat response to physical degradation………………………... 81 

3.6 TOWARDS AN ECOLOGICAL CLASSIFICATION…….……. 86 
3.6.1 Co-occurrence of flow types and functional habitats……………. 86 
3.6.2 A preliminary classification……………………………………… 91 
3.6.3 Statistical validation……………………………………………… 96 

i) Principal Components Analysis…………………………….……. 96 
ii)  Hierarchical Cluster Analysis……………………………….…… 100 

3.7 DISCUSSION AND CONCLUSIONS….………………………. 104 
   

CHAPTER 4    A FIELD APPLICATION OF MESOSCALE HABIT AT 
CONCEPTS: THE RIVER TERN 

110 

   

4.1 CHAPTER SYNOPSIS……………………………………...…... 110 
4.2 EXPLORING PHYSICAL HABITAT AT THE 

MESOSCALE………………………………………………..….. 
110 

4.2.1 Research challenges………………………………………….….. 110 
4.2.2 The field studies……………………………………………...….. 112 

i) The field survey methods…………………………………….….. 113 
ii)  Measured parameters………………………………………..….. 113 

iii)  Biotope and habitat classification…………………………...….. 117 
4.3 IDENTIFICATION OF PHYSICAL BIOTOPES…………...….. 120 

4.3.1 Morphological assessments...………………………………...….. 120 
i) Topographic identification of biotopes.………………………….. 120 

ii)  Spatial organisation of bed topography……………………..…... 127 
iii)  The distribution of fine sediment…………………………….…… 130 

4.3.2 Surface flow types…………………………………………...…… 137 
4.4 THE EFFECTS OF SURVEY RESOLUTION……………...….. 141 

4.4.1 Surface flow types………………………………………….…….. 141 
4.4.2 Cross sectional hydraulics………………………………….…….. 147 



 v 

4.4.3 Velocity profiles…………………………………………………. 149 
4.5 PHYSICAL BIOTOPES AND FUNCTIONAL HABITATS…… 155 

4.5.1 Functional habitat distributions…………………………….….…. 155 
4.5.2 Functional habitats, flow types and physical biotopes…………… 162 

4.6 HYDRAULIC CHARACTERISATION OF PHYSICAL 
BIOTOPES…………………………………………………..…... 

166 

4.6.1 Reach-scale hydraulics……………………………………….….. 166 
4.6.2 The hydraulics of physical biotopes and surface flow types....….. 173 
4.6.3 A multivariate approach……………………………………...…... 178 
4.6.4 Physical habitat clusters, flow types and functional habitats...…... 189 

4.7 DISCUSSION AND CONCLUSIONS.……………………...….. 192 
   

   

CHAPTER 5    BIOTOPE CHARACTERISATION AT THE 
MICROSCALE: TURBULENCE AND SEDIMENT TRANSPORT 

198 

   

5.1 CHAPTER SYNOPSIS……………………………………...…... 198 
5.2 ECOHYDRAULICS AT THE MICROSCALE……………..…... 198 

5.2.1 The importance of the microscale………………………………... 199 
5.2.2 Turbulent boundary layers…………………………………...…... 201 
5.2.3 Flow and suspended material………………………………..…... 202 

5.3 VELOCITY TIME SERIES……………………………………... 205 
5.3.1 Sampling design…………………………………………….……. 205 
5.3.2 Data cleaning and detrending……………………………….…… 209 

5.4 PHYSICAL BIOTOPES AND TURBULENT 
PROPERTIES……………………………………………………. 

215 

5.4.1 Average flow properties…………………………………….……. 215 
i) Velocity and stress……………………………………………….. 215 

ii)  Turbulence intensity……………………………………………… 226 
5.4.2 Turbulent event structure………………………………………… 235 
5.4.3 Characteristic flow structures……………………………………. 241 

i) Autoregressive modelling………………………………………… 242 
ii)  Flow structure size and origin…………………………………... 250 

5.4.4 Spectral signatures…………………………………………...…... 260 
i) Spectral density…………………………………………………... 260 

ii)  Flow structure ranges……………………………………………. 261 
iii)  Average flow structure size………………………………………. 267 

5.5 PHYSICAL BIOTOPES AND SEDIMENT TRANSPORT.……. 269 
5.5.1 Sampling design……………………………………………....….. 269 
5.5.2 Calibration and data cleaning………………………………....….. 270 
5.5.3 Sediment pulse characteristics………………………………..….. 273 



 vi 

5.5.4 Identification of mixing processes…………………………...…... 281 
5.6 DISCUSSION AND CONCLUSIONS.…………………………. 285 
   

   

CHAPTER 6    CONCLUSIONS 291 

   

6.1 SUMMARY AND CONCLUSIONS….………………………… 291 
6.1.1 Correlations between physical biotopes and functional 

habitats…………………………………………………………… 
291 

6.1.2 Rapid reconnaissance methods and the representation of habitat 
features…………………………………………………………… 

293 

6.1.3 The physical integrity and hydrodynamics of physical biotopes at 
the sub-reach scale……………………………………………….. 

296 

6.1.4 ‘Within-biotope’ variation and microscale hydraulics…………… 297 
6.2 RECOMMENDATIONS FOR FURTHER RESEARCH….……. 300 

6.2.1 Research at the macroscale…...…………………………….……. 301 
6.2.2 Research at the mesoscale..……………………………………… 301 
6.2.3 Research at the microscale...……………………………………... 302 

   

REFERENCES 304 

   

APPENDICES 321 

Appendix A Cluster centre characteristics for K-means cluster analyses… 322 

Appendix B Wavenumber spectra for velocity time series……………….. 324 
 



vii

LIST OF FIGURES

CHAPTER 1    Introduction Page

Figure 1.1 Hierarchical organisation of a stream and its habitat
subsystems.

8

Figure 1.2 Physical biotopes and functional habitats. 10

Figure 1.3 The range of river management options along a spectrum of
decreasing conservation value.

13

Figure 1.4 Overview of the principal research topics, their purpose and
chapters in which they are addresses.

16

CHAPTER 2    Research design and field sites

Figure 2.1 Hierarchical structure of stream habitat. 21

Figure 2.2 (a) Geographical distribution of New Red Sandstone RHS sites,
(b) Proportions of New Red Sandstone sites associated with
varying levels of human modification and (c) landscape context
of all sites within the RHS database compared to New Red
Sandstone sites and sites on the River Tern.

27

Figure 2.3 (a) Land use characteristics for the Tern catchment derived
from the Land Cover Map (LCM) 2000 obtained from the
Centre for Ecology and Hydrology (CEH) and (b) Digital
Terrain Model (DTM) for the Tern catchment (created by the
Institute of Hydrology).

29

Figure 2.4 DTMs for Oakley Hall and Napely Lodge Farm study reaches
created using Triangulated Irregular Networks (TINs) in
ArcGIS 8.3.  Channel and floodplain elevations were obtained
by topographic survey using a Leica Geosystems TCR 307
electronic total station.  Circled letters denote the location of
reach photographs in Plate 2.1.

31

Figure 2.5 Grain size distributions for sieved sediment samples at Oakley
Hall and Napely Lodge Farm.

36

Figure 2.6 (a and b) Particle shape for cobble samples as calculated from
particle axis ratios according to the Zingg classification and (c
and d) particle sphericity for cobble samples according to the
Krumbein index of sphericity.

37



viii

Figure 2.7 (a) Mean daily flow at Ternhill for the period 1972-2005
compared to multiples of the median discharge, (b and c)
estimation of discharge from pressure transducer stage readings
(above an arbitrary datum), (d) mean daily flow at Oakley Hall
for the period July 2003-December 2005 compared to multiples
of the median discharge and (e) flow exceedance curves for the
Tern at Ternhill compared to Oakley Hall for the period 2003-
2005.

39

Figure 2.8 (a) Flow stage (above an arbitrary datum) at Oakley Hall for the
principal study period (January-December 2005), (b) stage
difference between pressure transducers, and (c and d) stage-
discharge curves for both sites for the same period.

42

Figure 2.9 Channel substrate, flow types and vegetation types identified at
RHS spot-checks.

47

CHAPTER 3    Biotopes and habitats: towards an improved conceptual base

Figure 3.1 Spatial scale of influence and strength of factors influencing
stream invertebrate distributions

56

Figure 3.2 Froude number ranges for flow biotopes identified by Newson
et al. (1998a) and velocity-depth ranges for different Froude
number classes for the River Cole, Birmingham

59

Figure 3.3 Data set characteristics for (a) all sites, (b) semi-natural sites
and (c) heavily modified sites.  The Environment Agency’s
typology is based on a Principal Components Analysis (PCA)
using the variables of site altitude, slope, distance from source
and altitude of source.

71

Figure 3.4 Dimensions of RHS spot-check attributes used in analysis. 73

Figure 3.5 National frequency distributions for flow types and functional
habitats and percentage of observations of each flow type and
habitat associated with upland and lowland settings for semi-
natural sites.

75

Figure 3.6 Altitude, slope and distance from source ranges, interquartile
ranges and median values for flow biotopes within semi-natural
sites.

79

Figure 3.7 Distributions of site PCA scores for each flow biotope category. 80



ix

Figure 3.8 Altitude, slope and distance from source ranges, interquartile
ranges and median values for minerogenic and vegetative
functional habitat categories.

82

Figure 3.9 Distributions of site PCA scores for each functional habitat
category

83

Figure 3.10 Comparison of national frequency distributions of flow types
and functional habitats within semi-natural and heavily
modified reaches.

84

Figure 3.11 Flow type frequency distributions for each functional habitat
category.

87

Figure 3.12 Functional habitat frequency distributions for each flow type
category.

90

Figure 3.13 The percentage of observations of each functional habitat which
is accounted for by one, two and three flow types.

93

Figure 3.14 Venn diagram to illustrate relationships between assemblages
of flow types and suites of functional habitats.  Different
combinations of three out of a total of five common flow types
may be linked with suites of functional habitats.

93

Figure 3.15 (a) PCA bi-plot showing correlations between flow types
(represented by circles) and functional habitats (represented by
vectors) for the semi-natural data set.  (b) and (c) plot the flow
type sample scores for PCA axes 1 and 2 respectively.

98

Figure 3.16 Dendrogram for hierarchical cluster analysis of functional
habitat and flow type frequency matrix.

103

Figure 3.17 Hierarchical linkages between channel morphology, surface
flow types and functional habitats.

108

CHAPTER 4    A field application of mesoscale habitat concepts: the River Tern

Figure 4.1 (a) Distribution of velocity sample points throughout the reach,
demonstrated for Napely Lodge Farm, which are sub-divided
into cross sectional transects in order to assess physical
biotopes and surface flow types at the transect-level.  Each
transect is further sub-divided into 1m2 cells in order to sample
velocity and depth and record surface flow types, dominant
substrate and vegetation cover.

114



x

Figure 4.2 RiverCat sampling structure for a channel cross section. 116

Figure 4.3 Raw channel centreline and thalweg elevations fitted with
linear regressions for (a) Oakley Hall and (b) Napely Lodge
Farm.  (c) and (d) plot the detrended residual elevations in
which riffles may be interpreted as positive values and pools as
negative values after Richards (1976).

121

Figure 4.4 TIN visualisations of residual channel elevations for (a) Oakley
Hall and (b) Napely Lodge Farm.  In (c) and (d) elevation
residuals are classified into positive and negative values, and in
(e) and (f) a ‘transitional’ class (-0.1-0.1 m) is incorporated to
account for transitional glide and run biotopes.

124

Figure 4.5 (a) and (b) present the proportion of channel area occupied by
‘biotopes’ derived from interpolated topographic residuals at
each site, which can be compared to those visually identified at
low flow stage (c and d).  (e) plots the difference (% change)
between visual surveys and gridded residual elevation data
derived from TINs.

126

Figure 4.6 Characteristics of the experimental semivariogram. 129

Figure 4.7 Semivariograms of channel bed elevations for Oakley Hall and
Napely Lodge Farm calculated for a total of 20 lags using a lag
interval of 2 m.

129

Figure 4.8 Frequency distributions for fine sediment depth at each site for
each of the four pin surveys

132

Figure 4.9 Change in sediment depth between surveys for Oakley Hall and
Napely Lodge Farm.

134

Figure 4.10 Percentage of the channel area associated with scour and fill
between surveys calculated from a 2m interpolated grid, and
cumulative change in sediment depth between surveys for each
biotope.

135

Figure 4.11 Occurrence of surface flow types within each physical biotope
for each site and flow stage assessed at the transect-level and
the cell-level.

138

Figure 4.12 Percentage of surveyed channel area occupied by flow types
when assessed at the cell-level compared to the transect-level,
and the level of misclassification of cell flow types by the flow
type assigned to the entire transect for each site and flow stage.

142



xi

Figure 4.13 Proportions of different cell types associated with each transect-
level flow type for each site and flow stage.

144

Figure 4.14 Visualisations of surface flow types assessed at the transect
level and cell-level for each site at each flow stage.

146

Figure 4.15 Comparison of cross section-averaged and cell-level
streamwise velocities and water depths for each physical
biotope at low and intermediate flow stage for Oakley Hall (a to
d) and Napely Lodge Farm (e to h).

148

Figure 4.16 Cross sectional velocity and depth profiles from selected
transects within each physical biotope at Oakley Hall and
Napely Lodge Farm.

150

Figure 4.17 Frequency distributions for water depth (a and b) and velocity
(c and d) for each site comparing data sets derived from the
RiverCat with those obtained using the Handheld FlowTracker.

152

Figure 4.18 Selected RiverCat cross section profiles for physical biotopes at
Oakley Hall and Napely Lodge Farm.

152

Figure 4.19 Velocity variation throughout the pool cross section with
respect to the section-averaged mean, and variation about the
mean for velocities near the water surface.

154

Figure 4.20 Spatial distribution of channel substrate types (minerogenic
functional habitats) for each site in March and July 2005.

156

Figure 4.21 Organic functional habitat distributions for Oakley Hall in
March and July 2005.

158

Figure 4.22 Organic functional habitat distributions for Napely Lodge Farm
in March and July 2005.

159

Figure 4.23 PCA axis variable loadings for PCAs performed on functional
habitats and transect-level flow types (a and d), cell-level flow
types (b and e) and physical biotopes (as visually identified at
the transect-level; c and f) at low and intermediate flow stages.

163

Figure 4.24 PCA bi-plots illustrating the relationships between functional
habitats and transect- and cell-level surface flow types and
physical biotopes.

165



xii

Figure 4.25 Frequency histograms for three-dimensional flow velocity and
water depth for Oakley Hall and Napely Lodge Farm for low
and intermediate discharge.

168

Figure 4.26 Semivariograms for three-dimensional flow velocity and water
depth for Oakley Hall and Napely Lodge Farm using a lag
interval of 2 m.

170

Figure 4.27 TIN surfaces for streamwise velocity and water depth at low
and intermediate flow stages.

172

Figure 4.28 Froude number box plots for physical biotopes, transect-level
flow types and cell-level flow types.

174

Figure 4.29 Velocity-depth distributions by flow stage (both sites) for
different Froude number classes, and for physical biotope,
transect-level flow type and cell-level flow type categories.

176

Figure 4.30 Spatial distribution of clusters performed on data sets for each
site and flow stage individually using U, depth and substrate
(plots a to d) and using U, V, W, depth and substrate (e to h).

182

Figure 4.31 Velocity and depth ranges for clusters derived from the
combined low flow data set using velocity, depth and substrate
variables.

184

Figure 4.32 Spatial distribution of velocity, depth and substrate clusters
calculated using low flow data for both sites and applied to
intermediate flow data.

185

Figure 4.33 The proportion of the sampled channel area allocated to each
cluster for each flow stage at (a) Oakley Hall and (b) Napely
Lodge Farm.

187

Figure 4.34 Velocity, depth and substrate characteristics associated with
each statistically derived cluster for low flow, and applied to
intermediate flow data.

188

Figure 4.35 PCA axis variable loadings for PCA performed on habitat
clusters and cell-level surface flow types (a and b) and habitat
clusters and functional habitats (c and d).

190

Figure 4.36 PCA bi-plots illustrating the relationships between physical
habitat clusters and flow types and physical habitat clusters and
functional habitats.

191



xiii

Figure 4.37 Conceptualised dynamic hydraulic character of physical habitat
patches for the River Tern according to the velocity and depth
frequency distributions of statistically derived clusters.

196

CHAPTER 5    Biotope characterisation at the microscale: turbulence and
sediment transport

Figure 5.1 Turbulence generation in open channels: (a) The process of
turbulent bursting and (b) vortex shedding from roughness
elements.

203

Figure 5.2 Nutrient cycling and spiralling. 206

Figure 5.3 Sampling design for the microscale velocity surveys.  Circles
represent velocity sample locations where high frequency
measurements were taken at 0.2 and 0.8 of the water depth
from the surface.

208

Figure 5.4 Example velocity series from the River Tern showing (a) high
frequency (<1s) fluctuations, (b) intermediate (~3-5s)
fluctuations and (c) slowly fluctuating trend (5th order
polynomial).

213

Figure 5.5 Velocity series detrending using (a) polynomial and (b) linear
procedures.  Resultant residuals are then compared to residuals
derived by simple subtraction of the mean velocity (the dotted
line) in (c) and (d).

214

Figure 5.6 Mean streamwise and vertical velocity for (a) Oakley Hall and
(b) Napely Lodge Farm at low and intermediate flow stages.  In
(c) and (d) the mean streamwise velocity is plotted against the
standard deviation for each site, and in (e) and (f) the mean
vertical velocity is plotted against the standard deviation for
each site.

217

Figure 5.7 Mean streamwise velocity for (a) Oakley Hall and (b) Napely
Lodge Farm, and vertical velocity (c and d) velocity by sample
location according to depth of measurement and flow stage.

220

Figure 5.8 Skewness of the fluctuating components u' and w'. 223

Figure 5.9 Series-averaged kinematic shear stress, and separate positive
and negative contributions.

225

Figure 5.10 Boxplots for u' series showing median, interquartile range and
absolute range of values within each series.

227



xiv

Figure 5.11 Boxplots for w' series showing median, interquartile range and
absolute range of values within each series.

228

Figure 5.12 Comparison of the root mean square (rms) values for u' and w'
for (a) Oakley Hall and (b) Napely Lodge Farm, and the range
of overall turbulence intensity values for velocity series
recorded within each biotope (c).

231

Figure 5.13 The relationships between mean velocities and overall
turbulence intensity for all biotopes, at intermediate flow only
for (a) Oakley Hall and (b) Napely Lodge Farm.  (c) and (d)
plot mean streamwise and vertical velocities respectively
against turbulence intensity for Oakley Hall biotopes
comparing low and intermediate flow stages (c and d).

232

Figure 5.14 Overall intensity by sample location for (a) Oakley Hall and (b)
Napely Lodge Farm.

234

Figure 5.15 Turbulent event ‘quadrants’ identified from the joint
distributional characteristics of u' and w'.

236

Figure 5.16 (a to d) Frequency histograms for the percentage of series
associated with contributions of each event type to the series –
u'w' for low and intermediate flow data combined, and the ratio
of (e) bursts to sweeps and (f) outward to inward interactions.

239

Figure 5.17 Cumulative fractional stress contribution and duration of each
of the four turbulent event types for Oakley Hall (a to d) and
Napely Lodge Farm (e to h).

240

Figure 5.18 Example autocorrelation functions (ACFs) and partial
autocorrelation functions (PACFs) for each physical biotope.

245

Figure 5.19 AR(2) model parameter values by biotope and flow stage (a to
d) and relative depth and flow stage (e to h) for each site and
for each of the two velocity components.

249

Figure 5.20 The coefficient of variation for u' series.  The threshold value of
0.1, used to indicate consistent eddy size and shape, is indicated
by a dotted line.

251

Figure 5.21 Dominant period (P) derived from pseudo-periodic AR(2)
models for each biotope and flow stage for u' and w' series.

253

Figure 5.22 Dominant eddy length scale (L) derived from pseudo-periodic
AR(2) models for each biotope and flow stage for u' and w'
series for (a) Oakley Hall and (b) Napely Lodge Farm, and

255



xv

comparison of values derived from u' and w' series according to
biotope (c and d) and relative depth (e and f).

Figure 5.23 Dominant eddy length scale (L) derived from pseudo-period
AR(2) models applied to u' series for (a) Oakley Hall and (b)
Napely Lodge Farm by sample location, and applied to w'
series (c and d).

256

Figure 5.24 Estimated diameter (d) of vortex-shedding body derived from
modelled u' and w' series by sample location with respect to the
D84 and 3D84 for substrates found within each respective
biotope.

258

Figure 5.25 Maximum wavenumber values for u' and w' series by biotope
and flow stage derived from wavenumber spectra.

263

Figure 5.26 Sample wavenumber spectra for each of the four biotopes at
low flow.  (a) to (d) present spectra for u' series and (e) to (f)
spectra for w' series.

265

Figure 5.27 Eddy lengths derived from velocity spectra for (a) u' series and
(b) w' series, and the ratio of length scales derived from spectra
to those derived from AR(2) models for u' and w' series (c and
d).

268

Figure 5.28 Sampling design for the microscale sediment transport
experiments.

271

Figure 5.29 (a) Clear-water offset values for IR40C turbidity probes used in
microscale sediment experiments.  (b) laboratory calibration
curves for field sediments collected from each field site. (c)
Linear trends fitted to the probe output range identified for field
deployments.

271

Figure 5.30 Flood hydrograph theory applied to sediment pulses. 275

Figure 5.31 Sediment pulse statistics for array 1 and array 2 for all sediment
releases by the relative depth of the detecting probe.

276

Figure 5.32 Ratio of array 1 to array 2 for pulse statistics by relative depth
of the detecting probe.

280

Figure 5.33 Systematic process used to identify mixing processes
responsible for the observed sediment transfer signal.

282



xvi

Figure 5.34 Sketches to illustrate the principal sediment mixing processes
identified from suspended sediment experiments: (a) rapid
vertical diffusion and downstream advection, (b) vertical
dispersion by upwelling or downwelling currents and (c)
transverse dispersion laterally towards either bank.

283

Figure 5.35 The number of sediment pulse experiments (at various release
depths) attributed to each of the four main mixing processes for
each physical biotope and experiment date.

283

Figure 5.36 Conceptual classification of physical biotopes according to
levels of internal variation in hydraulics spatially, with depth
and with flow stage.

289



xvii

LIST OF TABLES

CHAPTER 1    Introduction Page

Table 1.1 Research objectives and methods. 3

CHAPTER 2    Research design and field sites

Table 2.1 Scientific methodological approaches employed in the research. 21

Table 2.2 Methods, data sets and techniques. 23

Table 2.3 Particle size characteristics for Oakley Hall and Napely Lodge
Farm.

36

Table 2.4 Flow stage (above an arbitrary datum), discharge and
exceedance statistics for each field survey.

40

Table 2.5 RHS data for Oakley Hall and Napely Lodge Farm obtained by
field surveys conducted in May and July 2004.

45

CHAPTER 3    Biotopes and habitats: towards an improved conceptual base

Table 3.1 Surface flow types and their low flow stage associations with
physical biotopes.

53

Table 3.2 Flow types resulting from the interactions between flow and
substrate, their biological implications and associated channel
features.

57

Table 3.3 Minerogenic, vegetative and detrital habitats and their principal
biological functions.

63

Table 3.4 Descriptive hydraulic classes and associated macrophytes
identified by Butcher (1933).

65

Table 3.5 Descriptive hydraulic classes and associated macrophytes
identified by Haslam (1978).

65

Table 3.6 Habitat Modification Score (HMS) system categories for RHS
data as developed by the Environment Agency.

70

Table 3.7 Criteria and characteristics of data sets derived from the RHS 70



xviii

database.

Table 3.8 Derivation of functional habitat categories from RHS data. 73

Table 3.9 Classification of flow types according to functional habitat
‘preferences’ for three principal flow types.  Habitats are
grouped into sub-classes according to the order of dominance
of flow types within frequency distributions.

95

Table 3.10 Agglomeration schedule for Hierarchical Cluster Analysis on
flow type and functional habitat frequency matrix.

103

CHAPTER 4    A field application of mesoscale habitat concepts: the River Tern

Table 4.1 Descriptions used to classify physical biotopes observed on the
River Tern.

118

Table 4.2 Substrate categories used for field surveys. 119

Table 4.3 Functional habitat categories (organic) used for field surveys. 119

Table 4.4 Velocity statistics for a RiverCat cross section through the pool
at Napely Lodge Farm.

154

Table 4.5 Spatio-temporal distributional characteristics of organic
habitats identified on the River Tern.

161

Table 4.6 Habitat clusters identified for each data set using different
clustering variables.

180

Table 4.7 Cluster centre characteristics for clusters derived from the
combined low flow data set using velocity, depth and substrate
variables.

184

CHAPTER 5    Biotope characterisation at the microscale: turbulence and
sediment transport

Table 5.1 Summary of burst-sweep data for selected publications from a
range of hydraulic environments.

237

Table 5.2 Satisfaction of the condition for pseudo-periodicity by site,
biotope and flow stage for each velocity component.

248



xix

Table 5.3 Mean velocity measured at array 1 during sediment releases for
each physical biotope.

275

Table 5.4 Relative depth of probes associated with the longest pulse
duration, most rapid advection and maximum turbidity value at
each array for each sediment release.  Riffle is excluded since
shallow depths permitted only one probe at each array.

278

Table 5.5 Results of the Mann-Whitney tests performed on biotope
groups at each site for different variables

286

Table 5.6 Results of the Mann-Whitney tests performed on relative depth
groups at each site for different variables.

286



xx

LIST OF PLATES

CHAPTER 2    Research design and field sites Page

Table 2.1 Study reach photographs for Oakley Hall and Napely Lodge
Farm.

32

Table 2.2 Vegetation types and other organic habitats observed on the
Tern study sites.

48

CHAPTER 4    A field application of mesoscale habitat concepts: the River Tern

Table 4.1 Field deployment of the RiverCat velocity profiler in March
2005.

116

CHAPTER 5    Biotope characterisation at the microscale: turbulence and
sediment transport

Table 5.1 The physical biotopes selected for microscale field research
at Oakley Hall and Napely Lodge Farm.

208

Table 5.2 Observed surface flow patterns within the pools at each site. 221



1

CHAPTER 1 INTRODUCTION

1.1 RESEARCH AIMS AND OBJECTIVES

This research forms an extension of a NERC (Natural Environment Research Council)

LOCAR (Lowland Catchment Research) project carried out at the University of

Nottingham.  The LOCAR thematic programme was developed to promote

interdisciplinary hydro-environmental research into the input-storage-discharge cycle

and instream, riparian and wetland habitats within groundwater dominated river

systems (LOCAR, 2004).  Three instrumented ‘flagship’ catchments were identified

for field study; the Frome/Piddle (Dorset), the Pang/ Lambourn (Berkshire) and the

Tern (Shropshire).  The former two are chalk streams while the Tern catchment is

underlain by Permo-Triassic Sandstone.

Research presented in this thesis is affiliated with the NERC-LOCAR project

‘Vegetation influences on fine sediment and propagule dynamics in groundwater-fed

rivers: Implications for river management, restoration and riparian biodiversity’

(NER/T/S/2001/00930) focusing on the River Frome and River Tern.  The two sites

chosen for the field component of the research presented in this thesis are

approximately 120 m in length and are located within the upper Tern catchment in

North Shropshire, Northeast of Market Drayton and close to the village of Norton-in-

Hales.  The first study reach, ‘Oakley Hall’ (NGR SJ 704 377), is part of an

instrumented LOCAR site.  The second, ‘Napely Lodge Farm’ which is located

approximately 0.5 km upstream (NGR SJ 707 384), has been used previously for

geomorphological investigation (Emery, 2003).  Further details on field site

characteristics are presented in Section 2.5.
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The overall aim of the research is:

to enhance the scientific basis of ecohydraulics within the wider context of

river habitat assessment and rehabilitation through the characterisation of

aquatic habitat at the reach scale and the evaluation of mesoscale habitat

concepts.

This aim is addressed through five principal research objectives using a variety of

exploratory and analytical techniques incorporating both desk- and field-based study.

These principal objectives, the associated methods used, and the chapters in which the

findings are reported and discussed are outlined in Table 1.1.  A research context is

provided in the following sections by considering the changing field of river

management over recent decades, more specifically the changing paradigm from

engineering to conservation and restoration perspectives which has taken place, in

conjunction with the associated legislative drivers and experiences from river

restoration and ecohydraulics.

1.2 THE RESEARCH CONTEXT

Four broad research strands and one specific research programme form the context for

the research aims and objectives presented in the previous section and these are

outlined below.
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Research Objective Methods Chapter(s)

1. Examine the correlations between physical
biotopes and functional habitats.

Extensive analysis of a national database of surveyed reaches. Chapter 3

2. Evaluate output data derived from rapid field
survey techniques.

Critical evaluation of analysis outcomes and comparison of different
survey resolutions.

Chapter 3
Chapter 4

3. Investigate the existence and integrity of physical
biotopes at the reach scale.

Intensive approach focused at the mesoscale incorporating visual
identification of habitat units and quantitative measurement of hydraulic
parameters.

Chapter 4

4. Assess the robustness of physical biotopes with
varying flow stage.

Surveys repeated at relative ‘low’ and ‘intermediate’ flow stages
Chapter 4
Chapter 5

5. Explore higher resolution ‘within-biotope’
hydraulic characteristics.

Intensive approach focused at the microscale within selected physical
biotopes to identify variations in turbulence and sediment transport.

Chapter 5

Table 1.1 Research objectives and methods.
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1.2.1 Directions in river research and management

Historically, stream ecologists and geomorphologists have followed separate research paths,

both theoretically and empirically.  Theoretical approaches from ecology tend to be

extensive, involving the investigation of representative patterns and features of large

‘populations’, while geomorphological research is generally intensive in nature, exploring

and attempting to explain the processes operating in individual, or small numbers of cases

(Sayer, 1992; Richards, 1996).  Empirically, ecologists have often considered the physical

structure of the channel inferior to chemical properties in its affect on biota, while

geomorphologists have focused much effort into characterising the physical structure of

river channels (Rosgen, 1994), but often with little regard to how this translates into habitat

for aquatic biota.  However, a need for true integration of the two disciplines has become

increasingly important in the context of river management and conservation.

Recent decades have witnessed a decisive shift in river management, from an exploitative

focus on abstraction, waste disposal and flood defence, to a more ecologically sensitive

approach to flood mitigation and energy production (LeClerc, 2002).  Within fluvial

geomorphology, this has been characterised by a transition from an engineering framework,

viewing morphological adjustments as signs of instability which must be controlled, to the

realisation that dynamism is a natural feature of fluvial systems (Petts et al., 1995; Newson,

2002).  This has been accompanied by a growing appreciation of the influence of organic

channel and bank components on instream hydraulics (Gregory, 1992; Brooks and Brierley,

2002; Wallerstein and Thorne, 2004).

Concurrently, ecologists have acknowledged the importance of stream hydraulics in habitat

provision for invertebrates (Statzner and Higler, 1986) and fish (Aadland, 1993; Rabeni and
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Jacobson, 1993).  Coupled with the realisation that most of our watercourses have been

severely degraded by anthropogenic activity (Brookes, 1995a), the focus of river

management has developed further to involve the protection and enhancement of the

physical and ecological ‘quality’ of river systems (Adams et al., 2004), and hence requiring

engineering efforts to reconcile management goals such as bank stability and flood defence

with the maintenance of aquatic habitats (Gilvear, 1999).  This new paradigm necessitates

interdisciplinary approaches to research problems, particularly involving close collaboration

between fluvial geomorphologists and aquatic ecologists within the emerging field of

‘ecohydraulics’.  The principal objective of ecohydraulics is the restoration and protection of

aquatic ecosystems through the physical enhancement of water courses by focusing on the

abiotic factors contributing to habitats (LeClerc, 2002).

Within Europe, these developments are underpinned by two key pieces of international

environmental legislation: the EU ‘Habitats Directive’ (Council Directive 92/43/EEC, 1992)

which came into force in May 1992; and the EU Water Framework Directive (WFD)

(Directive 2000/60/EC, 2000) which was incorporated into UK law in December 2000.  The

former focuses on the maintenance or restoration of terrestrial and aquatic habitats of wild

flora and fauna, while the latter recognises the need for protection and enhancement of the

ecological quality of surface waters:

‘Water is not a commercial product like any other but, rather, a

heritage which must be protected, defended and treated as such.’

Directive 2000/60/EC (2000: 1).
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The focus of the WFD is significant since it represents the first acknowledgement within

environmental legislation of the role of biota in determining water quality (Logan and Furse,

2002), and furthermore it recognises that water quantity is secondary to quality in contrast to

the previous focus of management on maintaining ‘minimum acceptable flows’ (Petts et al.,

1995).  The WFD requires member states to protect ‘good’ ecological status water bodies,

and to enhance to ‘good’ status those which have been degraded by anthropogenic activity.

These actions demand a sound understanding of the links between habitat and biota (Logan

and Furse, 2002) and the development of a robust system for surveying and assessing the

quality of inland waters in order to identify practical definitions of ‘good ecological status’

and inventorise resources (Chave, 2002).  However, while the WFD applies to entire

drainage basins, the scale of practical applicability of measures is necessarily much smaller,

requiring a sound understanding not only of the links between ecology and geomorphology,

but between different components of the stream system.

1.2.2 Habitat hierarchies and the mesoscale

River catchments are complex ecological, hydrological and geomorphological systems.  The

ecological organisation of streams is strongly related to physical variables such as

temperature and channel hydraulics and a longitudinal gradient in physical conditions; and

in sources, forms and processing of organic matter is associated with changes in the

structure and function of ecological communities (Vannote et al., 1980).  A combination of

local spatial heterogeneity in physical variables, and temporal heterogeneity in the form of

disturbance regimes is superimposed onto the longitudinal continuum, however, creating a

‘patchy’ habitat structure (Southwood, 1977; Townsend, 1989).  Furthermore, different

components of the stream system are linked through a hierarchy of scales.  Physical and

biological processes operating at ‘microscales’ of several metres and over timescales of days
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or less have the most direct effect on the survival of individual biota.  However, the wider

‘mesoscale’ reach morphology and associated hydraulics, variable over timescales of

months and years, determines the community composition and is, in turn, controlled by the

broader, ‘macroscale’ geological and climatic context of the catchment (Frissell et al., 1986;

Biggs et al., 2005) (Figure 1.1).

Within this catchment hierarchy, the ‘mesoscale’, which focuses on variation across the

active channel width and along channel lengths that are small multiples of channel width, is

advocated as the most appropriate focus for habitat assessment and improvement

programmes (Newson and Newson, 2000).  The main reason for this is that research at the

mesoscale allows both scaling-up to the catchment and scaling-down to the microscale

(Kershner and Snider, 1992), providing a ‘fulcrum between scientific detail and universality’

(Newson and Newson, 2000: 199).  ‘Habitat’ or ‘physical habitat’ at the mesoscale refers to

the physical surroundings of instream biota as determined by the structure of the channel

and the hydrological regime (Maddock, 1999), and forms a patchy mosaic whereby different

units of habitat perform different ‘functions’ for instream biota (Harper et al., 1995).  For

instance, gravely riffles can provide spawning ground for fish (Garcia de Jalon, 1995),

emergent macrophytes provide oviposition sites and passage to the water surface for

emerging insects (Harper et al., 1995) and low shear stress marginal channel areas can

provide important refugia during spates (Lancaster and Hildrew, 1993).

Initial mesoscale approaches to habitat assessment and improvement focused on the

(re)creation of favourable hydraulic conditions for specific target species using ‘biological

response models’ (Mosely, 1982).  A key example is the ‘Physical Habitat Simulation’
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Figure 1.1 Hierarchical organisation of a stream and its habitat subsystems, adapted from Frissell et al. (1986: 202).
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model (PHABSIM), developed by the US Fish and Wildlife Service as part of the Instream

Flow Incremental Methodology (IFIM) decision-making framework for addressing instream

flow issues (Bovee et al., 1998).  PHABSIM has been applied within the UK to support

water resources decision-making (Spence and Hickley, 2000), but the technique identifies

only the weighted usable area (WUA) of habitat for specific life stages of target species, and

may therefore be undermined by community-level interactions such as competition and

predation.

More recently, researchers have favoured a more holistic habitat-level approach focused at

the community rather than individual target species.  However, geomorphologists and

ecologists have attempted to make sense of the spatial organisation of habitat within the

channel in different ways (Figure 1.2).  Geomorphological approaches are classed as ‘top-

down’, identifying units of channel morphology associated with different flow velocities,

water depths and bed material sizes (Jowett, 1993; Wadeson, 1994; Padmore, 1997a).  These

features are commonly termed ‘physical biotopes’ and refer variations on the riffle-pool

structure associated with intermediate sized streams (Church, 1992), e.g. riffle, pool, run,

glide, rapid, cascade.  In contrast, ecologists have worked from the ‘bottom-up’, identifying

‘functional’ or ‘meso-’ habitats which incorporate substrate and vegetation types associated

with distinct assemblages of invertebrates (Harper et al., 1992; Tickner et al., 2000).  Both

approaches require further empirical field-testing, but offer a potentially efficient means of

assessing habitat quality and thus a practical solution to requirements for large-scale

resource cataloguing and appraisal arising from legislative change.  The reconciliation of

these two approaches, as well as the study of finer-scale interactions between channel

hydraulics and aquatic biota, represent two significant research challenges for the field of

ecohydraulics.
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1.2.3 Habitat inventory and assessment

As a result of the recognition of the importance of mesoscale habitat quality within the

context of international legislation and the increased environmental sensitivity of river

management, a demand has arisen for cost-effective methods of assessing river

‘health’ and identifying benchmark conditions at a national scale (Maddock, 1999).

Within England and Wales, the authority responsible for the implementation of

environmental legislation is the Environment Agency (EA), which has developed a

system for cataloguing and subsequently appraising, the physical and ecological

condition of lotic ecosystems in the form of the River Habitat Survey (RHS).  RHS

represents an expansion and development of the River Corridor Survey methodology

(National Rivers Authority, 1992), and was designed to provide: (i) a rapid, robust,

and reproducible field method requiring little ‘expert’ training; (ii) a network of

reference sites across the UK; and (iii) a working classification, or ‘typology’ of UK

rivers based on information derived from the database of reference sites (Raven et al.,

1997; Fox et al., 1998).  RHS provides a standardised methodology for recording the

physical structure of a 500m long river reach, incorporating mesoscale habitat

concepts such as physical biotopes and functional habitats.

An extensive reference database of surveyed reaches across the UK has been

developed using a stratified random sampling procedure.  This information can be

applied to a range of research problems ranging from the assessment of habitat

provision for individual target species (Hastie et al., 2003) to environmental

assessments at the reach and catchment scale (Raven et al., 2000; Walker et al., 2002).

Furthermore, at the national level, the reference network of RHS sites reveals that only

28.2% of lowland sites in England and Wales may be classified as having a ‘semi-
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natural’ physical structure (Raven et al., 1998a).  The remaining 71.8% are associated

with some form of modification to the channel or surrounding corridor, highlighting a

serious requirement for the improvement of degraded reaches.

1.2.4 Enhancement, rehabilitation and restoration

The types of anthropogenic impacts responsible for the degradation of river habitats

are varied, ranging from direct ‘planned’ modifications such as dam construction and

channelisation, to ‘unplanned’ effects such as land use change and diffuse-source

pollution (Hynes, 1970; Clifford, 2001a).  The physical effects of most modifications

generally involve an overall loss of physical diversity which in turn leads to a

reduction in biological diversity (Smith et al., 1995).  Irrespective of the cause of

degradation, the management response can take several forms depending on the

severity of the modifications and the physical and ecological objectives (Boon, 1992)

(Figure 1.3).  While lower levels of habitat modification require either limitation of

catchment development or mitigation of the effects of modifications on habitats, more

heavily degraded sites will require some kind of assisted recovery (Boon, 1992).  A

distinction can be made between the enhancement of a degraded system, and the

rehabilitation or restoration of a system, which imply some return to the pre-

disturbance state (Brookes, 1995a).  Since the complete restoration of a ‘natural’ state

is generally considered impossible due to the difficulties of establishing the pre-

disturbance condition and the continued human occupation of river basins (Downs and

Thorne, 2000), a partial structural and functional return (rehabilitation) is generally

adopted as the management goal.
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Figure 1.3 The range of river management options along a spectrum of decreasing conservation value, adapted from Boon (1992: 19).
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Mesoscale habitat concepts provide an appropriate scale of rehabilitation for smaller

streams, and the installation or rehabilitation of riffle and pool features frequently

forms one of the principal management techniques (Clifford and French, 1998; Harper

et al., 1998b; Downs and Thorne, 2000; Sear and Newson, 2004).  Unfortunately, to

date many rehabilitation projects have been associated with only limited success,

owing partly to excessive emphasis on the ‘elimination of threats’ such as flooding

and erosion, rather than on ecological improvements (Zalewski, 1999) and the failure

of projects to consider processes within the wider catchment hierarchy (Sear, 1994).

Post-project monitoring and appraisal is vital to improving the success of

rehabilitation projects through the development of scientific understanding and to aid

the planning stages of future projects (Habersack and Nachtnebel, 1995; Downs and

Kondolf, 2002), but despite this it is rarely budgeted for in rehabilitation projects

(Brookes, 1995a).  Rapid surveys utilising mesoscale habitat concepts may offer a

solution by providing a robust, efficient and low-cost interdisciplinary approach to the

assessment of habitat quality throughout the long timescales associated with project

monitoring (Harper et al., 1998b).

1.2.5 The LOCAR research programme

The aims and objectives of the thesis are nested within the broader aims of the NERC

LOCAR programme introduced in Section 1.1.  The research focuses specifically on

the first scientific aim of the programme:
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‘To develop an improved understanding of hydrological,

hydrogeological, geomorphological and ecological interactions within

permeable catchment systems, and their associated aquatic habitats,

at different spatial and temporal scales and for different land uses’.

LOCAR (2004)

In particular, the research addresses the objectives of the programme to study:

•  Physical, chemical and biological processes within the valley floor

corridor.

•  In-stream, riparian and wetland habitats and their dependence on

flow regimes.

1.3 THESIS STRUCTURE

The following five Chapters address the research aims introduced in Table 1.1.  The

research objectives are met through a combination of proof of concept studies

involving theoretical evaluation and ecological validation of the biotope concept, more

specific methodological evaluations of field methods and data outputs, and by

objective field applications focusing on the River Tern, Shropshire (Figure 1.4).

Chapter 2 introduces the research design, methods and data sets for both desk-based

and field study components of the research and provides quantitative descriptions of

the field sites used.  Methodologies and analytical techniques are then discussed in

further detail as appropriate in the subsequent results chapters.
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which they are addresses.
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Chapter 3 details an attempt to improve the conceptual basis of mesoscale physical

habitat characterisation.  This is approached initially by evaluating the theoretical and

methodological issues associated with the definition and identification of physical

biotopes and appraising previous approaches to their study.  The review acknowledges

a fundamental requirement for the ecological ‘validation’ of physical biotopes, which

is then attempted in the subsequent sections using a national data set derived from the

RHS database.  Relationships between habitat features and broad-scale environmental

variables are explored, and a preliminary ecological ‘classification’ of flow biotopes

derived from frequency distributions is validated by two multivariate statistical

techniques.

Chapter 4 provides an intensive exploration of mesoscale habitat concepts assessed at

two physically contrasting field sites on the River Tern, Shropshire.  Various methods

for classifying instream habitat are explored through spatial analysis and geostatistics,

and the implications of survey resolution for analytical outcomes are evaluated.  The

reach-scale organisation of hydraulic habitat is quantitatively explored both

subjectively, by identifying hydraulic ranges of visually identified phenomena, and

objectively, by classifying channel hydraulics through multivariate analysis.

Chapter 5 is focused at a smaller spatial scale in order to examine the higher-frequency

flow properties and sediment transport mechanisms associated with different physical

biotopes.  A range of statistical techniques are applied to high frequency velocity

records in order to examine the detailed flow characteristics of biotopes spatially, with

relative depth, and with discharge.  An experimental investigation of the transfer of
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fine sediment through different biotopes provides some insight into the distributional

pathways taken by suspended sediments, organic matter, nutrients and pollutants.

Chapter 6 summarises the principal conclusions of the research in the context of the

research objectives outlined in Table 1.1, together with recommendations for further

research.
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CHAPTER 2 RESEARCH DESIGN AND FIELD SITES

2.1 CHAPTER SYNOPSIS

This chapter presents the research design and an overview of methodologies for the

desk-based and field study components of the research.  Field methods, data sets and

analytical techniques are dealt with in detail as appropriate in the subsequent chapters.

The methodological framework of the research is described with respect to both

scientific approach and the scale of investigation within the wider hierarchical

structure of stream habitat.  The morphological, sedimentological, hydrological and

vegetative characteristics of the two field study reaches are also quantitatively

described and set within the context of national reference sites and the Tern catchment.

2.2 METHODOLOGICAL FRAMEWORK

2.2.1 Scientific approach

The research design comprises both ‘positivist’ and ‘realist’ methodological

approaches (Table 2.1).  The desk-based RHS research component takes a positivist,

‘extensive’ or ‘large-N’ approach by searching for patterns within a large sample

population in order to identify representative characteristics and make generalisations

(Sayer, 1992).  Positivist approaches are common within biological and ecological

investigations and, in the case of this study, the approach permits an analysis of the

broad trends within a large comprehensive data set.  However, positivist

methodologies are often associated with limited explanation and exploration of causal

relationships.  Richards (1996) observes that large-N research is often undertaken at

the beginning of investigations, and is then followed by intensive (‘small-N’) research
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when it becomes necessary to consider the mechanisms responsible for the observed

relationships.

Intensive, ‘realist’ approaches are common in geomorphology, where form-process

interactions are considered within a particular case, or a small number of cases.

Realist approaches search for connections and relationships and attempt to produce a

causal explanation which is not necessarily representative (Sayer, 1992).  In this

thesis, the intensive component takes the form of a field study focused at two spatial

scales.  The first field element uses an objective, systematic sampling regime to

measure parameters along equally-spaced transects in order to capture mesoscale

variation in physical habitat structure along the entire river reach.  The second element

uses a purposive sampling design whereby more detailed measurements are made

within subjectively selected sampling units.

The empirical research presented in this chapter was designed and conducted within

the framework of a nested hierarchy of stream habitat.  Such a system acknowledges

the physical and ecological linkages between different spatial and temporal scales

nested within a ‘catchment hierarchy’ (Townsend, 1996).  Three theoretical scales are

often employed both in geomorphological studies (Hey, 1987; Lane et al., 1998) and

ecological research (Bayley and Li, 1996) which may be associated with broad spatial

and temporal dimensions (Figure 2.1).  At the ‘microscale’, organisms are influenced

by flow hydraulics and sediment transport processes over timescales of seconds or

minutes and over spatial scales of millimetres to centimetres (Carling, 1995), relating
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Positivism Realism

Epistemology

Empirical
Concrete
Extensive research
Large-N

Theoretical
Abstract
Intensive research
Small-N

Subject Form and product Process and mechanism

Relations Formal relations of similarity Substantial relations of connection

Type of account
produced

Descriptive representative
generalisations

Causal explanation of the production
of certain objects or events.

Limitations
Limited explanatory power.
May not be generalisable to other
populations at different times and places.

Patterns and relations are unlikely to
be representative.

Table 2.1 Scientific methodological approaches employed in the research.
Source: Sayer (1992) and Richards (1996)
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to habitat units such as individual boulders or accumulations of organic matter.  The

‘mesoscale’ refers to the larger-scale and more temporally stable morphological

structures such as glides, pools and riffles (Bisson et al., 1981) where variables such as

velocity, depth, position in channel and turbulence are of greatest significance in

habitat provision (Kershner and Snider, 1992).  Both meso- and microscale habitats

are nested within the morphological context of a reach or stream segment

(‘macroscale’), which is determined by broader-scale factors such as channel gradient

and sinuosity.  The environmental context of stream segments is in turn determined by

the drainage basin or ‘ecoregion’ characteristics at ‘mega-scales’ of thousands of

metres and over timescales of centuries and longer (Hey, 1987; Bayley and Li, 1996).

This research is focused at the meso- and microscales of investigation within a single

river segment, although the desk-based component incorporates a macroscale aspect

by considering relationships between macroscale landscape variables and mesoscale

habitat features within a national data set.

2.2.2 Methods and data sets

Table 2.2 briefly outlines the methods, data sets and analytical approaches taken.

Further detail is provided in the respective analytical chapters.  The desk-based study

incorporates a review and re-evaluation of published works together with an analysis

of a comprehensive national data set derived from the RHS database V. 3.34 (the most

up-to-date version of the database available at the time of study).  The database

comprises 15, 948 UK river reaches (surveyed up until the end of 2002), cataloguing

both map-derived ‘macroscale’ data and ‘mesoscale’ surveyed field data (Raven et al.,

1997).  Relationships between mesoscale habitat features are assessed in the context of
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distributions
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•  Topographic surveys of each study reach

•  Reach-scale hydraulic surveys incorporating visual
assessment of biotopes and quantification of stream
hydraulics (velocity, depth, substrate), fine sediment
accumulations and vegetation cover within a
rectangular grid.

•  Reach-scale topographic surfaces

•  Hydrological (stage and discharge) data

•  Habitat features and channel hydraulics for ‘low’
(summer) and ‘intermediate’ (spring) discharges.

•  GIS visualisations

•  Data exploration

•  Geostatistics

•  Multivariate analysis
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e •  Collection of high frequency velocity time series at a

finer spatial resolution within selected physical
biotopes

•  Turbidity monitoring of simulated suspended
sediment pulses within selected physical biotopes

•  Velocity time series at varying relative depths for
‘low’ and ‘intermediate’ discharges for each
physical biotope.

•  Turbidity time series for different depths through
each physical biotope for each simulated
sediment pulse.

•  Exploratory statistics

•  ‘Event’ analysis

•  Time series analysis

•  Hydrograph-style pulse
characterisation

Table 2.2 Methods, data sets and techniques.
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the broader environmental characteristics of sites using exploratory data analysis and

multivariate statistical techniques.  Detailed descriptions of the data sets and analytical

techniques used are provided in Chapter 3 (Sections 3.4 and 3.6 respectively)

The field component of the research is subdivided into detailed mesoscale and

microscale investigations of habitat organisation at the sub-reach scale within two

physically contrasting reaches of the River Tern, Shropshire.  Details of the field sites

are provided in Section 2.3.  Mesoscale habitat surveys were conducted under relative

‘low flow’ (July 2005) and ‘intermediate flow’ (March 2005) conditions (see Section

2.3.5 for discharges and exceedances).  Detailed topographic surveys conducted

during January 2005 provide a morphological context for each field site.

Hydraulic parameters were measured within a structured rectangular grid throughout a

120 m study reach at each field site and compared with visual assessments of substrate

types, vegetation cover, surface flow characteristics and physical biotopes.  Geodata

for each velocity/ depth sample point were available in the form of Easting and

Northing values which were calculated post-survey using co-ordinates of cross section

markers and measurements taken during each survey.  This allowed a combination of

geostatistical and multivariate analytical techniques to be applied to the data sets in

order to explore the organisation of mesoscale physical habitat.  Full details on

sampling design, field survey methods and equipment, data sets and analytical

techniques are provided in Chapter 4.

For the microscale field component, high frequency streamwise and vertical velocity

components were sampled within selected physical biotopes under low and
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intermediate flow conditions in order to explore the detailed flow characteristics of

biotopes, which are often overlooked in favour of simpler mean parameters.  A

combination of turbulent event analysis and time series analyses were employed in

order to quantitatively examine the turbulent properties of different physical biotopes.

Full descriptions of velocity data collection are provided in Chapter 5, Section 5.3 and

analytical techniques are discussed as appropriate within Section 5.4.  An

experimental microscale component involved the monitoring of turbidity levels within

different physical biotopes for the duration of artificial sediment ‘pulses’ created

upstream.  The characteristics of detected pulses were explored in an attempt to gain

greater insight into the localised transport pathways of sediments, nutrients and

pollutants within different physical biotopes.  Full details of this novel field

methodology and the analytical techniques employed to interpret the observed patterns

are provided in Chapter 5, Section 5.5.

2.3 FIELD SITE CHARACTERISTICS

2.3.1 Geological context

The two study reaches used for the field component of the research are each 120 m in

length and are located approximately 0.5 km apart within the upper Tern catchment,

north Shropshire.  The Tern, a tributary of the River Severn, flows south across the

north Shropshire Plain to its confluence with the Severn at Shrewsbury.  The upper

Tern catchment is underlain by geologically ‘young’ (less than 300 million years old)

Permian and Triassic continental sandstone systems, often collectively known as ‘The

New Red Sandstones’ (Toghill, 1990).  These sandstones were laid down during the

Permo-Triassic period under desert conditions whilst Great Britain was part of the

Pangea continent (Owen, 1976) and the resultant soft, permeable characteristics of the
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sandstone geology have shaped both catchment topography and reach-scale channel

structure.

Of the 15, 948 sites within the RHS database V 3.34, 12% are characterised by New

Red Sandstone geology, and these are generally restricted to the Midlands and

northern England, and to a lesser extent south west England and Wales (Figure 2.2a).

Of these, 25% are classed as either pristine or semi-natural according to the EA’s

Human Modification Score (see Chapter 3, Section 3.4.1) and a further 20% are

predominantly unmodified.  This leaves 55% of New Red Sandstone Rivers showing

obvious signs of human modification to the river channel and surrounding corridor

(Figure 2.2b).  Of the modified sites, a relatively small percentage are classed as

‘severely modified’ but 30% of the total New Red Sandstone reaches are classified as

‘significantly modified’, suggesting a strong need for rehabilitation.

These relatively high levels of modification reflect the location of sites: the majority of

New Red Sandstone reaches are associated with ‘lowland’ locations according to EA’s

statistical classification of landscape characteristics (Figure 2.2c, see Chapter 3,

Section 3.4.1 for further details).  The landscape characteristics of the ten reaches of

the River Tern included in the database appear relatively representative of the wider

New Red Sandstone data set, falling within the central portion of the New Red

Sandstone cluster (Figure 2.2c).  All surveyed reaches on the Tern are classified as

‘lowland’ by the EA’s statistical classification, but most of these are associated with

relatively high energy conditions reflecting the close proximity of sites to the river

source.
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Figure 2.2 (a) Geographical distribution of New Red Sandstone RHS sites, (b) Proportions of New Red Sandstone sites associated with varying
levels of human modification and (c) landscape context of all sites within the RHS database compared to New Red Sandstone sites and sites on
the River Tern.  Source: RHS database V. 3.34 (see Chapter 3, Section 3.4.1 for further details of the EA’s PCA-based river typology).
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2.3.2 Catchment topography and land use

Land use data were available from the Centre for Ecology and Hydrology (CEH) in

the form of the Land Cover Map (LCM) 2000, a thematic classification of spectral

data recorded by satellite images.  This provides a classification of 25 m land parcels

into one of 25 subclasses following the ITE (now CEH) Landsat-derived cover type

descriptions.  The final subclasses represent an aggregation of many subclasses which

have been short-listed according to a selection of ‘target’ classes considered

ecologically meaningful.  A digital terrain model (DTM) with a 50 m grid interval and

0.1 m vertical resolution developed for hydrological purposes (Morris and Flavin,

1990) was also obtained from CEH for the Tern catchment, providing a wider

topographic context for the study reaches.

The land-use of the catchment is predominantly agricultural and mixed grassland, and

urban areas are sparse (Figure 2.3a).  Despite the lack of urban development, the

catchment has suffered degradation and reduced biodiversity of river corridors as a

result of agricultural ‘improvements’ (LOCAR/ JIF, 2000).  The study reaches are

characterised by a combination of improved grassland, arable cereals and horticulture

but a thin strip of broad-leaved woodland is observed to follow the main channel

intermittently downstream, suggesting some buffering of the channel to surrounding

agricultural impacts.  A DTM for the Tern catchment (Figure 2.3b) illustrates the

subdued nature of the topography resulting from the soft underlying geology.  The two

study sites within the upper Tern catchment are located within the headwater reaches

and are surrounded by some of the highest elevations of the catchment, but these are

still relatively low (500 to 1500 m), producing a ‘rolling hills’ topography.
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Figure 2.3 (a) Land use characteristics for the Tern catchment derived from the Land Cover Map (LCM) 2000 obtained from the Centre for
Ecology and Hydrology (CEH) and (b) Digital Terrain Model (DTM) for the Tern catchment (created by the Institute of Hydrology)
Insets (black rectangles) highlight the location of the study sites.
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2.3.3 Reach morphology

Topographic surveys were undertaken at each field site during January 2005 using a

Leica Geosystems TCR 307 electronic total station.  Surveys were designed to capture

channel bed topography and bank foot, mid bank, and bank top elevations and

floodplain topography.  Channel survey points were arranged according to a paced

grid of approximately 2 m longitudinally by 1 m cross sectionally in order to

complement mesoscale hydraulic surveys.  Resolutions were reduced to between 2 m

and 5 m spacing on the flood plain.

Visualisation of the resulting topographic data using Triangulated Irregular Networks

(TINs) created in ArcGIS 8.3 demonstrates the variation in both planform and

morphology between sites (Figure 2.4).  Reach photographs in Plate 2.1 provide

further detail.  The Oakley Hall reach is relatively straight and is characterised

predominantly by a pool-glide morphological sequence.  Approximately 50 m

downstream from the end of the study reach, fallen riparian trees have created a large

debris dam which ponds-back the flow, reducing water velocities and resulting in

deposition of fine sediments upstream.  Deposition of fines was particularly apparent

within a riffle feature at the downstream end of the study reach, closest to the dam,

where topographic and sedimentological characteristics of the riffle are subdued to the

extent that the feature is more representative of a glide (see Chapter 4, Section 2 for

field definitions of morphological features).  Much of the reach is characterised by

glide and run features punctuated by two small scour pools associated with lateral

scour around riparian tree roots.  Smaller localised bed scour was noted between the

two main pools in association with flow deflection around a smaller root protrusion

and beneath a fallen tree.
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(a) (b) (c)

(d) (e) (f)

Plate 2.1 Study reach photographs for Oakley Hall (a to c) and Napely Lodge Farm (d to f) taken on 03/05/05 under discharge conditions of
0.27 m3s-1 at Oakley Hall and 0.26 m3s-1 at Napely Lodge Farm.
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The reach at Napely Lodge Farm is more sinuous and is characterised by a more

pronounced riffle-pool morphology.  The channel morphology comprises one obvious

riffle feature characterised by coarse bed material and significant disturbance to the

water surface, plus several more subtle gravely features.  Two large scour pools are

associated with prominent backwater zones, and glides occupy some transitional areas

between pools and riffles.  A steeper gradient creates a coarser substrate across much

of the channel compared to Oakley Hall, resulting in some gravel armouring of the

sandy substrate and thus a more stable bed as noted previously by Emery (2003).

The small particle size of sand permits sediment transport wherever flow velocities

equal or exceed 0.3 ms-1, and thus sediment transport is virtually constant in sand-bed

reaches (Simons and Simons, 1987).  Consequently, although higher flow conditions

are responsible for channel-moulding sediment transport events, near-constant

saltation and low intensity suspension result in continual modification of sand

bedforms (LaPoint, 1996).  Sand bedforms are more prominent at Oakley Hall where

the longer glide sections are characterised by small sand ridges extending laterally

across the channel, creating an additional roughness element intermediate between

grain roughness and larger-scale form roughness associated with riffle-pool bedforms.

Further detail on particle size characteristics is provided in the following section.

2.3.4 Sedimentology

Gravel, sand and marginal silts were sampled at each site.  Where visual observations

revealed spatial variations in size distributions of gravel categories, several samples

were taken.  For instance, both pebble-gravels and granular gravels were sampled

within the riffle, and an additional gravel sample was taken from glides.  Samples (2-3
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kg) were collected in bags held downstream of the sample area in order to ensure that

the finest fraction was not lost downstream.  Subsequent laboratory analysis of particle

size distributions for gravel, sand and silt samples involved filtering off excess water,

oven-drying, and dry-sieving down to a sieve size of 4Ø (0.06 mm).  Sub-samples of

the < 1 mm fraction were treated with hydrogen peroxide to remove organic matter

and analysed in a Beckman LS Particle Size Analyzer.  The coarser cobble fraction

was sampled according to a grid sampling design based on Wolman’s (1954) method.

A sample grid of approximately 0.5 m x 0.5 m squares was paced across the channel,

producing a sample spacing of several grain diameters in order to avoid serial

correlation of the sample as a result of the tendency for similarly sized clasts to

imbricate against one another (Church et al., 1987).  The longest (a), intermediate (b)

and shortest (c) axes were measured and particles returned to the riverbed.

Particle size distributions may be described by percentiles derived from cumulative

mass curves (Bridge, 2003).  These were generated by the Particle Size Analyzer for

silt samples, and derived from cumulative mass curves for the coarser samples (Figure

2.5).  Table 2.3 presents the D50 and D90 for each substrate category, denoting the

grain diameter associated with the 50th and 90th percentiles respectively.  All gravel

samples show bi-modal distributions, suggesting that a ‘framework’ of gravel-sized

clasts (>2 mm) is supported by a finer ‘matrix’ of sand particles 0.125 mm to 2 mm in

diameter (Church et al., 1987).  The relative size of particles in each substrate category

varies between sites.  For instance, silts and cobbles are generally finer at Napely

Lodge Farm, while the sand fraction and riffle-gravel is coarser.  This suggests some

variation in ‘absolute’ particle size characteristics of the same biotopes even within the

same river segment, although the variation may be partly attributed to variations in the
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spatial organisation of substrate types at each site.  Most significantly, cobbles were

associated with the riffle at Napely Lodge Farm but the run biotope at Oakley Hall.

While cobble ‘shape’ is generally disc-like for both samples (Figure 2.6a and b),

frequency distributions for particle sphericity emphasise the different hydraulic

environments associated with cobbles at each site.  Oakley Hall reveals a negatively

skewed distribution compared to the positive skew at Napely Lodge Farm which

suggests higher levels of sphericity.  Particle sphericity is strongly related to the mode

of sediment transport (Richards, 1982), suggesting some variations in transport

mechanisms between the higher energy riffle at Napely Lodge farm compared to the

run at Oakley Hall.  However, this may also reflect the overall higher energy

conditions at the former created by a steeper channel gradient.

2.3.5 Hydrology

Hydrological data from a gauging station at Ternhill, located approximately 13 km

downstream of the study sites, and the records from pressure transducers installed on

the Oakley Hall reach provide both longer- and shorter term hydrological contexts for

the field surveys.  Figure 2.7a presents the mean daily flow record at Ternhill for a 33-

year period (1972 to 2005), which suggests several scales of variation.  The mean

daily discharge at Ternhill does not fall below 0.2 m3s-1 for the period and reaches a

maximum of over 14 m3s-1 during one of the flood events.  The annual fluctuation

around the median is associated with higher flows in the winter and spring and lower

flows in the summer and autumn periods.  Within the higher-flow period for each year,

several short-duration high magnitude events occur which often reach discharges

greater than three times the median for the entire period.  Extremely high magnitude
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Figure 2.5 Grain size distributions for sieved sediment samples from Oakley Hall
(OH) and Napely Lodge Farm (NLF).

Site Sample D50 (mm) D90  (mm)

Silt 0.18 0.29

Sand 0.22 0.34

Gravel (glide) 7.00 16.00

Gravel (riffle) 2.00 9.10

Pebble-gravel 13.00 16.00

O
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y 

H
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Cobble 54.00 80.00

Silt 0.06 0.18

Sand 0.31 0.70

Gravel (glide) 6.00 12.50

Gravel (riffle) 6.20 14.50
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Cobble 49.00 80.00

Table 2.3 Particle size characteristics for Oakley Hall and Napely Lodge Farm.
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Figure 2.6 (a and b) Particle shape for cobble samples as calculated from particle axis
ratios according to the Zingg classification (Richards, 1982) and (c and d) particle
sphericity for cobble samples according to the Krumbein index of sphericity
(Richards, 1982).
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events associated with discharges over ten times the median value are observed to

occur seven times within the record, generally during the winter period, with an

average interval of approximately 5 years.  The more frequent disturbances suggest

modifications (through scour and redistribution of sediment) to the physical habitat

structure of the channel several times per year which are likely to result in a

reorganisation of the biotic community (Milner, 1996; Biggs et al., 2005).

Three Druck PDCR 1830 pressure transducers (PTs) were installed at Oakley Hall in

2003 as part of the NERC-LOCAR project NER/T/S/2001/00930 and were maintained

for the duration of the field study period in order to provide a hydrological context for

field surveys.  The pressure transducers provide a measure of river stage by measuring

the pressure of water above a sensor positioned within a stilling well in the channel.

Pressure transducers were connected to Campbell Scientific CR10X dataloggers

programmed to sample at an interval of 30 s and store a 15-minute average.  Pressure

transducers were located at the upstream end of the study reach, and approximately 60

m and 150 m downstream, the final pressure transducer being located approximately

30 m beyond the downstream end of the study reach.

Output data from the pressure transducers is in the form of millivolts which was

converted to a measure of water elevation (above an arbitrary datum) using a linear

regression of millivolts readings against measured stage heights (Figure 2.7b).  Mean

daily discharge was then calculated using a linear regression of measured discharges

obtained at PT2 (using a SonTek Handheld FlowTracker, see Chapter 4, Section 4.2.2)

against pressure transducer stage readings for PT2 (Figure 2.7c).  Stage, discharge and
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Figure 2.7 (a) Mean daily flow at Ternhill for the period 1972-2005 compared to multiples of the median discharge, (b and c) estimation of
discharge from pressure transducer stage readings (above an arbitrary datum), (d) mean daily flow at Oakley Hall for the period July 2003-
December 2005 compared to multiples of the median discharge and (e) flow exceedance curves for the Tern at Ternhill compared to Oakley Hall
for the period 2003-2005.
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Site Survey Date Discharge (m3s-1) Stage (m) Exceedance (2003-2005 period)

River Habitat Survey 28th May 2004 0.17

Topographic survey 24th/ 25th January 2005

RiverSurveyor velocity survey 27th/ 28th April 2005 0.27/ 0.28 98.21/ 98.20 39%

19th/ 20th July 2005 0.17/ 0.17 98.07/ 98.07 79%/ 96%
Mesoscale habitat survey

7th/ 8th March 2005 0.21/ 0.22 98.30/ 98.14 63%/ 60%

28th August 2004

28th January 2005

20th April 2005
Fine sediment pin survey

4th July 2005

20th July 2005 0.17 98.07 96%
Microscale velocity surveys

8th March 2005 0.28 98.14 39%

2nd June 2005 0.19 98.11 68%

O
ak
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y 

H
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l

Sediment transfer experiments
25th July 2005 0.23 98.13 54%

River Habitat Survey 25th July 2004 0.17

Topographic survey 26th/ 27th January 2005

RiverSurveyor velocity survey 25th/ 26th April 2005 0.23/ 0.24 98.25/ 98.25 55%/ 47%

21st/ 22nd July 2005 0.16/ 0.15 98.19/ 98.20 90%/ 91%
Mesoscale habitat survey

9th/ 10th March 2005 0.25/ 0.22 98.25/ 98.25 43%/ 59%

28th August 2004

28th January 2005

21st April 2005
Fine sediment pin survey

4th July 2005

22nd July 2005 0.15 98.20 91%
Microscale velocity surveys

10th March 2005 0.22 98.25 57%
3rd June 2005 0.18 78%

N
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y 
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m

Sediment transfer experiments
26th July 2005 0.24 98.21 56%

Table 2.4 Flow stage (above an arbitrary datum), discharge and exceedance statistics for each field survey.
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exceedance statistics derived from these records provide the hydrological context for

each field survey (Table 2.4).

Figure 2.7d presents the mean daily flow record for PT2.  Discharges do not exceed

1.0 m3s-1 for the duration of the instrumentation period (2003-2005), but exhibit a

similar annual cycle associated with higher flows in the winter and spring periods as

observed for the Ternhill record.  The highest floods for the period, however, do not

exceed five times the median value.  Flow exceedance curves for Ternhill and Oakley

Hall (Figure 2.7e) for the same period suggest a much steeper curve for the Oakley

Hall site compared to the Ternhill station further downstream.  This suggests a

‘flashier’ regime for the study sites (Bridge, 2003), reflecting higher connectivity

between hillslopes, floodplain and channel in the upper catchment compared to further

down the valley where the effects of anthropogenic activity result in detachment of the

stream from its surrounding floodplain.  The study sites are located within the

headwaters of the Tern catchment, where extensive un-drained valley-bottom wetlands

are likely to increase the responsiveness of the channel to flood events, compared to

further downstream where the river is channelised and the floodplain more extensively

drained.  This creates a different hydrological disturbance regime for the study sites

compared to lower reaches, which may have a significant influence on biodiversity

since the level and intensity of disturbance is important in controlling the ecological

balance between colonisation and competition (Townsend et al., 1997).

Hydrological data for the principal study season (January to December 2005) are

presented in Figure 2.8.  The period includes a relatively dry winter, but a pronounced

summer low flow period is apparent between May and October (Figure 2.8a).  Winter,
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Figure 2.8 (a) Flow stage (above an arbitrary datum) at Oakley Hall for the principal
study period (January-December 2005), (b) stage difference between pressure
transducers, and (c and d) stage-discharge curves for both sites for the same period.
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spring and autumn periods are characterised by both higher average flows and greater

incidence of flood events, creating a seasonal variation in the frequency of

hydrological disturbance.  During the low flow period, the difference in stage between

PT1 and PT3 and PT2 and PT3 (Figure 2.8b) increases by approximately 0.05 m

suggesting a homogenisation of water surface slope during periods of increased

discharge when the effects of bedform controls such as riffles and pools are drowned

out (Emery et al., 2003).  Additionally, the convergence and divergence of water

surface elevations throughout the reach may reflect seasonal variations in flow

resistance associated with the growth of instream vegetation (Gurnell et al., 2006).

Relationships between stage and discharge reflect the differences in channel width and

vegetation cover between the two study sites (Figure 2.8 c and d).  More data are

available for Oakley Hall due to the longer monitoring period associated with LOCAR

installations.  However, the data suggest a steeper stage-discharge curve for Oakley

Hall, reflecting the narrower channel which creates greater increases in stage with

discharge compared to the wider channel at Napely Lodge Farm.  This may be

amplified by the ponding of flow at the downstream end of the reach and the greater

vegetation cover observed at Oakley Hall which creates increases in stage by

increasing channel resistance and reducing flow velocities (Gaudet, 1974).

2.3.6 Habitat features

In order to provide an overview of the principal habitat features present, a rapid

reconnaissance of the physical structure of each site was carried out in the form of

River Habitat Surveys (RHS).  The RHS field methodology records channel substrate,

habitat features, vegetation types, bank features and modifications at ten equally
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spaced ‘spot-checks’ throughout a 500 m survey reach.  This information is then

supplemented by a ‘sweep-up’ checklist in order to account for infrequent features not

occurring at spot-checks, and cross-section measurements of channel dimensions at

one representative location (Raven et al., 1997; Fox et al., 1998).  Surveys were

carried out under low flow conditions at Oakley Hall and Napely Lodge Farm in May

and July 2004 respectively.  RHS survey reaches were determined by access: at

Oakley Hall the RHS site incorporated the study reach and extended an additional 380

m downstream, while at Napely Lodge Farm the survey reach extended 360 m

upstream and 20 m downstream of the principal study section.

A summary of the principal habitat features at each site is provided in Table 2.5.

Observations of land-use within the river corridor are consistent with the coarser

resolution data derived from satellite images (see inset in Figure 2.3a): both sites are

predominantly characterised by a mixture of improved and unimproved grassland,

woodland and wetland.  A higher proportion of pools compared to riffles is noted at

the ponded Oakley Hall reach, while Napely Lodge Farm is characterised by a similar

number of pools and riffles suggesting a more organised pseudo-cyclic bed

topography (Richards, 1976).  Both sites are characterised by several habitat features

of special interest (e.g. wet woodland, reed banks), however, and the high connectivity

between the channel and surrounding riparian corridor creates a range of habitats

associated with riparian tree growth (woody debris, tree roots, overhanging boughs).

RHS data may also be used to provide an indication of both habitat ‘quality’ and the

level of human modification.  Habitat Quality Assessment (HQA) scores are based on

features considered to be of importance to wildlife and allow comparison between
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Feature Oakley Hall Napely Lodge Farm

No. riffles 1 6

No. pools 5 5

No. unvegetated point bars 0 0

No. vegetated point bars 0 3

No. weirs 1 0

No. bridges 1 1

Bankfull width (m) 5.6 4.5

Water width (m) 4.05 4.2

Water depth (m) 0.28 0.12

Features of special interest
Debris dam, leafy debris, fringing reed bank, quaking bank,

marsh, flush
Debris dam, leafy debris, fringing reed bank, wet woodland,

marsh

Nuisance species Giant hogweed, Himalayan balsam Giant hogweed, Himalayan balsam

D
im

en
si

o
n

s 
an

d
 in

flu
en

ce
s

Major impacts Litter, sewage Litter, sewage

Land-use (left bank)
Improved/ semi-improved grassland/ pasture (extensive),

broadleaf/ mixed woodland, wetland
Improved/ semi-improved grassland/ pasture (extensive),

broadleaf/ mixed woodland, wetland

Land-use (right bank)
Rough/ unimproved grassland (extensive), Broadleaf/ mixed

woodland, wetland
Tall herb/ rank vegetation (extensive)
Broadleaf/ mixed woodland, wetland

Extent of trees Occasional clumps Semi-continuous/ occasional clumpsS
w

ee
p

-u
p

Associated features
Shading of channel, overhanging boughs, exposed bankside
roots, underwater tree roots, fallen trees, large woody debris

Shading of channel, overhanging boughs, exposed bankside
roots, underwater tree roots, fallen trees, large woody debris

HMS 4 1

HMS class ‘Predominantly unmodified’ ‘Semi-natural’

HQA 60 65

Table 2.5 RHS data for Oakley Hall and Napely Lodge Farm obtained by field surveys conducted in May and July 2004.
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rivers of similar type, while Human Modification Scores (HMS) are based on the

extent of structural alterations to the channel such as reinforcement and resectioning,

providing a measure of artificial modification (Raven et al., 1998b).  Napely Lodge

Farm is associated with lower levels of modification and a higher HQA score,

suggesting that the site may be considered ‘semi-natural’, while Oakley Hall is

associated with a lower HQA score and a ‘predominantly unmodified’ status which

reflects a higher incidence of modifications including bank reinforcements and a small

weir.

Both sites are associated with a relatively high proportion of fine sediments (sand and

silt) resulting from the underlying soft geology.  The high inputs of sand and silt and

lower slopes associated with sandstone geologies create enhanced levels of silting in

sandstone streams, which often extends further upstream compared with rivers cut into

more resistant rocks (Haslam, 1978).  However, RHS spot-check data suggests that

Oakley Hall is associated with a comparatively higher proportion of fine sediments

and slower flow conditions than Napely Lodge Farm (Figure 2.9a and b) which again

emphasises the ponded nature of the reach.

Due to the high mobility of fine substrates, vegetation types with general preferences

for stable substrates (e.g. mosses) and low turbidity levels (e.g. submerged

macrophytes) are uncommon in sandy reaches.  Instead, marginal emergent

herbaceous vegetation such as Myosotis scorpiodes and Veronica beccabunga may

thrive in silted margins and extend across the bed where low current velocities allow

the encroachment of silts toward central channel areas (Haslam, 1978).  While

emergent (e.g. Sparganium erectum), amphibious (e.g. Agrostis stolonifera) and
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Plate 2.2 Vegetation types and other organic habitats observed on the Tern study sites.

(a) Myriophyllum alterniflorum (b) Sparganium erectum

(c) Phallaris arundinacea

(d) Tree roots

(e) Trailing vegetation

(f) Small woody debris
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submerged (e.g. Myriophyllum alterniflorum) vegetation types (Plate 2.2) occur

frequently at Napely Lodge Farm, they rarely account for over 33% of an RHS

transect (Figure 2.9c and d).  Extensive vegetation cover is generally restricted to

emergent and amphibious species at Oakley Hall, although there is some extensive

cover of submerged fine-leaved macrophytes at Napely Lodge Farm outside of the

main study section.  However, while vegetative habitat units are relatively sparse at

both sites, other types of organic habitat were identified in abundance, particularly

those associated with riparian tree growth such as small woody debris, leaf litter and

protruding tree roots (Plate 2.2).  The distributions of these habitats are explored

further in Chapter 4.
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CHAPTER 3 BIOTOPES AND HABITATS: TOWARDS AN
IMPROVED CONCEPTUAL BASE

3.1 CHAPTER SYNOPSIS

This chapter details an attempt to improve the conceptual basis of mesoscale physical

habitat characterisation as summarised in Clifford et al.(2006) and Harvey et al. (in

Press).  The first part of the chapter comprises a review and evaluation of the physical

biotope concept based on the published literature, and demonstrates a requirement for

‘ecological validation’ of hydraulically or morphologically-defined biotopes.  The

second part of the chapter attempts to address this requirement by exploring

correlations between surface flow types (used to indicate the presence of physical

biotopes) and biologically distinct minerogenic and vegetative functional habitats,

within a comprehensive national data set.  An ecological ‘classification’ of flow types

is derived from frequency distributions and statistically validated by two multivariate

techniques, suggesting a hierarchical organisation of physical and functional habitat at

the reach scale.

3.2  PHYSICAL BIOTOPES: IDENTIFICATION AND CHARACTERISA TION

3.2.1 The biotope approach

Chapter 1 introduced some mesoscale habitat concepts and identified a transition

within empirical ecohydraulics from species-level habitat assessments, to a more

holistic approach focusing on the physical requirements of instream communities

known as the ‘biotope’ approach.  Such an approach is attractive to practical river

applications for several reasons.  First, the concepts are conducive to rapid visual

surveys, providing a cost-effective solution to legislative requirements for habitat
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assessment and improvement, and have already been incorporated into the EA’s River

Habitat Survey (RHS) methodology (Raven et al., 1997).  Second, the approach offers

a means of simplifying the complex interactions between flow, substrate and channel

morphology at scales appropriate to management and restoration.  Third,

reconciliation of ‘physical biotopes’ with the ecological concepts of ‘functional’ or

‘meso’- habitats offers a route to substantive interdisciplinarity within the field of

ecohydraulics which has so far been undermined by a lack of standardised terminology

and true integration of geomorphological and ecological concepts (Janauer, 2000).

However, some methodological and theoretical issues require clarification for the full

potential of the biotope concept to be realised.  The following sections explore these

issues in the context of previous studies in an attempt to improve the conceptual base

of the physical biotope.

3.2.2 Theoretical and methodological issues

The terms ‘biotope’ and ‘physical biotope’ have been employed in ecohydraulics

literature as a convenient means of describing common morphological habitat

structures (e.g. riffle, run, pool, glide) at the sub-reach scale.  From an ecological

perspective, however, biotope definitions concentrate on biological organisation, for

example:

‘The species has a habitat but it does not have a biotope.  The

biotope harbours instead, a biotic community…The concept of the

biotope belongs to the realm of synecology.  It is a convenient term

for the habitat of a biotic community’ (Udvardy, 1959: 726-727).
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Thus, in ecological terms the habitat and biotope are distinguished according to

ecological structure rather than physical properties.  Consequently, in order to have

ecological value, a biotope must be biologically distinct (Udvardy, 1959; Newson et

al., 1998a).  However, the term ‘habitat’ or ‘physical habitat’ is frequently adopted in

the literature in place of the ecological ‘biotope’ since it is readily understood by river

managers (Harper et al., 1998a).  Geomorphological definitions promote the biotope

as the ‘basic unit’ of instream physical habitat (Padmore, 1997c) representing differing

combinations of hydraulic variables (generally velocity, depth and substrate) which

constitute the abiotic environment of communities of organisms (Wadeson and

Rowntree, 1994).  How such broad definitions translate into practicable units of

instream habitat is, however, unclear.

Field protocols for the identification of physical biotopes are based on the character of

the water surface across channel cross sections.  These assume ‘characteristic’

associations between physical biotopes and low flow stage ‘surface flow types’ (Table

3.1).  From a geomorphological perspective, however, there are several concerns with

these connections.  First, although recent research shows a more complex picture

involving flow intensification around obstacles (Clifford et al., 2002b), increasing

discharge is generally accompanied by an overall homogenisation of flow conditions

across bedform controls, with larger areas of the channel characterised by similar, and

higher, water depths and velocities (Clifford et al., 2006).  Variation in surface flow

conditions is diminished, resulting in potential misidentification of the more

temporally stable underlying morphological features, depending on the hydrological

context of the survey.  At high discharges, for instance, both deadwater zones and
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Surface flow type Description Code Associated physical biotope

No perceptible flow No net downstream flow – a floating object placed in the water remains stationary NP
Pool,
Deadwater

Smooth boundary turbulent Perceptible downstream movement is smooth (no eddies). SM Glide

Upwelling
Heaving water as upwellings break the surface – secondary flow evident as vertical
and horizontal eddies.

UP Boil

Rippled flow No waves, but general flow direction is downstream with a disturbed rippled surface. RP Run

Unbroken standing waves Upstream facing wavelets which are not broken. UW Riffle

Broken standing waves White-water tumbling must be present. BW
Rapid,
Cascade

Chaotic flow A mixture of at least three rough flow types. CF Any of the below physical biotopes

Chute flow Low curving fall in contact with substrate. CH Cascade (step)

Free fall Clearly separates from the back wall of vertical features FF Waterfall

Table 3.1 Surface flow types and their low flow stage associations with physical biotopes.
Source: Environment Agency (2003) Newson et al. (1998a)
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riffles may exhibit the same surface flow behaviour as a ‘deep run’ (Newson et al.,

1998a).  It is thus possible to distinguish between surface flow types and physical

biotopes on the basis of stage-dependency, since flow types are stage-dependent and

hence spatio-temporally unstable, whereas morphological features can be considered

relatively stable at time scales up to around 10 years (Schumm and Lichty, 1965).

Second, surface flow conditions and underlying morphologies may show high cross

sectional variation.  Consequently, the transect-level surveys often employed in

biotope assessments can overlook ‘secondary’ biotopes and marginal features of

ecological importance (Padmore, 1998).  Third, certain surface flow types are

‘characteristic’ of more than one morphological feature.  No perceptible flow, for

example, may be associated with both pools and deadwaters; broken standing waves

with both rapids and cascades; and chaotic flow with a range of physical biotopes

(Table 3.1).  This was hydraulically quantified by Padmore (1997a) who identified

‘shallow’ and ‘deep’ areas of both rippled flow and no perceptible flow, suggesting

that very different habitats may be represented by the same surface flow conditions.

Relationships between flow types and physical biotopes are therefore complex,

reflecting the multiple and dynamic interactions between channel hydraulics and

morphology, and hence casting some doubt on the use of flow types as a proxy for

physical biotopes in visual surveys.  Therefore for purposes of clarity, the data sets

used in this Chapter refer to surface flow types, or ‘flow biotopes’ for brevity, and

inferences on the channel morphologies and ‘physical biotopes’ associated with these

flow features are made retrospectively following the analysis.
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3.2.3 Biotope characterisation: a review of previous approaches

Initial attempts at objectively identifying physical biotopes focused on the

classification of riffle and pool units according to undulations in bed topography

(Richards, 1976; O'Neill and Abrahams, 1984).  This has since been expanded to

include variations on the basic riffle-pool structure (e.g. rapids, cascades, runs, glides).

Characterisation has also incorporated the hydraulic variables of velocity, depth and

substrate since they are relatively easy to quantify, are simpler to predict than

biological factors, and have direct relevance to instream biota through the provision of

habitat (Garcia de Jalon, 1995).  For instance, while invertebrate distributions are

influenced by a variety of biotic and abiotic factors operating over a range of spatial

scales, the combined effect of flow velocity, water depth and substrate size may be

considered particularly significant at the meso- and microscales of river systems

(Quinn and Hickey, 1994; Swann and Palmer, 2000; Figure 3.1).

Early studies identified broad combinations of velocity, depth and substrate for a range

of sites, and often related these to basic units of channel morphology such as riffles

and pools.  Thus, Bisson et al. (1981) identified characteristic hydraulic ranges for

riffles, rapids, cascades, glides and various types of pools which were shown to

provide different types of habitat for different fish species.  Davis and Barmuta (1989)

provide a classification of flow types based on the interaction between flow and

substrate which create different types of habitat for biota and may be related to certain

channel features (Table 3.2).  Since the 1990s, however, biotope characterisation

attempts have generally taken one of two broad methodological approaches.
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Figure 3.1 Spatial scale of influence and strength of factors influencing stream
invertebrate distributions, modified from Swan and Palmer (2000: 117).
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Flow type Description Biological implications Channel feature

‘Hydraulically smooth’ flow
Occurs over fine sediments or flat bedrock surfaces
where the roughness height is less than the thickness
of the laminar sublayer

Homogeneous flow environment – biological
forces will be the primary influence on species
distributions.

Glides

‘Isolated roughness’ flow
Roughness elements are spaced far apart so that
vortices created in the wake behind each element are
dissipated in the space between elements.

Patchy habitat structure - different surfaces of the
same rock provide different habitats due to the
creation of horseshoe vortices.

Individual rocks

‘Wake interference’ flow

Distance between substrate elements is
approximately equal to the length of the wake
generated by each element.  Considerable
interference occurs between wake vortices creating
high local velocities.

High turbulent stresses at the stream bed, less
patchy and more homogeneous than isolated
roughness flow.

Riffles

‘Quasi-smooth’ or ‘skimming’
flow

Roughness elements are spaced closely together so
that flow skims across the crests of particles and fills
the spaces between elements with much slower water
containing stable eddies.

Two habitats are created: high velocities across
the top of substrate elements and low velocities
within the crevices.

Pebble- and cobble-
bottomed runs

Table 3.2 Flow types resulting from the interactions between flow and substrate, their biological implications and associated channel features.
Source: Davis and Barmuta (1989)
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The first approach involves the quantitative measurement of hydraulic parameters

within physical biotopes, which are visually identified according to surface flow

characteristics.  Most studies incorporate some measurement of velocity and depth, but

fewer include substrate size as a hydraulic variable, despite the influence of

substratum on habitat provision for aquatic plants (Boeger, 1992), benthic

invertebrates (Quinn and Hickey, 1994; Swan and Palmer, 2000) and fish (Garcia de

Jalon, 1995).  Measured hydraulic parameters and derived ratios such as Froude

number (a dimensionless ratio of streamwise velocity (U) and depth, gdUFr /= )

are then examined for their power in discriminating between biotopes.

Froude number is used to determine whether the flow is subcritical and tranquil (Fr

<1) or supercritical and rapid (Fr >1) and has been identified by several authors as the

hydraulic variable most ‘successful’ at discriminating between biotopes (Jowett, 1993;

Wadeson, 1994; Padmore, 1997a).  However, the Froude ranges occupied by different

physical biotopes are associated with some overlap in values (Newson et al., 1998a),

which increases when data are compared between different sites (Clifford et al., 2006),

suggesting limited transferability.  A re-evaluation of data published in Newson et al.

(1998a) data reveals substantial overlap in Froude ranges between certain flow types

(Figure 3.2a; Clifford et al., 2006).  Some flow types even form a ‘subset’ of others for

instance, the Froude range for smooth boundary turbulent flow plots entirely ‘within’

that of rippled flow.

While this overlap reflects the fact that biotopes form a ‘continuum’ from tranquil to

more rapid environments (Jowett, 1993), it may also reflect some of the inadequacies

of Froude in describing hydraulic conditions.  Bivariate plots of velocity and depth by
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Figure 3.2 (a) Froude number ranges for flow biotopes identified by Newson et al. (1998a), and velocity-depth ranges for different Froude
number classes for the River Cole, Birmingham at (b) low flow (discharge 0.34 m3s-1; 70% exceedance) and (c) high flow (discharge 1.49 m3s-1;
13% exceedance).  Source: Clifford et al. (2006: 395, 405).
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Froude number class for the River Cole, Birmingham (Figure 3.2b and c; Clifford et

al., 2006) demonstrate that Froude classes are aligned diagonally within the plot,

encompassing a range of velocity-depth combinations which expands with discharge.

Thus, very different combinations of velocity and depth may be associated with a

similar Froude number, potentially masking variation between flow types and physical

biotopes.  Further analysis of these data demonstrate that these classes traverse

morphological boundaries (riffle and pool; Clifford et al., 2006) thus questioning the

appropriateness of the ratio as a means of biotope characterisation.

More recently, an alternative and complementary geostatistical approach has been

employed, focusing on the spatial characterisation of velocity fields without a priori

assumptions concerning the existence of physical or flow biotopes (Clifford et al.,

2002a; Clifford et al., 2002b; Emery et al., 2003).  These studies have highlighted the

complexities of the hydraulic response of a reach to increasing discharge.  The overall

effect is a weakening of relationships between flow and morphology as stage rises,

with obvious implications for both the identification and hydraulic characterisation of

physical biotopes.  At low flow, for instance, flow patterns appear ‘topographically-

constrained’, i.e. velocity variation is closely related to bedform spacing (and hence

physical biotopes).  At higher discharges, however, hydraulic distinctions between

riffles and pools are reduced and microscale flow intensification such as jetting and

vortex shedding appears to become more significant (Clifford et al., 2002a; Clifford et

al., 2002b).  Further empirical work identified six sub-reach scale hydraulic habitat

‘clusters’ characterised by different responses to increasing discharge (Emery et al.,

2003).  Different clusters were identified for riffle crest and riffle margins, channel

margins, backwater and pool zones suggesting significant ‘within-biotope’ variations
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in hydraulics, which are similar to prefered fish habitats (Aadland, 1993), and

emphasise the importance of channel margins as a distinct hydraulic ‘patch’.

Furthermore, the amplitude of bedforms was shown to exert a significant influence on

the hydraulic response of a channel to increasing discharge, stressing the complexity

of morpho-hydraulic relationships.

Both of the approaches outlined above have in common the assumption that the

hydraulic biotopes identified are of some ecological significance.  While known

relationships between physical parameters and biotic distributions suggest that this is

likely, biological distinction must be demonstrated explicitly in order for biotopes to

be considered of ecological value to river management (Newson et al., 1998a).  A

practical and cost-effective means of exploring the ecological validity of the biotope

concept is offered by a complementary ecological approach to habitat characterisation

known as the ‘functional habitat’ concept, which is explored in the following section.

3.3 BIOLOGICALLY FUNCTIONAL HABITAT

3.3.1 Aquatic invertebrates and habitat functionality

Aquatic invertebrates are generally considered an appropriate biological focus for

habitat studies.  They provide a link between micro-organisms and larger vertebrates

such as fish, which are commonly the target of management strategies (Kellerhals and

Miles, 1996), and are greatly influenced by stream hydraulics throughout the river

continuum (Statzner and Higler, 1986), thus providing a link between ecosystem

structure and channel hydraulics.  Additionally, invertebrates have the practical

advantages of a well established taxonomy and lifecycles conducive to seasonal

sampling regimes (Cummins, 1996), and their relatively sedentary nature means they
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are heavily influenced by local physical conditions (Metcalfe-Smith, 1996).  An

established literature acknowledges the role of both physical substrate and aquatic

macrophytes in providing habitat for biota (Butcher, 1933; Hynes, 1970; Gregg and

Rose, 1982; Newall, 1995; Biggs, 1996; Jowett, 2003).  This has formed the basis of

ecological approaches to the characterisation of instream habitat through the concept

of ‘functional habitats’.

The functional habitats concept was developed by Harper et al. (1992) who identified

a suite of sixteen organic and inorganic habitat units associated with distinct

invertebrate assemblages from a more comprehensive list of ‘potential habitats’

readily identifiable from the riverbanks of three lowland streams in England.  The

habitats identified are associated with either substrate particle size, the morphology of

aquatic plants, or the growth of riparian vegetation (Table 3.3), and appear relatively

portable across catchments, despite variations in disturbance regimes and water

quality.  The habitats are associated with various biological ‘functions’, (e.g. by

providing oviposition sites, food sources, and shelter from flow or predation) which

traverse species boundaries and hence move the focus away from target species

towards a more community-level approach.  The authors suggest that these functional

habitats forge a link between organisms and the physical processes operating within

the river channel (Harper and Everard, 1998).  Although a need remains for rigorous

field testing, the approach has shown promise both as an indicator of the type and

extent of habitat change within degraded reaches (Harper et al., 1998a), and as a post-

project appraisal tool in rehabilitation projects (Harper et al., 1998b).
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Habitat
type Habitat Biological function(s)

Rocks •  ‘Hygropetric zone’ – thin film of water on the surface of bare rock provides habitat for small macroinvertebrates.

Cobbles/ Gravel
•  Hyporheic zone within interstitial spaces.  Often includes finer sediment/ organic matter encouraging biodiversity.
•  Also provide fish spawning sites.

Sand
•  Usually species-poor, but can support large numbers of specialised smaller invertebrates.
•  Accumulations around obstructions such as woody debris can become more stable and biologically richer.
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Silt •  Silted pools provide a detritus-rich habitat for macroinvertebrates which is stable for much of the summer.
Trailing vegetation/ marginal plants •  Feeding, mating and oviposition zone for mature stages of otherwise aquatic invertebrates.

Emergent macrophytes
•  Passage to the surface for emerging insects
•  Attachment surface for filter-feeders
•  Oviposition sites

Floating-leaved macrophytes •  Passage to the surface for emerging insects

Submerged fine-leaved macrophytes
•  Protection from predation and turbulence
•  Provide surface for periphyton growth and attachment of invertebrates.

Submerged broad-leaved macrophytes•  Can act as extensions of the substrate, providing smooth surfaces for attachment and locomotion

Moss
•  Oviposition in faster flowing waters
•  Protection from predation and flow
•  Accumulate fine sediment and organic matter, providing physical substrate and food
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Macroalgae

•  Food source for grazers
•  Case material for some chironomids
•  Refuge from predation
•  Oviposition sites

Roots •  May provide important habitat for specialised and rare species, but under-sampled.

Leaf litter
•  Direct food source for shredders
•  Site for product and capture of fine particulate organic matter
•  Can act as an extension of the physical substrate – particularly important in finer sediments
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Woody debris
•  Direct use by borers
•  Increases channel stability.

Table 3.3 Minerogenic, vegetative and detrital habitats and their principal biological functions, from Harper et al. (1995).



64

3.3.2 Linking biotopes and functional habitats

Strong relationships between flow, substrate and instream vegetation suggest a

potential for linking functional habitats with physical biotopes, providing a hydraulic

context for the former and adding ecological value to the latter.  However,

minerogenic habitats (i.e. channel substrate types), and vegetative habitats respond to

flow conditions in different ways.  While channel substrate may be considered most

strongly dependent upon current velocity through the entrainment and transport of

particles, aquatic macrophytes are influenced by a more complex array of flow related

factors, including, for instance, the effects of depth and turbidity on light availability

which is particularly important for submerged species (Hynes, 1970).  Despite this,

stream velocity (and related factors such as turbulence) is generally considered of

great significance to macrophytes both directly through the effects aeration and

nutrient replacement on plant metabolism and mechanical damage to leaves and stems

(Westlake, 1967; Fox, 1996), and indirectly through controls on the channel substrate

(Carling, 1992).

Various authors have explored the relationships between ecology and channel

hydraulics by linking plant species or morphologies with channel substrate and flow

properties.  Earlier attempts are generally descriptive, identifying broad ‘slow’,

‘moderate’ and ‘fast’ velocity zones associated with substrate types and plant

morphologies (Table 3.4 and Table 3.5).  For example, Haslam (1978) linked

individual species distributions with visually identified ‘flow types’ which

approximate the surface flow type categories used by the EA in RHS, Butcher (1933)

included substrate as a predictor of plant morphologies and French and Chambers

(1996)
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Hydraulic class Macrophytes

(a) ‘Very fast’ current, rocky substrate Mosses, macroalgae

(b) ‘Fast’ current, stony substrate Plants with strong stems and small leaves, or woody or tough rhizomes

(c)‘Moderate’ current, gravel substrate Similar to (b), but potentially more diverse and abundant.

(d) ‘Slow’ current, sandy substrate Plants with fibrous roots or matted rhizomes which exhibit a rapid growth.

(e) ‘Very slow’ current, silty substrate Similar to (d) but more abundant, and dominated by plants with small and very abundant roots.

(f) ‘Negligible current’, mud substrate Vegetation similar to pond or lake shore: erect reeds and plants similar (e).

Table 3.4 Descriptive hydraulic classes and associated macrophytes identified by Butcher (1933)

Hydraulic class Macrophytes

‘Negligible flow’
(e.g. canals and fen dykes)

Free-floating and tall emergent species.

‘Slow flow’
(Plants hardly move)

Emergent reeds

‘Moderate flow’
(Trailing plants clearly move and water surface is slightly disturbed)

Submerged, fine-leaved macrophytes.

‘Fast flow’
(Trailing plants move vigorously and the water surface is markedly disturbed)

Submerged, fine-leaved macrophytes, mosses.

Table 3.5 Descriptive hydraulic classes and associated macrophytes identified by Haslam (1978)
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quantified slow, moderate and faster velocity ranges for different macrophytic

communities.

More recently, the focus has shifted to the hydraulic preferences of functional habitats

rather than individual species, and has explicitly incorporated physical biotopes either by

visual assessment or using hydraulic proxy indicators.  For instance, Kemp et al. (1999)

examine the velocity-depth distributions associated with the suite of functional habitats

identified by Harper et al. (1995) and although a significant amount of ‘overlap’ between

habitats is observed, some broad relationships are identifiable.  Submerged fine-leaved

macrophytes, mosses, cobbles and gravel were found to correlate with shallow, fast-

flowing riffle zones and submerged broad-leaved macrophytes and sand correlated with

slower and deeper marginal riffle and run zones.  Silt and emergent macrophytes were

generally found within slow-flowing shallow pools and floating-leaved macrophytes with

deeper pools while marginal plants were associated with the shallowest and slowest-

flowing marginal locations.  A further analysis employed Froude number as a quantitative

descriptor of different physical biotopes which were compared with the distribution of

functional habitats (Kemp et al., 2000).  However, the Froude number appears able to

discriminate only between broad ‘low’ Froude habitats (silt, roots, trailing vegetation,

marginal plants, leaf litter, emergent macrophytes, floating-leaved and submerged broad-

leaved macrophytes) and ‘high’ Froude habitats (rocks, cobbles, gravel, sand, submerged

fine-leaved macrophytes, moss and macroalgae), although habitats within the second class

form a gradient of increasing Froude number.
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Thus, in a similar way to physical biotopes (Section 3.2), functional habitat categories

appear to be associated with a large overlap in hydraulic parameters such as Froude

number (Clifford et al., 2006).  While part of this overlap may again be attributed to the

inadequacies of Froude as a hydraulic descriptor, it is also likely to reflect species-specific

variations in hydraulic ‘preferences’ within functional habitat categories.  For instance,

Ranunculus fluitans and Myriophyllum alterniflorum are both classified as ‘submerged,

fine-leaved macrophytes’, but while the former shows relatively clear preferences for fast

flowing rivers and stable substrates, the latter is tolerant of a broad range of conditions

from standing waters to slowly or rapidly flowing streams and rivers (Preston and Croft,

2001).  As a result, the cumulative range of hydraulic parameters associated with the

amalgamated ‘submerged fine-leaved macrophytes’ category will be broad.

While neither physical biotope nor functional habitat categories appear easily delimited by

specific ranges of hydraulic parameters, the two phenomena may still reveal correlations

at a broader scale.  ‘Mapped’ flow types and physical biotopes themselves may provide a

more appropriate scale of investigation, identifying relative changes in physical

conditions within a river reach at scales of interest to river inventory, rehabilitation and

appraisal.  Preliminary attempts at this type of analysis have been made by Newson et al.

(1998a) using data on selected functional habitats derived from a subset of the RHS

database, and by Harper et al. (2000) using finer-resolution data from four surveyed

reaches.  Some differences in the flow type frequency distributions associated with each

habitat are observed, allowing some tentative inferences to be made concerning the broad

flow type ‘preferences’ of certain habitats.  Thus, ‘slower’ flow types (no perceptible

flow) are linked with silt, tree roots, trailing vegetation and marginal and emergent plants;
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‘intermediate’ flow types (smooth boundary turbulent and rippled flow) with sand, gravel

and submerged macrophytes; and ‘faster’ flow types (unbroken standing waves) with

cobbles and mosses.

The remaining part of this chapter expands on these preliminary studies by seeking

correlations between flow types and functional habitats within the extensive national data

set provided by the RHS database.  The analysis also provides an opportunity to evaluate

the data derived from rapid RHS field surveys in the context of habitat inventory,

assessment, design and appraisal requirements.

3.4 A NATIONAL DATA SET

3.4.1 Data extraction

The RHS database V 3.34 provides a comprehensive national data set of habitat features

which can be used to assess relationships between channel hydraulics (in the form of

surface flow types) and functional habitats.  Flow type and functional habitat data is

recorded within the ‘spot-check’ component of the RHS field survey, which comprises

visual observations at ten equally spaced cross-sectional transects (‘spot-checks’).

Derivation of flow type and functional habitat data for each spot-check location within

RHS V 3.34 required a significant amount of database manipulation due to the structure of

the database.  An initial process of data ‘cleaning’ involved the removal of all spot-checks

with missing or invalid data, those characterised by artificial substrates and those where

turbid flow conditions or visual obstructions prevented inspection of instream habitat
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features.  This reduced the available data set from a theoretical 159, 480 observations

from 15, 984 different 500 m reaches, or ‘sites’, to 108, 979 spot-checks from 12, 715

sites.

In order to focus the investigation on ‘natural’ relationships between habitat components,

the EA’s Human Modification Score (HMS) system was also used to eliminate data from

sites which have experienced significant anthropogenic disturbance.  The HMS system

was developed by the EA as an analysis tool for expressing the levels of human

modification to the channel and banks in order to facilitate inter-site comparisons

(Environment Agency, 2000; Table 3.6).  A data set of ‘semi-natural’ spot-checks was

obtained by extracting sites with HMI scores < 3, and a data set of ‘heavily modified’

spot-checks was obtained by extracting sites with HMI scores > 20 (Table 3.7).

Surveyed RHS sites have been used to create a typology of UK rivers based upon certain

map-derived variables (altitude, slope, distance from source and altitude of the source)

which were found to correlate strongly with most habitat features (Jeffers, 1998a).  A

multivariate Principal Components Analysis (PCA) transformed these original variables

into two axes which may be used to describe the macroscale characteristics of a particular

site.  The PCA ‘scores’ are presented in Figure 3.3 for the entire data set of all reference

sites, the semi-natural data set and the heavily modified data set.  The scatterplots reveal

that while semi-natural sites are associated with a similar range of typologies as the entire

database, there is a slight skew towards upland and montane locations and higher energy

conditions.  In contrast, heavily modified sites reveal a skew towards lowland

environments.  This reflects the susceptibility of lowland reaches to both long-term
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HMS Score Descriptive category of channel

0 Pristine

1-2 Semi-natural

3-8 Predominantly unmodified

9-20 Obviously modified

21-44 Significantly modified

45 or more Severely modified

Table 3.6 Habitat Modification Score (HMS) system categories for
RHS data as developed by the Environment Agency (2000).

Data set name Criteria
Number of

records
Number of

sites

‘Raw’ spot-checks None 158440 15844

All sites
Valid entries for flow type and functional
habitat categories

108979 12715

Semi-natural HMI<3 40832 4682

Heavily modified HMI>20 22000 2635

Table 3.7 Criteria and characteristics of data sets derived from the RHS database.
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Figure 3.3 Data set characteristics for (a) all sites, (b) semi-natural sites and (c) heavily modified sites.  The Environment Agency’s
typology is based on a Principal Components Analysis (PCA) using the variables of site altitude, slope, distance from source and
altitude of source.  PCA 1 represents a transition from low altitude, low slope (‘coastal’) sites, to high altitude, high slope (‘montane’)
sites.  PCA 2 represents a transition from low energy to high energy environments based on distance from source and altitude of the
source.
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indirect anthropogenic impacts associated with land use change and direct modifications

to the channel itself for flood defence and water resource management.

3.4.2 Variable extraction

Derivation of flow type data from the database was relatively straightforward since RHS

explicitly records the ‘dominant’ surface flow type (that occupying 50% or more of the

channel width) across 1 m wide cross sectional ‘transects’ at each spot-check location

(Figure 3.4).  Only one entry is permitted per spot-check and where two flow types each

occupy 50% of the channel, only the faster flow type is recorded.  Minerogenic habitats

and vegetative functional habitats are not recorded explicitly on field survey forms, but it

was possible to adapt the data for the purpose and derive 12 of the 16 functional habitats

identified by Harper et al. (1995) from observations of channel substrate and vegetation

types (Table 3.8).

In a similar way to surface flow types, the ‘dominant’ channel substrate is assessed across

a 1 m wide cross sectional transect at each spot-check, using the substrate particle size

categories identified by Wentworth (1922).  Organic functional habitat categories based

on riparian vegetation (woody debris, tree roots and leaf litter) are recorded only within

the ‘sweep-up’ section of the survey, and cannot be directly linked to surface flow type

observations made at individual spot-checks.  These habitats are therefore excluded from

the analysis.  However, it was possible to derive data for macrophytic functional habitats

from spot-check assessments of channel vegetation types.  RHS allows a variety of

aquatic plant morphologies to be recorded as either ‘present’ (between 1% and 33%

cover) or ‘extensive’ (>33% cover) across a wider cross sectional transect, extending 4.5
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Functional habitat Code RHS categories

Rocks BR Boulder, bedrock

Cobbles CO Cobbles

Gravel G Gravel, pebble-gravel, pebbles

Sand SA Sand

Silt SI Silt

Roots R Not recorded as part of spot-checks

Trailing vegetation TV Amphibious

Marginal plants MP Not recorded as part of spot-checks

Leaf litter LL Not recorded as part of spot-checks

Woody debris WD Not recorded as part of spot-checks

Emergent macrophytes ME
Emergent broad-leaved herbs, emergent
reeds, rushes & sedges

Floating-leaved macrophytes MF Floating-leaved (rooted), free-floating

Submerged, fine leaved
macrophytes

MSF Submerged fine-leaved

Submerged, broad-leaved
macrophytes

MSB
Submerged broad-leaved, submerged
linear-leaved

Mosses M
Bryophytes and lichens (includes
liverworts, mosses and lichens)

Macroalgae MA Filamentous algae

  Table 3.8 Derivation of functional habitat categories from
  RHS data.

10m

1m

SPOT-CHECK

Wetted
channel area

Figure 3.4 Dimensions of RHS spot-check attributes
used in analysis, Environment Agency (2003: 1.4).
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m either side of that used for flow type and substrate assessments (Figure 3.4).  Due to

the differences in spatial scales of assessment, analysis was restricted to vegetation

types occurring ‘extensively’ at spotchecks.  Derivation of functional habitat data

required some amalgamation of RHS categories (Table 3.8) and it should be noted that

the RHS definition for ‘emergent macrophytes’ also encompasses the ‘marginal

plants’ habitat identified by Harper et al. (1995).

3.5 FLOW TYPES AND FUNCTIONAL HABITATS IN THE UK

3.5.1 National frequency distributions

Figure 3.5 presents the national frequency distributions of flow types and functional

habitats for semi-natural sites.  Several points are worthy of note.

Certain flow types and functional habitats occur far more frequently in the national

data set than others.  In terms of flow types, for instance, over 65% of spot-checks are

characterised by smooth boundary turbulent or rippled flow types while the ‘faster’

flow types (broken standing waves, chute flow, and free fall) cumulatively account for

just 10% of the distribution.  The prominence of smooth boundary turbulent flow and

rippled flow suggest a high incidence of ‘transitional’ morphological units such as

glides and runs which is significant because such transitional units are frequently

overlooked in habitat studies in favour of more physically prominent features such as

riffles and pools.  The low sample numbers of unbroken standing waves and no

perceptible flow suggest that riffles and pools occur relatively infrequently compared

to the intervening transitional run and glide units.  However, particularly for pools, this

may reflect the localised nature of features, which may not necessarily account for

over half the channel width and will thus be overlooked at spot-checks.
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Figure 3.5 National frequency distributions for (a) flow types and (b) functional habitats, and percentage of observations of each flow type and
habitat associated with upland and lowland settings (c and d) for semi-natural sites.  See Table 3.1 (p. 53) and 3.8 (p. 63) for flow type and
functional habitat category codes.
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This methodological issue also applies to upwelling due to the relatively localised

nature of associated ‘boil’ features.  In contrast, the low frequency of ‘chaotic flow’

(which represents a combination of at least three of the ‘faster’ flow types) suggests

that rougher flow environments are often dominated by a single flow type.

For functional habitats, minerogenic categories are necessarily associated with much

higher sample numbers compared to vegetative categories, due to the ubiquity of

substrate and the more spatially restricted nature of aquatic vegetation which is

dependent upon climatic, chemical and biological factors in addition to flow (Fox,

1996).  Minerogenic and vegetative categories are therefore plotted on separate axes in

order to improve comparability.  Of the minerogenic habitats, coarser substrates

(gravel, cobbles, and rocks) dominate the national distribution, and sand and silt

account for significantly fewer observations, reflecting the higher proportion of higher

energy upland sites within the semi-natural data set and the dominance of gravel

substrates in intermediate reaches.  Of the vegetative habitats, macroalgae and mosses

occur most frequently in the data set, reflecting the high proportion of coarse

substrates available for attachment (Giller and Malmqvist, 1998).  Emergent

macrophytes also occur relatively frequently, while submerged and floating-leaved

species are associated with significantly fewer observations.

The extremely low frequency of trailing vegetation (83 spot-checks) is likely to reflect

analysis protocols which selected only ‘extensive’ occurrences of vegetation types at

spot-checks.  The marginal nature of trailing vegetation, which is rooted in the bank or

margins but trails the water surface, will mean that this category occupies over 33% of

a spotcheck only in narrow channels with high riparian connectivity.  This low sample
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number creates problems for analysis.  However, this habitat is likely to be less

appropriate for comparisons with flow types compared to other habitat categories,

since distributions are likely to be more highly correlated with the structure of the

riparian zone rather than flow velocities and water depths within the channel.  Trailing

vegetation is retained in the analysis at this exploratory stage but interpretation is

limited.

Figure 3.5 c and d plot the proportion of spot-checks for each flow type and functional

habitat which are classified as ‘lowland’ (including coastal) and ‘upland’ (including

montane) by the EA’s PCA-based river typology.  For the surface flow types, a

distinct increase in the proportion of upland locations is associated with the transition

from ‘slower’ to ‘faster’ flow types.  Functional habitats reveal a more complex

pattern, but suggest that coarser substrates, mosses, macroalgae and trailing vegetation

show stronger correlations with upland environments, while finer substrates and

vascular plants are predominantly associated with lowland reaches.  These findings are

consistent with the fining of channel substrate from river source to mouth associated

with a combination of particle abrasion, channel gradient and sediment sorting

(Richards, 1982), and the known preferences of different aquatic vegetation types

(Hynes, 1970; Haslam, 1978).  In the following section, these relationships are

explored further in the context of macroscale landscape controls on habitat features.

3.5.2 Macroscale controls on mesoscale habitat features

Hierarchical classifications of instream habitat stress the importance of linkages

between different scales within river systems, such as the influence of catchment-scale

controls on reach-scale habitat structure (Frissell et al., 1986; Naiman et al., 1992).
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Map-derived variables included in RHS V 3.34 allow some exploration of the

macroscale controls on mesoscale habitat features.

Figure 3.6 presents boxplots for altitude, slope and distance of the site from the river

source for flow type categories.  The ranges of values observed for different flow

types suggest that most flow types can persist in a range of environmental contexts.

However, the median values reveal a trend of increasing altitude and slope with the

transition from ‘slower’ to ‘faster’ flow types, consistent with lowland and upland

preferences identified in the previous section.  Furthermore, increasing median values

are accompanied by larger interquartile ranges, suggesting that faster flow types may

persist in a wider range of environmental contexts while slower flow types are more

clearly restricted to lower energy environments.  The distance from source plots

confirms that faster flow types are associated with source-proximal locations while

slower flow types are found within a wider range of locations along the river

continuum.  Figure 3.7 summarises this information using scatterplots based on PCA

data from the EA’s typology, revealing a ‘tightening’ of preference ranges for upland

locations and a tendency for higher energy reaches with the transition from slower to

faster flow types.

Relationships can be assessed for functional habitats in Figure 3.8 and 3.9.  For

minerogenic habitats, a trend of decreasing median values and interquartile ranges is

observed with decreasing particle size.  This reflects the restriction of finer sediments

to lower energy conditions farther from the river source, while coarser substrates show

a tendency towards higher energy locations and are restricted to source-proximal
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Figure 3.7 Distributions of site PCA scores for each flow biotope category.
PCA 1 represents a transition from low altitude, low slope (‘coastal’) sites, to high altitude, high slope (‘montane’) sites.
PCA 2 represents a transition from low energy to high energy environments based on distance from source and altitude of the source.
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locations.  Vegetative habitats demonstrate varied preferences for energy conditions

(e.g. associated with altitude and slope) and certain locations along the river

continuum (associated with distance from the river source).  Mosses, for example, are

generally restricted to upland locations and show a preference for higher energy

conditions, while the majority of observations of emergent macrophytes are associated

with lowland reaches but reveal an approximately equal distribution between high and

low energy conditions.  Macroalgae appear relatively unrestricted in location but show

a tendency for higher energy environments, and submerged broad-leaved macrophytes

suggest a preference for lowland high energy reaches.  Submerged fine-leaved

macrophytes show a relatively strong preference for high energy conditions, but these

may be associated with both lowland and upland locations while the low sample

numbers for trailing vegetation and floating-leaved macrophytes limit interpretations.

3.5.3 Habitat response to physical degradation

Figure 3.10 compares flow type and functional habitat frequency distributions for

semi-natural sites with heavily modified sites in an attempt to explore the response of

mesoscale habitat features to physical degradation.  Increases in the proportion of no

perceptible flow and smooth boundary turbulent flow accompanied by reductions in

faster flow types for degraded sites suggest a homogenisation and overall ‘slowing’ of

flow conditions consistent with the effects of direct channel modifications such as

abstraction and impoundment, and the reduced turbulence associated with artificial

substrates and channelisation (Hynes, 1970).
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Figure 3.8 Altitude, slope and distance from source ranges, interquartile ranges and
median values for minerogenic functional habitats (a, c and e) and vegetative
functional habitats (b, d, and f).  See Table 3.8 (p. 63) for functional habitat category
codes.
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Figure 3.9 Distributions of site PCA scores for each functional habitat category (see Figure 3.7 for explanations of PCA axes).
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This slowing of flow within the heavily modified sites is predictably accompanied by

a fining of substrate calibre within the minerogenic habitats (Figure 3.10b), reflecting

the reduced competence of flows in degraded reaches.  All vegetative habitats (except

for mosses) show a proportional increase within degraded reaches.  The reduction in

frequency of moss cover reflects the strong preferences of moss species for high

current velocities and very stable, coarse substrates (French and Chambers, 1996),

conditions which are likely to be lost as a result of physical degradation.  Furthermore,

reduced turbulence in many modified channels inhibits aeration of the water with

atmospheric carbon, an important environmental requirement for mosses which are

unable to utilise bicarbonate carbon sources (Fox, 1996).

The most significant increases in vegetative habitat frequency for degraded sites are

associated with emergent macrophytes and macroalgae, followed by submerged broad-

leaved and floating-leaved macrophytes.  Prolific growth of various types of

macrophytes and macroalgae has been associated with neglected canalised reaches and

siltation (Butcher, 1933), impoundments (Ridley and Steel, 1975) and overwidened or

ponded reaches (Kemp et al., 1999), as well as chemical degradation through nutrient

enrichment (Hynes, 1970; Whitton, 1975).  These increased frequencies of extensive

vegetation cover may therefore reflect a higher incidence of ‘choking’ of channels and

an alteration of the competitive balance between different species (Demars and

Harper, 1998; Marks and Power, 2001), and are unlikely to reflect increased

biodiversity since the frequency distribution becomes dominated by a smaller number

of habitats.  This suggests an overall dominance of certain habitats, namely emergent

macrophytes and macroalgae, the former of which has been associated with fewer

microhabitats for meiofauna compared to other plant morphologies (Newall, 1995).
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However, more detailed interpretations are complicated by the differences in response

of similar plants to various types of channel modifications (Jansson et al., 2000).

3.6 TOWARDS AN ECOLOGICAL CLASSIFICATION

The following sections explicitly explore the ‘co-occurrence’ of flow types and

functional habitats in order to assess relationships between the two phenomena at the

national level across a range of sites within the ‘semi-natural’ data set of reference

sites.

3.6.1 Co-occurrence of flow types and functional habitats

Figure 3.11 presents the flow type frequency distributions for each functional habitat

category, which may be used to assess the flow type ‘preferences’ demonstrated by

each habitat within the national data set.  All functional habitats are found in

association with at least five different flow types, suggesting that singular connections

between habitats and flow biotopes do not exist.  Furthermore, the modal flow type

category reveals little variation across functional habitat categories.  Rippled flow

represents the modal flow type for rocks, cobbles, gravel, mosses and trailing

vegetation, and smooth boundary turbulent flow represents the modal flow type for the

remaining habitats (sand, silt, macroalgae, and emergent, floating-leaved and

submerged macrophytes).

The relatively broad ‘scatter’ across flow types can be partly attributed to the survey

resolution which may overlook more localised associations between flow types and

functional habitats.  However, distributions may also reflect the influence of non-flow

related factors on the distributions of functional habitats.  For instance, tolerance of
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Figure 3.11 Flow type frequency distributions for each functional habitat category for semi-natural sites.  See Table 3.1 (p. 53) for
flow type category codes.
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abiotic factors is just one of three principal determinants which govern the

colonisation of macrophytic vegetation at a particular site: biotic interactions and

dispersal characteristics also play important roles in determining the geographical

distribution of a species (Fox, 1996).  Furthermore, non-hydraulic abiotic factors such

as light and water chemistry are also important factors for aquatic macrophytes

(Westlake, 1975; Giller and Malmqvist, 1998).  Relationships between macrophytes

and flow biotopes may be further complicated by a complex system of feedbacks

between aquatic plants and channel hydraulics.  For instance the growth of instream

vegetation influences the surrounding physical environment by increasing roughness

and reducing velocities (Gaudet, 1974; Watson, 1987).  However, while velocities

within vegetation stands may decrease, channelling of flow in adjacent areas can

create high velocity ‘threads’, thus significantly altering the flow field (Gregg and

Rose, 1982; Cotton et al., 2006; Gurnell et al., 2006).

While local flow conditions exert a significant influence on minerogenic habitat

distributions through the control on sediment transport (Carling, 1992), both

macroscale landscape controls such as catchment geology, and microscale factors such

as the growth of aquatic macrophytes, also bear a significant influence on substrate

composition within a particular reach (Fox and Raven, 1996; Sand-Jensen, 1998).

However, some trends within frequency distributions are apparent at a broader level,

which may be considered particularly significant in the light of complexities

introduced by the extraneous factors described above.  Within the minerogenic

habitats, for instance, decreasing particle size is associated with a ‘tightening’ of

frequency distributions towards slower flow biotopes, reflecting the tighter
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environmental ranges identified for finer substrates in the previous section.  Of the

vegetative habitats, a distinction is noted between mosses and macroalgae which are

frequently associated with a range of flow types, and the vascular plants which reveal

stronger preferences for two or three ‘predominant’ flow types.  Proportions of flow

types indicate certain flow type ‘preferences’, for instance floating-leaved

macrophytes are associated with a higher proportion of no perceptible flow while

submerged fine-leaved vegetation is associated with a higher proportion of rippled

flow.  Frequency distributions show similarities with observations by Harper et al.

(2000) on four river reaches, but lower proportions of both slower (e.g. no perceptible

flow) and ‘faster’ (e.g. unbroken standing waves) flow biotopes are noted for the RHS

data, perhaps reflecting the coarser transect-level RHS survey resolution compared to

the 1 m2 cells in Harper et al. (2000).

Overall, slower to intermediate flow types correlate most strongly with the majority of

habitats, while faster flow types are associated with low frequencies for all habitat

categories except for moss and rocks.  ‘Reversing’ the analysis and examining the

frequencies of functional habitats associated with each flow type category (Figure

3.12) demonstrates this clearly: the transition from slower to faster flow types is

associated with a decrease in the number of associated functional habitats.  These data

also provide information on the functional habitats associated with the faster flow

types, which account for only very low sample numbers in Figure 3.11.  For instance,

while free fall and chute flow account for a relatively low number of the total

observations of rocks, moss and macroalgae, this combination of functional habitats

constitutes the majority of habitat provision at spot-checks characterised by free fall

and chute flow.
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Figure 3.12 Functional habitat frequency distributions for each flow type category.  See Table 3.8 (p. 63) for functional habitat category codes.
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Since the functional habitat concept was developed on lowland UK reaches (Harper et

al., 1992), it is unsurprising that functional habitat distributions correlate most strongly

with slower to intermediate flow types characteristic of lower-energy features such as

riffles, runs, pools and glides rather than rougher flow types associated with waterfalls

and rapids.  Rocks and mosses, and to a lesser extent cobbles and macroalgae, are the

exception since these habitats may also occur within higher-energy flow environments

where they may constitute the principal functional habitats.

However, while most habitats demonstrate some ‘preferences’ for certain flow types,

correlations appear to lie at a relatively broad level as identified by Clifford et al.

(2006), relating to ‘assemblages’ of flow types rather than individual categories and

thus suggesting that some form of data reduction or amalgamation is appropriate.

3.6.2 A preliminary classification

The previous section identified that most habitats were generally associated with a

combination of two or three flow types.  Flow type frequency data for each functional

habitat was therefore examined in order to identify the number of flow types required

to explain over 50% of the observations for each habitat (Figure 3.13).  The 50%

threshold is exceeded by one flow type for sand, silt and floating-leaved macrophytes,

but a second must be introduced for gravel, cobbles, trailing vegetation, macroalgae,

moss and emergent and submerged macrophytes.  A third flow type must be

introduced to explain over 50% of the distribution for rocks, and additionally the use

of three flow types explains over 60% of the variance for all habitats.
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Focusing on the three ‘predominant’ flow types for each functional habitat provides

and indication of the assemblages of flow types which correlate most strongly with

each habitat.  For all habitats, these assemblages incorporate some combination of a

total of five flow types (no perceptible flow, smooth boundary turbulent flow, rippled

flow, unbroken standing waves and chute flow) which are typically associated with

pools, glides, runs, riffles and cascades respectively.  Using these relationships, a

preliminary ‘ecological classification’ of flow type assemblages was produced, based

on the preferences of different functional habitats (Figure 3.14).

Three ‘classes’ of flow types are derived which indicate the reach-scale morphological

preferences of functional habitats.  Class one comprises the ‘roughest’ combination of

flow types, chute flow, unbroken standing waves and rippled flow, and can be

considered to represent higher-energy step-pool morphologies.  Class two includes

smooth boundary turbulent flow, rippled flow and unbroken standing waves and is

interpreted to represent riffle-pool morphologies.  Class three is associated with a

‘slower’ assemblage of flow biotopes comprising no perceptible flow, smooth

boundary turbulent flow and rippled flow which indicate glide-pool morphologies.

Thus, although the methodological and theoretical issues outlined in section 3.2

prohibit reliable singular connections between flow types and physical biotopes, suites

of functional habitats appear to correlate with assemblages of flow biotopes which

broadly correspond to certain reach-scale morphologies (taking into account slight

variations from the ‘typical’ low flow states).

Within these broader assemblages, suites of functional habitats show different

‘preferences’ for certain flow biotopes according to the order of dominance of
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Figure 3.13 The percentage of observations of each functional habitat which is
accounted for by one, two and three flow types.  See Table 3.8 (p. 63) for functional
habitat category codes.
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Figure 3.14 Venn diagram to illustrate relationships between assemblages of flow
types and suites of functional habitats.  Different combinations of three out of a total
of five common flow types may be linked with suites of functional habitats.
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individual flow types within frequency distributions (Table 3.9).  These preferences

may reflect the influence of hydraulics at smaller-scales within and between

morphological units.  Within class one, mosses are more frequently found in close

proximity to unbroken standing waves, while rocks are more frequently associated

with chute flow.  However, proportions of chute flow and unbroken standing waves

are very similar for both habitats (see Figure 3.11), suggesting that amalgamation of

these two subclasses may be appropriate, and that rocks and mosses may occur

ubiquitously within step-pool cascades.  Class two differentiates between ‘faster’ riffle

zones associated with the highest frequency of unbroken standing waves which are

characterised by cobbles (class 2A), and marginal riffle or run areas dominated by

rippled flow and associated with gravel and trailing vegetation (2B).  Higher

proportions of smooth boundary turbulent flow in class 2C may represent transitional

zones (e.g. glides or runs) which are characterised by higher proportions of submerged

fine-leaved macrophytes and macroalgae.  Glide-pool reaches (class three) may be

subdivided into glide or run zones associated with a higher frequency of rippled flow

and sand, emergent and submerged broad-leaved macrophytes (3A), and pool habitats

associated with a higher proportion of no perceptible flow, silty substrates and

floating-leaved macrophytes (3B).

Sub-classes within the preliminary classification combine vegetative and minerogenic

functional habitat categories, highlighting the complex interactions between

vegetation, substrate calibre and flow.  Substrate type is an important environmental

factor influencing macrophyte distributions, and groupings identified support known

macrophytic preferences: mosses depend upon the substrate stability provided by large

boulders, the dense horizontal roots of submerged fine-leaved macrophytes require
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Flow biotope
class

Flow types
(order of dominance) Functional Habitats

1A

Rippled flow
Chute flow

Unbroken standing
waves

Rocks

S
te

p
-p

o
o

l

1B

Rippled flow
Unbroken standing

waves
Chute flow

Mosses

2A

Rippled flow
Unbroken standing

waves
Smooth  boundary

turbulent

Cobbles

2B

Rippled flow
Smooth boundary

turbulent
Unbroken standing

waves

Gravel
Trailing vegetation

R
iff

le
-p

o
o

l

2C

Smooth boundary
turbulent

Rippled flow
Unbroken standing

waves

Submerged, fine-leaved macrophytes
Macroalgae

3A

Smooth boundary
turbulent

Rippled flow
No perceptible flow

Sand
Submerged, broad-leaved macrophytes

Emergent macrophytes

G
lid

e-
p

o
o

l

3B

Smooth boundary
turbulent

No perceptible flow
Rippled flow

Silt
Floating-leaved macrophytes

Table 3.9 Classification of flow types according to functional habitat ‘preferences’ for
three principal flow types.  Habitats are grouped into sub-classes according to the
order of dominance of flow types within frequency distributions.
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gravels for anchoring, and emergent and floating-leaved plants with long deep roots

require finer grained sands and silts (Haslam, 1978).

However, the preliminary classification shown in Figure 3.14 is based upon simple

observations of frequency distributions and requires statistical validation.  While the

categorical nature of the data set imposes some limitations on analysis, it is possible to

apply two contrasting statistical techniques to test the integrity of the classification.

3.6.3 Statistical validation

Statistical validation of the classification involved two stages.  An analysis of the

variation between functional habitats in terms of flow types was performed using a

Principal Components Analysis (PCA), and subsequently, habitats were objectively

grouped according to the similarity of their flow type frequency distributions using

agglomerative Hierarchical Cluster Analysis (HCA).  The two techniques complement

each other, since PCA provides a depiction of the overall phenetic structure of the data

set, and cluster analysis provides a good fit if tight clusters actually occur in the data

set (Rohlf, 1970).

i) Principal Components Analysis

PCA is a linear ordination method which reduces the dimensionality of a data set

containing a large number of variables.  It does this by linearly transforming the

original, (potentially correlated) variables (p) into a new set of uncorrelated variables

(‘principal components’) which maximise the original variance (Dunteman, 1989).

PCA may be based on a covariance matrix or a correlation matrix (standardised

covariance matrix) of the original data.  The matrix may then be expressed

geometrically, as a series of vectors, with each row of the matrix providing the co-
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ordinates of the end point of a vector (Davis, 2002).  These vectors are known as

‘eigenvectors’ in matrix algebra, and represent the ‘principal components’ in a PCA.

Most of the variance can often be accounted for by a small number of principal

components, and commonly only the first two are analysed.  PCA was performed in

Canoco 4.0 using a frequency matrix of the co-occurrence of functional habitats and

flow types.

To test the appropriateness of PCA for the data set (Leps and Smilauer, 2003), a

Detrended Correspondence Analysis (DCA) was performed on the frequency matrix in

order to ensure that the maximum gradient length of the data (in standard deviation

units of species turnover, SD), was below 3.  Axis one demonstrated a maximum

gradient length of 2.099 SD and therefore PCA was appropriate.  Analysis focuses on

the first two principal components of the PCA since these account for 98% of the

variance in functional habitats.

The PCA bi-plot for axes one and two is presented in Figure 3.15a and illustrates the

variance in functional habitats (represented by vectors) according to the distribution of

flow biotopes (represented by points).  Vectors on the bi-plot represent increasing

frequencies of functional habitats towards the arrowhead, and flow biotopes situated

towards the end of these vectors are highly correlated with those habitats.  Flow

biotopes situated at distal locations in the bi-plot may be projected onto habitat vectors

at right angles to assess the strength of correlations.  Thus, for instance, free fall,

chaotic flow and upwelling are rarely observed within the data set and therefore plot as

negative scores suggesting weak correlations with all 12 functional habitats.  The

angle between arrows is a measure of correlation between functional habitats, so that
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Figure 3.15 (a) PCA bi-plot showing correlations between flow types (represented by circles) and functional habitats (represented by vectors) for
the semi-natural data set.  (b) and (c) plot the flow type sample scores for PCA axes 1 and 2 respectively.  See Table 3.1 (p. 53) and 3.8 (p. 63)
for flow type and functional habitat codes.  Dotted lines are superimposed on the bi-plot to highlight the clustering of functional habitat vectors.
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closely spaced habitat vectors are associated with similar flow biotope frequency

distributions, while perpendicular arrows show zero correlation between habitats, and

angles at 180o would represent negative correlations.

The diagram is strongly dominated by principal component one, which captures 86.4%

of the variation in functional habitats, while axis two contributes just 11.6%.  This

may, however be a reflection of the data set characteristics, since flow biotopes are

part of a continuum, rather than representing distinct environmental variables, and

therefore variance may reasonably be expected to be concentrated along an axis

reaching from ‘faster’ to ‘slower’ flow biotopes.  Variable loadings, or flow type

‘sample scores’ presented in Figure 3.15b and c allow further interpretation of the

‘meaning’ of axes one and two.  Axis one appears to represent a transition from rare

flow types (upwelling, chaotic flow, broken standing waves, chute flow and free fall)

associated with negative loadings, to the most commonly occurring flow types

(smooth boundary turbulent, rippled flow and unbroken standing waves) associated

with positive loadings, reflecting the overall frequencies of flow types.  Axis two

suggests a transition, within the more commonly occurring flow biotopes, from

‘intermediate’ flow types (unbroken standing waves and rippled flow) associated with

stronger negative loadings to ‘slower’ flow types (no perceptible and smooth boundary

turbulent flow) associated with positive loadings.

Thus, intermediate flow types such as unbroken standing waves and rippled flow exert

a strong influence upon functional habitat vectors located within the bottom right

quarter of the diagram, while habitats falling in the upper right quadrant of the bi-plot

show stronger positive correlations with slower smooth boundary turbulent and no



100

perceptible flow types.  Furthermore, while no habitats show significant correlation

with the rarer (negatively scored) flow types, they demonstrate a parabolic distribution

within the bi-plot suggesting that ‘intermediate’ flow types are more common than

both slower and faster flow types.

The sequencing and spacing of habitat vectors corresponds with the preliminary

classification proposed in section 3.6.2.  Functional habitat vectors are grouped into

‘clusters’ which broadly correlate with the suites of habitats outlined in Figure 3.14

and Table 3.9.  Since the PCA uses frequency data for all flow biotopes, these results

suggest that the classification system based on the three most predominant flow types

associated with each functional habitat provides an accurate representation of the

overall characteristics of the data set.  The only exception is the sequencing of moss

and rocks which is reversed in the PCA plot, with moss showing slightly stronger

correlations with faster flow types.  However, the overall characteristics of flow type

frequency distributions for these two habitats are almost identical: both habitats are

characterised by very similar proportions of ‘secondary’ flow biotopes (chute flow and

unbroken standing waves), reinforcing the suggestion in Section 3.6.2 that

amalgamation of these two habitats may be appropriate in the classification scheme.

ii) Agglomerative Hierarchical Cluster Analysis

As a means of objectively verifying the ‘similarity’ of the functional habitat ‘clusters’

identified by the PCA, HCA was performed on the frequency matrix.  HCA provides

an objective means of identifying groups of similar objects without the requirement for

an arbitrarily pre-defined number of clusters.  Choice of clustering methods, however,

is a relatively subjective practice and there are no universally accepted rules for

selection of methods.  However, average (or ‘weighted’) techniques focusing on pairs
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of objects with high similarity are often considered superior to simpler single-linkage

methods (Everitt and Dunn, 2001).

The hierarchical clustering process begins with each ‘object’ (in this case functional

habitats) as a separate ‘cluster’.  Clustering then proceeds through a number of steps,

merging pairs of functional habitats with the highest similarities until the similarity

matrix is reduced to dimensions of 2 x 2 (Davis, 2002).  Outputs take the form of an

agglomeration schedule, detailing the steps taking during the clustering process, and a

dendrogram (branched diagram) whose ‘distortion’ may be assessed through

computation of a cophenetic correlation coefficient.  The correlation coefficient

compares correlations derived from the dendrogram with actual correlations between

habitats identified from a similarity matrix to provide a measure of the distortion of

original relationships in the data introduced by imposing a hierarchical structure on the

data set (Everitt and Dunn, 2001).  Coefficients greater than 0.95 may be considered to

represent acceptable levels of distortion, whereas coefficients around 0.6 and 0.7 may

suggest that the data set is not characterised by a system of nested clusters (Rohlf,

1970).  HCA was performed on the frequency matrix in SPSS 14.0 using the average

linkage (weighted) within-group clustering method, which uses the Pearson correlation

coefficient as a measure of the similarity between pairs of objects.

The agglomeration schedule is provided in Table 3.10 and reveals that the pairs of

habitats associated with the most similar flow biotope frequency distributions were

gravel and macroalgae, followed by sand and submerged broad-leaved macrophytes.

Pairs with the next highest levels of similarity were then linked, connecting gravel

with submerged fine-leaved macrophytes and trailing vegetation.  Step six connects
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moss and rocks together, and seven links sand with emergent macrophytes.  At this

stage, correlation coefficients are still greater than 0.95 and therefore linkages may be

considered acceptable representations of the structure of the data set (Rohlf, 1970).

These linkages create an initial level of clustering in the dendrogram associated with

the highest levels of similarity (Figure 3.16).  Five clusters of functional habitats are

identified which show broad correspondence with the class subdivisions identified in

Section 3.6.2.  Moss and rocks, cobbles, and silt and floating-leaved macrophyte

clusters correlate strongly with relationships identified in Figure 3.14 and Figure 3.15.

However, gravel and trailing vegetation, and macroalgae and submerged leaved

macrophytes are combined to form a single cluster, masking the variations in flow

biotopes observed in section 3.6.1.  Fusion of these categories in the dendrogram may

reflect the near-equal proportions of rippled flow and smooth boundary turbulent flow

associated with these habitats, suggesting a potential amalgamation of classes 2A and

2B from Table 3.9.  Further field investigation would aid understanding of these

relationships.

Sand and submerged broad-leaved macrophytes form a different cluster to that

occupied solely by emergent macrophytes, exposing a different relationship to the

PCA which suggests emergent and submerged broad-leaved macrophytes are more

similar to each other than to sand in terms of flow type frequencies.  This reflects

some subtle variations in the frequency distributions of these habitats: sand and

submerged broad-leaved macrophytes show similarly low proportions of ‘secondary’

flow biotopes, whereas the secondary flow types of no perceptible flow and rippled

flow account for relatively high proportions of emergent macrophyte observations,
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Cluster Combined
Stage

Cluster 1 Cluster 2

Correlation
coefficient

1 G MA 0.989

2 SA MSB 0.989

3 SI MF 0.985

4 G MSF 0.984

5 G TV 0.980

6 BR M 0.975

7 SA ME 0.956

8 CO G 0.938

9 SA SI 0.926

10 BR CO 0.839

11 BR SA 0.699

Table 3.10 Agglomeration schedule for Hierarchical Cluster Analysis on
flow type and functional habitat frequency matrix.

                      Rescaled Distance Cluster Combine

        0         5        10        15        20        25
    +---------+---------+---------+---------+---------+

CASE
           G   ��
          MA   ��
         MSF   ����������
          TV   ��       �����������������
          CO   ����������               �������������������������
          BR   ��������������������������                       �
           M   ����                                             �
          SI   ������������                                     �
          MF   ��         ���������������������������������������
          SA   ������     �
         MSB   ��   �������
          ME   ������

Clustering level: 1 2 3

Figure 3.16 Dendrogram presenting the results of the hierarchical cluster
analysis on functional habitat and flow type frequency data.  Dotted lines
are superimposed onto the dendrogram to highlight the two principal levels
of clustering which correspond to the classes and subclasses identified in
Table 3.9.
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despite overall dominance of smooth boundary turbulent conditions (see Figure 3.11).

The dendrogram represents a nested hierarchy of clusters, however, and a second level

of clustering may be identified which corresponds accurately with classes one, two

and three presented in Figure 3.14.  This level of clustering is achieved through steps

eight and nine in the agglomeration schedule, and since correlation coefficients are

still above 0.9 at this stage, the integrity of relationships may be considered relatively

strong.  The third level of the hierarchy is associated with steps ten and eleven in the

agglomeration schedule, both of which show significantly higher levels of distortion

suggesting that these clusters may be disregarded since relationships between habitats

are not consistent with the hierarchical structure imposed on the data.

3.7 DISCUSSION AND CONCLUSIONS

The review and appraisal of mesoscale habitat concepts presented in the first sections

of this chapter highlight the theoretical and methodological issues associated with the

application of the ‘physical biotope’ concept to the characterisation of instream

habitat.  It is suggested that the complex relationships between channel hydraulics and

morphology cast some doubt upon the integrity of using surface flow types to identify

physical biotopes.  This, in conjunction with the limitations of certain hydraulic

parameters, may partially explain the relatively limited success of biotope

characterisation attempts to date.  Furthermore, previous approaches fail to explicitly

address the ecological function of physical biotopes, focusing instead on hydraulic

characterisation.
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Although a need remains for rigorous field-testing of the concept, ‘functional habitats’

potentially offer a practical means of adding biological value to physical biotopes.

While preliminary investigations have identified that functional habitats demonstrate

certain ‘preferences’ for velocity-depth combinations and surface flow types, only

tentative connections have been made directly between functional habitats and

physical or flow biotopes.  The second part of this chapter provides a comprehensive

investigation of the relationships between functional habitats and surface flow types

using an extensive national data set derived from the EA’s RHS database in an attempt

to explore the ecological validity of physical biotopes.

Examination of the national distribution of habitat features emphasises that certain

flow types and functional habitats occur more commonly than others, reflecting the

natural organisation of habitat along the river continuum (Vannote et al., 1980), where

certain habitats are restricted to headwater locations while others occur throughout the

catchment.  This is supported by the macroscale environmental ‘preferences’ of flow

types and functional habitats which show some distinctions between lower energy

lowland reaches and higher energy upland environments, although the majority persist

in a range of environmental contexts.  ‘Slower’ flow types are generally associated

with tighter ranges of altitude and slope conditions while ‘faster’ flow types show

larger ranges associated with a variety of environmental contexts.  This may reflect the

differences between biotopes associated with bedrock (falls, steps, pools) where

channel morphology is determined principally by geologic controls, and those

associated with alluvial channels (riffles, pools, runs, glides) where morphology

depends upon sediment supply and transport capacity (Wadeson, 1994).
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While the principal data set deals only with semi-natural reaches, a limited assessment

of mesoscale habitat response to physical degradation can be made by comparison

with heavily modified reaches.  Overall, channel modifications appear to induce a

slowing of flow conditions and fining of channel substrates, consistent with known

physical effects of modifications such as impoundments, abstraction and

channelisation.  Vegetative habitats, however, reveal a more complex response.  Most

categories show some increases in cover, but this is unlikely to reflect increases in

biodiversity since the distributions are generally dominated by large frequencies of

specific habitats which are able to tolerate harsh environmental conditions but provide

fewer microhabitats for biota and may raise instream biomass to nuisance levels.

The frequency of co-occurrence of functional habitats and flow types was assessed to

identify whether direct links can be made between the two phenomena.  Distributions

reveal a relatively complex picture at first glance, which is attributed to a combination

of methodological limitations, such as survey resolution and data types (McEwen et

al., 1997; Padmore, 1997a), and theoretical considerations, such as the influence of

extraneous factors on habitat distributions.  However, some broad trends are apparent

which may be considered relatively strong in the context of these issues.  Exploration

of frequency data and the application of two contrasting multivariate statistical

techniques reveal that three principal flow types cumulatively account for the majority

of variation for each flow type.  Functional habitat ‘preferences’ for certain flow types

are organised into assemblages of flow types indicative of step-pool, riffle-pool and

glide-pool reach-scale morphologies, providing some level of ecological validity to the

biotope concept.  Within these, however, habitats show certain preferences for rougher
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or more tranquil zones suggesting some sub-reach scale variation.  The classification

shows broad correlation with functional habitat preferences for different velocity and

depth combinations (Kemp et al., 1999), with a similar flow type data set obtained

from a subset of RHS (Newson et al., 1998a), and with the results of field surveys at

finer spatial resolutions (Harper et al., 2000).

Figure 3.17 presents a conceptualised nested hierarchical system of mesoscale habitat

encompassing morphological, hydraulic and biologically functional habitat

components within the context of wider macroscale environmental preferences of flow

types and habitats derived from the database.  Reach-scale morphological units and

their respective flow type assemblages are organised along an energy gradient from

high to low altitude and slope conditions in conjunction with distance from the river

source.  Within these assemblages, suites of functional habitats show preferences for

hydraulically ‘rougher’ and more tranquil zones, although the low amplitude of steps

and alternating pools in step-pool cascades (Bisson et al., 1981) suggests that moss

and rocks will be relatively ubiquitous within such reaches.

The classification emphasises the strong interrelationships between flow, substrate and

vegetation, raising the issue that minerogenic and vegetative functional habitats are

influenced by different extraneous factors and are associated with significantly

different spatial distributions, perhaps suggesting that they should be recorded and

analysed as separate habitat features.  The classification requires further field

validation, particularly at smaller spatial scales to account for the shortcomings of

RHS survey resolutions and in order to explore microscale habitat structure.  These
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Figure 3.17 Hierarchical linkages between channel morphology, surface flow types and functional habitats in the
context of wider macroscale environmental variables.
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issues are addressed in the following chapters which undertake an intensive analysis of

mesoscale and microscale physical habitat at selected field sites.

While the analysis highlights some limitations of RHS output data, these must be

viewed in the context of the low-cost and high geographical coverage such surveys

afford, and their ability to explicitly record rare and unique factors and levels of

human modification allowing evaluation of the quality status of national water

resources.  Alternative methods based on more detailed field surveys form the focus of

Chapter 4.
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CHAPTER 4 A FIELD APPLICATION OF MESOSCALE HABITAT
CONCEPTS: THE RIVER TERN

4.1 CHAPTER SYNOPSIS

This chapter explores the mesoscale organisation of physical and biological habitat

within two contrasting reaches of the River Tern, Shropshire.  A range of habitat

parameters reveal characteristic ‘patch’ and ‘ribbon’ structures at each site.  These are

associated with variations in heterogeneity of the physical structure of the channel, and

emphasise the significance of bedform controls on habitat organisation.  The hydraulic

characteristics of different physical biotopes and surface flow types form a continuum

from more ‘tranquil’ to ‘rougher’ environments but fail to demonstrate distinct

hydraulic ranges.  However, an objective multivariate analysis of velocity, depth and

substrate identifies physical habitat clusters which are associated with variations in

velocity and depth distributions and are consistent with the location of visually

identified physical biotopes.  Analysis of the output data from rapid field assessments

highlights the influence of both survey resolution, hydrological context and seasonal

timing of surveys on results in terms of both ‘physical’ and ‘functional’ habitat units.

4.2 EXPLORING PHYSICAL HABITAT AT THE MESOSCALE

4.2.1 Research challenges

Results presented in Chapter 3 suggest that relationships between physical biotopes,

surface flow types and functional habitats exist at relatively broad scales.  However,

several research challenges must be addressed before the physical biotope can be

considered a physically robust and ecologically functional unit of stream habitat.
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The objective identification of biotopes still represents a significant challenge for field

surveys, partly resulting from confusion over terminology (Wadeson, 1994).  Chapter

3 also outlined some concerns regarding the use of surface flow types as a means of

physical biotope identification, but these issues require further examination in order to

identify the effects of complex morpho-hydraulic relationships on survey outcomes.

Furthermore, while it has been acknowledged that coarser survey resolutions neglect

more marginal habitats, the effect of survey scale on various other biotopes remains to

be explored.

Further examination of the hydraulic character of physical biotopes will improve

understanding of their ecological purpose in terms of the type of habitat they create.

However, most studies to date have identified large levels of overlap in hydraulic

ranges between different biotopes, and furthermore, the discriminatory ‘success’ of

different hydraulic parameters varies according to the combinations of biotopes tested

(e.g. Jowett, 1993).  These issues can be explored using the two complementary

methodological approaches outlined in Chapter 3 (Section 3.2.3): (i) hydraulic

characterisation of visually-identified units and; (ii) objective statistical identification

of biotopes from high resolution hydraulic surveys.

Most contemporary physical biotope studies focus on variations in velocity and depth

between biotopes but few incorporate channel substrate as a hydraulic variable despite

its strong influence on the distributions of aquatic macrophytes, invertebrates and fish

(Hynes, 1970; Gorman and Karr, 1978; Fox, 1996; Beisel et al., 2000).  Furthermore,

the interrelationships between flow, substrate and vegetation types identified in
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Chapter 3 require field testing at smaller spatial scales in order to explore the extent to

which functional habitats may be ‘mapped’ onto physical biotopes.

This chapter comprises a series of field ‘tests’ on two contrasting reaches of the River

Tern, Shropshire (see Chapter 2, Section 2.3 for site details) in an attempt to address

some of these outstanding challenges and improve the conceptual basis of the physical

biotope.

4.2.2 The field studies

Rapid field surveys of hydraulic parameters, substrate and channel vegetation types

were carried out at relative ‘low’ and ‘intermediate’ flow stages (see Chapter 2,

Section 2.3.5 for discharges and exceedences).  Sampling resolution and study reach

length were designed in an attempt to allow maximum data capture under steady

discharge conditions.  In practice, each survey took a little over one day to complete,

but stage variations over the duration of each surveying period may be considered

negligible.

The field surveys addressed the following key questions:

1. Do physical biotopes correspond to the sub-reach scale organisation of

bed topography and surface flow characteristics?

2. How does the spatial resolution of habitat assessments influence survey

outcomes?

3. Can functional habitats be ‘mapped’ onto physical biotopes at the sub-

reach scale?

4. Can physical biotopes be adequately described by simple hydraulic

parameters such as velocity, depth and substrate?
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i) The field survey methods

Surveys were carried out according to a grid system, in order to avoid the subjective

placement of sample transects according to visually identifiable hydraulic variation

(Padmore, 1997a).  A rectangular grid was devised with dimensions of 2 m in the

streamwise direction by 1 m cross-stream, in order to ensure significant cross sectional

detail and capture several morphological transitions (Figure 4.1).

ii) Measured parameters

Each cross sectional transect was subdivided into 1 m2 ‘cells’ (Figure 4.1).  At the

centre of each cell, point measurements were made of water depth and three-

dimensional current velocity at 0.6 of the water depth from the surface.  Surveying

began at the downstream extent of the study reach and continued upstream

systematically in order to minimise bed disturbance (Wright et al., 1981).  Across each

transect, measurements were taken 0.5 m from the waters edge at the left bank and

then at 1 m intervals across the channel, ensuring that an additional measurement was

taken 0.5 m from the right bank if not captured automatically.

Velocity was recorded using a SonTek/YSI Flowtracker handheld Acoustic Doppler

Velocimeter (ADV®) with a 3D side-looking probe sampling at 1 s intervals and

calculating a 30 s average for streamwise (U), cross stream (V) and vertical (W)

velocity components.  The ADV probe is designed to provide two-dimensional

functionality (U and V) to water depths as low as 0.02 m, but in practice, irregular bed

material and microtopography generally restricted two-dimensional measurements to

water depths greater than 0.07 m and three-dimensional measurements to depths

greater than 0.11 m.
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(a) Reach survey

•Physical biotope
•Surface flow type

(b) Transect-level

1m

1m
•3D velocity
•Water depth

•Surface flow type
•Dominant substrate
•Vegetation cover

(c) Cell-level

Figure 4.1 (a) Distribution of velocity sample points throughout the reach, demonstrated for Napely Lodge Farm, which are sub-divided into
cross sectional transects in order to assess physical biotopes and surface flow types at the transect-level.  Each transect is further sub-divided
into 1m2 cells in order to sample velocity and depth and record surface flow types, dominant substrate and vegetation cover.
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Acoustic Doppler velocimetry uses the Doppler shift principal to measure the change

in frequency between an acoustic signal which is transmitted from the probe, reflected

by particulate matter within the sampling volume, and subsequently detected by each

of the three receivers (SonTek/ YSI Inc, 2002).  The calculated speed at which

particulate matter travels through the sampling volume is considered a safe

representation of the water velocity, although the signal-to-noise ratio (SNR) provides

an indication of measurement reliability.  Acoustic Doppler velocimetry has the

advantage, over conventional electromagnetic current meters (EMCMs), of velocity

measurement in three dimensions.  Since the sampling volume is remote from the

sensor head, it is also associated with reduced flow interference, although ADV

representation of turbulent flow structures has yet to be investigated fully (Lane et al.,

1998).  Handheld velocimeters do, however, present challenges for flow gauging at

high unwadable discharges which are often of interest to river scientists (Brookes,

1995b).  Velocity was therefore measured in a second way using a remote ADV

velocity profiler for comparison with the two main FlowTracker velocity surveys.  The

SonTek/YSI ‘RiverCat’ integrated catamaran system (Plate 4.1) provides high-

resolution velocity and depth ‘profiles’ and may be towed across the channel, offering

a potential solution to velocity measurement at high discharges.  The RiverCat uses a

‘bottom-track’ system to measure the speed and direction of the vessel and

subsequently correct the straight line distance across a channel cross section (SonTek/

YSI Inc., 2005).  Three-dimensional velocity is measured within ‘cells’ throughout the

water column and used to calculate a discharge value for each vertical ‘profile’ and for

the entire cross section (Figure 4.2).  A 3.0 MHz RiverSurveyor System was hired

during April 2005 in order to field-test the sampling capability and data output.  The

system was tethered to a line and towed across the channel, recording velocities at a



116

(a)           (b)

   
Plate 4.1 Field deployment of the RiverCat velocity profiler in March 2005.

Profile

Cell

Figure 4.2 RiverCat sampling structure for a channel cross section.
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 cell resolution of 0.15 m.  A ‘blanking distance’ of 0.2 m below the sensor head is

excluded from the profile, and therefore a minimum depth of 0.35 m was required to

produce a profile with one ‘valid’ cell.

iii) Biotope and habitat classification

Each transect was assigned to a physical biotope category (riffle, pool, run or glide)

based on a visual assessment of flow and substrate character following the RHS field

guidance (Environment Agency, 2003) and the Bisson et al. (1981) classification

(Table 4.1).  The ‘dominant’ surface flow type for each transect, often used as a proxy

for physical biotopes, was identified separately according to the definitions provided

in Chapter 3 (Table 3.1) in order to evaluate the robustness of connections between

morphology and flow types.

However, since transect-level classification of flow types and physical biotopes can

overlook important marginal or secondary biotopes which may be of ecological

importance (see Chapter 3, Section 3.2.2), each 1 m2 cell within a transect was

assigned to a flow type category individually to supplement the transect-level

classification (Figure 4.1).  Minerogenic and vegetative habitats were recorded

separately for each 1 m2 cell according to categories in Table 4.2 and 4.3 in order to

capture the character of the substrate within cells where vegetation cover exceeded

100%.
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Physical biotope Description

Riffle

Shallow water depths
Moderate to swift flowing
Moderate to pronounced turbulence
Gravel, pebble or cobble substrate
Distinctly disturbed water surface

Run
Intermediate water depths
Generally fast-moving water with rippled surface but no other major features of turbulence
Often associated with a high velocity feature (e.g. riffle or rapid) upstream or a narrowing of the channel.

Glide
Intermediate water depths
Water moves effortlessly as smooth flow; only careful inspection reveals the turbulence.
Associated with fine substrates and bedrock.

Pool
Deep water depths
Generally slow velocities, and back currents may be present
Should occupy most of the wetted width

Table 4.1 Descriptions used to classify physical biotopes observed on the River Tern from Environment Agency (2003) and Bisson et al.
(1981)



119

Substrate Code Notes

Rocks BR
Includes boulders and bedrock
> 256 mm

Cobbles CO >64 mm

Gravel G > 2 mm

Sand SA > 0.125 mm

Silt SI < 0.125 mm

Table 4.2 Substrate categories used for field surveys, from
Kemp et al. (2000)

Functional habitat Code Notes

Roots R

Trailing vegetation TV

Marginal plants MP

Leaf litter LL

Woody debris WD

Emergent macrophytes ME

Floating-leaved macrophytes MF

Submerged fine-leaved macrophytes MSF
Includes fine and dissected
leaves

Submerged broad-leaved macrophytes MSB Includes strap-like leaves

Mosses M

Macroalgae MA

Table 4.3 Functional habitat categories (organic) used for field
surveys, from Kemp et al. (2000)
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4.3 IDENTIFICATION OF PHYSICAL BIOTOPES

This section addresses the first research question posed in section 4.2.2 by exploring

different methods of biotope identification using assessments of morphology and

surface flow types.  Quantitative methods, based on statistical variation in bed

topography and fine sediment distributions, are employed in addition to more

subjective assessments of surface flow types.  This allows some evaluation of the

complexities of the relationships between surface flow character and underlying

morphology.

4.3.1 Morphological assessments

i) Topographic identification of biotopes

Topographic data for each reach were examined in order to identify whether physical

biotopes at the study sites can be defined by undulations in bed topography (see

Section 3.2.3).  However, even along short reaches, the longitudinal gradient of the

channel can exert a strong influence on bed elevations, often amplifying topographic

lows in downstream sections and topographic highs within upstream sections of a

reach.  In order to improve the detection of sub-reach scale fluctuations in bed

topography, the longitudinal gradient was extracted by fitting linear trends to the

topographic data.  While second or third order polynomial trends may be required for

longer stream segments to account for the logarithmic nature of river long profiles,

linear trends are generally considered suitable for short reaches (Richards, 1976).

Linear trends were fitted to the extracted channel centreline and thalweg of each site

for comparison (Figure 4.3).  While Napely Lodge Farm conforms with the expected
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Figure 4.3 Raw channel centreline and thalweg elevations fitted with linear regressions for (a) Oakley Hall and (b) Napely Lodge Farm.  (c) and
(d) plot the detrended residual elevations in which riffles may be interpreted as positive values and pools as negative values after Richards
(1976).  For Oakley Hall bed elevations show a linear increase downstream, contrary to the expected trend of reductions in elevation
downstream, reflecting siltation as a consequence of ponding of flow by debris at the downstream extent of the reach.
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pattern of longitudinal decreases in bed elevations with distance from the river source,

Oakley Hall shows the reverse relationship, with an overall increase in bed elevations

downstream.  This may simply reflect a topographic undulation superimposed on the

logarithmic long profile of the river, but in this case it may alternatively expose the

effects of ponding by debris dams further downstream, resulting in siltation at the

downstream end of the study reach.  Figure 4.3c and d plot the elevation residuals

from the reach-scale trends for thalweg and centreline profiles.  Negative residuals

from the reach-scale trend suggest topographic lows (pools) while positive residuals

suggest topographic highs (riffles; Richards, 1976).  Pseudo-cyclic oscillations in bed

topography along the reach are more pronounced at Napely Lodge Farm where similar

proportions of riffles and pools were observed (see Section 2.3.6) and the amplitude of

variations in bed topography is more marked.  At Oakley Hall, two pools are

identifiable at Eastings of approximately 5000 and 5050, but topographic highs are

less obvious, reflecting the dominance of glides rather than riffles in intra-pool

distances.

Residuals from the centreline trend were used to create Triangulated Irregular

Networks (TINs) in ArcGIS 8.3, allowing visualisation of reach-scale topography.

TINs create topographic surfaces by connecting sample points using a mesh of

triangles.  Linear interpolation is then performed along the edges of triangles, but the

original data collected at sample locations are retained in the mesh (Petrie, 1990).

While original triangulation procedures were associated with excessive execution

times and were susceptible to error, these issues have since been overcome and

Delauney triangulations using ‘Thiessen’ polygons are now a popular choice of

algorithm for geomorphological applications (Moore et al., 1993; Lane et al., 1994).
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The topographic visualisations are presented in Figure 4.4 (a and b) and can be

compared to the distribution of physical biotopes identified visually in the field using

the definitions in Table 4.1 (highlighted by rectangles).  At Oakley Hall, the two scour

pools are clearly identifiable from TIN visualisations, and two smaller areas of

localised scour within the main glide zone are associated with protruding tree roots

and a fallen tree.  Glide, riffle and run areas are characterised by different levels of

cross sectional variation in elevations.  Within the run there are clear differences

between higher elevations at the channel margins and lower values along the

centreline; within the glide, bed elevations are more patchy; and within the riffle,

scour is greater towards the right bank.  At Napely Lodge Farm, residual elevations

clearly identify distinctive pool and riffle features, and cross sectional variation in

elevations appears less significant.

Figure 4.4c and d classifies residual elevations into positive (riffle) and negative (pool)

groups in order to investigate whether such simple topographic classifications of

physical biotopes correspond with visually identified features (rectangles).  At Oakley

Hall the ‘pool’ class (residual elevation < 0 m) extends longitudinally through all

physical biotopes while the ‘riffle’ class (residual elevation > 0 m) is generally

associated with channel margins, reflecting the greater cross-sectional, rather than

longitudinal, variation in physical structure.  At Napely Lodge Farm, elevations

demonstrate a more ‘patchy’ distribution, suggesting that longitudinal variation

exceeds cross sectional variation.  Pool and riffle/ run areas are clearly distinguished

by topography, but some localised scour within riffle and glide units is classified as

‘pool’.
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Figure 4.4 TIN visualisations of residual channel elevations for (a) Oakley Hall and
(b) Napely Lodge Farm.  In (c) and (d) elevation residuals are classified into positive
and negative values, and in (e) and (f) a ‘transitional’ class (-0.1-0.1 m) is incorporated
to account for transitional glide and run biotopes.  Rectangles mark the physical
biotopes identified visually in the field at low flow stage.
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Since transitional ‘run’ and ‘glide’ biotopes have been associated with certain

hydraulic characteristics (Jowett, 1993) and are therefore considered to provide a

specific type of habitat for aquatic biota (Bisson et al., 1981), the topographic

classification was adjusted to include an additional ‘transitional’ biotope class.  Figure

4.4e and f plot visualisations for the adjusted classification whereby ‘pools’ are

described by residuals lower than -0.1 m, ‘transitional’ run or glide units by residuals

between -0.1 and 0.1 m and ‘riffles’ by residuals greater than 0.1 m.  For Oakley Hall,

this results in much of the channel being classified as ‘transitional’, a relatively

accurate representation of the observed morphological structure which is dominated by

glides.  In contrast, at Napely Lodge Farm pools are clearly identifiable, the highest

elevations are principally associated with riffles, and most glide zones are classified as

‘transitional’.

Residual elevations from the TIN surfaces were then linearly interpolated to a regular

2 m2 grid in order to calculate the approximate proportions of ‘riffle’, ‘transitional’

and ‘pool’ topographic classes at each study site.  These data are presented in Figure

4.5 for comparison with the proportions of the surveyed channel area associated with

different physical biotopes as identified visually at low flow.  Visual observations of

‘run’ and ‘glide’ biotopes are amalgamated into a ‘transitional’ class for comparability

with grid data.  The proportions of the channel occupied by the different topographic

classes for the grid data are very similar to visual observations of physical biotopes at

low flow stage.  However, Figure 4.5e demonstrates that discrepancies between visual

observations and interpolated grid classifications are more significant in terms of

percentage change within riffle and pool biotopes, which occupy a smaller proportion

of the channel area compared to the transitional class.
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derived from interpolated topographic residuals at each site, which can be compared to
those visually identified at low flow stage (c and d).  (e) plots the difference (%
change) between visual surveys and gridded residual elevation data derived from
TINs.
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The proportion of the channel area occupied by each biotope class also varies between

the two study sites.  The ‘transitional’ topographic class accounts for 70% of the

channel area at Oakley Hall compared to 50% at Napely Lodge Farm, although both

sites are characterised by a significantly higher proportion of transitional biotopes

compared to the 11% observed by Bisson et al. (1981) for North American streams.

Both interpolated grids and visual survey data suggest that a higher proportion of the

channel area is occupied by pools at Oakley Hall, and by riffles at Napely Lodge

Farm, reflecting the ponding of flow at the former and a more typical pseudo-cyclic

riffle-pool structure at the latter.  Thus, not only do different physical biotopes occupy

different proportions of the channel area, but these proportions vary between sites of

different habitat ‘quality’ (see Section 2.3.6).  This has implications for rapid habitat

quality assessments such as RHS, which does not record biotope proportions,

(Environment Agency, 2003) and for the resolution of such surveys, particularly

regarding the spacing of sample transects, since the probability of capturing different

biotopes using a stratified sampling strategy will vary between sites.

ii) Spatial organisation of bed topography

The spatial organisation of bed topography within a reach can be explored statistically

by calculating the semivariance.  Bed topography represents a spatially continuous or

‘regionalised’ variable whereby the elevations of samples closer together are more

similar than for those located further apart (Davis, 2002).  The semivariance can be

used to describe the nature of this spatial dependence by comparing the characteristics

of pairs of samples located at various distances apart:

∑
−

+−= hn

i hii nxxh 2/)( 2γ     Equation 4.1
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Where xi represents a measurement of the regionalised variable (bed elevation), X,

taken at location i, xi+h is another measurement take h intervals away, n is the number

of samples and n-h is the number of comparisons between pairs of points.

The experimental semivariogram is used to express the average semivariance for

successive lag intervals of distance between samples, and is associated with a

characteristic form (Figure 4.6).  Samples located progressively further apart become

less similar (associated with increasing semivariance) until at some point the variance

stabilises (at the ‘sill’).  The ‘range’ refers to the distance at which the sill is reached

and reflects the spatial range over which the variable exhibits statistical variation

(Clifford et al., 2002b).  Failure of the semivariogram to pass through the origin is

termed the ‘nugget effect’ and suggests that significant variation in the variable occurs

over distances shorter than the sampling interval.  Semivariograms were computed for

bed elevations using a lag width of 2 m (approximating the sampling interval) in

Surfer 8 (Golden Software Inc.).  Semivariograms were plotted for 20 lags (a distance

of 40 m) following Clifford et al. (2002a) in order to incorporate several

morphological transitions and avoid introducing error associated with low sample

numbers at higher lags.

Figure 4.7 presents the semivariograms for bed topography at each site.  A ‘nugget

effect’ is identified at both sites, suggesting that significant variation occurs at scales

smaller than the average sampling interval (< 2 m), reflecting the influence of

microtopography.  Oakley Hall is associated with higher overall semivariance, which

may be associated with the higher cross sectional variation in bed elevations observed

in Figure 4.4a.  In contrast, Napely Lodge Farm demonstrates a stronger spatial
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dependence of topography and a reduction in semivariance at a lag distances between

20 m and 30 m.  This distance approximates the spacing of riffles and pools at Napely

Lodge Farm (see Figure 4.5), suggesting a more organised bed topography which is

strongly related to the occurrence of physical biotopes.

iii) The distribution of fine sediment

Accumulations of fine sediment can create more localised variations in bed

topography superimposed onto the reach-scale undulations in bed elevations

associated with the positioning of bedforms.  Gravel-bed channels commonly contain

fine sediments within the voids of framework gravels, but where the supply of fines

exceeds the storage capacity of the voids, fine sediments can occur in surficial patches

(Lisle and Hilton, 1992).  While this has been noted particularly for pools (Lisle and

Hilton, 1999), the high volumes of fine sediment derived from the sandstone geology

underlying the upper Tern catchment create large patches of fine sediment which

constitute a significant component of the bed structure throughout the study reaches.

Fine sediment distributions influence the ecological condition of the hyporheic zone

with implications for fish spawning and provision of refugia for invertebrates (Dole-

Olivier et al., 1997; Matthaei et al., 1999), but have so far been largely overlooked in

biotope studies.

In order to quantify the spatio-temporal distribution of fine sediment distributions at

the two study sites, four ‘pin-surveys’ of fine sediment depth were undertaken over a

12 month period following the methodology of Lisle and Hilton (1992).  Three

locations across each transect within the sampling grid were sampled for fine sediment

depth, incorporating points 0.5 m from each bank, plus channel centreline locations.

At each sample point, a 3 mm diameter copper pin was pushed into the riverbed with
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consistent force until abrupt changes in resistance were encountered as the pin came

into contact with the underlying coarse substrate (Lisle and Hilton, 1992).  The depth

of fine sediment was recorded as the distance between the surface of the channel bed

and the first contact with coarse substrate.

Figure 4.8 plots the frequency distributions of fine sediment depth for each survey at

each field site.  The deepest fine sediment accumulations are observed at Oakley Hall,

where over 40% of samples for all four surveys are associated with sediment depths

greater than 0.3 m and the deepest recorded accumulation was over 1.0 m.  At Napely

Lodge Farm, the steeper gradient imposes a greater restriction on the accumulation of

fine sediments.  Less than 10% of samples are associated with values greater than 0.3

m and sediment depths do not exceed 0.6 m.  It is also worthy of note that most of the

deepest fine sediments were not associated with pools as some studies suggest (Keller,

1971; Lisle and Hilton, 1992), but instead were generally associated with

accumulations of silt and sand at channel margins and within glides.

The fine sediment frequency distribution for Oakley Hall is bi-modal for the two

summer surveys (August 2004 and July 2005), suggesting a higher proportion of

deeper sediment accumulations in the summer months.  This may reflect the lower

base flows and reduced frequency of flood events during summer months (see Section

2.3.5) resulting in lower levels of bed disturbance and scour of fine sediments.

However, the seasonal growth of aquatic macrophytes is also likely to increase

sediment deposition through a combination of direct physical trapping of particles and

by increasing in frictional resistance, leading to reductions in flow velocity and a
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Figure 4.8 Frequency distributions for fine sediment depth at each site for each of the
four pin surveys.



133

higher fall-out rate of particles from suspension (Gaudet, 1974; Sand-Jensen, 1998).

Since bimodal summer distributions are observed only at Oakley Hall, where aquatic

vegetation was more abundant (see Section 4.4), this factor seems significant in

increasing summer sediment depths.  This interaction between vegetation and the

composition of the bed material introduces an element of seasonality to physical

habitat organisation, creating temporal variability at timescales greater than the

discharge-dependency of morphohydraulic behaviour, and emphasising the complexity

of relationships between the biotic and abiotic components of the instream

environment.

In order to explore the spatial patterns of accretion and degradation of fine sediments

at the study sites, TIN visualisations of the change in fine sediment depth between

sequential surveys were produced in ArcGIS 8.3 (Figure 4.9).  Positive values

represent accretion of fine sediment (‘fill’) and negative values degradation (‘scour’).

Patterns of scour and fill are relatively patchy at both sites, revealing a complex

‘mosaic’ structure similar to observations by Matthaei et al. (1999) for New Zealand

rivers.  However, closer inspection reveals some suggestion of a reversal in scour and

fill between surveys: areas dominated by accretion for one survey are often associated

with degradation during the subsequent period and vice versa.

Figure 4.10 plots the cumulative scour and fill for the entire study reach (a and b) and

for each physical biotope as identified visually at low flow (c and d) in order to

quantify this feature for the sampled channel area.  Each survey is associated with

near-equal proportions of scour and fill for the entire study reach at both sites,
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suggesting that sediment supply is approximately in equilibrium with losses

downstream.  However, individual physical biotopes show some variations between

surveys and the nature of these variations differ between sites.  At Oakley Hall, both

riffle and pool fill during the autumn/winter period (August 2004 – January 2005), and

scour during the spring/summer period (April– July 2005) while very little change is

noted for winter/spring (January - April 2005).  The largest changes in fine sediment

depth are associated with the glide which is characterised by cumulative scour in

autumn/winter and spring/summer compared to cumulative fill in winter/spring.

Interestingly, this pattern associates cumulative scour with the season of highest

macrophyte cover which may be expected to induce fill through sediment trapping.

However, significant sediment accumulations may be highly localised within and

around vegetation stands (Sand-Jensen, 1998), which is reflected in the biomodal

summer distributions in Figure 4.8.  Some deep, but localised accumulations may

therefore persist around vegetation despite scour over large portions of the channel

associated with the influence of flood events within the inter-survey period (of which

there are two between April and July 2005 - see Section 2.3.5).

At Napely Lodge Farm there is greater evidence of systematic seasonal reversals in

scour and fill patterns between riffle and pool.  In the autumn/winter period the pool

fills while the riffle scours; winter/spring is characterised by the reverse relationship;

and spring/summer shows a return to the original state.  Interpretation of the causal

processes associated with these patterns is limited since shorter-term change within

these broader periods (for instance in response to individual flood events) is unknown.

However, the results do suggest a seasonal variation in the sorting of fine sediments



137

between riffle and pool units similar to patterns identified for individual flood events

(Keller, 1971) which may relate to the hydrological regime.

The dynamics of fine sediments within the study reaches highlight the complex array

of factors influencing sediment transport at the mesoscale.  In particular, the

combination of seasonal growth of instream vegetation and both seasonal and event-

specific hydrological variation introduces a temporal variability in physical habitat

intermediate between the stage-dependency of biotope hydraulics and longer-term

variations in channel morphology and planform.

4.3.2 Surface flow type assessments

Surface flow characteristics are often used as a proxy for physical biotopes (Padmore,

1997a), but deviations from the ‘typical’ relationships identified between the

phenomena can introduce significant error to field studies (see Chapter 3, Section

3.2.2).  In an attempt to examine the nature of these variations, Figure 4.11 explores

the occurrence of different flow types, assessed at both the ‘transect-level’ and the

‘cell-level’ (see Section 4.2.2) for different physical biotopes.

Several points are worthy of note.  First, for each reach and flow stage, each physical

biotope category is associated with at least two different flow types when assessed at

both scales, and most biotopes are associated with a larger range of flow types when

assessed at the cell level, suggesting significant cross sectional variations in

hydraulics.  However, while no single linkages between flow types and physical

biotopes are identifiable, a transition from predominance of ‘slower’ (no perceptible

flow, upwelling and smooth boundary turbulent flow) to ‘faster’ (rippled flow and
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Figure 4.11 Occurrence of surface flow types within each physical biotope for each site and flow stage assessed at the transect-level (a to d) and
the cell-level (e to h).  For flow type category codes, see Table 3.1 (p. 53).
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unbroken standing waves) flow types is observed from pool, to glide, to run, to riffle

biotopes.  This is more pronounced at Napely Lodge Farm compared to Oakley Hall,

suggesting that the amplitude of bedform structures (see Section 4.3.1) bears an

influence on the hydraulic characteristics of biotopes.

Second, different biotopes show different levels of conformity with the ‘characteristic’

relationships identified between physical biotopes and surface flow types at low flow

stages.  For pools, the ‘characteristic’ flow type, no perceptible flow, accounts for less

than 40% of observations when assessed at either scale.  The remaining observations

are associated with a combination of smooth boundary turbulent flow, upwelling and

rippled flow suggesting significant within-biotope hydraulic variation.  Furthermore,

the percentage area of pools occupied by no perceptible flow is reduced at the higher

flow stage as velocities increase through the pools and faster flow types become more

prominent.  In contrast, riffle areas reveal greater correspondence with the

‘characteristic’ unbroken standing waves flow type, although this is only the case for

Napely Lodge Farm since siltation of the riffle feature at Oakley Hall means it is more

glide-like in nature.  Glide biotopes show the strongest overall correspondence with

the ‘characteristic’ smooth boundary turbulent flow, particularly at Oakley Hall where

glides are more prominent features (Section 4.3.1).

Third, different physical biotopes demonstrate different responses to increasing

discharge in terms of surface flow types, and the same biotopes demonstrate different

responses between sites.  For instance, pools at Oakley Hall appear to become more

homogeneous in terms of surface flow types with increasing stage, while pools at

Napely Lodge Farm are characterised by a wider range of flow types.  This is likely to
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reflect the more subdued pool morphologies at Oakley Hall which mean that with

increasing stage, pools quickly become more glide-like.  At Napely Lodge Farm,

however, pools are more prominent features associated with larger channel bends, and

flow obstructions such as root wads resulting in an intensification of flow conditions at

the higher stage as backwater zones are enlarged and thalweg velocities increase.  At

Oakley Hall, the riffle feature is associated with a higher proportion of rippled flow

and a lower proportion of smooth boundary turbulent flow at the higher discharge,

suggesting an increase in velocities.  This is likely to result from a combination of

faster flows under the higher discharge and less resistance from vegetation cover

which was much more sparse in March than July within the riffle (See section 4.4).

Riffle areas at Napely Lodge Farm become associated with a lower proportion of

characteristic unbroken standing waves at the higher flow stage as rippled flow

becomes more prominent, reflecting the lower levels of relative roughness associated

with increased water depths.

These observations suggest that not only do physical biotopes within the two study

reaches frequently fail to conform with ‘characteristic’ flow type relationships, but the

response of surface flow type organisation to increasing stage varies both between

different biotopes, and between the same biotopes at different sites.  The adequacy of

surface flow types as proxy for physical biotopes is therefore likely to be dependent on

a range of site- and survey-specific factors including the amplitude of bedforms and

the resolution and hydrological context of the survey.



141

4.4 THE EFFECTS OF SURVEY RESOLUTION

This section addresses the second research question posed in Section 4.2.2 by

exploring the effects of survey resolution on output data in terms of both rapid visual

assessments and measured hydraulic parameters.

4.4.1 Surface flow types

Deviations from the typical relationships between physical biotopes and surface flow

types identified in the previous section may partly result from cross sectional

variations in hydraulics which are not accounted for by transect-level sampling

schemes (Padmore, 1998).  Figure 4.12 (a to d) plots the proportion of the surveyed

channel occupied by each surface flow type when assessed at the transect-level

compared to the cell-level.  Significantly, survey resolution has contrasting effects on

different flow types.

Some flow types account for a higher proportion of the channel area when assessed at

the cell-level compared to the transect-level, suggesting that these flow types are more

localised in nature and therefore are frequently overlooked by transect-level surveys.

No perceptible flow, for example, was frequently noted at channel margins, while dry

areas were associated with exposed sand ridges and chaotic flow with accumulations

of boulders and woody debris.  In contrast, the more frequently occurring flow types

(smooth boundary turbulent flow, rippled flow, and unbroken standing waves), occupy

a smaller proportion of the channel area when assessed at the cell level.  This reflects

over-estimation by transect-survey since flow types may occupy only 50% of the

channel width but are recorded as spanning the entire cross section.
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Figure 4.12 Percentage of surveyed channel area occupied by flow types when assessed at the cell-level compared to the transect-level for each
site and flow stage (a to d) and level of misclassification of cell flow types by the flow type assigned to the entire transect for each site and flow
stage (e to h).
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These observations suggest a ‘misclassification’ of cells by transect-level flow type

assessments, the nature of which varies between flow types (Figure 4.12).  For

example, smooth boundary turbulent flow is associated with the lowest levels of

misclassification suggesting that it often occupies the majority of a cross section.  No

perceptible flow, upwelling and chaotic flow are associated with the highest levels of

misclassification by transect-level survey, since they frequently occur as ‘marginal’ or

secondary flow types.  For some flow types, such as upwelling, the level of

misclassification varies with flow stage, suggesting that certain flow types become

more localised at different discharges, and therefore that survey outcomes will be

influenced by the interaction of survey resolution and hydrological context.

Figure 4.13 explores the combinations of cell-level flow types recorded ‘within’ the

different transect-level flow types in order to explore these variations in greater detail.

At each site, each transect-level flow type is associated with at least two, and generally

three different flow types assessed at the cell-level, reflecting the cross sectional

diversity of flow types.  Cross sectional complexity also appears to increase with

stage, where a larger proportion of cells are associated with flow types other than that

assigned to the transect as a whole.  Part of this complexity is associated with the

frictional effects of the banks which create small patches of no perceptible flow at

channel margins, providing important flow refugia for aquatic organisms.  Cells of no

perceptible flow are more common at the higher flow stage suggesting that rather than

being lost to faster flowing zones as discharge increases, some marginal zones may

increase due to the incorporation of bank irregularities within the wetted width.

However, this increase in habitat heterogeneity may be expected to decrease with

further rises in stage as marginal habitats are lost to faster flow velocities.
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(d) Napely Lodge Farm intermediate flow

Figure 4.13 Proportions of different cell types associated with each transect-level
flow type for each site and flow stage.  See Table 3.1 (p. 53) for flow type category codes.
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Figure 4.14 allows visual examination of the spatial organisation of surface flow types

using plots produced in ArcGIS 8.3.  The patterns observed are similar to those

identified for bed topography.  Longitudinal ‘ribbons’ of smooth boundary turbulent

and rippled flow follow the centreline at Oakley Hall indicating low levels of

streamwise variation compared to higher cross sectional variability associated with the

frictional effects of channel margins.  Napely Lodge Farm is again associated with a

‘patchy’ spatial organisation suggesting greater longitudinal variation in flow types

which corresponds broadly with the organisation of bed topography and physical

biotopes.

Visualisations also provide an indication of the changing ‘shape’ of flow types with

increasing stage.  When assessed at the cell-level, no perceptible flow is observed to

extend along the channel margins at the higher flow stage, a trend which is overlooked

by transect-level assessments.  At Napely Lodge Farm, areas of smooth boundary

turbulent flow contract with increasing stage, in conjunction with the longitudinal and

cross sectional expansion of rippled flow within glide, pool and riffle biotopes and

upwelling within the downstream pool.  Additionally, unbroken standing waves appear

to contract cross sectionally as marginal riffle areas are increasingly associated with

rippled flow.

These observations suggest that variations in ‘within-biotope’ heterogeneity and

response to increasing discharge mean that the accurate representation of field

conditions by rapid survey may vary between different biotopes according to a

combination of survey resolution and water level at the time of survey.
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Figure 4.14 Visualisations of surface flow types assessed at the transect level (a to d) and cell-level (e to f) for each site at each flow stage.
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4.4.2 Cross-sectional hydraulics

The previous section identified some significant cross sectional variations in surface

flow types, with implications for coarser resolution field surveys.  However, visual

assessments of surface flow types only allow broad inferences to be made regarding

underlying hydraulic conditions.  Measured hydraulic parameters were therefore used

in order to investigate the cross sectional variability in hydraulic behaviour within

different physical biotopes in more detail.

Figure 4.15 plots cross section-averaged streamwise velocity and water depth against

values measured within each individual cell for different physical biotopes at each site.

Overall, the deviation of cell-level hydraulics from the cross section average is

greatest at Oakley Hall for both velocity and water depth, reflecting the more

significant cross sectional variations in bed topography and flow character identified

in previous sections.  An increase in scatter with flow stage is noted for Napely Lodge

Farm, particularly for the velocity component consistent with the flow intensifications

noted in Section 4.3.2.  An intensification of velocity is observed for both positive

values (downstream flow), reflecting an increase in velocities throughout much of the

channel with flow stage, and for negative values (upstream flow) suggesting an

intensification of rotational circulations within pool backwaters.

In addition to these more general variations between sites, some variations in the cross

sectional hydraulic organisation of different physical biotopes are observed.  Glide

samples, for instance, are associated with the tightest distributions suggesting greater

cross sectional hydraulic homogeneity.  Riffles are associated with relatively tight

distributions in terms of water depth, but greater variation in velocities, reflecting the
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Figure 4.15 Comparison of cross section-averaged and cell-level streamwise velocities and water depths for each physical biotope at low and
intermediate flow stage for Oakley Hall (a to d) and Napely Lodge Farm (e to h).
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frictional influence of channel margins.  In contrast, pools are associated with a tighter

range of velocities but large cross sectional variations in water depth which

incorporate shallow silted margins and deep mid-pool zones.  Both of these

characteristics are more pronounced for Napely Lodge Farm where variations in bed

topography between physical biotopes are more marked (Section 4.3.1).

Cross sectional symmetry in velocity and depth characteristics may be examined for

selected cross sectional profiles for different physical biotopes in Figure 4.16.  The

simpler channel morphology at Oakley Hall is manifest in greater cross sectional

symmetry, particularly in terms of water depth.  Profiles at Napely Lodge Farm appear

less symmetrical with the exception of the riffle which is associated with relatively

high levels of cross sectional symmetry in both velocity and depth.  Surveys using half

channel width transects for purposes of time- and labour-efficiency (e.g. Kemp et al.,

1999) may therefore overlook significant habitat heterogeneity where cross sectional

asymmetry is pronounced.

‘Internal’ hydraulic complexity therefore appears to vary both in magnitude and nature

between biotopes, supporting the suggestion in the previous sub-section that the

effects of sampling resolution on the representation of field conditions will differ

between biotopes.

4.4.3 Velocity profiles

The RiverCat profiler was deployed during April 2005 under similar discharge

conditions to the ‘intermediate flow’ surveys conducted in March using the handheld

FlowTracker.  However, even at an ‘intermediate’ flow stage, many cross sections at
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Figure 4.16 Cross sectional velocity and depth profiles from selected transects within each physical biotope at Oakley Hall (a to d) and Napely
Lodge Farm (e to h).
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the River Tern study sites were too shallow for RiverCat profiling.  Where sampling

was possible, depths rarely permitted sampling at greater than the minimum of two

vertical cells required for data quality purposes (SonTek/ YSI Inc., 2005).

Additionally, where bank profiles were particularly shallow, data capture was

restricted to central channel areas due to reductions in water depths towards bank

locations.  This results in a skewing of the RiverCat data set towards higher water

depths and a consequent loss of the lower velocity samples representative of marginal

areas.  This is demonstrated in Figure 4.17 where velocity and depth frequency

distributions for each reach derived from RiverCat profiles are compared with data

collected using the handheld FlowTracker survey.

While the RiverCat appears unsuitable for sampling in narrow or shallow channels, the

equipment does allow very high resolution sampling in deeper channels and

incorporates a vertical dimension by sampling cells through the water column as well

as in the streamwise and cross stream directions.  Vertical and cross sectional velocity

variation can then be simultaneously examined for each profiled cross section.  Figure

4.18 demonstrates the type of visualisation possible using RiverSurveyor 4.30

(SonTek Software).  The small number of vertical cells captured limits interpretation,

but some qualitative information can be derived for different biotopes.  Pools, for

example, are associated with a higher velocity ‘core’ and some cross sectional

asymmetry in the depths and velocities of marginal areas.  This is particularly

significant for the Napely Lodge Farm pool which demonstrates a large, relatively

deep backwater zone towards the right bank (RB) and a shallower profile at the left

bank (LB).  Slower margins are also detectable within the two glide transects, but this

is less obvious for the riffles where faster velocities extend further towards the banks.
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Figure 4.17 Frequency distributions for water depth (a and b) and velocity (c and d)
for each site comparing data sets derived from the RiverCat with those obtained using
the Handheld FlowTracker.
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Figure 4.18 Selected RiverCat cross section profiles for physical biotopes at Oakley
Hall and Napely Lodge Farm (facing upstream).  White line represents the boundary
between measured and interpolated (near-bed) cells.
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These variations are explored more quantitatively for the pool at Napely Lodge Farm

in Table 4.4 and Figure 4.19.  Velocities derived from the individual cells visualised in

Figure 4.18 reveal a wide range of values and a high coefficient of variation (0.53)

emphasising the high levels of heterogeneity (Table 4.4).  Figure 5.19a compares

individual cell velocities to the mean for the entire cross section.  Over 60% of cells

fall beyond +/- 20% of the mean value, suggesting that section-averaged values will

not provide a representative description of hydraulics within the pool.  Furthermore,

vertical variation between cells within the same profile appears more significant

within the central part of the pool, compared to the margins reflecting the influence of

complex secondary circulations.

Figure 4.19b plots the cross sectional variation in velocity (as residuals from the cross

section mean) for cells closest to the water surface.  Even at the same relative depth

within the water column, variation in cell velocities with respect to the cross section

mean is significant.  Velocities fall below the cross sectional mean at channel margins

reflecting the frictional effects of banks, but also demonstrate some variability within

central channel areas associated with the thalweg and pool backwaters.  Thus,

assessment of ‘suitable’ habitat for a particular organism based on a single

measurement within a transect, or on spatially averaged values may therefore be

particularly problematic for the more ‘complex’ physical biotopes.

This type of velocity profiling represents a significant technological development of

direct relevance to biotope studies since it allows exploration of channel hydraulics in

three dimensions: streamwise, cross stream and vertical.  Most biotope studies

concentrate only on streamwise and cross stream variations in physical structure, but
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Statistics Velocity (ms-1)

Average 0.24

Minimum 0.07

Maximum 0.63

Range 0.56

Standard deviation 0.13

Coefficient of variation 0.53

Proportion of samples within 20% of mean 37%

Table 4.4 Velocity statistics for a single RiverCat cross section through the pool at
Napely Lodge Farm.
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Figure 4.19 (a) Velocity variation throughout the pool cross section with respect to the
section-averaged mean and (b) variation about the mean for velocities near the water
surface.
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high resolution velocity profiling may provide an efficient means of capturing

variation in the vertical dimension (through the water column) with the potential for

investigating the three-dimensional structure of different biotopes.

4.5 PHYSICAL BIOTOPES AND FUNCTIONAL HABITATS

Chapter 3 identified some broad correlations between functional habitats and physical

biotopes, providing some ecological validity to the biotope concept.  In the following

section, relationships between functional habitats and physical biotopes are explored at

finer scales in an attempt to identify whether functional habitats may be ‘mapped’ onto

physical biotopes.

4.5.1 Functional habitat distributions

The functional habitats identified by Harper et al. (1995) may be subdivided into

inorganic (substrate types) and organic (aquatic plants, and habitats associated with

riparian vegetation) categories.  Due to the ubiquitous nature of substrate and the more

localised spatial distribution of vegetation types, the two types of habitat were

assessed and analysed separately.

In order to explore the spatial distribution of minerogenic habitats in relation to

physical biotopes, visualisations of channel substrate were produced in ArcGIS

(Figure 4.20).  Substrate composition varies little between surveys for each field site,

highlighting the more temporally stable nature of minerogenic habitats compared to

the seasonal changes in vegetation cover.  At Oakley Hall, substrate types demonstrate

the same longitudinally homogeneous ribboning structure identified for bed

topography and surface flow types in previous sections, and do not reveal any
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Figure 4.20 Spatial distribution of channel substrate types (minerogenic functional habitats) for each site in March and July 2005.
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consistent associations with physical biotopes.  Channel margins are generally

characterised by silt, and glide and riffle zones are predominantly associated with sand

punctuated by patchy shoals of gravel.  The pools are characterised by silt and sand in

marginal areas, but accumulations of cobbles were found within some mid-pool

locations in contrast to observations of finer sediments in pools by Keller (1971) and

Lisle and Hilton (1999).  These coarser particles are likely to be transported only

during the higher magnitude flood events and may have become trapped in pools as

flow competence is reduced on the declining limb of the flood.

At Napely Lodge Farm, substrate composition is patchy, consistent with the spatial

organisation of topography and flow types, and substrate types show greater variation

between biotopes compared to Oakley Hall.  The main riffle is characterised by gravel,

while glides are associated predominantly with sand and some gravely shoals.  Some

mid-pool zones are associated with cobble substrates as observed at Oakley Hall, but

the more pronounced planform and cross sectional asymmetry of pools at Napely

Lodge Farm produce a higher proportion of finer substrates within the large backwater

zones consistent with observations by Milne (1982).

Similar visualisations were produced for the organic vegetation types (Figure 4.21 and

4.22).  In general, the non-macrophytic, detrital organic habitats associated with

riparian vegetation (roots, leaf litter, woody debris) reveal little variation between

surveys.  However, the distribution of macrophytic vegetation types varies

significantly between the start of the growing season (March survey) and the peak of

the growing season (July survey).  Overall, macrophytic vegetation cover increases at

both sites between the surveys, although significant in-channel vegetation cover is
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Figure 4.21 Organic functional habitat distributions for Oakley Hall in March (A to J) and July (K to T) 2005.
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Figure 4.22 Organic functional habitat distributions for Napely Lodge Farm in March (A to J) and July (K to T) 2005..
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restricted to Oakley Hall.  Two general observations are of particular importance.

First, the magnitude of seasonal change in cover varies between different vegetation

types.  Most notably, emergent macrophytes show only a moderate increase in cover

compared to large increases in marginal plants and submerged fine-leaved

macrophytes between surveys, particularly at Oakley Hall.  Second, different organic

habitat categories demonstrate different spatial distributions which can be described as

either ‘patchy’, ‘linear’ or spatially ‘unrestricted’.  Roots, leaf litter and submerged

fine-leaved macrophytes are associated with a relatively patchy spatial distribution.

For submerged fine-leaved macrophytes, this reflects a general preference for

shallower areas with coarser substrates for rooting (Fox, 1996), restricting the habitat

to riffle locations and gravely shoals within glides at the study sites.  Roots are

associated with the intrusion of riparian trees into the channel at scour pool locations

while leaf litter is predominantly trapped around obstacles such as woody debris. In

contrast, trailing vegetation, emergent macrophytes and marginal plants are

concentrated along channel margins and are therefore associated with a more linear

spatial distribution.  Although these vegetation types are found within all biotopes,

they appear most abundant within glide units.  Small woody debris was observed in

abundance at both sites due to the high connectivity between the channel and wooded

riparian corridor (< 1 m), and appears relatively unrestricted spatially.

Thus, organic functional habitats may be considered within the context of a two-

dimensional matrix of occurrence traits based on seasonal variation and spatial

distribution (Table 4.5) which have implications for field surveys and correlations with

physical biotopes.  The matrix suggests that some of the more ‘patchy’ organic
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SPATIAL DISTRIBUTION

LINEAR PATCHY UNRESTRICTED

SMALL Trailing vegetation Roots Small woody debris

MODERATE Emergent macrophytes Leaf litter

S
E
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H

A
N

G
E

 IN
 C

O
V

E
R

LARGE Marginal plants
Submerged, fine-leaved

macrophytes

       Table 4.5 Spatio-temporal distributional characteristics of organic habitats identified on the River Tern.
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habitats may map more readily onto physical biotopes while others may be restricted

to channel margins but can occur within several different biotopes.  These

characteristics also suggest that seasonal timing, survey resolution and river size

(particularly for marginal habitats) will influence results of rapid visual assessments of

habitat features, possibly accounting for some of the observed scatter in the

relationships identified in Chapter 3.

4.5.2 Functional habitats, flow types and physical biotopes

In order to explore the correlations between physical and functional habitat at the two

study sites, Principal Components Analysis (PCA) was performed on frequency

matrices of functional habitats and flow types or physical biotopes in Canoco 4.0 in

the same manner as the PCA used in Chapter 3.  Only vegetation recordings classified

as ‘extensive’ (>30% cover of a 1 m2 cell) were used in the analysis and data for both

sites were combined due to the low sample numbers at Napely Lodge Farm.  Three

PCA runs were performed on the low flow data set and on the intermediate flow data

set in order to assess the relationships between functional habitats and: (i) surface flow

types assessed at the transect-level; (ii) surface flow types assessed at the cell level;

and (iii) physical biotopes (assessed at the transect-level).

Detrended Correspondence Analysis (DCA) for each data set identified axis 1 gradient

lengths below three, meaning that PCA is an appropriate statistical technique for the

data (Leps and Smilauer, 2003).  For each PCA run, axes 1 and 2 account for over

98% of the variance in functional habitat distributions and therefore analysis focuses

on these.  Variable loadings for axes 1 and 2 for each data set are provided in Figure

4.23, allowing interpretation of the meaning behind the two axes.  For all plots, axis 1
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Figure 4.23 PCA axis variable loadings for PCAs performed on functional habitats and transect-level flow types (a and d), cell-level flow
types (b and e) and physical biotopes (as visually identified at the transect-level; c and f) at low and intermediate flow stages.  See Table
3.1 (p. 53) for flow type category codes.
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may be considered to represent a transition from frequently occurring flow types

(smooth boundary turbulent and rippled flow) or physical biotopes (glide), to rarer

flow types (upwelling, unbroken standing waves) or biotopes (run, pool).  For the flow

type plots, the second axis appears to reflect the transition from slower (no perceptible

flow) to faster (rippled flow) flow types similar to the results in Chapter 3.  For

physical biotopes, the second axis suggests a transition from more tranquil pool

biotopes, to transitional glide and run units, to hydraulically ‘rougher’ riffle

environments.

PCA bi-plots are presented in Figure 4.24.  Circles represent flow types or physical

biotopes, and vectors represent functional habitats.  Bi-plots show very similar

arrangements for both transect- and cell-level assessments of surface flow

characteristics (Figure 4.24 a, b, d and e): plots are strongly dominated by smooth

boundary turbulent flow at low flow, with all habitat vectors showing strong

correlations with that flow type.  At the intermediate discharge, the faster rippled flow

type exerts a stronger influence on functional habitat distributions, but there is still

little differentiation between habitats on the grounds of flow types.

Overall, differentiation between habitats is less clear than that observed for the

national data set analysed in Chapter 3.  This is likely to reflect a combination of

factors including the smaller spatial scale of assessment (1 m2 cells) and the size of the

sample (which encompasses just two study reaches and will inevitably include less

variety than the large national data set examined in Chapter 3).  Furthermore, the

sequencing of habitat vectors varies both between surveys and between survey

resolutions, suggesting that correlations are dependent upon both the type of
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measurement and the hydrological context of the survey.  Physical biotopes provide

greater differentiation between functional habitats compared to surface flow types

(Figure 4.23 c and f), although the glide exerts a strong influence on the diagrams in a

similar way to smooth boundary turbulent flow.  Correlations between habitats and

biotopes also show less variation between flow stages compared to the flow type plots,

reflecting the stage-dependency of flow types and the more temporally stable nature of

physical biotopes (Wadeson, 1994).

4.6 HYDRAULIC CHARACTERISATION OF PHYSICAL BIOTOPES

While the previous sections have identified that physical biotopes demonstrate some

broad associations with morphology and flow conditions, clear hydraulic distinctions

between surface flow types and/ or physical biotopes remain to be demonstrated.  The

following sections address the fourth research question posed in Section 4.2.2 first by

exploring the reach-scale hydraulic organisation of the study reaches and subsequently

through two complementary methodological approaches to biotope characterisation

outlined in Chapter 3 (Section 3.2.3).  The first examines the hydraulic character of

subjectively identified physical biotopes and surface flow types following the

approach taken by Padmore (1997a), Jowett (1993) and Wadeson (1994), while the

second approach focuses on an objective multivariate characterisation of sub-reach

scale physical habitat in line with more recent work by Clifford et al. (2002a), Clifford

et al. (2002b), and Emery et al. (2003).

4.6.1 Reach-scale hydraulics

Frequency distributions of three-dimensional flow velocity and water depth at low and

intermediate discharges provide an overview of reach-scale hydraulics at each field
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site (Figure 4.25).  Frequency distributions for all three velocity components

(streamwise, cross stream and vertical) are more leptokurtic for the Oakley Hall site,

suggesting a more spatially homogeneous velocity field.  Cross-stream and vertical

velocities are also very low, reflecting the smooth boundary turbulent conditions

which were observed to dominate the reach.  Napely Lodge Farm is associated with a

more obvious shift to higher streamwise velocities at the intermediate discharge which

is accompanied by an intensification of cross stream and vertical velocities.  In

contrast to the more complex response of flow velocities, water depths show a

systematic increase with discharge at both sites.

The spatial organisation of velocity and depth characteristics may be assessed

statistically using semivariograms in a similar way to bed topography (see Section

4.3).  Figure 4.26 presents semivariograms for the three velocity components and

water depth using a lag interval of 2 m.  Several points are worthy of note.  All

semivariograms are associated with a ‘nugget effect’ suggesting that flow variation at

microscales associated with individual clasts and microtopography is not accounted

for by the sampling interval.  Overall semivariance is lower for velocity compared to

water depths, and cross stream and vertical velocities are associated with particularly

low levels of semivariance and a horizontal approach to the sill, suggesting a lack of

spatial organisation and a homogeneous velocity structure as identified from frequency

distributions.

Semivariograms for the streamwise component are associated with higher overall

levels of semivariance and some variations between sites and across flow stages.  At

Napely Lodge Farm, streamwise velocities demonstrate a more characteristic
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variogram shape at the lower flow stage.  However, semivariance appears to decrease

with increasing discharge, suggesting the development of a more homogeneous

velocity structure as the effects of bedform controls are drowned-out (Clifford et al.,

2002a; Emery et al., 2003).  A similar situation is noted for Oakley Hall, but overall

semivariance levels are lower suggesting that the velocity field is comparatively more

homogeneous.

Semivariograms for water depth are associated with the highest overall levels of

semivariance and most pronounced variogram form.  This is perhaps to be expected,

since water depths are more strongly controlled by bed topography and discharge,

while velocity variation is also associated with flow obstructions and roughness

elements of varying size (see Chapter 5).  Greater evidence of spatial organisation in

water depths is noted for Napely Lodge Farm where the semivariograms are

characterised by an increase in semivariance up to lag intervals of approximately 18 m

and a subsequent decline into the next riffle-pool couplet, suggesting a ‘containment’

effect of bedforms (Clifford et al., 2002a).  At both sites, overall semivariance is

greater for the higher flow stage, in contrast to the homogenisation observed in

velocities, possibly reflecting the incorporation of marginal areas with more irregular

bank and bed structures into the wetted perimeter as stage rises.  At Oakley Hall, a

more typical range and sill form is noted for variograms.  However, at the higher flow

stage semivariance continues to increase throughout the 40 m lag distance, implying a

reduction in spatial organisation perhaps related to the ponding of flow downstream by

large woody debris.
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Figure 4.26 Semivariograms for three-dimensional flow velocity and water depth calculated for a total of 20 lags using a lag interval of 2 m for
Oakley Hall (a to d) and Napely Lodge Farm (e to h) for each flow stage.
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Spatial variation in streamwise velocity and water depth may be explored visually in

Figure 4.27 using TINs produced in ArcGIS 8.3.  The spatial homogeneity of

velocities at Oakley Hall identified in Figures 4.25 and 4.26 is again manifest in the

longitudinal ‘ribboning’ structure which results in little obvious differentiation

between visually identified physical biotopes.  At Napely Lodge Farm, the velocity

structure exhibits a similar patchy distribution to that noted in previous sections,

consistent with the higher levels of semivariance noted for Figure 4.26, although there

is still some ‘overlap’ in velocities between physical biotopes.  Patchiness is reduced

to some extent at the higher flow stage as velocities along the thalweg become faster

and more similar between biotopes, consistent with increased homogeneity resulting

from the drowning-out of morphological controls.  In addition to the intensification of

flow along the thalweg, however, backwater zones associated with upstream flow in

pools become larger and the magnitude of upstream flow is strengthened as discharge

increases.  The combined effect of these flow intensifications leads to an increase in

cross sectional hydraulic variation, particularly within pools.  These characteristics are

particularly pronounced at Napely Lodge Farm where pool planform and topography

was more marked, creating significant backwater areas associated with rotational

circulations.

In contrast to velocity structure, water depths are associated with a relatively ‘patchy’

spatial organisation at both sites and show greater consistency with the organisation of

physical biotopes within the channel, consistent with the variogram structures

identified in Figure 4.26.



172

�

25
Meters

(a) OH (low flow)

RUN

POOL

POOL

GLIDE

GLIDE

RIFFLE

Flow

U (ms-1)
0.7 - 0.8

0.6 - 0.7
0.5 - 0.6
0.4 - 0.5
0.3 - 0.4

0.2 - 0.3
0.1 - 0.2
0.0 - 0.1

-0.1 - 0.0
-0.2 - -0.1
-0.3 - -0.2

(b) OH (intermediate flow)

RUN

POOL

POOL

GLIDE

GLIDE

RIFFLE

GLIDE

(c) NLF (low flow)

RIFFLE/ RUN

POOL

GLIDE

POOL

RIFFLE

POOL

GLIDE

25
Meters

GLIDE

(d) NLF (intermediate flow)

RIFFLE/ RUN

POOL

GLIDE

POOL

RIFFLE

POOL

GLIDE

(e) OH (low flow)

RUN

POOL

POOL

GLIDE

GLIDE

RIFFLE

Water depth (m)
1.05 - 1.20
0.90 - 1.05
0.75 - 0.90

0.60 - 0.75
0.45 - 0.60
0.30 - 0.45

0.15 - 0.30
0.00 - 0.15

(f) OH (intermediate flow)

RUN

POOL

POOL

GLIDE

GLIDE

RIFFLE

GLIDE

RIFFLE/ RUN

POOL

GLIDE

POOL

RIFFLE

POOL

GLIDE

(g) NLF (low flow) (h) NLF (intermediate flow)

GLIDE

RIFFLE/ RUN

POOL

GLIDE

POOL

RIFFLE

POOL

GLIDE

Figure 4.27 TIN surfaces for streamwise velocity (a to d) and water depth (e to h) for each site at low and intermediate flow stages.
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4.6.2 The hydraulics of physical biotopes and surface flow types

In order to explore the hydraulics of biotopes and flow types more explicitly, the

ranges of simple hydraulic parameters (velocity, depth and Froude number) were

examined for each physical biotope and flow type category.

As introduced in Chapter 3, Froude number ( gdUFr /= ) is frequently used in

biotope studies as a convenient means of simultaneously considering velocity and

depth characteristics.  Figure 4.28 plots the range, interquartile range and median

Froude values for each physical biotope and surface flow type (for both transect-level

and cell-level assessments) using box plots.  A significant amount of overlap in Froude

ranges and interquartile ranges is noted between categories.  However, several general

features are observed.  Plots reveal a broad transition of increasing median values and

ranges from more ‘tranquil’ biotopes (pool, glide) to hydraulically rougher run and

riffle units consistent with the ‘continuum’ described by Jowett (1993).  A similar

pattern is noted for flow types with a transition from slower flow types (no perceptible

flow, upwelling), through intermediate flow types (smooth boundary turbulent and

rippled flow), to faster flow types (unbroken standing waves).  Furthermore, slower

biotopes and flow types are associated with ‘tighter’ ranges of Froude number

compared to faster categories, consistent with similar patterns observed for larger scale

‘landscape’ variables such as slope and altitude in Chapter 3 (Section 3.5.2). Therefore

both broad-scale and localised environmental ‘preferences’ of flow types are more

specific for the slower biotopes than for faster biotopes which appear to persist in a

wider range of environmental and hydraulic contexts.
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Figure 4.28 Froude number box plots for physical biotopes (a and d), transect-level flow types (b and e) and cell-level flow types (c and f).
Boxes represent interquartile range, whiskers absolute range and points median values.  White boxes represent low flow, grey boxes intermediate
flow.  See Table 3.1 (p. 53) for flow type category codes.
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Froude ranges for flow types assessed at the transect-level are greater than those for

flow types assessed at the cell level, reflecting the influence of cross sectional

variations in hydraulics outlined in Section 4.4.  Additionally, some flow types show

more pronounced variations in Froude range and median values with increasing

discharge.  Slower flow types such as no perceptible flow and upwelling, for instance,

show more pronounced increases in the range of Froude values compared to smooth

boundary turbulent and rippled flow which are associated with a similar range of

values across discharges.  This may reflect localised intensification of flow conditions

in certain parts of the channel, consistent with observations in previous sections, and

suggests that relationships between surface flow characteristics and underlying

hydraulics may be complex and dynamic.  This feature is less obvious for physical

biotopes, however, which show less variation in Froude values with stage, possibly

suggesting that aggregate biotope hydraulics may be retained despite more localised

flow variation at microscales ‘within’ physical biotopes.

However, as introduced in Chapter 3 (Section 3.2.3), the use of Froude number as a

descriptor of hydraulic behaviour is associated with some limitations.  In particular,

since the Froude number is a dimensionless ratio, very different velocity and depth

combinations of velocity and depth can produce similar Froude numbers, potentially

obscuring hydraulic variation between biotopes.  Velocity-depth distributions for

physical biotopes and flow types are therefore plotted as bivariate scatterplots in

Figure 4.29 for comparison.

Figure 4.29 (a) and (e) plot the velocity-depth ranges for binned Froude number

classes for each site in order to demonstrate how similar Froude ranges are associated
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Figure 4.29 Velocity-depth distributions by flow stage (both sites) for different Froude number classes (a and e), and for different physical
biotope (b and f), transect-level flow type (c and g) and cell-level flow type (d and h) categories.  See Table 3.1 (p. 53) for flow type category
codes.
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with varied combinations of velocity and depth.  Additionally, these ranges are

observed to traverse the velocity-depth distributions of flow types and physical

biotopes.  Furthermore, significant scatter in velocity and depth values is observed

across both physical biotope and flow type categories, which appears to increase with

flow stage.  This reduction in hydraulic ‘coherence’ of biotopes at the higher flow

stage may be expected for physical biotopes as a result of the combined effect of flow

intensification and drowning out of hydraulic controls.  However, for flow types, this

further emphasises the complex and potentially stage-dependent relationships between

surface flow characteristics and underlying hydraulics identified previously from the

Froude box plots.

However, distributions in Figure 4.29 do reveal some discrimination between physical

biotopes and flow types on the basis of either velocity or water depth.  In general,

hydraulically ‘rougher’ physical biotopes (run, riffle) and flow types (rippled flow,

unbroken standing waves) are associated with a range of velocities but are restricted to

predominantly shallow zones.  In contrast, ‘slower’ physical biotopes (pool) and flow

types (no perceptible flow, upwelling) are associated with a wider range of water

depths but are restricted to a relatively narrow range of low velocities (Figure 4.29).

This creates some variations in the two-dimensional ‘shape’ of physical and flow

biotopes in bivariate space.  Distributions of faster biotopes and flow types are

elongated along the velocity axis while distributions of slower biotopes and flow types

are elongated along the depth axis.  ‘Intermediate’ biotopes and flow types (glide and

associated smooth boundary turbulent flow type) are associated with a more spherical

distribution reflecting similar levels of variation in velocity and depth.  These

characteristics may have significance for species or lifestages which have stronger
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preferences for either velocity (e.g. in relation to swimming speeds) or water depth

(e.g. in relation to cover associated with visibility).

These details are overlooked by the use of Froude number which identifies only a

broad increase in values towards supercritical conditions with the transition from

slower to faster flow types and physical biotopes.  This emphasises the inadequacies of

Froude as a hydraulic descriptor as introduced in Chapter 3 (Section 3.2.3), since very

different velocity and depth combinations may be associated with a similar Froude

values.  Furthermore, the use Froude overlooks characteristic variations in the range of

either velocity or depth for different physical biotopes.

The significant amount of overlap in velocity and depth characteristics between

biotopes, however, suggests that additional hydraulic parameters are required for

characterisation, assuming that biotopes are in fact hydraulically distinct.

Relationships between flow, substrate and vegetation types identified in Chapter 3

suggest that substrate may be used as an additional variable for characterising physical

biotopes and consequently predicting the distribution of vegetative functional habitats.

To test this hypothesis, the following section employs multivariate statistical analysis

to simultaneously consider velocity, depth and substrate in an attempt to objectively

characterise physical habitat within the channel.

4.6.3 A multivariate approach

K-means cluster analysis was performed (using SPSS 14.0) initially on four separate

data sets, one for each site at each flow stage.  K-means clustering is an ‘arbitrary

origin’ method of clustering which requires the specification of a number of initial
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cluster centres, to which observations are matched according to similarity.  The

attributes of each cluster centre are then recalculated as observations are added (Davis,

2002).  An element of subjectivity is introduced into the analysis by the requirement

for user-specification of the number of clusters, but this must be weighed against the

shorter computation times for larger data sets compared to hierarchical clustering

methods (see Section 3.6.3).  Here, the selection of the number of cluster centres was

based on work by Emery (2003) which identified that six clusters best described the

hydraulic variation within two reaches, one of which included part of the Napely

Lodge Farm study site itself.  Furthermore six clusters corresponds to the maximum

variation in surface flow character visually observed at the study sites (six flow types

were identified in total at the cell-level), suggesting that this level of data reduction is

appropriate.

Clustering was performed first using streamwise velocity (U), water depth and

substrate category, and second by adding cross stream and vertical velocity

components to the first set of variables in order to identify whether three dimensional

velocity characteristics improve clustering outcomes.  Data for each site and flow

stage were clustered separately in order to allow for site-specific variations in physical

habitat structure.  The physical characteristics associated with each final cluster centre

are provided in Appendix A.  Table 4.6 summarises this information using descriptive

terms for each cluster which refer to relative variations in velocity, depth and substrate

characteristics described below.

Two clusters were consistently identified by all analyses: a ‘marginal’ cluster, relating

to slow flowing areas of varying water depth characterised by a silty substrate, and a
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Clustering
variables Site Flow Stage Clusters

Low flow Margins Mid-pool Pool margins Glide Riffle Run

Oakley Hall

Intermediate flow Margins Mid-pool Pool margins Glide Riffle Run

Low flow Margins Pool Glide Riffle margins Riffle centre Run

U
Water depth
Substrate

Napely Lodge Farm

Intermediate flow Margins Mid-pool Pool margins Glide Riffle gravel Riffle pebble

Low flow Margins Pool Glide Gravel shoal Riffle Run

Oakley Hall

Intermediate flow Margins Mid-pool Pool margins Glide Riffle Run

Low flow Margins Mid-pool Pool margins Glide Riffle gravel Riffle pebble

U
V
W
Water depth
Substrate

Napely Lodge Farm

Intermediate flow Margins Pool Glide Riffle margins Riffle centre Run

Table 4.6 Habitat clusters identified for each data set using different clustering variables.
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‘glide’ cluster associated with intermediate velocity and depth values and a sandy

substrate.  Pool biotopes were generally subdivided into a ‘mid-pool’ cluster

associated with the greatest water depths and a cobble substrate (underlain by sand),

and ‘pool margins’ characterised by comparatively shallower depths and a sandy

substrate.  At Oakley Hall, riffle and run biotopes were consistently identified by

discrete clusters, while at Napely Lodge Farm, the lack of a significant run feature

resulted in subdivision of riffle biotopes by the clustering algorithm with respect to

either substrate or flow velocities for different data sets depending on flow stage and

variables used.

Visualisation of the spatial distribution of clusters in Figure 4.30 allows some

comparison with the distribution of visually identified physical biotopes (represented

by labelled rectangles).  At Oakley Hall, clusters identified from each analysis show

broad consistency with observed channel morphology, but reveal high cross sectional

variation in cluster membership reflecting the longitudinal ‘ribboning’ of habitat

variables.  At Napely Lodge Farm cross sectional variation is reduced, and ‘riffle’ and

‘glide’ clusters generally conform with observed physical biotope distributions.  Pool

biotopes, however, are associated with a variety of different multivariate clusters and

are not clearly distinguished by the clustering algorithm at the low flow stage.

These observations suggest that clustering outcomes are sensitive to site-specific

‘microscale’ variations in hydraulics and are therefore unlikely to be transferable

between different reaches.  In order to test whether transferable clusters are

identifiable between the two sites, clustering was performed on a ‘low flow’ data set
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Figure 4.30 Spatial distribution of clusters performed on data sets for each site and flow stage individually using U, depth and substrate (plots a
to d) and using U, V, W, depth and substrate (plots e to h).
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combining data from both field sites and using the initial three variables of velocity,

depth and substrate.

Cluster centre characteristics (Table 4.7) identify ‘marginal’, ‘mid-pool’, ‘pool

margin’, ‘glide’, ‘run’ and ‘riffle’ clusters.  The ranges of velocity and depth values

derived from the data set for each cluster are presented in Figure 4.31.  These ranges

were used in conjunction with the appropriate substrate category to apply the low flow

cluster characteristics to a combined intermediate flow data set and assess changes in

cluster membership with increasing stage.  This process identified some outlier

samples which were not automatically allocated to a low flow cluster.  Visual

inspection of bivariate plots of the velocity-depth characteristics of these outliers

revealed that some of these fell very close to cluster boundaries and these were

consequently incorporated into the appropriate cluster.  Those lying further beyond

cluster boundaries were attributed to one of two additional clusters relating to ‘deep

run’ and ‘deep glide’ zones associated with faster velocities and deeper water depths

than the respective ‘run’ and ‘glide’ clusters identified at low flow.

Overall, consistency of clusters with observed morphology is improved for combined-

site clustering (Figure 4.32).  This suggests that the use of relatively ‘broad’ clusters,

transferable between the two sites, represents an appropriate level of simplification of

physical habitat structure.  While the specific clusters identified are unlikely to

transferable among a range of different sites, these observations do support the idea of

broad ‘assemblages’ of habitat variables which are associated with some overlap in

hydraulic ranges.
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Cluster centre characteristics

Cluster U (ms-1) Depth (m) Substrate

Margins 0.03 0.29 Silt

Mid-pool 0.12 0.61 Pebble

Pool margins 0.18 0.48 Sand

Glide 0.19 0.21 Sand

Run 0.19 0.22 Pebble

Riffle 0.27 0.21 Gravel

Table 4.7 Cluster centre characteristics for clusters derived from the combined low
flow data set using velocity, depth and substrate variables.
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Figure 4.31 Velocity and depth ranges for clusters derived from the combined low
flow data set using velocity, depth and substrate variables.
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Figure 4.32 Spatial distribution of clusters based on velocity, depth and substrate variables which were calculated using a low flow data
combining both study reaches.  Cluster boundaries were then applied to the combined intermediate flow data set.
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Some variation in the relative proportions of the channel area occupied by each

physical habitat cluster is noted both between the two study sites, and with increasing

flow stage (Figure 4.33).  For instance while glide and riffle clusters occupy similar

proportions of the channel at Napely Lodge Farm, glides account for more than twice

the channel area occupied by riffles at the lower ‘quality’ Oakley Hall site (see Section

2.3.6).  For Oakley Hall these characteristics are consistent with visual observations

(Section 4.2.1), but for Napely Lodge Farm the clustering scheme classifies a much

larger proportion of the channel as ‘riffle’ compared to visual observation of biotopes,

suggesting some inconsistencies between the visual appearance and underlying

hydraulics of biotopes.

Channel margins are also more prominent at Oakley Hall and show little variation

with stage, compared to Napely Lodge Farm where the majority of marginal areas are

lost at the higher discharge.  At Oakley Hall large areas of the ‘glide’ biotopes behave

more like ‘pool margins’ at the higher flow stage but this is less obvious for Napely

Lodge Farm where biotopes remain relatively well ‘contained’ by the stronger

bedform controls identified in Section 4.3.1 (Clifford et al., 2002b).  However,

visualisations suggest increased complexity in the form of cross sectional variations in

cluster membership (i.e. ‘patchiness’ at smaller scales), perhaps reflecting the flow

intensification around obstacles and bedforms identified in previous sections.

The velocity, depth and substrate characteristics of each cluster maybe visualised

using three-dimensional scatterplots (Figure 4.34).  While substrate is necessarily

restricted to a single plane for each cluster, there is some evidence of variations in the

‘shape’ of velocity-depth distributions for each cluster similar to those identified for
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Figure 4.33 The proportion of the sampled channel area allocated to each
cluster for each flow stage at (a) Oakley Hall and (b) Napely Lodge Farm.
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Figure 4.34 Velocity, depth and substrate characteristics associated with each statistically derived cluster for low flow (a) and applied to
intermediate flow data (b).
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physical biotopes and flow types in Section 4.6.2.  The ‘marginal’ cluster, for instance,

is associated with a wide range of depths but a narrow range of slow velocities, while

‘riffle’ and ‘pool margins’ clusters show similar ranges in velocity and depth.  ‘Run’

and ‘glide’ clusters are associated with a range of velocities but are generally restricted

to an intermediate range of water depths.  Furthermore, some clusters reveal a change

in two-dimensional ‘shape’ with increasing stage as frequency distributions are

skewed towards a different range of velocity and depth values.  For example, the

marginal cluster loses many of the deeper samples at the higher flow stage, suggesting

that only shallower areas are retained as low velocity refugia.  In contrast, the riffle

cluster becomes associated with a narrower range of water depths and the mid-pool

cluster is associated with a much faster range of velocities reflecting the jetting effects

of flow through the pools as discharge increases (Clifford and Richards, 1992).

4.6.4 Physical habitat clusters, flow types and functional habitats

In order to explore the relationships between statistically-derived habitat clusters,

surface flow types (assessed at the cell-level) and functional habitats (occupying >

30% cover of a 1 m2 cell), Principal Components Analysis (PCA) was performed on

low and intermediate flow data sets (combined for both sites).

In each case, PCA axes 1 and 2 cumulatively account for over 89% of the variance and

represent a transition from ‘rare’ to ‘frequent’ and ‘tranquil’ to ‘rapid’ physical habitat

clusters respectively (Figure 4.35).  PCA bi-plots are presented in Figure 4.36 for each

PCA run.  Significantly, the flow type PCA reveals some contrasts with widely

accepted relationships between flow types and morphology.  No perceptible flow, for

example, correlates strongly with channel margins rather than pool clusters, which are
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Figure 4.35 PCA axis variable loadings for PCA performed on habitat clusters and cell-level surface flow types (a and b) and habitat clusters and
functional habitats (c and d).
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instead associated with a combination of upwelling, smooth boundary turbulent and

rippled flow (4.36a and b).  In contrast, the glide cluster demonstrates a strong

relationship with smooth boundary turbulent conditions and the riffle cluster with

unbroken standing waves.  Most of these relationships are maintained across flow

stages, although a tendency for stronger correlations with faster flow types at the

higher flow stage is noted for pool clusters, reflecting the intensification of flow

conditions along the thalweg as noted in previous sections.

PCA performed on organic functional habitats and physical habitat clusters reveals

that strong correlations between clusters and functional habitats are observed only for

‘glide’ and ‘marginal’ clusters: riffle, run and pool habitat clusters appear to support

only minerogenic habitats at the two study sites investigated.  Additionally,

relationships are somewhat stage-dependent reflecting the spatial variations in cluster

membership with increasing discharge.  For instance, woody debris, roots and trailing

vegetation correlate with the ‘marginal’ cluster at low flow but show stronger

correlations with the ‘glide’ cluster at intermediate flow as some ‘marginal’ areas are

lost to increased depths and faster flow velocities.

4.7 DISCUSSION AND CONCLUSIONS

This Chapter employs a range of methodological approaches in order to address four

principal research questions as a means of field-testing the robustness and integrity of

the biotope concept at the sub-reach scale.

Physical variables such as bed topography, velocity and water depth reveal some

evidence of spatial organisation associated with the distribution of physical biotopes
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such as riffles and pools.  However, differences in the amplitude of bed topography

between the two study sites reflect a ‘bedform containment’ effect (Clifford et al.,

2002a; Emery et al., 2003) which creates fundamental variations in the spatial

organisation of a range of physical habitat variables.  At Oakley Hall, the subdued bed

topography and lack of a pronounced pseudo-cyclic riffle-pool morphology results in a

homogeneous ‘ribbon-like’ physical structure where cross-sectional variation exceeds

longitudinal variation.  At Napely Lodge Farm, bedform amplitude is more

pronounced and riffle and pool features are readily identifiable from undulations in

bed topography.  This creates a ‘patchy’ spatial organisation of physical habitats

which is easier to reconcile with the concept of physical biotopes.

The complex relationships between bed topography and surface flow characteristics

present challenges for the identification of physical biotopes in the field.  Field data

presented in this Chapter reveal significant deviations from the ‘characteristic’

relationships identified between physical biotopes and surface flow types.

Importantly, channel margins, rather than pools, were associated with no perceptible

flow and upwelling was associated with secondary circulations within pools rather

than ‘boils’ (see Chapter 5, Section 5.4.1).  These flow types were also more localised

in nature than others, frequently occurring as marginal or ‘secondary’ biotopes at a

particular cross section.  The results of the cluster analysis further emphasise the

importance of channel margins as a distinct hydraulic habitat unit.  This is of great

significance for transect-level survey resolutions which overlook marginal zones,

despite their association with ecologically important microhabitats and refugia for

aquatic biota.
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Furthermore, relationships between certain flow types and physical biotopes are more

spatially and temporally ‘robust’ than others.  For example, glide biotopes appear to be

relatively homogeneous features and show strong relationships with ‘characteristic’

smooth boundary turbulent flow conditions.  In contrast, pools are associated with

high levels of ‘internal’ heterogeneity, exhibiting significant hydraulic variation across

the channel width and with varying discharge.  These variations in the spatial and

temporal ‘complexity’ of physical biotopes are explored in further detail in Chapter 5.

The accurate identification of physical biotopes from simple physical parameters is

therefore likely to be reliant on a combination of site-specific factors such as the

amplitude of bedforms, the hydrological context of surveys, and the spatial resolution

of the sampling design.

Physical biotope categories are associated with significant overlap in simple hydraulic

parameters such as velocity, depth and Froude number but form a continuum from

tranquil to rougher environments (Jowett, 1993).  Slower biotopes and flow types are

associated with a ‘tighter’ range of hydraulic conditions compared to faster categories,

similar to patterns identified for broader-scale variables such as the altitude and slope

of the reach (Chapter 3, Section 3.5.2).  Biotopes derived from the cluster analysis do,

however, show some broad associations with ranges of velocities and depths.  Certain

‘slower’ biotopes (channel margins) are associated with tighter ranges of velocity but

may be associated with a wider range of water depths, while ‘intermediate’ biotopes

(glide, run, mid-pool) are associated with a limited depth range but a variety of

velocity values and others (riffle, pool margins) are characterised by a similar range of

velocity and depth values.  Figure 4.37 illustrates how these characteristics form

different two-dimensional shapes in bivariate space which may change shape or move
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with increasing flow stage according to variations in the frequency distributions

associated with physical biotopes.  This emphasises the suggestion in Chapter 3 that

the most appropriate levels of simplification of aquatic habitat may relate to broad

assemblages of features or habitat parameters, which reveal some overlap but provide

a general description the local physical environment.

Sedimentological variables appear significant in characterising physical habitat at the

sub-reach scale and are known to play a significant role in determining distributions of

aquatic plants and invertebrates (Boeger, 1992; Quinn and Hickey, 1994).  Substrate

types show relatively strong conformity with the organisation of physical biotopes,

particularly at Napely Lodge Farm, providing a third dimension to the physical

characterisation of biotopes which has previously focused on velocity and depth.

Furthermore, the distribution of fine sediments within the channel constitutes an

additional sedimentological variable which has so far been neglected in biotope

studies.  Accumulation and scour of fine sediments is of particular significance to

benthic biota through the condition of the hyporheic zone, and appears dependent on a

combination of hydrological factors and seasonal vegetation growth.  This complicates

the relationship between the biotic and abiotic components of the instream

environment and introduces an element of seasonal variation to the structure of

physical habitat.

Organic functional habitats (both aquatic macrophytes and detrital organic habitats)

demonstrate very different spatial distributions and significant variations in the

magnitude of seasonal change in cover.  This presents challenges for attempts to ‘map’

functional habitats onto physical biotopes for several reasons.  First, some habitats,
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particularly those associated with ‘patchy’ distributions, may map more readily onto

physical biotopes than other, more linearly distributed or ubiquitous habitats.  Second,

coarser survey schemes are likely to favour the recording of the ubiquitous or patchy

habitats and under-represent the linear marginal habitats.  Third, certain functional

habitats are associated with significant seasonal variations in cover, while others vary

little throughout the growing season, suggesting an influence of seasonal timing on

survey outcomes.  As a result, correlations between functional habitats and physical

biotopes show significantly less distinct patterns than those identified for the national

RHS data set in Chapter 3, suggesting that these relations may be most appropriate for

the most prominent, or ‘typical’ features identified at relatively broad scales of

assessment.
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CHAPTER 5 BIOTOPE CHARACTERISATION AT THE
MICROSCALE: TURBULENCE AND SEDIMENT TRANSPORT

5.1 CHAPTER SYNOPSIS

This chapter presents the results of a field investigation of the microscale hydraulics of

selected physical biotopes from each of the two River Tern field sites.  A combination

of ‘first order’ (turbulent stresses and intensities), ‘second-order’ (turbulent event

structure) and ‘third-order’ (autoregressive models and spectral signatures) hydraulic

discriminators are employed in order to examine spatial and temporal variations within

each physical biotope.  While the discriminatory success of hydraulic parameters

generally depends upon the combination of biotopes studied, some of the higher order

turbulent properties appear more effective in characterising biotopes than simpler

mean parameters.  In addition to the absolute ranges of hydraulic parameters identified

for each biotope, the type and level of ‘within-biotope’ heterogeneity constitutes an

additional physical ‘characteristic’ which provides differentiation between biotopes.

5.2 ECOHYDRAULICS AT THE MICROSCALE

Flow variability is known to influence the structure of river ecosystems at a variety of

spatial scales (Biggs et al., 2005).  Flood events occurring over time frames of years or

months create large-scale disturbances that influence community composition, while

lower magnitude variation over timescales of days influence biotic interactions,

population densities and the physiological condition of biota.  At microscales of

minutes to milliseconds, however, processes associated with high frequency turbulent

flow variation determine the supply of oxygen, nutrients and food which influence the

growth and survival of individual organisms (Biggs et al., 2005).
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Characterisation of physical biotopes has generally attempted to discriminate between

different physical biotopes using surveys of mean flow properties over various

discharge ranges that provide a broad temporally- and often spatially-averaged

representation of flow conditions.  However, given that aquatic organisms are directly

affected by localised channel hydraulics (both in terms of the physical force of flow on

organisms and the distribution of sediments, nutrients and pollutants within the

channel) the dearth of physical biotope research focused at the microscale reflects an

obvious research priority.

5.2.1 The importance of the microscale

For benthic organisms, hydraulic parameters such as velocity and shear stress have

direct physical impacts such as dislodgement, burial and abrasion (Carling, 1995), as

well as indirectly influencing food availability and oxygen concentrations (Quinn and

Hickey, 1994).  In the fully turbulent outer flow zone, flow intensities and the

organisation of turbulent structures are important for dispersal lifestages of benthic

organisms (McNair et al., 1997).  The energy expenditure of filter feeding

invertebrates and fish must match that of the hydraulic stress in order to maintain

station within the flow (Giller and Malmqvist, 1998), and turbulence has been

identified as a key factor influencing the energy costs associated with swimming for

juvenile salmon (Enders et al., 2003; Enders et al., 2005).  The suitability of habitat

for different species will therefore be determined by both the abiotic environment and

the swimming performance of the individual animal, which will vary between species

(Katopodis, 1996).
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At the reach-scale, as shown in Chapter 4, physical biotopes describe broad hydraulic

environments.  Thus, riffles are generally associated with higher hydraulic stresses

approaching super-critical flow conditions, and pools with lower stresses and more

tranquil conditions over much of the discharge range.  However, investigations at

smaller-scales have highlighted the effects of local microtopography and individual

flow obstructions such as organic matter, rocks and root wads on the local flow

environment.  Sand ribbons and secondary current circulations have been shown to

influence fish distributions (Tsujimoto, 1996) and large rocks can provide stability and

shelter across flow stages, in addition to rearing habitat for certain species (Garcia de

Jalon, 1995).  Crowder and Diplas (2000) suggest that individual boulders can have a

highly complex impact on the local flow environment by increasing local velocities,

modifying velocity gradients and creating shelters and transverse flows.  Often, the

heterogeneity created by such structures is considered beneficial to biota, by providing

habitats suitable for various life stages of organisms, and refugia from predation and

disturbance.  By contrast, some evidence has suggested that the reduced visual field

associated with obstructions can have negative impacts on fish species (Kemp et al.,

2005), emphasising the complexity of relationships.

Specific types of microhabitat are also associated with the channel margins.  Marginal

features such as bank irregularities and overhanging vegetation can increase cover and

provide some of the most important habitats for fish (Bisson et al., 1981; Kellerhals

and Miles, 1996) and native crayfish (Smith et al., 1996).  Marginal patches of low

hydraulic stress which are retained across flow stages may create important refugia for

invertebrates, enhancing the resilience of benthic communities to spates (Lancaster

and Hildrew, 1993).
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5.2.2 Turbulent boundary layers

A large volume of literature has developed on the causes and character of turbulence

within the vicinity of a ‘wall’ or ‘boundary’ in laboratory flumes and under idealised

conditions.  Progress within the field of fluid dynamics since the mid-20th Century has

given rise to theories of ‘turbulent bursting’ as an explanation for the existence of

coherent flow structures within turbulent boundary layers (see Allen (1985) or Yalin

(1992) for overview).  Bursting theories suggest that the generation of turbulence is

related to the break-up of streamwise ‘streaks’ of low momentum fluid within the

viscous sub-layer (Kline et al., 1967).  As the streaks lift away from the boundary they

are rapidly ejected into the outer flow (‘bursts’), which is followed by a compensatory

inrush (‘sweep’) of outer flow fluid towards the bed which may then initiate the next

burst (Figure 5.1a).  Such interactions are intermittent in nature (Gordon, 1974;

Lapointe, 1996) but have been shown to account for the majority of turbulence

generation near the boundary (Lu and Wilmarth, 1973).  While the effects of sweeps

are generally confined to the region close to the boundary, the influence of bursts may

extend throughout the boundary layer (Grass, 1971), perhaps even reaching the water

surface as ‘boils’ (Roy et al., 2004).

In geomorphological applications, research into the existence of similar turbulent

structures has continued from the work of McQuivey (1973a; 1973b), through Clifford

et al., (1993a) and Ashworth et al., (1996) at a variety of scales and for various

potential applications.  Generally this work supports initial findings but identified

other sources of turbulent generation and a greater range of coherent flow structures.

For instance, in many natural channels, the grain size of bed material is larger than
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computed estimates of viscous sublayer thickness.  This suggests that streaks may be

unable to form and turbulence generation may instead be related to the quasi-cyclical

shedding of eddy structures from the lee of obstacles (Clifford et al., 1992a; Clifford et

al., 1992b) (Figure 5.1b).  Such obstacles may range in size from individual clasts to

clusters of particles and larger scale bedforms, thus creating vortices of various sizes

which may then interact and coalesce within the outer flow zone (Best, 1993).  These

developments are of particular importance in an ecohydraulics context in the light of

recent bioenergetics work which has stressed the influence of turbulence on fish

behaviour (Enders et al., 2003).

Time series of field velocities monitored at high frequencies (c. 1 – 20 Hz) may be

statistically analysed in terms of various turbulent properties.  Such applications have

identified variations in the character of flow structures between riffle and pool units

(Clifford, 1996a), but these techniques have yet to be fully applied within the context

of physical biotope characterisation.  This chapter allows an assessment of the

variations in turbulent properties and flow structures within and between selected

physical biotopes in order to identify whether such ‘higher-order’ parameters provide

better (or additional) discrimination compared to the more conventional mean flow

values frequently employed in biotope studies.

5.2.3 Flow and suspended material

While the direct physical and biological impacts of turbulence are fundamental to the

instream environment, the interactions between turbulence and the distribution of fine

particulate matter suspended in the water column are also of great significance to the

aquatic biota.  Benthic invertebrates are exposed to direct impacts from suspended
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Lift up Ejection Bursting

Low-speed streak

Sweep

(a) Turbulent bursting

Hairpin vortex

Roughness
element

(b) Vortex shedding generated by roughness elements

Figure 5.1 Turbulence generation in open channels: (a) the process of turbulent bursting, adapted from Allen (1985: Figure 6.15 p. 113) and (b)
vortex shedding from roughness elements, adapted from Best (1993: Figure 3.11a p. 77).
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material in the form of abrasion and burial, and by the reduction in suitable habitat

caused by the smothering of interstices (Carling, 1995; Jowett, 2003).  Short-term

pulses of sediment can have a variety of effects on benthic invertebrates and riverine

fishes.  For instance, invertebrate drift in response to pulses can alter community

structure, creating variations in food resources for larger vertebrates (Shaw and

Richardson, 2001).  In addition to direct impacts such as lower prey capture success

rates due to vision impairment, and physiological stress, this will have implications for

the growth and survival of fish (Shaw and Richardson, 2001).  Accumulation of fine

sediments within spawning gravels has a significant influence on interstitial flows and

consequently on the oxygen supply rate to incubating salmonids (Sear et al., 2004).

Furthermore, where contaminants are adsorbed to the surface of particulate matter,

biota may be directly exposed to the toxic effects of chemicals from anthropogenic

sources (Greenberg et al., 2002; Hose et al., 2002).

While excess sediment is generally considered detrimental to many organisms, the

distribution of nutrients, either in particulate form or adsorbed to minerogenic

particles, is fundamental to survival.  In unperturbed systems, the supply of food and

nutrients represents the ultimate influence on invertebrate distributions (Cummins,

1975).  Within all aquatic ecosystems, nutrients are taken up from the water column by

biota, biologically processed and subsequently released, forming a continuous passage

of nutrients through the food web known as ‘cycling’ (Newbold, 1992; Figure 5.2a).

In lotic ecosystems, a spatial element to the cycling process is introduced by the

unidirectional nature of the flow which means that the nutrient outputs from a cycle

upstream form the inputs for cycling downstream (Giller and Malmqvist, 1998).  This

downstream ‘interdependence’ of cycling and transport of nutrients is known as
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nutrient ‘spiralling’ (Newbold et al., 1983).  The intensity of nutrient utilisation is

indicated by the spiralling length (Figure 5.2b) which includes the distance travelled

by a nutrient atom both in the water column (‘uptake length’) and within the biota

(‘turnover length’) within a complete cycle (Newbold, 1992).

Spiralling lengths within a river reach are determined by a combination of abiotic

factors, including local hydraulics and the frequency of spates, and biotic factors such

as the mobility and uptake capabilities of different organisms, and have been shown to

vary between scales of 100 m (Wotton, 1996) and 102 m (Newbold et al., 1983).

Faster current velocities may generally be associated with higher levels of downstream

displacement, whereas slower velocities create ‘dead zones’ in pools and at channel

margins where nutrients may reside for significant periods of time.  In nutrient-limited

reaches, transportation of nutrients in particulate form has a particularly important

influence on the spiralling length (Newbold et al., 1982).  Transport pathways taken

by fine particulate matter may therefore be indicative of the routes taken by food and

nutrients.  The final section of this chapter presents the results of a set of experiments

designed to investigate whether different physical biotopes are associated with certain

sediment (and hence nutrient and pollutant) transfer signatures and whether these

exhibit evidence of stage-dependency.

5.3 VELOCITY TIME SERIES

5.3.1 Sampling design

High frequency velocity time series were recorded within selected physical biotopes

under both ‘low’ and ‘intermediate’ flow stages (See section 2.3.5).  Glide and pool

biotopes were studied at Oakley Hall, and riffle and pool at Napely Lodge Farm (Plate
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FW

FB

W

B

S
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Figure 5.2 Nutrient cycling (a) and spiralling (b), modified from Newbold (1992)
In (b) nutrient spirally occurs within two compartments of the ecosystem: water (W) and biota (B).
S represents the spiralling length, the sum of the uptake length (SW) and the turnover length (SB), and can be calculated from the nutrient fluxes
(FW and FB) and the exchange fluxes of nutrients between the biota and the water compartment (U and R).
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5.1).  Measurements were taken at both 0.2 and 0.8 of the water depth (from the water

surface) at 1 m intervals along a 5 m ‘longitudinal’ transect following the channel

centreline, and along a cross sectional transect at the central point of the sample area

(Figure 5.3).

A spherical-headed two-dimensional Valeport 802 Electromagnetic Current Meter

(EMCM) modified for 16 Hz analogue output, was used in direct communications mode

with a Campbell Scientific CR10X datalogger to allow high frequency logging of

streamwise (U) and vertical (W) velocity.  The EMCM uses two pairs of equi-spaced

electrodes to simultaneously measure orthogonal velocity components (in this case U and

W) by detecting the voltages induced by water passing through a magnetic field

generated by the sensor (Lane et al., 1993; Valeport Limited, 1998).  Streamwise and

vertical velocities were sampled simultaneously at 16 Hz for 30 s in order to assess

turbulent fluctuations occurring during the common 30 s averaging period used for bulk

flow properties.  Clifford and French (1993b) identified turbulent structures with periods

of around 5 s and smaller substructures with periods of approximately 1 s, while

Kirkbride (1993) noted a 1 s to 10 s interval between turbulent bursting structures,

suggesting that a 30 s interval should capture several repetitions of high frequency

structures.

EMCMs are relatively robust and demonstrate a good frequency response and toleration

of contamination (Clifford and French, 1993a).  While spherical sensor heads have been

associated with higher levels of instrument-related flow disturbance, the equal spacing of
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(a) Pool, Oakley Hall (b) Glide, Oakley Hall

(c) Pool, Napely Lodge Farm (d) Riffle, Napely Lodge Farm

Flow

Flow

Flow

Flow

Plate 5.1 The physical biotopes selected for microscale field research at Oakley Hall
and Napely Lodge Farm (Q = 0.22 m3s-1)

Flow
1m

1m

Sample location

Figure 5.3 Sampling design for the microscale velocity surveys.  Circles
represent velocity sample locations where high frequency measurements were
taken at 0.2 and 0.8 of the water depth from the surface.
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electrodes avoids bias in the minimum detectable wavelength for the two velocity

components (Lane et al., 1993).

5.3.2 Data cleaning and detrending

It is common practice for any analysis of high frequency (temporal) data to proceed

initially by visual inspection of time series of observations against time (Chatfield, 2004),

both as a means of quality control and in order to examine the scales of variation within

the data set (French et al., 1993).  Time series for streamwise (U) and vertical (W)

velocity components (a total of 286 series) were produced using Origin Pro 7.5.  These

were inspected for: (i) abnormalities in the signal indicative of sensor corruption; and (ii)

the existence of global or local non-stationarity in the mean and/or variance.  Visual

inspection highlighted apparent sensor-related errors for the W component at Napely

Lodge Farm under low flow conditions.  Values for W for these samples consistently

demonstrate low levels of fluctuation within the range –0.35 to –0.4 ms-1 instead of the

expected fluctuation either side of an approximately zero mean.  Such values may

indicate a strong localised downwelling, such as in the lee of an obstacle, but since this

feature was observed for all series, it was attributed to an internal connection problem,

and these series were excluded from analysis.

Time series also revealed the presence of extreme values in 33 U series where a small

number of observations were associated with high magnitude values inconsistent with the

overall character of the series.  There are several possible explanations for the presence of

such values and different methods of correcting errors are available, depending on the
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likely cause of the anomaly.  It is possible that in some instances, anomalies may in fact

represent the existence of intermittent high amplitude ‘events’ which may occur just once

or twice in the sampled series but contribute significantly to the Reynolds stress (Gordon,

1974).  However, sensor output is sensitive to corruption in the form of intermittent noise

resulting from factors such as the passage of organic debris through the sampling volume,

external magnetic fields, sensor cable movement or instability of sensor mountings

(Clifford and French, 1993a; Lapointe, 1996) which may create anomalous values.  For

measurements in shallower parts of the channel, undulations in the water surface can

create spikes in the time series where part of the sensor’s sampling volume is temporarily

out of the water (Roy et al., 2004).  Many of the extreme values identified for this data

set occurred at the start of series (generally within the first second) and were interpreted

to reflect sensor set-up instabilities associated with, for instance, temperature adjustments

and water bubbles.  Removal of spikes considered to reflect sensor disruption later in the

series is less straightforward, and in this instance, the method of ‘downweighting’ outlier

values (Chatfield, 2004) to the next highest, or lowest, value was undertaken for

observations in four series.

A more complex problem is encountered where the series exhibits non-stationarity in

variance, manifest in short-term variations in the amplitude of fluctuations.  This affected

three of the 286 series.  In some instances this may reflect sensor movement into and out

of the influence of different upstream roughness elements or different parts of the

velocity profile, although every effort was made to minimise mounting instability.

Alternatively such characteristics may indicate the influence of isolated events such as
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movement of upstream bed material, or the intermittent effects of larger-scale flow

circulations and therefore may reflect natural non-stationarity in channel velocities.  In

order to judge whether the non-stationarity exhibited by the three series were associated

with measurement error or natural phenomena, U and W series were compared and the

series examined in the context of surrounding samples.  The characteristics were

considered unlikely to represent sampling error and therefore the three series were left in

their unmodified state with the acknowledgement that subsequent analysis may create

anomalous results for these series.

Where a velocity series is steady, U and W velocity components may be decomposed into

mean (u or w) and fluctuating (u' and w') parts simply by subtracting the series mean

(Clifford and French, 1993b):

(a)  uuU ′+= (b) wwW ′+=     Equation 5.1

In series where turbulent fluctuations are superimposed onto a global trend, such as tidal

variation, detrending is required and generally takes the form of a low order polynomial

(French et al., 1993).  Although the steady flow conditions associated with this data set

negate the need for global detrending, time-plots reveal the existence of local non-

stationarity in most series, which takes the form of a low frequency fluctuating trend

component.  In fact, the majority of series exhibit variation at three different frequencies:

higher frequency fluctuations with a period of ~1s; ‘intermediate’ fluctuations with a
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period of ~3-5s; and a low frequency trend component with a period of approximately

~10s or more.  These are illustrated using an example series in Figure 5.4.

The two higher frequency components represent structures operating at near-turbulent

scales, possibly reflecting complex interactions between roughness-shed vortices and

burst-sweep structures (Clifford and French, 1993b) or the mixing and coalescence of

vortices in the outer flow zone (Kirkbride, 1993).  Assuming G. I. Taylor’s substitution,

that a sequence of events at a fixed point may be interpreted to represent the movement of

an unchanging pattern of turbulence past that point (Reynolds, 1974), the low frequency

component may be interpreted to represent flow structures up to several channel widths

in size, possibly related to secondary circulations or vortex shedding from bedforms or

large obstructions upstream.  These features represent local non-stationarity outside of the

turbulent range, and variance of the trend may dominate subsequent analyses of turbulent

properties.  For instance, Figure 5.5 illustrates the effect of local polynomial and linear

non-stationarity on turbulent residuals by comparing residuals derived from polynomial

and linear regressions with those derived by simple subtraction of the series mean.  For

the series characterised by the polynomial trend (Figure 5.5a), simple subtraction of the

series mean creates turbulent residuals which amplify or subdue peaks and troughs within

different parts of the velocity series (Figure 5.5c).  For the series characterised by a linear

trend (Figure 5.5b), turbulent residuals derived by simply subtracting the series mean are

understated at the beginning of the series and exaggerated towards the end (Figure 5.5d).
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Figure 5.4 Example velocity series from the River Tern showing (a) high frequency
(<1s) fluctuations, (b) intermediate (~3-5s) fluctuations and (c) slowly fluctuating trend
(5th order polynomial).
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Figure 5.5 Velocity series detrending using (a) polynomial and (b) linear procedures.  Resultant residuals are then compared to
residuals derived by simple subtraction of the mean velocity (the dotted line) in (c) and (d).  In (c), residuals from the mean are
compared to those derived from the polynomial trend, and in (d) residuals from the mean are compared with those derived from the
linear trend.
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Series were therefore detrended by the fitting of linear or low order polynomial

regressions, separating the high-frequency fluctuating ‘residual’ component from the

slowly varying trend in the manner of Gordon (1974) and Clifford and French

(1993b).  Trend order was selected by visual assessment of goodness-of-fit, and

restricted to a maximum of 5th order polynomials to ensure that turbulent properties

were retained.  For series with no apparent trend, turbulent residuals were derived by

subtracting the series mean (u or w).  Mean values computed for detrended series (u'

and w') fall very close to zero (below 10-5 ms-1) confirming successful removal of the

trend component.

5.4 PHYSICAL BIOTOPES AND TURBULENT PROPERTIES

This section presents the results of an investigation of the turbulent properties of

physical biotopes at the two River Tern study sites.  This proceeds by analysis of

simpler mean flow velocities, stresses and turbulence intensities, and subsequently

employs increasingly more detailed analytical techniques in an attempt to explore

‘higher-order flow properties, such as the existence of coherent flow structures, which

have so far been largely overlooked in biotope characterisation.

5.4.1 Average flow properties

i) Velocity and stress

Mean flow velocity and stress properties are derived easily from field data and are

often used in model calculations and the characterisation of flow conditions.  The

hydrodynamics of riffle-pool sequences have received a great deal of attention in the

literature, particularly in terms of the mechanisms governing their stability and

maintenance.  Keller (1971) presented a ‘velocity reversal’ hypothesis as an
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explanation for observed variations in substrate character between riffle and pool

units.  The theory proposes that at low flow, near-bed velocities are higher within riffle

units, and sediment transport is characterised by a winnowing of fine sediment into

downstream pools where it becomes trapped.  With increasing stage, near-bed

velocities increase more rapidly within the pool and eventually exceed those within the

riffle, resulting in a ‘reversal’ in velocity and shear stress.  Beyond the reversal

velocity, sediment transport is characterised by the movement of coarser gravels from

the riffle, which are subsequently transported through the pool by high tractive forces

associated with flow convergence, and deposited on downstream lower-competence

riffles.

However, recent field studies have revealed a more complex cross-sectional response

to increasing stage within riffle-pool couplets (Clifford and Richards, 1992),

complicated by the identification of coarser substrates within pools (Milan et al.,

2001).  Both field measurements and flow simulations have emphasised the role of

flow routing through pools (Booker et al., 2001) and the migration of velocity and

stress gradients (Cao et al., 2003; Wilkinson et al., 2004) as opposed to the simpler

divergent-convergent flow patterns suggested by Keller (1971).

Mean velocity characteristics for the River Tern study sites derived from velocity time

series are presented in Figure 5.6.  Overall, the data reveal a broadly linear relationship

between the streamwise and vertical velocity components (Figure 5.6 a and b),

indicating that net uplift occurs where streamwise velocities exceed 0.3 ms-1,

consistent with observations of the entrainment of fines (Simons and Simons, 1987).

Standard deviations for each of the velocity components reveal a systematic increase
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Figure 5.6 Mean streamwise and vertical velocity for (a) Oakley Hall and (b) Napely
Lodge Farm at low and intermediate flow stages.  In (c) and (d) the mean streamwise
velocity is plotted against the standard deviation for each site, and in (e) and (f) the
mean vertical velocity is plotted against the standard deviation for each site.
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with their respective means (Figure 5.6 c to f) suggesting that stronger mean values

amplify, rather than dampen the intensity of turbulent fluctuations (Clifford et al.,

1994).  However, the mean flow characteristics do reveal some variations between

physical biotopes.

The riffle at Napely Lodge Farm is associated with the highest streamwise velocities

and net uplift.  Velocities show a systematic decrease with increasing discharge,

consistent with observations by Booker et al. (2001) of greater frictional contributions

from banks, rather than the slower increase in competence identified by Clifford and

Richards (1992).  Standard deviations within the riffle, however, demonstrate a

relatively complex relationship with mean parameters.  For the streamwise component,

standard deviations appear restricted by higher mean velocities, whereas deviations in

the vertical component are amplified by higher mean values, perhaps reflecting

intensification of flow around pebble clasts.

In contrast, the glide is associated with a slower and more restricted range of

streamwise velocities that generally do not exceed 0.3 ms-1, resulting in lower

magnitude uplift compared to the riffle.  Standard deviations are also restricted to a

lower range of values than observed for both riffle and pool biotopes, suggesting lower

turbulence intensities and a simpler flow structure.  The pool biotopes are associated

with the widest range of mean values and standard deviations, suggesting greater

spatial variation.  Vertical velocities show a stronger linear increase with mean values

compared to riffle and glide biotopes, and a similar situation is noted for standard

deviations, suggesting an intensification of flow conditions in faster flowing pool

zones.
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Variation in mean velocities within the different physical biotopes is explored in

further detail in Figure 5.7 which simultaneously considers variation spatially (both

longitudinally and cross sectionally), with relative depth of the sensor, and temporally

(with varying discharge).  The four biotopes are associated with different levels of

variation in each of these dimensions, even in terms of the simple mean velocity

parameters.  The glide is associated with very high levels of ‘internal’ homogeneity,

demonstrating very little variation in velocities spatially, with depth or across

discharges.  The riffle is also relatively homogeneous spatially, but shows some

evidence of systematic variations in mean velocity with relative depth and increasing

stage.  At the intermediate flow stage, streamwise velocities within the riffle are

consistently lower within the near-bed region reflecting the frictional effects of grain

roughness elements which is also manifest in stronger vertical velocities indicative of

flow intensification around pebbles (Buffin-Belanger and Roy, 1998).

In contrast, both pools are associated with significant within-biotope hydraulic

complexity in the form of significant velocity variation spatially, temporally and with

depth.  This complexity is more pronounced for the pool at Napely Lodge Farm, which

is associated with a more distinct planform and topographic structure (Plate 5.2),

emphasising the strong control of channel morphology on biotope hydraulics as

identified in Chapter 4.  Variations with discharge and depth appear relatively

unsystematic for both pools, but spatial variations in vertical and streamwise velocities

within the pool at Napely Lodge Farm provide some information on secondary

circulations.  Spatial variations in vertical velocity suggest a transition from

downwelling at the pool head and upwelling towards the pool tail which may
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Figure 5.7 Mean streamwise velocity for (a) Oakley Hall and (b) Napely Lodge Farm, and vertical velocity (c and d) velocity by sample location
according to depth of measurement and flow stage.  Longitudinal measurements were located 1 m apart upstream along the channel centreline
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(a) Oakley Hall (facing upstream) (b) Napely Lodge Farm (facing downstream)

Date: 08/03/2005          Q: 0.21m3s-1 Date: 03/05/2005          Q: 0.26 m3s-1

Plate 5.2 Observed surface flow patterns within the pools at each site.
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explain the observations of ‘upwelling’ flow type within mid-pool locations in Chapter

4.  Vertical velocities also appear to intensify in the vicinity of the thalweg, located

towards the right bank.  A transition from negative to positive streamwise values

across the channel width reflects the rotational flow circulations associated with the

larger backwater zone towards the left bank (Plate 5.2b).  Spatial variation is less

systematic at Oakley Hall, but some flow intensification is observed towards the left

bank in association with the intrusion of riparian tree roots.

The skewness of the turbulent residuals derived by detrending procedures outlined in

Section 5.3.2 can provide further information on local hydraulics and sediment

transport.  Bagnold’s (1966) theory of sediment suspension requires that the residual

upward turbulent stress must be in equilibrium with the suspended mass of grains, and

thus positively skewed w' distributions can be considered indicative of favourable

conditions for sediment entrainment (Leeder, 1983).  Skewness values for all u' and w'

series are presented in Figure 5.8.  Most series are associated with minimal skewness,

however some variations are noted both between sites and between physical biotopes.

Oakley Hall reveals an overall tendency for negative skew towards lower magnitude

fluctuations, reflecting the smooth boundary turbulent conditions which characterise

the reach.  In contrast, Napely Lodge Farm is associated predominantly with positive

skew, suggesting higher flow intensities and more favourable conditions for sediment

transport.  Within the glide at Oakley Hall, there is some evidence of a reduction in

residual upward stress with increasing discharge, in conjunction with increases within

the pool.
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Turbulent stresses can be considered more explicitly by calculating the kinematic

shear stress.  Turbulent Reynolds stresses include twelve possible combinations of u'

and w' components, but often the series-averaged kinematic shear stress (-u'w') is used

as an overall descriptor (Duncan et al., 1970).  In addition to the influence on sediment

entrainment and transport, the shearing force of water across the channel bed is of

significance to benthic biota in terms of the energy required to resist detachment.

Proportions of benthic invertebrates therefore demonstrate a spatial correlation with

the distribution of shear stresses within the river channel (Merigoux and Doledec,

2004), and animals are known to seek lower-stress refugia in times of hydrological

disturbance (Winterbottom et al., 1997).

Kinematic shear stresses are plotted in Figure 5.9 in terms of both the series average

and the average contributions from positive and negative stresses related to different

turbulent ‘events’ which are explored in further detail in Section 5.4.2.  The kinematic

shear stress reveals some variation between biotopes in terms of overall values and

scales of variation.  The riffle at Napely Lodge Farm is consistently associated with

negative shear stresses, reflecting a strong positive correlation between the streamwise

and vertical turbulent residuals.  This pattern differs from the tendency for large

positive stresses that is generally expected as a consequence of large positive

contributions to the shear stress from burst and sweep structures (Duncan et al., 1970).

This may suggest that burst-sweep processes are less significant within the riffle and

instead turbulence generation is predominantly related to the shedding of vortices from

the lee of clasts and pebble clusters.
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Figure 5.9 Series-averaged kinematic shear stress for (a) Oakley Hall and (b) Napely Lodge Farm, and separate positive and negative
contributions to the shear stress (c and d) by sample location. Longitudinal measurements were located 1 m apart upstream along the centreline
and are denoted by a numeric transect code (which increases upstream).  Cross sectional measurements refer to the distance from the left bank.
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Time-averaged kinematic shear stresses within the glide biotope are consistently very

close to zero, reflecting approximately equal (and low magnitude) positive and

negative contributions, and revealing very little variation spatially, with depth or with

increasing discharge.  Both pools are again associated with higher levels of internal

variation which is more pronounced for the pool at Napely Lodge Farm.  The pools are

characterised by a combination of positive and negative average stresses, but separate

positive and negative contributions suggest a tendency for higher magnitude stress

associated with the location of the thalweg, and lower magnitude stresses within the

backwater zone at Napely Lodge Farm.

Both mean velocity and stress characteristics presented in this section support

observations of complexity of hydraulic response to increasing stage (Clifford and

Richards, 1992), particularly regarding the hydraulic organisation of pools, as opposed

to the simpler reversal hypothesis suggested by Keller (1971).  The following sections

employ increasingly more ‘complex’ hydraulic parameters in order explore this further

and attempt to improve the hydraulic characterisation of physical biotopes.

ii) Turbulence intensity

A preliminary indication of the intensity of the turbulent fluctuations may be gained

from the absolute and interquartile ranges of the residual streamwise and vertical

series (Figure 5.10 and 5.11).  An overall increase in intensities can be identified with

the transition from glide, riffle, to run biotopes.  Once again, the glide is associated

with the strongest spatio-temporal homogeneity of all biotopes, while the riffle is

relatively homogeneous spatially, but demonstrates a pronounced increase in

intensities with discharge.  The pools are associated with the most pronounced spatial
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Figure 5.10 Boxplots for u' series showing median, interquartile range and absolute range of values within each series.  Dotted grey gridlines
separate low flow (left hand boxes) and intermediate flow (right hand boxes) for each sample location.  At Napely Lodge Farm low flow samples
are 0.6d on both plots.
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Figure 5.11 Boxplots for w' series showing median, interquartile range and absolute range of values within each series.  Dotted grey gridlines
separate low flow (left hand boxes) and intermediate flow (right hand boxes) for each sample location.  At Napely Lodge Farm low flow samples
are 0.6d on both plots.
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variation, but the Napely Lodge Farm pool is consistently associated with larger

ranges and interquartile ranges suggesting greater levels of turbulence intensity

compared to the pool at Oakley Hall.  The pool at Napely Lodge Farm also reveals

some evidence of depth variation: samples close to the bed are generally associated

with higher intensities compared to those close to the water surface, possibly reflecting

flow intensification around microform roughness.

A further measure of intensity can be derived by calculating the root mean square

(rms) values for the turbulent residuals, which provide an average measure of the

intensity of fluctuations irrespective of sign.  Figure 5.12a and b plot the rms values

for streamwise and vertical velocity components.  Overall, the relationship between

the two rms components is approximately linear and positive, suggesting that vertical

intensities increase linearly with streamwise intensities.  Some variation in the nature

of the relationship is noted with respect to different biotopes, however.  Streamwise

and vertical intensities are approximately equal within the glide, while vertical

intensities are proportionately lower than streamwise intensities for the riffle and pool

samples, suggesting that higher magnitude fluctuations in the streamwise dimension

may suppress some vertical motion.

The average of the two rms values can be used to indicate the ‘overall intensity’ of

fluctuations (Duncan et al., 1970):

‘Overall intensity’ = ( )22 ''
2

1
wu +     Equation 5.2
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The overall intensity values for the different biotopes are presented in Figure 5.12c.

Overall intensity discriminates almost entirely between glide and pool biotopes at

Oakley Hall at both flow stages, while at Napely Lodge Farm, the riffle and pool are

associated with a large ‘overlap’ in values.  The glide is characterised by very low

intensities which increase at the higher flow stage and become more spatially

homogeneous.  Pools reveal the widest ranges of intensity values but show little

variation in the absolute range of values with increasing stage (although this may be

explored for the pool at Oakley Hall only).

Figure 5.13 explores the relationship between turbulence intensity and mean velocity

which reveals some evidence of systematic behaviour (Clifford et al., 1994).

Evidence of a linear increase in intensity with mean streamwise or vertical velocity is

strongest for both pool biotopes, suggesting that higher velocities enhance, rather than

suppress the intensity of turbulence.  However, R2 values for linear regressions were

generally below 0.5 and these are therefore not plotted.  The most significant linear

relationship (R2 = 0.72) was noted for the streamwise component within the pool at

Napely Lodge Farm, and relationships are generally stronger for the streamwise

component compared to the vertical and for Napely Lodge Farm compared to Oakley

Hall.  This reflects the greater spatial heterogeneity and thus larger range of values

associated with the pool at Napely Lodge Farm.  At Oakley Hall, little variation is

noted with increasing stage, although the relationship between intensity and mean

streamwise velocity is slightly stronger, while the relationship with the vertical mean

reveals increased scatter (Figure 5.13c and d).
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Figure 5.12 Comparison of the root mean square (rms) values for u' and w' for (a)
Oakley Hall and (b) Napely Lodge Farm, and the range of overall turbulence intensity
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Figure 5.13 The relationships between mean velocities and overall turbulence
intensity for all biotopes, at intermediate flow only for (a) Oakley Hall and (b) Napely
Lodge Farm.  (c) and (d) plot mean streamwise and vertical velocities respectively
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The spatial distribution of overall intensity is explored further in Figure 5.14.  Once

again, a continuum of increasing spatial heterogeneity is noted from glide, to riffle to

pool biotopes, and the pool at Napely Lodge Farm is associated with the most

pronounced spatial variation in values.  Some localised increases in intensity may be

attributed to the presence of particular flow obstructions, emphasising the influence of

‘microscale’ structures on flow organisation (Crowder and Diplas, 2000).  For

example, within the riffle (and particularly for samples close to the riverbed) increased

intensities may correspond to the influence of flow obstructions such as pebble

clusters.  Within the pool at Oakley Hall, some of the strongest intensities are noted

close to left bank, reflecting the intrusion of riparian tree roots into the flow.  For the

pool at Napely Lodge Farm, spatial variation appears more strongly related to the

organisation of flow within the pool.  The strongest intensities are associated with flow

convergence at the pool head and in the proximity of the thalweg, while the large

backwater zone is characterised by much lower intensities.

Within the pools, some variation in intensity is also noted with respect to relative

depth.  Within the pool at Oakley Hall, these variations are reveal a complex response

to increasing flow stage: for samples close to the riverbed, intensities generally

decrease with stage; but for samples close to the water surface, intensities increase

with stage.  For the pool at Napely Lodge Farm, variations in intensity with relative

depth appear more spatially organised.  Near-bed samples are consistently associated

with higher intensities along the channel centreline and in proximity to the thalweg.  In

the backwater zone, however, intensities are higher at the water surface, perhaps

reflecting the influence of rotational secondary circulations.
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Figure 5.14 Overall intensity by sample location for (a) Oakley Hall and (b) Napely
Lodge Farm.  Longitudinal measurements were located 1 m apart upstream along the
channel centreline and are denoted by a numeric transect code (which increases
upstream).  Cross sectional measurements refer to the distance from the left bank.
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5.4.2 Turbulent event structure

Observations within a u'w' time series may be assigned to one of four turbulent ‘event’

types (bursts, sweeps, outward and inward interactions) depending on the relative

signs of u' and w' (Figure 5.15).  A threshold value of relative magnitude is often used

in order to eliminate the influence of lower magnitude contributions that do not reflect

discrete ‘events’.  Event structure for the Tern data was computed using a threshold

value of two standard deviations of u' following Gordon (1974) and Clifford and

French (1992).  The period, duration and contribution to the total stress of these events

can provide further information on turbulent flow structure, but has to date been

largely overlooked in biotope characterisation.

Table 5.1 presents data from selected laboratory and field studies of turbulent event

structure within a variety of hydraulic environments in order to illustrate the range of

features examined and values identified.  The events are often intermittent in nature,

but contribute significantly to the total stress.  The largest contributions to the stress

are generally associated with bursts (ejections of fluid away from the bed), followed

by sweeps (compensatory inrushes; Lu and Wilmarth, 1973).  Significantly lower

magnitude contributions are generally associated with the ‘negative’ quadrants

(outward and inward interactions).

Some variations in event characteristics have been associated with bed microforms

and riffle-pool units.  For instance, lower magnitude and vertically restricted bursts

accompanied by infrequent low magnitude sweeps have been associated with sand

ripples, in contrast to unrestricted higher magnitude bursts and frequent high

magnitude sweeps found within dunes (Bennett and Best, 1996).  Data presented by
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Figure 5.15 Turbulent event ‘quadrants’ identified from the joint distributional
characteristics of u' and w'.
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Fractional stress contributions
Author(s) Study

Burst:
Sweep ratio

Bursts Sweeps
Inward

interactions
Outward

interactions

Intermittency of
stress contributions

Grass (1971) Laboratory  - channel ~ 50 - 70%

Lu and Wilmarth (1973) Laboratory - wind tunnel 1.7 ~ 77% ~ 55% ~ 32% ~ 32%

Gordon (1974) Field - Estuary ~ 68% ~ 60% ~ 15% ~ 15%
15% stress in 1% time

60% stress in 10% time

French and Clifford (1992) Field – Saltmarsh channel
90% stress in 50% time

43% stress in 10% time

Field – Riffle in gravel-bed

channel
~ 68% ~56% ~ 12% ~ 12%

Clifford and French

(1993b) Field – Pool in gravel-bed

channel
~ 83% ~ 85% ~ 35% ~ 35%

Lapointe (1996) Field – Sand-bedded channel
6 – 70% stress in

0.5 – 4% time

Roy et al.  (1996) Field – gravel-bed river ~ 65 – 88% ~ 70 – 85% ~ 15 - 35% ~ 20 - -8%

Table 5.1 Summary of burst-sweep data for selected publications from a range of hydraulic environments.
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Clifford and French (1993b) for a small gravel-bed river identified higher magnitude

contributions from all four quadrants for pool compared to riffle samples.

Furthermore, stress contributions from bursts and sweeps were found to be

approximately equal, in contrast to the asymmetry noted by Lu and Wilmarth (1973)

for laboratory data.

The fractional contributions to the kinematic shear stress (-u'w') from each of the four

event quadrants are presented in Figure 5.16.  Overall, bursts are undetected in a

higher proportion of series than sweeps, but show a larger proportion of very high

magnitude contributions to the stress.  Similarly, outward interactions are undetected

in a higher proportion of series than inward interactions but are again associated with a

very high proportion of high magnitude stress contributions.  This highlights the

intermittent, but high magnitude nature of these events.  The ratio of bursts to sweeps

shows a very broad range of values for all biotopes, falling both above and below the

value of 1.7 identified by Lu and Wilmarth (1973) for laboratory data.  However, this

variation is likely to reflect the intermittency of the higher magnitude events which

may exceed the 30 s sampling period used in this study (Gordon, 1974).

Figure 5.17 plots the fractional contribution of different events against the cumulative

duration of the events for each series.  The range of values are similar for all

quadrants, and suggest that 20% of the series stress is accounted for by high

magnitude events over a total duration of 1.5 s (5% of the 30 s series).  While the

levels of intermittency show some consistency with published works (Gordon, 1974;

French and Clifford; 1992; Table 5.1), the absolute values of stress contributions for
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low and intermediate flow data combined, and the ratio of (e) bursts to sweeps and (f) outward to inward interactions.



240

0

5

10

15

20

25

0.0 0.5 1.0 1.5

Cumulative duration (s)

Glide Low Pool Low

Glide Int Pool Int

F
ra

ct
io

na
l c

on
tr

ib
ut

io
n 

to
 -

u'
w

'(a) Bursts

0

5

10

15

20

25

0.0 0.5 1.0 1.5

Cumulative duration (s)

F
ra

ct
io

na
l c

on
tr

ib
ut

io
n 

to
 -

u'
w

'(b) Sweeps

-25

-20

-15

-10

-5

0

0.0 0.5 1.0 1.5

Cumulative duration (s)

F
ra

ct
io

na
l c

on
tr

ib
ut

io
n 

to
 -

u'
w

'

(c) Outward interactions

-25

-20

-15

-10

-5

0

0.0 0.5 1.0 1.5

Cumulative duration (s)

F
ra

ct
io

na
l c

on
tr

ib
ut

io
n 

to
 -

u'
w

'

(d) Inward interactions

0

5

10

15

20

25

0.0 0.5 1.0 1.5

Cumulative duration (s)

Riffle Int Pool Int

F
ra

ct
io

n
al

 c
o

n
tr

ib
u

tio
n

 to
 -

u
'w

'(e) Bursts

0

5

10

15

20

25

0.0 0.5 1.0 1.5

Cumulative duration (s)

F
ra

ct
io

n
al

 c
o

n
tr

ib
u

tio
n

 to
 -

u
'w

'(f) Sweeps

-25

-20

-15

-10

-5

0

0.0 0.5 1.0 1.5

Cumulative duration (s)
F

ra
ct

io
n

al
 c

o
n

tr
ib

u
tio

n
 to

 -
u

'w
'

(g) Outward interactions

-25

-20

-15

-10

-5

0

0.0 0.5 1.0 1.5

Cumulative duration (s)

F
ra

ct
io

n
al

 c
o

n
tr

ib
u

tio
n

 to
 -

u
'w

'

(h) Inward interactions

Figure 5.17 Cumulative fractional stress contribution and duration of each of the four turbulent event types for Oakley Hall (a to d) and Napely
Lodge Farm (e to h).  Each point represents the cumulative stress/ duration of a particular event type within a time series.
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bursts and sweeps are lower than reported laboratory and field values, perhaps again

reflecting the influence of the sampling period.

As with other measures, however, some indications of between biotope variations are

present, suggesting a potential for further investigation perhaps using longer duration

series.  In particular, two broad clusters of series can be identified for each plot in

Figure 5.17 corresponding to: (i) low magnitude, short cumulative duration events;

and (ii) events associated with longer cumulative duration and increased scatter in

magnitude.  For bursts and sweeps, the higher-magnitude, longer-duration events are

predominantly associated with pool series.  For outward and inward interactions the

higher magnitude, longer duration events are principally associated with riffle and

glide samples.  This is particularly apparent for Napely Lodge Farm, since higher-

magnitude, longer-duration bursts and sweeps are not observed within the riffle.  This

may reflect greater intermittency of burst and sweep events within the riffle (which are

therefore not captured by the sampling interval), but may also be associated with

greater boundary layer roughness, implying that turbulence generation may be more

strongly controlled by vortex shedding from pebble clasts and clusters.  The existence

of such flow structures is explored in the follow section.

5.4.3 Characteristic flow structures

Alternative means of exploring the presence of coherent flow structures within the

boundary layer are concerned with the identification of ‘characteristic’ or ‘dominant’

eddies from velocity series.  This may proceed by analysis in the ‘time domain’

through autoregressive modelling, and in the ‘frequency domain’ using spectral
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density analysis.  The following sections present the results of analysis using these two

complementary approaches performed on data from the River Tern.

i) Autoregressive modelling

In the same way that correlation coefficients may be obtained from the standardised

covariance of two independent variables, so the autocorrelation coefficient may be

derived from the covariance of two observations of the same variable in a time series

separated by a time lag (k).  Autocorrelation coefficients for successive values of k

may be visually inspected using a correlogram or ‘sample autocorrelation function’

(ACF.).  The ACF may be used to identify whether the fluctuations in a time series are

random, characterised by short term fluctuation, or alternate on either side of the mean

(Chatfield, 2004).  ACFs plotted for turbulent time series in small sand- and gravel-

bedded rivers have revealed oscillations characteristic of a damped sine wave which

has been interpreted to represent a second-order ‘pseudo-periodic’ autoregressive

process (Robert et al., 1993).  Such characteristics indicate that a tendency to periodic

behaviour exists in the series, but that this is disturbed by ‘shocks’ from a random

component which create a constantly changing phase and period (Box and Jenkins,

1976).

The modelling of stationary physical processes using autoregressive (AR), moving

average (MA) or mixed (ARMA) time series models allows these characteristics to be

expressed statistically.  AR models are essentially linear regressions where the

velocity value is regressed against previous values in the time series rather than a

separate variable.  They are generally described as ‘stochastic’, meaning that different

sets of observations generated by such a model over the same time period would

reveal different characteristics but obey the same probabilistic laws (Harvey, 1981).
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MA models linearly regress observations against the random shocks of previous

observations, thus incorporating past deviations from the series mean into predictions

of the ‘current’ value.  In both AR and MA modelling, the specified model order

represents the number of time periods in the past used to predict the current value in

the time series.

AR models are appropriate to situations where it can be assumed that values in a time

series depend linearly on immediate past values plus a random error term (Chatfield,

2004).  Second-order autoregressive, or AR(2) models are a popular choice in

geophysical applications since they may be directly associated with specific pseudo-

cyclic physical phenomena such as riffle-pool sequences (Richards, 1976) and

turbulent flow structures (Clifford, 1996a).  Provided that model parameters meet

certain inequality requirements, the average frequency of the deterministic component

may be interpreted as the characteristic vortex shedding frequency (Clifford et al.,

1992b), although the minimum detectable wavelength is limited by the velocity sensor

head diameter (Lane et al., 1993).  More complex processes may require mixed

models (ARMA) which require fewer model parameters but have less obvious

physical interpretations.

The autocorrelation function (ACF) and partial autocorrelation function (PACF) are

generally used as indicators for the order and type of model appropriate for a particular

time series (Chatfield, 2004).  As a general rule, an autoregressive process of order p is

characterised by an autocorrelation function which decays exponentially, and a partial

autocorrelation function which cuts off after lag p.  For an MA(p) process, the ACF

cuts off after lag p, and the PACF decays exponentially.  Both the ACF and PACF of a



244

mixed ARMA process are generally characterised by a mixture of damped

exponentials and sine waves.

ACFs and PACFs were plotted for each velocity series in SPSS 14.0.  ACFs were

generally characterised by a slow decay, with some oscillation either side of zero,

whereas the PACFs were characterised by a ‘cut-off’ after around the first two to four

lags (Figure 5.18).  The cutting off of the PACF suggests an autoregressive process,

although the number of parameters suggested by the PACF varied between series.  The

most appropriate choice of model was therefore somewhat unclear from the inspection

of ACFs and PACFs and so three types of model were tested for each series in order to

evaluate goodness of fit.

For reasons of parsimony the number of parameters was restricted to two (Box and

Jenkins, 1976).  Second order AR and MA models, and the mixed model ‘ARIMA

(1,0,1)’, were therefore fitted to each series and assessed for goodness of fit using the

calculated R2 value.  MA(2) models and ARIMA(1,0,1) models were generally

associated with higher R2 values overall and therefore provide a better fit.  However,

the AR(2) model was chosen for further analysis for several reasons.  Firstly, R2

values associated with series modelled with AR(2) models are considered acceptable

in the context of contemporary field studies (Clifford et al., 1992b; Robert et al.,

1993): no series were associated with an R2 value below 0.5, and for 77% of all series,

the R2 value generated by AR(2) models exceeds 0.8.  Furthermore the improvements

in model fit generated by fitting an MA or ARIMA model were relatively small.
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Figure 5.18 Example autocorrelation functions (ACFs) and partial autocorrelation
functions (PACFs) for each physical biotope.  Horizontal lines indicate significance
level.
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Secondly, AR(2) models are associated with direct physical interpretations, while

moving average and mixed models present difficulties for interpretation.  Thirdly,

while the cut-off of PACFs at lags greater than 2 suggests greater ‘complexity’ than is

accounted for by AR(2) models, this complexity is explored in greater detail using

spectral density analysis in Section 5.4.4, allowing AR(2) models to be used as a first

step in the analysis of coherent flow structures.

The fitting of an AR(2) model to a time series assumes that the series is characterised

by a second-order autoregressive process of the form:

yt =  Ø1 yt-1 +  Ø2 yt-2 +  єt     Equation 5.3

This states that the present value of the series (yt) is a function the two preceding

values (yt-1 and yt-2) multiplied by constants (model parameters Ø1 and Ø2) plus an

error term (єt).  The process may be decomposed into a stochastic and a deterministic

component (Harvey, 1981) and, provided that the process is stationary, the

deterministic component may be used to provide information on the characteristics of

‘average’ flow structures (Clifford and French, 1993a).  The two model parameters

must satisfy certain conditions for the deterministic component to represent a

stationary process:

(a) Ø1 + Ø2 < 1

(b) -Ø1 + Ø2 < 1

(c) Ø2 > -1     Equation 5.4
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The parameter values satisfy the conditions for stationarity for all series.  However, an

additional condition must be satisfied for the deterministic component to be

considered pseudo-periodic (Richards, 1979):

Ø1
2 + 4Ø2 < 0     Equation 5.5

The condition for pseudo-periodicity is satisfied by 82% of series (Table 5.2).

Interestingly, some variation in the proportion of series associated with pseudo-

periodic behaviour is noted between biotopes.  For instance, pool samples are

associated with a higher proportion of non-pseudo-periodic series compared to both

riffle and glide samples for each site respectively.  Again, this suggests a more

complex flow structure in pools, reflecting interactions between burst-sweep structures

and vortices shed from irregularly-sized woody debris, grain roughness elements and

larger bedform-related flow structures associated with morphological transitions.

Furthermore, the deeper water and slower velocities within pools may promote

interaction and coalescence of flow structures of varying size.

The model parameter values associated with each modelled series are presented in

Figure 5.19.  The relationship between the two parameters is necessarily negative, but

again, some variation between biotopes is evident.  Generally, pool samples are

associated with higher Ø1 values compared to glide and riffle samples.  This reflects

the fact that observations at one lag distance exert a stronger influence on the current

value in the series.  This again emphasises the complex nature of the flow environment

within pools by suggesting weaker correlations between observations located further

apart in time (and space) compared to glide and pool biotopes.



248

Low flow Intermediate flow

Series Site
Physical
biotope

No. series
No. pseudo-

periodic series
No. non pseudo-
periodic series

No. series
No. pseudo-

periodic series
No. non pseudo-
periodic series

Glide 16 11 5 18 13 5

Oakley Hall

Pool 16 15 1 16 14 2

Riffle 9 9 0 16 16 0
u'

Napely Lodge
Farm

Pool 22 14 8 22 12 10

Glide 16 16 0 18 18 0

Oakley Hall

Pool 16 13 3 16 14 2

Riffle 0 N/A N/A 16 16 0

w'

Napely Lodge
Farm

Pool 0 N/A N/A 22 15 7

Table 5.2 Satisfaction of the condition for pseudo-periodicity by site, biotope and flow stage for each velocity component.
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Figure 5.19 AR(2) model parameter values for each series by biotope and flow stage (a to d) and relative depth and flow stage (e to h) for each
site and for each of the two velocity components.  The dotted line represents the threshold for pseudo-periodicity.
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Significantly, variations in the model parameter values between biotopes are more

significant than variation associated with the relative depth of the measurement.

ii) Flow structure size and origin

For series satisfying the pseudo-periodicity inequality, the average frequency of the

deterministic periodic component derived from the AR(2) process may be used to

calculate the average frequency of the dominant flow structure (Clifford et al., 1992b):

( ) 1
2

21 ØØ2 Cos
−

−=fπ     Equation 5.6

The inverse of the frequency, ƒ, is the period, (P) or time taken for the passage of the

flow structure past the sensor, measured in seconds.  This assumes G. I. Taylor’s

substitution, that the sequence of events at a fixed point represents the movement of an

unchanging pattern of turbulence past that point (Reynolds, 1974), and provides only

an ‘average’ indication of eddy size.  Furthermore, dependency of the model on the

previous two observations in a series means that higher frequency flow structures are

likely to be modelled better than lower frequency oscillations.

The coefficient of variation for each series may be used as a check that the size of

eddies is relatively constant through time, and therefore the ‘average’ statistics provide

a satisfactory representation.  Coefficients of variation for u' series are plotted

according to sample location, flow stage and relative depth in Figure 5.20.  Values

generally fall below or close to 0.1 for glide and riffle samples suggesting minimal

variation in eddy shape (Clifford, 1997).  However, values are higher for both pools,

suggesting that average eddy statistics derived from AR(2) models may be subject to
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higher levels of error.  These samples are retained in the analysis, but ‘average’ values

may be less representative of the flow structures recorded.

Figure 5.21 presents the dominant period derived from AR(2) models for each series

according to physical biotope and flow stage.  All series are characterised by a

periodic component with an average period of between 1 s and 2 s duration, however,

some variation between biotopes is noted.  Riffle and glide biotopes are associated

with similar ranges of values, which contract to a more restricted range of values with

increasing discharge.  The pools, however, reveal contrasting patterns.  At Oakley

Hall, the pool is characterised by a very restricted range of values at the lower flow

stage, which plot ‘within’ the range identified for the glide.  At the higher flow stage, a

large amount of overlap with the glide is still noted, but the pool reveals a slight

increase in the range of dominant periods detected.  In contrast, the pool at Napely

Lodge Farm is characterised by a much larger range of values at the low flow which

contracts to a very tight range of values close to 1 s duration at the higher flow stage.

This partly relates to a lower sample number, since more of the intermediate flow

series within the pool failed to meet the condition for pseudo-periodicity.

Assuming that Taylor’s substitution applies, the average period derived from AR(2)

models can multiplied by the mean velocity to provide a spatial measure of eddy

length (L) (Clifford and French, 1993a):

uPL =     Equation 5.7
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Figure 5.22 plots the eddy length scales derived from each series by biotope and flow

stage.  At Oakley Hall, glide and pool biotopes show similar ranges of length scales at

both flow stages, suggesting a dominance of structures smaller than 0.4 m in length.

In contrast, riffle and pool biotopes at Napely Lodge Farm are clearly differentiated by

eddy lengths.  The riffle is characterised by a larger range of larger eddy sizes (up to

1.05 m) compared to the pool at both flow stages, although the absolute range of

values is reduced at the intermediate flow stage.  Additionally, eddy lengths within the

riffle are associated with a narrower range of values compared to the pool, particularly

at low flow, suggesting greater spatial homogeneity in flow structure.  Once again,

these variations between biotopes appear more significant than any variation

associated with the relative depth of the measurement.

Spatial variations in eddy length within each biotope are explored in further detail in

Figure 5.23.  Once again the glide demonstrates strong homogeneity spatially, with

depth and with increasing flow stage.  The riffle is also associated with relatively

strong spatial homogeneity, but shows systematic variation in flow structure size with

relative depth and discharge.  At the intermediate flow stage, flow structures reveal an

overall reduction in size.  Furthermore eddy sizes associated with samples close to the

water surface are consistently larger compared to those near the bed, possibly

reflecting the evolution and coalescence of structures with distance from the boundary.

Greater spatial heterogeneity is noted within the pools, but this appears relatively

unsystematic.  There is some tendency for larger flow structures towards the pool tail,

perhaps reflecting the interaction and coalescence of structure of varying size

generated by the morphological transition and vortex shedding from smaller roughness

elements.
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Figure 6.22 Dominant eddy length scale (L) derived from pseudo-periodic AR(2)
models for each biotope and flow stage for u' and w' series for (a) Oakley Hall and (b)
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Figure 5.23 Dominant eddy length scale (L) derived from pseudo-period AR(2) models applied to u' series for (a) Oakley Hall and (b) Napely
Lodge Farm by sample location, and applied to w' series (c and d). Longitudinal measurements were located 1 m apart upstream along the
centreline and are denoted by a numeric transect code (which increases upstream). Cross sectional measurements refer to distance from left bank.
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By following the methodology of Clifford et al. (1992b), the eddy length may be

converted into an estimate of the diameter (d) of the body responsible for shedding the

dominant vortices.  This requires rearrangement of the equation for Strouhal number

(S), which represents a dimensionless frequency of vortex shedding, assuming an

approximate value of S = 0.2:

(a) 
u

fd
S = (b) 

f

u
d

2.0=    Equation 5.8

Calculated values of d may then be compared to the calibre of substrate(s)

characteristic of each physical biotope as identified in Chapter 4.  Commonly,

percentiles derived from cumulative mass curves (e.g. D50, D84, D90) are used as

descriptors of grain size distributions (Bridge, 2003).  However, in natural gravel bed

rivers, the grain size is frequently scaled up (3.5D84) in order to provide an estimation

of roughness length which reflects small-scale form resistance such as

microtopographic bedforms (Clifford et al., 1992b).  Figure 5.24 plots the values of d

by sample location with respect to the grain size characteristics (D84) and effective

roughness length (3.5D84) within each respective physical biotope.  For sand and

gravel samples, only the 3.5D84 is plotted, since D84 values are several orders of

magnitude smaller than the dominant eddy length and are unlikely to represent the

bodies responsible for vortex shedding.

Within the glide at Oakley Hall, average eddy sizes suggest shedding structures of

approximately 0.05 to 0.07 m for most sample locations.  This suggests close

correspondence with the 3.5D84 for gravely shoals within the glide, possibly reflecting



258

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Low 0.2 Low 0.8 Int 0.2 Int 0.8

d
u

' 
 (

m
)

(a) Oakley Hall 

Glide Longitudinal Glide Cross sectional Pool Longitudinal Pool Cross sectional
T68 T69 T70 T71 T72 T92 T93 T94 T95 T961m 2m 3m 4m 1m 2m 3m

Sand 3.5D84

Gravel 3.5D84

Cobble D84

Cobble 3.5D84

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Low 0.2 Low 0.6 Low 0.8 Int 0.2 Int 0.8

d
u

' (
m

)

(b) Napely Lodge Farm

Riffle Longitudinal Riffle Cross sectional Pool Longitudinal Pool Cross sectional
T42 T43 T44 T45 T46 1m 2m 3m 4m 1m 2m 3m 4m 5m 6mT22 T23 T24 T25 T26

Gravel 3.5D84

Cobble D84

Cobble 3.5D84

Sand 3.5D84

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Glide Longitudinal Glide Cross sectional Pool Longitudinal Pool Cross sectional
T68 T69 T70 T71 T72 T92 T93 T94 T95 T961m 2m 3m 4m 1m 2m 3m

d
w

' (
m

)

(c) Oakley Hall

Sand 3.5D84

Gravel 3.5D84

Cobble D84

Cobble 3.5D84

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Riffle Longitudinal Riffle Cross sectional Pool Longitudinal Pool Cross sectional
T42 T43 T44 T45 T46 1m 2m 3m 4m 1m 2m 3m 4m 5m 6mT22 T23 T24 T25 T26

d
u

' (
m

)

(d) Napely Lodge Farm

Gravel 3D84

Cobble D84

Cobble 3D84

Sand 3D84

Table 5.24 Estimated diameter (d) of vortex-shedding body derived from modelled u' and w' series by sample location with respect to the D84and
3D84 for substrates found within each respective biotope.  Longitudinal measurements were located 1 m apart upstream along the centreline and
are denoted by a numeric transect code (which increases upstream).  Cross sectional measurements refer to distance from the left bank.
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the influence of microtopography on vortex generation.  Spanwise sand ridges

observed within sandy areas of glides constitute an additional microtopographic

roughness element which may also be responsible for the observed structures.  Most

values of d within the glide are much larger than the 3.5D84 for sand, perhaps due to

growth and evolution of eddies with distance from the bed.  Within the riffle, estimates

of shedding body size are much larger, suggesting the presence of flow obstructions

between 0.1 m and 0.2 m in diameter.  Values of d are larger than the 3.5D84 for gravel

and the D84 for cobbles, but smaller than the 3.5D84 for cobbles.  This may reflect the

influence of small clusters of pebbles, or the evolution of eddies shed from larger

individual pebble particles with distance from the boundary.

Within the pools, the estimated size of shedding structures varies between 0.001 m and

0.18 m, reflecting the complexity of bed material composition which included sand,

cobbles and woody debris.  Furthermore, as suggested previously, evolution and

coalescence of eddies may be more prominent in pools as a result of the deeper water,

which may partially explain the large scatter in values for d.  For many of the series,

values for d fall close to the D84 for cobbles, suggesting shedding from individual

particles.  However, shedding is also likely to related to the accumulations of

irregularly sized woody debris which may also help to explain some of the variation in

values.

This analysis illustrates the direct effects of microscale flow obstructions on the

organisation of flow structures within the water column.  Eddies shed from both

smaller elements associated with individual particles, and larger microform roughness

elements associated with cluster bedforms and organic debris interact to create a
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complex flow environment in the outer flow zone.  This further emphasises the

importance of substrate composition in determining physical habitat characteristics,

not simply within the benthic zone but throughout the water column.

5.4.4 Spectral signatures

i) Spectral density

When analysed in the ‘frequency domain’, the variance of a time series may be

represented as a summation of many sinusoidal functions of varying frequencies.  The

contributions of each of these to the total series variance may be isolated by Fourier

analysis (Rayner, 1971) and smoothed using weighted moving averages or ‘windows’

of varying sizes to produce a ‘spectral density estimate’ (Davis, 2002).  Spectral

density techniques are commonly applied in a range of fluvial research contexts from

macroscale investigations of morphological structure within large rivers (Carling and

Orr, 2000) to microscale investigations of turbulence and sediment suspension

(Lapointe, 1996).

The spectral density function represents the Fourier transform of the ACF, and has the

added advantage of providing information on the range of eddy scales in addition to

the dominant or ‘characteristic’ flow structures.  The detectable range of frequencies is

determined by both the series length and the sampling interval (Davis, 2002).  The

lowest detectable frequency is determined by the number of observations (n) in the

series since information cannot be obtained for signals with a period greater than

2/)1( −n .  The highest detectable (‘Nyquist’) frequency, is restricted to wavelengths

of twice the sampling interval.  Since the spectral density estimate must account for all

of the variance within the series, the variance contributed by frequencies higher than

the Nyquist frequency must be distributed among the lower bands, a problem known
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as ‘aliasing’ (Davis, 2002).  Aliasing was not considered to represent a significant

problem in this analysis since the sampling interval was small enough to account for

turbulent frequencies identified in previous work (Kirkbride, 1993; Clifford and

French, 1993b).

Spectral density analysis was performed in SPSS 14.0 on the turbulent residuals u' and

w' in order to eliminate contributions to the variance from the series mean, and

spectral estimates were smoothed using the Tukey-Hanning filter with a window of 5

lag widths.  Series with missing data were excluded from the spectral analysis for

purposes of comparability, since the number of observations in a given series

determines the detectable range of frequencies, as described above.  This permitted the

computation of spectral density estimates for 112 out of a total of 135 series.

ii) Flow structure ranges

The morphology of the spectrum can provide an indication of whether periodic

variations are the dominant feature of the series, or whether a wide range of

frequencies are responsible for the observed variation (Rayner, 1971).  Frequency

spectra may be converted to a spatial analogue, the wavenumber spectra, in order to

aid interpretation of the scale of flow structure structures associated with varying

contributions to the series variance (Clifford and French, 1993a; Clifford and French,

1993b) using the conversions:

(a)  ( )nfS
U

KE
π2

)( = (b)  UfK n /2π=       Equation 5.9
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Where S(ƒn) represents the frequency spectrum at frequency ƒn and the wavenumber

(K) is measured in radians per metre.

Wavenumber spectra for all complete series were computed and examined visually

(see Appendix B).  A simple indication of the overall series variance can be identified

from the magnitudes of E(K) which reveals some variation between biotopes.  Glide

and riffle biotopes are associated with lower variances (generally around 10-3)

compared to the pools (10-2).  For the glide, variance is reduced at the intermediate

flow stage, while the riffle is associated with similar magnitudes of variance between

flow stages but shows some cross sectional variation at low flow.

The maximum wavenumber identified for each series is plotted in Figure 5.25,

providing an indication of the scale of the smallest flow structures contributing to the

variance.  Again, some differentiation between biotopes is observed.  Wavenumber

maxima for riffle samples are low, reflecting the dominance of larger flow structures

associated with cluster bedforms identified in Section 5.4.3.  Maxima are

comparatively higher for the glide, corresponding to the smaller flow structures

observed in Section 5.4.3, and reveal significant variation for the pool biotopes

reflecting the strong spatial heterogeneity of flow structure size which is once again

more pronounced for the pool at Napely Lodge Farm.

Visual examination of the morphology of wavenumber spectra can provide further

detail on flow organisation.  Wavenumber spectra for all series are provided in

Appendix B, but Figure 5.26 presents example spectra for each physical biotope at
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Figure 5.25 Maximum wavenumber values for u' and w' series by biotope and flow
stage derived from wavenumber spectra.  Two large outliers exceeding 700 rad m-1

associated with pool samples are excluded to improve visual display.
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each site at low flow in order to illustrate the broad characteristics.  The morphology

of wavenumber spectra demonstrate strong spatial homogeneity for glide and riffle

samples, consistent with other measures explored in previous sections and generally

variations between biotopes appear more significant than variations with relative depth

of the measurement.  This is generally maintained across flow stages for both

biotopes, although for some riffle samples spectral peaks reveal a shift to the right at

the higher flow stage suggesting a reduction in the average size of flow structures

consistent with AR(2) models in Section 5.4.3 and the observations of Clifford

(1996a).  The morphology of wavenumber spectra are relatively similar for samples

within the pool at Oakley Hall, but at Napely Lodge Farm the pool is characterised by

pronounced spatial variation in spectra morphology at low flow, which is then reduced

at the higher flow stage.

However, two features of the morphology of wavenumber spectra are of particular

interest: (i) truncation of the spectral density function at low or high wavenumbers;

and (ii) the occurrence and character of spectral peaks.  Truncation of spectral plots at

high wavenumbers suggests that the sampling interval is too large to capture the

highest frequency fluctuations.  Truncation at low wavenumbers suggests that larger

flow structures with periods greater than the sample length contribute in some way to

the series variance.  Truncation at high wavenumbers was absent from the Tern data

set, in contrast to published data for lower frequency sampling at 2 Hz and 10 Hz

(Clifford and French, 1993b), suggesting that the 16 Hz sampling interval was

sufficient to capture the smallest flow structures.  Truncation at low wavenumbers was

observed within all biotopes, but this was most obvious for the pools, suggesting

significant variance is associated with larger flow structures with periods greater
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Figure 5.26 Sample wavenumber spectra for each of the four biotopes at low flow.  (a) to (d) present spectra for u' series and (e) to (f) spectra for
w' series.
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than 30 s which was not completely removed by detrending procedures.  Some

contrasts between pools are noted regarding levels of truncation across discharges,

however.  For the pool at Oakley Hall, truncation at low wavenumbers becomes more

frequent at the higher flow stage, suggesting a stronger influence of larger scale

structures, perhaps associated with secondary circulations.  In contrast, truncation is

reduced at the higher discharge for the pool at Napely Lodge Farm, suggesting that

larger flow structures are less prominent, possibly reflecting the intensification of flow

identified in Chapter 4.

The occurrence and character of spectral peaks within the spectrum can provide an

indication of the complexity of the flow organisation.  A peak in the frequency

spectrum is interpreted to suggest that a certain oscillation in the sequence accounts

for a large amount of the total series variation.  In the case of turbulent velocity time

series, this is often interpreted to represent a prominent eddy structure (Venditti and

Bauer, 2005).  In contrast, a ‘spiky’ profile indicates contributions from a wider range

of wavenumbers.  Singular spectral peaks are less apparent for riffle spectra compared

to glide and pool samples.  Instead, riffles demonstrate peaks at relatively low

wavenumbers (representing larger flow structures) and a subsequent ‘spikey’ decay

towards higher wavenumbers, suggesting that a variety of smaller flow structures

contribute significantly to the variance.  This may reflect the variety of clast sizes

associated with the pebble-gravel substrate creating a range of eddy shapes and sizes.

Spectral peaks are more obvious for the glide spectra, suggesting a simpler flow

structure characterised by vortices with similar dimensions.  This is consistent with the

flume-like nature of the glide which is associated with strong homogeneity of substrate
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composition and a simple bed topography.  Some spectra for both pools are also

characterised by a prominent spectral peak.  For the pool at Oakley Hall, this is

generally associated with higher wavenumbers for near-bed samples, supporting the

idea of evolution and growth of flow structures over depth.  Near-bed samples also

reveal a higher incidence of secondary peaks at higher wavenumbers perhaps

suggesting a more complex flow structure associated with vortices of varying size

shed near the boundary which coalesce over depth creating a simpler flow structure

near the water surface.  More complex, ‘spikier’ profiles are associated with both

faster-flowing pool head and mid-pool locations, and within the backwater zone

towards the left bank.  Spectral peaks reveal a shift to higher wavenumbers at the

intermediate flow stage suggesting a reduction in the average size of flow structures as

identified for the riffle.

iii) Average flow structure size

Assuming Taylor’s hypothesis applies, an estimate of the characteristic length scale

associated with the highest contribution to the series variance can be obtained by

multiplying the period (the inverse of the frequency) associated with the peak spectral

density by the mean streamwise velocity (Best, 1993; Clifford and French, 1993a).

Figure 5.27 plots these derived length scales for each physical biotope and compares

these to length scales derived from AR(2) models.  Length scales were plotted for all

series and therefore reveal significant variation since some series (principally

associated with the riffle) did not demonstrate a pronounced spectral peak.  This

creates significant overlap between biotope categories in contrast to the observations

in section 5.4.3.  Eddy lengths derived from spectral peaks are generally much larger

than those derived from AR(2) models (often over 1 m in length), and this
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Figure 5.27 Eddy lengths derived from velocity spectra for (a) u' series and (b) w' series, and the ratio of length scales derived from spectra to
those derived from AR(2) models for u' and w' series (c and d).
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is more pronounced for u' series compared to w'.  This is a consequence of using the

spectral peak to represent the average eddy size, which ignores the influence of

smaller turbulent fluctuations associated with the ‘spiky’ decaying limb of spectra.

Overall, however, results presented in this section support the idea of a continuum of

increasing hydraulic complexity from glide, to riffle to run biotopes in terms of flow

structure characteristics and levels of spatio-temporal variation.

5.5 PHYSICAL BIOTOPES AND SEDIMENT TRANSPORT

So far, biotope characterisation studies have attempted only relatively simple

explorations of sedimentology in the form of dominant substrate characteristics.  The

following sections present the methodology and results of a set of experiments which

attempt to identify variations in sediment transport mechanisms within and between

physical biotopes, since such characteristics are likely to have a direct influence on

biota through the distribution of sediments, nutrients and pollutants within the channel.

5.5.1 Sampling design

Within the same physical biotopes sampled for velocity characteristics (see Plate 5.1),

suspended sediment experiments were conducted during a stable low flow period in

June 2005 and on the falling limb of a flood event in July 2005 (See Chapter 2 Section

2.3.5 for discharges and exceedences).  Two ‘arrays’ of three Partech IR40C infra red

turbidity probes were deployed to monitor turbidity levels for the duration of

artificially created sediment ‘pulses’.  On each array, probes were positioned at 0.2,

0.6 and 0.8 of the water depth from the surface and arrays were spaced 2 m apart

longitudinally along the channel centreline (Figure 5.28).  Sediment pulses comprising
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fine silts collected from channel margins (See Chapter 2, Section 2.3.4 for grain size

distributions) were released upstream of the first array at 0.2, 0.6 and 0.8 of the water

depth.  Shallow depths within the riffle biotope limited the experiment to a single

release and detection depth at 0.6.

The Partech IR40C probes measure the extent to which light passing through the water

is reduced as a result of water turbidity by relating the attenuation of an incident

optical beam to the mass of material in transport (Clifford et al., 1995).  Probes were

connected to a Campbell Scientific CR10X datalogger logging at a frequency of 11 Hz

for one minute prior to sediment release, thus providing an indication of the ‘ambient’

turbidity levels, and for three minutes following each release to ensure that enough

time was allowed for the pulse to pass both probes.  A velocity time series was taken

beside the upstream probe array in order to provide an indication of the mean flow

velocity.

5.5.2 Calibration and data cleaning

Partech IR40C turbidity probes were calibrated for offsets and in order to check for a

linear response to increasing sediment load.  Individual probe offsets were determined

by laboratory calibrations in clear water (Figure 5.29a).  However, field readings taken

prior to the release of sediment pulses generally fall below the clear-water calibration

levels, reflecting the sensitivity of probes to variations in ambient light.  In order to

improve visualisation of time plots, and since actual sediment concentrations are not

relevant to the experiment, the ‘ambient’ turbidity value was subtracted from turbidity
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Figure 5.29 (a) Clear-water offset values for IR40C turbidity probes used in
microscale sediment experiments.  (b) laboratory calibration curves for field sediments
collected from each field site. (c) Linear trends fitted to the probe output range
identified for field deployments.
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series in order to simultaneously remove the offset and account for ambient light

conditions.

Although the absolute sediment concentrations are not required, probe response to

increasing sediment load must be linear in order to provide an accurate indication of

variations in sediment concentrations.  A calibration curve was obtained by

incrementally adding small samples of well-mixed sediment of known weight to a

known volume of water.  Curves reveal a characteristic sigmoid trend (Clifford et al.,

2995; Figure 5.29b).  However, the field ranges observed for the turbidity monitoring

experiments are relatively narrow and fall within the lower part of the curve, meaning

that the relationship between sediment concentration and probe output is

approximately linear (Figure 5.29c), and therefore probe output provides an accurate

proportional representation of changing sediment concentrations.

Partech IR40C probes are frequently associated with a high frequency switching

transient when used in conjunction with data loggers (Clifford et al., 1995).  Since this

represents an electrical effect it was ignored, and analysis focused on the overall

characteristics of detected pulses.  Time plots for sediment release experiments were

produced by comparing probes located at the same relative depth on upstream (A1)

and downstream (A2) probe arrays (a total of 53 plots).  Unfortunately a logging error

meant that traces for the June release at 0.8 of the depth within the glide were lost.  In

all cases, sediment pulses were advected past both probes within 60s of the time of

release, and therefore the remaining parts of the series were discarded.
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In order to objectively delimit sediment pulses within each trace, the ambient turbidity

was used as a threshold above which observations can be considered part of the

introduced sediment pulse.  However, this resulted in the inclusion of small infrequent

fluctuations in turbidity, possibly related to intermittent sediment suspension events

(Lapointe, 1996), as discrete pulses.  The threshold was therefore increased to one and

a half times the ambient range, to provide a stricter means of pulse delimitation.

Pulses associated with only one or two observations above this threshold were

disregarded, since it is possible that these reflect natural turbidity fluctuations

associated with turbulent mixing.

5.5.3 Sediment pulse characteristics

Fine sediment ‘pulses’ of limited duration are a common cause of disturbance in river

systems.  Large-scale pulses may originate from the natural mobilisation of channel

and floodplain sediments or runoff from agricultural land or construction sites during

storm events (Watanabe et al., 2005).  Such events may have important implications

for instream biota particularly where toxic contaminants are adsorbed to minerogenic

particles (Hose et al., 2002).  Smaller-scale interactions between turbulent mixing

processes and suspended material under more stable hydrological conditions are also

of great significance for aquatic organisms, for instance regarding the distribution of

food and nutrients within the channel (McNair et al., 1997).

A sediment pulse originating from a single source will be distributed longitudinally,

vertically and transversely according to a combination of advective, diffusive and

dispersive mixing processes.  Advection refers to the process by which velocity

currents move the sediment cloud in a downstream direction away from the release
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location.  ‘Pure’ advection moves the pulse downstream as a coherent body without

change in concentration, but a second process, known as ‘turbulent diffusion’ causes

the pulse to spread out vertically within the water column and transversely towards the

banks (Rutherford, 1994).  Turbulent eddies break up the sediment plume, increasing

concentration gradients and accelerating the molecular diffusion process which

transfers sediment from areas of high concentration to areas of low concentration

(Allen, 1985), ultimately altering the size, shape and concentration of the sediment

cloud.  Since most river channels are characterised by widths many times greater than

the water depth, complete diffusion is generally achieved more rapidly in the vertical

dimension throughout the water column, than transverse diffusion across the channel

(Rutherford, 1994).  An additional process, ‘dispersion’ may result in the movement of

the sediment cloud bodily either towards the banks (transverse dispersion), or

vertically within the water column (vertical dispersion).

In order to analyse the transmission of suspended sediment within different biotopes,

the sediment plume detected by each turbidity probe was considered as a discrete

event in the manner of a flood pulse hydrograph (Figure 5.30).  Table 5.3 provides the

mean velocity conditions at the first probe array within each biotope.  For each pulse

detected at each probe for the various sediment releases, the advection time, time to

peak, time to recession and total duration of the pulse was calculated, along with the

peak turbidity value.  Figure 5.31 plots these statistics for the various releases within

different physical biotopes.  Overall, pulses generally reach the first array between 5s

and 25s following the release, and the second array between 10s and 30s after the

release.  The duration of pulses varied between less than 1s to over 30s and generally
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Figure 5.30 Flood hydrograph theory applied to sediment pulses, modified from
Bridge (2003: Figure 1.3, p. 8)

Site Date Physical biotope U (ms-1) W (ms-1)

Glide 0.30 -0.14
June

Pool 0.82 -0.16

Glide 0.33 -0.30
Oakley Hall

July
Pool 0.20 -0.34

Riffle 0.80 0.08
June

Pool 0.62 3.14

Riffle 0.46 -0.31
Napely Lodge Farm

July
Pool 0.07 -0.34

Table 5.3 Mean velocity measured at array 1 during sediment releases for each
physical biotope.
.
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Figure 5.31 Sediment pulse statistics for array 1 (a to f) and array 2 (g to l) by the relative depth of detecting probes.
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the rising limb of the sediment concentration was shorter than the falling limb as noted

for ‘advection zones’ proximal to the release location (Rutherford, 1994).

Sediment pulse statistics also show some variation between physical biotopes.  At

Oakley Hall, the glide is generally associated with a wider range of pulse statistics,

suggesting that the characteristics of the detected pulse are dependent on the height of

the release in the water column and the position of the detecting probe, possibly

reflecting a structured, logarithmic velocity profile.  Pulses advected within the riffle

are advected downstream rapidly, reflecting the high flow velocities (Table 5.3), but

are relatively long in duration, possibly reflecting longitudinal elongation of the pulse

as a result of velocity shear within the water column (Rutherford, 1994).  The data sets

for both pools are relatively fragmentary since a number of pulses were not detected

by probes.

Table 5.4 lists the probes associated with the most rapid advection, longest duration

and highest maximum turbidity value on each array for each sediment release.  Some

variation in the response of pulses to variations in the depth of release and the position

of probes is observed.  For the glide, pulses are generally advected most rapidly and

are of longer duration within the upper part of the water column, irrespective of the

location of the release.  This suggests that vertical diffusion is achieved close to the

pulse source and therefore traces reflect the logarithmic structure of the velocity

profile.  This is less clear for the July experiment, however, perhaps reflecting a

change in the organisation of the velocity profile with the passage of the flood event.

The turbidity maximum migrates towards the bed with distance from the release,



278

Longest pulse duration Most rapid advection Maximum turbidity

Site Date Biotope Release depth A1 A2 A1 A2 A1 A2

0.2 0.2 0.2 0.2 0.2 0.8 0.6

0.6 0.2 0.2 0.2 0.2 0.8 0.5Glide

0.8 N/A N/A N/A N/A N/A N/A

0.2 Not detected 0.2 Not detected 0.2 Not detected 0.2 & 0.6

0.6 0.6 0.8 0.2 0.6 0.6 0.8

June

Pool

0.8 0.8 0.8 0.6 0.8 0.8 0.8

0.2 0.2 0.2 0.6 0.2 0.2 0.6 & 0.8

0.6 0.2 0.6 0.2 0.2 & 0.6 0.2 0.8Glide

0.8 0.6 0.8 0.6 0.2 0.8 0.8

0.2 0.2 Not detected 0.2 Not detected 0.2 Not detected

0.6 0.2 Not detected 0.6 Not detected 0.8 Not detected

O
ak

le
y 

H
al

l

July

Pool

0.8 0.2 Not detected 0.8 Not detected 0.8 Not detected

0.2 0.6 Not detected 0.6 Not detected 0.2 Not detected

0.6 0.6 Not detected 0.2 & 0.8 Not detected 0.8 Not detectedJune Pool

0.8 0.8 Not detected 0.6 Not detected 0.8 Not detected

0.2 Not detected 0.8 Not detected 0.8 Not detected 0.8

0.6 Not detected 0.8 Not detected 0.8 Not detected 0.6

N
ap

el
y 

L
o

dg
e 

F
ar

m

July Pool

0.8 Not detected Not detected Not detected Not detected Not detected Not detected

Table 5.4 Relative depth of probes associated with the longest pulse duration, most rapid advection and maximum turbidity value at each array
for each sediment release.  Riffle is excluded since shallow depths permitted only one probe at each array.
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reflecting the tendency for pulse migration towards regions of lower diffusivity

(Rutherford, 1994).

Pulse statistics may also be expressed as a ratio (array 1: array 2) in order to assess the

change over distance from release for probes positioned at the same relative depth on

arrays 1 and 2.  Figure 5.32 plots the ratios for different pulses statistics for each

physical biotope for the various sediment releases.  Analysis is limited principally to

the glide, since pool samples frequently failed to detect the pulse on both arrays, and

only two pulses were conducted within the riffle for each experiment due to low water

depths.  However, some broad trends are observed.  Overall, pulses are detected first at

array 1 which was positioned closer to the release location, with the exception of one

pool sample which may reflect the influence of rotational flow circulations.  The glide

reveals a tendency for longer duration pulses at array 2 during the July experiment,

perhaps reflecting the effects of vertical velocity shear.  The peak turbidity is generally

higher for array 1 probes, reflecting the diffusion and settling-out of particles over

distance from the release.  Some instances of higher peak turbidities at the second

array suggest an increase in sediment concentrations close to the bed as particles

migrate vertically towards the boundary.

For the pool at Oakley Hall, probes located within the upper water column fail to

detect all pulses during the June experiments, suggesting rapid dispersion of pulses

transversely or vertically within the water column following release.  In contrast, all

probes detect each sediment pulse for the July experiments, again suggesting a re-
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Figure 5.32 Ratio of array 1 to array 2 for pulse statistics by relative depth of detecting probe.
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organisation of velocities within the water column and longitudinally during the flood

event.  This is further emphasised by variations in the location of the longest duration

pulses: for the June experiments these occur close to the bed, but in July they occur

close to the water surface.

5.5.4 Identification of mixing processes

Perhaps the most significant information to be derived from the experiments, however,

relates to the interpretation of the dominant mixing processes operating within

different biotopes.  A systematic process was devised in an attempt to determine the

mixing process responsible for the observed detection or otherwise of sediment pulses

at various relative depths within the physical biotopes.

Within all biotopes (and for both sets of experiments), pulses are detected at array 2

suggesting that the complete settling-out of particles, or diffusion to ambient levels

between the release location and second array is unlikely.  Detection of sediment

pulses within pairs of probes located at the same relative depth on each array was

therefore considered within the context of surrounding probes in order to determine

whether the distribution of the sediment pulse within the channel was controlled by

longitudinal advection, transverse dispersion or vertical dispersion.  Figure 5.33

represents the systematic process used to identify the dominant mixing mechanisms

and indicates which physical biotopes were associated with each of type of process.

Sketches of the dominant mixing processes attributed to various pulse detection

scenarios are provided in Figure 5.34, and Figure 5.35 plots the mixing characteristics

of different biotopes quantitatively, according to the frequency of processes attributed
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Figure 5.33 Systematic process used to identify the various mixing processes responsible for the observed sediment transfer signal.
Superscript values denote the number of probe pairs allocated to each mixing process for each biotope and experiment date.
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Flow

(a)  Vertical diffusion and advection (cross sectional view)

Array 1 Array 2

Flow

(b)  Vertical dispersion (cross sectional view)

Array 1 Array 2

Flow

(c)  Transverse dispersion (aerial view)

Array 1 Array 2

Figure 5.34 Sketches to illustrate the principal sediment mixing processes identified
from suspended sediment experiments: (a) rapid vertical diffusion and downstream
advection, (b) vertical dispersion by upwelling or downwelling currents and (c)
transverse dispersion laterally towards either bank.
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Figure 5.35 The number of sediment pulse experiments (at various release depths)
attributed to each of the four main mixing processes for each physical biotope and
experiment date.
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to different sediment releases.  Sediment pulses are detected by all probes within glide

and riffle biotopes, irrespective of the depth of the sediment release.  This suggests

that the downstream advection of sediment by flow velocity is strong enough to

overcome (at least in part) depositional and diffusive processes over short distances

(Figure 5.34a).  Vertical diffusion of the pulse appears to occur rapidly over the 1 m

distance between the release and array 1 since all probes on array 1 detect the pulse

irrespective of the release depth (although this can only be assessed for the glide).  In

contrast, there are several instances where probes fail to detect sediment pulses

released within the pools.  Discounting deposition, this suggests the bodily movement

of the pulse by dispersion either vertically within the water column (Figure 5.34b), or

laterally towards either bank (Figure 5.34c).  Where the pulse is detected at different

probe depths on each array, dispersion was considered to occur in the vertical

dimension, associated with upwelling or downwelling currents.  Where all probes on

one or both of the arrays failed to detect the pulse, dispersion was considered to occur

transversely by deflection of the sediment plume by meander currents or secondary

circulations.

The pool at Oakley Hall is characterised by a combination of vertical and transverse

dispersion, depending on the depth of the sediment release and the hydrological

context of the experiment.  Transverse dispersion becomes more prominent for the

July experiment, however, suggesting a re-organisation of flow and possible

intensification of the thalweg on the waning limb of the flood event which deflects the

plume away from the channel centreline.  In contrast, the pool at Napely Lodge Farm

is consistently associated with transverse dispersion for both experiments, although the

nature of this varies.  For the June experiment, all sediment releases were deflected
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around the second probe array, which reflects the routing of sediment away from the

mid-pool zone by the thalweg.  The July experiment, however, is associated with a

combination of dispersion around the first array only, and dispersion around both

arrays, reflecting the complex flow environment involving rotational secondary

circulations.

This section supports the idea of a relatively homogeneous physical structure of the

glide biotope, and to a lesser extent the riffle, associated with a structured logarithmic

velocity profile which competently advects an introduced sediment pulse downstream

and demonstrates predictable mixing behaviours.  In contrast, pools are very complex

hydraulic environments which is of great significance for the routing of particulate

matter, which appears dependent on the depth of the source, and the organisation of

velocities within the channel associated with the wider hydrological regime.

5.6 DISCUSSION AND CONCLUSIONS

This chapter employs a range of statistical approaches to analyse a variety of hydraulic

parameters at the microscale within selected physical biotopes.  Overall, hydraulic

parameters suggest that between-biotope variation is more significant than variation

with relative depth within individual biotopes.  Table 5.5 and Table 5.6 present the

results of Mann-Whitney tests performed in order to test this observation for statistical

significance (homogeneity of variance was too high for a parametric test).  Variation

between biotopes does appear more significant than variation within biotopes, since

differences between relative depth groups (0.2 and 0.8) fail to show statistical

significance for all parameters.  However, the discriminatory ‘success’ of different

parameters depends upon the combination of physical biotopes studied, similar to
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Mann-Whitney significance level (P) for physical biotope groups

Site Flow stage u w Intensity -u'w' Eddylength

Low 0.026 0.017 <0.001 1.000 0.002

Oakley
Hall

Intermediate 0.022 0.506 <0.001 0.313 0.185

Napely
Lodge
Farm

Intermediate <0.001 <0.001 0.781 <0.001 <0.001

Table 5.5 Results of the Mann-Whitney tests performed on biotope groups at each site
for different variables.  Emboldened values highlight groups which are statistically
different at the 0.05 significance level (P < 0.05).

Mann-Whitney significance level (P) for relative depth groups

Site Flow stage u w Intensity -u'w' Eddylength

Low 0.402 0.780 0.724 0.809 0.551

Oakley
Hall

Intermediate 0.433 0.946 0.786 0.079 0.239

Napely
Lodge
Farm

Intermediate 0.817 0.583 0.488 0.172 0.701

Table 5.6Results of the Mann-Whitney tests performed on relative depth groups at
each site for different variables.
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observations by Jowett (1993).  Turbulence intensity, for instance, clearly

distinguishes pool and glide biotopes at Oakley Hall, while average eddy size provides

better discrimination between pool and riffle biotopes at Napely Lodge Farm (Table

5.6).

Higher-order flow properties generally provide greater differentiation between

biotopes compared to simpler series-averaged velocity and stress properties.  Three

hypotheses for the principal causes of observed flow structure are identified: (i) burst-

sweep turbulence generation; (ii) vortices shed from individual clasts and bed

microforms and (iii) larger structures associated with flow obstructions such as tree

roots and larger scale form roughness.  These interact to produce different

hydrodynamic environments within each of the riffle, glide and pool biotopes.  The

glide is associated with the ‘simplest’ flow structure, possibly reflecting a dominance

of burst-sweep structures (since it is strongly homogeneous and flume-like), while the

riffle shows comparatively greater complexity reflecting the influence of vortex

shedding from microform roughness (since it is associated with the highest relative

roughness over the largest discharge range).  The pools represent the most

hydraulically complex environments, characterised by a combination of burst-sweep

structures and vortices shed from both smaller grain roughness elements and larger

form roughness structures and flow obstructions which interact and coalesce over

depth.

However, the range of hydraulic measures studied in the chapter suggest that physical

biotopes demonstrate different levels of ‘within-biotope’ hydraulic variation.  When

considered in terms of spatial variation (longitudinally and cross sectionally), variation
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with depth through the water column, and temporal variations in response to

increasing discharge, glide, riffle and pool biotopes are clearly segregated in

conceptualised 3-dimensional space (Figure 5.36).  The glide provides a relatively

uniform environment, associated with strong spatial homogeneity and little variation

in hydraulic parameters with discharge.  Riffle hydraulics demonstrate relatively

strong spatial homogeneity, but vary systematically with distance from the boundary

and with increasing discharge.  In contrast, both pools exhibit strong spatial

heterogeneity in various physical parameters compared to respective glide and riffle

units, unsystematic variations with relative depth and a highly complex hydraulic

response to increasing stage.  Furthermore, the two pools demonstrate different levels

of internal variation.  Generally, the more pronounced morphological character of the

pool at Napely Lodge Farm gives rise to greater hydraulic heterogeneity, emphasising

the importance of interactions between channel morphology and hydraulics

highlighted in Chapter 4.

These findings suggest that the internal hydraulic complexity of different biotopes

constitutes an additional physical biotope ‘characteristic’ which may provide greater

transferability of concepts between reaches compared to the mean values or ranges of

hydraulic parameters identified for specific biotopes.  Furthermore, the research

suggests that certain biotopes, such as pools, introduce a more complex mosaic of

physical habitat to the channel than others, such as glides.  Since physical habitat

heterogeneity is often considered closely related to biotic diversity this has

implications for habitat assessments and rehabilitation design and appraisal projects.
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These variations in physical habitat complexity are also manifest in the distribution of

particulate matter within different physical biotopes.  Although sediment transport

experiments present here are preliminary and restricted in scope, the results suggest

that the hydraulic homogeneity associated with the glide biotope, and to a lesser extent

the riffle, is manifest in a more organised and competent longitudinal transfer of

sediments downstream.  In contrast the spatio-temporal heterogeneity of hydraulics

within pools creates a complex mixing environment whereby the routes taken by

particulate matter are strongly dependent on the location of the source and the wider

hydrological context.  Depending on these factors, sediments, nutrients and pollutants

may be rapidly advected downstream or reside for long periods in marginal zones.

These observations suggest implications for the dispersal of sediments, nutrients and

pollutants within different physical biotopes.  Further field deployments would help to

clarify observed patterns and identify processes operating within the full range of

physical biotopes associated with UK rivers.

The microscale hydrodynamics of physical biotopes described above may have

particular significance for the portability of the biotope concept.  Physical habitat at

the ‘mesoscale’ is often considered highly dependent upon wider characteristics of the

catchment or sub-catchment (Frissell et al., 1986; Wadeson and Rowntree, 1994;

Cohen et al., 1998).  However, hydraulic variation at the microscale, which will be

determined principally by the presence of roughness elements and flow obstructions,

may offer greater transferability across different sites and additionally has the most

direct influence on the survival of individual organisms.
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CHAPTER 6 CONCLUSIONS

The research presented in previous chapters adopts an integrated approach to the

exploration of stream habitat organisation at the reach scale.  The research design

encompasses a range of spatial scales and scientific methods in an attempt to both

disclose broad relationships and allow inferences with regard to causal processes.

Ultimately, the research provides an opportunity to assess the ‘robustness’ of the

physical biotope concept as a means of classifying instream habitat at the mesoscale,

and to evaluate the potential of the approach in habitat inventory, appraisal and

rehabilitation schemes.  The following sections summarise the principal conclusions

with respect to each of the main research objectives detailed in Chapter 1:

1. Examine the correlations between physical biotopes and functional habitats

2. Evaluate output data derived from rapid field survey techniques

3. Investigate the existence and integrity of physical biotopes at the reach scale

4. Assess the robustness of physical biotopes with varying flow stage

5. Explore higher resolution ‘within-biotope’ hydraulic characteristics

Recommendations for further research are made in Section 6.2.

6.1 SUMMARY AND CONCLUSIONS

6.1.1 Correlations between physical biotopes and functional habitats

The examination of correlations between physical biotopes and functional habitats

represents the first research objective identified in Chapter 1 (Table 1.1).  Physical

biotopes provide a means of simplifying the complex morphological, hydraulic and

ecological structure of river channels at the sub-reach scale.  However, while these
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features have been associated with some distinctions in hydraulics (Jowett, 1993;

Wadeson, 1994; Padmore, 1997a) and are conveniently identified in the field by rapid

visual assessments (Environment Agency, 2003), these traits alone do not demonstrate

ecological significance (Maddock, 1999).  The concept of biologically functional

habitats, developed by stream ecologists, offers a means of exploring the ecological

validity of physical biotopes.  However, previous attempts to link the two phenomena

have been associated with limited success for several reasons.

Biotope identification through visual observation of surface flow character is

associated with significant error, and a single physical biotope may support a variety

of flow types over a particular discharge range.  For this reason, the use of Froude

number as a descriptor of physical biotopes is necessarily associated with significant

‘overlap’ between biotope categories due to the range of flow environments associated

with an individual biotope.  Moreover, because the Froude number is a ratio measure,

very different velocity and depth combinations may be associated with the same

Froude number, obscuring hydraulic variation within and between physical biotopes.

Chapter 3 presents the results of the extensive interrogation of a comprehensive

national data set of habitat features that provides some ecological validation of the

physical biotope concept.  Correlations between surface flow types and functional

habitats are identified at a relatively broad level, and an ecological ‘classification’ of

flow types is derived.  At the national level, functional habitats reveal broad

‘preferences’ for assemblages of flow types that are indicative of different reach-scale

morphologies (step-pool, riffle-pool and glide-pool).  These reach-scale morphologies

and their respective flow type assemblages are organised along an energy gradient
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from high to low altitude and slope conditions in conjunction with distance from the

river source, creating a hierarchical habitat structure which comprises channel

morphology, flow types, substrate and vegetation types.

This flow type classification (see Figure 3.14 and 3.17 in Chapter 3) is derived from

data from over 4 000 river reaches across the UK, traversing a range of geological

settings and catchment contexts and providing a national picture of flow biotope and

functional habitat distributions.  Considering, therefore, that the data span a wide

range of fluvial environments across geological boundaries and at various altitudes

and slopes, the associations identified between functional habitats and flow types show

impressive strength.  Some of the variability observed is likely to result from the

influence of extraneous factors such as light, water chemistry and biological

interactions which may also influence the distribution of certain functional habitats, as

well as the complex system of feedbacks that exists between aquatic plants and

channel hydraulics.

6.1.2 Rapid reconnaissance methods and the representation of habitat features

The second research objective identified in Chapter 1 refers to the evaluation of output

data derived from rapid field assessments of habitat features.  In the context of

international environmental policy, the UK must satisfy requirements for river habitat

inventory, assessment, rehabilitation and appraisal at a national scale.  The physical

biotope approach offers a practical focus for management at each of these stages by

allowing rapid assessments of habitat features in the field (Raven et al., 1997).

Furthermore, the approach provides: (i) simultaneous assessment of water, sediment

and biotic aspects of habitat quality (Borja et al., 2004); (ii) an indication of physical,
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and hence biological diversity (Padmore, 1998); and (iii) a suitable focus for

enhancement, rehabilitation or construction of habitat features (Kemp et al., 2000).

Such surveys may be particularly important within the final monitoring and appraisal

stages of management projects (Harper et al., 1998a; Harper et al., 1998b) which are

often associated with a dearth of financial support despite the vital role of monitoring

and appraisal in improving the success of rehabilitation schemes.

Results presented in this thesis derived from RHS and field study demonstrate that the

spatial resolution of survey schemes has a significant effect on the output data derived

from rapid field assessments of habitat features, with different habitat features affected

in different ways.  Certain flow types, such as no perceptible flow and upwelling, for

instance, occur principally as secondary or marginal phenomena and are therefore

under-represented by transect-level survey schemes.  However, slow flowing

‘marginal’ zones are objectively identified as a hydraulic cluster by multivariate

analysis, emphasising their physical coherence as a distinct habitat ‘patch’.  Such areas

are known to provide ecologically important flow refugia for invertebrates and fish,

suggesting that they should be accounted for in habitat assessments.  In contrast, other

flow types frequently occupy the majority of the channel width but are over-estimated

by transect-level observations to the detriment of marginal zones.  Furthermore, the

level of cross sectional variation in both surface flow character and quantified

hydraulic characteristics varies between physical biotopes, so that certain biotopes are

associated with higher levels of internal heterogeneity both spatially (across the

channel width) and temporally (with increasing stage).
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Similar issues apply to the recording of functional habitats, particularly the organic

categories.  Detailed analyses at field sites identified that vegetative functional habitats

are associated with different spatial distributions.  Specifically, certain habitats appear

more ‘patchy’, while others are restricted to linear distributions associated with the

channel margins.  These marginal functional habitats are therefore more likely to be

under-represented by coarser resolution ‘transect’ scale surveys.  Within the RHS

database, this problem is particularly clear with respect to ‘trailing vegetation’, which

is necessarily restricted to channel margins and therefore accounts for a low

percentage of cover across the channel width.  Additionally, variation in the magnitude

of seasonal change in habitat cover between categories suggests that the seasonal

timing of surveys will have a greater influence on certain habitats.

However, information losses resulting from coarser survey resolutions may be an

acceptable price to pay in return for fast, cost-effective cataloguing of features on such

a scale as used in RHS, particularly since rare or unique natural features are accounted

for and levels of human intervention are explicitly recorded.  In such instances, fine

detail on physical structure may be overlooked in favour of extending the geographic

coverage of observations to allow evaluation of the quality status of water resources at

a national level.  Furthermore, the focus of coarser survey schemes on only the more

prominent or extensively occurring features does appear to strengthen relationships

across various river types and environmental contexts, providing a broad overview

which may be explored in more detail by finer scale surveys at selected sites.

The RHS database thus represents an extensive national resource that can be used to

complement more detailed, intensive field investigations of form and process
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relationships.  The classification derived in Chapter 3 suggests the idea of correlations

between habitat features at relatively broad scales, relating to assemblages of features

positioned along a continuum.  Such relationships or classifications derived from

extensive data sets from a wide range of different sites can be used to form a general

basis for habitat assessment and rehabilitation.

6.1.3 The physical integrity and hydrodynamics of physical biotopes at the sub-

reach scale

The third and fourth research objectives outlined in Chapter 1 relate to the exploration

of the integrity of physical biotopes at the reach scale in the context of varying

discharge.  The coherence and ‘patchiness’ of physical biotopes at the sub-reach scale

appears to be strongly dependent upon the amplitude of reach-scale morphological

variations, emphasising the strong relationships between channel morphology and

hydraulics.  However, significant deviations from the ‘characteristic’ flow types used

to identify physical biotopes in the field were identified at the study sites, and these

deviations were more pronounced for certain biotopes.  Pools, for instance,

demonstrate high cross sectional variability in surface flow characteristics and

underlying hydraulics, while glides are more consistently associated with the

‘characteristic’ smooth boundary turbulent flow and exhibit lower levels of ‘within-

biotope’ variability.

Furthermore, while increases in stage have been associated with a ‘drowning-out’ of

morphological controls on channel hydraulics and consequent homogenisation of the

flow field, data for Napely Lodge Farm suggest that a flow ‘intensification’ occurs at

the intermediate discharge which increases cross sectional variability in certain parts
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of the channel.  This may be related to the complex physical structure which

comprises a sinuous channel with a series of bends, bank irregularities, and flow

obstructions such as tree roots.  Some of these features may become more significant

at higher discharges as they become incorporated into the wetted width, and may

increase variation in the form of jet and wake effects.

Hydraulic parameters fail to discriminate clearly between physical biotopes, but

instead are associated with broad ranges that overlap but form a continuum of ‘slower’

or more ‘tranquil’ environments to ‘faster’ or ‘rougher’ biotopes and associated flow

types.  Biotopes and flow types are, however, generally restricted to a relatively

narrow range of either velocities or water depths.  ‘Slower’ categories are associated

with a wide range of water depths, but are restricted to a narrow range of velocities,

while ‘faster’ biotopes and flow types are associated with a wide range of velocities

but a narrow range of water depths.  Physical biotopes are therefore associated with

broad assemblages of habitat variables that reveal some overlap but provide a general

description of the local physical environment.  This corresponds with ideas presented

in Chapter 3, which suggest correlations at relatively broad levels.  Thus, in order to be

‘portable’ between sites, physical biotopes may be considered as ‘relative’ units of

habitat positioned along a continuum (Jowett, 1993), and whose detailed physical

structure will vary according to reach-scale variables such as gradient and planform.

6.1.4 ‘Within-biotope’ variation and microscale hydraulics

Results presented in Chapter 5 simultaneously address the fourth and fifth research

objectives outlined in Chapter 1 by focusing on higher resolution hydrodynamics

‘within’ physical biotopes at different flow stages.  The analysis of high frequency
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velocity characteristics and localised transfer of suspended sediment within selected

physical biotopes indicates that more detailed hydraulic parameters may provide better

discrimination between physical biotopes compared to more conventional mean

velocity and depth values.  These characteristics are also of ecological importance

since channel hydraulics at microscales have a direct influence on the survival of

individual organisms (Biggs et al., 2005).  Despite these considerations, more detailed

hydraulic parameters have so far been largely overlooked in biotope studies.

Overall, ‘simpler’ series-averaged measures such as mean velocity and kinematic

shear stress appear less powerful at discriminating between biotopes compared to

more complex, ‘higher-order’ flow properties such as turbulence intensity, event

structure and eddy size.  However, the discriminatory ‘success’ of different hydraulic

parameters depends upon the combination of physical biotopes studied.  For example,

pool and glide biotopes at Oakley Hall are clearly distinguished by turbulence

intensity, while the average eddy size provides greater discrimination between pool

and riffle biotopes at Napely Lodge Farm.

While some overlap in the ranges of parameters is noted between biotopes, when

considered in combination the higher-order flow properties describe three different

hydrodynamic environments.  This is again consistent with ideas in Chapter 3 and

Chapter 4 of correlations at broader levels relating to ‘assemblages’ of variables that

provide a general description of habitat.  The riffle provides an environment where

flow structure is dominated by the shedding of vortices from pebble clusters, and

where the nature of local hydraulics appears dependent upon flow stage.  In contrast,

the glide represents a homogeneous flume-like environment associated with a simpler
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flow structure that varies little across flow stages.  The pools represent the most

hydrodynamically complex environments as a result of interactions between burst-

sweep structures; vortices shed from microform roughness; and flow structures

produced by larger scale flow obstructions and form roughness and demonstrate a

complex response to increasing flow stage.

Overall variations in hydraulics between biotopes appear more significant than

variation within biotopes.  However, variations in the levels of ‘internal’ heterogeneity

between different physical biotopes emphasise the variations in internal complexity

identified in Chapter 4.  Three scales of variation can be identified from the analysis:

spatial variation in streamwise and cross-stream dimensions; temporal variation

associated with discharge; and variation with distance from the riverbed.  When these

characteristics are conceptualised as variables in three-dimensional space, riffle, pool

and glide are clearly partitioned on the grounds of internal complexity.  Pools are the

most heterogeneous biotopes, characterised by high-levels of variation in all three

dimensions.  Riffle hydraulics vary relatively systematically with stage and depth

through the water column but demonstrate high spatial homogeneity.  The glide

represents a strongly spatially homogeneous, transitional environment associated with

very low levels of internal hydraulic variation.  Again, the influence of bedform

amplitude on biotope characteristics is apparent at these microscales, since the more

topographically prominent pool at Napely Lodge Farm demonstrates much higher

levels of variation than the more subtle feature at Oakley Hall.

The hydrodynamic characteristics and variations in internal ‘complexity’ identified for

different physical biotopes constitute additional biotope characteristics that provide
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greater detail than more conventional temporally- or spatially-averaged measures.

Significantly, these characteristics may represent the most ‘successful’ scale of

transferability between sites for two reasons.  Firstly, because microscale

hydrodynamics are principally dependent on highly localised conditions such as grain

form roughness elements, and secondly because the same physical biotopes may

demonstrate similar levels of variability across different sites, irrespective of the

‘absolute’ ranges of hydraulic variables.

The research presented in this thesis adopts a multi-scale, multi-parameter approach to

the characterisation of aquatic habitat.  The results reveal broad classifications of

habitat features into ‘assemblages’ that reveal some ‘overlap’ but describe

fundamentally different hydrodynamic environments.  The physical biotope, therefore,

appears to offer an appropriate level of simplification of the complex structure of

aquatic habitat for the purposes of habitat assessment, appraisal and rehabilitation.

6.2 RECOMMENDATIONS FOR FURTHER RESEARCH

The research presented in this thesis highlights several areas that would benefit from

further study.  These can be considered in the context of: (i) ‘macroscale’ research

associated with studies across rivers of varying ‘type’ at the national level; (ii)

‘mesoscale’ research associated with the identification and characterisation of biotopes

within a river reach; and (iii) ‘microscale’ studies of hydraulics within individual

biotopes.
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6.2.1 Research at the macroscale

At the macroscale, the functional habitat concept requires further field-testing within

different river types and management contexts in order to test the integrity of

biological relationships throughout the UK.  Similarly, further testing of the flow type

classification developed in Chapter 3, possibly using subsets of the RHS data set, will

test the robustness of the classification for different river types and potentially identify

some of the factors responsible for the observed scatter.

6.2.2 Research at the mesoscale

At the mesoscale, objective multivariate methods of physical habitat characterisation

appear to provide a more productive and informative approach compared with the

more subjective focus on visually identified features.  This suggests that future

investigations of biotope hydraulics should take the form of detailed, objective

explorations of the physical structure of a reach, in line with more recent work

(Clifford et al., 2002a; Clifford et al., 2002b; Emery et al., 2003).  This type of

approach provides an opportunity to objectively identify areas of the channel with

similar hydraulic behaviour from comprehensive field data sets.

The field research presented in Chapter 4 suggests that the relationships between

surface flow conditions and underlying hydraulics is complex and stage-dependent.

This requires further field research focused at various relative depths through the water

profile, and at varying flow stages in order to assess the reliability of inferences on

hydraulic behaviour from surface flow characteristics.  The influence of vegetation

growth on these relationships through disruption of velocity profiles may also be
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examined by measuring hydraulic parameters within and around vegetation stands and

along riverbanks over a range of discharges.

Aquatic biota require different types of habitat for different lifestages; for different

activities such as feeding, resting and shelter (Mosely, 1982); and for the provision of

habitat for prey (Aadland, 1993).  It is likely, therefore, that the combinations of

physical biotopes present in a river reach or segment will have a significant influence

on biological organisation.  Future research may expand on initial explorations of

biotope ‘patchiness’ and ‘diversity’ (Padmore, 1998) to identify a means of classifying

the heterogeneity or ‘complexity’ of habitat, which is known to correlate strongly with

habitat quality and biodiversity (Gorman and Karr, 1978; Gubala, 1996; Beisel et al.,

2000).  The variations in the internal complexity of different biotopes identified in this

thesis suggest that indices of heterogeneity may be developed which may involve

weighting of different biotopes and assemblages according to the complexity of

habitat they provide.

6.2.3 Research at the microscale

At the microscale, analysis of turbulent properties and sediment transfer routes reveals

some variation between biotopes.  Further studies are required both to identify whether

the characteristics observed for the study sites are representative of similar rivers, and

in order to explore the microscale ecohydraulics of the full range of physical biotopes

identified for UK rivers.  The sediment transport component of the microscale

research presented in Chapter 5 represents the first attempt of its kind at identifying

variations in the transport pathways within different physical biotopes.  Further

information on the mixing processes operating in physical biotopes may be gained by
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using more intensive deployments of turbidity probes and velocimeters within the

biotopes.  Additionally, the characteristics of large-scale sediment pulses associated

with flood events may be examined by longer term monitoring of sediment transport.
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APPENDIX A: Cluster centre characteristics for Chapter 4 K-means cluster analyses.

Cluster centre characteristics

Cluster U (ms-1) Depth (m) Substrate

Margins 0.04 0.23 Silt

Mid-pool 0.12 0.74 Pebble

Pool margins 0.06 0.61 Silt

Glide 0.19 0.29 Sand

Run 0.18 0.24 Pebble

Riffle 0.19 0.28 Gravel

Cluster centre characteristics for Oakley Hall low flow clusters based on streamwise
velocity, depth and substrate.

Cluster centre characteristics
Cluster U (ms-1) Depth (m) Substrate

Margins 0.05 0.26 Silt

Mid-pool 0.13 0.87 Pebble

Pool margins 0.20 0.58 Sand

Glide 0.20 0.27 Sand

Run 0.24 0.35 Pebble

Riffle 0.23 0.38 Gravel

Cluster centre characteristics for Oakley Hall intermediate flow clusters based on
streamwise velocity, depth and substrate.

Cluster centre characteristics
Cluster U (ms-1) Depth (m) Substrate

Margins 0.01 0.23 Silt

Pool 0.02 0.73 Silt

Glide 0.18 0.28 Sand

Run 0.16 0.37 Pebble

Riffle margins 0.19 0.20 Gravel

Riffle centre 0.39 0.17 Gravel

Cluster centre characteristics for Napely Lodge Farm low flow clusters based on
streamwise velocity, depth and substrate.

Cluster centre characteristics
Cluster U (ms-1) Depth (m) Substrate

Margins 0.01 0.24 Silt

Mid-pool 0.17 0.46 Pebble

Pool margins 0.10 0.57 Sand

Glide 0.12 0.23 Sand

Riffle (gravel) 0.33 0.25 Gravel

Riffle (pebble) 0.17 0.46 Pebble

Cluster centre characteristics for Napely Lodge Farm intermediate flow clusters based
on streamwise velocity, depth and substrate.
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Cluster centre characteristics
Cluster U (ms-1) V (ms-1) W (ms-1) Depth (m) Substrate

Margins 0.04 0.0066 0.0036 0.30 Silt

Pool 0.12 -0.0923 -0.0353 0.74 Pebble

Glide 0.20 0.0029 -0.0153 0.32 Sand

Glide (gravel) 0.13 0.0005 -0.0045 0.60 Gravel

Run 0.19 0.0021 -0.0169 0.26 Pebble

Riffle 0.23 0.0146 -0.0211 0.25 Gravel

Cluster centre characteristics for Oakley Hall low flow clusters based on streamwise,
cross-stream and vertical velocity, depth and substrate.

Cluster centre characteristics
Cluster U (ms-1) V (ms-1) W (ms-1) Depth (m) Substrate

Margins 0.05 0.0006 0.0041 0.28 Silt

Mid-pool 0.13 -0.0648 -0.0405 0.87 Pebble

Pool margins 0.21 -0.0213 -0.0142 0.57 Sand

Glide 0.20 0.0008 -0.0216 0.27 Sand

Run 0.24 -0.0070 -0.0274 0.35 Pebble

Riffle 0.23 -0.0386 -0.0120 0.38 Gravel

Cluster centre characteristics for Oakley Hall intermediate flow clusters based on
streamwise, cross-stream and vertical velocity, depth and substrate.

Cluster centre characteristics
Cluster U (ms-1) V (ms-1) W (ms-1) Depth (m) Substrate

Margins 0.01 0.0050 0.0008 0.32 Silt

Mid-pool 0.04 0.0240 -0.0111 0.56 Pebble

Pool margins 0.15 -0.0089 -0.0036 0.48 Sand

Glide 0.19 -0.0055 -0.0105 0.20 Sand

Riffle (gravel) 0.31 -0.0022 -0.0179 0.20 Gravel

Riffle (pebble) 0.26 0.0286 -0.0248 0.27 Pebble

Cluster centre characteristics for Napely Lodge Farm low flow clusters based on
streamwise, cross-stream and vertical velocity, depth and substrate.

Cluster centre characteristics
Cluster U (ms-1) V (ms-1) W (ms-1) Depth (m) Substrate

Margins 0.01 -0.0108 -0.0081 0.25 Silt

Pool 0.10 0.0194 -0.0047 0.57 Sand

Glide 0.13 0.0001 0.0023 0.24 Sand

Run 0.33 0.0014 -0.0333 0.36 Pebble

Riffle margins 0.18 0.0038 -0.0248 0.33 Gravel

Riffle centre 0.39 -0.0018 -0.0414 0.23 Gravel

Cluster centre characteristics for Napely Lodge Farm intermediate flow clusters based
on streamwise, cross-stream and vertical velocity, depth and substrate.
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APPENDIX B: Wavenumber spectra for velocity time series
Site: Oakley Hall Flow stage: Low Biotope: Glide Velocity component: u’
Longitudinal transect
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Site: Oakley Hall Flow stage: Low Biotope: Glide Velocity component: w’
Longitudinal transect
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Site: Oakley Hall Flow stage: Low Biotope: Pool Velocity component: u’
Longitudinal transect

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.01 0.1 1 10 100

K

E
(K

) 
u

'

Sample: 92

Depth: 0.2

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.01 0.1 1 10 100

K

E
(K

) 
u

'

Sample: 94

Depth: 0.2

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.01 0.1 1 10 100

K

E
(K

) 
u

'

Sample: 95

Depth: 0.2

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.01 0.1 1 10 100

K

E
(K

) 
u

'

Sample: 96

Depth: 0.2

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

0.0140

0.0160

0.0180

0.0200

0.01 0.1 1 10 100

K

E
(K

) 
u

'

Sample: 92

Depth: 0.8

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.01 0.1 1 10 100

K

E
(K

) 
u

'

Sample: 93

Depth: 0.8

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.01 0.1 1 10 100

K

E
(K

) 
u

'

Sample: 95

Depth: 0.8

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.01 0.1 1 10 100

K

E
(K

) 
u

'

Sample: 96

Depth: 0.8

Cross sectional transect

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

0.0900

0.01 0.1 1 10 100

K

E
(K

) 
u

'

Sample: 94.1

Depth: 0.2

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.01 0.1 1 10 100

K

E
(K

) 
u

'

Sample: 94.2

Depth: 0.2

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.01 0.1 1 10 100

K

E
(K

) 
u

'

Sample: 94.3

Depth: 0.2

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

0.0080

0.0090

0.0100

0.01 0.1 1 10 100

K

E
(K

) 
u

'

Sample: 94.2

Depth: 0.8

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.01 0.1 1 10 100

K

E
(K

) 
u

'

Sample: 94.3

Depth: 0.8



327

Site: Oakley Hall Flow stage: Low Biotope: Pool Velocity component: w’
Longitudinal transect
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Site: Napely Lodge Farm Flow stage: Low Biotope: Riffle Velocity component: u’
Longitudinal transect
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Site: Napely Lodge Farm Flow stage: Low Biotope: Pool Velocity component: u’
Longitudinal transect
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Site: Oakley Hall Flow stage: Intermediate Biotope: Glide Velocity component: u’
Longitudinal transect
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Site: Oakley Hall Flow stage: Intermediate Biotope: Glide Velocity component: w’
Longitudinal transect
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Site: Oakley Hall Flow stage: Intermediate Biotope: Pool Velocity component: u’
Longitudinal transect
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Site: Oakley Hall Flow stage: Intermediate Biotope: Pool Velocity component: w’
Longitudinal transect
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Site: Napely Lodge Farm Flow stage: Intermediate Biotope: Riffle Velocity component: u’
Longitudinal transect
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Site: Napely Lodge Farm Flow stage: Intermediate Biotope: Riffle Velocity component: w’
Longitudinal transect
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Site: Napely Lodge Farm Flow stage: Intermediate Biotope: Pool Velocity component: u’
Longitudinal transect
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Sample: 26

Depth: 0.8

Cross sectional transect
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Site: Napely Lodge Farm Flow stage: Intermediate Biotope: Pool Velocity component: w’
Longitudinal transect
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Sample: 26

Depth: 0.8

Cross sectional transect
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