
Bai, Ruibin (2005) An investigation of novel approaches
for optimising retail shelf space allocation. PhD thesis,
University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/10153/1/Bai_PhD_Thesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33563793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

AN INVESTIGATION OF NOVEL APPROACHES FOR

OPTIMISING RETAIL SHELF SPACE ALLOCATION

by

Ruibin Bai, BEng, MSc

Thesis Submitted to The University of Nottingham

 for the Degree of Doctor of Philosophy

School of Computer Science & Information Technology

The University of Nottingham, Nottingham, UK

September 2005

II

CONTENTS

Contents….. ...II

List of Figures ..VI

List of Tables.. IX

Abstract…… ... X

Acknowledgements...XII

Declaration… .. XIII

Chapter 1. Introduction.. 1

1.1 Background and Motivations .. 1

1.2 Scope and Aims... 4

1.3 Overview of the Thesis ... 5

1.4 Contributions... 6

1.5 List of Presentations.. 7

1.6 List of Publications.. 8

Chapter 2. The Shelf Space Allocation Problem and Related Work......................... 9

2.1 Introduction ... 9

2.2 The Shelf Space Allocation Problem .. 9

2.2.1 Problem description... 9

2.2.2 An overview of shelf space allocation.. 16

2.3 Other Space Allocation Problems ... 22

2.3.1 Bin packing problem.. 22

2.3.2 Knapsack problem ... 23

2.3.3 Generalised assignment problem... 26

III

2.4 Summary ... 27

Chapter 3. Optimisation Techniques: An Overview.. 30

3.1 Introduction ... 30

3.2 NP-Completeness and NP-Hardness... 30

3.2.1 Algorithm complexity... 30

3.2.2 P and NP.. 31

3.2.3 NP-Completeness and NP-Hard.. 32

3.3 Review of Optimisation Approaches .. 33

3.3.1 Introduction ... 33

3.3.2 Exact methods.. 33

3.3.3 Heuristics and metaheuristics.. 37

3.4 Summary and Remarks ... 70

Chapter 4. A Simulated Annealing Hyper-heuristic Algorithm for the Bin

Packing problem... 73

4.1 Introduction ... 73

4.2 Simulated Annealing Hyper-heuristics ... 74

4.2.1 Background.. 74

4.2.2 Choice function based hyper-heuristic .. 75

4.2.3 Simulated annealing hyper-heuristics ... 78

4.3 An Application of Simulated Annealing Hyper-Heuristic to the

One-dimensional Packing Problem... 81

4.3.1 Introduction ... 81

4.3.2 Bin packing constructive heuristics ... 84

4.3.3 Applying hyper-heuristics to the one-dimensional bin packing

problem.. 88

4.4 Summary and Remarks ... 98

IV

Chapter 5. Optimisation of a General Shelf Space Allocation Problem................ 100

5.1 Introduction ... 100

5.2 Model Formulation.. 101

5.2.1 A complex model.. 101

5.2.2 A simplified model ... 104

5.2.3 An upper bound of the model... 106

5.3 Optimisation of the Model .. 108

5.3.1 Low-level heuristics ... 108

5.3.2 Initial solution.. 111

5.3.3 SA parameters.. 111

5.3.4 Other approaches .. 112

5.4 Experimental Results... 116

5.4.1 Comparison with conventional simulated annealing algorithms 123

5.4.2 A comparison among different hyper-heuristics.................................... 125

5.4.3 Robustness analysis ... 128

5.5 Summary and Remarks ... 131

Chapter 6. Managing Fresh Produce Inventory and Shelf Space Allocation 134

6.1 Introduction ... 134

6.2 Drawbacks of the Previous Models... 135

6.3 Model Formulation.. 140

6.4 A GRG Based Solution Procedure For the Problem............................. 148

6.5 A Numerical Example... 151

6.6 Summary and Remarks ... 152

Chapter 7. Heuristics and Meta-heuristics for the Fresh Produce Inventory

Control and Shelf Space Allocation Problem 155

V

7.1 Introduction ... 155

7.2 Test data sets ... 155

7.3 Optimisation of the Single-item Inventory.. 156

7.4 Greedy Heuristics for the Problem.. 160

7.5 Further Improvement over the Greedy Heuristics................................. 165

7.5.1 A GRASP algorithm for the problem... 165

7.5.2 A simulated annealing algorithm for the problem................................. 166

7.5.3 Hyper-heuristic approaches for the problem... 167

7.6 Experimental results.. 168

7.7 Summary and Remarks ... 171

Chapter 8. Conclusions and Future Work.. 173

8.1 From the Shelf Space Allocation Perspective 173

8.2 From Meta-heuristics Perspective... 174

8.3 Further work.. 178

References….. 182

VI

List of Figures

Figure 1-1: An example of a simple planogram... 2

Figure 3-1: An example of a hyper-heuristic framework... 43

Figure 3-2: A general simulated annealing algorithm for a maximisation

problem... 54

Figure 3-3: Pseudo-code of the basic GRASP ... 63

Figure 3-4: Pseudo-code of a basic ILS ... 64

Figure 3-5: The pseudo-code of a basic scatter search algorithm.............................. 69

Figure 4-1: The framework of simulated annealing hyper-heuristics for a

maximisation problem .. 79

Figure 4-2: The pseudo-code of MBSOnePacking procedure 86

Figure 5-1: An illustration of demand rate with respect to the allocated shelf

space ... 102

Figure 5-2: Approximate function i
ixβ with a linear function 106

Figure 5-3: A greedy heuristic approach for the shelf space allocation................... 111

Figure 5-4: The pseudo code of a tabu search based hyper-heuristic for a

maximisation problem .. 113

Figure 5-5: The pseudo code of a TSSAHH for a maximisation problem............... 114

Figure 5-6: The average performance of different algorithms on the data set

R.. 118

Figure 5-7: The average performance of different algorithms on the data set

S .. 123

VII

Figure 5-8: The average objective value and standard deviation of simulated

annealing hyper-heuristics and the conventional simulated annealing

for the data set S over 30 runs .. 124

Figure 5-9: The average objective value and standard deviation of simulated

annealing hyper-heuristics and the conventional simulated annealing

for the data set R over 30 runs.. 124

Figure 5-10: The average performance of different hyper-heuristics for the

data set S over 30 runs .. 126

Figure 5-11: The standard deviation of different hyper-heuristics for the data

set S over 30 runs.. 126

Figure 5-12: The average performance of different hyper-heuristics for the

data set R over 30 runs.. 127

Figure 5-13: The standard deviation of different hyper-heuristics for the data

set R over 30 runs ... 128

Figure 5-14: The objective value distribution of 30 SAHH runs on instance

S5 .. 129

Figure 5-15: The objective value distribution of 30 SAHH_adpt runs for

instance S5.. 129

Figure 5-16: The objective value distribution of 30 CFHH runs for instance

S5 .. 129

Figure 5-17: The objective value distribution of 30 CFSAHH runs for

instance S5.. 129

Figure 5-18: The objective value distribution of 30 TSHH runs for instance

S5 .. 130

VIII

Figure 5-19: The objective value distribution of 30 TSSAHH runs for

instance S5.. 130

Figure 5-20: The objective value distribution of 30 RHOI runs for instance

S5 .. 130

Figure 5-21: The objective value distribution of 30 RHAM runs for instance

S5 .. 130

Figure 5-22: The objective value distribution of 30 SA_swap runs for

instance S5.. 130

Figure 5-23: The objective value distribution of 30 SA_interchange runs for

instance S5.. 130

Figure 6-1: Graphical representation of inventory level changes over time............ 142

Figure 6-2: Pseudo code of the multi-start GRG algorithm..................................... 149

Figure 7-1: Graphic representation of an item’s profit function with respect

to facings s and order quantity q (surplus r = 0)... 157

Figure 7-2: Graphic representation of an item’s profit function with respect

to facings s and surplus r (order quantity q = 90)... 157

Figure 7-3: The pseudo code of the procedure proc_qr(s') 158

Figure 7-4: The relationship between order quantity and its unit time profit

function (q>qopt).. 159

Figure 7-5: The relationship between order quantity and its unit time profit

function (q<qopt).. 160

Figure 7-6: The graphic illustration of the greedy algorithms 161

Figure 7-7: Pseudo code of GH1 .. 162

Figure 7-8: Pseudo code of GH2 .. 163

Figure 7-9: A GRASP algorithm for the problem.. 166

IX

List of Tables

Table 4-1: Computational results of MBS based heuristics and hyper-

heuristics ... 96

Table 4-2: A comparison with other meta-heuristics... 97

Table 5-1: Five test problem instances with different sizes (data set S).................. 117

Table 5-2: Seven test problem instances with different space availability

ratios (data set R) .. 117

Table 5-3a: The performance of different algorithms for the data set R (see

5-3b for other results) ... 119

Table 6-1: Parameters of a numerical example.. 151

Table 6-2: Solutions of the numerical example ... 151

Table 7-1: Parameters for generating problem instances... 156

Table 7-2: The performance of the greedy heuristics in comparison with

multi-start GRG .. 164

Table 7-3: A comparison of different algorithms on five fresh produce

instances.. 169

Table 7-4: Robustness of different algorithms... 170

X

Abstract

This thesis is concerned with real-world shelf space allocation problems that arise

due to the conflict of limited shelf space availability and the large number of

products that need to be displayed. Several important issues in the shelf space

allocation problem are identified and two mathematical models are developed and

studied. The first model deals with a general shelf space allocation problem while the

second model specifically concerns shelf space allocation for fresh produce. Both

models are closely related to the knapsack and bin packing problem.

The thesis firstly studies a recently proposed generic search technique, hyper-

heuristics, and introduces a simulated annealing acceptance criterion in order to

improve its performance. The proposed algorithm, called simulated annealing hyper-

heuristics, is initially tested on the one-dimensional bin packing problem, with very

promising and competitive results being produced. The algorithm is then applied to

the general shelf space allocation problem. The computational results show that the

proposed algorithm is superior to a general simulated annealing algorithm and other

types of hyper-heuristics. For the test data sets used in the thesis, the new approach

solves every instance to over 98% of the upper bound which was obtained via a two-

stage relaxation method.

The thesis also studies and formulates a deterministic shelf space allocation and

inventory model specifically for fresh produce. The model, for the first time,

considers the freshness condition as an important factor in influencing a product’s

demand. Further analysis of the model shows that the search space of the problem

can be reduced by decomposing the problem into a nonlinear knapsack problem and

a single-item inventory problem that can be solved optimally by a binary search.

Several heuristic and meta-heuristic approaches are utilised to optimise the model,

XI

including four efficient gradient based constructive heuristics, a multi-start

generalised reduced gradient (GRG) algorithm, simulated annealing, a greedy

randomised adaptive search procedure (GRASP) and three different types of hyper-

heuristics. Experimental results show that the gradient based constructive heuristics

are very efficient and all meta-heuristics can only marginally improve on them.

Among these meta-heuristics, two simulated annealing based hyper-heuristic

performs slightly better than the other meta-heuristic methods.

Across all test instances of the three problems, it is shown that the introduction of

simulated annealing in the current hyper-heuristics can indeed improve the

performance of the algorithms. However, the simulated annealing hyper-heuristic

with random heuristic selection generally performs best among all the other meta-

heuristics implemented in this thesis.

This research is funded by the Engineering and Physical Sciences Research

Council (EPSRC) grant reference GR/R60577. Our industrial collaborators include

Tesco Retail Vision and SpaceIT Solutions Ltd.

XII

Acknowledgements

Sincere gratitude to my supervisor, Dr. Graham Kendall, for his trust, patience,

kind help, support and valuable guidance throughout my PhD. I am also extremely

grateful to him for giving this opportunity to allow me to pursue a PhD at the

University of Nottingham.

Deep appreciation to Professor Edmund Burke and all the members in ASAP

group for their help and assistance.

Dedicated to my wife, Jumei, for her support and encouragement throughout the

three years of my PhD.

Dedicated to my parents and brothers, for without their encouragement and

inspiration I would not have come to the UK to pursue my research.

I am highly grateful for the financial funding from the EPSRC and the School of

Computer Science, University of Nottingham. It would have not been possible for

me to take this PhD programme without their support. Many thanks to our industrial

collaborators for their valuable discussions with regard to the project.

XIII

Declaration

I hereby declare that this thesis has not been submitted, either in the same or

different form, to this or any other university for a degree.

 Signature:

Chapter 1 Introduction

1

CHAPTER 1. INTRODUCTION

1.1 Background and Motivations

The retailing sector in the UK is an extremely competitive arena. We only need to

consider some high profile companies to see that this is the case. A particular

example is provided by the recent decline of Marks and Spencer, who used to be the

leading high street retailer. A further example is given by C&A’s decision to close all

of its high street retail outlets. Yet another example is the decline of J Sainsburys

from its position as the leading food retailer in the UK in the 1990’s (in 1996, Tesco

opened up a 2% lead over their rivals and continue to maintain an advantage). Asda,

after merging with Wal-Mart, increased its market share dramatically and overtook

Sainsbury’s as the second biggest supermarket in the UK. In July 2003, Asda had

gained a 17% market share, while Sainsbury’s had slipped from 17.1% to 16.2%.

Tesco retains the top spot with 27% of the overall market (BBC Business, 2003).

This trend is continuing with Tesco’s market share increasing further to 29% with a

total of £29.5 billion of domestic sales in 2004. However, Morrisons, since taking

over Safeways in 2004, has been struggling to lift their sales and profits (BBC

Business, 2005).

This level of competitiveness is unlikely to decline. On the contrary, the high

street (or more likely, out of town shopping centres) is likely to become even more

competitive.

Retailers are keen to do everything possible to make their systems more efficient,

whilst maximising their profit. Several tactics are used to influence consumers’

purchases, including product assortment (deciding which merchandise to sell), store

layout and space planning, merchandise pricing, services offered, advertising and

Chapter 1 Introduction

2

other promotional programs (Levy and Weitz, 1992). Store layout and space

planning focuses on the improvement of the visual effect of the shopping

environment and space productivity.

Shelf space allocation also uses the term planograms. A planogram is a retailer’s

product map or blueprint which shows exactly where and how many items should

physically be displayed on the shelves or fixtures (see figure 1-1 for an example).

Figure 1-1: An example of a simple planogram

If customers are completely loyal to the products that they buy and all purchases

are planned before a visit to the shop, shelf space manipulation, both in terms of

volume and the location where a product displayed, would not be able to boost sales

as long as ‘out-of-stock’ issues do not occur. However, unplanned (occasional)

purchases are very common. An attractive layout of the products could increase

impulse purchases. Previous research shows that unplanned purchases make up about

one third of all transactions in many retail stores (Buttle, 1984). Therefore, shelf

space allocation is an area worthy of investigation in which retailers have the

opportunity to increase their sales.

However, allocating shelf space to hundreds or even thousands of products is

challenging. On one hand, shelf space is an expensive and scarce resource for

retailers. They would prefer not to increase the store size due to the high costs of

Chapter 1 Introduction

3

construction as well as maintenance. Dreze et al. (Dreze et al., 1994) reported a shelf

cost of $20/square foot for dry shelf space, and rising to over $50/square foot for

dairy shelves. The costs can even rise to about $70/square foot for frozen food. On

the other hand, many supermarkets are selling upwards of thousands of different

products on a daily basis and this number is continuing to rise as retailers strive to

diversify their product lines to more and more non-food products (Dreze et al., 1994;

Yang and Chen, 1999). For example, a general Tesco store carries about 30,000

different products or stock-keeping units (SKU) and a Tesco hypermarket sells more

than 50,000 different items. This poses a real dilemma for the supermarkets. The

space allocation has to balance the conflict of thousands of products to display,

versus the limited amount of space at their disposal.

Research and practice reveals that planograms, especially computer-based

planograms, are one of the most important aspects used to improve the financial

performance of a retail outlet and can also be used for inventory control and vendor

relation improvement (Levy and Weitz, 1992; Yang and Chen, 1999). However,

generating planograms is a challenging and time-consuming process because the

simplest form of planogram problem (ignoring all marketing and retailing variables)

is already a multi-knapsack problem, a well-known NP-Hard problem (Martello and

Toth, 1990a) which is very difficult to solve. The difficulty is further increased when

we consider other merchandise, such as fresh food, clothing and frozen food. This is

due to their special display requirements and the fact that they do not use standard

shelf fitments. Currently, producing planograms is largely a manual process (there is

software assistance available (e.g. Galaxxi, Spaceman) but most are drag-and drop

procedures or semi-automated processes which involve significant human interaction)

and the shelf space allocation is mainly based on some simple rules. Examples of the

Chapter 1 Introduction

4

rules include allocating space proportional to a product’s market share, historical

sales, profit or a combination of these (Corstjens and Doyle, 1981b). However, these

simple approaches may lose substantial sales according to (Borin et al., 1994).

Yang and Chen (Yang and Chen, 1999) conducted a survey of the area. This work

highlighted the lack of academic work that has been conducted in this domain. Only

twelve references were cited. Five of these date back to the 1970’s, four were drawn

from the 1980’s and only three were from the 1990’s. It seems timely that this area

should receive research attention given the recent advances in AI search techniques.

1.2 Scope and Aims

The thesis is based on a research proposal which is funded by EPSRC

(GR/R60577), in collaboration with three other industrial collaborators: Tesco, Retail

Vision and SpaceIT Solutions Ltd. Throughout this project, we have had several

meetings with them, which has proven to be very useful and valuable. The software

provided by SapceIT Solutions Ltd allowed us to recognise the shortcomings of

current planogram software. The conversations with John Ibbotson from Retail

Vision helped us to understand the key issues of the problem, while the

conversations with Tesco helped us direct our research attention to a more interesting

problem (fresh produce) in the latter stage of the project.

Overall, the aim of this research is to develop models and algorithms that can be

used in the next generation of planogram systems. The software should be able to not

only produce automated planograms but also provide optimised shelf space

allocation solutions for the given requirements. Specifically, we want to:

1. Identify potential important issues in the shelf space allocation problem;

2. Formulate a practical model that captures the main characteristics of various

shelf space allocation problems and one that can be used in practice;

Chapter 1 Introduction

5

3. Specifically investigate a fresh food inventory control and shelf space

allocation problem, which is of particular interest to retailers.

4. Identify the relationship between the shelf space allocation problems and other

space allocation problems and investigate potential optimisation techniques

for those problems;

5. Investigate meta-heuristics, especially a simulated annealing hyper-heuristic

for the optimisation the model formulated in 2 and 3.

1.3 Overview of the Thesis

The thesis is organised as follows: chapter two introduces and discusses the shelf

space allocation problem. Several important issues are identified and discussed.

Previous research of the shelf space allocation problem is then reviewed and several

other related space allocation problems are briefly discussed. Chapter three

overviews the optimisation techniques that can be used for combinatorial

optimisation problems. Chapter four specifically studies a recently emerging generic

search technique, hyper-heuristics. A simulated annealing acceptance criterion is

proposed that can be included in the hyper-heuristic framework in order to further

improve its performance. The resulting algorithms are initially tested on the well-

known bin packing problem. Chapter five proposed a practical model for a general

shelf space allocation problem. To have a better measure of the solution quality and

algorithm performance, an upper bound of the problem is obtained by a two-stage

relaxation. Several hyper-heuristic approaches are implemented and applied to the

problem and their performances are analysed and compared on two simulated data

sets. The advantages of simulated annealing hyper-heuristics are discussed in

comparison to two conventional simulated annealing algorithms and other types of

hyper-heuristic algorithms.

Chapter 1 Introduction

6

Chapter six and seven investigate a shelf space allocation problem specifically for

fresh produce. This problem differs from the general shelf space allocation problem

in that the products deteriorate continuously over time and their freshness plays a

vital role in influencing customers’ demand. In chapter six, a practical shelf space

allocation and inventory control model is proposed which, for the first time, uses the

concept of freshness condition to formulate the fresh food demand function. Further

analysis shows that the proposed model is an extension of the non-linear bounded

knapsack problem. A generalised reduced gradient algorithm (GRG) is proposed and

extended in order to optimise the problem. Chapter seven investigates several

heuristic and meta-heuristic approaches for the problem model formulated in chapter

six. Four efficient gradient based heuristics are firstly proposed and several meta-

heuristic approaches, including the simulated annealing hyper-heuristics, are

investigated to further improve the solutions from these greedy approaches.

1.4 Contributions

The work in this thesis makes the following contributions:

− Several important issues in the shelf space allocation problem are identified

and a practical model for the general shelf space allocation problem is

proposed. An upper bound of the model is derived via a two-stage relaxation

method.

− The thesis, for the first time, adapts existing hyper-heuristics to the shelf

space allocation problem.

− The thesis, for the first time, introduces simulated annealing into a hyper-

heuristic framework which could potentially improve the performance and

robustness of current hyper-heuristic approaches.

Chapter 1 Introduction

7

− A simulated annealing hyper-heuristic is successfully applied to the one-

dimensional bin packing problems with competitive results being produced

when compared with other state-of-the-art methods.

− A deterministic inventory control and shelf space allocation model is

formulated for the retailing of fresh food, which, for the first time, considers

the freshness condition as a potential demand influencing factor. We

consider this as a major contribution of this thesis.

− A GRG (generalised reduced gradient) algorithm is extended and adapted to

the inventory control and shelf space allocation problem.

− Several heuristics and meta-heuristics are designed and developed to

optimise the fresh produce shelf space allocation model, including a GRASP

algorithm, a simulated annealing algorithm, a tabu search hyper-heuristic

and a simulated annealing hyper-heuristic. Their performance is compared

and discussed.

− The investigation of simulated annealing hyper-heuristics on three different

space allocation problems presents a better understanding of both simulated

annealing algorithms and hyper-heuristics. Due to its success for all three

problems, the author strongly believes the algorithm is also a promising

research direction for some other combinatorial optimisation problems.

1.5 List of Presentations

Bai, R. and Kendall, G., Optimisation of Supermarkets Shelf Space Allocation. The

Third EPSRC PhD Student Workshop on Scheduling, 12 May 2003, University

of Bradford, UK.

Bai, R. and Kendall, G., An Investigation of Automated Planograms Using a

Simulated Annealing Based Hyper-heuristics, The Fifth Metaheuristics

Chapter 1 Introduction

8

International Conference (MIC 2003), 23-25 August 2003, Kyoto International

Conference Hall, Kyoto, Japan.

Bai, R. and Kendall, G., Recent Advances in the Production of Automated

Planograms. The CORS/INFORMS Joint International Meeting, 16-19 May

2004, Banff, Canada.

Bai, R. and Kendall, G., Designing Efficient Low-level Heuristics in the Hyper-

heuristic Framework. OR47, 13-15 September 2004, Chester, UK.

1.6 List of Publications

Bai, R. and Kendall, G., 2005a. A Model for Fresh Produce Shelf Space Allocation

and Inventory Management with Freshness Condition Dependent Demand,

Accepted for publication in the INFORMS Journal on Computing.

Bai, R. and Kendall, G., 2005b. An Investigation of Automated Planograms Using a

Simulated Annealing Based Hyper-heuristics, in: Ibaraki, T., Nonobe, K., and

Yagiura, M. (Eds.), Metaheuristics: Progress as Real Problem Solvers -

(Operations Research/Computer Science Interfaces, Vol. 32), Berlin, Heidelberg,

New York, Springer, pp. 87-108.

An early version of this paper is also published in the Proceeding of the 5th

Metaheuristics International Conference (MIC 2003), Kyoto, Japan, Aug. 25-28,

2003.

Bai, R. and Kendall, G., 2005c. A Multi-heuristic Simulated Annealing for the One-

dimensional Bin Packing Problem, Submitted to EJOR.

Bai, R. and Kendall, G., 2005d. Heuristic and Meta-heuristics for the Optimisation of

a Fresh Produce Inventory Control and Shelf Space Allocation Problem,

Submitted to Journal of Operational Research Society.

Chapter 2 The Shelf Space Allocation Problem and Related Work

9

CHAPTER 2. THE SHELF SPACE ALLOCATION PROBLEM

AND RELATED WORK

2.1 Introduction

The shelf space allocation problem is a real-world problem faced by many retail

companies. The problem arises when there is a large number of products to display,

but with limited shelf space available at disposal. This chapter firstly introduces the

shelf space allocation problem and analyses the necessities and benefits of providing

an automated solution methodology. A detailed description of the problem is then

presented along with some possible hard and soft constraints. The previous research

on shelf space allocation is then reviewed. It is shown that shelf space allocation

problems share some similarities with some well-known capacity allocation

problems, such as the bin packing and knapsack problems which are also reviewed in

the chapter.

2.2 The Shelf Space Allocation Problem

The shelf space allocation problem involves distributing the scarce shelf space

among different products held within a retail store.

2.2.1 Problem description

Firstly, let us introduce some concepts related to shelf space allocation. The first

term is a stock-keeping unit (SKU) which is used to uniquely identify a specific

product or goods. SKU is the smallest management unit in a retail store. Inventory

refers to the quantity of each SKU that is currently held by a retailer. Keeping a

minimum inventory could reduce or avoid the occurrence of out-of-stock. A category

is a collection of products that have the same or similar functions or attributes. A

Chapter 2 The Shelf Space Allocation Problem and Related Work

10

category usually contains several brands with each brand having several SKU,

usually corresponding to different sizes, colours, flavours and/or other properties.

Facing is a very important variable for shelf space allocation. The number of the

facings of a SKU is the quantity of an item that can be directly seen on the shelves or

fixtures by the customers. The items placed behind other items cannot be seen

directly and hence are not deemed as a facing. Note that a retailer normally only

displays part of the inventory of a given item on the shelves (leaving the rest in the

backroom) due to the limited amount of shelf space. This means that the number of

facings of a SKU, or the amount of visible stock on the shelves, is normally less than

the inventory.

During the last fifty years, the variety of available products has increased

dramatically, and continues to do so in order to meet the diverse demands of

customers. This diversity can be due to the different functions, brands, styles, colours,

materials and even sizes, as well as many other factors. Although the supermarkets

have continuingly increased their store sizes, the proportion of this increase is far less

than the increase in the variety of the products. This creates a real challenge for most

of the supermarkets in pursuit of effective product layouts such that some objectives

are achieved, for example, maximising profit or sales, minimising operating costs,

maximising customers’ loyalty, etc.

Shelf space allocation problems can be very different. This is due to the

differences in a company’s long-term strategy, management style, categories of the

products, competitive environment, retailer-vendor relationship, store layout, store

size, fixture structure, etc. It is unlikely that we can develop a mathematical model

which could exactly represent every real-world shelf space allocation problem.

Therefore, for the purpose of this research, this thesis will mainly focus on an

Chapter 2 The Shelf Space Allocation Problem and Related Work

11

abstracted problem which can capture the main characteristics of the shelf space

allocation problems existing in most retail stores.

In practise, space allocation, in a retail store, is usually decomposed into two

levels: space allocation among categories and the space allocation for each SKU. The

reasons are that: 1. A supermarket usually has thousands of products. Different

categories may have different display conditions and requirements. Solving the

problem for all products is unrealistic not only because of the difficulty in

formulating a suitable model for all products from different categories but also

because of the extremely high computational requirements. 2. Grouping similar

functional products into a category allows customers to compare them before making

a choice. 3. Category management is a common method for most stores, especially

big supermarkets which are usually hierarchised into department, category, brand

and stock-keeping unit (SKU) (Levy and Weitz, 1992; Yang and Chen, 1999; Gruen

and Shah, 2000).

Buttle (Buttle, 1984) described a general retail store space planning process and

listed several important in-store manipulation tactics to stimulate demand: traffic

flow design, category and brand location, space allocation to each category and

product, point-of-sale (POS) promotions and special display. Given a store with a

given size, a retailer firstly needs to design a customer’s traffic flow that will be

guided by the fixtures and shelves in such a way that every part of the store has

maximal exposure while customers can also have direct access to the section(s) that

they wish to visit. The dimension and layout of the shelves are mainly determined by

the store’s physical shape and the customer traffic flow pattern that a retailer chooses.

Once the shelves (or fixtures) have been placed within a store, a retailer has to make

Chapter 2 The Shelf Space Allocation Problem and Related Work

12

space allocation among different categories and then among different SKU in each

category.

The space allocation among different categories is more related to the company’s

long-term strategies, competitive situation and customer purchasing habits. This

aspect is beyond the scope of this thesis. In the following chapters, without

specification, the shelf space allocation problem will refer to the problem of

allocating space for each SKU within a given category. Several issues need to be

taken into consideration:

Objectives

The ultimate aim of shelf space allocation is to either reduce cost or maximise the

overall profit. Minimising the cost is used in EOQ (economic order quantity) models

where the demand of a product is fixed and the space allocation does not influence

the demand. However, if a product’s demand is dependent on the decision variables

of the shelf space allocation, a cost-minimisation objective becomes inappropriate

because the minimisation of the cost would result in a decline of sales and profit

because the model may try to reduce the product facings in order to reduce cost.

However, the reduction of displayed shelf space may also lead to a decrease in sales

and thus profit. To take an extreme case as an example, when no shelf space is

assigned, the cost is minimal. However, clearly, no product can be sold when it is not

displayed. Therefore, the aggregate profit maximisation is chosen to be the objective

of the shelf space allocation problem in this thesis.

Decision variables

Facings and location are the two most common shelf space allocation variables.

Facing is a very important variable for shelf space allocation. It has been

established that the number of facings has an important influence on customer

Chapter 2 The Shelf Space Allocation Problem and Related Work

13

purchases. Research has found that more than 33% of purchases are unplanned

(Buttle, 1984). Products with a better exposure have a greater chance of being

purchased by customers. However, the allocated shelf space may have a different

impact on sales from one product to another.

Space elasticity is usually used to measure the responsiveness of the sales with

regards to the change of allocated space. Curhan (Curhan, 1972) defined space

elasticity as “the ratio of relative change in unit sales to relative change in shelf

space”.

Location is another variable which can influence the demand of a product. It is

generally believed that shelves at eye-level (“eye-level is buy-level”), shelves at the

end of aisles and at the store entrance are better positions, while top and bottom

shelves are less important. However, there are some arguments with regards to the

horizontal distances. Some research shows that the shelves at both ends of the aisles

are better than the middle positions, while others believe that customers prefer

middle locations as opposed to the ends of the aisles (Dreze et al., 1994; Ibbotson,

2002). These findings are based on the fact that some customers prefer to take the

first item once they enter an aisle whilst others take time to “acclimatise” themselves

and so ignore the first few items.

There are other marketing variables that are used to stimulate sales, including

advertising, promotion, discounting, etc. Investigation of these issues is beyond the

aim of this research. Our focus is on the facings and location variables.

Constraints

There are several potential constraints for the shelf space allocation problem.

Although different stores may have different display requirements and considerations

and thus have different constraints, there are some which are common.

Chapter 2 The Shelf Space Allocation Problem and Related Work

14

Physical constraints are applied to every shelf space allocation problem. The total

volume of the items assigned to a shelf cannot exceed the total shelf space available.

This constraint can be one dimensional (ignoring the height and depth constraints) or

two dimensional (ignoring depth constraints). The depth constraints are usually

ignored because the depth of the shelf is usually much larger than the width of the

SKU. The retailers do put as many items as possible behind the front items in order

to reduce the number of replenishment times, however, the existence of stock behind

the front facings has no effect on the demand function. The height constraints can

also be ignored for some goods, for example, when placing products on top of

another is not allowed (e.g. wine and milk bottles, etc). Also in many stores, the

height of shelves can be adjusted. This could solve the problem when the product

height exceeds the height of the shelf the product is assigned to or when there is not

enough space for picking the goods from shelves.

Physical constraints are generally considered as hard constraints. That is:

violation of these constraints will result in an infeasible solution (for some products,

which can be “squeezed a bit”, this constraint is not in a strong sense “hard”

anymore).

Integrality constraints. Due to the fact that the physical products cannot be sub-

divided (at least for most products), the space allocated to an item should be an

integral times of the size of that item, usually measured by facings. This is also a

hard constraint and must be satisfied. It does not make any sense to allocate 1.5

facings space to an item.

The physical constraints and integrality constraints of the shelf space allocation

problem are very similar to the constraints in bin packing and knapsack problems,

which are well-known NP-Hard problems (Martello and Toth, 1990a). However, a

Chapter 2 The Shelf Space Allocation Problem and Related Work

15

shelf space allocation problem may be even more difficult because it usually has a

non-linear objective function and some additional constraints, which will be

discussed in the following paragraphs.

Display requirements. Many retailers set a lower bound on the number of facings

allocated to a product to ensure that the necessary exposure is given to the customers

(In Tesco, for example, the minimal display space for a product is two facings). An

upper bound is also enforced so that the number of facings is contained within

reasonable values. In some cases important suppliers also have the power to

influence the shelf space allocation decision, requiring more space and better

location for their brands.

Block constraint. A block constraint is required based on the assumption that a

SKU has a higher chance of being purchased by bundling several facings of a SKU

together rather than spreading them onto different shelves. However, it may also be

the case that putting the same product in several places throughout the store could

increase purchases.

Adjacency. Although it may be reasonable that putting similar products of

different brands together may make it easier for customers to make comparisons, it is

also sensible to display complimentary products together by assuming that buying

one product may encourage the customer to make another purchase for a

complementary product (for example, beer and crisps, tea and biscuits, greeting cards

and flowers and toothpaste and toothbrush).

Weight constraint. A weight constraint is necessary when the products are

relatively heavy and the total product weight should not exceed the weight limit a

shelf can sustain. Another consideration is that large and heavy products should be

Chapter 2 The Shelf Space Allocation Problem and Related Work

16

displayed on a lower shelf to allow easier access to the products both for customers

and staff.

2.2.2 An overview of shelf space allocation

In this section, we shall give a review on the research and practice of shelf space

allocation. In the literature, shelf space allocation research has been carried out both

on the experimental studies and optimisation studies. The experimental studies are

concerned with the effects of shelf space related tactics and operations on the

demand and sales of the products. However, the optimisation studies focus on the

appropriate model development and optimisation techniques.

2.2.2.1 Experimental studies

Due to the scarcity of space within stores, several researchers have concentrated

on studying the relationship between the space allocated to an item and the sales of

that item. Most have reached a common conclusion that a weak link exists between

them and the significance depends on the types of items (Kotzan and Evanson, 1969;

Cox, 1970; Curhan, 1972; Dreze et al., 1994; Desmet and Renaudin, 1998; Yang and

Chen, 1999).

In 1969, Kotzan and Evanson (Kotzan and Evanson, 1969) began to investigate

the relationship between the shelf space allocated to an item and the sales of that item

and found that a significant relationship existed within the three tested drug stores.

Cox’s research (Cox, 1970) experimented with the shelf facings for two brands of

two categories, salt and coffee cream. He found that the influence of shelf facings on

sales was very weak and dependent on the category of products. However, his

experimental results may be affected by the limited experimental samples. Curhan

(Curhan, 1972) defined space elasticity as “the ratio of relative change in unit sales

Chapter 2 The Shelf Space Allocation Problem and Related Work

17

to relative change in shelf space” and reported an average value of 0.212. However,

this is just an average value. The value of the space elasticity can be very different,

depending on the products, stores and in-store layout (Curhan, 1973).

Dreze et al. (Dreze et al., 1994) carried out a series of experiments to evaluate the

effectiveness of shelf space management and cross-category merchandise

reorganisation. The experiments were carried out within sixty stores of a leading

supermarket chain in Chicago, USA, of which eight categories were chosen for the

experiments. The shelf space manipulation included changing product facings,

deletion of slow moving items, changes of shelf height, etc. Cross-category

merchandise reorganisation included manipulations to enhance complementary

shopping by placing naturally complementary products together. The results showed

that, compared with the number of facings assigned to a brand, location had a larger

impact as long as a minimum inventory (to avoid out-of-stocks) was guaranteed.

Complementary merchandising also experienced a positive boost in sales (above 5%)

on the tested products (toothbrush, toothpaste and laundry care).

On the contrary, more recent research (Desmet and Renaudin, 1998) showed that

direct space elasticities were significantly non-zero and varied considerably across

different categories. Costume jewellery, fruit and vegetables, underwear, and shoes

were among the highest space elasticities while textiles, kitchen and do-it-yourself

products had low values.

If the products are always available and the consumers would never switch to

another brand, the change of space allocated to an item would have no effect on its

sales (Borin et al., 1994). However, in fact, nearly half of the consumers would

switch to other stores or change their previous choice to an alternative brand if their

first choice is out-of-stock (Verbeke et al., 1998). On the other hand, the purchase of

Chapter 2 The Shelf Space Allocation Problem and Related Work

18

one merchandise could increase the possibility of buying another with

complementary functions (for example, a customer who bought a toothbrush may

also buy toothpaste). Cross elasticities were introduced to evaluate the

interdependence between two different items in Corstjens and Doyle’s model

(Corstjens and Doyle, 1981a). The values of cross elasticities were assumed to be

within the range of [-1, 1]. It was positive if two items were complementary and

negative if they could be substituted for each other. This effort was echoed in Borin

et al. (Borin et al., 1994) and Urban (Urban, 1998), both of which employed cross

elasticities in their models. Although cross elasticities are helpful in revealing the

relationships between different items, it is quite difficult to obtain a reliable

estimation of so many values (n n× for n items) due to the complicated merchandise

relationships. Therefore, recent researchers have disregarded it in their models

(Desmet and Renaudin, 1998; Urban, 2002).

Display location is another factor that has been studied. Apart from positive

experimental results from (Dreze et al., 1994), several other publications emphasised

the importance of location as a factor in improving sales (Buttle, 1984; Hart and

Davies, 1996). Campo et al. (Campo et al., 2000) investigated the impact of location

factors on the attractiveness of product categories and stated that the sales of the

whole store were dependent on the intrinsic attractiveness based on category, store

and trading area characteristics as well as cross elasticities between the categories.

However, the model did not consider the difference in visibility or prominence

between various locations in a store.

2.2.2.2 Shelf space allocation models and optimisation methods

Several space allocation models have been proposed in the literature. Most of

them have formulated the demand rate of an item as a function of the space allocated

Chapter 2 The Shelf Space Allocation Problem and Related Work

19

to the item, of which a classic model appears as a polynomial form proposed by

Baker and Urban (Baker and Urban, 1988):

() 0, 0 1D x xβα α β= > < < (2-1)

where ()D x is the demand rate of the product, x is the number of facings or the

displayed inventory. α is a scale parameter and β is the space elasticity of the

product. The advantageous characteristics of this model include the diminishing

returns (the increase in the demand rate decreased as the space allocated to this shelf

increased), inventory-level elasticity (the space elasticity parameter represents the

sensitivity of the demand rate to the changes of the shelf space), intrinsic linearity

(the model can be easily transformed to a linear function by a logarithmic

transformation and the parameters can then be estimated by a simple linear

regression) and its richness.

Corstjens and Doyle (Corstjens and Doyle, 1981a) firstly formulated their model

as a non-linear multiplicative form and incorporated the cross elasticities, a set of

problem parameters that reflect the interrelationships between different products

under consideration. The inventory and handling cost effects were also considered.

Based on this model, some non-space factors were also taken into account in

(Zufryden, 1986), such as price, advertising, promotion, store characteristics, etc. A

dynamic programming approach was proposed to solve this model. However, this

approach may only be suitable for small sized problems. The approach becomes

computationally expensive for large problem instances.

Some integrated models have also been proposed based on the correlation of

retailing decision processes (Borin et al., 1994; Urban, 1998; Hwang et al., 2005).

Borin et al. (Borin et al., 1994) developed an integrated model whose objective is to

maximise the category return on inventory. This model was supposed to help a

Chapter 2 The Shelf Space Allocation Problem and Related Work

20

retailer to decide which products to stock (product assortment) and how much space

should be allocated to them. The demand function was formulated into three

components: unmodified demand, modified demand and acquired demand.

Unmodified demand represented the customers’ direct preference for an item and

was calculated according to its market share. Modified demand took account of the

interdependence and substitution of different merchandise. Acquired demand

represented the indirect demand captured from those products which were excluded

from the assortment. The authors also considered the model’s sensitivity analysis

with regards to the different degree of parameter errors which may be introduced

during their estimations (Borin and Farris, 1995). A heuristic procedure, based on

simulated annealing, was employed to optimise the model. The neighbourhood was

defined by swapping one facing of two random items. The results showed that

simulated annealing was more efficient and flexible compared with the shelf

allocation rule based on the share of sales (a common space allocation rule).

The above-mentioned models used the number of facings of an item to predict the

demand quantity of that item. However, the effect of partially-stocked items (some

facings are missing) was not explicitly reflected. Urban (Urban, 1998) replaced the

number of allocated facings with average on-shelf inventory. His model also

integrated an existing inventory-control model, a product assortment model and a

shelf-space allocation model. A greedy heuristic and a genetic algorithm (GA) were

proposed to solve the problem. A GA chromosome represented a given product

assortment vector (i.e. “0”: excluded, “1”: included). The violations of some

constraints were allowed in the initial solutions and then repaired by a heuristic

procedure. However, the GA operations (crossover and mutation) were only applied

Chapter 2 The Shelf Space Allocation Problem and Related Work

21

to product assortment variables, not to space allocation variables. For this reason, the

solution obtained by this approach is normally locally optimal.

Recently, Hwang et al. (Hwang et al., 2005) proposed an interesting integrated

shelf space allocation and inventory control model. One characteristic of this model

is the inclusion of vertical shelf location effects in the demand function. A gradient

heuristic search and a genetic algorithm were proposed to optimise the model.

Unfortunately, an underlying mathematical derivation (called “property 1” in the

publication) is only applicable to continuous variables. The derivation cannot be

extended to discrete variables. However, as mentioned in section 2.2, for the shelf

space allocation and inventory control, one of the hard constraints is the integrality of

decision variables. Hence other derivations in the paper based on “property 1” suffer

from this drawback and are not correct in this sense.

One drawback of the above models is that they have many parameters and it is

difficult to put those models into practice because of the difficulty in obtaining a

reliable estimation of them. In fact, Yang (Yang, 2001) argued that: “for commercial

models, a very important criterion for selecting a space allocation method is the

simplicity and ease of operation of the method”. He proposed a simpler linear model

based on the work of Corstjens and Doyle (Corstjens and Doyle, 1981a), by

assuming that a product total net profit was linearly proportional to the number of

facings allocated to that product. This is, however, unrealistic for the real-world retail

environment and also contradictory to the experimental results from the literature

which generally suggested a relatively small space elasticity value (Dreze et al.,

1994). A greedy algorithm, in conjunction with three simple heuristics, was proposed

to optimise the model. However, only several numerical examples were used to

justify the algorithm and they are far from the real-world shelf space allocation

Chapter 2 The Shelf Space Allocation Problem and Related Work

22

problems which are usually much larger and more complicated. In addition, the three

heuristics rejected all “bad moves” (a decrease in the objective value for a

maximisation problem). The algorithm, in fact, worked in a random greedy fashion

and could easily become trapped in a local optimum. Recently, Lim et al. (Lim et al.,

2004) experimented with network flow, tabu search and a modified squeaky-wheel

optimisation algorithm to this linear shelf space allocation model and was able to

produce better results. Among the algorithms they experimented with, the modified

squeaky-wheel optimisation problem outperformed others across the problem

instances.

Due to the diversity of products’ properties and business styles, there can be many

different shelf space allocation problems. Therefore, it is difficult to develop a

generic model that can represent all real-world shelf space allocation problems. For

research purposes, chapter 5 will consider a general problem that has previously been

the subject of most of the academic research on planograms. In chapter 6 we will

address a shelf space allocation problem specifically for fresh produce. Two practical

models are proposed for these two types of shelf space allocation problems. In the

next section, some other related shelf space allocation problems are briefly reviewed.

2.3 Other Space Allocation Problems

2.3.1 Bin packing problem

The one dimensional bin packing problem is defined as follows. Given a set of

items {1,..., } I n= each having an associated size or weight wi and a set of bins with

identical capacities c. The problem is to pack all the items into as few bins as

possible, without exceeding the capacity of the bins. The bin packing problem is a

well-known NP-Hard combinatorial optimisation problem (Martello and Toth, 1990a)

Chapter 2 The Shelf Space Allocation Problem and Related Work

23

and there is no known polynomial time-bounded algorithm that can solve every

problem instance to optimality. However, it is not difficult to get a lower bound of

the problem. A straightforward lower bound can be obtained by 1 1
/

n

ii
L w c

=
 = ∑

where x is the smallest integer not less than x. Some stronger lower bounds were

studied in (Martello and Toth, 1990b; Scholl et al., 1997). This problem can also be

extended to two-dimensional and three-dimensional bin packing, where both the bin

and the items have sizes (other aspects of the problem) in two or three dimensions.

One-dimensional bin packing problems have been addressed by many researchers

and both exact methods and meta-heuristic methods have been developed. See

chapter 4 for a detailed review.

2.3.2 Knapsack problem

The knapsack problem has been intensively studied (Martello and Toth, 1990a)

and there are several variations of the problem, of which 0-1 is the most commonly

studied.

0-1 knapsack problem

The 0-1 knapsack problem can be described as follows. Given a knapsack with

capacity c and a set of n items, each item i is associated a profit ip and a weight iw .

The problem is to select a subset of items such that the total profits z of the selected

items are maximised. The mathematical model was formulated in (Martello and Toth,

1990a) as follows:

1
max =

n

i ii
z px

=∑ (2-2)

 subject to
1

n

i ii
w x c

=
≤∑ (2-3)

0 or 1, 1,...,ix i n= = (2-4)

Chapter 2 The Shelf Space Allocation Problem and Related Work

24

The 0-1 knapsack problem can be exactly solved by a branch and bound

algorithm (Martello and Toth, 1975) and dynamic programming (Toth, 1980).

However, with very large problem instances (n>2000), approximation approaches are

proposed due to the significant computational requirements of these exact

approaches. Sahni proposed (Sahni, 1976) the first pseudo-polynomial

approximation method with the prefixed worst-case performance. A fully

polynomial-time approximation scheme was given by Ibarra and Kim (Ibarra and

Kim, 1975) based on a dynamic programming algorithm.

Bounded knapsack problem

In the 0-1 knapsack problem, the variable xi takes either 0 or 1. The problem can

be extended by allowing the variable xi to have several values bounded by a given

range. The problem is formulated as follows in (Martello and Toth, 1990a):

n = number of items;

pi = profit of item i;

wi =weight of item i;

bi = upper bound on the availability of item i;

c = capacity of the knapsack;

xi = the number of item i being selected in the knapsack.

1
max

n

i ii
p x

=∑ (2-5)

subject to
1

n

i ii
w x c

=
≤∑ (2-6)

 +0 and Z , 1,...,i i ix b x i n≤ ≤ ∈ = (2-7)

Similarly, the bounded knapsack problem can be solved by dynamic

programming and branch-and-bound approaches. However, it has been shown that

the bounded knapsack problem can be more efficiently solved by transforming it into

Chapter 2 The Shelf Space Allocation Problem and Related Work

25

a 0-1 knapsack problem and solving the transformed problem by the approaches for

the 0-1 knapsack problem (Martello and Toth, 1990a).

When ib → +∞ , the bounded knapsack problem degenerates into an unbounded

knapsack problem. Still, dynamic programming and a branch-and-bound algorithm

can solve the problem efficiently by transforming it into a 0-1 knapsack problem.

However, it was proven to be not as efficient as when solving it directly (Martello

and Toth, 1990a).

0-1 multiple knapsack problem

Another generalised 0-1 multiple knapsack problem is the 0-1 multiple knapsack

problem, where the problem has a set of knapsacks rather than one. The problem is

formulated as follows in (Martello and Toth, 1990a):

m = the number of knapsacks;

n = the number of items;

pi = profit of item i;

wi =weight of item i;

cj = capacity of knapsack j;

 1 if item is assigned to knapsack ;

 0 otherwise.
ij

i j
x

=

1 1
max

m n

i ijj i
p x

= =∑ ∑ (2-8)

subject to
1

, 1,...,
n

i ij ji
w x c j n

=
≤ =∑ (2-9)

1

 1, 1,...,
m

ijj
x i n

=
≤ =∑ (2-10)

 0 or 1, 1,..., , 1,...,ijx i n j m= = = (2-11)

Chapter 2 The Shelf Space Allocation Problem and Related Work

26

A straightforward upper bound of the model can be obtained by solving a relaxed

0-1 knapsack problem with a single knapsack of capacity
1

m

jj
c

=∑ . Branch-and-

bound approaches are usually used to exactly solve the problem while dynamic

programming was proven to be impractical because the multiple knapsack problem is

NP-Hard in a strong sense (Martello and Toth, 1990a).

2.3.3 Generalised assignment problem

The generalised assignment problem is similar to the multiple knapsack problem

except that the profit and weight of each item vary with respect to the containers

assigned to it. The model is formulated as:

m = the number of containers;

n = the number of items;

pij = profit of item i if assigned to container j;

wij =weight of item i if assigned to container j;

cj = capacity of container j

 1 if item is assigned to container ;

 0 otherwise.
ij

i j
x

=

1 1
max

m n

ij ijj i
p x

= =∑ ∑ (2-12)

subject to
1

, 1,...,
n

ij ij ji
w x c j m

=
≤ =∑ (2-13)

1

 1, 1,...,
m

ijj
x i n

=
= =∑ (2-14)

0 or 1, 1,..., , 1,...,ijx i n j m= = = (2-15)

A practical application of the model is assigning n tasks to m processors (or n jobs

to m machines) given the profit pij and the level of resource required wij for the

assignment of task i to processor j and total resource cj available for each processor j.

Chapter 2 The Shelf Space Allocation Problem and Related Work

27

Note that all the problems discussed above are NP-Hard (Martello and Toth,

1990a).

2.4 Summary

The fierce competition that exists in the retailing industry compels retailers to

adopt sophisticated systems to automate and optimise their decision making

processes. The shelf space allocation problem is one of the key factors that can affect

a retail company’s financial performance. However, current software does not

provide an optimised shelf space allocation decision and they require significant

human interaction. This research aims to investigate the methodologies and

algorithms that can be used in the next generation of planogram software, which will

allow a user to produce automated, optimised planograms.

This chapter has placed the work in context. Several important issues with regards

to the shelf space allocation problem have been discussed. Due to the different

product proprieties, the shelf space allocation problem can be very different.

This chapter has reviewed previous research for shelf space allocation both on the

experimental studies and optimisation model studies. The experimental studies have

consistently shown the positive effect of shelf space allocation on the demand of the

product. This effect is largely attributed to the consumers’ unplanned purchases due

to the improved visibility and appearance of products. Improvement of a retailer’s

shelf space allocation could dramatically increase its financial performance. The

optimisation model studies have focused on the modelling and optimisation of shelf

space allocation problems. Most of the models employed a non-decreasing

polynomial function to formulate the relationship between the shelf space allocated

to a product and the demand for that product. However, with the increase in shelf

space, the rate of increase in demand diminishes. To measure the effect that shelf

Chapter 2 The Shelf Space Allocation Problem and Related Work

28

space has on the product demand, a parameter, space elasticity, was introduced.

Space elasticity usually takes a value in the range of [0, 1]. A larger value of space

elasticity means a larger influence on the product demand from the shelf space. Some

researchers have also used cross elasticities to describe the relationship between two

different products. However, recently researchers have argued that the inclusion of

cross elasticity is impractical for real-world applications due to the increased

complexity of the problem and the difficulty in obtaining a reliable estimation of

these parameters.

Due to the NP-Hard nature of the shelf space allocation problem, it is impractical

to work out a polynomial time bounded solution procedure that can solve every

problem instance to optimality. Dynamic programming was firstly proposed to

optimise the shelf space allocation model. However, this method may require

extremely high computational times for large problem instances. As alternatives,

heuristic and metaheuristic methods have also been used to solve the problem, such

as simulated annealing, genetic algorithms and tabu search. This thesis shall focus on

the heuristic and metaheuristic approaches, especially newly emerging metaheuristic

search technologies. These new approaches generally broaden the search by making

use of several neighbourhood structures or several heuristics to explore the

neighbourhoods and have been reported to be superior to the conventional local

search approaches that only use one single neighbourhood structure. It is assumed

that these techniques are also promising for shelf space allocation problems.

In this chapter, several other space allocation problems have also been briefly

reviewed, including bin packing, knapsack and generalised assignment problems.

These problems are closely related to shelf space allocation. It is hoped that the study

Chapter 2 The Shelf Space Allocation Problem and Related Work

29

of these problems may be helpful in guiding us to choose appropriate search

techniques for the optimisation of shelf space allocation problems in general.

The next chapter presents an overview and discusses the latest meta-heuristic

techniques which may be promising for the optimisation of the problem that we are

concerned with.

Chapter 3 Optimisation Techniques: An Overview

30

CHAPTER 3. OPTIMISATION TECHNIQUES: AN OVERVIEW

3.1 Introduction

As mentioned in chapter 2, shelf space allocation problems are related to the bin

packing and knapsack problems, which are NP-Hard. There is no known polynomial-

time bounded algorithm that can solve every instance to optimality. This chapter

introduces several important concepts with regard to problem complexity. Some

well-known optimisation technologies which have been successful for NP-Hard

combinatorial optimisation problems are then reviewed and promising techniques are

highlighted.

3.2 NP-Completeness and NP-Hardness

Combinatorial problems refer to the class of problems with discrete variables

(Reeves, 1995) that arise in many areas and consist of a large subset of problems,

such as resource allocation, planning, scheduling, routing, decision making, etc. The

computational complexity of combinatorial problems is generally high, especially for

those problems with a large solution space.

3.2.1 Algorithm complexity

Algorithm complexity is measured in terms of time complexity and space

complexity. The time complexity of an algorithm is a measure of the amount of time

required to execute an algorithm for a given number of inputs (also conveniently

expressed as problem “size”). It is measured by its rate of growth relative to standard

functions. The normal standard functions include constant, logarithmic, polynomial

and exponential. The space complexity of an algorithm is a measure of how much

storage is required by the algorithm. Typically, computer scientists are interested in

Chapter 3 Optimisation Techniques: An Overview

31

minimising the time complexity of algorithms because computer memory costs have

decreased dramatically over the past 25 years. Therefore, this section only discusses

time complexity.

3.2.2 P and NP

Complexity theory mainly focuses on decision problems whose solutions are

either “yes” or “no”. However, because many optimisation problems have their

counterparts of decision problems, complexity theory is still useful for general

optimisation problems (Garey and Johnson, 1979). In many cases, a problem can be

solved by several algorithms and each algorithm may have different time

complexities. However, problem complexity is measured by the time complexity of

the most “efficient” algorithm for the problem (Garey and Johnson, 1979). A

problem is said to be tractable if there is an algorithm that can solve the problem in

polynomial time. If no algorithm can solve the problem in polynomial time, the

problem is said to be intractable. In this case, either the problem is undecidable (the

problem is not solvable by any algorithm) or solving it requires exponential

computational time.

The problems are usually classified under two distinct headings: P and NP. P

(standing for polynomial) represents the class of the problems that are solvable by a

deterministic algorithm with polynomial time complexity. NP is the class of the

problems that can be solved in polynomial time by a nondeterministic algorithm (NP

stands for nondeterministic polynomial). A nondeterministic algorithm is composed

of two stages. The first stage of the algorithm simply guesses a structure S of the

problem instance I, which are input into the second stage to check whether the

structure S is a solution of the instance I or not. Note that the second stage will use a

deterministic algorithm bounded by polynomial computation time (Garey and

Chapter 3 Optimisation Techniques: An Overview

32

Johnson, 1979). In this sense, NP contains the class of the problems for which a

solution can be verified efficiently (in polynomial time) but where it is not known

how the given solution is obtained. It is not difficult to understand that P NP⊆ .

However, because there is no known polynomial time algorithm for many problems

(the travelling salesman problem, for instance) in NP, most researchers have a strong

belief that P NP≠ . However there is, as yet, no theoretical proof.

3.2.3 NP-Completeness and NP-Hard

If P NP≠ , there are some problems which do not belong to P and hence are

intractable. These problems are considered to be hard because tackling them requires

exponential computation time. Cook (Cook, 1971) firstly identified a class of hard

problems in NP based on the concept of the satisfiability problem. The satisfiability

problems are defined as the problems to which every other problem in NP can be

reduced by a polynomial time bounded transformation. These satisfiability problems

consist of what we now call NP-Complete problems. NP-Complete problems are

considered to be the hardest problems in NP because if satisfiability problems can be

solved efficiently by a polynomial algorithm, every problem in NP can then be

solved in polynomial time by reducing it to a satisfiability problem. However, it is

generally assumed that finding a polynomial time algorithm for the problems in NP-

Complete is unlikely.

However, sometimes there are problems which cannot be proved to belong to NP

(i.e. there is no obvious polynomial time procedure for verification of a solution) but

one can show that they are at least as difficult as the NP-Complete ones, even though

they were not proved to be intractable. These problems are commonly labelled NP-

Hard, meaning “at least as hard as any problem in NP”. An example of such a

problem is where the problem of verifying a solution itself is an NP-Complete one.

Chapter 3 Optimisation Techniques: An Overview

33

Note that the definition of NP-completeness only considers decision problems.

However, its counterparts of the optimisation problem are at least as hard as the

former because verifying an optimal solution is not obvious in the latter (Falkenauer,

1998).

3.3 Review of Optimisation Approaches

3.3.1 Introduction

When solving an optimisation problem, one should seek exact methods to find the

optimal solution to the problem. However, as discussed in section 3.2, some

problems (NP-Complete problems, for instance) are very hard, such that the

algorithm to find an optimal solution has an exponential time complexity. It is highly

computationally expensive when dealing with large size problems (sometimes even

for medium size problems). In such circumstances one may refer to some

approximation approaches which can solve the problems with satisfactory solution

quality within reasonable computational time. Heuristic and metaheuristic

approaches are usually proposed to achieve this objective.

3.3.2 Exact methods

An exact method seeks to solve the problem to optimality. Well-known exact

methods include linear programming, dynamic programming, branch and bound, and

Lagrangian relaxation method. Although these approaches could obtain optimal

solutions, it can be computationally expensive and impractical for many real-world

applications.

Chapter 3 Optimisation Techniques: An Overview

34

3.3.2.1 Linear programming

Linear programming (LP) is ranked as the most important scientific advance in

operational research (Hillier and Lieberman, 2005). It was developed as a discipline

in the 1940's, motivated initially by the need to solve complex planning problems in

wartime operations. Its development accelerated rapidly in the post-war period as

many industries found valuable uses for linear programming. The most common type

of application involves the general problem of allocating limited resources among

competing activities in the best possible (i.e., optimal) way. Advances in the research

of linear programming were mainly attributed to George B. Dantzig (Dantzig, 1951;

Dantzig, 1963), who devised the simplex method that can efficiently solve a linear

programming problem to optimality. A detailed description of the method can be

found in (Nemhauser and Wolsey, 1988). One limitation of linear programming is

that all mathematical functions (including the objective function and the constraint

function(s)) in the model are required to be linear. Another is that linear

programming cannot handle discrete variables.

3.3.2.2 Dynamic programming

The term dynamic programming (DP) was introduced by Richard Bellman

(Bellman, 1957) who pioneered the theory and application of dynamic programming.

Dynamic programming was originally proposed to solve sequential decision making

problems but was later extended to solve many other combinatorial problems that

can be decomposed into a nested family of sub-problems. The problems can hence be

tackled by a recursive procedure, in which each iteration (or recursive call)

corresponds to a sub-problem. Compared with linear programming, dynamic

programming is a more general approach to problem solving. Dynamic programming

can handle discrete variables and nonlinear models. However, the application of

Chapter 3 Optimisation Techniques: An Overview

35

dynamic programming requires that the problem objective function is only dependent

on problem’s current state and its current decisions. Generally, dynamic

programming is only suitable for small and moderately sized problems. The

computation time may increase dramatically with an increase in the problem size,

due to the recursive structure of the algorithm. See (Hillier and Lieberman, 2005) for

a detailed discussion on the theory and application of this approach.

3.3.2.3 Branch-and-bound

The Branch-and-bound search technique is a reasonably efficient approach for

solving integer programming (IP) and mixed integer programming problems (MIP).

The basic idea behind branch-and-bound is divide and conquer, which means solving

difficult problems by recursively dividing them into smaller and smaller sub-

problems until those sub-problems can be solved. There are several versions of

branch-and-bound algorithms but all of them can be divided into three stages: branch,

bound and fathom. The branching corresponds to partitioning the entire set of

feasible solutions into smaller and smaller subsets by fixing an integer variable’s

value (or its range if the integer variable could take many values) at each iteration.

The bounds (upper or lower) of these subsets are then calculated in the bound phase

using a relaxation method, such as LP relaxation or Lagrangian relaxation. In the

third stage, the algorithm then acquires the solution space by discarding the subsets

which are unlikely to contain the optimal solution based on the information of their

bounds. Note that branch-and-bound is different from the complete enumeration

method. The algorithm only searches the part of the solution space which could

contain the optimal solution. See (Nemhauser and Wolsey, 1988; Hillier and

Lieberman, 2005) for a detailed description of the algorithm.

Chapter 3 Optimisation Techniques: An Overview

36

3.3.2.4 Lagrangian relaxation

The Lagrangian relaxation method is a very useful tool in obtaining lower (or

upper) bounds for combinatorial optimisation problems (Reeves, 1995; Hillier and

Lieberman, 2005). This is done by relaxing some difficult constraints and adding

them into the objective function such that the relaxed problem can be exactly solved

to optimality, which is considered as the lower (or upper) bound of the original

problem. In Lagrangian relaxation, the key issue is to decide which constraint(s) to

relax and how to calculate the optimal multiplier factor.

3.3.2.5 Generalised reduced gradient algorithm (GRG)

The concept of the generalised reduced gradient algorithm was firstly used by

Abadie and Carpentier (Abadie and Carpentier, 1969) and the underlying ideas of the

algorithm were also described in (Gabriele and Ragsdell, 1977; Lasdon et al., 1978).

Here we only give a brief description.

GRG is one of the reduced-gradient methods that are able to solve differentiable

non-linear programming problems (both in terms of objective function and

constraints) of the form:

maximise y(X) (3-1)

 subject to: () 0 1,...jf X j l≤ =

 () 0 1,...kg X k l l m= = + +

 1,...i i ilb x ub i n≤ ≤ =

where { }1,..., nX x x= is a vector containing n natural variables or independent

variables and n>m+l. To solve the problem, the model is firstly transformed into a

model with only equality constraints by adding l non-negative slack variables

1,...,n n lx x+ + . We have

Chapter 3 Optimisation Techniques: An Overview

37

maximise ()y X (3-2)

 subject to: (') 0 1,...kg X k m l= = +

 1,...i i ilb x ub i n l≤ ≤ = +

where { }1 1' ,..., , ,...n n n lX x x x x+ += .

The idea of the GRG method is to convert the constrained problem into an

unconstrained one. For nonlinear constraints, the first order Taylor expansion is

firstly applied to convert them to linear constraints. Then, variables are divided into

basic ones and nonbasic ones. GRG uses (m+l) equality constraints to solve (m+l)

nature variables, called basic variables, in terms of the remaining (n-m) non-basic

variables. This will reduce the number of independent variables to (n-m). A search

direction is then decided by the generalised reduced gradient in terms of every

variable. To find the local optimality of the objective along this search direction, any

one-dimensional search method can be used, such as the Newton’s method and the

quadratic interpolation method (Gabriele and Ragsdell, 1977).

3.3.3 Heuristics and metaheuristics

In the dictionary (Oxford Dictionary of Computing, 1997), heuristic is defined as

“a ‘rule of thumb’ based on domain knowledge from a particular

application, which gives guidance in the solution of a problem....

Heuristics may thus be very valuable most of the time but their results or

performance cannot be guaranteed.

Reeves (Reeves, 1995) defined heuristic as

 “a technique which seeks good (i.e. near-optimal) solutions at a

reasonable computational cost without being able to guarantee either

Chapter 3 Optimisation Techniques: An Overview

38

feasibility or optimality, or even in many cases to state how close to

optimality a particular feasible solution is”.

A heuristic could be used to create a solution (also called a constructive heuristic)

or to improve an existing solution by exploring the neighbouring solutions based on

certain rules or strategies. In this context, greedy algorithm and hill climbing are

examples of heuristics. A greedy algorithm is a constructive heuristic which seeks

the biggest reward (or the least penalty for a minimisation problem) at any point

when building a solution. However, a hill climbing method starts from an initial

solution and keeps moving to better neighbouring solutions until a stopping criterion

is met. One problem with these simple heuristic methods is that they are prone to

getting stuck in a local optimum.

To prevent these simple heuristic methods from getting trapped at local optima,

many advanced heuristic approaches, called meta-heuristics, have been developed

(Osman and Kelly, 1996; Voss et al., 1999; Glover and Kochenberger, 2003). Voss

et al. (Voss et al., 1999) defined meta-heuristics as

“an iterative master process that guides and modifies the operations of

subordinate heuristics to efficiently produce high-quality solutions. It may

manipulate a complete (or incomplete) single solution or a collection of

solutions at each iteration. The subordinate heuristics may be high (or low)

level procedures, or a simple local search, or just a construction method.”

In (Glover and Kochenberger, 2003), meta-heuristics are defined as:

“solution methods that orchestrate an interaction between local

improvement procedures and higher level strategies to create a process

capable of escaping from local optima and performing a robust search of

a solution space” or “… any procedures that employ strategies for

Chapter 3 Optimisation Techniques: An Overview

39

overcoming the trap of local optimality in complex solution space,

especially those procedures that utilise one or more neighbourhood

structures as a means of defining admissible moves to transition from one

solution to another or to build or destroy solutions in constructive and

destructive processes”.

Heuristic and meta-heuristic methods have been in the spotlight in recent years for

tackling many hard problems, especially those combinatorial in nature. During the

last 20 years many meta-heuristic approaches have been proposed. A clear-cut

classification of meta-heuristics is difficult because some approaches are actually

general frameworks and usually hybridised with other (meta-)heuristic methods.

However, there are several key components characterising them. One commonly

used classification distinguishes between single-point and population-based (Blum

and Roli, 2003). The former refers to search methods that only maintain a single

solution at each iteration while the latter manipulates a population of solutions.

Examples of single-point approaches include simulated annealing, tabu search,

iterative local search, guided local search, variable neighbourhood search and greedy

randomised adaptive search procedure while genetic algorithms, evolutionary

strategies, ant colony optimisation, and scatter search can be regarded as population-

based methods. However, this classification does not embrace some hybrid methods.

For example, although GRASP is regarded as a single-point approach, some GRASP

approaches hybridise the technique path-relinking which requires maintaining a

population of high quality solutions and therefore also belongs to the population-

based methods.

Some researchers (Taillard et al., 2001) also draw distinctions between the

methods that make use of memory and memory-less methods. Tabu search is a

Chapter 3 Optimisation Techniques: An Overview

40

typical meta-heuristic approach utilising the search history (memory). Usually a

short-term memory is maintained to prevent the cycling of the search while the long-

term memory is used to balance the intensification and diversification strategies.

Other memory based methods include iterative local search, guided local search, ant

colony optimisation, etc. Simulated annealing and greedy adaptive randomised

search procedures are typical memory-less meta-heuristic approaches.

Some other classifications include single neighbourhood vs various

neighbourhood, static vs dynamic objective function and nature-inspired vs non-

nature inspiration. One can refer to (Birrattari et al., 2001) for further discussions.

In the following subsections, we shall sequentially overview some popular

heuristic and meta-heuristic methods that have been widely used in many

applications.

3.3.3.1 Constructive (meta)heuristics

Constructive heuristics “build solutions to a problem under consideration in an

incremental way starting with an empty initial solution and iteratively adding

appropriate solution components without backtracking until a complete solution is

obtained” (Dorigo and Stutzle, 2003). Constructive heuristics are usually used as an

initial solution builder for many local search approaches. To generate a high quality

initial solution, the key is to choose which components to add to the solution at each

iteration (Burke and Kendall, 2005). If the selection is carried out in a random way,

the solutions returned by the constructive heuristics correspond to random solutions.

The quality of these random solutions is normally very poor. The most common way

is to refer to a function or a heuristic rule (for example, first-fit descent for a bin

packing problem) for the next solution component selection. Other more complex

constructive methods are also used where the constructive heuristics make use of

Chapter 3 Optimisation Techniques: An Overview

41

several functions or heuristics using certain learning mechanisms (Dorigo and

Maniezzo, 1996; Petrovic and Qu, 2002; Burke et al., 2005).

3.3.3.2 Simple local search

The search space consists of all solutions that satisfy the given hard constraints

(soft constraints might be violated, but at the cost of solution quality). The size of the

search space may be dependent on the problem size as well as the solution

representation. Local search methods often use the concept of a neighbourhood

which defines the set of solutions that can be reached from the current solution by a

single step operation (or move) (Osman and Laporte, 1996). Starting from an initial

solution, which can be generated randomly or by a constructive heuristic, the simple

local search iteratively samples a candidate solution in the neighbourhood of the

current solution. The candidate solution is accepted as the current solution if, and

only if, it is better than the current solution. For most constrained combinatorial

problems with a rugged search space, the simple local search approach is prone to

getting stuck at a local optimum. This simple local search is also called hill-climbing

for a maximisation problem or descent method for a minimisation problem.

3.3.3.3 Hyper-heuristics

Meta-heuristics have been intensively investigated and applied to a wide variety

of applications in the last twenty years, including scheduling, production planning,

resource assignment, supply chain management, decision support systems and bio-

informatics (Reeves, 1995; Osman and Kelly, 1996; Glover and Laguna, 1997;

Glover and Kochenberger, 2003; Burke and Kendall, 2005). However, many of these

state-of-art algorithms are too problem-specific. Once the problem is changed (even

slightly), the performance of the already developed specific-tailored meta-heuristic

Chapter 3 Optimisation Techniques: An Overview

42

may decrease dramatically for the new problem. Significant parameter tuning may

also be necessary for the purpose of adapting the algorithms to the new problem or a

new problem instance. The “No-Free-Lunch” theorem (Wolpert and MacReady,

1997) states that there is no one algorithm that is superior to any other algorithm

across all classes of problems. If an algorithm outperforms other algorithms on a

specific class of problems, there must be another class of problems for which this

algorithm is worse than the others. This drawback of meta-heuristics has motivated

researchers to design algorithms which can be applied in many different situations,

although recognising that the “No-Free-Lunch” theorem means we can never

produce a fully generic algorithm.

Hyper-heuristic (Burke et al., 2003a; Ross, 2005) is a recently used term to

describe algorithms which aim to raise the generality of the algorithms. The idea

behind one type of hyper-heuristic is that each problem-specific heuristic may have

some weakness in certain scenarios in which other heuristics may perform better.

Better algorithmic performance could be achieved by combining a set of heuristics,

instead of using just a single heuristic alone. Hyper-heuristics combine a set of easily

implemented, problem-specific heuristics in a strategic way such that the algorithm is

able to tackle not only a specific problem or problem instance but a batch of

problems. Hyper-heuristics are defined as a procedure of “using (meta-)heuristics to

choose (meta-)heuristics to solve the problem in hand” (Burke et al., 2003a). Unlike

most meta-heuristics, which search the solution space directly, hyper-heuristics work

on the problem indirectly by strategically calling appropriate heuristics at different

times in the search. The hyper-heuristic normally lacks problem-specific knowledge

although non-problem knowledge could pass into and out of the hyper-heuristic

Chapter 3 Optimisation Techniques: An Overview

43

black box. A general framework was illustrated in (Burke et al., 2003a) and is shown

in figure 3-1.

The algorithm is divided into two layers, a hyper-heuristic black box and a

problem-specific layer, with a problem domain barrier separating them. The

problem-specific layer includes a set of low level heuristics, which are different rules

or strategies to transform the state of the current solution. Note that although low

level heuristics could be meta-heuristics, they are usually simple and easily

implemented heuristics. The hyper-heuristic black box usually only has access to

general non-problem specific knowledge, such as the difference in the objective

function, historical performance of each heuristic, solution states, etc.

Figure 3-1: An example of a hyper-heuristic framework
Source: (Burke et al., 2003a)

This hyper-heuristic framework does not aim to beat other state-of-art problem-

specific approaches, but to provide a generalised approach for many problems with

solutions that are “good enough, soon enough and cheap enough”. Meanwhile,

hyper-heuristics do not aim to challenge the “No-Free-Lunch Theorem” but only

tries to raise the generality of the algorithms as far as possible.

Interface

Set of low level heuristics

…

Evaluation Function

Hyper-heuristic Black Box

Non-domain data flow

Non-domain data flow

h1 h2 hn

Chapter 3 Optimisation Techniques: An Overview

44

Soubeiga (Soubeiga, 2003) categorised hyper-heuristics into two types, learning

based hyper-heuristic and non-learning based hyper-heuristics. Non-learning based

hyper-heuristics included approaches which make use of several neighbourhood

structures and heuristics but the choice of which neighbourhood or heuristic to call is

in a predefined sequence. According to his classification, variable neighbourhood

search (VNS) (Hansen and Maldenovic, 2001) was classified as this type of hyper-

heuristic. Learning based hyper-heuristics refers to those approaches that

dynamically change the preference of each neighbourhood or heuristic based on their

historical performance guided by some learning mechanisms.

Hyper-heuristics can also be divided into constructive hyper-heuristics and local

search hyper-heuristics. Constructive hyper-heuristics construct a solution from

“scratch” by calling from a set of constructive heuristics (as opposed to the general

greedy heuristic which uses only a single heuristic). However, the local search hyper-

heuristics start from a complete initial solution and repeatedly select appropriate

heuristics to lead the search in a promising direction. A constructive hyper-heuristic

searches for a good sequence of heuristics (or a solution strategy) which can build a

solution. A local search hyper-heuristic tries to select the “right” heuristic to guide

the search in the promising direction.

It should be noted that hyper-heuristics are not new approaches. Their application

can be traced back to the 1960’s (Fisher and Thompson, 1961) although the term

“hyper-heuristic” was not used at that time. Work was also carried out through the

80’s and 90’s (O'Grady and Harrison, 1985; Mockus, 1989; Kitano, 1990; Hart et al.,

1998).

 Soubeiga (Soubeiga, 2003) carried out a survey of the research and applications

that have been carried out in the past using the ideas of hyper-heuristics. The

Chapter 3 Optimisation Techniques: An Overview

45

following sections give an updated review of hyper-heuristics, which are separated

into two different parts: constructive hyper-heuristics and local search hyper-

heuristics.

Constructive hyper-heuristics

In constructive hyper-heuristics, the low-level heuristics are usually well-known

constructive heuristics, for example, First-Fit Descent (FFD) and Best-Fit Descent

(BFD) for bin packing problems (Martello and Toth, 1990a), Largest Degree Descent

(LDD) and Saturation Degree Descent (SDD) (Carter, 1986; Carter and Laporte,

1996; Burke and Causemacker, 2003) for exam timetabling problems. Running these

simple heuristics alone can create a solution efficiently. However, in many cases,

they get trapped into local optima and produce poor quality solutions. Constructive

hyper-heuristics could synchronise these simple heuristics and, at each decision point,

choose the most appropriate heuristic to obtain good quality solutions.

Fisher and Thompson (Fisher and Thompson, 1961) are probably the first

researchers to use the idea of a hyper-heuristic when studying a job-shop scheduling

problem. In their experiments, two types of high-level strategies were used to

combine two simple job-shop scheduling constructive heuristics (rules). The first

strategy was an unbiased random process, which randomly selected an available rule

to make a scheduling decision at each decision point. The second strategy used a

probabilistic learning mechanism to guide the selection of heuristics. In this strategy,

the probability with which a heuristic was selected was updated dynamically based

on a reward-punishment procedure, similar to the idea of reinforcement learning

(Kaelbling et al., 1996; Sutton and Barto, 1998). That is, the probability of selecting

a heuristic increased if the heuristic improved the solution and decreased otherwise.

The experimental results showed that the hyper-heuristic with a learning mechanism

Chapter 3 Optimisation Techniques: An Overview

46

was shown to be superior to the unbiased random process and even the unbiased

random rules combination produced much better results than any of them run

separately.

Several genetic algorithm (GA) based constructive hyper-heuristics have been

developed, although early research usually termed them as indirect GAs. In those

approaches, a GA’s chromosome represents a sequence of heuristics or rules by

which a solution can be built. In this case, the genetic algorithm does not search in

the solution space. It is used to evolve a strategy by which a good quality solution

can be created. Such research includes (Kitano, 1990; Hart et al., 1998; Ross et al.,

2002; Ross et al., 2003).

Kitano (Kitano, 1990) employed a GA-based hyper-heuristic to optimise neural

network design. Instead of encoding the network configuration directly, his GA

chromosome consisted of a set of rules that can be used to generate networks. This

approach was shown to be superior to a conventional GA.

Hart et al. (Hart et al., 1998) solved a real-world chicken factory scheduling

problem using a GA based hyper-heuristic. The problem involved scheduling the

collection and delivery of chickens from farms to the processing factories. The

problem was deconstructed into two stages and two separate GAs were used to tackle

the problem in each stage. In the first stage, the orders were split into suitable tasks

and these tasks were then assigned to different “catching squads”. The second stage

dealt with the schedule of the arrival of these squads. The GA chromosome in the

first stage represented a sequence of orders, a set of heuristics to split each order into

suitably sized tasks and another set of heuristics to assign these tasks to the different

“catching squads”. The GA was used to evolve a strategy to build a good solution

Chapter 3 Optimisation Techniques: An Overview

47

instead of finding the solution directly. The experimental results showed this

approach is fast, robust and easy to implement.

Recently, Ross et al. (Ross et al., 2003) also proposed another GA based hyper-

heuristic. The problem addressed one-dimensional bin packing. Instead of working

on feasible solutions, like most local search approaches, the proposed hyper-heuristic

operated on a partial solution and gradually constructed the solution using different

rules (heuristics) until a feasible solution was obtained. The heuristic selection was

based on the state of the current partial solution. Each state was associated with a

rule or heuristic whose relationship with solution states was evolved by a genetic

algorithm. The chromosomes of their GA were defined as a set of blocks and each

block contained a set of parameters which was used to define a solution state and its

corresponding heuristics. The algorithm was firstly trained on some benchmark

problems and after the training, the fittest chromosome was then applied to every

benchmark problem, 80% of which were solved to optimality.

Other meta-heuristic approaches have also recently been employed as a high-level

strategy in a constructive hyper-heuristic framework. Burke et al. (Burke et al., 2006)

used a tabu search algorithm to hybridise well-known graph colouring heuristics in a

hyper-heuristic framework to solve several exam and course timetabling problems.

The tabu search was used to search for a good heuristic permutation which was then

used to create a solution according to this heuristic permutation. The algorithm could

produce competitive results (compared with other state-of-the-art algorithms) when

applied to a set of benchmark problems.

Local search hyper-heuristics

In local search hyper-heuristics, low-level heuristics usually correspond to several

neighbourhood functions or neighbourhood exploration rules that could be used to

Chapter 3 Optimisation Techniques: An Overview

48

transfer the state of the current solution. Below we review a list of papers that use

this idea.

Some hyper-heuristics use ideas from reinforcement learning to guide the choice

of the heuristics during the search (Cowling et al., 2001; Nareyek, 2003). In

(Cowling et al., 2001), a sales summit scheduling problem was solved by a “choice

function” based hyper-heuristic, in which the choice function dynamically selected

suitable heuristics at each decision point. The computational results showed that the

choice function based hyper-heuristic was superior to applying the heuristics

randomly. Nareyek (Nareyek, 2003) used a non-stationary reinforcement learning

procedure to choose heuristics in solving two combinatorial optimisation problems.

The author discussed the advantages of the hyper-heuristic approach, especially in

solving complex real-world problems in which the computational cost is expensive.

A GA based local search hyper-heuristic algorithm (hyper-GA) was proposed by

Cowling et al. (Cowling et al., 2002) to solve a trainer scheduling problem. Here, a

GA chromosome represented an ordering of the low-level heuristics that were going

to be applied to the current state. A good sequence was evolved during the search

corresponding to the given problem instance. The computational results showed that

the GA based hyper-heuristic outperformed both a conventional genetic algorithm

and a memetic algorithm which directly encoded the problem as a chromosome. An

enhanced version of the hyper-GA was presented in (Han et al., 2002) which used an

adaptive length chromosome.

Smith (Smith, 2002) proposed a memetic algorithm (MA) using the concept of

co-evolution (see section 3.3.3.11 for an review of MA). In his approach, the idea is

to evolve a local search strategy. The chromosome encodes the information that

represents which local search method to apply and in which way (e.g. single call or

Chapter 3 Optimisation Techniques: An Overview

49

steepest descent). Therefore, in his algorithm, the solution and the local search

methods co-evolve simultaneously. The algorithm was shown to be superior to both a

general genetic algorithm and a conventional memetic algorithm.

Burke et al. (Burke et al., 2003c) applied a tabu search based hyper-heuristic to a

nurse rostering problem and a university course timetabling problem. In their hyper-

heuristic algorithm, the set of heuristics were ranked according to their performances

in the search history. A tabu list was also incorporated to prevent the selection of

some heuristics at certain points in the search.

Kendall and Mohd Hussin used a similar tabu search hyper-heuristic algorithm in

tackling university timetabling problems (Kendall and Mohd Hussin, 2004a).

However, this algorithm is slightly different. In (Burke et al., 2003c), each low-level

heuristic is associated with a weight that is dynamically updated according to the

given heuristic’s previous performance. Each time, the best non-tabu heuristic is

chosen and applied. However, in (Kendall and Mohd Hussin, 2004a), all heuristic

calls are tried and the best heuristic is selected and applied. Each heuristic that has

been applied becomes tabu and will not be called within a given number of iterations

(called tabu duration). Their later work (Kendall and Mohd Hussin, 2004b) also

incorporated some heuristic acceptance criteria to enhance the performance,

including a great deluge algorithm. The experimental results on the benchmark

problems show that this algorithm can achieve considerable improvement over a

manual solution and is competitive when compared to other algorithms published in

the literature.

Other high-level strategies have also been investigated within the framework of

hyper-heuristics. In (Burke et al., 2005), a case-based reasoning paradigm was used

to guide the selection of timetabling heuristics. The case-based reasoning system

Chapter 3 Optimisation Techniques: An Overview

50

maintains a database of case information about which heuristic works well on

previous timetabling problem instances. For a new timetabling problem instance, the

system automatically recommends a heuristic to solve the problem based on the

knowledge stored in the database.

Burke et al. (Burke et al., 2003b) investigated a hyper-heuristic approach in an ant

algorithm framework in solving a presentation scheduling problem. Ant algorithms

analogise a colony of real ants that seek the shortest path between the nest and the

food source. An ant algorithm can be described as an optimisation technique that

searches for the best path in a graph and is usually used in route-planning

optimisation problems (see section 3.3.3.12 for further discussions of the ant

algorithm). In Burke et al.’s ant algorithm based hyper-heuristics, each vertex in the

graph represents a low-level heuristic and there are directed edges connecting two

vertices. Each ant is associated with a solution for the problem. Initially, a population

of ants are randomly placed at different vertices. These ants are moved from one

vertex to another, corresponding to transferring the associated solution to another

solution utilising the heuristic represented by the destination vertex. The probability

with which an ant chooses the next vertex to move to is dependent on the pheromone

trail on the edge connecting the two vertices. When an ant moves from vertex i to

vertex j, the corresponding low-level heuristic represented by vertex j is applied to

the solution associated with the ant, generating a new solution. The ant then deposits

a given amount of pheromone trail on the edge between i and j. The quantity of the

pheromone that the ant deposits is proportional to the improvement the heuristic

achieved over the previous solution. Therefore, after a few iterations, more

pheromone is deposited on the edges which could improve a solution more

frequently. The ant algorithm hyper-heuristic is different from a general ant colony

Chapter 3 Optimisation Techniques: An Overview

51

optimisation algorithm. The vertices in an ant algorithm hyper-heuristic represent

different low-level heuristics which can transfer the solution to a candidate solution.

However, the vertices in a conventional ant algorithm represent solution components.

For example, when applying a general ant algorithm to TSP, a vertex normally

represents a city (Dorigo, 1992; Dorigo and Maniezzo, 1996).

Some interesting work was also carried out in (Cowling and Chakhlevitch, 2003),

in which the hyper-heuristic was designed to manage a large set of low-level

heuristics constructed by combining different “event selection” rules and “resource

selection” rules. Instead of selecting a low-level heuristic from the large set of

available low-level heuristics, the algorithm selected a heuristic from a candidate list

which contained only a small subset of promising low-level heuristics. The size of

the candidate list determined the degree of greediness and randomness of the hyper-

heuristics. The authors also included a tabu list, which made tabu some badly

performing heuristics from being selected within a given period. The algorithm was

shown to be able to efficiently handle a real-world trainer scheduling problem.

Yet another type of hyper-heuristic was proposed by Mockus (Mockus, 1989),

using the concept of the Bayesian heuristic approach to randomise and optimise the

probability distribution of each heuristic call. The Bayesian heuristic approach is

based on the analysis of average-case performance of the heuristics. It attempts to

determine a set of parameters or a probability distribution such that the deviation

from the global optimum is minimised. The method has been applied to a variety of

discrete optimisation problems. See (Mockus, 1994; Mockus et al., 1997; Mockus,

2000) for further details.

In the above local search hyper-heuristics, the candidate solutions returned by

low-level heuristics are either all accepted or only accepted if they are better than the

Chapter 3 Optimisation Techniques: An Overview

52

current solution. However, these criteria may be too simple and not appropriate, as

accepting all heuristic moves may lead to a random search. Similarly, the search may

get stuck at local optima if the algorithm only accepts better solutions (we shall

discuss this further in chapter 4). Recently, research has been carried out to improve

the heuristic acceptance criteria in a hyper-heuristic framework. Bai and Kendall

(Bai and Kendall, 2003) firstly introduced a simulated annealing acceptance criterion

into the hyper-heuristic framework. More investigations and discussions of the

simulated annealing hyper-heuristic are given in (Bai and Kendall, 2005b) and will

also be presented in chapters 4 and 5. Ayob and Kendall (Ayob and Kendall, 2003)

investigated a hyper-heuristic approach that uses a Monte Carlo acceptance criterion.

Both algorithms have been shown to be superior to the choice function based hyper-

heuristics (Cowling et al., 2001), which employed simple acceptance criteria. In

addition, similar threshold acceptance algorithms have also been introduced into the

hyper-heuristic framework when solving a mobile network frequency allocation

problem (Kendall and Mohamad, 2004a; Kendall and Mohamad, 2004b).

3.3.3.4 Simulated annealing

Simulated annealing is a local search method inspired by Metropolis et al.’s

algorithm to simulate the physical cooling process (Metropolis et al., 1953). Since its

introduction as an optimisation tool (Kirkpatrick et al., 1983), SA has been

intensively studied both in theory and application. The theoretical analysis of SA

have been concerned with its convergence criteria, based on the fact that simulated

annealing can be treated as a series of homogeneous Markov chains or a single non-

homogeneous Markov chain. Research has proven that SA is able to asymptotically

converge to an optimal solution if certain conditions are satisfied (Aarts and van

Laarhoven, 1985; Lundy and Mees, 1986). However, these theories are not very

Chapter 3 Optimisation Techniques: An Overview

53

useful in practice because guaranteeing an optimal solution often requires more

iterations than an exhaustive search. However, this does not deter SA from being

used in many applications. In fact, SA has been widely used to solve a variety of

difficult problems owing to its simplicity of implementation and robustness in many

problems, including graph partitioning and colouring, route-planning, layout design,

sequencing and scheduling, timetabling, signal processing, etc. (Carnevali et al.,

1985; Sechen et al., 1988; Johnson et al., 1989; Ogbu and Smith, 1990; Abramson,

1991; Johnson et al., 1991; Thompson and Dowsland, 1998; Burke and Kendall,

1999; Tian et al., 1999; Liu, 1999; Chen and Luk, 1999; Bouleimen and Lecocq,

2003). Discussions on other applications of SA are also given in (Dowsland, 1995;

Henderson et al., 2003).

The procedure for simulated annealing is fairly simple. For a maximisation

problem with objective function f and neighbourhood structure N, SA starts from an

initial solution and repeatedly generates and transfers to a neighbour of the current

solution. During this process, SA has the possibility of visiting worse neighbours in

order to escape from local optima. Specifically, a parameter, called temperature t, is

used to control the possibility of moving to worse neighbour solutions. The algorithm,

starting from a high temperature, repeatedly decreases the temperature in a strategic

manner (usually referred to as a cooling schedule) until the temperature is low

enough, or some other stopping criteria are satisfied. In each iteration, the algorithm

accepts all uphill (a move which increases the objective value for a maximisation

problem) moves and some of the downhill (a decrease in the objective value for a

maximisation problem) moves according to the Metropolis probability, defined by

exp(/)tδ where δ is the difference in the objective function between the new

Chapter 3 Optimisation Techniques: An Overview

54

candidate solution and the current solution. A general simulated annealing algorithm

for maximisation problem can be described by the figure 3-2.

Initialisation: initial solution s0, temperature ts, cooling function ()tϕ ,
number of iterations at each temperature nrep and a neighbourhood
definition N;
Repeat

 Repeat
 Randomly select 0()s N s∈ ;

 0() ()f s f sδ = − ;

 If 0δ >
 0s s= ;

 Else if exp(/) (0,1)t randomδ >

 0s s= ;

Endif
 If 0() ()bestf s f s>

 0bests s= ;

Endif
 Until iteration_count = nrep
 Set ()t tϕ= ;

Until the stopping conditions are met
Output bests as the best solution found.

Figure 3-2: A general simulated annealing algorithm for a maximisation problem

Source: (Dowsland, 1995)

Two important factors have to be carefully considered before implementing this

general simulated annealing algorithm. These are the definition of neighbourhood

structure N and the cooling schedule which is determined by 1) a starting temperature

ts; 2) temperature reduction function ()tα ; 3) the number of iterations at each

temperature nrep and 4) stopping condition(s).

Starting temperature

The initial temperature should be high enough to allow “free moves” at the initial

state such that the final solution is not dependent on the initial state (Dowsland,

1995). However, if one wants SA to start from a good quality solution created by

some sophisticated heuristics, the initial temperature should not be too high. This is

Chapter 3 Optimisation Techniques: An Overview

55

due to the fact that, when the temperature is too high, the algorithm accepts almost

all of downhill moves (without specification, it is assumed that we are trying to

maximise the objective function). In this case, the search, in fact, starts from a

random initial solution. The effort of obtaining a high quality initial solution is,

therefore, irrelevant.

A lot of research has been carried out in order to identify an optimal initial

temperature or a method by which an initial temperature can be determined.

However, this is very difficult because even if there is an optimal initial temperature,

its value may be different from problem (or even problem instance) to problem. In

practice, some estimation methods have been suggested instead. Kirkpatrick et al.

(Kirkpatrick et al., 1983) suggested an initial temperature 0 maxt δ= where maxδ is the

maximal difference in the objective value between two neighbouring solutions.

Another more intuitive method is setting an initial temperature value such that the

ratio of accepted downhill moves to all neighbourhood moves is equal to a

predefined value.

One way to get an estimation of this value was described in (Dowsland, 1995).

Starting from a large initial temperature value, a number of neighbourhood moves

are performed and the corresponding acceptance ratio is monitored. If the targeted

acceptance ratio is not reached, the temperature is modified (decreasing or increasing

depending on relationship between the current acceptance ratio and the given ratio)

and the procedure is repeated until the predefined acceptance ratio is reached. The

current temperature is then chosen as the initial temperature.

Johnson et al. (Johnson et al., 1989; Johnson et al., 1991) suggested using the

average cost difference of a set of sample neighbouring solutions to approximate the

initial temperature of a given acceptance ratio of downhill moves. Suppose δ

Chapter 3 Optimisation Techniques: An Overview

56

represents the average cost difference of a set of sampled neighbouring solutions and

0r is the given acceptance ratio allowed at the beginning of the search, the initial

temperature can be calculated by 0 0/ ln()t rδ= − .

Another iterative procedure was proposed by Ben-Ameur (Ben-Ameur, 2004) to

obtain a more accurate estimation of the initial temperature. The author also

discussed some properties of the acceptance ratio of bad moves. Some of the latest

theoretical work can also be found in (Cohn and Fielding, 1999).

Cooling schedule

Considerable research has been carried out in the pursuit of a good cooling

strategy. Two of the most popular methods are geometric cooling ()t tϕ α= (1α <)

and a non-linear cooling function () /(1)t t tϕ β= + (where β is a very small positive

value) proposed by Lundy and Mees (Lundy and Mees, 1986). In the geometric

cooling function, the temperature reduction rate is a constant and usually takes value

in the range of [0.8, 0.99]. However, in the Lundy and Mees’ cooling function, the

temperature drops very quickly when the temperature is high and relatively slower

when the temperature is low. At each temperature only one iteration is executed.

Both cooling schedules are monotonic decreasing functions. However, an optimal

cooling schedule may be not monotonic and be dependent on different problems

(Dowsland, 1995). Therefore, several other cooling strategies have also been

proposed which take into account the history of the search and allow temperature

increases during the search (also referred to as reheating in some publications).

When the temperature becomes very low, SA degenerates into a hill climbing

algorithm and most of the time is being wasted in generating and rejecting inferior

solutions. Connolly (Connolly, 1990) suggested that it is not necessary to reduce the

temperature from a high value to zero. Instead, the temperature could be held

Chapter 3 Optimisation Techniques: An Overview

57

constant throughout the search. He tested the idea on quadratic assignment problems

and concluded that there exists a fixed temperature at which the performance is

optimised. However, this optimal temperature might be different from problem to

problem and is very difficult to obtain.

Some other researchers suggested that the temperature could be “reheated” if the

search gets stuck at a local optimum (Kirkpatrick et al., 1983; Dowsland, 1993). In

(Kirkpatrick et al., 1983), the problem under consideration was the travelling

salesman problem and reheating was carried out in an interactive way, which let the

user monitor the current solution and the moves. A “reheat” process was triggered

whenever a user found that the algorithm got stuck at a local optimum. Dowsland

(Dowsland, 1993) suggested a more frequent reheating process in solving rectangle

packing problems, in which the temperature was reduced by the function

() /(1)t t tϕ β= + if an uphill move was found and whenever a move was rejected, the

temperature was increased according to the function '() /(1)t t tϕ γ= − where kβ γ= .

Hence, if the number of rejected moves is greater than k multiplied by the number of

accepted moves, the temperature begins to “heat up”. The SA with this cooling

schedule reported good experimental results.

Some other cooling functions have been introduced in (Dowsland, 1995; Aarts

and Korst, 1998) which employed more complex temperature update functions.

Stopping condition(s)

The conventional simulated annealing algorithm stops when the temperature reaches

zero or a value small enough such that the algorithm converges to a local optimum.

Choosing an appropriate value of the stopping temperature can be based on

experiments or one can monitor the acceptance ratio of downhill moves and the

algorithm stops when the ratio decreases below a given very small value (0.01 for

Chapter 3 Optimisation Techniques: An Overview

58

example). Other stopping conditions were also used, such as the allowed

computation time, the number of consecutive non-improvement moves, etc.

Neighbourhood design

The neighbourhood structure is another vital aspect which influences the

performance of SA, although its importance has not really been recognised until the

recent advances and success of variable neighbourhood search (Mladenovic and

Hansen, 1997; Hansen and Maldenovic, 2001) and very large neighbourhood search

(Yeo, 1997; Gutin, 1999; Ahuja et al., 2000).

Some earlier researchers concentrated on the impact of the neighbourhood size

and suggested that reducing its size during the final stages of the annealing could

produce better results or speed up the algorithm. Greene and Supowit (Greene and

Supowit, 1986) proposed a rejectionless SA. In their algorithm, each possible move

was associated with a weight based on its effect on the cost function if it was applied.

The probability of selecting a move was then based on the amount of the contribution

of its weight to the total weight. The algorithm was tested on a logic partitioning

problem and the results showed that the proposed algorithm could accelerate the

search without undermining the solution quality. However, it does require extra

memory. In (Sechen et al., 1988), simulated annealing was used to optimise a cell

layout problem for VLSI design. In their algorithm, the neighbourhood size was

reduced by prohibiting large distance moves when the temperature was getting low.

Similar ideas were also tested in (Tovey, 1988) where the experimental results

showed that probabilistically giving preference to those promising subset solutions

performed better than completely restricting the search in a small subset space. He

stated that the possible reason was that exclusion of some solutions might be

detrimental to the neighbourhood reachability. Recently, Steinhofel (Steinhofel et al.,

Chapter 3 Optimisation Techniques: An Overview

59

2003) found that a non-uniform sampling SA performed better than a uniform

sampling SA when tested on job shop scheduling problems.

It is suggested that neighbourhood structures for SA should be symmetric (i.e. it

is possible to return to the state just visited) or at least reachable (i.e. every state

should be reachable from every other state) (Dowsland, 1995). However, there are no

general guidance rules because this is a problem-specific decision. Tian et al. (Tian et

al., 1999) investigated the effect of neighbourhood structures of the SA algorithm in

solving three permutation optimisation problems: travelling salesman problem (TSP),

flow-shop scheduling problem (FSP) and quadratic assignment problem (QAP). Six

types of neighbourhood structures were designed and proven to be asymptotically

convergent. The performance of these neighbourhood structures were compared

across different sizes of instances of the three problems. The results showed that the

best neighbourhood structures for three problems were completely different. SA with

the neighbourhood that performed best on TSP was significantly inferior to SAs with

some of the other neighbourhood structures when applied to FSP and QAP. This

shows that for different problems (although they might share some common

properties), SA should choose different neighbourhood structures in order to obtain

good results. However, defining the best neighbourhoods is not an easy task.

Csondes et al. (Csondes et al., 2002) used a so called adaptive variable

neighbourhood structure in their SA algorithm in solving two real-world

optimisation problems. The solution space was a variable vector that satisfied all

constraints. When the temperature was high, more variables were allowed to be

flipped. However, when the temperature was low, new solutions were only sampled

by applying a small number of variable flips. The results were competitive with those

obtained by existing commercial software.

Chapter 3 Optimisation Techniques: An Overview

60

3.3.3.5 Tabu search

Tabu search (TS) was originally proposed by Fred Glover in 1977 (Glover, 1977).

However, it did not become a popular combinatorial optimisation method until his

later work (Glover, 1989; Glover, 1990). Tabu search is a single point meta-heuristic

approach that has found a variety of applications in practice. Tabu search differs

from other local search approaches in that it makes use of historical information to

prevent the search from cycling and becoming trapped in a local optimum. The tabu

list is a short-term memory of recent neighbourhood moves that are prohibited during

the search in order to prevent the search from going back to the recently visited

points in the search space. The length of the tabu list decides how many moves are

stored in the list and the tabu tenure defines how many iterations of each move in the

tabu list are tabu (i.e. cannot be called). Although the tabu list is helpful in avoiding

cycling during the search, in some cases, it may restrict the search too much such that

some promising moves are prohibited. Therefore, most tabu search algorithms also

incorporate a mechanism, a so called aspiration criteria, which is used to mitigate

the strength of the tabu list.

Some long-term memories are also used that store a record of the entire search

process for the purpose of the intensification and diversification. For example, in a

frequency memory, one accounts the number of occurrences of a particular attribute

that belongs to a solution or a move during the search. There could be many types of

attributes. For example, an attribute can be a variable taking a specific value or an

operator which sets a variable from a value to another. A simple intensification and

diversification method can be carried out by introducing incentive or penalty values

to modify the evaluation of moves in reference to the frequency memory (Glover F.

and Laguna, 1995). Some other diversification methods in the tabu search were also

Chapter 3 Optimisation Techniques: An Overview

61

discussed in (Soriano and Gendreau, 1996). For the detailed discussion and

implementation of tabu search, one can refer to (Glover and Laguna, 1997). One can

also refer to (Gendreau, 2002) for a survey of the recent advances in tabu search.

In practice, TS approaches have been widely used in many areas, including

scheduling, transportation and routing, telecommunications, bioinformatics, network

design and graph partitioning and colouring (Widmer and Hertz, 1989; Reeves, 1993;

Skorin-Kapov and Vakharia, 1993; Taillard, 1994; Gendreau et al., 1994; Mazzola

and Schantz, 1995; Rolland et al., 1996). A full list of applications is given in

(Glover and Laguna, 1997).

3.3.3.6 Variable neighbourhood search (VNS)

Variable neighbourhood search (VNS) is another local search meta-heuristic that

has recently been proposed for combinatorial optimisation problems (Mladenovic

and Hansen, 1997). The approach differs from general meta-heuristics in that the

algorithm systematically changes the neighbourhoods. A basic VNS algorithm

consists of an initialisation stage and an iterative stage. The initialisation stage

involves constructing an initial solution and defining a set of neighbourhood

structures and their sequence. Note that the sequence of the neighbourhoods usually

reflects an increasing order in the distance from the current solution to the given

neighbourhood (Mladenovic and Hansen, 1997). The iterative stage consists of three

subroutines, shaking, local search and move decision. The shaking works as a

diversification element which samples a random solution from the current kth

neighbourhood of the current solution. The local search subroutine is then applied to

this sampled solution to improve it to a local optimal solution. If it is better than the

current solution, the search moves to this solution and the current neighbourhood is

set to be the first neighbourhood in the list. Otherwise, the search does not move to

Chapter 3 Optimisation Techniques: An Overview

62

this solution while the current neighbourhood is set to be the next neighbourhood in

the list. The process above is only a basic VNS algorithm. There are several variants.

The simplest one is variable neighbourhood descent (VND), where the local search

method will explore the whole neighbourhood and return the best neighbour in it.

Some other variants include variable neighbourhood decomposition search (VNDS),

skewed VNS (SVNS) and parallel VNS (PVNS). VNS can also be hybridised with

tabu search, simulated annealing and GRASP (see the next section 3.3.3.7). Recent

advances and applications of this approach can be found in (Hansen and Maldenovic,

2001; Hansen and Maldenovic, 2003).

3.3.3.7 Greedy randomised adaptive search procedure (GRASP)

GRASP is multi-start meta-heuristic approach that explores the search space from

different points (solutions) (Feo and Resende, 1989; Feo and Resende, 1995). Each

thread of the search can be divided into two phases: the construction phase and the

local search phase. The construction phase is responsible for creating a good quality

solution from which the local search starts. Figure 3-3 illustrates a basic GRASP

algorithm. It can be seen that the algorithm is an iterative procedure. Each iteration

involves creating an initial solution (solution construction phase) and then

performing a local search from it (local search phase). From an empty solution, the

construction phase repeatedly inputs a candidate element into the partial solution

until a complete solution is constructed. The selection of the candidate elements is

based on a kind of “peckish” mechanism (a mechanism to combine randomness and

greediness). Before constructing the solution, all non-initialised candidates are sorted

according to a function or a criterion (usually the incremental costs or benefits if the

given candidate element is input into the partial solution) and the first k elements are

stored in a restricted candidate list (RCL) (this is the greedy part of the algorithm).

Chapter 3 Optimisation Techniques: An Overview

63

The algorithm is randomised in the sense that the candidate elements are randomly

selected from the restricted candidate list rather than the best candidate element. The

quality of the elements in the RCL can also be controlled by a threshold value. The

algorithm is called adaptive because all candidate elements are evaluated and ranked

each time a new element is incorporated into the solution. The solution obtained

above is further improved in the local search phase, which can be a hill-climbing

algorithm or any other local search approaches. During the process, the best solution

is memorised and returned when the stopping criteria are met. A recent survey can be

found in (Resende and Ribeiro, 2003).

Start with an empty solution;
Repeat

 Repeat
Evaluate all non-initialised candidate elements by a function;
Construct the restricted candidate list (RCL);
Select a candidate from the RCL and apply it to the current
solution;

 Until current solution is complete
 Apply local search to the current solution;
 Memorise the best solution;

Until stopping conditions are met.

Figure 3-3: Pseudo-code of the basic GRASP
Source: (Resende and Ribeiro, 2003)

3.3.3.8 Guided local search (GLS)

The main idea behind the guided local search meta-heuristic is to guide the local

search algorithm to escape from local optima by introducing a penalty function into

the objective function (Wang and Tsang, 1991; Wang and Tsang, 1994; Voudouris

and Tsang, 1997). Once a local search algorithm gets stuck at a local optimum,

certain features in the current solution are selected and punished by adding a penalty

value to the objective value. Hence the GLS algorithm is able to guide the search

efforts to more attractive areas. To implement GLS, one needs to define a set of

features for a problem and a modified objective function that takes account of the

Chapter 3 Optimisation Techniques: An Overview

64

features to punish. Each feature is associated with a penalty and their values can be

changed dynamically during the search. However, selecting what kind of features to

punish and defining the modification strategies of the penalty value may not be easy

for various problems. One can refer to (Voudouris and Tsang, 2003) for a survey of

recent advances and applications of GLS.

3.3.3.9 Iterated local search (ILS)

Iterated local search is another meta-heuristic proposed for combinatorial

optimisation problems. The main components in an ILS algorithm include

LocalSearch, Perturbation and AcceptanceCriterion (Lourenco et al., 2003). The

algorithm starts from an initial solution, created randomly or by a greedy heuristic,

and keeps improving the current solution by the LocalSearch until a local optimum is

reached. A candidate solution is then sampled from the current solution using the

Perturbation method. The LocalSearch is then applied to improve the candidate

solution to a local optimum. The search then moves to this candidate solution if the

AcceptanceCriterion is true. Otherwise, the move is rejected. Lourenco et al.

(Lourenco et al., 2003) provided a basic ILS procedure, shown in figure 3-4.

s0 = GenerateInitialSolution();
s*=LocalSearch(s0);
Repeat

 s'=Perturbation(s*,history);
 s*’=LocalSearch(s’);
 s*=AcceptanceCriterion(s*, s*’ , history);

Until stopping conditions are met.

Figure 3-4: Pseudo-code of a basic ILS
Source: (Lourenco et al., 2003)

It can be seen that the algorithm is very similar to a basic VNS. The main

difference between them is that the perturbation in ILS uses historical information to

bias the solution sampling. While in VNS, the solution is sampled by systematically

Chapter 3 Optimisation Techniques: An Overview

65

changing the perturbation strength, a measure that describes the magnitude of

difference between the current solution and the sampled solution (VNS shakes the

current solution by using different neighbourhoods with increasing cardinality).

3.3.3.10 Genetic algorithms

Genetic algorithm, also abbreviated to GA, was firstly proposed by Fraser (Fraser,

1957) and Bremermann (Bremermann, 1962) independently. Holland’s book

Adaptation in Natural and Artificial Systems (Holland, 1975) is also often cited as

one of the seminal works for GA. The idea of GA comes from the natural selection

principle of survival of the fittest, which believes that only the fittest individuals will

survive through many generations. A genetic algorithm holds a population of

solutions that evolves from one generation to the next (Goldberg, 1989; Forrest, 1993;

Michalewicz, 1996). For an optimisation problem, a solution (individual) is usually

encoded in a specially designed string (called a chromosome). A given number of

individuals, called a population, is maintained and evolves from one generation to

another. A new population is generated by copying some fitter individuals from the

current population and selecting some newly created individuals using genetic

operators, such as crossover and mutation. The algorithm stops once the termination

criteria are met. To implement a genetic algorithm, one needs to decide a solution

encoding scheme, operators (crossover, mutation), and a selection method as well as

various parameters values, such as population size, number of generations, crossover

probability and mutation probability.

Although the process of the genetic algorithm is fairly simple, there are several

important issues which need careful consideration. The first is the solution encoding

system. Falkenauer (Falkenauer, 1998) found that the encoding, the process of

mapping from the phenotype (the representation of a solution) to the genotype (the

Chapter 3 Optimisation Techniques: An Overview

66

representation of the chromosome), could significantly affect the performance of the

GAs and suggested that the encoding should be a one-to-one mapping procedure.

That is, one solution of the problem maps to one chromosome. If one solution maps

onto several chromosomes, the encoding is redundant and could impact the

efficiency of the GA. However, if the encoding is in a many-to-one mapping fashion

(several solutions of the problem correspond to one chromosome), such an encoding

lacks the details of the problem although it may be beneficial in some cases because

it reduces the size of search space.

Once the encoding system is decided, one needs to design the genetic operators.

Several types of operators have been proposed in the past. However, crossover (also

called recombination) and mutation are the two most popular operators. The role of

crossover is to inherit some promising traits from two (possibly more) parents.

Mutation is believed to be a beneficial supplement to the crossover by introducing

some new traits which are not currently present in the parent solutions (Davis, 1987;

Goldberg, 1989).

While it is agreed that fitter individuals should have a larger probability of being

selected for the new generation, it is also very important to allow a few “less-fit”

individuals to increase the diversity of the population. There are several ways to

achieve this, among which tournament selection and roulette-wheel selection are

frequently used. In tournament selection, only a small subset of individuals are

chosen and compared, and the fittest ones are selected to be the parents. While in the

roulette-wheel selection, the selection probability of an individual is proportional to

its fitness value (Coley, 1999).

A good introduction to genetic algorithms can be found in (Sastry et al., 2005).

Some other references with regard to genetic algorithms are available in (Goldberg,

Chapter 3 Optimisation Techniques: An Overview

67

1989; Davis, 1991; Beasley et al., 1993; Reeves, 1995; B䢡 k, 1996; Mitchell, 1996;

B䢡 k et al., 1997; Michalewicz and Fogel, 2000).

3.3.3.11 Memetic algorithms

Genetic algorithms are thought to be suitable for problems with large search

spaces. Because most genetic algorithms do not take advantage of the problem-

specific knowledge, it is possible that some local optima are missed or are not being

explored efficiently during the search (a genetic operator is said to be blind if it does

not use problem-specific knowledge in determining where and how to apply an

operation on a chromosome (Moscato and Cotta, 2003)). In this context, some local

heuristic searchers can be incorporated into a genetic algorithm with the aim of

enhancing the GA’s performance. Such an altered algorithm is named a memetic

algorithm in (Moscato, 1989). In this sense, the memetic algorithm is also deemed a

hybrid method. A good introduction to memetic algorithms can be found in (Moscato

and Cotta, 2003). For recent advances in the theory and application of memetic

algorithms, one can refer to (Hart et al., 2003).

3.3.3.12 Ant colony optimisation algorithm (ACO)

The ant colony optimisation algorithm originated from Dorigo’s Ant System

(Dorigo, 1992; Dorigo and Maniezzo, 1996) which simulates an ant colony seeking a

shortest path between a food source and a nest (Deneubourg et al., 1990). Although

the behaviour of each ant is independent and asynchronous, communication among

them is mediated by a pheromone trail. When deciding which path to use an ant

chooses the shortest path to the food source by exploiting the level of the pheromone

on each available path. At the initial state, no pheromone trail information is

available and ants follow a random route. However, when an ant finishes a tour, it

Chapter 3 Optimisation Techniques: An Overview

68

deposits a certain amount of pheromone on the path it takes according to the distance

of that tour. That is, if a shorter path is found by an ant, more pheromone is deposited

on every edge of the path. After a period of time, the shortest route will have high

levels of pheromone so that the other ants are more likely follow this route.

To convert the above process to an ant colony optimisation technique, some

modifications have to be made. For example, a proportion of pheromone evaporates

after each iteration in order to prevent the system converging prematurely. To

improve algorithmic performance, heuristic information and some local search

procedures may be used in some ACO algorithm (Dorigo et al., 1996; Dorigo and

Gambardella, 1997a; Dorigo and Gambardella, 1997b; Bullnheimer et al., 1999;

Gambardella and Dorigo, 2000). For more publications regarding to ACO, one can

see the web page maintained by Dorigo (http://iridia.ulb.ac.be/~mdorigo/ACO/).

3.3.3.13 Evolutionary strategies

Evolutionary strategies (EA) were firstly studied by Rechenberg (Rechenberg,

1965; Rechenberg, 1973) and later developed by Schwefel in his PhD thesis

(Schwefel, 1975). Although closely related to genetic algorithms, EA’s imitate

genetic processes in the phenotype (i.e. solutions are encoded explicitly), in contrast

with implicit solution representations in genetic algorithms. Initially, ES only used

mutation and were mainly used to tackle problems with real valued variables. Later

research work extended EA to use crossover (as a supportive operator) and solve

discrete-variable problems. For more details of EA, one can referee to (Schwefel,

1975; B䢡 k, 1996; B䢡 k et al., 1997; Fogel, 1998; Yao, 1999; Fogel, 2000).

Chapter 3 Optimisation Techniques: An Overview

69

3.3.3.14 Scatter search and path-relinking

Scatter search is a population-based meta-heuristic, having been proposed for

solving combinatorial and nonlinear optimisation problems (Glover, 1977). Scatter

search takes advantage of a set of points “scattered” in the solution space and

strategically combines some of them to generate new promising solutions (Glover et

al., 2003).

Setp 1. Generate a large set of trial solutions P using diversification
generation method with |P|=PSize. Improve these solutions by an
Improvement Method.

Setp 2. Select a small set of distinct and diverse solutions, called reference
set, RefSet, from P with |RefSet|=b <<PSize. Order the sets
according to their objective function value non-increasingly.

Setp 3. Use Subset Generation Method to generate NewSubsets from RefSet
which includes at least one new solution.

Setp 4. Select every subset from NewSubsets, apply Solution Combination
Method to obtain one or more new solutions s. If s is not in RefSet
and is better than the worst solution s’ in RefSet, include s in RefSet
and delete s’ from RefSet.

Setp 5. If at least a new solution is added into RefSet in the step 4, then go
to the step 3; otherwise stop the procedure.

Figure 3-5: The pseudo-code of a basic scatter search algorithm

Source: (Glover et al., 2003)

Figure 3-5 illustrates the procedure of a basic scatter search algorithm. The

algorithm starts from a group of diverse trial solutions constructed by a

diversification generation method. An improve method is then applied to enhance

these trial solutions, from which a small set of distinct and diverse solutions are

selected, termed the reference set. The algorithm then enters an iterative procedure.

At each iteration, a subset generation method is used to produce several subsets of

the reference set and a solution combination method then transforms each subset into

one or more combined solutions. The reference set is then updated by a reference set

Chapter 3 Optimisation Techniques: An Overview

70

update method in order to maintain the quality of the solutions in this set both in

terms of objective function value and its diversity. The algorithm stops when no new

solution is added into the reference set. Note that the solution combination method

employed in scatter search is similar to the crossover operator in the genetic

algorithm although scatter search allows the combining of more than two solutions.

In many single-point based search algorithms, such as simulated annealing and

tabu search, the previous local optimal solutions are discarded once a better solution

is found. However, path-relinking enables such algorithms the capability to obtain

better quality solutions by exploring trajectories between these local optimal

solutions. Path-relinking was proposed to integrate intensification and diversification

during the search (Glover and Laguna, 1997). The approach generates new solutions

by exploring trajectories that connect high-quality solutions. Specifically, the

algorithm firstly compares the symmetric difference between two elite solutions s1

and s2. Based on this comparison, a set of moves M are identified which could

transfer the solution s1 (initial solution) to s2 (guiding solution). Path relinking then

starts from the initial solution and repeatedly applies best moves from M until the

guiding solution is attained. Many applications have shown that better quality

solutions are usually found along this trajectory (Glover and Laguna, 1997).

3.4 Summary and Remarks

This chapter has overviewed current popular optimisation techniques. Both exact

methods and (meta-)heuristic methods were reviewed and some meta-heuristic

approaches were emphasised due to their advantages in tackling NP-Hard problems

that are germane to this thesis.

The “no-free-lunch theorem” tells us that the performance of a meta-heuristic

method may be dependent on different problems and no algorithm performs better

Chapter 3 Optimisation Techniques: An Overview

71

than any other algorithm when considering all possible problems. Even so, it is still

possible that we can find an algorithm or a set of specific algorithms that generally

performs better than other algorithms on a set of problems under consideration. This

is because the problems that are of interest may be only a small subset of all possible

problems. In conventional methods, simulated annealing for example, a user may

experiment with a set of parameters (for SA, the parameters can be the different

neighbourhood structures, cooling schedules, etc.) on the tested problem instances

and pick the best set of parameters. However, on many occasions, it is found that

finding the best set of parameters is difficult because the best set of parameters may

be different from instance to instance.

As a proposed framework to raise the generality of the conventional meta-

heuristics, hyper-heuristic approaches make use of several neighbourhood

exploration heuristics simultaneously. The generality is achieved by choosing the

most appropriate heuristics according to the different problem instances or the

different search states when solving a specific instance. By utilising several

neighbourhood exploration heuristics, hyper-heuristics can broaden the search space

and dynamically change the search direction according to the characteristics of the

different problems. Due to these advantages, we shall adapt hyper-heuristics as a

solution methodology for shelf space allocation problems.

As mentioned above, previous researchers have adapted several conventional

meta-heuristic approaches for the shelf space allocation problem. However, none of

them has published problem data sets on which their experiments were based. This

makes it difficult to justify our proposed approach by comparing with those

conventional methods. Furthermore, another difficulty arises from the fact that we

have used a more practical model that is different from the ones presented in the

Chapter 3 Optimisation Techniques: An Overview

72

literature. Alternatively, it is convenient to adapt the hyper-heuristic to the well-

studied bin-packing problem, which is closely related to the shelf space allocation

problem. The bin-packing problem has been studied intensively, with a large number

of benchmark data sets in the literature. If the hyper-heuristic can obtain promising

results on the bin packing problem and due to the similarity between the bin packing

and shelf space allocation, we hypothesise that a hyper-heuristic will also perform

well on shelf space allocation problems. In the next chapter, we shall introduce a

simulated annealing hyper-heuristic and adapt it to the bin packing problem. Its

performance is evaluated by comparing with the best results obtained by other meta-

heuristics on the benchmark problems. If the algorithm can produce competitive

results compared with results reported in the literature, we can then adapt this

algorithm to the shelf space allocation problem. This takes very little work because

of the advantages of hyper-heuristic (as shown in chapter 5 and 7, we only need to

replace a new set of low-level heuristics and the objective function). However, it may

not be so easy to adapt other methods to the shelf space allocation.

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

73

CHAPTER 4. A SIMULATED ANNEALING HYPER-

HEURISTIC ALGORITHM FOR THE BIN

PACKING PROBLEM

4.1 Introduction

As discussed in chapter 3, hyper-heuristics have been proposed as a generic

optimisation framework for a range of problems. One of the advantages of hyper-

heuristics is their ability to adapt to different problem instances by calling different

low-level heuristics. This chapter analyses the drawbacks of current hyper-heuristics

and proposes a new hyper-heuristic algorithm which incorporates a simulated

annealing acceptance criterion. Instead of being applied directly to the shelf space

allocation problem, the algorithm is initially tested on the well-studied bin packing

problem. This is because there is no benchmark data available for the shelf space

allocation problem in the literature. Therefore, it is difficult to evaluate the

performance of this hyper-heuristic in comparison to other optimisation methods for

shelf space allocation problems. It might be argued that this can be done by

implementing all algorithms and comparing their results. However this would require

a considerable development effort. The problem is compounded by the fact that each

algorithm may have one or more parameters to be set and tuning those parameters

could take considerable time. However, the bin packing problem, a well-known NP-

Hard problem, which is closely related to shelf space allocation problems, has been

intensively studied and the experimental results by different approaches on a large

number of benchmark data sets are available in the literature. Therefore, it is

applicable to test the performance of this hyper-heuristic algorithm on this well-

known problem and if it is successful, the application of this algorithm to the shelf

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

74

space allocation problem is more likely to be successful because they are closely

related problems. Furthermore, this experimental strategy will also provide us with

the opportunity to test the generality of this hyper-heuristic approach across different

(although related) problems. The main contents of this chapter are drawn from (Bai

and Kendall, 2005c).

4.2 Simulated Annealing Hyper-heuristics

4.2.1 Background

As an emerging search method, hyper-heuristics have received recent attention

due to their adaptive nature. Hyper-heuristics have been used to either construct a

solution (Ross et al., 2003) (constructive hyper-heuristic) or operate as a local search

method (Cowling et al., 2001; Cowling et al., 2002; Burke et al., 2003b; Burke et al.,

2003c) (local search hyper-heuristics). Ross et al. (Ross et al., 2003) used different

packing heuristics to gradually construct a solution. The choice of the “right”

heuristic was based on the knowledge of the state of the current partial solution. The

solution states included the proportions of huge, large, medium and small items

remaining to be packed. The results showed that it produced better solutions than

when utilising just a single heuristic. However, it might not be easy to define the

right set of solution states for many problems. Furthermore, only around 80% of the

optimal solutions have been found, much less than other exact methods and local

search algorithms (Falkenauer, 1996; Scholl et al., 1997; Valerio de Carvalho, 1999;

Fleszar and Hindi, 2002).

The hyper-heuristics in this thesis focus on the local search hyper-heuristics

which are used in (Cowling et al., 2001; Cowling et al., 2002; Burke et al., 2003b;

Burke et al., 2003c), where hyper-heuristics either explicitly or implicitly focus on

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

75

selecting the “right” low-level heuristics at every decision point. This selection is

usually based on the historical performance of each heuristic (Cowling et al., 2001;

Burke et al., 2003c). A typical example of these approaches is the choice function

based hyper-heuristic in (Cowling et al., 2001). In section 4.3.3, we will also apply

this algorithm to the bin packing problem for comparison purposes. Therefore, the

next section gives a brief description of this approach.

4.2.2 Choice function based hyper-heuristic

The basic idea of a choice function based hyper-heuristic is that the selection of

which low-level heuristic to call at each decision point is guided by the choice

function, a learning mechanism that integrates both intensification and diversification

strategies during the search. In the choice function based hyper-heuristic it is

assumed that if a heuristic or a sequence of heuristics has previously performed well

in the search, it may perform well in the future. The choice function dynamically

ranks the different low-level heuristics according to their historical performance. In

(Cowling et al., 2001), the choice function considers the recent performance of each

low-level heuristic 1()f , recent improvement for consecutive pairs of low-level

heuristics 2()f and the amount of time elapsed since the given heuristic has been

called 3()f . More specifically, f1, f2 and f3 are defined as follows:

1
1

()
()

()
n jn

j
n n j

I h
f h

T h
α −

=

∑ (4-1)

1
2

(,)
(,)

(,)
n k jn

k j
n n k j

I h h
f h h

T h h
β −

=

∑ (4-2)

3() ()j jf h hτ= (4-3)

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

76

where ()n jI h (respectively ()n jT h) is the change in the objective function

(respectively the amount of computational time spent) the nth time the heuristic hj

was called. Similarly, (,)n k jI h h (respectively (,)n k jT h h) is the change in the

objective function (respectively the amount of computational time spent) the nth time

the heuristic hj was called immediately after heuristic hk. While 3()jf h records the

amount of time elapsed since heuristic hj was called the last time. Overall, the choice

function is defined as:

1 2 3() () (,) ()j j k j jCF h f h f h h f hα β δ= + + (4-4)

It can be seen that both 1f and 2f describe the aggregate performance of the

previous n calls of each heuristic or pair of heuristics. They are used as a method to

intensify the search and 3f is used as a diversification strategy. α , β and δ are

scaling parameters to balance the different terms. Values of these parameters are

changed adaptively according to the magnitude of recent improvement in the

objective function and the corresponding CPU time consumed. The detailed

procedure is provided in Eric Soubeiga’s PhD thesis, together with several

applications and experimental analysis (Soubeiga, 2003).

In the above hyper-heuristic approach, the main focus is a learning mechanism

that can intelligently choose between heuristics. Once a heuristic is chosen or

recommended by the choice function, it is used to produce a new candidate solution

which is usually accepted by very simple rules. For example a new candidate

solution may be accepted straight away or only better solutions are accepted, as was

the case in (Cowling et al., 2001). However, in this thesis we are concerned with

improving the acceptance criteria in the hyper-heuristic framework. Of course, the

high-level heuristic selection strategy is important in adapting the search to different

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

77

search states. However, if a low-level heuristic adopts any random elements,

identical calls of this heuristic may produce different solutions. Even if the high-level

strategy is “intelligent” enough to pick up such a heuristic due to its good previous

performance, it is still possible that this heuristic may be detrimental to the search

due to the random elements existing in it. Take the tabu search based hyper-heuristic

proposed in (Burke et al., 2003c) as an example. When solving the timetabling

problem, one low-level heuristic that contains randomness was defined as “swap the

timeslots of two random events”. When applying this heuristic to the current solution,

it may produce a better solution which is desirable for the search. However, it is also

possible that this heuristic produces an inferior solution which may not be desirable.

Currently, the hyper-heuristic algorithms reported in the literature either reject all

inferior solutions or accept them completely. In the first case, the search corresponds

to a hill climbing and is prone to getting stuck at local optima. In the later case, it

may lead the search in unexpected directions.

It is for this reason that we introduce a new acceptance criterion into the hyper-

heuristic framework. Hill climbing and random search actually correspond to two

simple acceptance criteria. Hill climbing only accepts those moves which can

improve the objective value, while random search accepts all moves. Simulated

annealing has been shown to be a robust combination of these two acceptance criteria.

SA accepts all objective-improving moves and some of the objective-detrimental

moves in a systematically-controlled way. It is based on this consideration that we

incorporate simulated annealing into the hyper-heuristic framework and use it as a

more intelligent acceptance criterion. We have called this approach a simulated

annealing hyper-heuristic.

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

78

The importance of the acceptance criterion in a hyper-heuristic framework was

also echoed by recent research which investigated other acceptance criteria,

including the criteria based on Monte Carlo algorithms (Ayob and Kendall, 2003)

and great deluge algorithms (Kendall and Mohamad, 2004a; Kendall and Mohamad,

2004b). These works, together with the research carried out in this thesis, will be

valuable for the development of a more powerful and efficient hyper-heuristic

optimisation system.

4.2.3 Simulated annealing hyper-heuristics

Figure 4-1 shows a general framework for the simulated annealing hyper-heuristic

proposed in this thesis. The system is very similar to other forms of hyper-heuristics

except that a simulated annealing algorithm is used as an acceptance criterion. At

each iteration, the algorithm selects a heuristic from the set of low-level heuristics

available and applies it to the current solution. If the solution generated by this

heuristic is better than the current solution, it is accepted. Otherwise, it is accepted

according to a Metropolis probability. The temperature of the simulated annealing is

then modified. When the stopping conditions are met, the system terminates and

outputs the best solution found so far. Note that the proposed hyper-heuristic does

not conflict with the existing local search hyper-heuristics. The selection of the

heuristics could be in a random way or by utilising some intelligence that has been

proposed in other hyper-heuristic frameworks. In this thesis, we require all of the

solutions generated by the low level heuristics to be feasible, i.e. the low level

heuristics searches in the feasible solution space. In section 4.3.3, we will apply this

simulated annealing hyper-heuristic to the one-dimensional bin-packing problem.

Strategies that are used to select which heuristic to call and parameters related to

simulated annealing will be given in section 4.3.3.

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

79

Readers at this point might argue that this framework is no more than a simulated

annealing algorithm with multi-neighbourhoods. Of course, it is similar but it is not

exactly the same. Firstly, the simulated annealing hyper-heuristic biases the

exploration of the neighbourhood by heuristically sampling the candidate solutions

(using different low-level heuristics) rather than sampling them uniformly from the

Figure 4-1: The framework of simulated annealing hyper-heuristics for a maximisation problem

Interface

Begin

Select a heuristic Hi

Si+1 = Hi(Si)

Y
SA acceptance

criterion N

Update SA parameters

N
Stop and output Stop? Y

Restore to Si Accept Si+1

A set of low-level heuristics

 H1 H2 Hk …

Objective
Evaluation Function

Problem Data

Simulated Annealing Hyper-Heuristic

Initial
Solution S0

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

80

given neighbourhood as does a traditional simulated annealing algorithm with multi-

neighbourhoods. Secondly, a simulated annealing algorithm requires every state to

be reachable (i.e. any solution can be reached by any other solution after a finite

number of iterations of moves in the defined neighbourhood) (Dowsland, 1995).

However, in the simulated annealing hyper-heuristic, the low-level heuristics do not

necessarily satisfy this requirement as long as there is a combination of these

heuristics that can make each solution reachable. This is very useful when we have

several possible heuristics or operators that can transfer the state of the current

solution but these operators alone are not able to generate a neighbourhood that

satisfies the reachability condition. For example, when dealing with the bin packing

problem, a neighbour solution can be created by “interchanging two (random) items

of two (random) bins”. However, using this heuristic alone cannot guarantee to reach

every other solution (from the current solution) within a limited number of

executions. Meanwhile, although the neighbourhood defined by another operator

“shifting a random item from one random bin to another random bin” satisfies the

reachability condition, the local search algorithms using this operator alone generally

perform very badly. More discussion on this point is given in section 4.3.1.

Previous research has shown that even if the neighbourhoods satisfy the

reachability condition, the simulated annealing algorithm for each of those

neighbourhoods has a different performance on different problems (Tian et al., 1999).

A neighbourhood that could obtain promising results on a problem might perform

very badly on another problem with a similar solution space. Therefore, defining and

selecting a good neighbourhood for simulated annealing is very challenging and

often time-consuming. The users (or researchers) have to have knowledge and

expertise of the problem domain and often need to conduct a series of experiments.

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

81

However, in a simulated annealing hyper-heuristic framework, the system only

requires a set of low level heuristics or rules. These heuristics could be simple

operations used when solving real-world problems. For the shelf space allocation

problem addressed in this thesis, the low-level heuristics could add or delete an item

from a shelf, or replace one item with another on a shelf or interchange two items

from two shelves. These heuristics could be very simple and straightforward and

could also have some intelligent elements such that the current solution is transferred

to a promising direction rather than being purely random. Combining these simple

heuristics may produce much better results than by running them alone. The

individual heuristics do not necessarily satisfy the reachability requirements as long

as a combination of these heuristics does. We will demonstrate this point in the next

section and in chapters 5 and 7 via three different applications.

4.3 An Application of Simulated Annealing Hyper-Heuristic to the One-

dimensional Packing Problem

The aim of this section is to test the performance of the simulated annealing

hyper-heuristics described in figure 4-1. We shall test them on a well-known NP-

Hard problem: one-dimensional bin packing. The reason for choosing this problem is

two-fold: the bin packing problem has been intensively studied in the literature with

a large number of benchmark data sets being available; secondly, the bin-packing

problem is closely related to the shelf space allocation problem, which is the main

focus of this thesis.

4.3.1 Introduction

The bin packing problem (see section 2.3.1) is a well-known NP-Hard

combinatorial optimisation problem. One of the most successful algorithms for bin

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

82

packing is MTP (Martello-Toth Procedure), a branch and bound based exact method

originally proposed in (Martello and Toth, 1990b). Some other exact methods have

also been proposed by (Scholl et al., 1997; Valerio de Carvalho, 1999; Belov and

Scheithauer, 2004). Heuristic based approaches have also been used. Apart from

some well-known constructive heuristics, which will be discussed in the next section,

meta-heuristic approaches have also been applied to the bin packing problem.

Falkenauer (Falkenauer, 1996) introduced a grouping genetic algorithm for the

problem. The algorithm was hybridised with a local search procedure and tested on a

set of benchmark problems. The algorithm was shown to be superior to MTP. Fleszar

and Hindi (Fleszar and Hindi, 2002) combined a minimal bin slack heuristic with a

variable neighbourhood search method. The algorithm obtained better results by

achieving 1329 optimal solutions from 1370 benchmark problems.

The objective of the bin packing problem is to minimise the number of bins

required. The objective function itself is very simple and easy to calculate. However,

the landscape of the responding search space is extremely “unfriendly”. A very small

number of optimal solutions are lost in a big “flat” search space where a large

number of solutions correspond to the same objective value. The majority of

neighbourhood moves generate solutions with the same objective value. This makes

the bin packing problem very difficult because the objective function is not able to

“guide” the search in promising directions and the search proceeds like a boat

floating in a dark sea without knowing which way to go. Therefore, all the meta-

heuristic approaches in (Falkenauer, 1996; Scholl et al., 1997; Fleszar and Hindi,

2002) used the transformed objective functions that could provide a more friendly

search space. However, as pointed out by (Falkenauer, 1998), using a transformed

objective function could result in a problem which is different from the original one.

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

83

For example, suppose a solution A is better than the solution B if measured by a

transformed objective function. It is possible that A is worse than B if the solution

quality is measured by the original objective function. Therefore, developing a new

form of objective function requires a certain amount of expertise and experience and

often involves some experimentation. This will inevitably undermine the generality

and adaptability of the algorithm.

Although several meta-heuristics have been applied to the bin-packing problem,

with promising results being produced, the application of simulated annealing to the

one dimensional bin packing problems is rare. The only application we could find

dates from 1994 (Rao and Iyengar, 1994) and was used to solve a variant version of

bin packing whose search space is very different from the general bin packing

problem. Usually, a conventional simulated annealing algorithm samples the

candidate solution uniformly from a single neighbourhood structure. The difficulty of

applying SA to bin packing probably comes from the fact that the objective function

of the bin packing problem (the number of the bins occupied) is not sensitive to the

general neighbourhood moves (Falkenauer, 1996). For instance, two general

neighbourhood moves, interchanging two items between two bins and shifting an

item from one bin to another, are usually not able to change the objective function.

Employing some elaborate moves (e.g. moving several items simultaneously in a

predefined way) could damage the reachability of the neighbourhood and

prematurely lead the search into a local optimum. In fact, as will be seen later in this

chapter, improving the bin packing solution really needs the cooperation of several

types of neighbourhood moves rather than executing single type of moves. However,

a general simulated annealing algorithm only allows a single neighbourhood

structure with the requirement of reachability, which handicaps the application of SA

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

84

in problems such as bin packing. Therefore, in this application we propose to utilise

several heuristics under the framework of the simulated annealing hyper-heuristics

(see figure 4-1), rather than just using a single neighbourhood. The heuristics used to

transfer the state of the solution do not necessarily satisfy the reachability

requirement as required by a neighbourhood definition. The heuristics we use could

have some intelligent elements such that the current solution is transferred to the

promising directions rather than being purely random.

4.3.2 Bin packing constructive heuristics

Being NP-Hard, one dimensional bin packing problems have been solved by

several constructive heuristics.

4.3.2.1 Polynomial heuristics

There are several well-known constructive heuristics with polynomial time

complexity. Assume the items are sorted by descending size:

• Next-Fit-Decreasing (NFD): starting from the first item, this heuristic

repeatedly packs an item in the current bin. If there is insufficient capacity, the

item is packed into a new bin which is now considered to be the current bin.

The procedure finishes once all items are packed.

• First-Fit-Decreasing (FFD): in this heuristic, the items are repeatedly packed

into the bin which has the smallest bin index but sufficient capacity. A new bin

is introduced if there is no bin with sufficient capacity.

• Best-Fit-Decreasing (BFD): this heuristic repeatedly packs an item into the

bin which has the smallest, but sufficient, capacity. If no such bin is available,

a new bin is opened.

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

85

• Worst-Fit-Decreasing (WFD): this heuristic is similar to BFD, except that the

item is packed into the bin with the largest residual capacity.

All of these heuristics have polynomial time complexity. However, FFD and BFD

are superior to NFD and WFD in terms of the worst-case performance (Coffman et

al., 1997). A better heuristic, Best-2-Fit (B2F), was also discussed in (Coffman et al.,

1997), which executes FFD until a bin is filled. It then tries to exchange the smallest

item in the current bin with two smaller items such that the residual capacity of the

current bin is as small as possible. Scholl et al. (Scholl et al., 1997) further improved

this heuristic by combining a bin-oriented FFD heuristic with B2F.

4.3.2.2 Minimal bin slack heuristic (MBS)

Gupta and Ho (Gupta and Ho, 1999) proposed another bin-oriented heuristic,

which they called Minimum Bin Slack (MBS). This heuristic is different from item-

oriented heuristics in that the packing process is carried out bin-by-bin rather than

item-by-item, using a procedure called MBSOnePacking. At each iteration, instead of

packing the items one by one based on certain rules, the MBSOnePacking procedure

searches for a group of items (from all the unpacked items) that could fill a bin with

minimal slack (i.e. the smallest residual capacity) and packs this group of items into

a new bin. The MBS heuristic repeatedly calls MBSOnePacking procedure until all

items are packed. A recursive version of MBSOnePacking was illustrated in (Fleszar

and Hindi, 2002) and is shown in figure 4-2, where 1 2 '{ , ,..., }nπ π πΠ = is an item

vector which contains all unpacked items and is sorted by size in descending order.

n’ is the number of the items in the vector Π . c is the bin capacity and iτ is the size

of the item iπ . bP is the set of items in the best packing found so far and cP is the set

of items in the current packing. bs (respectively cs) is the slack (i.e. residual capacity)

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

86

of bP (respectively cP). The procedure stops when either a combination with zero

slack (i.e. no residual capacity left) is found or all item combinations have been

explored.

Initialise: c, n’, Π , q=1, bP = cP = Ø, bs = cs =c;

void MBSOnePacking (q)
{

For (int r = q; r<n’ ; r++)
{

ri π= ;

If i csτ ≤

{

c c rP P π= ∪ ;

Update cs ;

MBSOnePacking(q+1);
\c c rP P π= ;

Update cs ;

If (0cs =) Exit;

 }
 }

 If (b cs s>) b cP P= , Update bs ;

}

Figure 4-2: The pseudo-code of MBSOnePacking procedure
 (Source: Fleszar and Hindi, 2002)

Fleszar and Hindi (Fleszar and Hindi, 2002) presented a variant of this procedure

(denoted by MBS’), which always packs the first item of the vector Π into the

current packing. The modified algorithm gives similar solution quality but shorter

computation time in most instances. Because MBS’ is only slightly different from

MBS, we will not distinguish them in this thesis. The MBS heuristic has shown to be

superior to FFD, BFD, B2F and FFD-B2F in terms of the solution quality and is able

to solve the problem to optimality where the optimal solution is two bins. It is

especially efficient when the optimal solution requires the majority of bins to be fully

filled. The worst time complexity of this algorithm is 2n, where n is the number of

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

87

items. However, the experimental results have shown it to be very efficient for most

problem instances (Gupta and Ho, 1999; Fleszar and Hindi, 2002).

4.3.2.3 Relaxed minimum bin slack (R_MBS)

Despite the efficiency of the MBS algorithm, there are instances (when no

combination of items can be found that exactly fills a bin) for which the algorithm

could carry out an exhaustive exploration of different combinations (Gupta and Ho,

1999; Fleszar and Hindi, 2002). Therefore, even for some moderately sized problems,

the computational time can still be very high. To solve this problem, the MBS

stopping condition 0cs = in figure 4-2 can be relaxed by allowing a positive slack

value (cs slackValue≤). Actually it is not necessary to enforce zero slack in the

MBSOnePacking procedure because in many cases there is always residual capacity

in the optimal solution. Fleszar and Hindi (Fleszar and Hindi, 2002) experimented

with several slack values and took the one that gave the best results. In this research,

we let
'

min 11
min(1, /)

n

ii
slackValue c Uτ τ

=
 = − − ∑ , where minτ is the size of the

smallest item in the vector Π and 1U is the optimal solution or best known lower

bound if the optimal solution is unknown. The algorithm results in the same solution

as from FFD when min 1slackValue τ= − .

4.3.2.4 Time bounded relaxed MBS (TBR_MBS)

From some preliminary experiments, we found that when the items’ sizes are

drawn from a close range and the average number of items in a bin increases, then it

becomes more and more difficult for MBS to find the optimal packing even if it is

relaxed by allowing a positive slack value. In this case, R_MBS can still be

computationally expensive. To solve this problem, we propose a time limit for each

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

88

MBSOnePacking procedure such that the algorithm does not exceed a given time

limit. Note that the TBR_MBS procedure should not exit when more items can be

added to the current packing even though the time bound is exceeded. Therefore,

although enforcing a time limit to MBSOnePacking procedure can cause

deterioration in its performance, it could still produce a packing at least as good as

the bin-oriented FFD heuristic.

4.3.3 Applying hyper-heuristics to the one-dimensional bin packing problem

To obtain an initial evaluation of the effectiveness of a type of simulated

annealing based hyper-heuristic, three types of hyper-heuristics (denoted by CFHH,

SAHH and CFSAHH respectively) are distinguished. CFHH is the choice function

based hyper-heuristic mainly studied in (Soubeiga, 2003). SAHH is the simulated

annealing hyper-heuristic which randomly selects a low-level heuristic at each

iteration but the selected heuristic is only accepted if it satisfies the SA acceptance

criterion (refer to figure 4-1). However in CFSAHH, both the choice function based

heuristic selection mechanism and SA acceptance criterion are employed. To

implement these hyper-heuristics, several parameters need to be set. In this

investigation, the choice function parameters (α , β and δ) were set by the same

methods used in (Soubeiga, 2003). The rest of the parameters were set as follows:

4.3.3.1 Initial solution

The initial solution is constructed using the time bounded relaxed MBS heuristic

described in section 4.3.2.4. The time limit is set to 0.2 seconds based on preliminary

experiments. In order to test the generality and adaptability of the algorithm, the

original objective function (i.e. the number of used bins) was used rather than using

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

89

some transformed objective functions as in (Falkenauer, 1996; Scholl et al., 1997;

Fleszar and Hindi, 2002).

4.3.3.2 SA parameters

After the preliminary experiments, the temperature was initially set to

00.3 ()st f s= (0()f s is the objective value of the initial solution s0) and then

repeatedly reduced according to Lundy and Mees’s cooling schedule (Lundy and

Mees, 1986) /(1)t t tβ→ + until the temperature drops to its stopping temperature

0.1ft = . At each temperature, only one iteration is executed. The parameter β can

be calculated by (refer to (Lundy and Mees, 1986)):

() / () /()s f s f s f average allowed s ft t K t t t t T T t tβ = − ⋅ ⋅ = − ⋅ ⋅ ⋅ (4-1)

where allowedT is the total CPU time allowed by the user and averageT is the average time

spent for one iteration. Therefore, the total number of iterations for the annealing is

/allowed averageK T T= . The algorithm stops either when the temperature reaches the

stopping temperature or the lower bound of the solution1 is reached.

4.3.3.3 Low-level heuristics

As showed in figure 4.1, the implementation of the simulated annealing hyper-

heuristic requires a set of problem-specific low-level heuristics. A total of five low-

level heuristics are used, as follows:

H1 Exchange largestBin_largestItem. This heuristic selects the largest item

from the bin with the largest residual capacity and exchanges this item with

another smaller item (or several items whose capacity sum is smaller) from

1 We use the lower bound published on the website http://www.wiwi.uni-
jena.de/Entscheidung/binpp/index.htm and in the paper (Falkenauer, 1996).

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

90

another randomly selected non-fully-filled bin. The idea behind this

heuristic is to transfer smaller residual capacity from a random bin to a bin

with the largest residual capacity such that this bin can be emptied by other

heuristic(s).

H2 Exchange randomBin_largestItem. This heuristic is similar to H1 except

that the exchange is carried out between two randomly selected non-fully-

filled bins.

H3 Shift. This heuristic selects each item from the bin with the largest residual

capacity and tries to shift them to the rest of the bins using the BFD

heuristic (see section 4.3.2.1).

H4 Split. H1, H2 and H3 all operate on non-fully-filled bins. However, in some

cases, a fully-filled bin may contain too many small items such that it is

impossible to transfer to the optimal solution using H1, H2 and H3 because

of the difficulty in packing large items. Hence this heuristic is designed to

solve this problem. Once the number of the items in a bin is found to have

exceeded the average number of items of other bins, this heuristic transfers

half of the items, selected at random, into a new bin.

H5 BestPacking. This heuristic firstly selects the biggest item from a

probabilistically selected bin. The TBR_MBS heuristic is then used to

search a group of items (called one packing) that contains this item and

considers all the other items (the sequence of these items in the vector Π is

sorted by the residual capacity of the corresponding bins with tie broken

arbitrarily). All the items that appeared in the packing found by TBR_MBS

are then transferred into a new bin. The time limit is set to 0.2 second based

on preliminary experiments. The probability of selecting a bin is calculated

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

91

by j

j

resCap

resCap
ψ =

∑
, where resCapj is the residual capacity of the bin j. Hence

the selection is in favour of the bins with the larger residual capacity. The

bins with zero residual capacity will not be selected because they are already

packed well.

Note that all of those heuristics will return feasible solutions (the incumbent

solution is returned if the new solution is infeasible). All of those heuristics are

straightforward and easy to implement. Repeatedly applying them alone would either

lead to a local optimal solution (e.g. H1, H2 and H3) or make the solution gradually

worse (e.g. H4). However, when allowed to combine the heuristics, the algorithm

may be able to transform the state of the solution toward promising directions. For

example, running heuristic H1, H2 could repeatedly transfer sporadic residual bin

capacity to the bins with larger residual capacity. After applying H1 and H2 for a

while, the current solution might have been transformed into such a state that the bin

with the largest residual capacity only has one or two small items. In this state, it

might be helpful to call heuristic H3 such that these small items are shifted into other

bins and hence the total number of used bins is decreased. These three heuristics only

operate on the bins that have residual capacity. Heuristic H4 is useful when some

bins contain too many small items. H5 is based on the time bounded relaxed MBS.

This heuristic is very useful when the optimal solution contains many bins which are

almost full (Gupta and Ho, 1999). Note that heuristics H1 and H2 are normally not

able to change the objective, while heuristic H3 is an objective improving heuristic

and heuristic H4 is objective non-improving. Heuristic H5 could undermine or

improve the objective. All these heuristics will be managed by the hyper-heuristics.

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

92

4.3.3.4 Benchmark problems

Two sources of benchmark problems are available for the one-dimensional bin

packing problem. One of them is from OR-Library

(http://www.brunel.ac.uk/depts/ma/research/jeb/orlib/binpackinfo.html), originally

created and studied by Falkenauer (Falkenauer, 1996) and now maintained by John

Beasley at Brunel University. This data set consists of two classes of problems:

uniform and triplet. In the uniform class, the number of items is 120, 250, 500 and

1000 respectively and their sizes are uniformly distributed in the range of [20,100].

The bin capacity is 150. We shall denote these by FAL_U120, FAL_U250,

FAL_U500 and FAL_U1000 respectively. There are 20 instances for each problem

size and hence 80 problem instances in total. In the triplet class, the bin capacity is

1000 and the item sizes are deliberately generated such that, in the optimal solution,

every bin contains exactly three items (one “big” and two “small” items) without any

residual capacity. The number of the items is 60, 120, 249 and 501 (denoted by

FAL_T60, FAL_T120, FAL_T249 and FAL_T501 respectively) and each of them

contains 20 instances. This class of data set is claimed to be more difficult because of

the fact that no residual capacity is allowed in any bin in the optimal solution.

The second source was generated and studied by Scholl et al. (Scholl et al., 1997)

and is available at http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm. It

contains three sets (denoted by SCH_Set1, SCH_Set2 and SCH_Set3 respectively).

The parameters to create SCH_Set1 and SCH_Set2 include the number of the items

(ranging from 50 to 500), bin capacity and the ranges that the items’ sizes are drawn

from. SCH_Set1 consists of 720 problem instances and the expected average number

of items per bin is no larger than three. However, in SCH_Set2, the average number

of items per bin varies from three, five, seven to nine. The data set SCH_Set3 are

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

93

considered harder problem instances because the item size is drawn from a very large

range such that no two items have the same size. Only 10 instances are included in

this set.

4.3.3.5 Computational results

The algorithms were coded in Microsoft Visual C++ version 6.0 and all

experiments were run on a PC Pentium IV 1.8GHZ with 256MB RAM running

Microsoft Windows 2000 professional Version 5. For a fair comparison, all three

hyper-heuristics (CFHH, SAHH, CFSAHH) were run 10 times for every instance,

using a different random seed each time. For each run, 200 seconds computation time

was allowed. To compare the performance of the different algorithms, the following

symbols are used:

− #num: the number of instances in the given data sets.

− #opt: the number of instances for which the given algorithm finds a solution

with the lower bound objective value (i.e. the algorithm has solved those

instances optimally). For the three hyper-heuristics, the average values over

10 runs were reported. For the other meta-heuristics approaches (GGA,

BISON and VNS), single run results were used due to no average results

being available.

− av. abs.: the average absolute deviation from the optimality or the best

known lower bound if the optimal solution is not known.

− max abs.: maximal absolute deviation from the optimal solution or the best

known lower bound if the optimal solution is not known.

− av. cpu (s): average CPU time spent for the given data sets (in seconds).

Table 4-1 presents a comparison of MBS based heuristics and three hyper-

heuristics. MBS has been shown to be superior to the well-known bin packing

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

94

heuristics (FFD and BFD) in terms of solution quality (Gupta and Ho, 1999).

However, as a heuristic with exponential time complexity, in some cases, MBS can

be computationally expensive. Time bounded relaxed MBS was designed to solve

this problem. Time bounded relaxed MBS is guaranteed to finish a packing within

the given time limit, with the solution quality at least as good as FFD’s. This is

supported by the results from table 4-1 where time bounded relaxed MBS costs less

CPU time than MBS when dealing with data sets SCH_Set2, SCH_Set3, for which it

is very difficult to find a set of items that can exactly fill a bin. For the data sets

SCH_Set2, time bounded relaxed MBS is about 7 times faster than MBS and for the

data set SCH_Set3, time bounded relaxed MBS is more than 3 times faster than MBS.

In terms of solution quality, time bounded relaxed MBS achieves more lower bounds

than MBS for most of the data sets. It is only beaten by MBS in the data sets

FAL_U1000, where, however, time bounded relaxed MBS has a smaller maximal

absolute deviation than MBS. Across 1370 benchmark instances, time bounded

relaxed MBS reached lower bounds on 28 more instances than MBS.

Among three hyper-heuristics, table 4-1 shows that all three hyper-heuristics have

improved initial solutions. CFSAHH performed better than CFHH with around 20

more instances being solved to their lower bounds. Meanwhile, it also reduced the

average and maximal absolute deviation. This shows that for the bin packing

problem, the performance of the choice function based hyper-heuristic can be

improved by introducing a SA acceptance criterion. However, both CFHH and

CFSAHH were outperformed by SAHH which randomly selects a low-level heuristic

at each iteration. Compared with CFSAHH, SAHH solved, on average, 19.9 more

instances to the lower bounds with much smaller average and maximal absolute

deviation. Overall, SAHH has solved more than 98% (around 1343 out of 1370) of

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

95

the problem instances to their lower bounds. With those that were not solved to the

lower bound, SAHH could find a solution that is only one bin away from it. In

CFSAHH, the deterministic heuristic selection method (guided by the choice

function) seems not to be suitable in this case. The choice function seems too

sensitive to the CPU time consumed by each heuristic. If a heuristic happens to

improve the solution in a very short time, the weight of this heuristic can be very

large such that this heuristic would dominate the search for a very long period,

without giving enough opportunities for the other low-level heuristics to improve

their weights. In SAHH, each heuristic has an equal opportunity to be selected.

However, the heuristic moves can only be accepted according to the SA acceptance

criteria.

Table 4-2 shows a comparison of three hyper-heuristics with a hybrid grouping

genetic algorithm (GGA) (Falkenauer, 1996), BISON TL=1000 (a hybrid algorithm

which combines a tabu search strategy with a branch and bound algorithm (Scholl et

al., 1997)) and a variable neighbourhood search algorithm (VNS) (Fleszar and Hindi,

2002). The computational results of these algorithms are taken from the relevant

papers. We can see that for the first data sets, SAHH performed better than the

hybrid GGA and slightly worse than VNS. The hybrid GGA failed to solve 6

instances to their lower bounds while SAHH only failed on 2.4 instances on average.

VNS solved all instances except one in the data sets FAL5000. In the second data

sets, SAHH performed better, in terms of solution quality, than both BISON and

VNS. SAHH solved around 12 more instances than BISON and 15 more instances

than VNS. In terms of computation time, SAHH is faster than the hybrid GGA and

BISON while slower than VNS (for instance, grouping GA took an average of 118

minutes to solve problem instances in set FAL_U1000 on a R4000 Silicon Graphics

C
h

a
p

te
r 4

A

 S
im

u
la

te
d

 A
n

n
e

a
lin

g
 H

yp
e

r-h
e

u
ristic A

lg
o

rith
m

96

av.
cpu(s)

1.26

21.05

23.78

12.66

42.26

22.44

12.25

39.91

8.48

8.00

153.40

31.41

max
abs.

1

1

1

1

1

1

1

2

3

3

2

3

av.
abs.

0.01

0.08

0.08

0.09

0.13

0.09

0.04

0.06

0.03

0.03

0.45

0.10

CFSAHH

#opt.

19.9

18.5

18.5

18.2

17.4

18.3

19.3

18.9

700.2

468.1

5.8

1323.1

av.
cpu(s)

0.40

22.56

20.09

7.78

3.19

9.01

9.70

26.14

8.04

5.10

96.58

18.96

max
abs.

0

1

1

0

0

0

0

0

1

1

1

1

av.
abs.

0.00

0.07

0.05

0.00

0.00

0.00

0.00

0.00

0.02

0.01

0.21

0.03

SAHH

#opt.

20.0

18.6

19.0

20.0

20.0

20.0

20.0

20.0

703.3

474.2

7.9

1343.0

av.
cpu(s)

5.59

23.83

18.56

11.55

37.86

12.74

32.76

47.74

10.06

8.23

167.62

34.23

max
abs.

1

1

1

1

1

1

2

4

3

5

3

5

av.
abs.

0.02

0.11

0.07

0.01

0.18

0.02

0.09

0.10

0.04

0.04

0.89

0.14

CFHH

#opt

19.6

17.9

18.7

19.8

16.5

19.6

18.4

19.0

688.6

462.4

2.2

1302.7

av.
cpu(s)

0.01

0.04

0.13

0.43

0.01

0.05

0.32

1.76

0.03

0.52

4.20

0.68

max
abs.

1

2

2

2

1

1

3

7

3

9

3

9

av.
abs.

0.15

0.40

0.55

0.85

1.00

1.00

1.80

3.80

0.12

0.32

2.30

1.12

TBR_MBS

#opt

17

13

11

5

0

0

0

0

646

391

0

1083

av.
cpu(s)

0.01

0.05

0.15

0.51

0.01

0.05

0.33

1.78

0.03

3.49

15.46

1.99

max
abs.

1

2

2

3

1

1

3

7

3

9

4

9

av.
abs.

0.45

0.45

0.60

0.80

1.00

1.00

1.80

3.80

0.14

0.34

3.30

1.24

MBS

#opt

11

12

11

7

0

0

0

0

633

381

0

1055

#num

20

20

20

20

20

20

20

20

720

480

10

1370

Table 4-1: Computational results of MBS based heuristics and hyper-heuristics

Data Sets

FAL_U120

FAL_U250

FAL_U500

FAL_U1000

FAL_T60

FAL_T120

FAL_T249

FAL_T501

SCH_Set1

SCH_Set2

SCH_Set3

All

C
h

a
p

te
r 4

A

 S
im

u
la

te
d

 A
n

n
e

a
lin

g
 H

yp
e

r-h
e

u
ristic A

lg
o

rith
m

97

max
abs.

1

1

1

1

1

1

1

2

3

3

2

3

CFSAHH

#opt.

19.9

18.5

18.5

18.2

17.4

18.3

19.3

18.9

700.2

468.1

5.8

1323.1

max
abs.

0

1

1

0

0

0

0

0

1

1

1

1

SAHH

#opt.

20.0

18.6

19.0

20.0

20.0

20.0

20.0

20.0

703.3

474.2

7.9

1343.0

max
abs.

1

1

1

1

1

1

2

4

3

5

3

5

CFHH

#opt.

19.6

17.9

18.7

19.8

16.5

19.6

18.4

19.0

688.6

462.4

2.2

1302.7

max
abs.

0

1

0

0

0

0

0

0

2

1

1

2

VNS

#opt

20

19

20

20

20

20

20

20

694

474

2

1329

max
abs.

--

--

--

--

--

--

--

--

2

1

1

--

BISON TL=1000

#opt

--

--

--

--

--

--

--

--

679

473

2

--

max
abs.

1

1

0

0

1

0

0

0

--

--

--

--

Hybrid GGA

#opt

18

18

20

20

18

20

20

20

--

--

--

--

#num

20

20

20

20

20

20

20

20

720

480

10

1370

Table 4-2: A comparison with other meta-heuristics

Data Sets

FAL_U120

FAL_U250

FAL_U500

FAL_U1000

FAL_T60

FAL_T120

FAL_T249

FAL_T501

SCH_Set1

SCH_Set2

SCH_Set3

All

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

98

workstation under IRIX 5.1, compared with 7.78 seconds by SAHH. VNS is faster as

it took an average of 0.07 seconds on a PC with Pentium II 400MHz CPU, running

on Windows NT4.0). The slower speed of SAHH is partially due to the usage of the

two-layer data structure (see figure 4-1) which requires additional time to make

solution copies if low-level heuristics fail to generate a feasible solution. However,

this hyper-heuristic is a more general problem solver. In the next chapter, the reader

will see that the algorithm can also be easily applied to a shelf space allocation

problem, with high quality solutions being produced. When adapting this algorithm

to a different problem, a user only needs to input a set of problem-specific low-level

heuristics and an objective function. The algorithm is able to solve the problem with

very good quality solutions in reasonable computational time. However, it could take

much more work when adapting a genetic algorithm or variable neighbourhood

search algorithm to a different problem.

4.4 Summary and Remarks

This chapter was concerned with the acceptance criteria that exist in the current

hyper-heuristic algorithms. In the current hyper-heuristic algorithms, two general

acceptance criteria that are used to decide whether a given heuristic move is accepted

are improvement-only and all-moves. The first criterion only accepts those heuristic

moves that can improve the current solution while the second criterion accepts all

moves regardless of whether they are better solutions or not. These acceptance

criteria may either lead the search to getting trapped into local optima or result in a

random search. In this thesis, a simulated annealing based acceptance criterion was

proposed and incorporated into the hyper-heuristics. As an intelligent balance of

these two acceptance criteria, the simulated annealing acceptance criterion accepts all

objective-improving heuristic moves as well as some non-improving heuristic moves.

Chapter 4 A Simulated Annealing Hyper-heuristic Algorithm

99

The proposed hyper-heuristic has firstly applied to the well-known bin packing

problem. The reason is that it is not easy to compare the performance of the proposed

hyper-heuristics with other meta-heuristic approaches on shelf space allocation

problems due to the lack of benchmark data in the literature. However, as a problem

closely related with the shelf space allocation problem, the bin packing problem has

been the subject of considerable research with several benchmark problem results

existing in the literature, which will allow us to make an easier comparison between

the proposed simulated annealing hyper-heuristics and other meta-heuristic

algorithms.

In this application, we have shown that, for the bin packing problem, although

introducing the simulated annealing acceptance criterion can improve the

performance of the choice function based hyper-heuristics, the best algorithm turns

out to be a simulated annealing hyper-heuristic (SAHH) which randomly selects

between low-level heuristics. The deterministic heuristic selection method in the

choice function seems not to be well suited to the stochastic acceptance criterion of

the SA.

Of the 1370 tested one-dimensional bin packing benchmark problem instances,

SAHH solved 1343 of them to the lower bounds on average within reasonable

computation time. For those that are not solved to the lower bounds, the gap is only

one bin. The algorithm is generally superior to other meta-heuristic approaches

(GGA and VNS) in terms of solution quality although SAHH is slower than VNS.

In the next chapter, a general shelf space allocation problem is considered and a

practical model is proposed. The simulated annealing hyper-heuristic algorithm

proposed in this chapter is then adapted for the optimisation of this problem.

Chapter5 Optimisation of a General Shelf Space Allocation Problem

100

CHAPTER 5. OPTIMISATION OF A GENERAL SHELF SPACE

ALLOCATION PROBLEM

5.1 Introduction

This chapter addresses a general shelf space allocation problem that has been the

subject of the previous research on shelf space allocation problems. A simplified,

while practical, model is proposed as an alternative to a complex model, which is not

practical for the real-world practice. It is shown that this model is an extension of the

multi-knapsack problem which is NP-Hard and cannot be solved by any polynomial-

time bounded algorithm (assuming P NP≠). As such, the optimal solution of the

problem is generally unknown. To effectively measure the quality of a solution and

compare the performance of different algorithms, this chapter derives an upper

bound for the problem by using a two-stage relaxation. Due to the lack of real-world

and benchmark data for this problem, twelve problem instances are randomly

generated, with different problem sizes and space availability ratios.

This chapter investigates an emerging search technique, hyper-heuristics, when

applied to shelf space allocation problems. A set of problem-specific low-level

heuristics are designed and input into the hyper-heuristic framework. Those low-

level heuristics are very similar to the heuristics used in the bin packing and

knapsack problems. As shown in chapter 4, a simulated annealing based hyper-

heuristic has produced competitive results for the bin packing problem, a problem

which is closely related to the shelf space allocation problem. In this chapter, the

simulated annealing based hyper-heuristic is adapted to a shelf space allocation

problem concerned in this chapter. Its performance is evaluated by comparing with a

conventional simulated annealing algorithm and several other types of hyper-

Chapter5 Optimisation of a General Shelf Space Allocation Problem

101

heuristics. Experimental results from these algorithms on the twelve problem

instances are compared and reported. The research work described in this chapter is

mainly drawn from (Bai and Kendall, 2005b).

5.2 Model Formulation

As discussed in chapter 2, because different stores have different requirements

and merchandise styles, it is difficult to develop a generic model that can represent

all real-world shelf space allocation problems. For research purposes, this chapter

studies a general shelf space allocation problem which has also been studied by

several other researchers.

Suppose there are m shelves, with each shelf j having a capacity of Tj, and n types

of items (or SKUs) need to be displayed on the shelves. Each type of item could have

more than one facing being displayed on the shelf. The problem concerned in this

research is the assignment of appropriate shelf space to every SKU of a given

category in order to maximise the overall profit, whilst not violating the given

constraints.

A few shelf space allocation optimisation models have been proposed with the

aim of maximising products’ aggregate profits. These models have been improved by

integrating several factors, such as the inter-relationships among the products,

product assortment, handling costs, stock holding costs and some other variables,

such as price, advertising, promotions, etc (Corstjens and Doyle, 1981b; Zufryden,

1986; Borin et al., 1994; Urban, 1998). We firstly introduce a complex model.

5.2.1 A complex model

A central issue in the shelf space allocation problem is defining a demand

function that reveals the relationship between the displayed shelf space and the

Chapter5 Optimisation of a General Shelf Space Allocation Problem

102

amount of demand it can capture. A diminishing return polynomial function has been

widely used by several researchers in the literature (Zufryden, 1986; Baker and

Urban, 1988; Dreze et al., 1994; Urban, 2002) to describe the relationship between

the displayed facings of an item and the demand of that item. Figure 5-1 presents an

illustration of this function. It can be seen that the demand of an item is continuously

increasing with the increase of facings allocated to the item. However the rate of the

increase does slow down.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 1 2 3 4 5 6 7 8 9 10 11 12

The number of facings

D
em

an
d

Figure 5-1: An illustration of demand rate with respect to the allocated shelf space

Comprehensive models were proposed in (Yang and Chen, 1999; Urban, 2002)

which formulate the demand function in the following form:

1
1 1

()ik iu ti

n R
m

i i ik i tik
u t
u i

D x x yβ γ δα
=

= =
≠

=∑ ∏ ∏ (5-1)

where

− n is the number of different types of items;

− m is the number of shelves;

− iD is the demand function of item i;

Chapter5 Optimisation of a General Shelf Space Allocation Problem

103

− ikx is the number of facings of item i allocated to shelf k.

− ix is the total number of facings allocated to an item, i.e. ()
1

m

i ikk
x x

=
=∑ ;

− iα is a scale parameter;

− ikβ is the space elasticity of item i on shelf k;

− iuγ is the cross elasticity between item i and item u;

− tiy is the (1,...,)tht t R= market variable that can influence the demand. The

possible market variables can be the price, advertising campaign,

promotional manipulations, etc.;

− tiδ is the elasticity value of tth market variable with respect to the demand

value of item i.

The objective is to maximise the total profit which equals to the total gross profit

from sales of all items deducting the aggregate costs to realise the sales.

max
1 1

() i
n n

i i i ii i
P g D D ηθ

= =
= −∑ ∑ (5-2)

subject to
1

 1,...,
n

i ij ji
l x T j m

=
≤ =∑ (5-3)

1
 1,...,

m

i i j ij
L x U i n

=
≤ ≤ =∑ (5-4)

{0,1, 2, 3 ...} 1,..., 1,...,ijx i n j m∈ = = (5-5)

where gi is the unit revenue of item i and iθ is the cost coefficient of item i and iη is

the cost elasticity of item i with respect to the sales volume. jT is the capacity of the

shelf j and l i is the size of item i. Constraint (5-3) ensures that the shelf capacity

constraints are satisfied. Constraint (5-4) confines the upper bound iU and lower

Chapter5 Optimisation of a General Shelf Space Allocation Problem

104

bound iL of the number of facings of item i and constraint (5-5) are the integrality

requirements of the shelf space allocation variables.

However, there are some drawbacks with this model. Firstly, the model includes

many problem parameters, especially the n n× number of cross elasticities (iuγ) for a

problem with n items. It is a challenging task to get a reliable estimation of these

values. Secondly, although the demand function (5-1) takes into consideration the

shelf location impact, it will encourage a shelf space allocation decision which

scatters facings of the same types of products among many shelves. By doing this,

the demand of that item can be increased. This is due to the characteristics of

polynomial function. For example, for a polynomial function 0.5()f x x= ,

(2) (1) (1)f f f≤ + . This means that with the demand function of (5-1), the demand

can be increased by simply moving part of facings from the current shelf to another

shelf even if this shelf has the same location quality to the previous one. This may

not fit well with the real-world environment where displaying the same products

together on a shelf may be able to attain greater demand than by displaying them

separately. Finally, the objective function employed in the above model is complex

and could be computationally expensive to calculate and optimise. Yang (Yang, 2001)

proposed a simpler linear model by assuming that total net profit was linear with the

number of facings of an item. However, this assumption is unrealistic for the real-

world retail environment.

5.2.2 A simplified model

To simplify the problem, in this chapter, it is assumed that:

1) The shelf space constraints in depth and height are ignored. The problem is

therefore a one-dimensional space allocation problem.

Chapter5 Optimisation of a General Shelf Space Allocation Problem

105

2) The retailer can prevent the occurrence of out-of-stock situations. All items

are fully stocked.

3) The total profit of item i is proportional to its unit profit ip (equivalent to

iη =1).

4) The cross elasticities between products are much smaller than the direct space

elasticity and can be ignored.

5) The shelf-life of the products does not affect the demand of the products.

Note that in chapter 6, we will consider a shelf space allocation problem for fresh

produce (that is, assumption 5, above, is removed), which generally have limited

shelf-life and freshness is one of aspect that affects demand. Therefore, the last

assumption does not hold for fresh produce.

Suppose a problem with m shelves and n items, each stock-keeping unit is defined

by a five-tuple (il , ip , iβ , iL , iU) where il (respectively, ip , iβ , iL , iU) is the size

(respectively profit, space elasticity, lower bounds, upper bounds) of item i. The

capacity of shelf j is denoted by jT . Based on the assumptions we discussed above,

the problem can be expressed as:

 max
1
()i

n

i i ii
P p xβα

=
=∑ (5-6)

subject to
1

 1,...,
n

i ij ji
l x T j m

=
≤ =∑ (5-7)

1
 1,..., ;

m

i i j ij
L x U i n

=
≤ ≤ =∑ (5-8)

{0,1, 2, 3 ...} 1,..., 1,...,ijx i n j m∈ = = (5-9)

The decision variables are ijx , representing the number of facings of item i on shelf j

and
1

m

i i jj
x x

=
=∑ is the total number of facings of item i. iα is a scale parameter and

iα >0. iβ is the space elasticity and 0 1iβ≤ ≤ . The objective is to maximise the

Chapter5 Optimisation of a General Shelf Space Allocation Problem

106

overall profit without violating the given constraints. The model is a non-linear,

multi-constraint optimisation problem. If 1iβ → , the model degenerates into a

bounded multi-knapsack problem.

5.2.3 An upper bound of the model

As shelf space allocation problems cannot be solved to optimality in polynomial

time (Borin et al., 1994), we usually do not know the optimal solution and hence

cannot evaluate the quality of a given solution by comparing it with the optimal

solution. Yang (Yang, 2001) compared his results with the optimal solution obtained

by carrying out a complete enumeration. However, this method is only suitable for

very small problem instances. For a shelf space allocation problem with n items

(each item has an upper bound of facings U) and m shelves, it may require up to

m nU × iterations to find the optimal solution by using an exhaustive search. Even for a

small problem instance: n=6, m=3, U=6, this could be computationally expensive.

Another common method is to relax the problem to a simpler one whose optimal

objective value is taken as an upper bound of the original problem. In this research a

two-stage relaxation method was used, which can be described as follows:

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 1 2 3 4 5 6 7 8 9 10 11 12

ix

() () '()(
)

i

i

i
i

l x
f x f x x x

=
+

−

() i
if x xβ=

Figure 5-2: Approximate function i
ixβ with a linear function

Stage 1: The original non-linear model (5-6) is relaxed to a linear model. This is

accomplished by applying a first order Taylor expansion to i
ixβ at the point ix

Chapter5 Optimisation of a General Shelf Space Allocation Problem

107

(,i i iL x U x Z+≤ ≤ ∈) (as illustrated in figure 5-2). The model then becomes an

integer programming (IP) problem:

maximise (1)

1
[()]i i

n

IP i i i i i i ii
P p x x x xβ βα β −

=
= − +∑ (5-10)

or

maximise
1

()
n

IP i i ii
P p l xα

=
= ⋅ ⋅∑ (5-11)

subject to the constraints (5-7), (5-8) and (5-9), where (1)() ()i i

i i i i i il x x x x xβ ββ −= − + .

Suppose * * * *
1 2(, ,...,)nX x x x= is the optimal solution for the original model (5-6)

and *P is its corresponding optimal objective value. *
IPP is the optimal objective

value for the IP model (5-11). From figure 5-2, we have:

* * * * *

1 1 1 1
() () [() ()]i i

n n n n

i i i i i i i i i i i ii i i i
P p x p l x p l x p xβ βα α α α

= = = =
= = ⋅ ⋅ − ⋅ ⋅ −∑ ∑ ∑ ∑

 * * *

1 1
[() ()]i

n n

IP i i i i i ii i
P p l x p x βα α

= =
≤ − ⋅ −∑ ∑ *

IPP≤ (5-12)

Hence, the gap between *IPP and *P is no less than:

 * *
1 1 1

() () i
n n

i i i i i ii i
G p l x p x βα α

= =
= ⋅ −∑ ∑

(1)* *

1
[() ()]i i i

n

i i i i i i i ii
p x x x x xβ β βα β −

=
= + − −∑ (5-13)

From equation (5-13), it can be seen that the closer ix is to *
ix , the smaller the gap

is. In order to keep 1G as a small value, we let ix = '
ix where ' ' ' '

1 2(, ,...,)nX x x x= is the

best solution found by the algorithms (see section 5.4).

Stage 2: Based on the approximation from stage 1, the integer constraint (5-9) in

the IP model is ignored and the model now becomes a linear programming (LP)

model. The software “lp_solve” (a free LP software package) was used to obtain the

optimal objective (denoted by*
LPP) of this LP problem. We took this value as the

Chapter5 Optimisation of a General Shelf Space Allocation Problem

108

relaxed upper bound of the shelf space allocation model (denoted byubP), i.e.

*ub
LPP P= .

5.3 Optimisation of the Model

Several types of hyper-heuristics were applied to optimise the problem. The

author specifically investigated the simulated annealing hyper-heuristic following its

success in solving the bin packing problem. Hyper-heuristics are high level strategies

which make calls to appropriate low-level heuristics in order to tackle different

problems or problem instances with good quality solutions. However, in the

simulated annealing hyper-heuristic, the algorithm is concerned with the acceptance

criteria of each low-level heuristic call. Instead of accepting all low-level heuristic

calls as other hyper-heuristic algorithms do, the simulated annealing hyper-heuristic

only accepts some of the “deteriorating” low-level heuristic calls (a heuristic that

results in an inferior solution), controlled by the simulated annealing Metropolis

probability. From figure 4-1, it can be seen that, to implement the simulated

annealing hyper-heuristic, one needs to generate an initial solution and define a set of

problem-specific low-level heuristics. The parameters related to simulated annealing

(e.g. initial and stopping temperature, temperature reduce scale, etc.) are supposed to

be able to automatically tuned by the algorithm itself in order not to undermine the

generality of the hyper-heuristics. The following subsections address these issues.

5.3.1 Low-level heuristics

Before describing the low-level heuristics which were used in the hyper-heuristics,

we firstly define three order lists.

− 01P : item_contribution_list: item list ordered by /i i ip lα⋅ decreasingly.

Chapter5 Optimisation of a General Shelf Space Allocation Problem

109

− 02P : item_length_list: item list ordered by length il increasingly;

− 0S : shelf_freelength_list: shelf list sorted by the current free shelf space

decreasingly.

A total of twelve low-level heuristics were used in this application. They are

categorised into four types: add product(s), delete product(s), swap and interchange.

Note that each low-level heuristic only searches within the feasible region of the

solution space. If a low-level heuristic cannot produce a new feasible solution, the

current solution is returned.

− Add_random: this heuristic adds one facing of a random item to the first

shelf of 0S . A maximum of five attempts are made if the heuristic fails to

generate a feasible solution.

− Add_exact: this heuristic searches and adds one facing of the biggest possible

item to all shelves (begins from the first shelf of 0S) until all shelves cannot

be assigned any more items.

− Add_best_contribution: this heuristic repeatedly selects a shelf from 0S

(begins from the first shelf of 0S), repeatedly searches and adds as many

facings of an item as possible from 01P (begins from the first item of 01P)

until all shelves cannot be allocated any more items.

− Add_best_improvement: this heuristic selects the first shelf of 0S and

allocates one facing space to the item which gives the best improvement to

the objective function.

− Delete_random: this heuristic deletes one facing of a random item from a

random shelf. A maximum of five attempts are made if the heuristic fails to

generate a feasible solution.

Chapter5 Optimisation of a General Shelf Space Allocation Problem

110

− Delete_least_contribution1: this heuristic deletes one facing of the item with

the least contribution value (/i i ip lα⋅) from a random shelf.

− Delete_least_contribution2: this heuristic deletes one facing of the item with

the least contribution value from all shelves.

− Delete_least_improvement: this heuristic deletes one facing of the item that

causes the least decrease in the objective value from a random shelf.

− Swap_random: this heuristic randomly deletes one facing of an item from a

random shelf and adds as many possible facings of another randomly selected

item. A maximum of five attempts are made if the heuristic fails to generate a

feasible solution.

− Swap_best: this heuristic repeatedly selects a shelf from 0S , deletes one

facing of the item with the lowest contribution value and adds one facing of

another item with a higher/highest contribution value until the last shelf is

swapped.

− Interchange_improvement: this heuristic randomly selects two different

items from two random shelves with non-zero residual capacity and

interchanges one facing or multiple facings of the two items. The basic idea

behind this heuristic is that the small free space can be transferred to the shelf

with a larger free space so that another facing could be added to that shelf

later.

− Interchange_random: this heuristic selects two different items from two

random shelves and exchanges one facing of the two items. A maximum of

five attempts are made if the heuristic fails to generate a feasible solution.

Chapter5 Optimisation of a General Shelf Space Allocation Problem

111

5.3.2 Initial solution

Considering the similarity between the shelf space allocation problem and the

knapsack problem, the initial solution was generated by a heuristic which was also

used in the knapsack problem (Martello and Toth, 1990a). The pseudo-code of the

heuristic is shown in figure 5-3.

Check if the total available space is large enough to satisfy the minimum
facing requirements for every item;
Allocate the space to every item in 02P to meet the minimum facing

requirements;
Select the first shelf from 0S ;

Do
Select the first item from 01P ;

Do
 If free space is no less than the length of this item

Allocate the maximum space to this item to meet its upper
facing bound;

 Endif
 Select the next item from 01P ;

Loop until it reaches the last item in the list 01P ;

Select the next shelf from 0S ;

Loop until it reaches the last shelf of 0S ;

Figure 5-3: A greedy heuristic approach for the shelf space allocation

5.3.3 SA parameters

Typically, a simulated annealing algorithm has four parameters (except for the

neighbourhood definition): initial temperature st , temperature reduction rate β ,

number of iterations at each temperature (nrep) and stopping condition(s). To test the

generality of our simulated annealing hyper-heuristic algorithm, we used the same

parameters that were employed in solving the bin packing problem (see section

4.3.3.2): the initial temperature was set at 00.3 ()st f s= where 0()f s is the objective

value of initial solution s0. The temperature is then reduced repeatedly according to

Chapter5 Optimisation of a General Shelf Space Allocation Problem

112

the function /(1)t t tβ→ + . At each temperature, only one repetitions was executed

(i.e. nrep=1) and the algorithm stopped when the temperature dropped to 0.1. The

temperature reduction rate β was calculated by () /()s f average allowed s ft t T T t tβ = − ⋅ ⋅ ⋅

where allowedT is the total CPU time allowed by the user and allowedT is the average

time spent for one iteration. In this application, the computation limit was set to 600

seconds (i.e. allowedT =600 seconds). Hence, the total number of repetition K can be

calculated by /allowed averageK T T= . Being consistent with chapter 4, we denote this

version of the algorithm by SAHH.

Another version of the simulated annealing hyper-heuristic algorithm was

implemented where the initial and stopping temperatures were calculated in a more

intuitive way, similar to the method proposed in (Johnson et al., 1989; Johnson et al.,

1991). At the beginning of the search, /100K random solutions were sampled from

the initial solution to approximately determine the maximal objective difference maxδ

and minimal objective difference minδ (min 0δ ≠). The starting temperature was then

set to a value such that about 85% of such inferior moves would be accepted.

According to the Metropolis probability function, we have max / ln(0.85)st δ= − .

Similarly, the stopping temperature was set to a value such that only about 1% of

inferior moves would be accepted, i.e. min / ln(0.01)ft δ= − . We denote this version of

the algorithm by SAHH_adpt.

5.3.4 Other approaches

For the purpose of comparison, we also implemented the following heuristic and

meta-heuristic approaches.

Chapter5 Optimisation of a General Shelf Space Allocation Problem

113

Choice function hyper-heuristics (CFHH)

In section 4.3, two choice function based hyper-heuristics (CFHH and CFSAHH)

have been employed to optimise the one-dimensional bin packing problem. CFHH is

the choice function based hyper-heuristic that was developed and studied in

(Soubeiga, 2003). CFSAHH is an extended version of CFHH which incorporates a

simulated annealing acceptance criterion. In this chapter, these two hyper-heuristics

with the same parameter settings as chapter 4 were also applied to the shelf space

allocation problem.

Initialise
Assign appropriate initial weight w(i) to each heuristic i;
Set max_tabu_len, the maximal length of the tabu list, to an
appropriate value;
Generate an initial solution s0;

Repeat
Select the non-tabu low-level heuristic H* with the highest weight;
Apply H* to the current solution s, resulting in a neighbour solution s’;
If f(s’) - f(s) > 0

w(H*) = w(H*)+1;
Else

w(H*) = w(H*)-1;
Push heuristic H* into the tabu list;
If the maximal length of the tabu list is reached, release the first
heuristic in the tabu list;
If f(s’) - f(s) < 0, release all heuristics in the tabu list except
heuristic H*;

Endif
's s← ;

Until stopping criteria are met.

Figure 5-4: The pseudo code of a tabu search based hyper-heuristic for a
maximisation problem

Source: (Burke et al., 2003c)

Tabu search based hyper-heuristic (TSHH)

A recently developed tabu search based hyper-heuristic approach (Burke et al.,

2003c) was also applied to the problem, abbreviated to TSHH. The main idea behind

this algorithm is the incorporation of a tabu list in the heuristic selection mechanism

that forbids the selection of some low-level heuristics at certain stages of the search.

Chapter5 Optimisation of a General Shelf Space Allocation Problem

114

For a maximisation problem with an objective function f(x). TSHH can be described

by figure 5-4. Note that this tabu search hyper-heuristic differs from a general tabu

search in that the tabu list stores low-level heuristics rather than solution attributes.

Also note that once an inferior solution is generated by a low-level heuristic, all the

heuristics in the tabu list are released because the current solution has been modified

and the heuristics in the tabu list may now be useful.

In this application, the parameters were set as follows (these are the same as

Burke et al., 2003c). Suppose a total of k low-level heuristics were used, the maximal

length of tabu list was set to k/2. The upper bound and lower bound of weights for

each low-level heuristic were set to k and 0 respectively. Once a heuristic’s weight

exceeded one of its boundaries, it was set to the corresponding boundary.

Initialise
Assign appropriate initial weight w(i) to each heuristic i;
Set max_tabu_len, the maximal length of the tabu list, to an
appropriate value;
Set initial temperature ts, stopping temperature tf and total iterations K.
Generate an initial solution s0, t=ts;

Repeat
Select the non-tabu low-level heuristic H* with the highest weight;
Apply H* to the current solution s, resulting in a neighbour solution s’;
If f(s’) - f(s) > 0

w(H*) = w(H*)+1;
's s← ;

Else
w(H*) = w(H*)-1;
Push heuristic H* into the tabu list;
If the maximal length of the tabu list is reached, release the first
heuristic in the tabu list;
If f(s’) - f(s) < 0

Release all heuristics in the tabu list except heuristic H*;
If exp(/) (0,1)t randomδ > 's s← ;

Else
's s← ;

Endif
Endif

/(1)t t tβ= + ;
Until stopping criteria are met.

Figure 5-5: The pseudo code of a TSSAHH for a maximisation problem

Chapter5 Optimisation of a General Shelf Space Allocation Problem

115

Furthermore, a hybridised version of tabu search based hyper-heuristic was also

implemented, denoted by TSSAHH, which adopts the simulated annealing

acceptance criteria described in section 4.2.3. Figure 5-5 presents a detailed

description of the algorithm. The parameters with regards to simulated annealing are

the same as SAHH.

Random heuristic methods

Two simple random heuristic methods, RHOI (Random Heuristics Only

Improving) and RHAM (Random Heuristics All Moves), were also applied to the

problems. Both methods randomly call the low-level heuristics at each iteration.

RHOI repeatedly selects a random low-level heuristic and applies it to the current

solution until some stopping criteria are met (in this chapter, the stopping criterion is

600 seconds computational time), during which only those heuristics that can

improve the objective function value are accepted. RHAM works in a similar way

but all moves are accepted.

Simulated annealing algorithms

Two conventional simulated annealing algorithms, SA_swap and SA_interchange,

were also applied to the problems. Both of the algorithms employ the same cooling

schedule that was used in SAHH but utilise different neighbourhood structures. In

SA_swap, the neighbourhood structure was defined by randomly swapping one

facing of two different items (i.e. randomly select an item from a random shelf,

delete one facing of this item from the shelf and add one facing of another randomly

chosen item to the shelf). The neighbourhood in SA-interchange was generated by

randomly selecting two different items from two random shelves, interchanging one

facing of the two items, and then adding as many facings as possible of the item with

the largest possible item_contribution value to the shelf that has the largest free space.

Chapter5 Optimisation of a General Shelf Space Allocation Problem

116

Note that if the above neighbourhood moves produced an infeasible solution, another

attempt was made until a feasible move is generated.

5.4 Experimental Results

As there is no real-world data available (due to commercial confidentiality) and

neither is there any benchmark data available from the literature, a number of

simulated problems were generated as follows. The length of the products conforms

to a uniform distribution between 25 and 60. The net profit pi (i=1,…n) of the

products were created by a normal distribution in the similar way to the one that was

described in (Yang, 2001). The mean of pi is uniformly drawn from the range [3, 3.5]

and the ratio of the mean to standard deviation has a uniform distribution from 0.05

to 0.15. iα , iβ , iL , iU and jT have uniform distributions in the ranges of [1, 2], [0.1,

0.4], [2, 3], [7,10] and [300, 450] respectively. In the light of Yang’s (Yang, 2001)

experimental results which show that the problem size is a potential factor affecting

algorithm performance, in this research, five problem instances with different

problem sizes were generated to test this relationship. For simplicity, we shall call it

data set S (denoted by S1, S2, S3, S4 and S5 respectively). We also took into account

the influence of space availability in the performance of the algorithms. As the

number of facings of each item has a lower bound and an upper bound, the available

shelf space of a problem must be greater than a minimal space value to satisfy the

lower bound of facings and should also not exceed a maximal space value to avoid

the situation that the shelf space is sufficient enough such that all items can reach the

upper bounds of facings and no optimisation is required. Two parameters, r_min and

r_max, were introduced to describe the space availability. r_min represents the ratio

of the minimal space to the available space and r_max is the ratio of the available

Chapter5 Optimisation of a General Shelf Space Allocation Problem

117

space to the maximal space. Hence both r_min and r_max are in the range of [0, 1].

Seven problem instances (denoted by R1, R2, ..., R7 respectively) with different

r_min and r_max values were generated to test the corresponding algorithms’

performance.

Table 5-1 and 5-2 shows the problem sizes, space availability ratios and the upper

bound values (ubP) of these twelve instances.

All algorithms were coded in Microsoft Visual C++ version 6.0 and all

experiments were run on a PC Pentium IV 1.8GHZ with 256MB RAM running

Microsoft Windows 2000 professional Version 5. All algorithms started from the

same initial solution produced by the greedy heuristic described in section 5.3.2 and

we allowed 600 seconds computation time to give a fair comparison. All algorithms

were run 30 times and their average objective value (hP), minimal objective value

(min) and maximal objective value (max) were observed. The corresponding

standard deviations (stdev) were calculated and compared. The performance of the

different algorithms was evaluated by the ratio of their average objective value (hP)

to the relaxed upper bound (ubP).

Table 5-1: Five test problem instances with different sizes (data set S)

 S1 S2 S3 S4 S5

r_min / r_max 0.95 / 0.24 0.95 / 0.33 0.95 / 0.25 0.95 / 0.24 0.95 / 0.24

(m, n) (5,20) (12, 54) (22, 60) (30,80) (40, 100)

ubP 186.53 422.25 610.67 884.62 1077.376

Table 5-2: Seven test problem instances with different space availability ratios (data set R)

 R1 R2 R3 R4 R5 R6 R7

r_min/r_max 0.95 / 0.33 0.85 / 0.35 0.7 / 0.46 0.6 / 0.53 0.5 / 0.66 0.4 / 0.79 0.34 / 0.95

(m, n) (12, 54) (11, 48) (15, 48) (16, 48) (17, 48) (22, 48) (29, 50)

ubP 422.25 401.33 411.05 435.55 471.30 526.04 482.64

Chapter5 Optimisation of a General Shelf Space Allocation Problem

118

The first round of experiments was carried out on the data set R to test the

performance of different algorithms under different shelf space availabilities. Figure

5-6, table 5-3a and 5-3b present the corresponding computational results. It can be

seen that both SAHH, SAHH_adpt, CFHH and CFSAHH have greatly improved

over the initial greedy heuristic. SA_swap also produced good quality solutions

while SA_interchange performed much worse. This shows that the performance of

the simple simulated annealing algorithm can be largely dependent on the

neighbourhood structure. It can also be seen that SAHH and SAHH_adpt

outperformed all other algorithms in all cases with surprisingly high quality solutions.

Both SAHH and SAHH_adpt achieved over 99% of the upper bound for six problem

0.95

0.96

0.97

0.98

0.99

1.00

R1 R2 R3 R4 R5 R6 R7

P
h

 /
P

u
b

SAHH_adpt CFHH CFSAHH TSHH

TSSAHH SAHH RHOI RHAM

SA_sw ap SA_interchange Greedy

Figure 5-6: The average performance of different algorithms on the data set R

instances and 98.5% of the upper bound for one instance. This is a very good

performance considering the fact that the upper bound was obtained by a two-stage

relaxation and the algorithms used the same parameters to those that were used in

Chapter5 Optimisation of a General Shelf Space Allocation Problem

119

Table 5-3a: The performance of different algorithms for the data set R (see 5-3b for other results)

 R1 R2 R3 R4 R5 R6 R7

(r_min, r_max) (0.95, 0.33) (0.85, 0.35) (0.7, 0.46) (0.60, 0.53) (0.50, 0.66) (0.40, 0.79) (0.34, 0.95)

(m, n) (12, 54) (11, 48) (15, 48) (16, 48) (17, 48) (22, 48) (29, 50)

Pub 422.25 401.33 411.05 435.55 471.30 526.04 482.64

Ph 410.81 388.24 390.47 416.75 449.55 507.96 475.95
Greedy

Ph/Pub 0.97% 0.967 0.95 0.957 0.954 0.966 0.986

Ph 418.74 397.70 404.96 431.20 467.43 522.18 481.67

min 418.42 397.39 404.61 430.94 467.23 521.72 481.29

max 419.04 398.12 405.49 431.47 467.65 522.65 481.94

Ph/Pub 0.992 0.991 0.985 0.990 0.992 0.993 0.998

SAHH

stdev 0.16 0.17 0.20 0.13 0.10 0.22 0.14

Ph 418.77 397.79 404.95 431.19 467.33 522.26 481.62

min 418.42 397.45 404.54 430.53 466.93 521.73 481.37

max 419.17 398.05 405.42 431.57 467.92 522.49 481.98

Ph/Pub 0.992 0.991 0.985 0.990 0.992 0.993 0.998

SAHH_adpt

stdev 0.23 0.14 0.22 0.22 0.26 0.18 0.14

Ph 418.36 396.85 404.44 430.63 467.19 521.73 481.58

min 412.10 388.24 402.29 428.14 464.89 520.21 480.90

max 419.04 397.55 405.00 431.29 467.71 522.34 481.89

Ph/Pub 0.991 0.989 0.984 0.989 0.991 0.992 0.998

CFHH

stdev 1.21 1.61 0.64 0.75 0.46 0.44 0.18

Ph 418.74 397.29 404.45 429.87 465.84 521.54 481.44

min 418.07 395.73 403.06 426.33 460.81 519.87 480.38

max 419.17 398.15 405.10 431.12 467.40 522.63 481.88

Ph/Pub 0.992 0.990 0.984 0.987 0.988 0.991 0.998

CFSAHH

stdev 0.27 0.65 0.54 0.97 1.85 0.65 0.33

Ph 418.39 396.08 394.94 421.38 453.77 516.27 480.04

min 417.41 394.45 391.25 419.93 451.11 511.94 478.43

max 419.14 397.23 400.56 423.09 455.47 518.09 481.50

Ph/Pub 0.991 0.987 0.961 0.967 0.963 0.981 0.995

TSHH

stdev 0.38 0.62 2.35 0.77 1.07 1.46 0.76

Ph 418.25 395.64 395.93 421.02 455.19 518.10 480.47

min 417.07 393.93 393.29 418.73 452.63 514.29 479.61

max 418.78 396.71 400.60 422.15 457.19 520.10 481.15

Ph/Pub 0.991 0.986 0.963 0.967 0.966 0.985 0.996

TSSAHH

stdev 0.35 0.63 1.77 0.74 1.06 1.21 0.39

solving the bin packing problem in chapter 4. The performance of most of the

algorithms slightly decreased when r_min and r_max reached the middle of their

Chapter5 Optimisation of a General Shelf Space Allocation Problem

120

ranges. This is probably because when r_min is large while r_max is small, the shelf

space is very scarce and the optimal solution is near the lower bound and hence is

relatively easier to obtain. Similarly, when r_min is small and r_max is large, space

is abundant so that the optimal solution is almost the upper bound. However, when

the available shelf space belongs to none of these two cases, the problem becomes

harder to solve.

Table 5-3b: The performance of different algorithms on the data set R (continued)

 R1 R2 R3 R4 R5 R6 R7

(r_min, r_max) (0.95, 0.33) (0.85, 0.35) (0.7, 0.46) (0.60, 0.53) (0.50, 0.66) (0.40, 0.79) (0.34, 0.95)

(m, n) (12, 54) (11, 48) (15, 48) (16, 48) (17, 48) (22, 48) (29, 50)

Pub 422.25 401.33 411.05 435.55 471.3 526.04 482.64

Ph 418.16 396.14 402.21 425.23 459.23 521.03 481.38

min 417.23 395.56 401.54 423.14 457.74 520.44 481.09

max 418.92 396.68 403.12 426.47 460.42 521.68 481.65

Ph/Pub 0.990 0.987 0.978 0.976 0.974 0.990 0.997

RHOI

stdev 0.47 0.32 0.42 0.84 0.67 0.34 0.16

Ph 418.39 396.90 404.46 430.29 466.84 521.15 481.10

min 418.07 396.67 404.12 429.88 466.57 520.63 480.82

max 418.78 397.23 404.84 430.91 467.14 521.49 481.40

Ph/Pub 0.991 0.989 0.984 0.988 0.991 0.991 0.997

RHAM

stdev 0.15 0.13 0.18 0.22 0.15 0.20 0.15

Ph 417.27 396.59 403.68 429.25 466.01 520.35 480.85

min 416.23 395.98 403.07 428.00 464.53 519.61 480.23

max 418.15 397.10 404.34 430.21 466.68 521.35 481.50

Ph/Pub 0.988 0.988 0.982 0.986 0.989 0.989 0.996

SA_swap

stdev 0.42 0.27 0.31 0.51 0.44 0.43 0.26

Ph 412.80 389.73 393.43 417.97 450.28 510.72 478.78

min 412.67 389.00 392.66 417.83 449.84 510.55 478.19

max 413.47 390.21 394.13 418.19 451.43 511.32 479.38

Ph/Pub 0.978 0.971 0.957 0.960 0.955 0.971 0.992

SA_inter
change

stdev 0.30 0.37 0.45 0.08 0.49 0.26 0.33

The second round of experiments investigated the effect of the problem size on

the performance of different algorithms. To avoid the influence of the space

availability, as can be seen from table 5-1 all the problem instances were created

Chapter5 Optimisation of a General Shelf Space Allocation Problem

121

Table 5-4a: The performance of different algorithms on the data set S (see table 5-4b for other results)

 S1 S2 S3 S4 S5

(r_min, r_max) (0.95, 0.24) (0.95, 0.33) (0.95, 0.25) (0.95, 0.24) (0.95, 0.24)

(m, n) (5,20) (12, 54) (22, 60) (30,80) (40, 100)

Pub 186.53 422.25 610.67 884.62 1077.376

Ph 151.73 410.81 511.51 753.35 928.07
Greedy

Ph/Pub 0.813 0.973 0.838 0.852 0.861

Ph 186.53 418.74 599.75 870.01 1052.61

min 186.53 418.42 590.27 862.77 1040.24

max 186.53 419.04 603.97 872.49 1058.81

Ph/Pub 1.000 0.992 0.982 0.983 0.977

SAHH

stdev 0.00 0.16 3.08 2.51 4.37

Ph 186.53 418.77 600.18 867.60 1056.44

min 186.53 418.42 594.47 857.17 1045.79

max 186.53 419.17 603.97 872.49 1062.98

Ph/Pub 1.000 0.992 0.983 0.981 0.981

SAHH_adpt

stdev 0.00 0.24 2.09 3.30 3.78

Ph 182.18 418.36 572.15 836.26 1006.71

min 160.43 412.10 527.72 774.71 928.07

max 186.53 419.04 600.82 866.27 1049.03

Ph/Pub 0.977 0.991 0.937 0.945 0.934

CFHH

stdev 7.13 1.23 27.47 32.55 45.38

Ph 183.34 418.74 586.45 858.23 1035.80

min 169.13 418.07 528.04 796.07 956.60

max 186.53 419.17 605.77 880.91 1058.81

Ph/Pub 0.983 0.992 0.960 0.970 0.961

CFSAHH

stdev 4.84 0.28 22.60 25.14 30.84

Ph 186.53 418.39 595.60 833.73 987.97

min 186.53 417.41 583.06 822.69 937.91

max 186.53 419.14 603.97 848.35 1039.49

Ph/Pub 1.000 0.991 0.975 0.942 0.917

TSHH

stdev 0.00 0.39 3.96 6.08 23.36

Ph 182.18 418.25 569.46 825.19 961.98

min 177.83 417.07 543.10 806.75 937.91

max 186.53 418.78 587.23 836.24 986.24

Ph/Pub 0.977 0.991 0.933 0.933 0.893

TSSAHH

stdev 4.42 0.36 10.14 7.13 12.39

such that their space availability ratios are almost the same. Figure 5-7 and tables 5-

4a and 5-4b show the corresponding experimental results and comparison. It can be

Chapter5 Optimisation of a General Shelf Space Allocation Problem

122

seen that, once again, SAHH and SAHH_adpt outperformed all other algorithms,

including two simple simulated annealing algorithms. For the smallest problem

instance S1, four algorithms, SAHH, SAHH_adpt, TSHH and RHAM, consistently

produced the optimal solution for all 30 runs (when Ph/Pub=1, it means that the

algorithm has solved the problem to the upper bound. The solution found by the

algorithm is the optimal solution). The results also show that most algorithms

 Table 5-4b: The performance of different algorithms on the data set S (continued)

 S1 S2 S3 S4 S5

(r_min, r_max) (0.95, 0.24) (0.95, 0.33) (0.95, 0.25) (0.95, 0.24) (0.95, 0.24)

(m, n) (5,20) (12, 54) (22, 60) (30,80) (40, 100)

Pub 186.53 422.25 610.67 884.62 1077.376

Ph 185.57 418.16 598.69 866.62 1048.22

min 172.18 417.23 594.47 857.17 1037.87

max 186.53 418.92 603.97 872.49 1059.05

Ph/Pub 0.995 0.990 0.980 0.980 0.973

RHOI

stdev 3.64 0.48 3.00 4.56 5.33

Ph 186.53 418.39 594.58 859.51 1039.01

min 186.53 418.07 589.24 857.45 1029.47

max 186.53 418.78 599.77 866.27 1048.22

Ph/Pub 1.000 0.991 0.974 0.972 0.964

RHAM

stdev 0.00 0.43 2.12 2.77 5.96

Ph 177.54 417.27 563.03 835.60 964.58

min 169.13 416.23 543.10 818.57 944.51

max 177.83 418.15 583.06 845.96 987.11

Ph/Pub 0.952 0.988 0.922 0.945 0.895

SA_swap

stdev 1.59 0.43 9.24 6.36 10.80

Ph 151.73 412.80 566.85 816.81 1026.59

min 151.73 412.67 543.10 796.07 1018.37

max 151.73 413.47 583.06 835.91 1035.44

Ph/Pub 0.813 0.978 0.928 0.923 0.953

SA_interchange

stdev 0.00 0.30 10.78 10.64 4.18

performed slightly worse when the problem size increased but both SAHH and

SAHH_adpt still obtained more than 97% of the relaxed upper bound for a very large

problem (m=40, n=100).

Chapter5 Optimisation of a General Shelf Space Allocation Problem

123

As SAHH and SAHH_adpt outperformed all other algorithms for both data sets,

in the next three sections we carried out a specific comparison and analysis on the

simulated annealing hyper-heuristics.

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

S1 S2 S3 S4 S5

P
h
/P

u
b

SAHH_adpt CFHH CFSAHH TSHH

TSSAHH SAHH RHOI RHAM

SA_swap SA_interchange Greedy

Figure 5-7: The average performance of different algorithms on the data set S

5.4.1 Comparison with conventional simulated annealing algorithms

As discussed in chapter 4, the simulated annealing hyper-heuristics

simultaneously make use of a set of heuristics or neighbourhood functions. However,

in a conventional simulated annealing algorithm, only a single neighbourhood

structure is used. This section gives a more detailed comparison and analysis of their

performance for the shelf space allocation problem. Figures 5-8 and 5-9 present a

clearer comparison of the average performance and standard deviation between

SAHH, SAHH_adpt, SA_swap and SA_interchange for the data set S and R

respectively.

Chapter5 Optimisation of a General Shelf Space Allocation Problem

124

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

S1 S2 S3 S4 S5

P
h
/P

u
b

SAHH SAHH_adpt SA_swap
SA_interchange Greedy

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

S1 S2 S3 S4 S5

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

SAHH SAHH_adpt SA_swap SA_interchange

Figure 5-8: The average objective value and standard deviation of simulated annealing hyper-
heuristics and the conventional simulated annealing for the data set S over 30 runs

From both figures, it can be seen that the two simulated annealing hyper-

heuristics, SAHH and SAHH_adpt, clearly outperformed two general SA algorithms,

SA_swap and SA_interchange, for all tested instances both in terms of average

objective values and standard deviation, which reflects the consistency and

robustness of the algorithms. It also appears that, for the shelf space allocation

0.94

0.95

0.96

0.97

0.98

0.99

1.00

R1 R2 R3 R4 R5 R6 R7

P
h

/ P
ub

SAHH SAHH_adpt SA_swap

SA_interchange Greedy

0.00

0.10

0.20

0.30

0.40

0.50

0.60

R1 R2 R3 R4 R5 R6 R7

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

SAHH SAHH_adpt SA_sw ap SA_interchange

Figure 5-9: The average objective value and standard deviation of simulated annealing hyper-
heuristics and the conventional simulated annealing for the data set R over 30 runs

problem, the simulated annealing hyper-heuristic is robust and not sensitive to the

change of the starting and stopping temperatures. SAHH and SAHH_adpt have

almost the same performance for all instances in the data set R and most of the

Chapter5 Optimisation of a General Shelf Space Allocation Problem

125

instances in data set S even when their starting temperatures are very different. For

example, when solving the problem instance R1, the starting temperature of SAHH

was almost 4 times the value of SAHH_adpt, but both algorithms resulted in the

same quality solutions. For problem instance S5, the starting temperature of SAHH

was 7 times the value of SAHH_adpt, however, SAHH was only slightly beaten by

SAHH_adpt by a margin of 0.4% (see table 5-4a).

In contrast, figures 5-8 and 5-9 show that both SA_swap and SA_interchange

seem to be very sensitive to the change of the neighbourhood structures and the

problem instances. For data set R, SA_swap performed much better than

SA_interchange. This shows that for this set of problem instances, neighbourhood

“swap” appears much better than the neighbourhood “interchange” even though the

rest of the SA parameters are the same. Therefore choosing a “correct”

neighbourhood structure is crucial for the success of SA. However, there is no

guarantee that the neighbourhood “swap” is better than “interchange” for all problem

instances. From figure 5-9, it can be seen that SA_swap performed better than

SA_interchange for small problem instances and worse than SA_interchange for the

large problem sizes. This shows that, for conventional SA, a good neighbourhood

structure for a given problem instance does not guarantee good performance for

another problem instance. However, by synergising several neighbourhood functions

(or low-level heuristics), simulated annealing hyper-heuristics are able to achieve

solutions with better quality and are also more general across different problem

instances.

5.4.2 A comparison among different hyper-heuristics

Chapter 4 has discussed the motivation for the introduction of a simulated

annealing acceptance criterion in the hyper-heuristic framework. It is expected that

Chapter5 Optimisation of a General Shelf Space Allocation Problem

126

by the incorporation of an SA acceptance criterion, the performance of the current

hyper-heuristic framework would be improved. To test this hypothesis, the average

performance and the standard deviation of all hyper-heuristic algorithms have been

plotted in figures 5-10, 5-11, 5-12 and 5-13 (SAHH was not included because its

performance is very similar to SAHH_adpt).

0.880

0.900

0.920

0.940

0.960

0.980

1.000

S1 S2 S3 S4 S5

P
h
/P

u
b

CFHH CFSAHH TSHH TSSAHH SAHH_adpt

Figure 5-10: The average performance of different

hyper-heuristics for the data set S over 30 runs

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

S1 S2 S3 S4 S5

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

CFHH CFSAHH TSHH TSSAHH SAHH_adpt

Figure 5-11: The standard deviation of different hyper-

heuristics for the data set S over 30 runs

When solving data set S, it can be seen from figure 5-10 and 5-11 that CFSAHH,

the choice function based hyper-heuristic with the assistance of an SA acceptance

criterion, outperformed the pure choice function hyper-heuristic CFHH both in terms

Chapter5 Optimisation of a General Shelf Space Allocation Problem

127

of the average objective value and the algorithm’s robustness measured by the

standard deviation. This is in line with our expectation. However, both CFHH and

CFSAHH were still inferior to SAHH_adpt (or SAHH) which randomly selects

different low-level heuristics rather than using the choice function heuristic selection

mechanism. Being contrary to our expectation, SA assisted tabu search hyper-

heuristic, TSSAHH, failed to show superiority to TSHH. This is probably because

the deterministic heuristic selection strategies in the CFHH and TSHH may be

unsuitable for simulated annealing which, in essence, is a stochastic method. The

deterministic heuristic selection may undermine the neighbourhood reachability.

Comparing the tabu search hyper-heuristics and the choice function based hyper-

heuristics, neither algorithm demonstrated superior performance over the other for

this data set. TSHH performs better than CFHH and CFSAHH on the instance S1 and

S3, while it was beaten by both CFHH and CFSAHH on the instance S4 and S5.

Both algorithms have similar results on the instance S2. However, results obtained

by both TSHH and TSSAHH show better consistency than those by CFHH and

CFSAHH whose corresponding standard deviation increased very quickly with the

increase of the problem size.

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

R1 R2 R3 R4 R5 R6 R7

P
h
/P

ub

CFHH CFSAHH TSHH TSSAHH SAHH_apt

Figure 5-12: The average performance of different hyper-
heuristics for the data set R over 30 runs

Chapter5 Optimisation of a General Shelf Space Allocation Problem

128

For the data set R, figure 5-12 and 5-13 shows that SAHH_adpt, again,

outperforms all of the other four hyper-heuristics, although in one or two instances

the difference between them are relatively small (see table 5-3a for the details). In

terms of the average objective value, CFHH and CFSAHH obtained relatively good

results that are close to the results by SAHH_adpt. However, the standard deviation

of SAHH_adpt is much smaller than CFHH and CFSAHH. TSHH and TSSAHH

performed badly for most instances except R1. Comparing CFHH and CFSAHH, no

clear-cut difference can be observed. Similarly, there is no clear difference between

TSHH and TSSAHH although TSSAHH seem to produce more consistent results

with a smaller standard deviation on this data set.

0.00

0.50

1.00

1.50

2.00

2.50

R1 R2 R3 R4 R5 R6 R7

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

CFHH SACFHH TSHH TSSAHH SAHH_adpt

Figure 5-13: The standard deviation of different hyper-
heuristics for the data set R over 30 runs

5.4.3 Robustness analysis

As all above meta-heuristic approaches include some random elements, different

results may be obtained if running the same algorithm several times. It is not

desirable that those results are significantly different from each other. An algorithm

should be robust enough that the results obtained by different runs are clustered

closely around the mean value. The standard deviation values in table 5-3a, 5-3b, 5-

4a and 5-4b provides overall information of an algorithm’s consistency and

Chapter5 Optimisation of a General Shelf Space Allocation Problem

129

robustness. We also plot the distribution of the results obtained by different

algorithms over 30 runs. For reasons of space, only results for the instance S5 are

presented, as shown in figures 5-14 to 5-23 respectively. Similar distribution plots

can be obtained for the majority of other instances. The horizontal axis represents the

objective values an algorithm obtains. The vertical axis represents the number of

occurrence that a given objective value appeared over 30 runs. It can be seen that

both the results from SAHH and SAHH_adpt are clustered closely around their mean

values. However, all of the other algorithms are either producing results scattered

Figure 5-14: The objective value distribution of

30 SAHH runs on instance S5
Figure 5-15: The objective value distribution of

30 SAHH_adpt runs for instance S5

Figure 5-16: The objective value distribution of

30 CFHH runs for instance S5
Figure 5-17: The objective value distribution of

30 CFSAHH runs for instance S5

0

1

2

3

4

5

6

7

8

9

928 948 968 988 1008 1028 1048 1068

Objective value

O
cc

u
rr

en
ce

0

1

2

3

4

5

6

7

8

9

928 948 968 988 1008 1028 1048 1068

Objective value

O
cc

u
rr

en
ce

0

1

2

3

4

5

6

7

8

9

928 948 968 988 1008 1028 1048 1068

Objective value

O
cc

u
rr

en
ce

0

1

2

3

4

5

6

7

8

9

928 948 968 988 1008 1028 1048 1068

Objective value

O
cc

u
rr

en
ce

Chapter5 Optimisation of a General Shelf Space Allocation Problem

130

Figure 5-18: The objective value distribution of

30 TSHH runs for instance S5
Figure 5-19: The objective value distribution of

30 TSSAHH runs for instance S5

Figure 5-20: The objective value distribution of
30 RHOI runs for instance S5

Figure 5-21: The objective value distribution of
30 RHAM runs for instance S5

Figure 5-22: The objective value distribution of

30 SA_swap runs for instance S5
Figure 5-23: The objective value distribution of

30 SA_interchange runs for instance S5

0

1

2

3

4

5

6

7

8

9

928 948 968 988 1008 1028 1048 1068

Objective value

O
cc

u
rr

en
ce

0
1
2
3
4
5
6
7
8
9

928 948 968 988 1008 1028 1048 1068

Objective value

O
cc

u
rr

en
ce

0
1
2
3
4
5
6
7
8
9

928 948 968 988 1008 1028 1048 1068

Objective value

O
cc

u
rr

en
ce

0

1

2

3

4

5

6

7

8

9

928 948 968 988 1008 1028 1048 1068

Objective value

O
cc

u
rr

en
ce

0

1

2

3

4

5

6

7

8

9

928 948 968 988 1008 1028 1048 1068

Objective value

O
cc

u
rr

en
ce

0

1

2

3

4

5

6

7

8

9

928 948 968 988 1008 1028 1048 1068

Objective value

O
cc

u
rr

en
ce

Chapter5 Optimisation of a General Shelf Space Allocation Problem

131

widely along the horizontal axis, or are obtaining a much smaller average objective

value.

5.5 Summary and Remarks

This chapter considered a general shelf space allocation problem that has been

previously studied by the other researchers. A simplified, while practical, model was

proposed as an alternative to a complex model which is not suitable for real-world

applications. The model is a non-linear combinatorial problem and was shown to be

related to the multi-knapsack problem. As an extension of the multi-knapsack

problem, the shelf space allocation problem is difficult to solve. To give a better

evaluation of the solution quality obtained by different algorithms, an upper bound of

the objective function was derived by a two-stage relaxation method. In the first step,

the non-linear model was transformed to a linear integer programming (IP) model by

applying a first order Taylor expansion over the objective function. In the second

step, the IP model was further relaxed to a linear programming (LP) model whose

optimal solution was taken as the upper bound of the original non-linear shelf space

allocation model.

Heuristic and meta-heuristic approaches, especially simulated annealing hyper-

heuristics, have been investigated for the optimisation of a general shelf space

allocation problem. The simulated annealing hyper-heuristic differs from other

hyper-heuristics in that it is not only concerned with the intelligent selection of

appropriate heuristics but also provides a robust acceptance criterion that

systematically changes the acceptance ratio of inferior heuristic moves. Experiments

and analysis have been carried out to compare SA based hyper-heuristics with two

other hyper-heuristics that have been proposed by previous researchers. The SA

Chapter5 Optimisation of a General Shelf Space Allocation Problem

132

based hyper-heuristic has also been compared with two general simulated annealing

algorithms.

All of the algorithms have been tested on twelve simulated problem instances

which can be divided into two sets, corresponding to two potential factors that may

affect the performance of an algorithm. In the first set, space availability is

considered and evaluated by two values, the ratio of minimal space requirements to

the available space and the ratio of available space to the maximal space

requirements. Seven problem instances with different ratios have been generated.

The second data set consists of five problem instances of different problem sizes.

From the experimental results on these data sets, it has been observed that for the

general simulated annealing algorithm, the neighbourhood structure plays a very

important role in influencing the performance of an algorithm and an optimal

neighbourhood structure may not exist across all problem instances. Among the

problem instances that were tested in this chapter, it has been found that the

performance of a given neighbourhood is dependent on the problem instance. A

neighbourhood structure that works well on some problem instances may not

perform well for other instances. However, the simulated annealing hyper-heuristic

approach could simultaneously explore several neighbourhoods using different low-

level heuristics. The experimental results show that this algorithm outperformed two

random heuristic methods, two choice function based hyper-heuristics, two tabu

search based hyper-heuristics and two versions of the conventional simulated

annealing algorithms. The simulated annealing hyper-heuristic also does not seem to

be parameter-sensitive, which has always been a problem for conventional simulated

annealing algorithms. Overall, the simulated annealing hyper-heuristics has produced

Chapter5 Optimisation of a General Shelf Space Allocation Problem

133

high quality solutions and even for the largest problem instance, they still achieved

over 98% of the upper bound.

The low-level heuristics used in this chapter can be refined or more intelligent

low-level heuristics may be designed and input in the simulated annealing hyper-

heuristics. However, after discussions with our industrial collaborators, they are

satisfied with their current shelf space allocation solutions and suggested us to work

on another even more important shelf space allocation problem, fresh food. This is an

area in which they have a particular interest due to increasing market competition.

The problem is difficult because of the deterioration of the fresh food and the

difficulty in managing inventory and shelf space allocation for such products. Indeed,

the industries are not usually interested in finding the optimal solution which is

usually unknown for many real-world problems. What they are seeking is a new

approach that can be quickly and easily implemented to improve their current

approaches. The next two chapters 6 and 7 will address this new problem. In Chapter

6 a model is formulated that can be used to manage inventory control and shelf space

allocation specifically for fresh produce. A multi-start generalised reduced gradient

algorithm (GRG) is developed for the problem. In chapter 7 several other popular

heuristic and meta-heuristic approaches are investigated for the optimisation of the

problem formulated in chapter 6.

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

134

CHAPTER 6. MANAGING FRESH PRODUCE INVENTORY

AND SHELF SPACE ALLOCATION

6.1 Introduction

The profit on general foods, such as cans, frozen vegetables, fruit juices, etc., is

gradually decreasing due to highly competitive retail conditions. The demand for

these products is also slowing. On the other hand, the demand for some other

merchandise, such as fresh produce, organic food and children clothes, has increased

dramatically owing to improving living standards (Johnson, 2002). This requires

retailers to concentrate more in these areas. This chapter considers an inventory

control and shelf space allocation problem specifically for fresh produce, such as

vegetables, fruits, fresh meats, etc. The main characteristics of fresh items are their

very short shelf-life and decaying utilities (or freshness) over time.

Most of the literature treats fresh produce as deteriorating items with a random

lifetime and non-decaying utilities (Nahmias, 1982; Goyal and Giri, 2001). In this

research, we assume that the shelf-life of product has a continuous utility and

physically deteriorates over time. Freshness is one of the main criteria in evaluating a

product’s quality and could dramatically affect its demand if its condition is inferior.

To obtain a good financial performance from fresh goods, it requires the adoption of

strict temperature control and intelligent inventory and shelf management systems.

Furthermore, although a large number of deteriorating inventory models have been

proposed in previous research, most of them are based on the analysis of a single-

item, without the constraints of shelf space which arise when considering a range of

goods. There is no work in the literature which has integrated a deteriorating

inventory model with a shelf space allocation model (which plays a very important

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

135

role in retail decision making due to the scarcity of shelf resources). In this chapter,

we formulate a fresh produce management model which can simultaneously decide

the ordering policy and allocate shelf space among different items, together with

consideration of utility deterioration. Some properties of the model are concluded

which could significantly reduce the search space. A generalised reduced gradient

algorithm (GRG) is proposed and extended in order to optimise this problem. Finally,

the results on a numerical example are provided. Since the GRG algorithm may not

be efficient for larger problem instances, in chapter 7, we shall investigate heuristic

and meta-heuristic approaches for the optimisation of this problem. The main content

of this chapter is drawn from (Bai and Kendall, 2005a).

6.2 Drawbacks of the Previous Models

Perishable inventory has been intensively studied and a large number of models

have been proposed in the literature. See (Nahmias, 1982; Raafat, 1991; Goyal and

Giri, 2001) for comprehensive reviews. However, most models assume that a fixed

fraction of the inventory deteriorates completely over time but the utilities of the

items do not decay before their expiration dates. Few models specifically consider

the fresh produce with the characteristics we mentioned in section 6.1. In summary,

these models have the following drawbacks:

1) Most models (Liu, 1990; Jain and Silver, 1994) assume that fresh produce,

such as vegetables, fruit and fresh meat, have a random lifetime (normally

assuming an exponentially distributed lifetime). However, an item’s utilities do

not decay over time. Hence different ages of items capture the same demand

however fresh they are as long as they are not completely spoilt. This is

contradictory to the common sense view as freshness is one of the most

important qualities for fresh produce.

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

136

2) Some models (Mandal and Phaujdar, 1989; Giri et al., 1996) formulate the

demand as a deterministic function of instantaneous inventory with the

assumption that all stock could be displayed on the shelves. However, this

situation seldom occurs in most supermarkets because the shelf space for fresh

food is normally limited. It is also expensive due to the low temperature

requirements. Therefore, only a part of the inventory can be displayed on the

shelf. Shelf space allocation among different items is especially important in

this situation. The significance of shelf space allocation for non-perishable

merchandise has already been well addressed in previous research (Kotzan and

Evanson, 1969; Curhan, 1972; Borin et al., 1994; Urban, 1998; Yang and Chen,

1999; Bai and Kendall, 2005).

3) The approaches that were used to optimise the models (Ben-Daya and Raouf,

1993; Kar et al., 2001) disregarded the integer nature of the solution and

assumed that the objective function is a quasi-concave function and is

differentiable. The last assumption is usually too strict for problems which

involve many constraints.

Different deteriorating inventory models have been classified into two types in the

literature: fixed lifetime models and random lifetime models. Examples of fixed

lifetime models include photographic film, medicine, computer chips, canned food,

etc. A major characteristic of this type of model is that inventory control caters for

different ages of items with either a First-In-First-Out (FIFO) or Last-In-First-Out

(LIFO) issuing policy (Nandakumar and Morton, 1990; Liu and Lian, 1999).

However, fresh produce was usually treated as a typical example of a random

lifetime product due to uncertain spoilage (Liu, 1990; Jain and Silver, 1994). These

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

137

models usually assumed a constant fraction of inventory decay or obsolescence over

time (called exponential decay in some publications).

Since fresh produce only has a very limited shelf life, most of the literature

employed a single-period inventory model although different forms of demand

function are used. Both stochastic and deterministic demand inventory models have

been proposed for the perishable products. Ben-Daya and Raouf (Ben-Daya and

Raouf, 1993) proposed a multi-item, single-period perishable inventory model with a

uniform distribution demand. The objective was to maximise the total profit of all the

items during one period. The “optimal” solution was calculated by a Lagrangean

optimisation with the assumption that the objective is differentiable. The integer

nature of the variables was also disregarded. Furthermore, the method is not efficient

when there are a large number of constraints.

Rajan et al. (Rajan et al., 1992) proposed a dynamic pricing and ordering decision

making model for decaying produce, in which the demand was assumed to be

deterministic and dependent on the selling price. The products were assumed to have

an exponential deterioration. Abad (Abad, 1996) also formulated the demand

function as a function of instantaneous price. A closed-form mathematical procedure

was carried out to solve the problem and parameter sensitivities were analysed.

However, the approach is heavily dependent on the mathematical description of the

model so that even adding a single constraint could result in this approach becoming

invalid.

Some other models formulated the demand as a deterministic function of

instantaneous inventory. Mandal and Phaujdar (Mandal and Phaujdar, 1989)

formulated a single-period inventory model for deteriorating items. The demand rate

was linearly dependent on the instantaneous inventory level and the inventory

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

138

deteriorated according to a given function. Backordering was allowed and holding

and shortage costs were also considered in the model. The objective was to minimise

the average cost. The model was optimised by applying the derivative to the

objective function. The variables included the time slots for different inventory

stages and maximal stock level and maximal stock deficit. Giri et al. (Giri et al., 1996)

formulated the demand as a polynomial function of instantaneous inventory in their

perishable inventory model which also assumed an exponential decay. The objective

was to maximise the profit, with order quantity and reorder point (or cycle time) as

decision variables. Some time-dependent demand functions were also proposed in

deteriorating inventory models to describe changing demand over time. Xu and

Wang (Xu and Wang, 1990) assumed a linear time-dependent demand function

within a limited time horizon. Exponentially time-dependent demand was also

proposed to simulate a rapidly increasing/declining market (Hollier and Mak, 1983;

Zhou et al., 2003). Yet Urban and Baker (Urban and Baker, 1997) used a

multiplicative demand function of price, time and inventory level in their single-

period inventory model with the aim of finding optimal ordering and pricing policies

for non-perishable products.

The first research to consider the effect of utility deterioration on demand is

(Fujiwara and Perera, 1993) in their formulation of an Economic Order Quantity

(EOQ) perishable inventory model. In this publication, an exponential penalty

function (1) (0, 0)teβα α β− > > was used to measure the cost of keeping an aging

item in inventory. A closed form of economic order quantities was obtained by a

quadratic approximation of exponential terms. The results show that this model is

consistent with other EOQ models with exponential decay. Sarker et al. (Sarker et al.,

1997) also attempted to incorporate the negative effect of aging inventory on demand.

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

139

In their production-inventory model, the demand function in the inventory build-up

phase and depletion phase considered a constant term and a negative term which is

proportional to instantaneous inventory (i.e. () ()f t D I tβ= − , where ()f t is the

demand function, 0β > , D is the constant demand and I(t) is the instantaneous

inventory level). However, illogically, the demand during the inventory depletion

phase is actually an increasing function due to the continuous decrease of the

inventory I(t) over time. This contradicts the authors’ initial intention to represent a

declining demand with aging inventory.

Almost all of the models described above only considered a single item without

any constraints being included. The optimal solution was normally obtained by some

mathematical derivations. Recently, researchers have begun to incorporate the shelf

space allocation technologies into their inventory systems. Kar (Kar et al., 2001)

proposed a single-period inventory model for multi-deteriorating items with the

constraints of shelf space and investment. The problem considers selling the

deteriorating items from two stores. At the beginning of the period the ordered items

are separated into fresh items and items that have begun to deteriorate. The fresh

items are shipped to the main store, selling with a high price and the deteriorating

items are delivered to the second store and sold at a lower price. During the period

all decayed items in the main store are retained and delivered to the second store.

The demand rate in the first store was formulated as a function of the item selling

price and instantaneous inventory. However, the demand in the second store was

only dependent on the selling price. A generalised reduced gradient (GRG) method

was used to optimise the model. However, as stated in (Lasdon et al., 1978), GRG

may not be efficient or robust for larger problem sizes and can only guarantee a local

optimum. Besides, the assumption of non-integer variables and a differentiable

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

140

objective function are the major drawbacks of this approach in solving many NP-

Hard problems with integer variables. Hence, some meta-heuristic approaches

(Glover and Kochenberger, 2003) have been introduced to optimise these models.

Borin et al. (Borin et al., 1994) used a simulated annealing approach to solve a

product assortment and shelf space allocation problem. Genetic algorithms were

employed in Urban’s publication (Urban, 1998) to solve an integrated product

assortment, inventory and shelf space allocation model.

6.3 Model Formulation

Instead of assuming that fresh food has a random lifetime with an exponential

decay, in this research it is assumed that the demand for the fresh produce is

deterministic and is both dependent on the displayed inventory level and the

freshness of the goods. The freshness condition decreases according to a known

function over time. The main difference between these two assumptions is that the

former assumes that all items that have not yet deteriorated capture the same demand

however fresh they are. This may sound reasonable for long lifetime perishable items

(like photographic film and medicine) but is unrealistic for fresh produce as

freshness is one of the most important aspects in evaluating their quality. In this

research all fresh items are assumed to have a fixed, but very short, lifetime and will

not entirely lose utilities before their expiration date. However, freshness keeps

deceasing over time, which has an effect on demand. It should be noted that the

assumption of a fixed lifetime of fresh produce, with decreasing utilities is realistic

considering the advances in food planting, packing and conservation technologies,

especially the introduction of temperature control systems in most supermarkets.

The following notations are used in our model:

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

141

− ()iD t is the demand function of item i over time t.

− ()if t is a decreasing function (within the range of [0,1]), representing the

freshness condition of item i over time. A larger value indicates a higher

level of freshness.

− ()iI t is the inventory level of the stock at time t.

− iq is the procurement quantity of item i.

− is is the number of the facings assigned to item i.

− ir is the surplus of item i at the end of the cycle.

− W is the total shelf space available.

− ia is the space required for one facing of item i.

− ip is the unit selling price of item i.

− dip is the unit discount price of item i. This price should be low enough

such that all of the remaining items at the end of period can be sold very

quickly at this price.

− aic is the unit acquisition cost of item i.

− hic is the unit holding cost of item i (including the costs caused by inventory

loses, damage, maintenance, interest, insurance, etc.).

− sc is the shelf cost per unit space.

− Coi is the constant order cost of item i (independent of the order quantity iq).

− eiT is the lifetime of item i after which the item is rotten (i.e. cannot be sold).

− Li is the lower bound of the number of facings of item i.

− Ui is the lower bound of the number of facings of item i.

− iT is the length of the cycle period of item i.

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

142

Many researchers (Kar et al., 2001; Urban, 2002) use the function depicted in

figure 6-1 to describe the change of inventory level over time t. From time 0 to t1i, si

facings of item i are displayed on the shelf with some of stock stored in the

backroom. As sales are made, the items in the backroom are moved to the shelf until

stock in the backroom reaches zero (corresponding to the point when time reaches

t1i). Therefore, during this period, the shelf is fully stocked and the demand is only a

function of product freshness. From time t1i to t2i, the shelf is only partly stocked and

Figure 6-1: Graphical representation of inventory level changes over time

the demand is both dependent on the freshness and the instantaneous inventory level.

Once the time reaches point Ti, a new order of quantity qi is placed for item i

(assuming no lead time) and the r i surplus of item i are sold at a discount price pdi. In

this research, we will adopt this representation together with a polynomial demand

function that is widely used in many shelf space allocation models (Corstjens and

Doyle, 1981b; Giri et al., 1996; Urban and Baker, 1997; Urban, 1998):

 1*

1 2

 0
()

[()]

i

i

i i i
i

i i i i

s t t
D t

I t t t t

β

β

α
α

 ≤ ≤=
< ≤

 (6-1)

t

I i(t)
qi

si

r i

Ti t1i t2i 0

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

143

where iα and iβ are scale parameter and the space elasticity of item i respectively

and 0, 0< 1i iα β> < . In this research, we assume that the demand function conforms

to a multiplicative form of the instantaneous inventory and the item’s freshness

condition, i.e. *() () ()i i iD t D t f t= ⋅ where ()if t is a continuously decreasing function

over time and 0 () 1if t≤ ≤ . ()if t could be a linear, quadratic or an exponential

function of time. During the beginning of the period, the items are fresh and the

value of freshness function is almost 1. The demand rate is only affected by the

displayed inventory level. However, as time elapses, ()if t gradually decreases and

the demand is scaled down according to how long an item has been kept in inventory.

To be consistent with the exponential decay assumption in the literature, here, we

assume that the item’s freshness condition decreases exponentially over time, i.e.

() it
if t e σ−= , where iσ is a constant decay rate and >0iσ . Hence we have:

 1*

1 2

 0
() () ()

[()]

i i

i i

t
i i i

i i i t
i i i i

s e t t
D t D t f t

I t e t t t

β σ

β σ

α
α

−

−

 ≤ ≤= ⋅ =
< ≤

 (6-2)

Based on the assumptions above, the inventory level of item i can be described by

the following differential equation:

() / ()i idI t dt D t= − (6-3)

During time [0, t1i], we have

 () / i i t
i i idI t dt s eβ σα −= − (6-4)

with the boundary conditions (0)i iI q= and 1()i i iI t s= . The solution of eq. (6-4) is:

 () (1)
i

i ti i
i i

i

s
I t q e

β
σα

σ
−= + − (6-5)

and

 1

()1
ln(1)

i

i i i
i

i i i

q s
t

sβ
σ

σ α
−= − − (6-6)

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

144

During time [t1i, t2i], we have the following differential equation:

 () / [()] i i t
i i idI t dt I t eβ σα −= − ⋅ (6-7)

with the boundary conditions 1()i i iI t s= and 2() 0i iI t = . The solution of eq. (6-7) is:

1

(1)(1)
() [] i iti i

i i
i

I t e Kσ βα β
σ

− −−= + (6-8)

and

2

(())1
ln(1)

(1) i

i i i i i
i

i i i i

q q s
t

sβ
β σ

σ α β
− −= − −

−
 (6-9)

where [()] i
i i i i i i iK q q s sββ µ−= − − − and

(1)i i
i

i

α βµ
σ
−= .

In general, we have the following inventory function:

1

1

(1)
1 2

(1) 0
()

[]

i

i

i i

ti i
i i

i
i

t
i i i i

s
q e t t

I t

e K t t t

β
σ

σ β

α
σ

µ

−

− −

+ − ≤ ≤=

+ < ≤

 (6-10)

The length of cycle period Ti (()i i iI T r=) is:

 (1)1 1
ln ()i

i i i
i i

T r Kβ

σ µ
−

= − −

 (6-11)

The holding cost during [0, t1i] is:

1
1

1 1 20
((1)) [() (1)]

i i i
i

i i i
t t ti i i i i i

i hi i hi i i
i i i

s s s
HC c q e dt c q t e

β β β
σ σα α α

σ σ σ
− −= + − = − + −∫

 (6-12)

The holding cost during [t1i, Ti] is:

1

1
(1)

2 ([])
i

i i

i

T t
i hi i it

HC c e K dtσ βµ − −= +∫ (6-13)

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

145

The approximate expression of 2iHC can be calculated as follows. Denote

1

(1)() []i it
i iy t e Kσ βµ − −= + . Divide range [t1i, Ti] into k identical ranges by point x0= t1i, x1,

x2,…, xk= Ti. We have:

1

1

(1)
2

1
0 1 1

([])

() 1
 [(() ()) () ... ()].

2

i
i i

i

T t
i hi i it

hi i i
k k

HC c e K dt

c T t
y x y x y x y x

k

σ βµ − −

−

= +

−≈ + + + +

∫

However, calculation results show that this part is very small and a simpler form

is used in this thesis (using () / 2i is r+ as an approximation of average inventory

during [t1i, Ti]):

 2 1()() / 2i hi i i i iHC c s r T t≈ + − (6-14)

Therefore, the average profit of item i per unit time being the total income less any

costs involved divided by the time of the period, we have:

1 2

1
(, ,) [()]i i i i i i i di i ai i oi i i s i i

i

M s q r p q r p r c q C HC HC c s a
T

= − + − − − − − (6-15)

The objective is to maximise the overall profit of all items during the unit time:

1
max (, ,)

n

i i i ii
M M s q r

=
=∑ (6-16)

subject to:

1

n

i ii
s a W

=
≤∑ (6-17)

 1,2,...,i i iL s U i n≤ ≤ = (6-18)

 1,2,...,i i ir s q i n≤ ≤ = (6-19)

 1,2,...,i ir q i n< = (6-20)

0 1,2,...,i eiT T i n< ≤ = (6-21)

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

146

, {1,2,3,...} 1,2,...,i is q i n∈ = (6-22)

{0,1,2,...} 1,2,...,ir i n∈ = (6-23)

The decision variables are shelf space, order quantity and the amount of surplus at

the end of the cycle. Constraint (6-17) ensures that the total shelf space allocated to

each item is no more than the total available shelf space. Constraint (6-18) makes

sure that the space allocated to each item must be within an upper and a lower bound.

Constraint (6-19) ensures that the order quantity of each item must be no less than

the shelf displayed quantity which itself should be greater than the number of surplus.

Constraint (6-20) makes sure the order quantity is larger than surplus. Constraint

(6-21) ensures that the length of the period iT is non-zero and less than the product

validity period. Constraint (6-22) and (6-23) ensures that the number of facings,

order quantity and the number of surplus are integers. The model is a non-linear

combinatorial optimisation problem and is difficult to optimise by utilising

conventional mathematical approaches.

Suppose we have n products, the total number of variables is 3 n× . From the

model, we have the upper and lower bound of variables r i (0 i ir s< ≤) and si

(i i iL s U< ≤) and lower bound of qi (i iq s≥). The upper bounds of qi can be obtained

from constraint (6-21). Since

(1)1 1
ln ()i

i i i ei
i i

T r K Tβ

σ µ
−

= − − ≤

 (6-24)

we have

(1)1

(1) (1)
i i i i ei iTi i i

i i i i i i
i i i i

q r s s s e sβ β β σ βα β α
β σ β σ

− −≤ + − −
− −

 (6-25)

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

147

Let x represents the largest integer no greater than value x, the upper bound of

order quantity ub
iq is

(1)1

(1) (1)
i i i i ei iTub i i i

i i i i i i
i i i i

q r s s s e sβ β β σ βα β α
β σ β σ

− −
= + − − − −

 (6-26)

An interesting derivation of the model is that inventory depletes exponentially

over time (see eq.(6-10)), which is consistent with the exponential decay models in

the literature. In addition, when 0iσ → , 1i t
ie tσ σ− → − , the inventory function

becomes the same polynomial function derived in (Urban, 2002).

A further analysis of the model gives the following theorem:

Theorem: For given values of si (i i iL s U< ≤ ,1 i n≤ ≤), the model (6-16) can be

decomposed into n sub-problems with each sub-problem corresponding to optimising

function (6-15) subject to the constraints (6-19, 6-20, 6-21, 6-22, 6-23).

Proof: For a fixed value of si (i i iL s U< ≤ ,1 i n≤ ≤), the constraints (6-17, 6-18)

can be ignored and the maximal profit of ith item (denoted by *
iM) is independent of

the decision variables of other items. Therefore, the optimal value of M (denoted by

*M) is equal to the sum of the optimal value of Mi, i.e. * *

1

n

ii
M M

=
=∑ .

The theorem means that if the shelf space allocation decisions are made, the

problem can be solved by independently searching for a pair of optimal order

quantity (qi) and surplus (r i) for each item i (1 i n≤ ≤). As mentioned above, both

variables have a lower bound and an upper bound. A simple way to achieve this is to

carry out an exhaustive search, whose computational complexity is ()ub
i iO q s . The

complexity for solving an n-item problem is ().ub
i iO nq s Some mathematical

approaches (binary search and the Newton method for example) may be more

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

148

efficient if the function (6-15) can be proven to be a unimodal function. However,

this is very difficult due to the complexity of the function.

By the theorem, we can reduce the size of the problem search space significantly.

The original problem model (6-16) has a search space of a 3n× dimensional vector

where n is the number of the items. However, with the theorem, the problem can be

decomposed into two sub-problems: the first sub-problem aims to optimise n shelf

space allocation variables (si). The second sub-problem is to search for the optimal

values of ordering quantity (qi) and surplus (r i), for the given space allocation

decisions made in the first sub-problem. Because the second sub-problem can be

efficiently accomplished within a polynomial computational time, the search space is

cut down to searching for a set of shelf space allocation decisions si in order to

maximise the total profit. Once the shelf space allocation variables are decided, the

corresponding optimal order quality and surplus can be decided efficiently. In this

sense, the problem can be deemed as a nonlinear bounded knapsack problem.

However, even though the size of the problem search space can be decreased

substantially and the model can be reduced to a nonlinear bounded knapsack problem,

the problem is still NP-Hard (Bretthauer and Shetty, 2002). A generalised reduced

gradient (GRG) algorithm was initially modified and developed to optimise the

problem, which we describe in the next section.

6.4 A GRG Based Solution Procedure For the Problem

We initially used a generalised reduced gradient (GRG) algorithm to optimise the

model. The GRG algorithm has been shown to be efficient in solving non-linear

programming problems with smooth objective functions and its applications in

optimising the inventory and shelf space allocation model include (Urban, 1998; Kar

et al., 2001), with good results being reported.

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

149

Set MaxIter;
Set iter = 0;
Loop

//Initialisation sub-procedure
For each item i (1 i n≤ ≤) set i is L= , i iq s= , 0ir = ;
 Loop

Select a random item j;
1j js s= + ;

Until no more facings can be added without violating the space
constraint (6-17);

For each item i
Find the optimal values of qi and r i;

Output solution 0(, ,)i i iS q s r

//GRG calling sub-procedure
S’=Solver(S0);

//Solution repair sub-procedure
Round every is , iq , ir (1 i n≤ ≤) in S’ to their nearest integers
While space constraint (6-17) is violated

Rank the items by their unit space profit value /()i i iM a s ;
Delete one facing of the item with the smallest unit space profit
value (if this operation causes a constraint violation, the next item
in the ranking list is considered);

 Loop
If free shelf space > the size of the smallest item

Repeat
Rank the items by their unit space profit value /()i i iM a s ;
Add one facing of the item with the largest unit space profit
value (the next item in the ranking list is considered if the
operation results in a constraint violation);

Until no more facings can be added without violating the space
constraint (6-17);

Endif
For each item i (1 i n≤ ≤)

Find the optimal values of qi and r i;
 Endfor
Remember the best solution (Sbest) found so far;
iter++;

Until iter = MaxIter;
Output Sbest;

Figure 6-2: Pseudo code of the multi-start GRG algorithm

The GRG algorithm is imbedded in many spreadsheet software packages. The one

we used is called Solver, which is included in Microsoft Excel 2002. The GRG

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

150

algorithm has two major drawbacks: 1. it can only solve continuous-variable models.

Although the package included in Microsoft Excel 2002 can deal with integer

variables, it takes too long for the search to converge (1800 seconds of computation

time is needed even for a problem with 6 items, running on a PC with Pentium IV

1.8GHZ and 256MB RAM. For a problem with 18 products, the algorithm does not

converge even after one hour). 2. GRG usually only gives a local optimum which is

closest to the initial solution. Some preliminary experiments showed that, if the

initial solution is not carefully chosen, GRG performs very badly. To solve these

shortcomings, in this application, we used a multi-start GRG algorithm together with

a solution repair heuristic to optimise the model. The multi-start search could prevent

GRG from getting stuck at a local optimum and the repair heuristic is to recover the

solution feasibility. Each run of the algorithm can be divided into three sub-

procedures: initialisation, calling GRG and solution repair, described as in figure 6-2.

To prevent the GRG getting stuck at a local optimum, MaxIter runs of GRG were

executed starting from different initial states (solutions) and the best solution was

outputted as the final solution. In this application, we set MaxIter = 5 after some

preliminary experiments considered both algorithmic performance and the required

computational time. The initialisation sub-procedure was used to generate a set of

diverse solutions that can be used by GRG. Note that because GRG is only efficient

in handling continuous variables, a relaxed model (ignoring integer constraints (6-22)

and (6-23)) was input into the Excel. Therefore, the solution output by GRG is not

feasible. The solution repair sub-procedure was used to recover the feasibility of the

solution and further improve it by using a simple local search method described in

figure 6-2 (several other rounding heuristics were tried and the one presented in this

chapter generally performs best across the five problem instances we tested). All

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

151

results were averaged over ten runs on a PC with a Pentium IV 1.8GHZ CPU and

256MB RAM, running Microsoft Windows 2000 professional Version 5.

Table 6-1: Parameters of a numerical example

Item ai pi cai chi pdi Co Įi ȕi ıi

1 0.028 5.03 2.46 0.19 1.23 34.3 28.53 0.1532 0.06

2 0.061 9.37 5.67 0.20 2.84 48.9 23.62 0.2273 0.07

3 0.025 5.10 2.70 0.26 1.35 35.6 25.59 0.2089 0.06

4 0.060 11.48 6.11 0.16 3.06 47.9 22.40 0.2143 0.04

5 0.036 6.74 3.53 0.30 1.77 33.9 15.62 0.2955 0.03

6 0.033 5.97 3.41 0.27 1.71 39.1 10.50 0.3104 0.03

 W=0.608(m2), cs=5.0(pounds/m2/unit time), Li =1, Ui =12, Tei =7(days)

Table 6-2: Solutions of the numerical example

 Solution by GRG Optimal Solution

Item qi si ri Ti qi si ri Ti

1 83 3 0 2.68 81 2 0 2.78

2 78 2 0 3.17 78 2 0 3.17

3 77 3 0 2.61 77 3 0 2.61

4 88 3 0 3.35 88 3 0 3.35

5 64 3 0 3.17 64 3 0 3.17

6 50 1 0 5.19 56 2 0 4.68

Objective 347.45 347.58

6.5 A Numerical Example

To allow a better understanding of the model and the solution procedure described

above, a numerical example with 6 items was generated (denoted by BORIN94/6).

The problem scale parameters (Įi) and space elasticities (ȕi) are taken from (Borin et

al., 1994) and the other parameters are listed in table 6-1. The GRG algorithm

described in section 6.4 was run 10 times with different initial random solutions. The

algorithm consistently returned the same solution which is shown in table 6-2. For

the purpose of an comparison, an exhaustive search was also carried out to get an

optimal solution which is listed in table 6-2. It can be seen that for this numerical

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

152

example, the solution obtained by GRG is very close to the optimal solution. The

relative deviation from optimality is only 0.04% (
347.58 347.45

100%
347.58

− ⋅).

6.6 Summary and Remarks

In this chapter, a practical single-period inventory and shelf space allocation

model has been proposed for fresh produce. Integrating an inventory model and shelf

space allocation model is necessary because of the close relationship between

inventory control and shelf space allocation. Many previous inventory models

assume that the entire inventory can be displayed on the shelf. However, this is not

practical because the shelf space for displaying fresh food is a very expensive

resource and most retailers can only display part of the inventory on the shelf, with

the rest being stored in the back room. Therefore, an inventory model should

consider the availability of the shelf space. On the other hand, because the fresh

produce only has limited shelf lifetime, it is necessary that all products should be

sold out before their expiry dates. The shelf space allocation decisions should also

consider the amount of the inventory and allocate more space to those products that

have bigger inventories.

The second practicality of the model proposed in this chapter lies in the fact that

our model introduces the freshness condition as a factor that could influence the

demand of fresh produce. The freshness condition is continuously decreasing over

time due to the utility decay associated with fresh produce. This is in contrast with

existing fresh produce inventory models in the literature that usually assume that

fresh produce has a random lifetime (normally assuming an exponentially distributed

lifetime) and that item utilities do not decay over time.

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

153

In the proposed model, the demand for a fresh item is assumed to be deterministic

and conforms to a multiplicative form of the displayed stock-level and items’

freshness condition. The items’ freshness condition is assumed to drop exponentially

over time but could still capture some demand. Unlike other research, the proposed

model considers the integer nature of the solution.

Some properties of the model have been analysed. It has been found that given a

shelf space allocation decision si, the inventory control variables qi and r i can be

optimised to optimality. Therefore, although the original problem model (6-16) has a

search space of a 3n× dimensional vector where n is the number of the items, this

search space can be reduced significantly by decomposing the problem using a two-

step procedure: searching for a combination of shelf space allocation decisions and

searching for the corresponding inventory variables for a given shelf space allocation

decision obtained in the first step. The problem in the first step is similar to a non-

linear bounded knapsack problem, which is still NP-Hard. For the problem in the

second step, there exists at least one method that can solve it to optimality bounded

by the time complexity of ()ub
i iO q s .

Because the problem in the first step is still NP-Hard, it is normally unrealistic to

obtain the optimum of the model in reasonable computational time. A generalised

reduced gradient (GRG) algorithm imbedded in Microsoft Excel 2002 Solver was

used to optimise the model. To prevent GRG from getting stuck at local optima, the

GRG algorithm was run several times from different initial points and the best

solution was taken as the final solution. A post-procedure heuristic was also used to

recover the feasibility of the solution. Finally a numerical example was given to

allow readers a better understanding of the model and the solution procedure.

Chapter6 Managing Fresh Produce Inventory and Shelf Space Allocation

154

Although the multi-start GRG algorithm can produce good quality solutions, it may

not be efficient when dealing with larger problem instances.

In the next chapter we will investigate several heuristic and meta-heuristic

approaches for this problem. A set of larger sizes of problem data sets will be

generated and the computational performance of the different algorithms will be

evaluated and compared for these data sets.

Chapter 7 Optimisation of Fresh Produce Inventory and Shelf Space Allocation

155

CHAPTER 7. HEURISTICS AND META-HEURISTICS FOR

THE FRESH PRODUCE INVENTORY CONTROL

AND SHELF SPACE ALLOCATION PROBLEM

7.1 Introduction

In chapter 6, we formulated a practical shelf space allocation and inventory

control model for the retail of fresh produce. The decision variables are the displayed

facings si, order quantity qi and the amount of surplus r i for each item i. For an n-item

problem, the total number of variables is 3 n× . Further analysis of the model has

shown that this search space can be reduced by decomposing the problem into a

nonlinear bounded knapsack problem and a problem that can be solved by a

polynomial time bounded algorithm (see section 6.3). A multi-start GRG algorithm

was used to optimise the model. However, due to the NP-Hard nature of the

nonlinear knapsack problem (Bretthauer and Shetty, 2002), GRG algorithm may not

be efficient for large sizes of problem instances. Therefore, in this chapter, several

heuristic and meta-heuristic approaches are investigated and compared for five

problem instances. This chapter is mainly drawn from (Bai and Kendall, 2005d).

7.2 Test data sets

Although the numerical example in chapter 6 is helpful in understanding the

model and testing the performance of the solution procedure, it is necessary to test

the algorithm over larger problem instances. For this purpose, we created four larger

benchmark problem instances using the parameters in table 7-1 (denoted by FRESH2,

FRESH3, FRESH4 and FRESH5 respectively). The problem size ranges from 18 to

Chapter 7 Optimisation of Fresh Produce Inventory and Shelf Space Allocation

156

64 products. Those data sets can be downloaded from

http://www.cs.nott.ac.uk/~gxk/research/.

Table 7-1: Parameters for generating problem instances

Parameters Values Parameters Values

n 18/32/49/64 Li 1

Įi U(10, 30) Ui 12

ȕi U(0.15, 0.3) pdi 0.5cai

ıi U(0.03, 0.1) cs 5.0 pounds/m2/day

ai U(0.01,0.09) m2 Co U(30, 50) pounds

cai N(100ai, 0.4) pounds Tei 7 days

pi N(1.8cai, 0.4) pounds W 2.5* minSpace

chi U(0.1,0.3) pounds

U(a, b): Uniform Distribution N(c, d): Normal Distribution
minSpace: the minimal space needed to satisfy products’ minimal facings requirement

7.3 Optimisation of the Single-item Inventory

As illustrated in the previous chapter, given a set of shelf space allocation

decisions si (1 i n≤ ≤) that satisfy the constraint (6-17), the optimal values of qi and

r i of item i (1 i n≤ ≤) can be independently obtained by an exhaustive search with

polynomial computational time. Further study of the model indicates that this

exhaustive search procedure can be improved upon.

Let us firstly consider a single-item problem: for a given shelf space decision s,

the problem is to search for a pair of order quantity and the amount of surplus (q and

r) such that the unit space profit function (eq. 6-15) is maximised, subject to the

constraints (6-19)-(6-23). Although no evidence has proven that function (6-15) is a

unimodal function with respect to q, s and r, all of our experiments have shown this

property. Figure 7-1 and figure 7-2 illustrates the relationships between the profit

function (6-15) and the decision variables q, s and r. It can be seen that the profit

function (6-15) has only one maximal value. The figures also show the sensitivity of

profit function over the decision variables. From the figures, it can be seen that the

profit function is more sensitive to the changes of facings s than order quantity q and

Chapter 7 Optimisation of Fresh Produce Inventory and Shelf Space Allocation

157

surplus quantity r. This suggests that retailers should decide more carefully about

displayed facings. A bad decision could result in a massive profit loss.

2 8

14 20

10

35
60

85
110

135

-40.00

-20.00

0.00

20.00

40.00

profit M

facings s

order quantity q

20.00-40.00

0.00-20.00

-20.00-0.00

-40.00--20.00

Figure 7-1: Graphic representation of an item’s profit function with respect to facings s and

order quantity q (surplus r = 0)

2 4 6 8 10 12 14 16 18 20
0

3

619.00

23.00

27.00

31.00

35.00

profit M

facings s
surplus

r

31.00-35.00

27.00-31.00

23.00-27.00

19.00-23.00

Figure 7-2: Graphic representation of an item’s profit function with respect to facings s

and surplus r (order quantity q = 90)

Chapter 7 Optimisation of Fresh Produce Inventory and Shelf Space Allocation

158

Figure 7-1 and figure 7-2 also show that the profit function (6-15) changes

smoothly with the change of q, s and r. This encourages us to search for more

efficient search methods. Generally, the Newton method can be used to achieve the

optimal solution. However, because function (6-15) has a very complex form and no

explicit expressions of derivatives can be obtained, it is very difficult to employ the

Newton method in this case. Alternatively, a binary search was used in this research

to get the optimal value of order quantity q. Meanwhile because r is relatively small

(in most UK supermarkets, the number of facings of an item s is generally less than

12 and r<s), an enumeration method was used in the search for the optimal value of r.

Input s’;
Set ', 0, 0, , 0.001;opt opt opts s q r M ε= = = =−∞ =

 For each r=0 to s
Set lq s= ;

Set ub
rq q= ;

Calculate (, ,)l lM q s r and (, ,)r rM q s r ;

While (1r lq q− >)

 () / 2l rq q q= + ;

 Calculate (, ,)M q s r ;

 If ((, ,)M q s r Mε ε− − <)

 ; ;l lq q M M= =

 Else
 ; ;r rq q M M= =

 Endif
 Loop
 If (l rM M<)

 '
opt rq q= , '

opt rM M= ;

 Else
 '

opt lq q= , '
opt lM M= ;

 Endif
 If('

opt optM M<)

 ' ' , , opt opt opt opt optq q r r M M= = = ;

 Endif
Endfor
Output optq , optr ;

Figure 7-3: The pseudo code of the procedure proc_qr(s')

Chapter 7 Optimisation of Fresh Produce Inventory and Shelf Space Allocation

159

Figure 7-5 presents the pseudo code for the binary search algorithm which, for

simplicity, is denoted by proc_qr(s’). Suppose the shelf space allocated to an item is

s’, for each possible value of r, a lower bound and an upper bound of q were

calculated from inequalities (6-19) and (6-25) (denoted by ql and qr respectively).

The algorithm then divides the range [ql, qr] into two equal parts (i.e. () / 2l rq q q= +)

and checks in which half the optimal order quantity '
optq lies. If '

optq lies in the left

half, it sets qr =q, otherwise it sets ql =q. This process is repeated until the length of

the range [ql, qr] decreases to 1 and the optimal order quantity '
optq is one of range

boundaries (i.e. ql or qr). The total number of iterations of this procedure is no more

than 2' log
ubqs where upq is the upper bound of order quantity. Because it is difficult

to calculate the derivative of function (6-15), we used the method below to determine

on which side the optimal order quantity '
optq lies. Denote M as the profit when order

quantity is q and M ε− the profit when we decrease q by a very small value ε (see

figures 7-3 and 7-4). If lM Mε− > ,
'
optq is at left side of q, otherwise, '

optq is at right

side of q.

Figure 7-4: The relationship between order quantity and its unit time profit function (q>qopt)

qopt ql q-İ qr q=(ql+qr)/2

M Mε− >

Order quantity q

P
ro

fi
t

case 1: q > qopt

Chapter 7 Optimisation of Fresh Produce Inventory and Shelf Space Allocation

160

Figure 7-5: The relationship between order quantity and its unit time profit function (q<qopt)

7.4 Greedy Heuristics for the Problem

In section 7.3, we have developed a sub-procedure proc_qr(s’) to obtain the

optimal solution for a single-item inventory problem, with constant shelf space s’

being allocated to the item. In this section, we shall consider the original problem

(model (6-16)) where there are multiple items in the inventory with limited shelf

space resources to display them. The items have to compete against each other for

the shelf space such that the total profit is maximised. Once the amount of shelf

space allocated to each item is determined, the procedure proc_qr(s’) can be applied

to every item to find the corresponding optimal order quantity and the number of

surplus. There could be many ways to allocate shelf space among items. A common

sense rule to accomplish this would be to allocate shelf space in favour of more

profitable items. The problem, in fact, degenerates into a problem similar to a

bounded knapsack problem. However, it is also different. In the knapsack problem

(see section 2.3.2), the profits of the items are constants and therefore each item’s

unit-space profit (i.e. profit/space) is constant as well. However, the space allocation

problem in this research is much more difficult because the unit-space profit of every

qopt q

M Mε− <

Order
P

ro
fi

t

case 2: q < qopt

q=(ql+qr)/2

Chapter 7 Optimisation of Fresh Produce Inventory and Shelf Space Allocation

161

item is changing with the change of allocated shelf space. This chapter introduces

four greedy heuristics for this problem.

Figure 7-6: The graphic illustration of the greedy algorithms

Figure 7-6 shows the basic idea behind the algorithms. For a given amount of

shelf space, each item is an intelligent entity optimising its own inventory variables

(q and r) using the procedure proc_qr(s’). However, with the limited shelf space

resources, these items have to compete and cooperate with each other such that the

total profit of these items is maximised. Items that make less profit per unit shelf

space must release part of their space to those which could make more profit if given

more shelf space. Two functions were used to rank the profitability of different items

with respect to the shelf space (denoted by C1 and C2 respectively). The first function

is an item’s unit space profitability, defined by 1 () /()i i i iC M s a s= . The second

function is defined by 2 (() ()) /()i i i i iC M s M s aε ε= − − where ε is a small positive

value (the derivative value is an ideal criterion but is difficult to calculate in this

case). Because the profit function (6-15) is a non-linear function with respect to the

facings s, both C1 and C2 are not constant and shall change with the changes of s.

Resources:

Shelf Space

item 1
item 2

item 4

item 3

item i

item n

…

Chapter 7 Optimisation of Fresh Produce Inventory and Shelf Space Allocation

162

Therefore, both profitability values C1 and C2 need to be recalculated at each solution

construction step. There are two possible points where the greedy heuristics can start

from. A greedy heuristic can start from a solution that has met the minimal space

requirements and then repeatedly add a facing to the shelf according to the ranking

functions C1 or C2 without violating the constraint (6-17). It can also start from a

point where the facings of each item is equal to its upper bound and then repeatedly

delete a facing according to the functions C1 or C2 until the space constraint (6-17) is

satisfied. Therefore, there are a total of four combinations, denoted by GH1, GH2,

GH3 and GH4 respectively, described as follows:

Step 1:
For each item i (1 i n≤ ≤)

i is L= ;

Call proc_qr(si) to get optimal qi and r i;
Calculate C1 value for item i;

Endfor
Step 2:
If (FreeSpace > MinProdSpace)

Select an item j with largest possible profitability value of C1
and whose size is smaller than free space and the number of
facing sj is less than its upper bound;
If no such item is available, stop the procedure
Else

1j js s= + ;

Call proc_qr(sj) to get optimal qj and r j;
Update C1 for item j;

 Go to step 2;
 Endif

Else
Stop and output the solution.

Endif

Figure 7-7: Pseudo code of GH1

GH1 (Greedy_Fwd): This heuristic starts from a shelf space allocation decision

that satisfies the minimal space requirements of each item and repeatedly adds to the

shelf a facing of the item with the largest profitability value according to the criterion

C1. The heuristic stops as soon as no more facings can be added to the shelf. During

Chapter 7 Optimisation of Fresh Produce Inventory and Shelf Space Allocation

163

this process, if adding a facing causes a constraint violation, the profitability value of

this item is set to a very small value such that the item is of no further consideration.

A full description of the algorithm is given in figure 7-7.

Step 1:
For each item i (1 i n≤ ≤)

i is U= ;

Call proc_qr(si) to get optimal qi and r i;
Calculate C1 value for item i;

Endfor

Step 2:
While (SpaceUsed > SpaceAvailable)

Select an item j with the largest possible profitability value of
C1 and whose facing (sj) has not reached its lower bound;

1j js s= − ;

Call proc_qr(sj) to obtain the optimal qj and r j;
Update C1 for item j;

Loop

Step 3:
If (FreeSpace > MinProdSpace)

Select an item k with the smallest possible profitability value of
C1 and whose area is smaller than free space and where the
number of facing sk is less than its upper bound;
If no such item is available, stop the procedure
Else

1k ks s= + ;

Call proc_qr(sk) to obtain optimal qk and rk
Update C1 for item k;

 Go to step 3;
 Endif

Else
 Stop and output solution.
Endif

Figure 7-8: Pseudo code of GH2

GH2 (Greedy_Bwd): This heuristic starts from an initial shelf space allocation

that is equal to the corresponding upper bounds. Then the heuristic repeatedly deletes

a facing of the item with the smallest profitability value of C1 until the shelf space

Chapter 7 Optimisation of Fresh Produce Inventory and Shelf Space Allocation

164

constraint is satisfied. Afterward, a sub-procedure is executed which tries to add (if

possible) as many as possible facings to the shelf according the criterion of C1 (see

figure 7-8 for a detailed description).

GH3 (Greedy_Derivative_Fwd): This heuristic is the same as GH1 except that

the greedy criterion is C2 instead of C1.

GH4 (Greedy_Derivative_Bwd): This heuristic is the same as GH2 except in

using C2 as the greedy criterion.

Table 7-2: The performance of the greedy heuristics in comparison with multi-start GRG

 BORIN94/6 FRESH2 FRESH3 FRESH4 FRESH5

n 6 18 32 49 64

 obj cpu(s) obj cpu(s) obj cpu(s) obj cpu(s) obj cpu(s)

Multi-start
GRG 347.45 3.2 1129.6 73.6 2056.46 74.3 3163.98 179.2 4387.16 209.7

GH1 344.55 0.03 1126.8 0.03 2042.07 0.05 3144.02 0.05 4360.44 0.09

GH2 344.55 0.05 1129.09 0.13 2041.59 0.28 3147.28 0.55 4358.96 0.91

GH3 347.45 0.02 1131.64 0.02 2053.71 0.03 3159.17 0.06 4384.62 0.09

GH4 346.90 0.06 1131.33 0.25 2054.14 0.50 3160.91 1.06 4382.66 1.45

obj: the objective value of the solution obtained by different algorithms (for multi-start GRG, this is
the average value of 10 runs).
cpu(s): average CPU time consumed by different algorithms (in seconds).

Table 7-2 gives a comparison of the four greedy heuristics and the multi-start

GRG algorithm (proposed in chapter 6) on the five test problem instances described

in section 7.2. It can be seen that all greedy heuristics are very fast, compared with

the multi-start GRG algorithm. GH1 and GH3 are also faster than GH2 and GH4. This

is probably because the facings in the final solution are closer to their lower bound

facings than to the upper bound facings for these instances. In terms of the solution

quality, GH3 and GH4 performed better than GH1 and GH2 and are even competitive

when compared with the multi-start GRG algorithm, which took much longer.

Neither GH3 nor GH4 performed better than the other in terms of solution quality.

Chapter 7 Optimisation of Fresh Produce Inventory and Shelf Space Allocation

165

GH3 is better on the instance BORIN94/6, FRESH2, FRESH5 while GH4 is better

than GH3 on the other two instances. However, GH3 consumed less time than GH4.

7.5 Further Improvement over the Greedy Heuristics

Although the greedy heuristics in section 7.4 are very efficient in generating high

quality solutions, for obvious reasons, they are prone to getting stuck at local optima.

Three different meta-heuristic approaches have been adapted to the problem in an

attempt to further improve the solutions obtained by these greedy heuristics.

7.5.1 A GRASP algorithm for the problem

A GRASP (greedy randomised adaptive search procedure) algorithm has been

applied to the problem. GRASP is a multi-start meta-heuristic approach that explores

the search space from different starting points. The idea of applying GRASP to this

problem is that we have two profitability functions, C1 and C2, available for this

problem. The greedy heuristics based on the function C2 produces high quality

solutions. This function can be utilised in the solution construction stage of a GRASP

algorithm. Figure 7-9 presents the pseudo code of the GRASP algorithm used in this

research. A total of max_rep runs are used and each run consists of a solution

construction phase and a local search phase which improves the solution obtained in

the construction phase. The solution construction phase is very similar to the greedy

algorithm GH3 except that a parameter Į is introduced to control the degree of

randomness and greediness. The case Į=0 corresponds to a random construction

process, while Į=1 is equivalent to the greedy algorithm GH3. The local search phase

is a simple hill-climbing algorithm which repeatedly generates a candidate solution

by swapping one facing of two random items and moves to it if a better solution is

found. The local search phase stops when the number of total repetitions exceeds a

Chapter 7 Optimisation of Fresh Produce Inventory and Shelf Space Allocation

166

given value ls_max_rep. After the preliminary experiments, we set Į=0.85,

max_rep=100 and ls_max_rep=n2.

For nrep = 1 to max_rep
/* solution construction phase */
Start from an empty solution;
For each item i (1 i n≤ ≤)

i is L= ;

Call proc_qr(si) to obtain the optimal qi and r i;
Calculate C2 value for item i;

Endfor
Initialise candidate list (CL);
While (FreeSpace > MinProdSpace and CL ≠ ∅)

min
2 2min{ () | }C C i i CL← ∈ ;
max
2 2max{ () | }C C i i CL← ∈ ;

Construct Restricted Candidate List (RCL) by
min max min

2 2 2 2{item | & () ()RCL i i CL C i C C Cα← ∈ ≥ + − ;
Select an item j from RCL at random;

1j js s= + ;

Call proc_qr(sj) to get the optimal qj and r j;
Update the candidate list CL;
Update C2 value for item j;

Loop

/* local search phase */
LocalSearch(ls_max_rep, solution);
Update best solution found so far;
nrep = nrep + 1;

Endfor

Figure 7-9: A GRASP algorithm for the problem

7.5.2 A simulated annealing algorithm for the problem

A simple simulated annealing algorithm is also used to optimise the problem. The

neighbourhood structure is defined by randomly swapping a facing of two items,

with the procedure proc_qr(s’) being called immediately after swapping. The cooling

schedule is similar to the one used in the algorithm SAHH_adpt in section 5.3.3. The

initial temperature st is set a value such that only 85% of inferior moves are accepted

and the algorithm stops when the acceptance rate of inferior moves falls to 1%. The

Chapter 7 Optimisation of Fresh Produce Inventory and Shelf Space Allocation

167

temperature is gradually reduced according to Lundy and Mees’s cooling function

/(1)t t tβ→ + (Lundy and Mees, 1986) and at each temperature only one iteration is

executed. For the purpose of a fair comparison with GRASP, the total number of

iterations allowed by SA is set to 2100K n= × (same as the total iterations allowed

by GRASP) and the temperature deduction parameter can be calculated by

(-) /s f s ft t K t tβ = × × . Once again, the algorithm starts from the solution produced

by GH3. Note that although the total number of iterations by GRASP and SA are the

same, GRASP may take longer because of the extra time spent during the solution

construction phase. This is especially true when the number of iterations of GRASP,

max_rep, is very large.

7.5.3 Hyper-heuristic approaches for the problem

The hyper-heuristics discussed in section 5.3 were also implemented using the

following low-level heuristics:

− 2-opt: this heuristic swaps one facing of two different random items, i.e.

selects two random items i and j, let 1i is s= + , 1j js s= − .

− 3-opt1: this heuristic randomly selects three different items, i, j, k, set

1i is s= − , 1j js s= − , 1k ks s= + .

− 3-opt2: this heuristic randomly selects three different items, i, j, k set

1i is s= + , 1j js s= + , 1k ks s= − .

− 4-opt: this heuristic selects four different random items, deletes one facing of

two random items and adds one facing of the other two items.

All the hyper-heuristics started from the same solution generated by GH3 and the

approximate computational time was set to a same value that was spent by the multi-

Chapter 7 Optimisation of Fresh Produce Inventory and Shelf Space Allocation

168

start GRG algorithm (see table 7-2). The parameters were the same as those values

used in chapters 4 and 5.

7.6 Experimental results

The above algorithms were coded in Microsoft Visual C++ version 6.0 and all

experiments were run on a PC Pentium IV 1.8GHZ with 256MB RAM running

Microsoft Windows 2000 Professional Version 5. All meta-heuristics were run 30

times for each instance, using different random seeds. The computational results are

averaged and presented in the tables 7-3 and 7-4.

It can be seen that the results obtained by GH3 are very close to the results by

different meta-heuristic algorithms. The biggest improvement for the instance

BORIN94/6 is only 0.04% (
347.58-347.45

100%
347.45

×). Four algorithms have

consistently solved this small instance to optimality over 30 runs (the optimal

solution of the numerical example was obtained by a complete search). For the other

four instances, the biggest improvements over the initial solutions are 0.17%, 0.16%,

0.16% and 0.06% respectively. Similar results were obtained even when the

algorithms were given much more computational time or more repetitions. For the

instance FRESH2, three algorithms (GRASP, SAHH, TSSAHH) consistently

produced the same solution over 30 runs. We have a strong feeling that these results

are already very close to the optima. However, this is only conjecture and cannot be

proven due to the NP-Hard nature of the problem.

Among these algorithms, the GRASP algorithm performed well when compared

with the multi-start GRG algorithm and the general SA. It was only marginally

outperformed by multi-GRASP on instance FRESH3. However, on larger problem

instances, both GRASP and SA consumed more computational time than the multi-

C
h

a
p

te
r 7

O

p
tim

isa
tio

n
 o

f F
re

sh
 P

ro
d

u
ce

 In
ve

n
to

ry an
d

 S
h

e
lf S

p
a

ce
 A

llo
ca

tio
n

169

av. cpu

0.09

209.7

438.99

401.20

185.09

209.70

185.28

209.71

185.29

FRESH5

64

stdev

--

0.43

0.31

0.51

0.37

0.00

1.32

0.00

0.32

av. obj.

4384.62

4387.16

4387.23

4387.16

4387.42

4384.62

4386.27

4384.62

4387.41

av. cpu

0.06

179.2

245.30

226.70

148.91

179.21

223.17

179.21

135.55

FRESH4

49

stdev

--

0.51

0.34

0.41

0.27

0.00

2.04

0.33

0.25

av. obj.

3159.17

3163.98

3164.14

3163.81

3164.18

3159.17

3160.69

3159.23

3164.21

av. cpu

0.03

74.3

78.90

72.24

60.62

74.31

110.36

74.31

56.31

FRESH3

32

stdev

--

0.97

0.17

0.61

0.27

0.00

0.81

0.00

0.17

av. obj.

2053.71

2056.46

2056.43

2055.04

2056.93

2053.71

2054.24

2053.71

2057.09

av. cpu

0.02

73.6

23.64

19.11

61.26

73.61

70.09

73.61

62.50

FRESH2

18

stdev

--

0.00

0.00

0.36

0.00

0.04

0.28

0.00

0.00

av. obj.

1131.64

1129.6

1133.51

1133.22

1133.51

1131.65

1131.79

1131.64

1133.51

av. cpu

0.02

3.2

2.79

2.23

3.70

3.20

3.78

3.20

3.72

6

stdev

--

0.00

0.00

0.00

0.00

0.04

0.06

0.05

0.00

BORIN94/6

av. obj.

347.45

347.45

347.58

347.58

347.58

347.46

347.55

347.56

347.58

Table 7-3: A comparison of different algorithms on five fresh produce instances

n

Initial
(GH3)

Multi-Start
GRG

GRASP

SA

SAHH

CFHH

CFSAHH

TSHH

TSSAHH

av. obj.: average objective value of 30 runs
stdev: standard deviation of 30 runs
av. cpu: average CPU time spent

C
h

a
p

te
r 7

O

p
tim

isa
tio

n
 o

f F
re

sh
 P

ro
d

u
ce

 In
ve

n
to

ry an
d

 S
h

e
lf S

p
a

ce
 A

llo
ca

tio
n

170

stdev

0.43

0.31

0.51

0.37

0.00

1.32

0.00

0.32

worst

4386.66

4386.65

4385.85

4386.71

4384.62

4384.62

4384.62

4386.94

64

best

4387.73

4387.92

4387.72

4387.92

4384.62

4387.79

4384.62

4387.92

FRESH5

av. obj.

4387.16

4387.23

4387.16

4387.42

4384.62

4386.27

4384.62

4387.41

stdev

0.51

0.34

0.41

0.27

0.00

2.04

0.33

0.25

worst

3163.33

3163.52

3163.21

3163.27

3159.17

3159.17

3159.17

3163.59

49

best

3164.59

3164.60

3164.6

3164.60

3159.17

3164.37

3161.00

3164.60

FRESH4

av. obj.

3163.98

3164.14

3163.81

3164.18

3159.17

3160.69

3159.23

3164.21

stdev

0.97

0.17

0.61

0.27

0.00

0.81

0.00

0.17

worst

2055.17

2056.33

2053.71

2056.49

2053.71

2053.71

2053.71

2056.49

32

best

2057.15

2056.74

2055.76

2057.16

2053.71

2055.83

2053.71

2057.16

FRESH3

av. obj.

2056.46

2056.43

2055.04

2056.93

2053.71

2054.24

2053.71

2057.09

stdev

0.00

0.00

0.36

0.00

0.04

0.28

0.00

0.00

worst

1129.60

1133.51

1132.32

1133.51

1131.64

1131.64

1131.64

1133.51

18

best

1129.60

1133.51

1133.51

1133.51

1131.85

1132.68

1131.64

1133.51

FRESH2

av. obj.

1129.6

1133.51

1133.22

1133.51

1131.65

1131.79

1131.64

1133.51

stdev

0.00

0.00

0.00

0.00

0.04

0.06

0.05

0.00

worst

347.45

347.58

347.58

347.58

347.45

347.45

347.45

347.58

6

best

347.45

347.58

347.58

347.58

347.58

347.58

347.58

347.58

BORIN94/6

av. obj.

347.45

347.58

347.58

347.58

347.46

347.55

347.56

347.58

Table 7-4: Robustness of different algorithms

n

Multi-Start
GRG

GRASP

SA

SAHH

CFHH

CFSAHH

TSHH

TSSAHH

av. obj.: average objective value among 30 runs
best: best objective value among 30 runs
worst: worst objective value among 30 runs
stdev: standard deviation of 30 runs

Chapter 7 Optimisation of Fresh Produce Inventory and Shelf Space Allocation

171

start GRG. Comparing the different hyper-heuristics, both CFHH and TSHH were

unable to improve the initial solution or only achieved a very small improvement.

However, the performances of both algorithms were improved when a simulated

annealing acceptance criterion was introduced (corresponding to CFSAHH and

TSSAHH respectively).

In general, two types of hyper-heuristics performed best among all the algorithms.

TSSAHH out performed all of the other algorithms for four instances and was only

marginally beaten by SAHH on the remaining one instance. SAHH performed well

and obtained best results on three instances (BORIN94/6, FRESH2 AND FRESH5).

Even for the other two instances, it ranked as the second best algorithm and found

solutions that are very close to the best solutions. This is a very good performance

considering that the parameters of the algorithm used in this paper are exactly the

same as those used in the previous applications from chapters 4 and 5.

7.7 Summary and Remarks

This chapter has investigated heuristic and meta-heuristic approaches for the

optimisation of the fresh produce shelf space allocation model in chapter 6. A single-

item inventory problem was firstly analysed and solved by a binary search procedure.

Based on this, four greedy heuristic methods were then developed for the multi-item

problems. The experimental results have shown that, compared with the multi-start

GRG algorithm and meta-heuristics used in this chapter, these greedy heuristic

methods are very efficient and capable of producing high quality solutions in much

shorter time. Among the four greedy heuristics, the best algorithm is the one that

repeatedly allocates shelf space to the item with the largest C2 value. The solutions

created by this heuristic were taken as initial solutions and further improved by

Chapter 7 Optimisation of Fresh Produce Inventory and Shelf Space Allocation

172

several meta-heuristic approaches, including a GRASP algorithm, a general

simulated annealing and three simulated annealing hyper-heuristics.

All meta-heuristics can only achieve (if at all) small improvements over the initial

solutions. Increasing the computational time and the number of iterations does not

produce significantly better results. It seems that the results obtained by our

algorithm are already close to the optimal solutions. Among all the meta-heuristic

approaches, two types of hyper-heuristics, SAHH and TSSAHH outperformed all

other algorithms in terms of solution quality while using the same (or even less)

computational time. This includes the multi-start GRG algorithm, the GRASP

algorithm and a general simulated annealing algorithm. Considering the successes on

three different, while related, problems (bin packing in chapter 4, general shelf space

allocation problem in chapter 5 and fresh food inventory and shelf space allocation in

this chapter), hyper-heuristics with the assistance of the simulated annealing appears

to be a very promising and generic search technique for the other similar

combinatorial optimisation problems.

Chapter 8 Conclusions and Future Work

173

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

The problem of shelf space allocation has recently received increasing attention

due to fierce competition in the retail industry. In order to improve efficiency and

financial performance, retailers are willing to adopt more sophisticated systems in

retail decision making processes. Shelf space allocation is an area that can increase a

store’s sales and increase customer satisfaction. In this thesis, we have developed and

investigated practical models and efficient optimisation techniques for shelf space

allocation problems. The main work in this thesis is in two main areas:

8.1 From the Shelf Space Allocation Perspective

This thesis has introduced and studied two mathematical models for two types of

shelf space allocation problems.

A practical model for general products shelf space allocation

As stated in the aims and scopes, the overall aim of this research is to investigate

novel approaches that can be used to generate automated, optimised planograms.

Bearing this in mind, the thesis firstly discussed several issues and potential

constraints that are involved in shelf space allocation decisions. Due to the diverse

nature of the problem an abstracted problem has been devised and a simplified, while

practical, model has been proposed with the advantages of practicability and ease of

implementation. It has been shown that this model is an extension of the bounded

multi-knapsack problem, a problem which is NP-Hard. A two-stage relaxation

method was used to obtain an upper bound of the model, by which one can

effectively compare and evaluate the quality of solutions obtained by different

algorithms. Besides, the gap between the upper bound and the current solution can

Chapter 8 Conclusions and Future Work

174

provide a user with a useful estimation of maximal possible improvement over the

current solution.

A model for managing shelf space and inventory for fresh produce

The thesis has also studied a special shelf space allocation problem for fresh

produce. This problem is particularly important for many retailers due to the

increasing demand for fresh food. Because of very short shelf-lifetime, all fresh

produce has to be sold before their expiry dates in order to avoid losses. This poses a

real challenge for retailers. In this thesis a shelf space allocation model for fresh

produce has been developed in integration with a single-period inventory model. The

thesis contributes to the literature as this is the first fresh produce model that

integrates shelf space allocation and inventory control. In formulating the model, the

thesis, for the first time, introduces the term ‘freshness condition’ as a factor that

influences demand for the product. It differs from the existing deteriorating models

in the literature, which usually assume that products have a random lifetime but a

non-decaying utility. Further study of this model has shown that the size of the

search space can be reduced by decomposing the problem into a knapsack problem

and a single inventory problem which can be efficiently optimised by a binary search

procedure. We consider this as a major contribution of the thesis.

8.2 From Meta-heuristics Perspective

Both shelf space allocation problems studied in this thesis are closely related to

the knapsack problem and the bin packing problem, which are NP-Hard. There is no

known polynomial-time bound algorithm that can guarantee to solve them to

optimality. In this thesis we have focused on heuristic and meta-heuristic approaches

to search for the near-optimal (if not optimal) solutions for the problems. There are

potentially many meta-heuristics (and their variants) available for solving NP-Hard

Chapter 8 Conclusions and Future Work

175

combinatorial optimisation problems. Among them, hyper-heuristic is a generic

approach that has recently attracted increasing research attention and has been

successfully applied to several difficult scheduling problems. Instead of applying

hyper-heuristics directly to the shelf space allocation problem, we initially tested

hyper-heuristics on the well-known bin packing problem in comparison with other

state-of-the-art algorithms. If this algorithm performs well on the bin packing

problem (which it did), it is very likely that the hyper-heuristic is also suitable for the

shelf space allocation problem because of the close relationship between the two

problems.

Proposing a simulated annealing hyper-heuristic

The existing hyper-heuristics either explicitly or implicitly focus on “choosing”,

at each decision point, appropriate low-level heuristics according to their previous

performance. However, these deterministic heuristic selection strategies may not

always be suitable because of the stochastic nature of some low-level heuristics. In

this thesis, a simulated annealing algorithm was incorporated into the current hyper-

heuristics in order to alter (and improve) the acceptance criteria of heuristic moves.

The resulting algorithm, called the simulated annealing based hyper-heuristic, was

tested on the one-dimensional bin packing problem and applied to two shelf space

allocation problems. Below are some observations and conclusions from the three

applications.

Applying hyper-heuristics to 1D bin packing problem

The thesis, for the first time, applied hyper-heuristics to the 1D bin packing

problem to test its performance. The reasons we chose the 1D bin packing problem

are as follows: Unlike some classical problems (such as bin packing, TSP,

timetabling, stock cutting, etc.) which have large benchmark data sets available in the

Chapter 8 Conclusions and Future Work

176

literature, shelf space allocation problems do not have benchmark data available that

allow us to compare the proposed algorithm with other approaches. Furthermore, the

thesis has used new models because we believe the current shelf space allocation

models in the literature are not practical for the production of automated planograms.

It would have taken a considerable amount of work if we compared our proposed

algorithms with every other search technique. However, shelf space allocation is

closely related to bin packing, which does have a large set of benchmark data sets

available. It is assumed that if the simulated annealing hyper-heuristics could

produce high quality solutions for the bin packing problem, there is a reasonable

possibility that it will perform well for shelf space allocation problems as well.

The experimental results on the bin packing problem have shown that the

introduction of simulated annealing into the choice function based hyper-heuristics

did improve its performance. However, it was inferior to the simulated annealing

hyper-heuristic with random heuristic selection strategy, which also beat the

grouping genetic algorithm (GGA) and a branch-and-bound based method (BISON),

both in terms of solution quality and computational time. The simulated annealing

hyper-heuristic produced better quality solutions than a variable neighbourhood

search (VNS) algorithm in terms of solution quality, while it needed more

computational time. Overall, the simulated annealing hyper-heuristic solved around

1340 instances out of 1370 to optimality on average. For those instances that were

not solved to optimality, they were only 1 bin away from the optimum. The success

of the simulated annealing hyper-heuristic on the bin packing problem encouraged us

to apply it to two shelf space allocation problems. Some other meta-heuristic

approaches have also been implemented for the purposes of comparison. Below are

some observations and conclusions.

Chapter 8 Conclusions and Future Work

177

Optimisation of general shelf space allocation problem

Several hyper-heuristics have been implemented and applied to the general shelf

space allocation problem. The thesis especially investigated simulated annealing

hyper-heuristics and compared them with two conventional simulated annealing

algorithms and other types of hyper-heuristics without the assistance of a simulated

annealing acceptance criterion. For the twelve problem instances, it was observed

that the performance of a conventional simulated annealing is heavily dependent on

the choice of neighbourhood structure and the optimal neighbourhood structure may

change from one problem instance to another. However, simulated annealing hyper-

heuristics seem not to be parameter-sensitive and performed much better than the

conventional SA algorithms in terms of both average solution quality and results

consistency. Again, it has been shown that the performance of the existing two types

of hyper-heuristics, choice function based hyper-heuristics and tabu search hyper-

heuristics, can be improved by introducing a SA acceptance criterion. However, the

best algorithm turned out to be the simulated annealing hyper-heuristics with a

uniform heuristic selection probability. This type of simulated annealing hyper-

heuristics produced solutions that were over 98% of the upper bounds for every

tested instance.

Optimisation of fresh produce shelf space allocation and inventory

The thesis has also investigated the shelf space allocation problem specifically for

fresh produce. Several heuristic and meta-heuristic approaches have been applied to

five problem instances of different sizes, and their performance was compared. This

comparison included four constructive heuristics, an improved generalised reduced

gradient (GRG) algorithm, SA, GRASP and five versions of hyper-heuristics. The

experimental results have shown that the proposed constructive heuristics are very

Chapter 8 Conclusions and Future Work

178

efficient and produce high quality solutions. All meta-heuristics can only give a

small improvement even with a very large computational time. This is probably

because that the solutions obtained by these algorithms may be very close to the

upper bounds. Among all meta-heuristics, simulated annealing hyper-heuristic and

the tabu assisted simulated annealing hyper-heuristic algorithms are consistently

superior to the other algorithms.

Overall, we have studied different optimisation approaches over three different,

while related, space allocation problems. The research has mainly focused on the

hyper-heuristic techniques that have recently been attracting research interest in

scheduling and general optimisation. Across all three problems, it has been observed

that the simulated annealing hyper-heuristics outperformed both the general meta-

heuristic approaches (simulated annealing, grouping genetic algorithm, variable

neighbourhood search, multi-start GRG and GRASP) and other existing hyper-

heuristics for these problems. Introducing a SA acceptance criterion into the current

hyper-heuristic framework has been beneficial. However, the simulated annealing

hyper-heuristics with random heuristic selection performed better than the simulated

annealing hyper-heuristics assisted by a choice function or by a tabu list. This is

probably because the stochastic nature of SA is not complimentary with deterministic

strategies used both in choice function and tabu list based hyper-heuristics.

8.3 Further work

With regard to the future work on the problem modelling, it will be interesting to

integrate the research results (models and algorithms) into current planogram

software. One can also extend the current shelf space allocation models to two (or

even three) dimensions, in which case extra constraints might have to be considered.

However, one would not have to spend a lot of time adapting hyper-heuristics to the

Chapter 8 Conclusions and Future Work

179

new models. As the new problem is still very similar to the previous problems, a user

would only need to slightly change the low-level heuristics used in the previous

model in order to adapt to the new problem. This further shows the advantages of a

hyper-heuristic methodology.

Another interesting direction would be the integration of the automated

planograms with the newly emerging RFID (Radio Frequency Identification)

technologies (RFID Journal, 2005). RFID is a new ID technology that may

eventually replace bar codes. A typical RFID system consists of a RFID tag which is

attached to a product, and stores data, and a RFID reader which retrieves and

updates product information stored on the tag. Two major advantages of RFID over

bar codes are: 1. the product information can be retrieved and sent to a computer

automatically when the products pass a reader (bar codes need to be scanned

manually). 2. the data on a RFID tag can be updated dynamically by the reader while

the data on the bar code cannot normally be altered. This functionality is very useful

in just-in-time manufacturing, supply chain management and inventory management

when one wants to track the physical location of products. RFID technology has been

used in many companies in different industries. In retailing, Wal-Mart is a pioneer in

adopting this technology. The integration of planogram software with RFID

technology will make it possible to automate or semi-automate product

replenishment from the storeroom to the shop floor shelves. Currently, this process is

completely manual and is not efficient.

From an optimisation perspective, it would be interesting to further improve the

current simulated annealing hyper-heuristics in a number of ways. Firstly, it has been

observed in this thesis that the deterministic heuristic selection hyper-heuristic

approaches (CFSAHH and TSSAHH) do not perform as well as the simulated

Chapter 8 Conclusions and Future Work

180

annealing hyper-heuristics with uniform heuristic selection. The most likely reason is

that the probabilistic nature of SA is not complimentary with deterministic heuristic

selection strategies. In the future it may be worthwhile investigating some stochastic

heuristic selection approaches under the simulated annealing hyper-heuristic

framework. Secondly, throughout the three problems, it has been observed that the

design of the low-level heuristics is crucial in influencing the performance of the

hyper-heuristics. In the current hyper-heuristics the low-level heuristics correspond

to some simple neighbourhood move strategies. Several issues are not yet clear when

designing these heuristics, such as how to balance the greediness and randomness of

a heuristic, and how the low-level heuristics should be designed to help guide the

search for promising areas when the objective function fails to guide the search.

Further research should be carried out in order to gain a better understanding of these

issues. Another interesting research direction is in designing a hyper-heuristic

framework which manages several different types of local search explorers (low-

level heuristics). These local search explorers do not have to be simple

neighbourhood functions. They can be different search strategies (SA, TS and VNS,

for example) or the same strategy with different parameters (for example several SA

algorithms with different parameters). The local search explorers both compete and

cooperate during the process of problem solving. Finally, the proposed simulated

annealing hyper-heuristic may be improved by using more complicated temperature

cooling strategies (for example, by allowing reheating).

Furthermore, the performance of the current meta-heuristics may be improved by

hybridising with some exact methods, such as linear programming, branch-and-

bound, dynamic programming, etc. Meta-heuristics are believed to be able explore a

large search space within a short time while exact methods can explore a specific

Chapter 8 Conclusions and Future Work

181

small area exhaustively. Hybridisation of them may lead to a better quality solution

within reasonable computation time.

 References

182

REFERENCES

Aarts, E. H. L. and Korst, J., 1998. Simulated Annealing and Boltzman Machines,

Wiley.

Aarts, E. H. L. and van Laarhoven, P. J. M., 1985. Statistical Cooling: A General

Approach to Combinatorial Optimization Problems, Phillips Journal of Research.

40, 193-226.

Abad, P. L., 1996. Optimal Pricing and Lot-sizing Under Conditions of Perishability

and Partial Backordering, Management Science. 42, 1093-1104.

Abadie, J. and Carpentier, J., 1969. Generalization of the Wolfe Reduced Gradient

Method to the Case of Nonlinear Constraints. In: Fletcher,R. (Ed.), Optimization,

London, Academic Press, pp. 37-47.

Abramson, D., 1991. Constructing School Timetables Using Simulated Annealing:

Sequential and Parallel Algorithms, Management Science. 37, 98-113.

Ahuja, R. K., Orlin, J. B. and Sharma, D., 2000. Very Large Scale Neighbourhood

Search, International Transaction in Operational Research. 7, 301-317.

Ayob, M. and Kendall, G., 2003. A Monte Carlo Hyper-Heuristic to Optimise

Component Placement Sequencing for Multi Head Placement Machine, In

Proceedings of the International Conference on Intelligent Technologies,

InTech'03, Chiang Mai, Thailand, Dec 17-19, 132-141.

Bäck, T., 1996. Evolutionary Algorithms in Theory and Practice, Oxford University

Press.

Bäck, T., Fogel, D. and Michalewicz, Z., 1997. Handbook of Evolutionary

Computation, Institute of Physics Publishing and Oxford University Press.

 References

183

Bai, R. and Kendall, G., 2003. An Investigation of Automated Planograms Using a

Simulated Annealing Based Hyper-heuristics, In the proceedings of the 5th

Metaheuristics International Conference (MIC 2003), Kyoto, Japan, Aug. 25-28.

Bai, R. and Kendall, G., 2005a. A Model for Fresh Produce Shelf Space Allocation

and Inventory Management with Freshness Condition Dependent Demand,

Accepted for publication in the INFORMS Journal on Computing.

Bai, R. and Kendall, G., 2005b. An Investigation of Automated Planograms Using a

Simulated Annealing Based Hyper-heuristics, in: Ibaraki, T., Nonobe, K., and

Yagiura, M. (Eds.), Metaheuristics: Progress as Real Problem Solvers -

(Operations Research/Computer Science Interfaces, Vol. 32), Berlin, Heidelberg,

New York, Springer, pp. 87-108.

Bai, R. and Kendall, G., 2005c. A Multi-heuristic Simulated Annealing for the One-

dimensional Bin Packing Problem, Submitted to European Journal of Operational

Research.

Bai, R. and Kendall, G., 2005d. Heuristic and Meta-heuristics for the Optimisation of

Fresh Produce Inventory Control and Shelf Space Allocation Problem, Submitted

to Journal of Operations Research Society.

Baker, R. C. and Urban, T. L., 1988. A Deterministic Inventory System with an

Inventory-Level-Dependent Demand Rate, Journal of the Operational Research

Society. 39, 823-831.

BBC Business, 2003. Asda Overtakes Sainsbury's,

http://news.bbc.co.uk/1/hi/business/3112689.stm.

BBC Business, 2005. Tesco Profits Break through 2 Billion Pounds,

http://news.bbc.co.uk/1/hi/business/4435339.stm.

 References

184

Beasley, D., Bull, D. R. and Martin, R. R., 1993. An Overview of Genetic

Algorithms: Part 1, Fundamentals, University Computing. 15, 58-69.

Bellman, R., 1957. Dynamic Programming, Princeton University Press.

Belov, G. and Scheithauer, G., 2004. A Branch-and-Cut-and-Price Algorithm for

One-Dimensional Stock Cutting and Two-Dimensional Two-Stage Cutting,

European Journal of Operational Research, in Press, Available online October

2004.

Ben-Ameur, W., 2004. Computing the Initial Temperature of Simulated Annealing,

Computational Optimization and Applications. 29, 369-385.

Ben-Daya, M. and Raouf, A., 1993. On the Constrained Multi-item Single-period

Inventory Problem, International Journal of Operations & Production

Management. 13, 104-112.

Birrattari, M., Paquete, L., Stutzle, T. and Varrentrapp, K., 2001. Classification of

Metaheuristics and Design of Experiments for the Analysis of Components,

Technical Report AIDA-01-05, FG Intellektik, FB Informatik, TU Darmstadt,

Germany.

Blum, C. and Roli, A., 2003. Metaheuristics in Combinatorial Optimization:

Overview and Conceptual Comparison, ACM Computing Surveys. 35, 268-303.

Borin, N. and Farris, P., 1995. A Sensitivity Analysis of Retailer Shelf Management

Models, Journal of Retailing. 71, 153-171.

Borin, N., Farris, P. W. and Freeland, J. R., 1994. A Model for Determining Retail

Product Category Assortment and Shelf Space Allocation, Decision Sciences. 25,

359-384.

Bouleimen, K. and Lecocq, H., 2003. A New Efficient Simulated Annealing

Algorithm For the Resource-constrained Project Scheduling Problem and Its

 References

185

Multiple Mode Version, European Journal of Operational Research. 149, 268-

281.

Bremermann, H. J., 1962. Optimisation Through Evolution and Re-Combination. In:

Yovits,M., Sawbi,G., and Goldstein,G. (Eds.), Self-Organising Systems,

Washington, Spartan.

Bretthauer, K. M. and Shetty, B., 2002. The Nonlinear Knapsack Problem -

Algorithms and Applications, European Journal of Operational Research. 138,

459-472.

Bullnheimer, B., Hartl, R. F. and Strauss, C., 1999. A New Rank-based Version of

the Ant System, Central European Journal for Operations Research and

Economics. 7, 25-38.

Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P., and Schulenburg, S., 2003a.

Hyper-Heuristics: An Emerging Direction in Modern Search Technology. In:

Glover F. and Kochenberger,G. (Eds.), Handbook of Meta-Heuristics, Kluwer,

pp. 457-474.

Burke, E., Kendall, G., O'Rrien, R., Redrup, D., and Soubeiga, E., 2003b. An Ant

Algorithm Hyper-Heuristic, Proceedings of the Fifth Metaheuristics International

Conference (MIC 2003), Kyoto Japan, August 25-28.

Burke, E. and Causemacker, P. D., 2003. Practice and Theory of Automated

Timetabling IV, Springer-Verlag Lecture Notes in Computer Science, The 4th

International Conference, PATAT 2002, Gent, Belgium, August 21-23, 2002,

Selected Revised Papers, Springer LNCS 2740.

Burke, E. and Kendall, G., 1999. Applying Simulated Annealing and the No Fit

Polygon to the Nesting Problem, Proceedings of WMC '99 : World

Manufacturing Congress, Durham, UK, 27-30 September, 51-57.

 References

186

Burke, E. and Kendall, G., 2005. Search Methodologies: Introductory Tutorials in

Optimization and Decision Support Techniques, Kluwer Academic Publishers,

Boston, Dordrecht, London.

Burke, E., Kendall, G. and Soubeiga, E., 2003c. A Tabu-Search Hyperheuristic for

Timetabling and Rostering, Journal of Heuristics. 9, 451-470.

Burke, E., McCollum, B., Meisels, A., Petrovic, S. and Qu, R., 2006. A Graph-Based

Hyper Heuristic for Educational Timetabling Problems, Accepted for Publication

in the European Journal of Operational Research.

Burke, E., Petrovic, S. and Qu, R., 2005. Case Based Heuristic Selection for

Timetabling Problems, Accepted for Publication in the Journal of Scheduling.

Buttle, F., 1984. Merchandising, European Journal of Marketing. 18, 104-123.

Campo, K., Gijsbrechts, E., Goossens, T. and Verhetsel, A., 2000. The Impact of

Location Factors on the Attractiveness and Optimal Space Shares of Product

Categories, International Journal of Research in Marketing. 17, 255-279.

Carnevali, L., Coletti, L. and Patarnello, S., 1985. Image Processing by Simulated

Annealing, IBM Journal of Research and Development. 29, 569-579.

Carter, M. W., 1986. A Survey of Practical Applications of Examination Timetabling

Algorithms, Operations Research. 34, 193-201.

Carter, M. W. and Laporte, G., 1996. Recent Developments in Practical Examination

Timetabling. In: Burke,E. and Ross,P. (Eds.), The Practice and Theory of

Automated Timetabling: Selected Papers (ICPTAT '95), Lecture Notes in

Computer Science, Vol.1153, Springer-Verlag, pp. 3-21.

Chen, S. and Luk, B. L., 1999. Adaptive Simulated Annealing for Optimization in

Signal Processing Applications, Signal Processing. 79, 117-128.

 References

187

Coffman, E. G., Garey, M. R., and Johnson, D. S., 1997. Approximation Algorithms

for Bin Packing. In: Hochbaum,D.S. (Ed.), Approximation Algorithms for NP-

hard Problems, PWS Publishing, pp. 46-93.

Cohn, H. and Fielding, M., 1999. Simulated Annealing: Searching for an Optimal

Temperature Schedule, SIAM Journal on Optimization. 7, 779-802.

Coley, D. A., 1999. An Introduction to Genetic Algorithms for Scientists and

Engineers, World Scientific Publishing Co. Pte. Ltd.

Connolly, D. T., 1990. An Improved Annealing Scheme For the QAP, European

Journal of Operational Research. 46, 93-100.

Cook, S.A., 1971. The Complexity of Theorem-proving Procedures, In the

Proceedings of 3rd Annual ACM Symposium on Theory of Computing,

Association for Computing Machinery, New York, 151-158.

Corstjens, M. and Doyle, P., 1981. A Model for Optimaizing Retail Space

Allocations, Management Science. 27, 822-833.

Cowling, P. and Chakhlevitch, K., 2003. Hyperheuristics for Managing a Large

Collection of Low Level Heuristics to Schedule Personnel, In the Proceeding of

the 2003 IEEE Congress on Evolutionary Computation (CEC'2003), Canberra,

Australia, 8-12 December, 1214-1221.

Cowling, P., Kendall, G., and Han, L., 2002. An Investigation of a Hyperheuristic

Genetic Algorithm Applied to a Trainer Scheduling Problem. Proceedings of

Congress on Evolutionary Computation (CEC2002), Hilton Hawaiian Village

Hotel, Honolulu, Hawaii, Nov.18-22 pp. 1185-1190.

Cowling, P., Kendall, G., and Soubeiga, E., 2001. A Parameter-free Hyperheuristic

For Scheduling a Sales Summit. In the Proceedings of the 4th Metaheuristic

International Conference (MIC 2001), Porto, Portugal, July 16-20 pp. 16-20.

 References

188

Cox, K., 1970. The Effect of Shelf Space Upon Sales of Branded Products, Journal

of Marketing Research. 7, 55-58.

Csondes, T., Kotnyek, B. and Szabo, J. Z., 2002. Application of Heuristic Methods

for Conformance Test Selection, European Journal of Operational Research. 142,

203-218.

Curhan, R., 1972. The Relationship Between Space and Unit Sales in Supermarkets,

Journal of Marketing Research. 9, 406-412.

Curhan, R., 1973. Shelf Space Allocation and Profit Maximization in Mass Retailing,

Journal of Marketing. 37, 54-60.

Dantzig, G. B., 1951. Maximization of a Linear Function of Variables Subject to

Linear Inequalities. In: Koopmans,T.C. (Ed.), Activity Analysis of Production

and Allocation, New York, Wiley, pp. 339-347.

Dantzig, G. B., 1963. Linear Programming and Extensions, Princeton University

Press, Princeton.

Davis, L. D., 1987. Genetic Algorithms and Simulated Annealing, Pitman, London.

Davis, L. D., 1991. Handbook of Genetic Algorithms, Van Nostrand Reinhold.

Deneubourg, J.-L., Aron, S., Goss, S. and Pasteels, J.-M., 1990. The Self-organising

Exploratory Pattern of the Argentine Ant, Journal of Insect Behavior. 3, 159-168.

Desmet, P. and Renaudin, V., 1998. Estimation of Product Category Sales

Responsiveness to Allocated Shelf Space, International Journal of Research in

Marketing. 15, 443-457.

Dorigo, M., Vittorio, M. and Alberto, C., 1996. Optimization by a Colony of

Cooperating Agents, IEEE Transactions on Systems, Man and Cybernetics - Part

B : Cybernetics. 26, 29-41.

 References

189

Dorigo, Marco, 1992. Optimization, Learning, and Natural Algorithms, PhD Thesis,

Politecnico di Milano, Italy.

Dorigo, M. and Gambardella, L. M., 1997a. Ant Colonies for the Traveling Salesman

Problem, BioSystems. 43, 73-81.

Dorigo, M. and Gambardella, L. M., 1997b. Ant Colony System: A Cooperative

Learning Approach to the Traveling Salesman Problem, IEEE Transactions on

Evolutionary Computation. 1, 53-66.

Dorigo, M. and Maniezzo, V., 1996. The Ant System: Optimisation by a Colony of

Cooperating Agents, IEEE Transactions on Systems, Man and Cybernetics - Part

B. 26, 29-41.

Dorigo, M. and Stutzle, T., 2003. The Ant Colony Optimisation Metaheuristic:

Algorithms, Applications and Advances. In: Glover F. and Kochenberger,G.

(Eds.), Handbook of Metaheuristics, Kluwer, pp. 457-474.

Dowsland, K. A., 1993. Some Experiments with Simulated Annealing Techniques

for Packing Problems, European Journal of Operational Research. 68, 389-399.

Dowsland, K. A., 1995. Simulated Annealing. In: Reeves,C.R. (Ed.), Modern

Heuristic Techniques for Combinatorial Problems, McGraw-Hill, pp. 21-69.

Dreze, X., Hoch, S. J. and Purk, M. E., 1994. Shelf Management and Space Elasticity,

Journal of Retailing. 70, 301-326.

Falkenauer, E., 1996. A Hybrid Grouping Genetic Algorithm for Bin Pacing, Journal

of Heuristics. 2, 5-30.

Falkenauer, E., 1998. Genetic Algorithms and Grouping Problems, John Wiley &

Sons Ltd.

 References

190

Feo, T. A. and Resende, M. G. C., 1989. A Probabilistic Heuristic for a

Computational Difficult Set Covering Problem, Operations Research Letters. 8,

67-71.

Feo, T. A. and Resende, M. G. C., 1995. Greedy Randomized Adaptive Search

Procedures, Journal of Global Optimization. 6, 109-133.

Fisher, H. and Thompson, G. L., 1961. Probabilistic Learning Combinations of Local

Job-shop Scheduling Rules, Factory Scheduling Conference, Carnegie Institute

of Technology. May, 10-12.

Fleszar, K. and Hindi, K. S., 2002. New Heuristics for One-dimensional Bin-packing,

Computers & Operations Research. 29, 821-839.

Fogel, D. B., 1998. Evolutionary Computation: The Fossil Record, IEEE Press.

Fogel, D. B., 2000. Evolutionary Computation: Toward a New Philosophy of

Machine Intelligence, IEEE Press.

Forrest, S., 1993. Genetic Algorithms: Principles of Natural Selection Applied to

Computation. Science. 261, 872-878.

Fraser, A. S., 1957. Simulation of Genetic Systems by Automatic Digital Computers,

Aust. J. Biol. Sci. 10, 484-499.

Fujiwara, O. and Perera, U. L. J. S. R., 1993. EOQ Models for Continuously

Deteriorating Products Using Linear and Exponential Penalty Costs, European

Journal of Operational Research. 70, 104-114.

Gabriele, G. A. and Ragsdell, K. M., 1977. The Generalized Reduced Gradient

Method: A Reliable Tool for Optimal Design, AMSE Journal of Engineering for

Industry. 99, 384-400.

 References

191

Gambardella, L. M. and Dorigo, M., 2000. Ant Colony System Hybridised with a

New Local Search for the Sequential Ordering Problems, INFORMS Journal on

Computing. 12, 237-255.

Garey, M. R. and Johnson, D. S., 1979. Computers and Intractability: A Guide to the

Theory of NP-Completeness, W.H. Freeman.

Gendreau, M., 2002. Recent Advances in Tabu Search. In: Ribeiro,C.C. and

Hansen,P. (Eds.), Essays and Surveys in Metaheuristics, Kluwer Academic

Publishers, pp. 369-377.

Gendreau, M., Hertz, A. and Laporte, G., 1994. A Tabu Search Heuristic for the

Vehicle Routing Problem, Management Science. 40, 1276-1290.

Giri, B. C., Pal, S., Goswami, A. and Chaudhuri, K. S., 1996. An Inventory Model

for Deteriorating Items with Stock-dependent Demand Rate, European Journal of

Operational Research. 95, 604-610.

Glover F. and Laguna, M., 1995. Tabu Search. In: Reeves,C.R. (Ed.), Modern

Heuristic Techniques for Combinatorial Problems, McGraw-Hill, pp. 21-69.

Glover, F. and Kochenberger, G. A., 2003. Handbook of Meta-Heuristics, Kluwer,

ISBN: 1-4020-7263-5.

Glover, F., Laguna, M., and Marti, R., 2003. Scatter Search and Path Relinking. In:

Glover,F. and Kochenberger,G.A. (Eds.), Handbook of Metaheuristics, Kluwer,

pp. 1-37.

Glover, F., 1977. Heuristics for Integer Programming using Surrogate Constraints,

Decisions Science, 8, 155-166.

Glover, F., 1989. Tabu Search - Part I, ORSA Journal on Computing, 1, 190-206.

Glover, F., 1990. Tabu Search - Part II, ORSA Journal on Computing, 2, 4-32.

Glover, F. and Laguna, M., 1997. Tabu Search, Kluwer Academic Publishers.

 References

192

Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley.

Goyal, S. K. and Giri, B. C., 2001. Recent Trends in Modeling of Deteriorating

Inventory, European Journal of Operational Research. 134, 1-16.

Greene, J. W. and Supowit, K. J., 1986. Simulated Annealing Without Rejected

Moves, Transactions on Computer-Aided Design. 5, 221-228.

Gruen, T. and Shah, R., 2000. Determinants and Outcomes of Plan Objectivity and

Implementation in Category Management Relationships, Journal of Retailing. 76,

483-510.

Gupta, J. N. D. and Ho, J. C., 1999. A New Heuristic Algorithm for the One-

dimensional Bin-packing Problem, Production Planning & Control. 10, 598-603.

Gutin, G., 1999. Exponential Neighbourhood Local Search for the Traveling

Salesman Problem, Computer & Operations Research. 26, 313-320.

Han, L., Kendall, G. and Cowling, P., 2002. An Adaptive Length Chromosome

Hyperheuristic Genetic Algorithm for a Trainer Scheduling Problem, 4th Asia-

Pacific Conference on Simulated Evolution and Learning [SEAL'02], 267-271.

Hansen, P. and Maldenovic, N., 2001. Variable Neighbourhood Search: Principles

and Applications, European Journal of Operational Research. 130, 449-467.

Hansen, P. and Maldenovic, N., 2003. Variable Neighbourhood Search. In: Glover F.

and Kochenberger,G. (Eds.), Handbook of Meta-Heuristics, Kluwer, pp. 145-184.

Hart, C. and Davies, M., 1996. The Location and Merchandising of Non-food in

Supermarkets, International Journal of Retail & Distribution Management. 24,

17-25.

 References

193

Hart, E., Ross, P. and Nelson, J. A., 1998. Solving a Real-World Problem Using An

Evolving Heuristically Driven Schedule Builder, Evolutionary Computing. 6, 61-

80.

Hart, W. E., Krasnogor, N., and Smith, J. E., 2003. Recent Advances in Memetic

Algorithms and Related Search Technologies, Springer.

Henderson, D., Jacobson, S. H., and Johnson, A. W., 2003. The Theory and Practice

of Simulated Annealing. In: Glover F. and Kochenberger,G. (Eds.), Handbook of

Metaheuristics, Kluwer, pp. 287-319.

Hillier, F. S. and Lieberman, G. J., 2005. Introduction to Operations Research,

McGraw-Hill, 8th ed. ISBN: 0-07-252744-7.

Holland, J. H., 1975. Adaptation in Natural and Artificial Systems, University of

Michigan Press.

Hollier, R. H. and Mak, K. L., 1983. Inventory Replenishing Policies for

Deteriorating Items in a Declining Market, International Journal of Production

Research. 21, 813-826.

Hwang, H., Choi, B. and Lee, M.-J., 2005. A Model for Shelf Space Allocation and

Inventory Control Considering Location and Inventory Level Effects on Demand,

International Journal of Production Economics. In Press.

Ibarra, O. H. and Kim, C. E., 1975. Fast Approximation Algorithms for the Knapsack

and Sum of Subset Problems, Journal of ACM. 22, 463-468.

Ibbotson, J., 2002. Personal Correspondence, Retail Vision.

Jain, K. and Silver, E. A., 1994. Lot Sizing for a Product Subject to Obsolescence or

Perishability, European Journal of Operational Research. 75, 287-295.

 References

194

Johnson, D. S., Aragon, C. R., McGeoch, L. A. and Schevon, C., 1989. Optimization

by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning,

Operations Research. 37, 865-892.

Johnson, D. S., Aragon, C. R., McGeoch, L. A. and Schevon, C., 1991. Optimization

by Simulated Annealing: An Experimental Evaluation; Part II, Graph Colouring

and Number Partitioning, Operations Research. 39, 378-406.

Johnson, M., 2002. Personal Correspondence, Tesco.

Kaelbling, L. P., Littman, M. L. and Moore, A. W., 1996. Reinforcement Learning:

A Survey, Journal of Artificial Intelligence Research. 4, 237-285.

Kar, S., Bhunia, A. K. and Maiti, M., 2001. Inventory of Multi-deteriorating Items

Sold From Two Shops Under Single Management with Constraints on Space and

Investment, Computers & Operations Research. 28, 1203-1221.

Kendall, G. and Mohamad, M., 2004a. Channel Assignment Optimisation Using a

Hyper-heuristic, In the Proceedings of the 2004 IEEE Conference on Cybernetics

and Intelligent Systems (CIS), Singapore, 1-3 December 2004, 790-795.

Kendall, G. and Mohamad, M., 2004b. Channel Assignment In Cellular

Communication Using A Great Deluge Hyper-heuristic, In the Proceedings of the

2004 IEEE International Conference on Network (ICON2004), Singapore, 16-19

November 2004, 769-773.

Kendall, G. and Mohd Hussin, N., 2005. An Investigation of a Tabu Search Based

Hyper-heuristic for Examination Timetabling. In: Kendall,G., Burke,E., and

Petrovic,S. (Eds.), Selected Papers from MISTA 2003, Kluwer Academic

Publisher, 309-328.

Kendall, G. and Mohd Hussin, N., 2004a. An Investigation of a Tabu Search Based

Hyper-heuristic for Examination Timetabling. In: Kendall,G., Burke,E., and

 References

195

Petrovic,S. (Eds.), Selected Papers from MISTA 2003, Kluwer Academic

Publisher.

Kendall, G. and Mohd Hussin, N., 2004b. Tabu Search Hyper-heuristic Approach to

the Examination Timetabling Problem at University Technology MARA, In the

Proceedings of the 5th international conference on the Practice and Theory of

Automated Timetabling (PATAT), Pittsburgh, USA, Aug. 18-20, 199-217.

Kirkpatrick, S., Gellat, C. D. and Vecchi, M. P., 1983. Optimization by Simulated

Annealing, Science. 220, 671-680.

Kitano, H., 1990. Designing Neural Networks Using Genetic Algorithms with Graph

Generation System, Complex Systems. 4, 461-476.

Kotzan, J. and Evanson, R., 1969. Responsiveness of Drug Store Sales to Shelf

Space Allocations, Journal of Marketing Research. 6, 465-469.

Lasdon, L. S., Waren, A. D., Jain, A. and Ratner, M., 1978. Design and Testing of a

Generalized Reduced Gradient Code for Nonlinear Programming, ACM

Transactions on Mathematical Software. 4, 34-50.

Levy, M. and Weitz, B., 1992. Retailing Management, Homewood, IL., ISBN: 0-

256-05989-6.

Lim, A., Rodrigues, B. and Zhang, X., 2004. Metaheuristics With Local Search

Techniques for Retail Shelf-Space Optimization, Management Science. 50, 117-

131

Liu, J., 1999. The Impact of Neighbourhood Size on the Process of Simulated

Annealing: Computational Experiments on the Flowshop Scheduling Problem,

Computers & Industrial Engineering. 37, 285-288.

Liu, L., 1990. (s,S) Continuous Review Models for Inventory with Random

Lifetimes, Operations Research Letters. 9, 161-167.

 References

196

Liu, L. and Lian, Z., 1999. Continuous Review Models for Inventory with Fixed

Lifetimes, Operations Research. 47, 150-158.

Lourenco, H. R., Martin, O. C., and Stutzle, T., 2003. Iterated Local Search. In:

Glover,F. and Kochenberger,G.A. (Eds.), Handbook of Metaheuristics, Kluwer,

pp. 321-354.

Lundy, M. and Mees, A., 1986. Convergence of an Annealing Algorithm,

Mathematical Programming. 34, 111-124.

Mandal, B. N. and Phaujdar, S., 1989. An Inventory Model for Deteriorating Items

and Stock-dependent Consumption Rate, Journal of the Operational Research

Society. 40, 483-488.

Martello, S. and Toth, P., 1975. An Upper Bound for the Zero-one Knapsack

Problem and a Branch and Bound Algorithm, European Journal of Operational

Research. 1, 169-175.

Martello, S. and Toth, P., 1990a. Knapsack Problems: Algorithms and Computer

Implementations, John Wiley & Sons, ISBN: 0-471-92420-2.

Martello, S. and Toth, P., 1990b. Lower Bounds and Reduction Procedures for the

Bin Packing Problem, Discrete Applied Mathematics. 28, 59-70.

Mazzola, J. B. and Schantz, R. H., 1995. Single-facility Resource Allocation Under

Capacity-based Economics and Diseconomies of Scope, Management Science.

41, 669-689.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E.,

1953. Equation of State Calculation by Fast Computing Machines, Journal of

Chemical Physics. 21, 1087-1091.

Michalewicz, Z., 1996. Genetic Algorithms + Data Structures = Evolution Programs,

3rd. Ed., Springer.

 References

197

Michalewicz, Z. and Fogel, D. B., 2000. How To Solve It: Model Heuristics,

Springer-Verlag.

Mitchell, M., 1996. An Introduction to Genetic Algorithms, Massachusetts Institute

of Technology.

Mladenovic, N. and Hansen, P., 1997. Variable Neighbourhood Search, Computers

& Operations Research. 11, 1097-1100.

Mockus, J., 1989. Bayesian Approach to Global Optimization, Kluwer Academic

Publishers, Dordrecht-London-Boston.

Mockus, J., 1994. Application of Bayesian Approach to Numerical Methods of

Global and Stochastic Optimization, Journal of Global Optimization. 4, 347-366.

Mockus, J., 2000. A Set of Examples of Global and Discrete Optimization:

Application of Bayesian Heuristic Approach, Kluwer Academic Publishers,

Dordrecht-London-Boston.

Mockus, J., Eddy, W., Mockus, A., Mockus, L., and Reklaitis, G., 1997. Bayesian

Heuristic Approach to Discrete and Global Optimization, Kluwer Academic

Publishers, Dordrecht-Boston-London.

Moscato, P., 1989. On Evolution, Search, Optimisation, Genetic Algorithms and

Martial Arts: Towards Memetic Algorithms, Technical Report Caltech

Concurrent Computation Program, Report 826, California Institute of

Technology, Pasadena, California, USA.

Moscato, P. and Cotta, C., 2003. A Gentle Introduction to Memetic Algorithms. In:

Glover,F. and Kochenberger,G.A. (Eds.), Handbook of Metaheuristics, Kluwer,

pp. 105-144.

Nahmias, S., 1982. Perishable Inventory Theory: A Review, Operations Research. 30,

680-708.

 References

198

Nandakumar, P. and Morton, T. E., 1990. Near Myopic Heuristic for the Fixed Life

Perishability Problem, Management Science. 39, 241-246.

Nareyek, A., 2003. Choosing Search Heuristics by Non-Stationary Reinforcement

Learning, Metaheuristics: Computer Decision-Making (Resende, M.G.C., and de

Sousa, J.P.ed.), Kluwer, 523-544.

Nemhauser, G. L. and Wolsey, L. A., 1988. Linear and Combinatorial Optimization,

Wiley.

O'Grady, P. J. and Harrison, C., 1985. A General Search Sequencing Rule for Job

Shop Sequencing, International Journal of Production Research. 5, 961-973.

Ogbu, F. A. and Smith, D. K., 1990. The Application of the Simulated Annealing

Algorithm to the Solution of the n/m/Cmax Flowshop Problem, Computers &

Operations Research. 17, 243-253.

Osman, I. H. and Kelly, J. P., 1996. Meta-Heuristics: Theory and Applications,

Kluwer Academic Publishers.

Osman, I. H. and Laporte, G., 1996. Metaheursitics: A Bibliography, Annals of

Operations Research. 63, 513-623.

Oxford Dictionary of Computing, 1997. Oxford University Press, Oxford, 4th ed.

Petrovic, S. and Qu, R., 2002. Case-Based Reasoning as a Heuristic Selector in a

Hyper-Heuristic for Course Timetabling Problems, In the Proceedings of the 6th

International Conference on Knowledge-Based Intelligent Information

Engineering Systems and Applied Technologies (KES'02), Milan, Italy, Sep 16-

18. 82, 336-375.

Raafat, F., 1991. Survey of Literature on Continuously Deteriorating Inventory

Model, Journal of the Operational Research Society. 42, 27-37.

 References

199

Rajan, A., Rakesh and Steinberg, R., 1992. Dynamic Pricing and Ordering Decisions

by A Monopolist, Management Science. 38, 240-262.

Rao, R. L. and Iyengar, S. S., 1994. Bin-packing by Simulated Annealing,

Computers & Mathematics with Applications. 27, 71-82.

Rechenberg, I., 1965. Cybernetic Solution Path of an Experimental Problem,

Ministry of Aviation, Royal Aircraft Establishment.

Rechenberg, I., 1973. Evolutionsstrategie: Optimierung Technischer Systeme nach

Prinzipien der Biologischen Evolution, Frommann-Holzboog (Stuttgart).

Reeves, C., 1995. Modern Heuristic Techniques For Combinatorial Problems,

McGraw-Hill, ISBN: 0-07-709239-2.

Reeves, C. R., 1993. Improving the Efficiency of Tabu Search for Machine

Sequencing Problems, Journal of the Operational Research Society. 44, 375-382.

Resende, M. G. C. and Ribeiro, C. C., 2003. Greedy Randomized Adaptive Search

Procedures. In: Glover F. and Kochenberger,G.A. (Eds.), Handbook of

Metaheuristics, Kluwer, pp. 219-249.

RFID Journal, 2005. http://www.rfidjournal.com.

Rolland, E., Pirkul, H. and Glover, F., 1996. Tabu Search for Graph Partitioning,

Annals of Operations Research. 63, 209-232.

Ross, P., 2005. Hyper-Heuristics. In: Burke, E. and Kendall, G. (Eds.), Search

Methodologies: Introductory Tutorials in Optimization and Decision Support

Techniques, Springer, pp. 529-556.

Ross, P., Marin-Blazquez, J.G., Schulenburg, S., and Hart, E., 2003. Learning a

Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based

Approach to Hyper-heurstics, Proceeding of the Genetic and Evolutionary

Computation Conference, GECCO 2003, Chicargo, Illinois, USA, 1295-1306.

 References

200

Ross, P., Schulenburg, S., Marin-Blazquez, J.G., and Hart, E., 2002. Hyper

Heuristics: Learning to Combine Simple Heuristics in Bin-packing Problems,

Proceeding of the Genetic and Evolutionary Computation Conference,

GECCO2002, New York, US, 942-948.

Sahni, S., 1976. Approximate Algorithms for the 0-1 Knapsack Problem, Journal of

ACM. 22, 115-124.

Sarker, B. R., Mukherjee, S. and Balan, C. V., 1997. An Order-level Lot Size

Inventory Model with Inventory-level Dependent Demand and Deterioration,

International Journal of Production Economics. 48, 227-236.

Sastry, K., Goldberg, D., and Kendall, G., 2005. Genetic Algorithms. In: Burke, E.

and Kendall, G. (Eds.), Search Methodologies: Introductory Tutorials in

Optimization and Decision Support Techniques, Boston, Dordrecht, London,

Kluwer Academic Publishers, pp. 97-125.

Scholl, A., Klein, R. and Jurgens, C., 1997. BISON: A Fast Hybrid Procedure for

Exactly Solving the One-dimensional Bin Packing Problem, Computers &

Operations Research. 24, 627-645.

Schwefel, H-P., Evolutionsstrategie und numerische Optimierung, PhD Thesis,

Technische Universität, Berlin 1975.

Sechen, C., Braun, D. and Sangiovanni-Vincetelli, A., 1988. Thunderbird: A

Complete Standard Cell Layout Package, IEEE Journal of Solid-State Circuits.

23, 410-420.

Skorin-Kapov, J. and Vakharia, A., 1993. Scheduling a Flow-Line Manufacturing

Cell: A Tabu Search Approach, International Journal of Production Research. 31,

1721-1734.

 References

201

Smith, J., 2002. Co-evolving Memetic Algorithms: Initial Investigations. In: Parallel

Problem Solving from Nature VII, PPSN 2002, Lecture Notes in Computer

Science, Springer-Verlag, pp. 537-546.

Soriano, P. and Gendreau, M., 1996. Diversification Strategies in Tabu Search

Algorithms for the Maximum Clique Problems, Annals of Operations Research.

63, 189-207.

Soubeiga, E., Development and Application of Hyperheuristics to Personnel

Scheduling. PhD Thesis 2003.

Steinhofel, K., Albrecht, A. and Wong, C. K., 2003. An Experimental Analysis of

Local Minima to Improve Neighbourhood Search, Computers & Operations

Research. 30, 2157-2173.

Sutton, R. S. and Barto, A. G., 1998. Reinforcement Learning: An Introduction, MIT

Press, Cambridge - MA.

Taillard, E. D., 1994. Parallel Taboo Search Techniques for the Job Shop Scheduling

Problem, ORSA Journal on Computing. 23, 108-117.

Taillard, E. D., Gambardella, L. M., Gendreau, M. and Potvin, J., 2001. Adaptive

Memory Programming: A Unified View of Metaheuristics, European Journal of

Operational Research. 135, 1-16.

Thompson, J. M. and Dowsland, K. A., 1998. A Robust Simulated Annealing Based

Examination Timetabling System, Computers & Operations Research. 25, 637-

648.

Tian, P., Ma, J. and Zhang, D.-M., 1999. Application of the Simulated Annealing

Algorithm to the Combinatorial Optimisation Problem with Permutation Property:

An Investigation of Generation Mechanism, European Journal of Operational

Research. 118, 81-94.

 References

202

Toth, P., 1980. Dynamic Programming Algorithms for the Zero-one Knapsack

Problem, Computing. 25, 29-45.

Tovey, C. A., 1988. Simulated Simulated Annealing, American Journal of

Mathematical and Management Sciences. 8, 389-407.

Urban, T., 1998. An Inventory-Theoretic Approach to Product Assortment and Shelf-

Space Allocation, Journal of Retailing. 74, 15-35.

Urban, T., 2002. The interdependence of inventory management and retail shelf

management, International Journal of Physical Distribution & Logistics

Management. 32, 41-58.

Urban, T. L. and Baker, R. C., 1997. Optimal Ordering and Pricing Policies in a

Single-period Environment with Multivariate Demand and Markdowns,

European Journal of Operational Research. 103, 573-583.

Valerio de Carvalho, J. M., 1999. Exact Solution of Bin-packing Problems Using

Column Generation and Branch-and-bound, Annals of Operations Research. 86,

629-659.

Verbeke, W., Farris, P. and Thurik, R., 1998. Consumer Response to the Preferred

Brand Out-of-Stock Situation, European Journal of Marketing. 32, 1008-1028.

Voss, S., Martello, S., and Osman, I. H., 1999. Meta-Heuristics: Advances and

Trends in Local Search Paradigms for Optimization, Kluwer Academic

Publishers.

Voudouris, C. and Tsang, E.P.K., 1997. Guided Local Search. Technical Report

CSM-247, Department of Computer Science, University of Essex.

Voudouris, C. and Tsang, E. P. K., 2003. Guided Local Search. In: Glover F. and

Kochenberger,G. (Eds.), Handbook of Metaheuristics, Kluwer, pp. 185-218.

 References

203

Wang, C.J. and Tsang, E.P.K., 1991. Solving Constraint Satisfaction Problems Using

Neural-networks, Proceedings of the IEE Second International Conference on

Artificial Neural Networks, 295-299.

Wang, C. J. and Tsang, E. P. K., 1994. A Cascadable VLSI Design for GENET. In:

Delgado-Frias,J.G. and Moore,W.R. (Eds.), VLSI for Neural Networks and

Artificial Intelligence, New York, Plenum Press, pp. 187-196.

Widmer, M. and Hertz, A., 1989. A New Heuristic Method for the Flow Shop

Sequencing Problem, European Journal of Operational Research. 41, 186-193.

Wolpert, D. and MacReady, W. G., 1997. No Free Lunch Theorems for Optimization,

IEEE Transactions on Evolutionary Computation. 1, 67-82.

Xu, H. and Wang, H.-P., 1990. An Economic Ordering Policy Model for

Deteriorating Items with Time Proportional Demand, European Journal of

Operational Research. 46, 21-27.

Yang, M.-H., 2001. An Efficient Algorithm to Allocate Shelf Space, European

Journal of Operational Research. 131, 107-118.

Yang, M.-H. and Chen, W.-C., 1999. A Study on Shelf Space Allocation and

Management, International Journal of Production Economics. 60, 309-317.

Yao, X., 1999. Evolutionary Computation: Theory and Applications, World

Scientific.

Yeo, A., 1997. Large Exponential Neighbourhoods for the Traveling Salesman

Problem, Technical Report: PP-1997-47, University of Southern Demark.

Zhou, Y.-W., Lau, H.-S. and Yang, S.-L., 2003. A New Variable Production

Scheduling Strategy for Deteriorating Items with Time-varying Demand and

Partial Lost Sale, Computers & Operations Research. 30, 1753-1776.

 References

204

Zufryden, F., 1986. A Dynamic Programming Approach for Product Selection and

Supermarket Shelf-Space Allocation, Journal of Operations Research Society. 37,

413-422.

