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Abstract 

This thesis is concerned with real-world shelf space allocation problems that arise 

due to the conflict of limited shelf space availability and the large number of 

products that need to be displayed. Several important issues in the shelf space 

allocation problem are identified and two mathematical models are developed and 

studied. The first model deals with a general shelf space allocation problem while the 

second model specifically concerns shelf space allocation for fresh produce. Both 

models are closely related to the knapsack and bin packing problem.  

The thesis firstly studies a recently proposed generic search technique, hyper-

heuristics, and introduces a simulated annealing acceptance criterion in order to 

improve its performance. The proposed algorithm, called simulated annealing hyper-

heuristics, is initially tested on the one-dimensional bin packing problem, with very 

promising and competitive results being produced. The algorithm is then applied to 

the general shelf space allocation problem. The computational results show that the 

proposed algorithm is superior to a general simulated annealing algorithm and other 

types of hyper-heuristics. For the test data sets used in the thesis, the new approach 

solves every instance to over 98% of the upper bound which was obtained via a two-

stage relaxation method. 

The thesis also studies and formulates a deterministic shelf space allocation and 

inventory model specifically for fresh produce. The model, for the first time, 

considers the freshness condition as an important factor in influencing a product’s 

demand. Further analysis of the model shows that the search space of the problem 

can be reduced by decomposing the problem into a nonlinear knapsack problem and 

a single-item inventory problem that can be solved optimally by a binary search. 

Several heuristic and meta-heuristic approaches are utilised to optimise the model, 



 

XI 

including four efficient gradient based constructive heuristics, a multi-start 

generalised reduced gradient (GRG) algorithm, simulated annealing, a greedy 

randomised adaptive search procedure (GRASP) and three different types of hyper-

heuristics. Experimental results show that the gradient based constructive heuristics 

are very efficient and all meta-heuristics can only marginally improve on them. 

Among these meta-heuristics, two simulated annealing based hyper-heuristic 

performs slightly better than the other meta-heuristic methods. 

Across all test instances of the three problems, it is shown that the introduction of 

simulated annealing in the current hyper-heuristics can indeed improve the 

performance of the algorithms. However, the simulated annealing hyper-heuristic 

with random heuristic selection generally performs best among all the other meta-

heuristics implemented in this thesis.   

This research is funded by the Engineering and Physical Sciences Research 

Council (EPSRC) grant reference GR/R60577. Our industrial collaborators include 

Tesco Retail Vision and SpaceIT Solutions Ltd.   
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CHAPTER 1. INTRODUCTION 

1.1 Background and Motivations 

The retailing sector in the UK is an extremely competitive arena. We only need to 

consider some high profile companies to see that this is the case. A particular 

example is provided by the recent decline of Marks and Spencer, who used to be the 

leading high street retailer. A further example is given by C&A’s decision to close all 

of its high street retail outlets. Yet another example is the decline of J Sainsburys 

from its position as the leading food retailer in the UK in the 1990’s (in 1996, Tesco 

opened up a 2% lead over their rivals and continue to maintain an advantage). Asda, 

after merging with Wal-Mart, increased its market share dramatically and overtook 

Sainsbury’s as the second biggest supermarket in the UK. In July 2003, Asda had 

gained a 17% market share, while Sainsbury’s had slipped from 17.1% to 16.2%. 

Tesco retains the top spot with 27% of the overall market (BBC Business, 2003). 

This trend is continuing with Tesco’s market share increasing further to 29% with a 

total of £29.5 billion of domestic sales in 2004. However, Morrisons, since taking 

over Safeways in 2004, has been struggling to lift their sales and profits (BBC 

Business, 2005). 

This level of competitiveness is unlikely to decline. On the contrary, the high 

street (or more likely, out of town shopping centres) is likely to become even more 

competitive. 

Retailers are keen to do everything possible to make their systems more efficient, 

whilst maximising their profit. Several tactics are used to influence consumers’ 

purchases, including product assortment (deciding which merchandise to sell), store 

layout and space planning, merchandise pricing, services offered, advertising and 
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other promotional programs (Levy and Weitz, 1992). Store layout and space 

planning focuses on the improvement of the visual effect of the shopping 

environment and space productivity.  

Shelf space allocation also uses the term planograms. A planogram is a retailer’s 

product map or blueprint which shows exactly where and how many items should 

physically be displayed on the shelves or fixtures (see figure 1-1 for an example). 

 

 
 

Figure 1-1: An example of a simple planogram 
 

If customers are completely loyal to the products that they buy and all purchases 

are planned before a visit to the shop, shelf space manipulation, both in terms of 

volume and the location where a product displayed, would not be able to boost sales 

as long as ‘out-of-stock’ issues do not occur. However, unplanned (occasional) 

purchases are very common. An attractive layout of the products could increase 

impulse purchases. Previous research shows that unplanned purchases make up about 

one third of all transactions in many retail stores (Buttle, 1984). Therefore, shelf 

space allocation is an area worthy of investigation in which retailers have the 

opportunity to increase their sales.  

However, allocating shelf space to hundreds or even thousands of products is 

challenging. On one hand, shelf space is an expensive and scarce resource for 

retailers. They would prefer not to increase the store size due to the high costs of 
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construction as well as maintenance. Dreze et al. (Dreze et al., 1994) reported a shelf 

cost of $20/square foot for dry shelf space, and rising to over $50/square foot for 

dairy shelves. The costs can even rise to about $70/square foot for frozen food. On 

the other hand, many supermarkets are selling upwards of thousands of different 

products on a daily basis and this number is continuing to rise as retailers strive to 

diversify their product lines to more and more non-food products (Dreze et al., 1994; 

Yang and Chen, 1999). For example, a general Tesco store carries about 30,000 

different products or stock-keeping units (SKU) and a Tesco hypermarket sells more 

than 50,000 different items. This poses a real dilemma for the supermarkets. The 

space allocation has to balance the conflict of thousands of products to display, 

versus the limited amount of space at their disposal.  

Research and practice reveals that planograms, especially computer-based 

planograms, are one of the most important aspects used to improve the financial 

performance of a retail outlet and can also be used for inventory control and vendor 

relation improvement (Levy and Weitz, 1992; Yang and Chen, 1999). However, 

generating planograms is a challenging and time-consuming process because the 

simplest form of planogram problem (ignoring all marketing and retailing variables) 

is already a multi-knapsack problem, a well-known NP-Hard problem (Martello and 

Toth, 1990a) which is very difficult to solve. The difficulty is further increased when 

we consider other merchandise, such as fresh food, clothing and frozen food. This is 

due to their special display requirements and the fact that they do not use standard 

shelf fitments. Currently, producing planograms is largely a manual process (there is 

software assistance available (e.g. Galaxxi, Spaceman) but most are drag-and drop 

procedures or semi-automated processes which involve significant human interaction) 

and the shelf space allocation is mainly based on some simple rules. Examples of the 
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rules include allocating space proportional to a product’s market share, historical 

sales, profit or a combination of these (Corstjens and Doyle, 1981b). However, these 

simple approaches may lose substantial sales according to (Borin et al., 1994).   

Yang and Chen (Yang and Chen, 1999) conducted a survey of the area. This work 

highlighted the lack of academic work that has been conducted in this domain. Only 

twelve references were cited. Five of these date back to the 1970’s, four were drawn 

from the 1980’s and only three were from the 1990’s. It seems timely that this area 

should receive research attention given the recent advances in AI search techniques.  

1.2 Scope and Aims 

The thesis is based on a research proposal which is funded by EPSRC 

(GR/R60577), in collaboration with three other industrial collaborators: Tesco, Retail 

Vision and SpaceIT Solutions Ltd. Throughout this project, we have had several 

meetings with them, which has proven to be very useful and valuable. The software 

provided by SapceIT Solutions Ltd allowed us to recognise the shortcomings of 

current planogram software. The conversations with John Ibbotson from Retail 

Vision helped us to understand the key issues of the problem, while the 

conversations with Tesco helped us direct our research attention to a more interesting 

problem (fresh produce) in the latter stage of the project.  

Overall, the aim of this research is to develop models and algorithms that can be 

used in the next generation of planogram systems. The software should be able to not 

only produce automated planograms but also provide optimised shelf space 

allocation solutions for the given requirements. Specifically, we want to: 

1. Identify potential important issues in the shelf space allocation problem; 

2. Formulate a practical model that captures the main characteristics of various 

shelf space allocation problems and one that can be used in practice; 
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3. Specifically investigate a fresh food inventory control and shelf space 

allocation problem, which is of particular interest to retailers.  

4. Identify the relationship between the shelf space allocation problems and other 

space allocation problems and investigate potential optimisation techniques 

for those problems; 

5. Investigate meta-heuristics, especially a simulated annealing hyper-heuristic 

for the optimisation the model formulated in 2 and 3. 

1.3 Overview of the Thesis 

The thesis is organised as follows: chapter two introduces and discusses the shelf 

space allocation problem. Several important issues are identified and discussed. 

Previous research of the shelf space allocation problem is then reviewed and several 

other related space allocation problems are briefly discussed. Chapter three 

overviews the optimisation techniques that can be used for combinatorial 

optimisation problems. Chapter four specifically studies a recently emerging generic 

search technique, hyper-heuristics. A simulated annealing acceptance criterion is 

proposed that can be included in the hyper-heuristic framework in order to further 

improve its performance. The resulting algorithms are initially tested on the well-

known bin packing problem. Chapter five proposed a practical model for a general 

shelf space allocation problem. To have a better measure of the solution quality and 

algorithm performance, an upper bound of the problem is obtained by a two-stage 

relaxation. Several hyper-heuristic approaches are implemented and applied to the 

problem and their performances are analysed and compared on two simulated data 

sets. The advantages of simulated annealing hyper-heuristics are discussed in 

comparison to two conventional simulated annealing algorithms and other types of 

hyper-heuristic algorithms.  
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Chapter six and seven investigate a shelf space allocation problem specifically for 

fresh produce. This problem differs from the general shelf space allocation problem 

in that the products deteriorate continuously over time and their freshness plays a 

vital role in influencing customers’ demand. In chapter six, a practical shelf space 

allocation and inventory control model is proposed which, for the first time, uses the 

concept of freshness condition to formulate the fresh food demand function. Further 

analysis shows that the proposed model is an extension of the non-linear bounded 

knapsack problem. A generalised reduced gradient algorithm (GRG) is proposed and 

extended in order to optimise the problem. Chapter seven investigates several 

heuristic and meta-heuristic approaches for the problem model formulated in chapter 

six. Four efficient gradient based heuristics are firstly proposed and several meta-

heuristic approaches, including the simulated annealing hyper-heuristics, are 

investigated to further improve the solutions from these greedy approaches.  

1.4 Contributions 

The work in this thesis makes the following contributions: 

− Several important issues in the shelf space allocation problem are identified 

and a practical model for the general shelf space allocation problem is 

proposed. An upper bound of the model is derived via a two-stage relaxation 

method.  

− The thesis, for the first time, adapts existing hyper-heuristics to the shelf 

space allocation problem.  

− The thesis, for the first time, introduces simulated annealing into a hyper-

heuristic framework which could potentially improve the performance and 

robustness of current hyper-heuristic approaches.  
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− A simulated annealing hyper-heuristic is successfully applied to the one-

dimensional bin packing problems with competitive results being produced 

when compared with other state-of-the-art methods.  

− A deterministic inventory control and shelf space allocation model is 

formulated for the retailing of fresh food, which, for the first time, considers 

the freshness condition as a potential demand influencing factor. We 

consider this as a major contribution of this thesis. 

− A GRG (generalised reduced gradient) algorithm is extended and adapted to 

the inventory control and shelf space allocation problem.  

− Several heuristics and meta-heuristics are designed and developed to 

optimise the fresh produce shelf space allocation model, including a GRASP 

algorithm, a simulated annealing algorithm, a tabu search hyper-heuristic 

and a simulated annealing hyper-heuristic. Their performance is compared 

and discussed.  

− The investigation of simulated annealing hyper-heuristics on three different 

space allocation problems presents a better understanding of both simulated 

annealing algorithms and hyper-heuristics. Due to its success for all three 

problems, the author strongly believes the algorithm is also a promising 

research direction for some other combinatorial optimisation problems.  

1.5 List of Presentations 

Bai, R. and Kendall, G., Optimisation of Supermarkets Shelf Space Allocation. The 

Third EPSRC PhD Student Workshop on Scheduling, 12 May 2003, University 

of Bradford, UK. 

Bai, R. and Kendall, G., An Investigation of Automated Planograms Using a 

Simulated Annealing Based Hyper-heuristics, The Fifth Metaheuristics 
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International Conference (MIC 2003), 23-25 August 2003, Kyoto International 

Conference Hall, Kyoto, Japan. 

Bai, R. and Kendall, G., Recent Advances in the Production of Automated 

Planograms. The CORS/INFORMS Joint International Meeting, 16-19 May 

2004, Banff, Canada. 

Bai, R. and Kendall, G., Designing Efficient Low-level Heuristics in the Hyper-

heuristic Framework. OR47, 13-15 September 2004, Chester, UK. 

1.6 List of Publications 

Bai, R. and Kendall, G., 2005a. A Model for Fresh Produce Shelf Space Allocation 

and Inventory Management with Freshness Condition Dependent Demand, 

Accepted for publication in the INFORMS Journal on Computing. 

Bai, R. and Kendall, G., 2005b. An Investigation of Automated Planograms Using a 

Simulated Annealing Based Hyper-heuristics, in: Ibaraki, T., Nonobe, K., and 

Yagiura, M. (Eds.), Metaheuristics: Progress as Real Problem Solvers - 

(Operations Research/Computer Science Interfaces, Vol. 32), Berlin, Heidelberg, 

New York, Springer, pp. 87-108. 

An early version of this paper is also published in the Proceeding of the 5th 

Metaheuristics International Conference (MIC 2003), Kyoto, Japan, Aug. 25-28, 

2003. 

Bai, R. and Kendall, G., 2005c. A Multi-heuristic Simulated Annealing for the One-

dimensional Bin Packing Problem, Submitted to EJOR. 

Bai, R. and Kendall, G., 2005d. Heuristic and Meta-heuristics for the Optimisation of 

a Fresh Produce Inventory Control and Shelf Space Allocation Problem, 

Submitted to Journal of Operational Research Society. 
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CHAPTER 2. THE SHELF SPACE ALLOCATION PROBLEM 

AND RELATED WORK 

2.1 Introduction 

The shelf space allocation problem is a real-world problem faced by many retail 

companies. The problem arises when there is a large number of products to display, 

but with limited shelf space available at disposal. This chapter firstly introduces the 

shelf space allocation problem and analyses the necessities and benefits of providing 

an automated solution methodology. A detailed description of the problem is then 

presented along with some possible hard and soft constraints. The previous research 

on shelf space allocation is then reviewed. It is shown that shelf space allocation 

problems share some similarities with some well-known capacity allocation 

problems, such as the bin packing and knapsack problems which are also reviewed in 

the chapter.  

2.2 The Shelf Space Allocation Problem 

The shelf space allocation problem involves distributing the scarce shelf space 

among different products held within a retail store.  

2.2.1 Problem description 

Firstly, let us introduce some concepts related to shelf space allocation. The first 

term is a stock-keeping unit (SKU) which is used to uniquely identify a specific 

product or goods. SKU is the smallest management unit in a retail store. Inventory 

refers to the quantity of each SKU that is currently held by a retailer. Keeping a 

minimum inventory could reduce or avoid the occurrence of out-of-stock. A category 

is a collection of products that have the same or similar functions or attributes. A 
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category usually contains several brands with each brand having several SKU, 

usually corresponding to different sizes, colours, flavours and/or other properties. 

Facing is a very important variable for shelf space allocation. The number of the 

facings of a SKU is the quantity of an item that can be directly seen on the shelves or 

fixtures by the customers. The items placed behind other items cannot be seen 

directly and hence are not deemed as a facing. Note that a retailer normally only 

displays part of the inventory of a given item on the shelves (leaving the rest in the 

backroom) due to the limited amount of shelf space. This means that the number of 

facings of a SKU, or the amount of visible stock on the shelves, is normally less than 

the inventory.  

During the last fifty years, the variety of available products has increased 

dramatically, and continues to do so in order to meet the diverse demands of 

customers. This diversity can be due to the different functions, brands, styles, colours, 

materials and even sizes, as well as many other factors. Although the supermarkets 

have continuingly increased their store sizes, the proportion of this increase is far less 

than the increase in the variety of the products. This creates a real challenge for most 

of the supermarkets in pursuit of effective product layouts such that some objectives 

are achieved, for example, maximising profit or sales, minimising operating costs, 

maximising customers’ loyalty, etc.  

Shelf space allocation problems can be very different. This is due to the 

differences in a company’s long-term strategy, management style, categories of the 

products, competitive environment, retailer-vendor relationship, store layout, store 

size, fixture structure, etc. It is unlikely that we can develop a mathematical model 

which could exactly represent every real-world shelf space allocation problem. 

Therefore, for the purpose of this research, this thesis will mainly focus on an 
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abstracted problem which can capture the main characteristics of the shelf space 

allocation problems existing in most retail stores.  

In practise, space allocation, in a retail store, is usually decomposed into two 

levels: space allocation among categories and the space allocation for each SKU. The 

reasons are that: 1. A supermarket usually has thousands of products. Different 

categories may have different display conditions and requirements. Solving the 

problem for all products is unrealistic not only because of the difficulty in 

formulating a suitable model for all products from different categories but also 

because of the extremely high computational requirements. 2. Grouping similar 

functional products into a category allows customers to compare them before making 

a choice. 3. Category management is a common method for most stores, especially 

big supermarkets which are usually hierarchised into department, category, brand 

and stock-keeping unit (SKU) (Levy and Weitz, 1992; Yang and Chen, 1999; Gruen 

and Shah, 2000). 

Buttle (Buttle, 1984) described a general retail store space planning process and 

listed several important in-store manipulation tactics to stimulate demand: traffic 

flow design, category and brand location, space allocation to each category and 

product, point-of-sale (POS) promotions and special display. Given a store with a 

given size, a retailer firstly needs to design a customer’s traffic flow that will be 

guided by the fixtures and shelves in such a way that every part of the store has 

maximal exposure while customers can also have direct access to the section(s) that 

they wish to visit. The dimension and layout of the shelves are mainly determined by 

the store’s physical shape and the customer traffic flow pattern that a retailer chooses. 

Once the shelves (or fixtures) have been placed within a store, a retailer has to make 
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space allocation among different categories and then among different SKU in each 

category.  

The space allocation among different categories is more related to the company’s 

long-term strategies, competitive situation and customer purchasing habits. This 

aspect is beyond the scope of this thesis. In the following chapters, without 

specification, the shelf space allocation problem will refer to the problem of 

allocating space for each SKU within a given category. Several issues need to be 

taken into consideration:  

Objectives 

The ultimate aim of shelf space allocation is to either reduce cost or maximise the 

overall profit. Minimising the cost is used in EOQ (economic order quantity) models 

where the demand of a product is fixed and the space allocation does not influence 

the demand. However, if a product’s demand is dependent on the decision variables 

of the shelf space allocation, a cost-minimisation objective becomes inappropriate 

because the minimisation of the cost would result in a decline of sales and profit 

because the model may try to reduce the product facings in order to reduce cost. 

However, the reduction of displayed shelf space may also lead to a decrease in sales 

and thus profit. To take an extreme case as an example, when no shelf space is 

assigned, the cost is minimal. However, clearly, no product can be sold when it is not 

displayed. Therefore, the aggregate profit maximisation is chosen to be the objective 

of the shelf space allocation problem in this thesis.  

Decision variables 

Facings and location are the two most common shelf space allocation variables.  

Facing is a very important variable for shelf space allocation. It has been 

established that the number of facings has an important influence on customer 
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purchases. Research has found that more than 33% of purchases are unplanned 

(Buttle, 1984). Products with a better exposure have a greater chance of being 

purchased by customers. However, the allocated shelf space may have a different 

impact on sales from one product to another.  

Space elasticity is usually used to measure the responsiveness of the sales with 

regards to the change of allocated space. Curhan (Curhan, 1972) defined space 

elasticity as “the ratio of relative change in unit sales to relative change in shelf 

space”.  

Location is another variable which can influence the demand of a product. It is 

generally believed that shelves at eye-level (“eye-level is buy-level”), shelves at the 

end of aisles and at the store entrance are better positions, while top and bottom 

shelves are less important. However, there are some arguments with regards to the 

horizontal distances. Some research shows that the shelves at both ends of the aisles 

are better than the middle positions, while others believe that customers prefer 

middle locations as opposed to the ends of the aisles (Dreze et al., 1994; Ibbotson, 

2002). These findings are based on the fact that some customers prefer to take the 

first item once they enter an aisle whilst others take time to “acclimatise” themselves 

and so ignore the first few items.  

There are other marketing variables that are used to stimulate sales, including 

advertising, promotion, discounting, etc. Investigation of these issues is beyond the 

aim of this research. Our focus is on the facings and location variables.  

Constraints 

There are several potential constraints for the shelf space allocation problem. 

Although different stores may have different display requirements and considerations 

and thus have different constraints, there are some which are common. 
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Physical constraints are applied to every shelf space allocation problem. The total 

volume of the items assigned to a shelf cannot exceed the total shelf space available. 

This constraint can be one dimensional (ignoring the height and depth constraints) or 

two dimensional (ignoring depth constraints). The depth constraints are usually 

ignored because the depth of the shelf is usually much larger than the width of the 

SKU. The retailers do put as many items as possible behind the front items in order 

to reduce the number of replenishment times, however, the existence of stock behind 

the front facings has no effect on the demand function. The height constraints can 

also be ignored for some goods, for example, when placing products on top of 

another is not allowed (e.g. wine and milk bottles, etc). Also in many stores, the 

height of shelves can be adjusted. This could solve the problem when the product 

height exceeds the height of the shelf the product is assigned to or when there is not 

enough space for picking the goods from shelves.  

Physical constraints are generally considered as hard constraints. That is: 

violation of these constraints will result in an infeasible solution (for some products, 

which can be “squeezed a bit”, this constraint is not in a strong sense “hard” 

anymore).  

Integrality constraints. Due to the fact that the physical products cannot be sub-

divided (at least for most products), the space allocated to an item should be an 

integral times of the size of that item, usually measured by facings. This is also a 

hard constraint and must be satisfied. It does not make any sense to allocate 1.5 

facings space to an item.  

The physical constraints and integrality constraints of the shelf space allocation 

problem are very similar to the constraints in bin packing and knapsack problems, 

which are well-known NP-Hard problems (Martello and Toth, 1990a). However, a 
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shelf space allocation problem may be even more difficult because it usually has a 

non-linear objective function and some additional constraints, which will be 

discussed in the following paragraphs.  

Display requirements. Many retailers set a lower bound on the number of facings 

allocated to a product to ensure that the necessary exposure is given to the customers 

(In Tesco, for example, the minimal display space for a product is two facings). An 

upper bound is also enforced so that the number of facings is contained within 

reasonable values. In some cases important suppliers also have the power to 

influence the shelf space allocation decision, requiring more space and better 

location for their brands.  

Block constraint. A block constraint is required based on the assumption that a 

SKU has a higher chance of being purchased by bundling several facings of a SKU 

together rather than spreading them onto different shelves. However, it may also be 

the case that putting the same product in several places throughout the store could 

increase purchases.  

Adjacency. Although it may be reasonable that putting similar products of 

different brands together may make it easier for customers to make comparisons, it is 

also sensible to display complimentary products together by assuming that buying 

one product may encourage the customer to make another purchase for a 

complementary product (for example, beer and crisps, tea and biscuits, greeting cards 

and flowers and toothpaste and toothbrush).  

Weight constraint. A weight constraint is necessary when the products are 

relatively heavy and the total product weight should not exceed the weight limit a 

shelf can sustain. Another consideration is that large and heavy products should be 
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displayed on a lower shelf to allow easier access to the products both for customers 

and staff.  

2.2.2 An overview of shelf space allocation 

In this section, we shall give a review on the research and practice of shelf space 

allocation. In the literature, shelf space allocation research has been carried out both 

on the experimental studies and optimisation studies. The experimental studies are 

concerned with the effects of shelf space related tactics and operations on the 

demand and sales of the products. However, the optimisation studies focus on the 

appropriate model development and optimisation techniques.  

2.2.2.1 Experimental studies 

Due to the scarcity of space within stores, several researchers have concentrated 

on studying the relationship between the space allocated to an item and the sales of 

that item. Most have reached a common conclusion that a weak link exists between 

them and the significance depends on the types of items (Kotzan and Evanson, 1969; 

Cox, 1970; Curhan, 1972; Dreze et al., 1994; Desmet and Renaudin, 1998; Yang and 

Chen, 1999).  

In 1969, Kotzan and Evanson (Kotzan and Evanson, 1969) began to investigate 

the relationship between the shelf space allocated to an item and the sales of that item 

and found that a significant relationship existed within the three tested drug stores. 

Cox’s research (Cox, 1970) experimented with the shelf facings for two brands of 

two categories, salt and coffee cream. He found that the influence of shelf facings on 

sales was very weak and dependent on the category of products. However, his 

experimental results may be affected by the limited experimental samples. Curhan 

(Curhan, 1972) defined space elasticity as “the ratio of relative change in unit sales 
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to relative change in shelf space” and reported an average value of 0.212. However, 

this is just an average value. The value of the space elasticity can be very different, 

depending on the products, stores and in-store layout (Curhan, 1973).   

Dreze et al. (Dreze et al., 1994) carried out a series of  experiments to evaluate the 

effectiveness of shelf space management and cross-category merchandise 

reorganisation. The experiments were carried out within sixty stores of a leading 

supermarket chain in Chicago, USA, of which eight categories were chosen for the 

experiments. The shelf space manipulation included changing product facings, 

deletion of slow moving items, changes of shelf height, etc. Cross-category 

merchandise reorganisation included manipulations to enhance complementary 

shopping by placing naturally complementary products together. The results showed 

that, compared with the number of facings assigned to a brand, location had a larger 

impact as long as a minimum inventory (to avoid out-of-stocks) was guaranteed. 

Complementary merchandising also experienced a positive boost in sales (above 5%) 

on the tested products (toothbrush, toothpaste and laundry care). 

On the contrary, more recent research (Desmet and Renaudin, 1998) showed that 

direct space elasticities were significantly non-zero and varied considerably across 

different categories. Costume jewellery, fruit and vegetables, underwear, and shoes 

were among the highest space elasticities while textiles, kitchen and do-it-yourself 

products had low values.  

If the products are always available and the consumers would never switch to 

another brand, the change of space allocated to an item would have no effect on its 

sales (Borin et al., 1994). However, in fact, nearly half of the consumers would 

switch to other stores or change their previous choice to an alternative brand if their 

first choice is out-of-stock (Verbeke et al., 1998). On the other hand, the purchase of 
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one merchandise could increase the possibility of buying another with 

complementary functions (for example, a customer who bought a toothbrush may 

also buy toothpaste). Cross elasticities were introduced to evaluate the 

interdependence between two different items in Corstjens and Doyle’s model 

(Corstjens and Doyle, 1981a). The values of cross elasticities were assumed to be 

within the range of [-1, 1]. It was positive if two items were complementary and 

negative if they could be substituted for each other. This effort was echoed in Borin 

et al. (Borin et al., 1994) and Urban (Urban, 1998), both of which employed cross 

elasticities in their models. Although cross elasticities are helpful in revealing the 

relationships between different items, it is quite difficult to obtain a reliable 

estimation of so many values (n n×  for n items) due to the complicated merchandise 

relationships. Therefore, recent researchers have disregarded it in their models 

(Desmet and Renaudin, 1998; Urban, 2002). 

Display location is another factor that has been studied. Apart from positive 

experimental results from (Dreze et al., 1994),  several other publications emphasised 

the importance of location as a factor in improving sales (Buttle, 1984; Hart and 

Davies, 1996). Campo et al. (Campo et al., 2000) investigated the impact of location 

factors on the attractiveness of product categories and stated that the sales of the 

whole store were dependent on the intrinsic attractiveness based on category, store 

and trading area characteristics as well as cross elasticities between the categories. 

However, the model did not consider the difference in visibility or prominence 

between various locations in a store. 

2.2.2.2 Shelf space allocation models and optimisation methods 

Several space allocation models have been proposed in the literature. Most of 

them have formulated the demand rate of an item as a function of the space allocated 
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to the item, of which a classic model appears as a polynomial form proposed by 

Baker and Urban (Baker and Urban, 1988): 

( )        0,   0 1D x xβα α β= > < <                                     (2-1) 

where ( )D x  is the demand rate of the product, x is the number of facings or the 

displayed inventory. α  is a scale parameter and β  is the space elasticity of the 

product. The advantageous characteristics of this model include the diminishing 

returns (the increase in the demand rate decreased as the space allocated to this shelf 

increased), inventory-level elasticity (the space elasticity parameter represents the 

sensitivity of the demand rate to the changes of the shelf space), intrinsic linearity 

(the model can be easily transformed to a linear function by a logarithmic 

transformation and the parameters can then be estimated by a simple linear 

regression) and its richness.  

Corstjens and Doyle (Corstjens and Doyle, 1981a) firstly formulated their model 

as a non-linear multiplicative form and incorporated the cross elasticities, a set of 

problem parameters that reflect the interrelationships between different products 

under consideration. The inventory and handling cost effects were also considered. 

Based on this model, some non-space factors were also taken into account in 

(Zufryden, 1986), such as price, advertising, promotion, store characteristics, etc. A 

dynamic programming approach was proposed to solve this model. However, this 

approach may only be suitable for small sized problems. The approach becomes 

computationally expensive for large problem instances.  

Some integrated models have also been proposed based on the correlation of 

retailing decision processes (Borin et al., 1994; Urban, 1998; Hwang et al., 2005). 

Borin et al. (Borin et al., 1994) developed an integrated model whose objective is to 

maximise the category return on inventory. This model was supposed to help a 
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retailer to decide which products to stock (product assortment) and how much space 

should be allocated to them. The demand function was formulated into three 

components: unmodified demand, modified demand and acquired demand. 

Unmodified demand represented the customers’ direct preference for an item and 

was calculated according to its market share. Modified demand took account of the 

interdependence and substitution of different merchandise. Acquired demand 

represented the indirect demand captured from those products which were excluded 

from the assortment. The authors also considered the model’s sensitivity analysis 

with regards to the different degree of parameter errors which may be introduced 

during their estimations (Borin and Farris, 1995). A heuristic procedure, based on 

simulated annealing, was employed to optimise the model. The neighbourhood was 

defined by swapping one facing of two random items. The results showed that 

simulated annealing was more efficient and flexible compared with the shelf 

allocation rule based on the share of sales (a common space allocation rule).  

The above-mentioned models used the number of facings of an item to predict the 

demand quantity of that item. However, the effect of partially-stocked items (some 

facings are missing) was not explicitly reflected. Urban (Urban, 1998) replaced the 

number of allocated facings with average on-shelf inventory. His model also 

integrated an existing inventory-control model, a product assortment model and a 

shelf-space allocation model. A greedy heuristic and a genetic algorithm (GA) were 

proposed to solve the problem. A GA chromosome represented a given product 

assortment vector (i.e. “0”: excluded, “1”: included). The violations of some 

constraints were allowed in the initial solutions and then repaired by a heuristic 

procedure. However, the GA operations (crossover and mutation) were only applied 
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to product assortment variables, not to space allocation variables. For this reason, the 

solution obtained by this approach is normally locally optimal. 

Recently, Hwang et al. (Hwang et al., 2005) proposed an interesting integrated 

shelf space allocation and inventory control model. One characteristic of this model 

is the inclusion of vertical shelf location effects in the demand function. A gradient 

heuristic search and a genetic algorithm were proposed to optimise the model. 

Unfortunately, an underlying mathematical derivation (called “property 1” in the 

publication) is only applicable to continuous variables. The derivation cannot be 

extended to discrete variables. However, as mentioned in section 2.2, for the shelf 

space allocation and inventory control, one of the hard constraints is the integrality of 

decision variables. Hence other derivations in the paper based on “property 1” suffer 

from this drawback and are not correct in this sense.  

One drawback of the above models is that they have many parameters and it is 

difficult to put those models into practice because of the difficulty in obtaining a 

reliable estimation of them. In fact, Yang (Yang, 2001) argued that: “for commercial 

models, a very important criterion for selecting a space allocation method is the 

simplicity and ease of operation of the method”. He proposed a simpler linear model 

based on the work of Corstjens and Doyle (Corstjens and Doyle, 1981a), by 

assuming that a product total net profit was linearly proportional to the number of 

facings allocated to that product. This is, however, unrealistic for the real-world retail 

environment and also contradictory to the experimental results from the literature 

which generally suggested a relatively small space elasticity value (Dreze et al., 

1994). A greedy algorithm, in conjunction with three simple heuristics, was proposed 

to optimise the model. However, only several numerical examples were used to 

justify the algorithm and they are far from the real-world shelf space allocation 
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problems which are usually much larger and more complicated. In addition, the three 

heuristics rejected all “bad moves” (a decrease in the objective value for a 

maximisation problem). The algorithm, in fact, worked in a random greedy fashion 

and could easily become trapped in a local optimum. Recently, Lim et al. (Lim et al., 

2004) experimented with network flow, tabu search and a modified squeaky-wheel 

optimisation algorithm to this linear shelf space allocation model and was able to 

produce better results. Among the algorithms they experimented with, the modified 

squeaky-wheel optimisation problem outperformed others across the problem 

instances.  

Due to the diversity of products’ properties and business styles, there can be many 

different shelf space allocation problems. Therefore, it is difficult to develop a 

generic model that can represent all real-world shelf space allocation problems. For 

research purposes, chapter 5 will consider a general problem that has previously been 

the subject of most of the academic research on planograms. In chapter 6 we will 

address a shelf space allocation problem specifically for fresh produce. Two practical 

models are proposed for these two types of shelf space allocation problems. In the 

next section, some other related shelf space allocation problems are briefly reviewed.  

2.3 Other Space Allocation Problems 

2.3.1 Bin packing problem 

The one dimensional bin packing problem is defined as follows. Given a set of 

items {1,..., } I n= each having an associated size or weight wi and a set of bins with 

identical capacities c. The problem is to pack all the items into as few bins as 

possible, without exceeding the capacity of the bins. The bin packing problem is a 

well-known NP-Hard combinatorial optimisation problem (Martello and Toth, 1990a) 
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and there is no known polynomial time-bounded algorithm that can solve every 

problem instance to optimality. However, it is not difficult to get a lower bound of 

the problem. A straightforward lower bound can be obtained by 1 1
/

n

ii
L w c

=
 =  ∑  

where x    is the smallest integer not less than x. Some stronger lower bounds were 

studied in (Martello and Toth, 1990b; Scholl et al., 1997). This problem can also be 

extended to two-dimensional and three-dimensional bin packing, where both the bin 

and the items have sizes (other aspects of the problem) in two or three dimensions. 

One-dimensional bin packing problems have been addressed by many researchers 

and both exact methods and meta-heuristic methods have been developed. See 

chapter 4 for a detailed review.  

2.3.2 Knapsack problem 

The knapsack problem has been intensively studied (Martello and Toth, 1990a) 

and there are several variations of the problem, of which 0-1 is the most commonly 

studied.  

0-1 knapsack problem 

The 0-1 knapsack problem can be described as follows. Given a knapsack with 

capacity c and a set of n items, each item i is associated a profit ip  and a weight iw . 

The problem is to select a subset of items such that the total profits z of the selected 

items are maximised. The mathematical model was formulated in (Martello and Toth, 

1990a) as follows: 

1
max             = 

n

i ii
z px
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w x c

=
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0 or 1,     1,...,ix i n= =                         (2-4) 
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The 0-1 knapsack problem can be exactly solved by a branch and bound 

algorithm (Martello and Toth, 1975) and dynamic programming (Toth, 1980). 

However, with very large problem instances (n>2000), approximation approaches are 

proposed due to the significant computational requirements of these exact 

approaches. Sahni proposed (Sahni, 1976) the first pseudo-polynomial 

approximation method with the prefixed worst-case performance. A fully 

polynomial-time approximation scheme was given by Ibarra and Kim (Ibarra and 

Kim, 1975) based on a dynamic programming algorithm. 

Bounded knapsack problem 

In the 0-1 knapsack problem, the variable xi takes either 0 or 1. The problem can 

be extended by allowing the variable xi to have several values bounded by a given 

range. The problem is formulated as follows in (Martello and Toth, 1990a): 

n = number of items;  

pi = profit of item i; 

wi =weight of item i; 

bi = upper bound on the availability of item i; 

c = capacity of the knapsack; 

xi = the number of item i being selected in the knapsack. 

1
max            

n

i ii
p x

=∑                                                   (2-5) 

subject to   
1

n

i ii
w x c

=
≤∑                                              (2-6) 

    +0  and Z ,     1,...,i i ix b x i n≤ ≤ ∈ =           (2-7) 

Similarly, the bounded knapsack problem can be solved by dynamic 

programming and branch-and-bound approaches. However, it has been shown that 

the bounded knapsack problem can be more efficiently solved by transforming it into 
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a 0-1 knapsack problem and solving the transformed problem by the approaches for 

the 0-1 knapsack problem (Martello and Toth, 1990a).  

When ib → +∞ , the bounded knapsack problem degenerates into an unbounded 

knapsack problem. Still, dynamic programming and a branch-and-bound algorithm 

can solve the problem efficiently by transforming it into a 0-1 knapsack problem. 

However, it was proven to be not as efficient as when solving it directly  (Martello 

and Toth, 1990a).  

0-1 multiple knapsack problem 

Another generalised 0-1 multiple knapsack problem is the 0-1 multiple knapsack 

problem, where the problem has a set of knapsacks rather than one. The problem is 

formulated as follows in (Martello and Toth, 1990a): 

m = the number of knapsacks; 

n = the number of items; 

pi = profit of item i; 

wi =weight of item i; 

cj = capacity of knapsack j; 

 1   if item  is assigned to knapsack ;

 0  otherwise.
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x
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A straightforward upper bound of the model can be obtained by solving a relaxed 

0-1 knapsack problem with a single knapsack of capacity 
1

m

jj
c

=∑ . Branch-and-

bound approaches are usually used to exactly solve the problem while dynamic 

programming was proven to be impractical because the multiple knapsack problem is 

NP-Hard in a strong sense (Martello and Toth, 1990a).  

2.3.3 Generalised assignment problem 

The generalised assignment problem is similar to the multiple knapsack problem 

except that the profit and weight of each item vary with respect to the containers 

assigned to it. The model is formulated as: 

m = the number of containers; 

n = the number of items; 

pij = profit of item i if assigned to container j; 

wij =weight of item i if assigned to container j; 

cj = capacity of container j 

 1   if item  is assigned to container ;

 0  otherwise.
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i j
x
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0 or 1,     1,..., , 1,...,ijx i n j m= = =                 (2-15) 

A practical application of the model is assigning n tasks to m processors (or n jobs 

to m machines) given the profit pij and the level of resource required wij for the 

assignment of task i to processor j and total resource cj available for each processor j. 



Chapter 2 The Shelf Space Allocation Problem and Related Work 
 

27 

Note that all the problems discussed above are NP-Hard (Martello and Toth, 

1990a).  

2.4 Summary 

The fierce competition that exists in the retailing industry compels retailers to 

adopt sophisticated systems to automate and optimise their decision making 

processes. The shelf space allocation problem is one of the key factors that can affect 

a retail company’s financial performance. However, current software does not 

provide an optimised shelf space allocation decision and they require significant 

human interaction. This research aims to investigate the methodologies and 

algorithms that can be used in the next generation of planogram software, which will 

allow a user to produce automated, optimised planograms.   

This chapter has placed the work in context. Several important issues with regards 

to the shelf space allocation problem have been discussed. Due to the different 

product proprieties, the shelf space allocation problem can be very different.  

This chapter has reviewed previous research for shelf space allocation both on the 

experimental studies and optimisation model studies. The experimental studies have 

consistently shown the positive effect of shelf space allocation on the demand of the 

product. This effect is largely attributed to the consumers’ unplanned purchases due 

to the improved visibility and appearance of products. Improvement of a retailer’s 

shelf space allocation could dramatically increase its financial performance. The 

optimisation model studies have focused on the modelling and optimisation of shelf 

space allocation problems. Most of the models employed a non-decreasing 

polynomial function to formulate the relationship between the shelf space allocated 

to a product and the demand for that product. However, with the increase in shelf 

space, the rate of increase in demand diminishes. To measure the effect that shelf 
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space has on the product demand, a parameter, space elasticity, was introduced. 

Space elasticity usually takes a value in the range of [0, 1]. A larger value of space 

elasticity means a larger influence on the product demand from the shelf space. Some 

researchers have also used cross elasticities to describe the relationship between two 

different products. However, recently researchers have argued that the inclusion of 

cross elasticity is impractical for real-world applications due to the increased 

complexity of the problem and the difficulty in obtaining a reliable estimation of 

these parameters. 

Due to the NP-Hard nature of the shelf space allocation problem, it is impractical 

to work out a polynomial time bounded solution procedure that can solve every 

problem instance to optimality. Dynamic programming was firstly proposed to 

optimise the shelf space allocation model. However, this method may require 

extremely high computational times for large problem instances. As alternatives, 

heuristic and metaheuristic methods have also been used to solve the problem, such 

as simulated annealing, genetic algorithms and tabu search. This thesis shall focus on 

the heuristic and metaheuristic approaches, especially newly emerging metaheuristic 

search technologies. These new approaches generally broaden the search by making 

use of several neighbourhood structures or several heuristics to explore the 

neighbourhoods and have been reported to be superior to the conventional local 

search approaches that only use one single neighbourhood structure. It is assumed 

that these techniques are also promising for shelf space allocation problems. 

In this chapter, several other space allocation problems have also been briefly 

reviewed, including bin packing, knapsack and generalised assignment problems. 

These problems are closely related to shelf space allocation. It is hoped that the study 
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of these problems may be helpful in guiding us to choose appropriate search 

techniques for the optimisation of shelf space allocation problems in general. 

The next chapter presents an overview and discusses the latest meta-heuristic 

techniques which may be promising for the optimisation of the problem that we are 

concerned with. 
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CHAPTER 3. OPTIMISATION TECHNIQUES: AN OVERVIEW 

3.1 Introduction  

As mentioned in chapter 2, shelf space allocation problems are related to the bin 

packing and knapsack problems, which are NP-Hard. There is no known polynomial-

time bounded algorithm that can solve every instance to optimality. This chapter 

introduces several important concepts with regard to problem complexity. Some 

well-known optimisation technologies which have been successful for NP-Hard 

combinatorial optimisation problems are then reviewed and promising techniques are 

highlighted. 

3.2 NP-Completeness and NP-Hardness 

Combinatorial problems refer to the class of problems with discrete variables 

(Reeves, 1995) that arise in many areas and consist of a large subset of problems, 

such as resource allocation, planning, scheduling, routing, decision making, etc. The 

computational complexity of combinatorial problems is generally high, especially for 

those problems with a large solution space.  

3.2.1 Algorithm complexity 

Algorithm complexity is measured in terms of time complexity and space 

complexity. The time complexity of an algorithm is a measure of the amount of time 

required to execute an algorithm for a given number of inputs (also conveniently 

expressed as problem “size”). It is measured by its rate of growth relative to standard 

functions. The normal standard functions include constant, logarithmic, polynomial 

and exponential. The space complexity of an algorithm is a measure of how much 

storage is required by the algorithm. Typically, computer scientists are interested in 
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minimising the time complexity of algorithms because computer memory costs have 

decreased dramatically over the past 25 years. Therefore, this section only discusses 

time complexity.  

3.2.2 P and NP 

Complexity theory mainly focuses on decision problems whose solutions are 

either “yes” or “no”. However, because many optimisation problems have their 

counterparts of decision problems, complexity theory is still useful for general 

optimisation problems (Garey and Johnson, 1979). In many cases, a problem can be 

solved by several algorithms and each algorithm may have different time 

complexities. However, problem complexity is measured by the time complexity of 

the most “efficient” algorithm for the problem (Garey and Johnson, 1979). A 

problem is said to be tractable if there is an algorithm that can solve the problem in 

polynomial time. If no algorithm can solve the problem in polynomial time, the 

problem is said to be intractable. In this case, either the problem is undecidable (the 

problem is not solvable by any algorithm) or solving it requires exponential 

computational time.  

The problems are usually classified under two distinct headings: P and NP. P 

(standing for polynomial) represents the class of the problems that are solvable by a 

deterministic algorithm with polynomial time complexity. NP is the class of the 

problems that can be solved in polynomial time by a nondeterministic algorithm (NP 

stands for nondeterministic polynomial). A nondeterministic algorithm is composed 

of two stages. The first stage of the algorithm simply guesses a structure S of the 

problem instance I, which are input into the second stage to check whether the 

structure S is a solution of the instance I or not. Note that the second stage will use a 

deterministic algorithm bounded by polynomial computation time (Garey and 
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Johnson, 1979). In this sense, NP contains the class of the problems for which a 

solution can be verified efficiently (in polynomial time) but where it is not known 

how the given solution is obtained. It is not difficult to understand that P NP⊆ . 

However, because there is no known polynomial time algorithm for many problems 

(the travelling salesman problem, for instance) in NP, most researchers have a strong 

belief that P NP≠ . However there is, as yet, no theoretical proof.  

3.2.3 NP-Completeness and NP-Hard 

If P NP≠ , there are some problems which do not belong to P and hence are 

intractable. These problems are considered to be hard because tackling them requires 

exponential computation time. Cook (Cook, 1971) firstly identified a class of hard 

problems in NP based on the concept of the satisfiability problem. The satisfiability 

problems are defined as the problems to which every other problem in NP can be 

reduced by a polynomial time bounded transformation. These satisfiability problems 

consist of what we now call NP-Complete problems. NP-Complete problems are 

considered to be the hardest problems in NP because if satisfiability problems can be 

solved efficiently by a polynomial algorithm, every problem in NP can then be 

solved in polynomial time by reducing it to a satisfiability problem. However, it is 

generally assumed that finding a polynomial time algorithm for the problems in NP-

Complete is unlikely.  

However, sometimes there are problems which cannot be proved to belong to NP 

(i.e. there is no obvious polynomial time procedure for verification of a solution) but 

one can show that they are at least as difficult as the NP-Complete ones, even though 

they were not proved to be intractable. These problems are commonly labelled NP-

Hard, meaning “at least as hard as any problem in NP”. An example of such a 

problem is where the problem of verifying a solution itself is an NP-Complete one.  
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Note that the definition of NP-completeness only considers decision problems. 

However, its counterparts of the optimisation problem are at least as hard as the 

former because verifying an optimal solution is not obvious in the latter (Falkenauer, 

1998).  

3.3 Review of Optimisation Approaches   

3.3.1 Introduction 

When solving an optimisation problem, one should seek exact methods to find the 

optimal solution to the problem. However, as discussed in section 3.2, some 

problems (NP-Complete problems, for instance) are very hard, such that the 

algorithm to find an optimal solution has an exponential time complexity. It is highly 

computationally expensive when dealing with large size problems (sometimes even 

for medium size problems). In such circumstances one may refer to some 

approximation approaches which can solve the problems with satisfactory solution 

quality within reasonable computational time. Heuristic and metaheuristic 

approaches are usually proposed to achieve this objective. 

3.3.2 Exact methods 

An exact method seeks to solve the problem to optimality. Well-known exact 

methods include linear programming, dynamic programming, branch and bound, and 

Lagrangian relaxation method. Although these approaches could obtain optimal 

solutions, it can be computationally expensive and impractical for many real-world 

applications.  
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3.3.2.1 Linear programming  

Linear programming (LP) is ranked as the most important scientific advance in 

operational research (Hillier and Lieberman, 2005). It was developed as a discipline 

in the 1940's, motivated initially by the need to solve complex planning problems in 

wartime operations. Its development accelerated rapidly in the post-war period as 

many industries found valuable uses for linear programming. The most common type 

of application involves the general problem of allocating limited resources among 

competing activities in the best possible (i.e., optimal) way. Advances in the research 

of linear programming were mainly attributed to George B. Dantzig (Dantzig, 1951; 

Dantzig, 1963), who devised the simplex method that can efficiently solve a linear 

programming problem to optimality. A detailed description of the method can be 

found in (Nemhauser and Wolsey, 1988). One limitation of linear programming is 

that all mathematical functions (including the objective function and the constraint 

function(s)) in the model are required to be linear. Another is that linear 

programming cannot handle discrete variables.   

3.3.2.2 Dynamic programming 

The term dynamic programming (DP) was introduced by Richard Bellman 

(Bellman, 1957) who pioneered the theory and application of dynamic programming. 

Dynamic programming was originally proposed to solve sequential decision making 

problems but was later extended to solve many other combinatorial problems that 

can be decomposed into a nested family of sub-problems. The problems can hence be 

tackled by a recursive procedure, in which each iteration (or recursive call) 

corresponds to a sub-problem. Compared with linear programming, dynamic 

programming is a more general approach to problem solving. Dynamic programming 

can handle discrete variables and nonlinear models. However, the application of 
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dynamic programming requires that the problem objective function is only dependent 

on problem’s current state and its current decisions. Generally, dynamic 

programming is only suitable for small and moderately sized problems. The 

computation time may increase dramatically with an increase in the problem size, 

due to the recursive structure of the algorithm. See (Hillier and Lieberman, 2005) for 

a detailed discussion on the theory and application of this approach.  

3.3.2.3 Branch-and-bound  

The Branch-and-bound search technique is a reasonably efficient approach for 

solving integer programming (IP) and mixed integer programming problems (MIP). 

The basic idea behind branch-and-bound is divide and conquer, which means solving 

difficult problems by recursively dividing them into smaller and smaller sub-

problems until those sub-problems can be solved. There are several versions of 

branch-and-bound algorithms but all of them can be divided into three stages: branch, 

bound and fathom. The branching corresponds to partitioning the entire set of 

feasible solutions into smaller and smaller subsets by fixing an integer variable’s 

value (or its range if the integer variable could take many values) at each iteration. 

The bounds (upper or lower) of these subsets are then calculated in the bound phase 

using a relaxation method, such as LP relaxation or Lagrangian relaxation. In the 

third stage, the algorithm then acquires the solution space by discarding the subsets 

which are unlikely to contain the optimal solution based on the information of their 

bounds. Note that branch-and-bound is different from the complete enumeration 

method. The algorithm only searches the part of the solution space which could 

contain the optimal solution. See (Nemhauser and Wolsey, 1988; Hillier and 

Lieberman, 2005) for a detailed description of the algorithm. 
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3.3.2.4 Lagrangian relaxation  

The Lagrangian relaxation method is a very useful tool in obtaining lower (or 

upper) bounds for combinatorial optimisation problems (Reeves, 1995; Hillier and 

Lieberman, 2005). This is done by relaxing some difficult constraints and adding 

them into the objective function such that the relaxed problem can be exactly solved 

to optimality, which is considered as the lower (or upper) bound of the original 

problem. In Lagrangian relaxation, the key issue is to decide which constraint(s) to 

relax and how to calculate the optimal multiplier factor.  

3.3.2.5 Generalised reduced gradient algorithm (GRG) 

The concept of the generalised reduced gradient algorithm was firstly used by 

Abadie and Carpentier (Abadie and Carpentier, 1969) and the underlying ideas of the 

algorithm were also described in (Gabriele and Ragsdell, 1977; Lasdon et al., 1978). 

Here we only give a brief description. 

GRG is one of the reduced-gradient methods that are able to solve differentiable 

non-linear programming problems (both in terms of objective function and 

constraints) of the form: 

maximise     y(X)                            (3-1) 

  subject to:  ( ) 0           1,...jf X j l≤ =  

  ( ) 0           1,...kg X k l l m= = + +  

             1,...i i ilb x ub i n≤ ≤ =  

where  { }1,..., nX x x=  is a vector containing n natural variables or independent 

variables and n>m+l. To solve the problem, the model is firstly transformed into a 

model with only equality constraints by adding l non-negative slack variables 

1,...,n n lx x+ + . We have 
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maximise   ( )y X        (3-2) 

         subject to:  ( ') 0           1,...kg X k m l= = +  

               1,...i i ilb x ub i n l≤ ≤ = +  

where { }1 1' ,..., , ,...n n n lX x x x x+ += .  

The idea of the GRG method is to convert the constrained problem into an 

unconstrained one. For nonlinear constraints, the first order Taylor expansion is 

firstly applied to convert them to linear constraints. Then, variables are divided into 

basic ones and nonbasic ones. GRG uses (m+l) equality constraints to solve (m+l) 

nature variables, called basic variables, in terms of the remaining (n-m) non-basic 

variables. This will reduce the number of independent variables to (n-m). A search 

direction is then decided by the generalised reduced gradient in terms of every 

variable. To find the local optimality of the objective along this search direction, any 

one-dimensional search method can be used, such as the Newton’s method and the 

quadratic interpolation method (Gabriele and Ragsdell, 1977). 

3.3.3 Heuristics and metaheuristics 

In the dictionary (Oxford Dictionary of Computing, 1997), heuristic is defined as  

“a ‘rule of thumb’ based on domain knowledge from a particular 

application, which gives guidance in the solution of a problem.... 

Heuristics may thus be very valuable most of the time but their results or 

performance cannot be guaranteed.  

Reeves (Reeves, 1995) defined heuristic as 

 “a technique which seeks good (i.e. near-optimal) solutions at a 

reasonable computational cost without being able to guarantee either 
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feasibility or optimality, or even in many cases to state how close to 

optimality a particular feasible solution is”.  

A heuristic could be used to create a solution (also called a constructive heuristic) 

or to improve an existing solution by exploring the neighbouring solutions based on 

certain rules or strategies. In this context, greedy algorithm and hill climbing are 

examples of heuristics. A greedy algorithm is a constructive heuristic which seeks 

the biggest reward (or the least penalty for a minimisation problem) at any point 

when building a solution. However, a hill climbing method starts from an initial 

solution and keeps moving to better neighbouring solutions until a stopping criterion 

is met. One problem with these simple heuristic methods is that they are prone to 

getting stuck in a local optimum.  

To prevent these simple heuristic methods from getting trapped at local optima, 

many advanced heuristic approaches, called meta-heuristics, have been developed 

(Osman and Kelly, 1996; Voss et al., 1999; Glover and Kochenberger, 2003). Voss 

et al. (Voss et al., 1999) defined meta-heuristics as  

“an iterative master process that guides and modifies the operations of 

subordinate heuristics to efficiently produce high-quality solutions. It may 

manipulate a complete (or incomplete) single solution or a collection of 

solutions at each iteration. The subordinate heuristics may be high (or low) 

level procedures, or a simple local search, or just a construction method.” 

In (Glover and Kochenberger, 2003), meta-heuristics are defined as:  

“solution methods that orchestrate an interaction between local 

improvement procedures and higher level strategies to create a process 

capable of escaping from local optima and performing a robust search of 

a solution space” or “… any procedures that employ strategies for 
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overcoming the trap of local optimality in complex solution space, 

especially those procedures that utilise one or more neighbourhood 

structures as a means of defining admissible moves to transition from one 

solution to another or to build or destroy solutions in constructive and 

destructive processes”. 

Heuristic and meta-heuristic methods have been in the spotlight in recent years for 

tackling many hard problems, especially those combinatorial in nature. During the 

last 20 years many meta-heuristic approaches have been proposed. A clear-cut 

classification of meta-heuristics is difficult because some approaches are actually 

general frameworks and usually hybridised with other (meta-)heuristic methods. 

However, there are several key components characterising them. One commonly 

used classification distinguishes between single-point and population-based  (Blum 

and Roli, 2003). The former refers to search methods that only maintain a single 

solution at each iteration while the latter manipulates a population of solutions. 

Examples of single-point approaches include simulated annealing, tabu search, 

iterative local search, guided local search, variable neighbourhood search and greedy 

randomised adaptive search procedure while genetic algorithms, evolutionary 

strategies, ant colony optimisation, and scatter search can be regarded as population-

based methods. However, this classification does not embrace some hybrid methods. 

For example, although GRASP is regarded as a single-point approach, some GRASP 

approaches hybridise the technique path-relinking which requires maintaining a 

population of high quality solutions and therefore also belongs to the population-

based methods. 

Some researchers (Taillard et al., 2001) also draw distinctions between the 

methods that make use of memory and memory-less methods. Tabu search is a 
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typical meta-heuristic approach utilising the search history (memory). Usually a 

short-term memory is maintained to prevent the cycling of the search while the long-

term memory is used to balance the intensification and diversification strategies. 

Other memory based methods include iterative local search, guided local search, ant 

colony optimisation, etc. Simulated annealing and greedy adaptive randomised 

search procedures are typical memory-less meta-heuristic approaches.  

Some other classifications include single neighbourhood vs various 

neighbourhood, static vs dynamic objective function and nature-inspired vs non-

nature inspiration. One can refer to (Birrattari et al., 2001) for further discussions.  

In the following subsections, we shall sequentially overview some popular 

heuristic and meta-heuristic methods that have been widely used in many 

applications.  

3.3.3.1 Constructive (meta)heuristics 

Constructive heuristics “build solutions to a problem under consideration in an 

incremental way starting with an empty initial solution and iteratively adding 

appropriate solution components without backtracking until a complete solution is 

obtained” (Dorigo and Stutzle, 2003). Constructive heuristics are usually used as an 

initial solution builder for many local search approaches. To generate a high quality 

initial solution, the key is to choose which components to add to the solution at each 

iteration (Burke and Kendall, 2005). If the selection is carried out in a random way, 

the solutions returned by the constructive heuristics correspond to random solutions. 

The quality of these random solutions is normally very poor. The most common way 

is to refer to a function or a heuristic rule (for example, first-fit descent for a bin 

packing problem) for the next solution component selection. Other more complex 

constructive methods are also used where the constructive heuristics make use of 
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several functions or heuristics  using certain learning mechanisms (Dorigo and 

Maniezzo, 1996; Petrovic and Qu, 2002; Burke et al., 2005).  

3.3.3.2 Simple local search 

The search space consists of all solutions that satisfy the given hard constraints 

(soft constraints might be violated, but at the cost of solution quality). The size of the 

search space may be dependent on the problem size as well as the solution 

representation. Local search methods often use the concept of a neighbourhood 

which defines the set of solutions that can be reached from the current solution by a 

single step operation (or move) (Osman and Laporte, 1996). Starting from an initial 

solution, which can be generated randomly or by a constructive heuristic, the simple 

local search iteratively samples a candidate solution in the neighbourhood of the 

current solution. The candidate solution is accepted as the current solution if, and 

only if, it is better than the current solution. For most constrained combinatorial 

problems with a rugged search space, the simple local search approach is prone to 

getting stuck at a local optimum. This simple local search is also called hill-climbing 

for a maximisation problem or descent method for a minimisation problem.  

3.3.3.3 Hyper-heuristics  

Meta-heuristics have been intensively investigated and applied to a wide variety 

of applications in the last twenty years, including scheduling, production planning, 

resource assignment, supply chain management, decision support systems and bio-

informatics (Reeves, 1995; Osman and Kelly, 1996; Glover and Laguna, 1997; 

Glover and Kochenberger, 2003; Burke and Kendall, 2005). However, many of these 

state-of-art algorithms are too problem-specific. Once the problem is changed (even 

slightly), the performance of the already developed specific-tailored meta-heuristic 
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may decrease dramatically for the new problem. Significant parameter tuning may 

also be necessary for the purpose of adapting the algorithms to the new problem or a 

new problem instance. The “No-Free-Lunch” theorem (Wolpert and MacReady, 

1997) states that there is no one algorithm that is superior to any other algorithm 

across all classes of problems. If an algorithm outperforms other algorithms on a 

specific class of problems, there must be another class of problems for which this 

algorithm is worse than the others. This drawback of meta-heuristics has motivated 

researchers to design algorithms which can be applied in many different situations, 

although recognising that the “No-Free-Lunch” theorem means we can never 

produce a fully generic algorithm.  

Hyper-heuristic (Burke et al., 2003a; Ross, 2005) is a recently used term to 

describe algorithms which aim to raise the generality of the algorithms. The idea 

behind one type of hyper-heuristic is that each problem-specific heuristic may have 

some weakness in certain scenarios in which other heuristics may perform better. 

Better algorithmic performance could be achieved by combining a set of heuristics, 

instead of using just a single heuristic alone. Hyper-heuristics combine a set of easily 

implemented, problem-specific heuristics in a strategic way such that the algorithm is 

able to tackle not only a specific problem or problem instance but a batch of 

problems. Hyper-heuristics are defined as a procedure of “using (meta-)heuristics to 

choose (meta-)heuristics to solve the problem in hand”  (Burke et al., 2003a). Unlike 

most meta-heuristics, which search the solution space directly, hyper-heuristics work 

on the problem indirectly by strategically calling appropriate heuristics at different 

times in the search. The hyper-heuristic normally lacks problem-specific knowledge 

although non-problem knowledge could pass into and out of the hyper-heuristic 
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black box. A general framework was illustrated in (Burke et al., 2003a) and is shown 

in figure 3-1. 

The algorithm is divided into two layers, a hyper-heuristic black box and a 

problem-specific layer, with a problem domain barrier separating them. The 

problem-specific layer includes a set of low level heuristics, which are different rules 

or strategies to transform the state of the current solution. Note that although low 

level heuristics could be meta-heuristics, they are usually simple and easily 

implemented heuristics. The hyper-heuristic black box usually only has access to 

general non-problem specific knowledge, such as the difference in the objective 

function, historical performance of each heuristic, solution states, etc.  

 

Figure 3-1: An example of a hyper-heuristic framework 
Source: (Burke et al., 2003a) 

 

This hyper-heuristic framework does not aim to beat other state-of-art problem-

specific approaches, but to provide a generalised approach for many problems with 

solutions that are “good enough, soon enough and cheap enough”. Meanwhile, 

hyper-heuristics do not aim to challenge the “No-Free-Lunch Theorem” but only 

tries to raise the generality of the algorithms as far as possible.  
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Soubeiga (Soubeiga, 2003) categorised hyper-heuristics into two types, learning 

based hyper-heuristic and non-learning based hyper-heuristics. Non-learning based 

hyper-heuristics included approaches which make use of several neighbourhood 

structures and heuristics but the choice of which neighbourhood or heuristic to call is 

in a predefined sequence. According to his classification, variable neighbourhood 

search (VNS) (Hansen and Maldenovic, 2001) was classified as this type of hyper-

heuristic. Learning based hyper-heuristics refers to those approaches that 

dynamically change the preference of each neighbourhood or heuristic based on their 

historical performance guided by some learning mechanisms.  

Hyper-heuristics can also be divided into constructive hyper-heuristics and local 

search hyper-heuristics. Constructive hyper-heuristics construct a solution from 

“scratch” by calling from a set of constructive heuristics (as opposed to the general 

greedy heuristic which uses only a single heuristic). However, the local search hyper-

heuristics start from a complete initial solution and repeatedly select appropriate 

heuristics to lead the search in a promising direction. A constructive hyper-heuristic 

searches for a good sequence of heuristics (or a solution strategy) which can build a 

solution. A local search hyper-heuristic tries to select the “right” heuristic to guide 

the search in the promising direction. 

It should be noted that hyper-heuristics are not new approaches. Their application 

can be traced back to the 1960’s (Fisher and Thompson, 1961) although the term 

“hyper-heuristic” was not used at that time. Work was also carried out through the 

80’s and 90’s (O'Grady and Harrison, 1985; Mockus, 1989; Kitano, 1990; Hart et al., 

1998).  

 Soubeiga (Soubeiga, 2003) carried out a survey of the research and applications 

that have been carried out in the past using the ideas of hyper-heuristics. The 
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following sections give an updated review of hyper-heuristics, which are separated 

into two different parts: constructive hyper-heuristics and local search hyper-

heuristics. 

Constructive hyper-heuristics 

In constructive hyper-heuristics, the low-level heuristics are usually well-known 

constructive heuristics, for example, First-Fit Descent (FFD) and Best-Fit Descent 

(BFD) for bin packing problems (Martello and Toth, 1990a), Largest Degree Descent 

(LDD) and Saturation Degree Descent (SDD) (Carter, 1986; Carter and Laporte, 

1996; Burke and Causemacker, 2003) for exam timetabling problems. Running these 

simple heuristics alone can create a solution efficiently. However, in many cases, 

they get trapped into local optima and produce poor quality solutions. Constructive 

hyper-heuristics could synchronise these simple heuristics and, at each decision point, 

choose the most appropriate heuristic to obtain good quality solutions.  

Fisher and Thompson (Fisher and Thompson, 1961) are probably the first 

researchers to use the idea of a hyper-heuristic when studying a job-shop scheduling 

problem. In their experiments, two types of high-level strategies were used to 

combine two simple job-shop scheduling constructive heuristics (rules). The first 

strategy was an unbiased random process, which randomly selected an available rule 

to make a scheduling decision at each decision point. The second strategy used a 

probabilistic learning mechanism to guide the selection of heuristics. In this strategy, 

the probability with which a heuristic was selected was updated dynamically based 

on a reward-punishment procedure, similar to the idea of reinforcement learning 

(Kaelbling et al., 1996; Sutton and Barto, 1998). That is, the probability of selecting 

a heuristic increased if the heuristic improved the solution and decreased otherwise. 

The experimental results showed that the hyper-heuristic with a learning mechanism 
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was shown to be superior to the unbiased random process and even the unbiased 

random rules combination produced much better results than any of them run 

separately.  

Several genetic algorithm (GA) based constructive hyper-heuristics have been 

developed, although early research usually termed them as indirect GAs. In those 

approaches, a GA’s chromosome represents a sequence of heuristics or rules by 

which a solution can be built. In this case, the genetic algorithm does not search in 

the solution space. It is used to evolve a strategy by which a good quality solution 

can be created. Such research includes (Kitano, 1990; Hart et al., 1998; Ross et al., 

2002; Ross et al., 2003). 

Kitano (Kitano, 1990) employed a GA-based hyper-heuristic to optimise neural 

network design. Instead of encoding the network configuration directly, his GA 

chromosome consisted of a set of rules that can be used to generate networks. This 

approach was shown to be superior to a conventional GA.  

Hart et al. (Hart et al., 1998) solved a real-world chicken factory scheduling 

problem using a GA based hyper-heuristic. The problem involved scheduling the 

collection and delivery of chickens from farms to the processing factories. The 

problem was deconstructed into two stages and two separate GAs were used to tackle 

the problem in each stage. In the first stage, the orders were split into suitable tasks 

and these tasks were then assigned to different “catching squads”. The second stage 

dealt with the schedule of the arrival of these squads. The GA chromosome in the 

first stage represented a sequence of orders, a set of heuristics to split each order into 

suitably sized tasks and another set of heuristics to assign these tasks to the different 

“catching squads”.  The GA was used to evolve a strategy to build a good solution 
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instead of finding the solution directly. The experimental results showed this 

approach is fast, robust and easy to implement. 

Recently, Ross et al. (Ross et al., 2003) also proposed another GA based hyper-

heuristic. The problem addressed one-dimensional bin packing. Instead of working 

on feasible solutions, like most local search approaches, the proposed hyper-heuristic 

operated on a partial solution and gradually constructed the solution using different 

rules (heuristics) until a feasible solution was obtained. The heuristic selection was 

based on the state of the current partial solution. Each state was associated with a 

rule or heuristic whose relationship with solution states was evolved by a genetic 

algorithm. The chromosomes of their GA were defined as a set of blocks and each 

block contained a set of parameters which was used to define a solution state and its 

corresponding heuristics. The algorithm was firstly trained on some benchmark 

problems and after the training, the fittest chromosome was then applied to every 

benchmark problem, 80% of which were solved to optimality.  

Other meta-heuristic approaches have also recently been employed as a high-level 

strategy in a constructive hyper-heuristic framework. Burke et al. (Burke et al., 2006) 

used a tabu search algorithm to hybridise well-known graph colouring heuristics in a 

hyper-heuristic framework to solve several exam and course timetabling problems. 

The tabu search was used to search for a good heuristic permutation which was then 

used to create a solution according to this heuristic permutation. The algorithm could 

produce competitive results (compared with other state-of-the-art algorithms) when 

applied to a set of benchmark problems. 

 

Local search hyper-heuristics 

In local search hyper-heuristics, low-level heuristics usually correspond to several 

neighbourhood functions or neighbourhood exploration rules that could be used to 
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transfer the state of the current solution. Below we review a list of papers that use 

this idea.  

Some hyper-heuristics use ideas from reinforcement learning to guide the choice 

of the heuristics during the search (Cowling et al., 2001; Nareyek, 2003). In 

(Cowling et al., 2001), a sales summit scheduling problem was solved by a “choice 

function” based hyper-heuristic, in which the choice function dynamically selected 

suitable heuristics at each decision point. The computational results showed that the 

choice function based hyper-heuristic was superior to applying the heuristics 

randomly. Nareyek (Nareyek, 2003) used a non-stationary reinforcement learning 

procedure to choose heuristics in solving two combinatorial optimisation problems. 

The author discussed the advantages of the hyper-heuristic approach, especially in 

solving complex real-world problems in which the computational cost is expensive.  

A GA based local search hyper-heuristic algorithm (hyper-GA) was proposed by 

Cowling et al. (Cowling et al., 2002) to solve a trainer scheduling problem. Here, a 

GA chromosome represented an ordering of the low-level heuristics that were going 

to be applied to the current state. A good sequence was evolved during the search 

corresponding to the given problem instance. The computational results showed that 

the GA based hyper-heuristic outperformed both a conventional genetic algorithm 

and a memetic algorithm which directly encoded the problem as a chromosome. An 

enhanced version of the hyper-GA was presented in (Han et al., 2002) which used an 

adaptive length chromosome.  

Smith (Smith, 2002) proposed a memetic algorithm (MA) using the concept of 

co-evolution (see section 3.3.3.11 for an review of MA). In his approach, the idea is 

to evolve a local search strategy. The chromosome encodes the information that 

represents which local search method to apply and in which way (e.g. single call or 
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steepest descent). Therefore, in his algorithm, the solution and the local search 

methods co-evolve simultaneously. The algorithm was shown to be superior to both a 

general genetic algorithm and a conventional memetic algorithm.  

Burke et al. (Burke et al., 2003c) applied a tabu search based hyper-heuristic to a 

nurse rostering problem and a university course timetabling problem. In their hyper-

heuristic algorithm, the set of heuristics were ranked according to their performances 

in the search history. A tabu list was also incorporated to prevent the selection of 

some heuristics at certain points in the search.  

Kendall and Mohd Hussin used a similar tabu search hyper-heuristic algorithm in 

tackling university timetabling problems (Kendall and Mohd Hussin, 2004a). 

However, this algorithm is slightly different. In (Burke et al., 2003c), each low-level 

heuristic is associated with a weight that is dynamically updated according to the 

given heuristic’s previous performance. Each time, the best non-tabu heuristic is 

chosen and applied. However, in (Kendall and Mohd Hussin, 2004a), all heuristic 

calls are tried and the best heuristic is selected and applied. Each heuristic that has 

been applied becomes tabu and will not be called within a given number of iterations 

(called tabu duration). Their later work (Kendall and Mohd Hussin, 2004b) also 

incorporated some heuristic acceptance criteria to enhance the performance, 

including a great deluge algorithm. The experimental results on the benchmark 

problems show that this algorithm can achieve considerable improvement over a 

manual solution and is competitive when compared to other algorithms published in 

the literature.  

Other high-level strategies have also been investigated within the framework of 

hyper-heuristics. In (Burke et al., 2005), a case-based reasoning paradigm was used 

to guide the selection of timetabling heuristics. The case-based reasoning system 
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maintains a database of case information about which heuristic works well on 

previous timetabling problem instances. For a new timetabling problem instance, the 

system automatically recommends a heuristic to solve the problem based on the 

knowledge stored in the database.  

Burke et al. (Burke et al., 2003b) investigated a hyper-heuristic approach in an ant 

algorithm framework in solving a presentation scheduling problem. Ant algorithms 

analogise a colony of real ants that seek the shortest path between the nest and the 

food source. An ant algorithm can be described as an optimisation technique that 

searches for the best path in a graph and is usually used in route-planning 

optimisation problems (see section 3.3.3.12 for further discussions of the ant 

algorithm). In Burke et al.’s ant algorithm based hyper-heuristics, each vertex in the 

graph represents a low-level heuristic and there are directed edges connecting two 

vertices. Each ant is associated with a solution for the problem. Initially, a population 

of ants are randomly placed at different vertices. These ants are moved from one 

vertex to another, corresponding to transferring the associated solution to another 

solution utilising the heuristic represented by the destination vertex. The probability 

with which an ant chooses the next vertex to move to is dependent on the pheromone 

trail on the edge connecting the two vertices. When an ant moves from vertex i to 

vertex j, the corresponding low-level heuristic represented by vertex j is applied to 

the solution associated with the ant, generating a new solution. The ant then deposits 

a given amount of pheromone trail on the edge between i and j. The quantity of the 

pheromone that the ant deposits is proportional to the improvement the heuristic 

achieved over the previous solution. Therefore, after a few iterations, more 

pheromone is deposited on the edges which could improve a solution more 

frequently. The ant algorithm hyper-heuristic is different from a general ant colony 
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optimisation algorithm. The vertices in an ant algorithm hyper-heuristic represent 

different low-level heuristics which can transfer the solution to a candidate solution. 

However, the vertices in a conventional ant algorithm represent solution components. 

For example, when applying a general ant algorithm to TSP, a vertex normally 

represents a city (Dorigo, 1992; Dorigo and Maniezzo, 1996).  

Some interesting work was also carried out in (Cowling and Chakhlevitch, 2003), 

in which the hyper-heuristic was designed to manage a large set of low-level 

heuristics constructed by combining different “event selection” rules and “resource 

selection” rules. Instead of selecting a low-level heuristic from the large set of 

available low-level heuristics, the algorithm selected a heuristic from a candidate list 

which contained only a small subset of promising low-level heuristics. The size of 

the candidate list determined the degree of greediness and randomness of the hyper-

heuristics. The authors also included a tabu list, which made tabu some badly 

performing heuristics from being selected within a given period. The algorithm was 

shown to be able to efficiently handle a real-world trainer scheduling problem.  

Yet another type of hyper-heuristic was proposed by Mockus (Mockus, 1989), 

using the concept of the Bayesian heuristic approach to randomise and optimise the 

probability distribution of each heuristic call. The Bayesian heuristic approach is 

based on the analysis of average-case performance of the heuristics. It attempts to 

determine a set of parameters or a probability distribution such that the deviation 

from the global optimum is minimised. The method has been applied to a variety of 

discrete optimisation problems. See (Mockus, 1994; Mockus et al., 1997; Mockus, 

2000) for further details. 

In the above local search hyper-heuristics, the candidate solutions returned by 

low-level heuristics are either all accepted or only accepted if they are better than the 
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current solution. However, these criteria may be too simple and not appropriate, as 

accepting all heuristic moves may lead to a random search. Similarly, the search may 

get stuck at local optima if the algorithm only accepts better solutions (we shall 

discuss this further in chapter 4). Recently, research has been carried out to improve 

the heuristic acceptance criteria in a hyper-heuristic framework. Bai and Kendall 

(Bai and Kendall, 2003) firstly introduced a simulated annealing acceptance criterion 

into the hyper-heuristic framework. More investigations and discussions of the 

simulated annealing hyper-heuristic are given in (Bai and Kendall, 2005b) and will 

also be presented in chapters 4 and 5. Ayob and Kendall (Ayob and Kendall, 2003) 

investigated a hyper-heuristic approach that uses a Monte Carlo acceptance criterion. 

Both algorithms have been shown to be superior to the choice function based hyper-

heuristics (Cowling et al., 2001), which employed simple acceptance criteria. In 

addition, similar threshold acceptance algorithms have also been introduced into the 

hyper-heuristic framework when solving a mobile network frequency allocation 

problem (Kendall and Mohamad, 2004a; Kendall and Mohamad, 2004b).  

3.3.3.4 Simulated annealing 

Simulated annealing is a local search method inspired by Metropolis et al.’s 

algorithm to simulate the physical cooling process (Metropolis et al., 1953). Since its 

introduction as an optimisation tool (Kirkpatrick et al., 1983), SA has been 

intensively studied both in theory and application. The theoretical analysis of SA 

have been concerned with its convergence criteria, based on the fact that simulated 

annealing can be treated as a series of homogeneous Markov chains or a single non-

homogeneous Markov chain. Research has proven that SA is able to asymptotically 

converge to an optimal solution if certain conditions are satisfied (Aarts and van 

Laarhoven, 1985; Lundy and Mees, 1986). However, these theories are not very 
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useful in practice because guaranteeing an optimal solution often requires more 

iterations than an exhaustive search. However, this does not deter SA from being 

used in many applications. In fact, SA has been widely used to solve a variety of 

difficult problems owing to its simplicity of implementation and robustness in many 

problems, including graph partitioning and colouring, route-planning, layout design, 

sequencing and scheduling, timetabling, signal processing, etc. (Carnevali et al., 

1985; Sechen et al., 1988; Johnson et al., 1989; Ogbu and Smith, 1990; Abramson, 

1991; Johnson et al., 1991; Thompson and Dowsland, 1998; Burke and Kendall, 

1999; Tian et al., 1999; Liu, 1999; Chen and Luk, 1999; Bouleimen and Lecocq, 

2003). Discussions on other applications of SA are also given in (Dowsland, 1995; 

Henderson et al., 2003). 

The procedure for simulated annealing is fairly simple. For a maximisation 

problem with objective function f and neighbourhood structure N, SA starts from an 

initial solution and repeatedly generates and transfers to a neighbour of the current 

solution. During this process, SA has the possibility of visiting worse neighbours in 

order to escape from local optima. Specifically, a parameter, called temperature t, is 

used to control the possibility of moving to worse neighbour solutions. The algorithm, 

starting from a high temperature, repeatedly decreases the temperature in a strategic 

manner (usually referred to as a cooling schedule) until the temperature is low 

enough, or some other stopping criteria are satisfied. In each iteration, the algorithm 

accepts all uphill (a move which increases the objective value for a maximisation 

problem) moves and some of the downhill (a decrease in the objective value for a 

maximisation problem) moves according to the Metropolis probability, defined by 

exp( / )tδ  where δ  is the difference in the objective function between the new 
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candidate solution and the current solution. A general simulated annealing algorithm 

for maximisation problem can be described by the figure 3-2. 

 

Initialisation: initial solution s0, temperature ts, cooling function ( )tϕ , 
number of iterations at each temperature nrep and a neighbourhood 
definition N; 
Repeat 

 Repeat 
   Randomly select 0( )s N s∈ ; 

  0( ) ( )f s f sδ = − ; 

   If 0δ >  
   0s s= ; 

   Else if exp( / ) (0,1)t randomδ >   

          0s s= ; 

Endif 
   If 0( ) ( )bestf s f s>  

          0bests s= ; 

Endif 
 Until iteration_count = nrep 
 Set ( )t tϕ= ; 

Until the stopping conditions are met 
Output bests  as the best solution found. 

 
Figure 3-2: A general simulated annealing algorithm for a maximisation problem 

Source: (Dowsland, 1995) 
 

Two important factors have to be carefully considered before implementing this 

general simulated annealing algorithm. These are the definition of neighbourhood 

structure N and the cooling schedule which is determined by 1) a starting temperature 

ts; 2) temperature reduction function ( )tα ; 3) the number of iterations at each 

temperature nrep and 4) stopping condition(s).  

 

Starting temperature 

The initial temperature should be high enough to allow “free moves” at the initial 

state such that the final solution is not dependent on the initial state (Dowsland, 

1995). However, if one wants SA to start from a good quality solution created by 

some sophisticated heuristics, the initial temperature should not be too high. This is 
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due to the fact that, when the temperature is too high, the algorithm accepts almost 

all of downhill moves (without specification, it is assumed that we are trying to 

maximise the objective function). In this case, the search, in fact, starts from a 

random initial solution. The effort of obtaining a high quality initial solution is, 

therefore, irrelevant.  

A lot of research has been carried out in order to identify an optimal initial 

temperature or a method by which an initial temperature can be determined. 

However, this is very difficult because even if there is an optimal initial temperature, 

its value may be different from problem (or even problem instance) to problem. In 

practice, some estimation methods have been suggested instead. Kirkpatrick et al. 

(Kirkpatrick et al., 1983) suggested an initial temperature 0 maxt δ=  where maxδ  is the 

maximal difference in the objective value between two neighbouring solutions. 

Another more intuitive method is setting an initial temperature value such that the 

ratio of accepted downhill moves to all neighbourhood moves is equal to a 

predefined value.  

One way to get an estimation of this value was described in (Dowsland, 1995). 

Starting from a large initial temperature value, a number of neighbourhood moves 

are performed and the corresponding acceptance ratio is monitored. If the targeted 

acceptance ratio is not reached, the temperature is modified (decreasing or increasing 

depending on relationship between the current acceptance ratio and the given ratio) 

and the procedure is repeated until the predefined acceptance ratio is reached. The 

current temperature is then chosen as the initial temperature.  

Johnson et al. (Johnson et al., 1989; Johnson et al., 1991) suggested using the 

average cost difference of a set of sample neighbouring solutions to approximate the 

initial temperature of a given acceptance ratio of downhill moves. Suppose δ  
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represents the average cost difference of a set of sampled neighbouring solutions and 

0r  is the given acceptance ratio allowed at the beginning of the search, the initial 

temperature can be calculated by 0 0/ ln( )t rδ= − .  

Another iterative procedure was proposed by Ben-Ameur (Ben-Ameur, 2004) to 

obtain a more accurate estimation of the initial temperature. The author also 

discussed some properties of the acceptance ratio of bad moves. Some of the latest 

theoretical work can also be found in (Cohn and Fielding, 1999). 

Cooling schedule 

Considerable research has been carried out in the pursuit of a good cooling 

strategy. Two of the most popular methods are geometric cooling ( )t tϕ α= ( 1α < ) 

and a non-linear cooling function ( ) /(1 )t t tϕ β= +  (where β  is a very small positive 

value) proposed by Lundy and Mees (Lundy and Mees, 1986). In the geometric 

cooling function, the temperature reduction rate is a constant and usually takes value 

in the range of [0.8, 0.99]. However, in the Lundy and Mees’ cooling function, the 

temperature drops very quickly when the temperature is high and relatively slower 

when the temperature is low. At each temperature only one iteration is executed. 

Both cooling schedules are monotonic decreasing functions. However, an optimal 

cooling schedule may be not monotonic and be dependent on different problems 

(Dowsland, 1995). Therefore, several other cooling strategies have also been 

proposed which take into account the history of the search and allow temperature 

increases during the search (also referred to as reheating in some publications).  

When the temperature becomes very low, SA degenerates into a hill climbing 

algorithm and most of the time is being wasted in generating and rejecting inferior 

solutions. Connolly (Connolly, 1990) suggested that it is not necessary to reduce the 

temperature from a high value to zero. Instead, the temperature could be held 
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constant throughout the search. He tested the idea on quadratic assignment problems 

and concluded that there exists a fixed temperature at which the performance is 

optimised. However, this optimal temperature might be different from problem to 

problem and is very difficult to obtain.  

Some other researchers suggested that the temperature could be “reheated” if the 

search gets stuck at a local optimum (Kirkpatrick et al., 1983; Dowsland, 1993). In 

(Kirkpatrick et al., 1983), the problem under consideration was the travelling 

salesman problem and reheating was carried out in an interactive way, which let the 

user monitor the current solution and the moves. A “reheat” process was triggered 

whenever a user found that the algorithm got stuck at a local optimum. Dowsland 

(Dowsland, 1993) suggested a more frequent reheating process in solving rectangle 

packing problems, in which the temperature was reduced by the function 

( ) /(1 )t t tϕ β= +  if an uphill move was found and whenever a move was rejected, the 

temperature was increased according to the function '( ) /(1 )t t tϕ γ= −  where kβ γ= . 

Hence, if the number of rejected moves is greater than k multiplied by the number of 

accepted moves, the temperature begins to “heat up”. The SA with this cooling 

schedule reported good experimental results.  

Some other cooling functions have been introduced in (Dowsland, 1995; Aarts 

and Korst, 1998) which employed more complex temperature update functions.  

Stopping condition(s) 

The conventional simulated annealing algorithm stops when the temperature reaches 

zero or a value small enough such that the algorithm converges to a local optimum. 

Choosing an appropriate value of the stopping temperature can be based on 

experiments or one can monitor the acceptance ratio of downhill moves and the 

algorithm stops when the ratio decreases below a given very small value (0.01 for 
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example). Other stopping conditions were also used, such as the allowed 

computation time, the number of consecutive non-improvement moves, etc.  

Neighbourhood design 

The neighbourhood structure is another vital aspect which influences the 

performance of SA, although its importance has not really been recognised until the 

recent advances and success of variable neighbourhood search (Mladenovic and 

Hansen, 1997; Hansen and Maldenovic, 2001) and very large neighbourhood search 

(Yeo, 1997; Gutin, 1999; Ahuja et al., 2000).  

Some earlier researchers concentrated on the impact of the neighbourhood size 

and suggested that reducing its size during the final stages of the annealing could 

produce better results or speed up the algorithm. Greene and Supowit (Greene and 

Supowit, 1986) proposed a rejectionless SA. In their algorithm, each possible move 

was associated with a weight based on its effect on the cost function if it was applied. 

The probability of selecting a move was then based on the amount of the contribution 

of its weight to the total weight. The algorithm was tested on a logic partitioning 

problem and the results showed that the proposed algorithm could accelerate the 

search without undermining the solution quality. However, it does require extra 

memory. In (Sechen et al., 1988), simulated annealing was used to optimise a cell 

layout problem for VLSI design. In their algorithm, the neighbourhood size was 

reduced by prohibiting large distance moves when the temperature was getting low. 

Similar ideas were also tested in (Tovey, 1988) where the experimental results 

showed that probabilistically giving preference to those promising subset solutions 

performed better than completely restricting the search in a small subset space. He 

stated that the possible reason was that exclusion of some solutions might be 

detrimental to the neighbourhood reachability. Recently, Steinhofel (Steinhofel et al., 
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2003) found that a non-uniform sampling SA performed better than a uniform 

sampling SA when tested on job shop scheduling problems. 

It is suggested that neighbourhood structures for SA should be symmetric (i.e. it 

is possible to return to the state just visited) or at least reachable (i.e. every state 

should be reachable from every other state) (Dowsland, 1995). However, there are no 

general guidance rules because this is a problem-specific decision. Tian et al. (Tian et 

al., 1999) investigated the effect of neighbourhood structures of the SA algorithm in 

solving three permutation optimisation problems: travelling salesman problem (TSP), 

flow-shop scheduling problem (FSP) and quadratic assignment problem (QAP). Six 

types of neighbourhood structures were designed and proven to be asymptotically 

convergent. The performance of these neighbourhood structures were compared 

across different sizes of instances of the three problems. The results showed that the 

best neighbourhood structures for three problems were completely different. SA with 

the neighbourhood that performed best on TSP was significantly inferior to SAs with 

some of the other neighbourhood structures when applied to FSP and QAP. This 

shows that for different problems (although they might share some common 

properties), SA should choose different neighbourhood structures in order to obtain 

good results. However, defining the best neighbourhoods is not an easy task.  

Csondes et al. (Csondes et al., 2002) used a so called adaptive variable 

neighbourhood structure in their SA algorithm in solving two real-world 

optimisation problems. The solution space was a variable vector that satisfied all 

constraints. When the temperature was high, more variables were allowed to be 

flipped. However, when the temperature was low, new solutions were only sampled 

by applying a small number of variable flips. The results were competitive with those 

obtained by existing commercial software.  
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3.3.3.5 Tabu search 

Tabu search (TS) was originally proposed by Fred Glover in 1977 (Glover, 1977). 

However, it did not become a popular combinatorial optimisation method until his 

later work (Glover, 1989; Glover, 1990). Tabu search is a single point meta-heuristic 

approach that has found a variety of applications in practice. Tabu search differs 

from other local search approaches in that it makes use of historical information to 

prevent the search from cycling and becoming trapped in a local optimum. The tabu 

list is a short-term memory of recent neighbourhood moves that are prohibited during 

the search in order to prevent the search from going back to the recently visited 

points in the search space. The length of the tabu list decides how many moves are 

stored in the list and the tabu tenure defines how many iterations of each move in the 

tabu list are tabu (i.e. cannot be called). Although the tabu list is helpful in avoiding 

cycling during the search, in some cases, it may restrict the search too much such that 

some promising moves are prohibited. Therefore, most tabu search algorithms also 

incorporate a mechanism, a so called aspiration criteria, which is used to mitigate 

the strength of the tabu list.  

Some long-term memories are also used that store a record of the entire search 

process for the purpose of the intensification and diversification. For example, in a 

frequency memory, one accounts the number of occurrences of a particular attribute 

that belongs to a solution or a move during the search. There could be many types of 

attributes. For example, an attribute can be a variable taking a specific value or an 

operator which sets a variable from a value to another. A simple intensification and 

diversification method can be carried out by introducing incentive or penalty values 

to modify the evaluation of moves in reference to the frequency memory (Glover F. 

and Laguna, 1995). Some other diversification methods in the tabu search were also 
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discussed in (Soriano and Gendreau, 1996). For the detailed discussion and 

implementation of tabu search, one can refer to (Glover and Laguna, 1997). One can 

also refer to (Gendreau, 2002) for a survey of the recent advances in tabu search.  

In practice, TS approaches have been widely used in many areas, including 

scheduling, transportation and routing, telecommunications, bioinformatics, network 

design and graph partitioning and colouring (Widmer and Hertz, 1989; Reeves, 1993; 

Skorin-Kapov and Vakharia, 1993; Taillard, 1994; Gendreau et al., 1994; Mazzola 

and Schantz, 1995; Rolland et al., 1996). A full list of applications is given in 

(Glover and Laguna, 1997). 

3.3.3.6 Variable neighbourhood search (VNS) 

Variable neighbourhood search (VNS) is another local search meta-heuristic that 

has recently been proposed for combinatorial optimisation problems (Mladenovic 

and Hansen, 1997). The approach differs from general meta-heuristics in that the 

algorithm systematically changes the neighbourhoods. A basic VNS algorithm 

consists of an initialisation stage and an iterative stage. The initialisation stage 

involves constructing an initial solution and defining a set of neighbourhood 

structures and their sequence. Note that the sequence of the neighbourhoods usually 

reflects an increasing order in the distance from the current solution to the given 

neighbourhood (Mladenovic and Hansen, 1997). The iterative stage consists of three 

subroutines, shaking, local search and move decision. The shaking works as a 

diversification element which samples a random solution from the current kth 

neighbourhood of the current solution. The local search subroutine is then applied to 

this sampled solution to improve it to a local optimal solution. If it is better than the 

current solution, the search moves to this solution and the current neighbourhood is 

set to be the first neighbourhood in the list. Otherwise, the search does not move to 
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this solution while the current neighbourhood is set to be the next neighbourhood in 

the list. The process above is only a basic VNS algorithm. There are several variants. 

The simplest one is variable neighbourhood descent (VND), where the local search 

method will explore the whole neighbourhood and return the best neighbour in it. 

Some other variants include variable neighbourhood decomposition search (VNDS), 

skewed VNS (SVNS) and parallel VNS (PVNS). VNS can also be hybridised with 

tabu search, simulated annealing and GRASP (see the next section 3.3.3.7). Recent 

advances and applications of this approach can be found in (Hansen and Maldenovic, 

2001; Hansen and Maldenovic, 2003). 

3.3.3.7 Greedy randomised adaptive search procedure (GRASP) 

GRASP is multi-start meta-heuristic approach that explores the search space from 

different points (solutions) (Feo and Resende, 1989; Feo and Resende, 1995). Each 

thread of the search can be divided into two phases: the construction phase and the 

local search phase. The construction phase is responsible for creating a good quality 

solution from which the local search starts. Figure 3-3 illustrates a basic GRASP 

algorithm. It can be seen that the algorithm is an iterative procedure. Each iteration 

involves creating an initial solution (solution construction phase) and then 

performing a local search from it (local search phase). From an empty solution, the 

construction phase repeatedly inputs a candidate element into the partial solution 

until a complete solution is constructed. The selection of the candidate elements is 

based on a kind of “peckish” mechanism (a mechanism to combine randomness and 

greediness). Before constructing the solution, all non-initialised candidates are sorted 

according to a function or a criterion (usually the incremental costs or benefits if the 

given candidate element is input into the partial solution) and the first k elements are 

stored in a restricted candidate list (RCL) (this is the greedy part of the algorithm). 
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The algorithm is randomised in the sense that the candidate elements are randomly 

selected from the restricted candidate list rather than the best candidate element. The 

quality of the elements in the RCL can also be controlled by a threshold value. The 

algorithm is called adaptive because all candidate elements are evaluated and ranked 

each time a new element is incorporated into the solution. The solution obtained 

above is further improved in the local search phase, which can be a hill-climbing 

algorithm or any other local search approaches.  During the process, the best solution 

is memorised and returned when the stopping criteria are met. A recent survey can be 

found in (Resende and Ribeiro, 2003). 

Start with an empty solution; 
Repeat 

   Repeat 
Evaluate all non-initialised candidate elements by a function; 
Construct the restricted candidate list (RCL); 
Select a candidate from the RCL and apply it to the current 
solution; 

   Until current solution is complete 
   Apply local search to the current solution;    
   Memorise the best solution; 

Until stopping conditions are met.       
 

Figure 3-3: Pseudo-code of the basic GRASP 
Source: (Resende and Ribeiro, 2003) 

 

3.3.3.8 Guided local search (GLS) 

The main idea behind the guided local search meta-heuristic is to guide the local 

search algorithm to escape from local optima by introducing a penalty function into 

the objective function (Wang and Tsang, 1991; Wang and Tsang, 1994; Voudouris 

and Tsang, 1997). Once a local search algorithm gets stuck at a local optimum, 

certain features in the current solution are selected and punished by adding a penalty 

value to the objective value. Hence the GLS algorithm is able to guide the search 

efforts to more attractive areas. To implement GLS, one needs to define a set of 

features for a problem and a modified objective function that takes account of the 
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features to punish. Each feature is associated with a penalty and their values can be 

changed dynamically during the search. However, selecting what kind of features to 

punish and defining the modification strategies of the penalty value may not be easy 

for various problems. One can refer to (Voudouris and Tsang, 2003) for a survey of 

recent advances and applications of GLS. 

3.3.3.9 Iterated local search (ILS) 

Iterated local search is another meta-heuristic proposed for combinatorial 

optimisation problems. The main components in an ILS algorithm include 

LocalSearch, Perturbation and AcceptanceCriterion (Lourenco et al., 2003). The 

algorithm starts from an initial solution, created randomly or by a greedy heuristic, 

and keeps improving the current solution by the LocalSearch until a local optimum is 

reached. A candidate solution is then sampled from the current solution using the 

Perturbation method. The LocalSearch is then applied to improve the candidate 

solution to a local optimum. The search then moves to this candidate solution if the 

AcceptanceCriterion is true. Otherwise, the move is rejected. Lourenco et al. 

(Lourenco et al., 2003) provided a basic ILS procedure, shown in figure 3-4. 

 

s0 = GenerateInitialSolution(); 
s*=LocalSearch(s0); 
Repeat 

   s'=Perturbation(s*,history); 
   s*’=LocalSearch(s’); 
   s*=AcceptanceCriterion(s*, s*’ , history); 

Until stopping conditions are met.      
 

Figure 3-4: Pseudo-code of a basic ILS 
Source: (Lourenco et al., 2003) 

 

It can be seen that the algorithm is very similar to a basic VNS. The main 

difference between them is that the perturbation in ILS uses historical information to 

bias the solution sampling. While in VNS, the solution is sampled by systematically 



Chapter 3 Optimisation Techniques: An Overview 
 

65 

changing the perturbation strength, a measure that describes the magnitude of 

difference between the current solution and the sampled solution (VNS shakes the 

current solution by using different neighbourhoods with increasing cardinality).  

3.3.3.10 Genetic algorithms 

Genetic algorithm, also abbreviated to GA, was firstly proposed by Fraser (Fraser, 

1957) and Bremermann (Bremermann, 1962) independently. Holland’s book 

Adaptation in Natural and Artificial Systems (Holland, 1975) is also often cited as 

one of the seminal works for GA. The idea of GA comes from the natural selection 

principle of survival of the fittest, which believes that only the fittest individuals will 

survive through many generations. A genetic algorithm holds a population of 

solutions that evolves from one generation to the next (Goldberg, 1989; Forrest, 1993; 

Michalewicz, 1996). For an optimisation problem, a solution (individual) is usually 

encoded in a specially designed string (called a chromosome). A given number of 

individuals, called a population, is maintained and evolves from one generation to 

another. A new population is generated by copying some fitter individuals from the 

current population and selecting some newly created individuals using genetic 

operators, such as crossover and mutation. The algorithm stops once the termination 

criteria are met. To implement a genetic algorithm, one needs to decide a solution 

encoding scheme, operators (crossover, mutation), and a selection method as well as 

various parameters values, such as population size, number of generations, crossover 

probability and mutation probability.  

Although the process of the genetic algorithm is fairly simple, there are several 

important issues which need careful consideration. The first is the solution encoding 

system. Falkenauer (Falkenauer, 1998) found that the encoding, the process of 

mapping from the phenotype (the representation of a solution) to the genotype (the 
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representation of the chromosome), could significantly affect the performance of the 

GAs and suggested that the encoding should be a one-to-one mapping procedure. 

That is, one solution of the problem maps to one chromosome. If one solution maps 

onto several chromosomes, the encoding is redundant and could impact the 

efficiency of the GA. However, if the encoding is in a many-to-one mapping fashion 

(several solutions of the problem correspond to one chromosome), such an encoding 

lacks the details of the problem although it may be beneficial in some cases because 

it reduces the size of search space.  

Once the encoding system is decided, one needs to design the genetic operators. 

Several types of operators have been proposed in the past. However, crossover (also 

called recombination) and mutation are the two most popular operators. The role of 

crossover is to inherit some promising traits from two (possibly more) parents. 

Mutation is believed to be a beneficial supplement to the crossover by introducing 

some new traits which are not currently present in the parent solutions (Davis, 1987; 

Goldberg, 1989).  

While it is agreed that fitter individuals should have a larger probability of being 

selected for the new generation, it is also very important to allow a few “less-fit” 

individuals to increase the diversity of the population. There are several ways to 

achieve this, among which tournament selection and roulette-wheel selection are 

frequently used. In tournament selection, only a small subset of individuals are 

chosen and compared, and the fittest ones are selected to be the parents. While in the 

roulette-wheel selection, the selection probability of an individual is proportional to 

its fitness value (Coley, 1999).  

A good introduction to genetic algorithms can be found in (Sastry et al., 2005). 

Some other references with regard to genetic algorithms are available in (Goldberg, 
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1989; Davis, 1991; Beasley et al., 1993; Reeves, 1995; B䢡 k, 1996; Mitchell, 1996; 

B䢡 k et al., 1997; Michalewicz and Fogel, 2000).  

3.3.3.11 Memetic algorithms 

Genetic algorithms are thought to be suitable for problems with large search 

spaces. Because most genetic algorithms do not take advantage of the problem-

specific knowledge, it is possible that some local optima are missed or are not being 

explored efficiently during the search (a genetic operator is said to be blind if it does 

not use problem-specific knowledge in determining where and how to apply an 

operation on a chromosome (Moscato and Cotta, 2003)). In this context, some local 

heuristic searchers can be incorporated into a genetic algorithm with the aim of 

enhancing the GA’s performance. Such an altered algorithm is named a memetic 

algorithm in (Moscato, 1989). In this sense, the memetic algorithm is also deemed a 

hybrid method. A good introduction to memetic algorithms can be found in (Moscato 

and Cotta, 2003). For recent advances in the theory and application of memetic 

algorithms, one can refer to (Hart et al., 2003).  

3.3.3.12 Ant colony optimisation algorithm (ACO) 

The ant colony optimisation algorithm originated from Dorigo’s Ant System 

(Dorigo, 1992; Dorigo and Maniezzo, 1996) which simulates an ant colony seeking a 

shortest path between a food source and a nest (Deneubourg et al., 1990). Although 

the behaviour of each ant is independent and asynchronous, communication among 

them is mediated by a pheromone trail. When deciding which path to use an ant 

chooses the shortest path to the food source by exploiting the level of the pheromone 

on each available path. At the initial state, no pheromone trail information is 

available and ants follow a random route. However, when an ant finishes a tour, it 
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deposits a certain amount of pheromone on the path it takes according to the distance 

of that tour. That is, if a shorter path is found by an ant, more pheromone is deposited 

on every edge of the path. After a period of time, the shortest route will have high 

levels of pheromone so that the other ants are more likely follow this route.  

To convert the above process to an ant colony optimisation technique, some 

modifications have to be made. For example, a proportion of pheromone evaporates 

after each iteration in order to prevent the system converging prematurely. To 

improve algorithmic performance, heuristic information and some local search 

procedures may be used in some ACO algorithm (Dorigo et al., 1996; Dorigo and 

Gambardella, 1997a; Dorigo and Gambardella, 1997b; Bullnheimer et al., 1999; 

Gambardella and Dorigo, 2000). For more publications regarding to ACO, one can 

see the web page maintained by Dorigo (http://iridia.ulb.ac.be/~mdorigo/ACO/). 

3.3.3.13 Evolutionary strategies  

Evolutionary strategies (EA) were firstly studied by Rechenberg (Rechenberg, 

1965; Rechenberg, 1973) and later developed by Schwefel in his PhD thesis 

(Schwefel, 1975). Although closely related to genetic algorithms, EA’s imitate 

genetic processes in the phenotype (i.e. solutions are encoded explicitly), in contrast 

with implicit solution representations in genetic algorithms. Initially, ES only used 

mutation and were mainly used to tackle problems with real valued variables. Later 

research work extended EA to use crossover (as a supportive operator) and solve 

discrete-variable problems. For more details of EA, one can referee to (Schwefel, 

1975; B䢡 k, 1996; B䢡 k et al., 1997; Fogel, 1998; Yao, 1999; Fogel, 2000).   
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3.3.3.14 Scatter search and path-relinking 

Scatter search is a population-based meta-heuristic, having been proposed for 

solving combinatorial and nonlinear optimisation problems (Glover, 1977). Scatter 

search takes advantage of a set of points “scattered” in the solution space and 

strategically combines some of them to generate new promising solutions (Glover et 

al., 2003).  

 

Setp 1. Generate a large set of trial solutions P using diversification 
generation method with |P|=PSize. Improve these solutions by an 
Improvement Method.  

Setp 2. Select a small set of distinct and diverse solutions, called reference 
set, RefSet, from P with |RefSet|=b <<PSize. Order the sets 
according to their objective function value non-increasingly.  

Setp 3. Use Subset Generation Method to generate NewSubsets from RefSet 
which includes at least one new solution.  

Setp 4. Select every subset from NewSubsets, apply Solution Combination 
Method to obtain one or more new solutions s.  If s is not in RefSet 
and is better than the worst solution s’ in RefSet, include s in RefSet 
and delete s’ from RefSet. 

Setp 5. If at least a new solution is added into RefSet in the step 4, then go 
to the step 3; otherwise stop the procedure. 

 
Figure 3-5: The pseudo-code of a basic scatter search algorithm 

Source: (Glover et al., 2003) 
 

Figure 3-5 illustrates the procedure of a basic scatter search algorithm. The 

algorithm starts from a group of diverse trial solutions constructed by a 

diversification generation method. An improve method is then applied to enhance 

these trial solutions, from which a small set of distinct and diverse solutions are 

selected, termed the reference set. The algorithm then enters an iterative procedure. 

At each iteration, a subset generation method is used to produce several subsets of 

the reference set and a solution combination method then transforms each subset into 

one or more combined solutions. The reference set is then updated by a reference set 
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update method in order to maintain the quality of the solutions in this set both in 

terms of objective function value and its diversity. The algorithm stops when no new 

solution is added into the reference set. Note that the solution combination method 

employed in scatter search is similar to the crossover operator in the genetic 

algorithm although scatter search allows the combining of more than two solutions.  

In many single-point based search algorithms, such as simulated annealing and 

tabu search, the previous local optimal solutions are discarded once a better solution 

is found. However, path-relinking enables such algorithms the capability to obtain 

better quality solutions by exploring trajectories between these local optimal 

solutions. Path-relinking was proposed to integrate intensification and diversification 

during the search (Glover and Laguna, 1997). The approach generates new solutions 

by exploring trajectories that connect high-quality solutions. Specifically, the 

algorithm firstly compares the symmetric difference between two elite solutions s1 

and s2. Based on this comparison, a set of moves M are identified which could 

transfer the solution s1 (initial solution) to s2 (guiding solution). Path relinking then 

starts from the initial solution and repeatedly applies best moves from M until the 

guiding solution is attained. Many applications have shown that better quality 

solutions are usually found along this trajectory  (Glover and Laguna, 1997). 

3.4 Summary and Remarks 

This chapter has overviewed current popular optimisation techniques. Both exact 

methods and (meta-)heuristic methods were reviewed and some meta-heuristic 

approaches were emphasised due to their advantages in tackling NP-Hard problems 

that are germane to this thesis.  

The “no-free-lunch theorem” tells us that the performance of a meta-heuristic 

method may be dependent on different problems and no algorithm performs better 
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than any other algorithm when considering all possible problems. Even so, it is still 

possible that we can find an algorithm or a set of specific algorithms that generally 

performs better than other algorithms on a set of problems under consideration. This 

is because the problems that are of interest may be only a small subset of all possible 

problems. In conventional methods, simulated annealing for example, a user may 

experiment with a set of parameters (for SA, the parameters can be the different 

neighbourhood structures, cooling schedules, etc.) on the tested problem instances 

and pick the best set of parameters. However, on many occasions, it is found that 

finding the best set of parameters is difficult because the best set of parameters may 

be different from instance to instance.  

As a proposed framework to raise the generality of the conventional meta-

heuristics, hyper-heuristic approaches make use of several neighbourhood 

exploration heuristics simultaneously. The generality is achieved by choosing the 

most appropriate heuristics according to the different problem instances or the 

different search states when solving a specific instance. By utilising several 

neighbourhood exploration heuristics, hyper-heuristics can broaden the search space 

and dynamically change the search direction according to the characteristics of the 

different problems. Due to these advantages, we shall adapt hyper-heuristics as a 

solution methodology for shelf space allocation problems.  

As mentioned above, previous researchers have adapted several conventional 

meta-heuristic approaches for the shelf space allocation problem. However, none of 

them has published problem data sets on which their experiments were based. This 

makes it difficult to justify our proposed approach by comparing with those 

conventional methods. Furthermore, another difficulty arises from the fact that we 

have used a more practical model that is different from the ones presented in the 
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literature. Alternatively, it is convenient to adapt the hyper-heuristic to the well-

studied bin-packing problem, which is closely related to the shelf space allocation 

problem. The bin-packing problem has been studied intensively, with a large number 

of benchmark data sets in the literature. If the hyper-heuristic can obtain promising 

results on the bin packing problem and due to the similarity between the bin packing 

and shelf space allocation, we hypothesise that a hyper-heuristic will also perform 

well on shelf space allocation problems. In the next chapter, we shall introduce a 

simulated annealing hyper-heuristic and adapt it to the bin packing problem. Its 

performance is evaluated by comparing with the best results obtained by other meta-

heuristics on the benchmark problems. If the algorithm can produce competitive 

results compared with results reported in the literature, we can then adapt this 

algorithm to the shelf space allocation problem. This takes very little work because 

of the advantages of hyper-heuristic (as shown in chapter 5 and 7, we only need to 

replace a new set of low-level heuristics and the objective function). However, it may 

not be so easy to adapt other methods to the shelf space allocation.  
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CHAPTER 4. A SIMULATED ANNEALING HYPER-

HEURISTIC ALGORITHM FOR THE BIN 

PACKING PROBLEM 

4.1 Introduction 

As discussed in chapter 3, hyper-heuristics have been proposed as a generic 

optimisation framework for a range of problems. One of the advantages of hyper-

heuristics is their ability to adapt to different problem instances by calling different 

low-level heuristics. This chapter analyses the drawbacks of current hyper-heuristics 

and proposes a new hyper-heuristic algorithm which incorporates a simulated 

annealing acceptance criterion. Instead of being applied directly to the shelf space 

allocation problem, the algorithm is initially tested on the well-studied bin packing 

problem. This is because there is no benchmark data available for the shelf space 

allocation problem in the literature. Therefore, it is difficult to evaluate the 

performance of this hyper-heuristic in comparison to other optimisation methods for 

shelf space allocation problems. It might be argued that this can be done by 

implementing all algorithms and comparing their results. However this would require 

a considerable development effort. The problem is compounded by the fact that each 

algorithm may have one or more parameters to be set and tuning those parameters 

could take considerable time. However, the bin packing problem, a well-known NP-

Hard problem, which is closely related to shelf space allocation problems, has been 

intensively studied and the experimental results by different approaches on a large 

number of benchmark data sets are available in the literature. Therefore, it is 

applicable to test the performance of this hyper-heuristic algorithm on this well-

known problem and if it is successful, the application of this algorithm to the shelf 
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space allocation problem is more likely to be successful because they are closely 

related problems. Furthermore, this experimental strategy will also provide us with 

the opportunity to test the generality of this hyper-heuristic approach across different 

(although related) problems. The main contents of this chapter are drawn from (Bai 

and Kendall, 2005c). 

4.2 Simulated Annealing Hyper-heuristics 

4.2.1 Background 

As an emerging search method, hyper-heuristics have received recent attention 

due to their adaptive nature. Hyper-heuristics have been used to either construct a 

solution (Ross et al., 2003) (constructive hyper-heuristic) or operate as a local search 

method (Cowling et al., 2001; Cowling et al., 2002; Burke et al., 2003b; Burke et al., 

2003c) (local search hyper-heuristics). Ross et al. (Ross et al., 2003) used different 

packing heuristics to gradually construct a solution. The choice of the “right” 

heuristic was based on the knowledge of the state of the current partial solution. The 

solution states included the proportions of huge, large, medium and small items 

remaining to be packed. The results showed that it produced better solutions than 

when utilising just a single heuristic. However, it might not be easy to define the 

right set of solution states for many problems. Furthermore, only around 80% of the 

optimal solutions have been found, much less than other exact methods and local 

search algorithms (Falkenauer, 1996; Scholl et al., 1997; Valerio de Carvalho, 1999; 

Fleszar and Hindi, 2002).  

The hyper-heuristics in this thesis focus on the local search hyper-heuristics 

which are used in (Cowling et al., 2001; Cowling et al., 2002; Burke et al., 2003b; 

Burke et al., 2003c), where hyper-heuristics either explicitly or implicitly focus on 
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selecting the “right” low-level heuristics at every decision point. This selection is 

usually based on the historical performance of each heuristic (Cowling et al., 2001; 

Burke et al., 2003c). A typical example of these approaches is the choice function 

based hyper-heuristic in (Cowling et al., 2001). In section 4.3.3, we will also apply 

this algorithm to the bin packing problem for comparison purposes. Therefore, the 

next section gives a brief description of this approach.  

4.2.2 Choice function based hyper-heuristic 

The basic idea of a choice function based hyper-heuristic is that the selection of 

which low-level heuristic to call at each decision point is guided by the choice 

function, a learning mechanism that integrates both intensification and diversification 

strategies during the search. In the choice function based hyper-heuristic it is 

assumed that if a heuristic or a sequence of heuristics has previously performed well 

in the search, it may perform well in the future. The choice function dynamically 

ranks the different low-level heuristics according to their historical performance. In 

(Cowling et al., 2001), the choice function considers the recent performance of each 

low-level heuristic 1( )f , recent improvement for consecutive pairs of low-level 

heuristics 2( )f  and the amount of time elapsed since the given heuristic has been 

called 3( )f . More specifically, f1, f2 and f3 are defined as follows: 
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where ( )n jI h  (respectively ( )n jT h ) is the change in the objective function 

(respectively the amount of computational time spent) the nth time the heuristic hj 

was called. Similarly, ( , )n k jI h h  (respectively ( , )n k jT h h ) is the change in the 

objective function (respectively the amount of computational time spent) the nth time 

the heuristic hj was called immediately after heuristic hk. While 3( )jf h  records the 

amount of time elapsed since heuristic hj was called the last time. Overall, the choice 

function is defined as: 

1 2 3( ) ( ) ( , ) ( )j j k j jCF h f h f h h f hα β δ= + +                            (4-4) 

It can be seen that both 1f  and 2f  describe the aggregate performance of the 

previous n calls of each heuristic or pair of heuristics. They are used as a method to 

intensify the search and 3f  is used as a diversification strategy. α , β  and δ  are 

scaling parameters to balance the different terms. Values of these parameters are 

changed adaptively according to the magnitude of recent improvement in the 

objective function and the corresponding CPU time consumed. The detailed 

procedure is provided in Eric Soubeiga’s PhD thesis, together with several 

applications and experimental analysis (Soubeiga, 2003). 

In the above hyper-heuristic approach, the main focus is a learning mechanism 

that can intelligently choose between heuristics. Once a heuristic is chosen or 

recommended by the choice function, it is used to produce a new candidate solution 

which is usually accepted by very simple rules. For example a new candidate 

solution may be accepted straight away or only better solutions are accepted, as was 

the case in (Cowling et al., 2001). However, in this thesis we are concerned with 

improving the acceptance criteria in the hyper-heuristic framework. Of course, the 

high-level heuristic selection strategy is important in adapting the search to different 
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search states. However, if a low-level heuristic adopts any random elements, 

identical calls of this heuristic may produce different solutions. Even if the high-level 

strategy is “intelligent” enough to pick up such a heuristic due to its good previous 

performance, it is still possible that this heuristic may be detrimental to the search 

due to the random elements existing in it. Take the tabu search based hyper-heuristic 

proposed in (Burke et al., 2003c) as an example. When solving the timetabling 

problem, one low-level heuristic that contains randomness was defined as “swap the 

timeslots of two random events”. When applying this heuristic to the current solution, 

it may produce a better solution which is desirable for the search. However, it is also 

possible that this heuristic produces an inferior solution which may not be desirable. 

Currently, the hyper-heuristic algorithms reported in the literature either reject all 

inferior solutions or accept them completely. In the first case, the search corresponds 

to a hill climbing and is prone to getting stuck at local optima. In the later case, it 

may lead the search in unexpected directions.  

It is for this reason that we introduce a new acceptance criterion into the hyper-

heuristic framework. Hill climbing and random search actually correspond to two 

simple acceptance criteria. Hill climbing only accepts those moves which can 

improve the objective value, while random search accepts all moves. Simulated 

annealing has been shown to be a robust combination of these two acceptance criteria. 

SA accepts all objective-improving moves and some of the objective-detrimental 

moves in a systematically-controlled way. It is based on this consideration that we 

incorporate simulated annealing into the hyper-heuristic framework and use it as a 

more intelligent acceptance criterion. We have called this approach a simulated 

annealing hyper-heuristic.  
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The importance of the acceptance criterion in a hyper-heuristic framework was 

also echoed by recent research which investigated other acceptance criteria, 

including the criteria based on Monte Carlo algorithms (Ayob and Kendall, 2003) 

and great deluge algorithms (Kendall and Mohamad, 2004a; Kendall and Mohamad, 

2004b). These works, together with the research carried out in this thesis, will be 

valuable for the development of a more powerful and efficient hyper-heuristic 

optimisation system.  

4.2.3 Simulated annealing hyper-heuristics  

Figure 4-1 shows a general framework for the simulated annealing hyper-heuristic 

proposed in this thesis. The system is very similar to other forms of hyper-heuristics 

except that a simulated annealing algorithm is used as an acceptance criterion. At 

each iteration, the algorithm selects a heuristic from the set of low-level heuristics 

available and applies it to the current solution. If the solution generated by this 

heuristic is better than the current solution, it is accepted. Otherwise, it is accepted 

according to a Metropolis probability. The temperature of the simulated annealing is 

then modified. When the stopping conditions are met, the system terminates and 

outputs the best solution found so far. Note that the proposed hyper-heuristic does 

not conflict with the existing local search hyper-heuristics. The selection of the 

heuristics could be in a random way or by utilising some intelligence that has been 

proposed in other hyper-heuristic frameworks. In this thesis, we require all of the 

solutions generated by the low level heuristics to be feasible, i.e. the low level 

heuristics searches in the feasible solution space. In section 4.3.3, we will apply this 

simulated annealing hyper-heuristic to the one-dimensional bin-packing problem. 

Strategies that are used to select which heuristic to call and parameters related to 

simulated annealing will be given in section 4.3.3. 
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Readers at this point might argue that this framework is no more than a simulated 

annealing algorithm with multi-neighbourhoods. Of course, it is similar but it is not 

exactly the same. Firstly, the simulated annealing hyper-heuristic biases the 

exploration of the neighbourhood by heuristically sampling the candidate solutions 

(using different low-level heuristics) rather than sampling them uniformly from the 

  

 

Figure 4-1: The framework of simulated annealing hyper-heuristics for a maximisation problem  
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given neighbourhood as does a traditional simulated annealing algorithm with multi-

neighbourhoods. Secondly, a simulated annealing algorithm requires every state to 

be reachable (i.e. any solution can be reached by any other solution after a finite 

number of iterations of moves in the defined neighbourhood) (Dowsland, 1995). 

However, in the simulated annealing hyper-heuristic, the low-level heuristics do not 

necessarily satisfy this requirement as long as there is a combination of these 

heuristics that can make each solution reachable. This is very useful when we have 

several possible heuristics or operators that can transfer the state of the current 

solution but these operators alone are not able to generate a neighbourhood that 

satisfies the reachability condition. For example, when dealing with the bin packing 

problem, a neighbour solution can be created by “interchanging two (random) items 

of two (random) bins”. However, using this heuristic alone cannot guarantee to reach 

every other solution (from the current solution) within a limited number of 

executions. Meanwhile, although the neighbourhood defined by another operator 

“shifting a random item from one random bin to another random bin” satisfies the 

reachability condition, the local search algorithms using this operator alone generally 

perform very badly. More discussion on this point is given in section 4.3.1.  

Previous research has shown that even if the neighbourhoods satisfy the 

reachability condition, the simulated annealing algorithm for each of those 

neighbourhoods has a different performance on different problems (Tian et al., 1999). 

A neighbourhood that could obtain promising results on a problem might perform 

very badly on another problem with a similar solution space. Therefore, defining and 

selecting a good neighbourhood for simulated annealing is very challenging and 

often time-consuming. The users (or researchers) have to have knowledge and 

expertise of the problem domain and often need to conduct a series of experiments. 
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However, in a simulated annealing hyper-heuristic framework, the system only 

requires a set of low level heuristics or rules. These heuristics could be simple 

operations used when solving real-world problems. For the shelf space allocation 

problem addressed in this thesis, the low-level heuristics could add or delete an item 

from a shelf, or replace one item with another on a shelf or interchange two items 

from two shelves. These heuristics could be very simple and straightforward and 

could also have some intelligent elements such that the current solution is transferred 

to a promising direction rather than being purely random. Combining these simple 

heuristics may produce much better results than by running them alone. The 

individual heuristics do not necessarily satisfy the reachability requirements as long 

as a combination of these heuristics does. We will demonstrate this point in the next 

section and in chapters 5 and 7 via three different applications. 

4.3 An Application of Simulated Annealing Hyper-Heuristic to the One-

dimensional Packing Problem 

The aim of this section is to test the performance of the simulated annealing 

hyper-heuristics described in figure 4-1. We shall test them on a well-known NP-

Hard problem: one-dimensional bin packing. The reason for choosing this problem is 

two-fold: the bin packing problem has been intensively studied in the literature with 

a large number of benchmark data sets being available; secondly, the bin-packing 

problem is closely related to the shelf space allocation problem, which is the main 

focus of this thesis.  

4.3.1 Introduction 

The bin packing problem (see section 2.3.1) is a well-known NP-Hard 

combinatorial optimisation problem. One of the most successful algorithms for bin 
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packing is MTP (Martello-Toth Procedure), a branch and bound based exact method 

originally proposed in (Martello and Toth, 1990b). Some other exact methods have 

also been proposed by (Scholl et al., 1997; Valerio de Carvalho, 1999; Belov and 

Scheithauer, 2004). Heuristic based approaches have also been used. Apart from 

some well-known constructive heuristics, which will be discussed in the next section, 

meta-heuristic approaches have also been applied to the bin packing problem. 

Falkenauer (Falkenauer, 1996) introduced a grouping genetic algorithm for the 

problem. The algorithm was hybridised with a local search procedure and tested on a 

set of benchmark problems. The algorithm was shown to be superior to MTP. Fleszar 

and Hindi (Fleszar and Hindi, 2002) combined a minimal bin slack heuristic with a 

variable neighbourhood search method. The algorithm obtained better results by 

achieving 1329 optimal solutions from 1370 benchmark problems.  

The objective of the bin packing problem is to minimise the number of bins 

required. The objective function itself is very simple and easy to calculate. However, 

the landscape of the responding search space is extremely “unfriendly”. A very small 

number of optimal solutions are lost in a big “flat” search space where a large 

number of solutions correspond to the same objective value. The majority of 

neighbourhood moves generate solutions with the same objective value. This makes 

the bin packing problem very difficult because the objective function is not able to 

“guide” the search in promising directions and the search proceeds like a boat 

floating in a dark sea without knowing which way to go. Therefore, all the meta-

heuristic approaches in  (Falkenauer, 1996; Scholl et al., 1997; Fleszar and Hindi, 

2002) used the transformed objective functions that could provide a more friendly 

search space. However, as pointed out by (Falkenauer, 1998), using a transformed 

objective function could result in a problem which is different from the original one. 
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For example, suppose a solution A is better than the solution B if measured by a 

transformed objective function. It is possible that A is worse than B if the solution 

quality is measured by the original objective function. Therefore, developing a new 

form of objective function requires a certain amount of expertise and experience and 

often involves some experimentation. This will inevitably undermine the generality 

and adaptability of the algorithm. 

Although several meta-heuristics have been applied to the bin-packing problem, 

with promising results being produced, the application of simulated annealing to the 

one dimensional bin packing problems is rare. The only application we could find 

dates from 1994 (Rao and Iyengar, 1994) and was used to solve a variant version of 

bin packing whose search space is very different from the general bin packing 

problem. Usually, a conventional simulated annealing algorithm samples the 

candidate solution uniformly from a single neighbourhood structure. The difficulty of 

applying SA to bin packing probably comes from the fact that the objective function 

of the bin packing problem (the number of the bins occupied) is not sensitive to the 

general neighbourhood moves (Falkenauer, 1996). For instance, two general 

neighbourhood moves, interchanging two items between two bins and shifting an 

item from one bin to another, are usually not able to change the objective function. 

Employing some elaborate moves (e.g. moving several items simultaneously in a 

predefined way) could damage the reachability of the neighbourhood and 

prematurely lead the search into a local optimum. In fact, as will be seen later in this 

chapter, improving the bin packing solution really needs the cooperation of several 

types of neighbourhood moves rather than executing single type of moves. However, 

a general simulated annealing algorithm only allows a single neighbourhood 

structure with the requirement of reachability, which handicaps the application of SA 
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in problems such as bin packing. Therefore, in this application we propose to utilise 

several heuristics under the framework of the simulated annealing hyper-heuristics 

(see figure 4-1), rather than just using a single neighbourhood. The heuristics used to 

transfer the state of the solution do not necessarily satisfy the reachability 

requirement as required by a neighbourhood definition. The heuristics we use could 

have some intelligent elements such that the current solution is transferred to the 

promising directions rather than being purely random.  

4.3.2 Bin packing constructive heuristics 

Being NP-Hard, one dimensional bin packing problems have been solved by 

several constructive heuristics.  

4.3.2.1 Polynomial heuristics 

There are several well-known constructive heuristics with polynomial time 

complexity. Assume the items are sorted by descending size: 

•  Next-Fit-Decreasing (NFD): starting from the first item, this heuristic 

repeatedly packs an item in the current bin. If there is insufficient capacity, the 

item is packed into a new bin which is now considered to be the current bin. 

The procedure finishes once all items are packed.  

•  First-Fit-Decreasing (FFD): in this heuristic, the items are repeatedly packed 

into the bin which has the smallest bin index but sufficient capacity. A new bin 

is introduced if there is no bin with sufficient capacity.  

•  Best-Fit-Decreasing (BFD): this heuristic repeatedly packs an item into the 

bin which has the smallest, but sufficient, capacity. If no such bin is available, 

a new bin is opened.  
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•  Worst-Fit-Decreasing (WFD): this heuristic is similar to BFD, except that the 

item is packed into the bin with the largest residual capacity.  

All of these heuristics have polynomial time complexity. However, FFD and BFD 

are superior to NFD and WFD in terms of the worst-case performance (Coffman et 

al., 1997). A better heuristic, Best-2-Fit (B2F), was also discussed in (Coffman et al., 

1997), which executes FFD until a bin is filled. It then tries to exchange the smallest 

item in the current bin with two smaller items such that the residual capacity of the 

current bin is as small as possible. Scholl et al. (Scholl et al., 1997) further improved 

this heuristic by combining a bin-oriented FFD heuristic with B2F.  

4.3.2.2 Minimal bin slack heuristic (MBS) 

Gupta and Ho (Gupta and Ho, 1999) proposed another bin-oriented heuristic, 

which they called Minimum Bin Slack (MBS). This heuristic is different from item-

oriented heuristics in that the packing process is carried out bin-by-bin rather than 

item-by-item, using a procedure called MBSOnePacking. At each iteration, instead of 

packing the items one by one based on certain rules, the MBSOnePacking procedure 

searches for a group of items (from all the unpacked items) that could fill a bin with 

minimal slack (i.e. the smallest residual capacity) and packs this group of items into 

a new bin. The MBS heuristic repeatedly calls MBSOnePacking procedure until all 

items are packed. A recursive version of MBSOnePacking was illustrated in (Fleszar 

and Hindi, 2002) and is shown in figure 4-2, where 1 2 '{ , ,..., }nπ π πΠ =  is an item 

vector which contains all unpacked items and is sorted by size in descending order. 

n’ is the number of the items in the vector Π . c is the bin capacity and iτ  is the size 

of the item iπ . bP  is the set of items in the best packing found so far and cP  is the set 

of items in the current packing. bs  (respectively cs ) is the slack (i.e. residual capacity) 
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of bP  (respectively cP ). The procedure stops when either a combination with zero 

slack (i.e. no residual capacity left) is found or all item combinations have been 

explored. 

 

Initialise: c, n’, Π , q=1, bP = cP = Ø, bs = cs =c; 

void MBSOnePacking (q) 
{ 

For (int r = q; r<n’ ; r++) 
{ 

ri π= ; 

If i csτ ≤  

{ 

c c rP P π= ∪ ; 

Update cs ; 

MBSOnePacking(q+1); 
\c c rP P π= ; 

Update cs ; 

If ( 0cs = ) Exit; 

              } 
     } 

       If ( b cs s> ) b cP P= , Update bs ; 

} 
 

Figure 4-2: The pseudo-code of MBSOnePacking procedure 
 (Source: Fleszar and Hindi, 2002) 

 

Fleszar and Hindi (Fleszar and Hindi, 2002) presented a variant of this procedure 

(denoted by MBS’), which always packs the first item of the vector Π  into the 

current packing. The modified algorithm gives similar solution quality but shorter 

computation time in most instances. Because MBS’ is only slightly different from 

MBS, we will not distinguish them in this thesis. The MBS heuristic has shown to be 

superior to FFD, BFD, B2F and FFD-B2F in terms of the solution quality and is able 

to solve the problem to optimality where the optimal solution is two bins. It is 

especially efficient when the optimal solution requires the majority of bins to be fully 

filled. The worst time complexity of this algorithm is 2n, where n is the number of 
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items. However, the experimental results have shown it to be very efficient for most 

problem instances (Gupta and Ho, 1999; Fleszar and Hindi, 2002).  

4.3.2.3 Relaxed minimum bin slack (R_MBS) 

Despite the efficiency of the MBS algorithm, there are instances (when no 

combination of items can be found that exactly fills a bin) for which the algorithm 

could carry out an exhaustive exploration of different combinations (Gupta and Ho, 

1999; Fleszar and Hindi, 2002). Therefore, even for some moderately sized problems, 

the computational time can still be very high. To solve this problem, the MBS 

stopping condition 0cs =  in figure 4-2 can be relaxed by allowing a positive slack 

value ( cs slackValue≤ ). Actually it is not necessary to enforce zero slack in the 

MBSOnePacking procedure because in many cases there is always residual capacity 

in the optimal solution. Fleszar and Hindi (Fleszar and Hindi, 2002) experimented 

with several slack values and took the one that gave the best results. In this research, 

we let 
'

min 11
min( 1, / )

n

ii
slackValue c Uτ τ

=
 = − − ∑ , where minτ  is the size of the 

smallest item in the vector Π  and 1U  is the optimal solution or best known lower 

bound if the optimal solution is unknown. The algorithm results in the same solution 

as from FFD when min 1slackValue τ= − .  

4.3.2.4 Time bounded relaxed MBS (TBR_MBS) 

From some preliminary experiments, we found that when the items’ sizes are 

drawn from a close range and the average number of items in a bin increases, then it 

becomes more and more difficult for MBS to find the optimal packing even if it is 

relaxed by allowing a positive slack value. In this case, R_MBS can still be 

computationally expensive. To solve this problem, we propose a time limit for each 
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MBSOnePacking procedure such that the algorithm does not exceed a given time 

limit. Note that the TBR_MBS procedure should not exit when more items can be 

added to the current packing even though the time bound is exceeded. Therefore, 

although enforcing a time limit to MBSOnePacking procedure can cause 

deterioration in its performance, it could still produce a packing at least as good as 

the bin-oriented FFD heuristic. 

4.3.3 Applying hyper-heuristics to the one-dimensional bin packing problem 

To obtain an initial evaluation of the effectiveness of a type of simulated 

annealing based hyper-heuristic, three types of hyper-heuristics (denoted by CFHH, 

SAHH and CFSAHH respectively) are distinguished. CFHH is the choice function 

based hyper-heuristic mainly studied in (Soubeiga, 2003). SAHH is the simulated 

annealing hyper-heuristic which randomly selects a low-level heuristic at each 

iteration but the selected heuristic is only accepted if it satisfies the SA acceptance 

criterion (refer to figure 4-1). However in CFSAHH, both the choice function based 

heuristic selection mechanism and SA acceptance criterion are employed. To 

implement these hyper-heuristics, several parameters need to be set. In this 

investigation, the choice function parameters (α , β  and δ ) were set by the same 

methods used in (Soubeiga, 2003). The rest of the parameters were set as follows: 

4.3.3.1 Initial solution 

The initial solution is constructed using the time bounded relaxed MBS heuristic 

described in section 4.3.2.4. The time limit is set to 0.2 seconds based on preliminary 

experiments. In order to test the generality and adaptability of the algorithm, the 

original objective function (i.e. the number of used bins) was used rather than using 
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some transformed objective functions as in (Falkenauer, 1996; Scholl et al., 1997; 

Fleszar and Hindi, 2002). 

4.3.3.2 SA parameters 

After the preliminary experiments, the temperature was initially set to 

00.3 ( )st f s=  ( 0( )f s  is the objective value of the initial solution s0) and then 

repeatedly reduced according to Lundy and Mees’s cooling schedule (Lundy and 

Mees, 1986) /(1 )t t tβ→ +  until the temperature drops to its stopping temperature 

0.1ft = . At each temperature, only one iteration is executed. The parameter β  can 

be calculated by (refer to (Lundy and Mees, 1986)): 

( ) /   ( ) /( )s f s f s f average allowed s ft t K t t t t T T t tβ = − ⋅ ⋅ = − ⋅ ⋅ ⋅                (4-1) 

where allowedT  is the total CPU time allowed by the user and averageT  is the average time 

spent for one iteration. Therefore, the total number of iterations for the annealing is 

/allowed averageK T T= . The algorithm stops either when the temperature reaches the 

stopping temperature or the lower bound of the solution1 is reached.  

4.3.3.3 Low-level heuristics 

As showed in figure 4.1, the implementation of the simulated annealing hyper-

heuristic requires a set of problem-specific low-level heuristics. A total of five low-

level heuristics are used, as follows: 

H1 Exchange largestBin_largestItem. This heuristic selects the largest item 

from the bin with the largest residual capacity and exchanges this item with 

another smaller item (or several items whose capacity sum is smaller) from 

                                                 

1 We use the lower bound published on the website http://www.wiwi.uni-
jena.de/Entscheidung/binpp/index.htm and in the paper (Falkenauer, 1996). 
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another randomly selected non-fully-filled bin. The idea behind this 

heuristic is to transfer smaller residual capacity from a random bin to a bin 

with the largest residual capacity such that this bin can be emptied by other 

heuristic(s).  

H2 Exchange randomBin_largestItem. This heuristic is similar to H1 except 

that the exchange is carried out between two randomly selected non-fully-

filled bins. 

H3 Shift. This heuristic selects each item from the bin with the largest residual 

capacity and tries to shift them to the rest of the bins using the BFD 

heuristic (see section 4.3.2.1). 

H4 Split. H1, H2 and H3 all operate on non-fully-filled bins. However, in some 

cases, a fully-filled bin may contain too many small items such that it is 

impossible to transfer to the optimal solution using H1, H2 and H3 because 

of the difficulty in packing large items. Hence this heuristic is designed to 

solve this problem. Once the number of the items in a bin is found to have 

exceeded the average number of items of other bins, this heuristic transfers 

half of the items, selected at random, into a new bin.  

H5 BestPacking. This heuristic firstly selects the biggest item from a 

probabilistically selected bin. The TBR_MBS heuristic is then used to 

search a group of items (called one packing) that contains this item and 

considers all the other items (the sequence of these items in the vector Π  is 

sorted by the residual capacity of the corresponding bins with tie broken 

arbitrarily). All the items that appeared in the packing found by TBR_MBS 

are then transferred into a new bin. The time limit is set to 0.2 second based 

on preliminary experiments. The probability of selecting a bin is calculated 
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by j

j

resCap

resCap
ψ =

∑
, where resCapj is the residual capacity of the bin j. Hence 

the selection is in favour of the bins with the larger residual capacity. The 

bins with zero residual capacity will not be selected because they are already 

packed well.  

 
Note that all of those heuristics will return feasible solutions (the incumbent 

solution is returned if the new solution is infeasible). All of those heuristics are 

straightforward and easy to implement. Repeatedly applying them alone would either 

lead to a local optimal solution (e.g. H1, H2 and H3) or make the solution gradually 

worse (e.g. H4). However, when allowed to combine the heuristics, the algorithm 

may be able to transform the state of the solution toward promising directions. For 

example, running heuristic H1, H2 could repeatedly transfer sporadic residual bin 

capacity to the bins with larger residual capacity. After applying H1 and H2 for a 

while, the current solution might have been transformed into such a state that the bin 

with the largest residual capacity only has one or two small items. In this state, it 

might be helpful to call heuristic H3 such that these small items are shifted into other 

bins and hence the total number of used bins is decreased. These three heuristics only 

operate on the bins that have residual capacity. Heuristic H4 is useful when some 

bins contain too many small items. H5 is based on the time bounded relaxed MBS. 

This heuristic is very useful when the optimal solution contains many bins which are 

almost full (Gupta and Ho, 1999). Note that heuristics H1 and H2 are normally not 

able to change the objective, while heuristic H3 is an objective improving heuristic 

and heuristic H4 is objective non-improving. Heuristic H5 could undermine or 

improve the objective. All these heuristics will be managed by the hyper-heuristics. 
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4.3.3.4 Benchmark problems 

Two sources of benchmark problems are available for the one-dimensional bin 

packing problem. One of them is from OR-Library 

(http://www.brunel.ac.uk/depts/ma/research/jeb/orlib/binpackinfo.html), originally 

created and studied by Falkenauer (Falkenauer, 1996) and now maintained by John 

Beasley at Brunel University. This data set consists of two classes of problems: 

uniform and triplet. In the uniform class, the number of items is 120, 250, 500 and 

1000 respectively and their sizes are uniformly distributed in the range of [20,100]. 

The bin capacity is 150. We shall denote these by FAL_U120, FAL_U250, 

FAL_U500 and FAL_U1000 respectively. There are 20 instances for each problem 

size and hence 80 problem instances in total. In the triplet class, the bin capacity is 

1000 and the item sizes are deliberately generated such that, in the optimal solution, 

every bin contains exactly three items (one “big” and two “small” items) without any 

residual capacity. The number of the items is 60, 120, 249 and 501 (denoted by 

FAL_T60, FAL_T120, FAL_T249 and FAL_T501 respectively) and each of them 

contains 20 instances. This class of data set is claimed to be more difficult because of 

the fact that no residual capacity is allowed in any bin in the optimal solution.  

The second source was generated and studied by Scholl et al. (Scholl et al., 1997) 

and is available at http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm. It 

contains three sets (denoted by SCH_Set1, SCH_Set2 and SCH_Set3 respectively). 

The parameters to create SCH_Set1 and SCH_Set2 include the number of the items 

(ranging from 50 to 500), bin capacity and the ranges that the items’ sizes are drawn 

from. SCH_Set1 consists of 720 problem instances and the expected average number 

of items per bin is no larger than three. However, in SCH_Set2, the average number 

of items per bin varies from three, five, seven to nine. The data set SCH_Set3 are 
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considered harder problem instances because the item size is drawn from a very large 

range such that no two items have the same size. Only 10 instances are included in 

this set.  

4.3.3.5 Computational results 

The algorithms were coded in Microsoft Visual C++ version 6.0 and all 

experiments were run on a PC Pentium IV 1.8GHZ with 256MB RAM running 

Microsoft Windows 2000 professional Version 5. For a fair comparison, all three 

hyper-heuristics (CFHH, SAHH, CFSAHH) were run 10 times for every instance, 

using a different random seed each time. For each run, 200 seconds computation time 

was allowed. To compare the performance of the different algorithms, the following 

symbols are used: 

− #num: the number of instances in the given data sets. 

− #opt: the number of instances for which the given algorithm finds a solution 

with the lower bound objective value (i.e. the algorithm has solved those 

instances optimally). For the three hyper-heuristics, the average values over 

10 runs were reported. For the other meta-heuristics approaches (GGA, 

BISON and VNS), single run results were used due to no average results 

being available. 

− av. abs.: the average absolute deviation from the optimality or the best 

known lower bound if the optimal solution is not known.  

− max abs.: maximal absolute deviation from the optimal solution or the best 

known lower bound if the optimal solution is not known.  

− av. cpu (s): average CPU time spent for the given data sets (in seconds).  

Table 4-1 presents a comparison of MBS based heuristics and three hyper-

heuristics. MBS has been shown to be superior to the well-known bin packing 
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heuristics (FFD and BFD) in terms of solution quality (Gupta and Ho, 1999). 

However, as a heuristic with exponential time complexity, in some cases, MBS can 

be computationally expensive. Time bounded relaxed MBS was designed to solve 

this problem. Time bounded relaxed MBS is guaranteed to finish a packing within 

the given time limit, with the solution quality at least as good as FFD’s. This is 

supported by the results from table 4-1 where time bounded relaxed MBS costs less 

CPU time than MBS when dealing with data sets SCH_Set2, SCH_Set3, for which it 

is very difficult to find a set of items that can exactly fill a bin. For the data sets 

SCH_Set2, time bounded relaxed MBS is about 7 times faster than MBS and for the 

data set SCH_Set3, time bounded relaxed MBS is more than 3 times faster than MBS. 

In terms of solution quality, time bounded relaxed MBS achieves more lower bounds 

than MBS for most of the data sets. It is only beaten by MBS in the data sets 

FAL_U1000, where, however, time bounded relaxed MBS has a smaller maximal 

absolute deviation than MBS. Across 1370 benchmark instances, time bounded 

relaxed MBS reached lower bounds on 28 more instances than MBS.  

Among three hyper-heuristics, table 4-1 shows that all three hyper-heuristics have 

improved initial solutions. CFSAHH performed better than CFHH with around 20 

more instances being solved to their lower bounds. Meanwhile, it also reduced the 

average and maximal absolute deviation. This shows that for the bin packing 

problem, the performance of the choice function based hyper-heuristic can be 

improved by introducing a SA acceptance criterion. However, both CFHH and 

CFSAHH were outperformed by SAHH which randomly selects a low-level heuristic 

at each iteration. Compared with CFSAHH, SAHH solved, on average, 19.9 more 

instances to the lower bounds with much smaller average and maximal absolute 

deviation. Overall, SAHH has solved more than 98% (around 1343 out of 1370) of 
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the problem instances to their lower bounds. With those that were not solved to the 

lower bound, SAHH could find a solution that is only one bin away from it. In 

CFSAHH, the deterministic heuristic selection method (guided by the choice 

function) seems not to be suitable in this case. The choice function seems too 

sensitive to the CPU time consumed by each heuristic. If a heuristic happens to 

improve the solution in a very short time, the weight of this heuristic can be very 

large such that this heuristic would dominate the search for a very long period, 

without giving enough opportunities for the other low-level heuristics to improve 

their weights. In SAHH, each heuristic has an equal opportunity to be selected. 

However, the heuristic moves can only be accepted according to the SA acceptance 

criteria.  

Table 4-2 shows a comparison of three hyper-heuristics with a hybrid grouping 

genetic algorithm (GGA) (Falkenauer, 1996), BISON TL=1000 (a hybrid algorithm 

which combines a tabu search strategy with a branch and bound algorithm (Scholl et 

al., 1997)) and a variable neighbourhood search algorithm (VNS) (Fleszar and Hindi, 

2002). The computational results of these algorithms are taken from the relevant  

papers. We can see that for the first data sets, SAHH performed better than the 

hybrid GGA and slightly worse than VNS. The hybrid GGA failed to solve 6 

instances to their lower bounds while SAHH only failed on 2.4 instances on average. 

VNS solved all instances except one in the data sets FAL5000. In the second data 

sets, SAHH performed better, in terms of solution quality, than both BISON and 

VNS. SAHH solved around 12 more instances than BISON and 15 more instances 

than VNS. In terms of computation time, SAHH is faster than the hybrid GGA and 

BISON while slower than VNS (for instance, grouping GA took an average of 118 

minutes to solve problem instances in set FAL_U1000 on a R4000 Silicon Graphics
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av. 
cpu(s) 

1.26 

21.05 

23.78 

12.66 

42.26 

22.44 

12.25 

39.91 

8.48 

8.00 

153.40 

31.41 

max 
abs. 

1 

1 

1 

1 

1 

1 

1 

2 

 

3 

3 

2 

3 

av. 
abs. 

0.01 

0.08 

0.08 

0.09 

0.13 

0.09 

0.04 

0.06 

 

0.03 

0.03 

0.45 

0.10 

CFSAHH 

#opt. 

19.9 

18.5 

18.5 

18.2 

17.4 

18.3 

19.3 

18.9 

700.2 

468.1 

5.8 

1323.1 

av. 
cpu(s) 

0.40 

22.56 

20.09 

7.78 

3.19 

9.01 

9.70 

26.14 

8.04 

5.10 

96.58 

18.96 

max 
abs. 

0 

1 

1 

0 

0 

0 

0 

0 

 

1 

1 

1 

1 

av. 
abs. 

0.00 

0.07 

0.05 

0.00 

0.00 

0.00 

0.00 

0.00 

 

0.02 

0.01 

0.21 

0.03 

SAHH 

#opt. 

20.0 

18.6 

19.0 

20.0 

20.0 

20.0 

20.0 

20.0 

703.3 

474.2 

7.9 

1343.0 

av. 
cpu(s) 

5.59 

23.83 

18.56 

11.55 

37.86 

12.74 

32.76 

47.74 

10.06 

8.23 

167.62 

34.23 

max 
abs. 

1 

1 

1 

1 

1 

1 

2 

4 

 

3 

5 

3 

5 

av. 
abs. 

0.02 

0.11 

0.07 

0.01 

0.18 

0.02 

0.09 

0.10 

 

0.04 

0.04 

0.89 

0.14 

CFHH 

#opt 

19.6 

17.9 

18.7 

19.8 

16.5 

19.6 

18.4 

19.0 

688.6 

462.4 

2.2 

1302.7 

av. 
cpu(s) 

0.01 

0.04 

0.13 

0.43 

0.01 

0.05 

0.32 

1.76 

 

0.03 

0.52 

4.20 

0.68 

max 
abs. 

1 

2 

2 

2 

1 

1 

3 

7 

 

3 

9 

3 

9 

av. 
abs. 

0.15 

0.40 

0.55 

0.85 

1.00 

1.00 

1.80 

3.80 

 

0.12 

0.32 

2.30 

1.12 

TBR_MBS 

#opt 

17 

13 

11 

5 

0 

0 

0 

0 

 

646 

391 

0 

1083 

av. 
cpu(s) 

0.01 

0.05 

0.15 

0.51 

0.01 

0.05 

0.33 

1.78 

 

0.03 

3.49 

15.46 

1.99 

max 
abs. 

1 

2 

2 

3 

1 

1 

3 

7 

 

3 

9 

4 

9 

av. 
abs. 

0.45 

0.45 

0.60 

0.80 

1.00 

1.00 

1.80 

3.80 

 

0.14 

0.34 

3.30 

1.24 

MBS 

#opt 

11 

12 

11 

7 

0 

0 

0 

0 

 

633 

381 

0 

1055 

 

#num 

20 

20 

20 

20 

20 

20 

20 

20 

 

720 

480 

10 

1370 

Table 4-1: Computational results of MBS based heuristics and hyper-heuristics 

 

Data Sets 

FAL_U120 

FAL_U250 

FAL_U500 

FAL_U1000 

FAL_T60 

FAL_T120 

FAL_T249 

FAL_T501 

 

SCH_Set1 

SCH_Set2 

SCH_Set3 

All 
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max 
abs. 

1 

1 

1 

1 

1 

1 

1 

2 

 

3 

3 

2 

3 

CFSAHH 

#opt. 

19.9 

18.5 

18.5 

18.2 

17.4 

18.3 

19.3 

18.9 

 

700.2 

468.1 

5.8 

1323.1 

max 
abs. 

0 

1 

1 

0 

0 

0 

0 

0 

 

1 

1 

1 

1 

SAHH 

#opt. 

20.0 

18.6 

19.0 

20.0 

20.0 

20.0 

20.0 

20.0 

 

703.3 

474.2 

7.9 

1343.0 

max 
abs. 

1 

1 

1 

1 

1 

1 

2 

4 

 

3 

5 

3 

5 

CFHH 

#opt. 

19.6 

17.9 

18.7 

19.8 

16.5 

19.6 

18.4 

19.0 

 

688.6 

462.4 

2.2 

1302.7 

max 
abs. 

0 

1 

0 

0 

0 

0 

0 

0 

 

2 

1 

1 

2 

VNS 

#opt 

20 

19 

20 

20 

20 

20 

20 

20 

 

694 

474 

2 

1329 

max 
abs. 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

 

2 

1 

1 

-- 

BISON TL=1000 

#opt 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

 

679 

473 

2 

-- 

max 
abs. 

1 

1 

0 

0 

1 

0 

0 

0 

 

-- 

-- 

-- 

-- 

Hybrid GGA 

#opt 

18 

18 

20 

20 

18 

20 

20 

20 

 

-- 

-- 

-- 

-- 

 

#num 

20 

20 

20 

20 

20 

20 

20 

20 

 

720 

480 

10 

1370 

Table 4-2: A comparison with other meta-heuristics  

 

Data Sets 

FAL_U120 

FAL_U250 

FAL_U500 

FAL_U1000 

FAL_T60 

FAL_T120 

FAL_T249 

FAL_T501 

 

SCH_Set1 

SCH_Set2 

SCH_Set3 

All 
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workstation under IRIX 5.1, compared with 7.78 seconds by SAHH. VNS is faster as 

it took an average of 0.07 seconds on a PC with Pentium II 400MHz CPU, running 

on Windows NT4.0). The slower speed of SAHH is partially due to the usage of the 

two-layer data structure (see figure 4-1) which requires additional time to make 

solution copies if low-level heuristics fail to generate a feasible solution. However, 

this hyper-heuristic is a more general problem solver. In the next chapter, the reader 

will see that the algorithm can also be easily applied to a shelf space allocation 

problem, with high quality solutions being produced. When adapting this algorithm 

to a different problem, a user only needs to input a set of problem-specific low-level 

heuristics and an objective function. The algorithm is able to solve the problem with 

very good quality solutions in reasonable computational time. However, it could take 

much more work when adapting a genetic algorithm or variable neighbourhood 

search algorithm to a different problem. 

4.4 Summary and Remarks 

This chapter was concerned with the acceptance criteria that exist in the current 

hyper-heuristic algorithms. In the current hyper-heuristic algorithms, two general 

acceptance criteria that are used to decide whether a given heuristic move is accepted 

are improvement-only and all-moves. The first criterion only accepts those heuristic 

moves that can improve the current solution while the second criterion accepts all 

moves regardless of whether they are better solutions or not. These acceptance 

criteria may either lead the search to getting trapped into local optima or result in a 

random search. In this thesis, a simulated annealing based acceptance criterion was 

proposed and incorporated into the hyper-heuristics. As an intelligent balance of 

these two acceptance criteria, the simulated annealing acceptance criterion accepts all 

objective-improving heuristic moves as well as some non-improving heuristic moves.  
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The proposed hyper-heuristic has firstly applied to the well-known bin packing 

problem. The reason is that it is not easy to compare the performance of the proposed 

hyper-heuristics with other meta-heuristic approaches on shelf space allocation 

problems due to the lack of benchmark data in the literature. However, as a problem 

closely related with the shelf space allocation problem, the bin packing problem has 

been the subject of considerable research with several benchmark problem results 

existing in the literature, which will allow us to make an easier comparison between 

the proposed simulated annealing hyper-heuristics and other meta-heuristic 

algorithms.  

In this application, we have shown that, for the bin packing problem, although 

introducing the simulated annealing acceptance criterion can improve the 

performance of the choice function based hyper-heuristics, the best algorithm turns 

out to be a simulated annealing hyper-heuristic (SAHH) which randomly selects 

between low-level heuristics. The deterministic heuristic selection method in the 

choice function seems not to be well suited to the stochastic acceptance criterion of 

the SA.  

Of the 1370 tested one-dimensional bin packing benchmark problem instances, 

SAHH solved 1343 of them to the lower bounds on average within reasonable 

computation time. For those that are not solved to the lower bounds, the gap is only 

one bin. The algorithm is generally superior to other meta-heuristic approaches 

(GGA and VNS) in terms of solution quality although SAHH is slower than VNS. 

In the next chapter, a general shelf space allocation problem is considered and a 

practical model is proposed. The simulated annealing hyper-heuristic algorithm 

proposed in this chapter is then adapted for the optimisation of this problem.    
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CHAPTER 5. OPTIMISATION OF A GENERAL SHELF SPACE 

ALLOCATION PROBLEM 

5.1 Introduction 

This chapter addresses a general shelf space allocation problem that has been the 

subject of the previous research on shelf space allocation problems. A simplified, 

while practical, model is proposed as an alternative to a complex model, which is not 

practical for the real-world practice. It is shown that this model is an extension of the 

multi-knapsack problem which is NP-Hard and cannot be solved by any polynomial-

time bounded algorithm (assuming P NP≠ ). As such, the optimal solution of the 

problem is generally unknown. To effectively measure the quality of a solution and 

compare the performance of different algorithms, this chapter derives an upper 

bound for the problem by using a two-stage relaxation. Due to the lack of real-world 

and benchmark data for this problem, twelve problem instances are randomly 

generated, with different problem sizes and space availability ratios.   

This chapter investigates an emerging search technique, hyper-heuristics, when 

applied to shelf space allocation problems. A set of problem-specific low-level 

heuristics are designed and input into the hyper-heuristic framework. Those low-

level heuristics are very similar to the heuristics used in the bin packing and 

knapsack problems. As shown in chapter 4, a simulated annealing based hyper-

heuristic has produced competitive results for the bin packing problem, a problem 

which is closely related to the shelf space allocation problem. In this chapter, the 

simulated annealing based hyper-heuristic is adapted to a shelf space allocation 

problem concerned in this chapter. Its performance is evaluated by comparing with a 

conventional simulated annealing algorithm and several other types of hyper-
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heuristics. Experimental results from these algorithms on the twelve problem 

instances are compared and reported. The research work described in this chapter is 

mainly drawn from (Bai and Kendall, 2005b). 

5.2 Model Formulation  

As discussed in chapter 2, because different stores have different requirements 

and merchandise styles, it is difficult to develop a generic model that can represent 

all real-world shelf space allocation problems. For research purposes, this chapter 

studies a general shelf space allocation problem which has also been studied by 

several other researchers. 

Suppose there are m shelves, with each shelf j having a capacity of Tj, and n types 

of items (or SKUs) need to be displayed on the shelves. Each type of item could have 

more than one facing being displayed on the shelf. The problem concerned in this 

research is the assignment of appropriate shelf space to every SKU of a given 

category in order to maximise the overall profit, whilst not violating the given 

constraints.  

A few shelf space allocation optimisation models have been proposed with the 

aim of maximising products’ aggregate profits. These models have been improved by 

integrating several factors, such as the inter-relationships among the products, 

product assortment, handling costs, stock holding costs and some other variables, 

such as price, advertising, promotions, etc (Corstjens and Doyle, 1981b; Zufryden, 

1986; Borin et al., 1994; Urban, 1998). We firstly introduce a complex model.  

5.2.1 A complex model 

A central issue in the shelf space allocation problem is defining a demand 

function that reveals the relationship between the displayed shelf space and the 
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amount of demand it can capture. A diminishing return polynomial function has been 

widely used by several researchers in the literature (Zufryden, 1986; Baker and 

Urban, 1988; Dreze et al., 1994; Urban, 2002) to describe the relationship between 

the displayed facings of an item and the demand of that item. Figure 5-1 presents an 

illustration of this function. It can be seen that the demand of an item is continuously 

increasing with the increase of facings allocated to the item. However the rate of the 

increase does slow down.  
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Figure 5-1: An illustration of demand rate with respect to the allocated shelf space 

 

Comprehensive models were proposed in (Yang and Chen, 1999; Urban, 2002) 

which formulate the demand function in the following form: 

1
1 1

( )ik iu ti

n R
m

i i ik i tik
u t
u i

D x x yβ γ δα
=

= =
≠

=∑ ∏ ∏                                      (5-1) 

where  

− n is the number of different types of items; 

− m is the number of shelves; 

− iD  is the demand function of item i; 
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− ikx  is the number of facings of item i allocated to shelf k.  

− ix  is the total number of facings allocated to an item, i.e. ( )
1

m

i ikk
x x

=
=∑ ; 

− iα  is a scale parameter; 

− ikβ  is the space elasticity of item i on shelf k; 

− iuγ  is the cross elasticity between item i and item u; 

− tiy  is the  ( 1,..., )tht t R=  market variable that can influence the demand. The 

possible market variables can be the price, advertising campaign, 

promotional manipulations, etc.;  

− tiδ  is the elasticity value of tth market variable with respect to the demand 

value of item i. 

 

The objective is to maximise the total profit which equals to the total gross profit 

from sales of all items deducting the aggregate costs to realise the sales.  

 

max           
1 1

( ) i
n n

i i i ii i
P g D D ηθ

= =
= −∑ ∑                              (5-2) 

subject to   
1

    1,...,
n

i ij ji
l x T j m

=
≤ =∑                                    (5-3) 

1
      1,...,

m

i i j ij
L x U i n

=
≤ ≤ =∑                            (5-4) 

{0,1,  2,  3 ...}   1,...,    1,...,ijx i n j m∈ = =            (5-5) 

where gi is the unit revenue of item i and iθ  is the cost coefficient of item i and iη  is 

the cost elasticity of item i with respect to the sales volume. jT  is the capacity of the 

shelf j and l i is the size of item i. Constraint (5-3) ensures that the shelf capacity 

constraints are satisfied. Constraint (5-4) confines the upper bound iU  and lower 
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bound iL  of the number of facings of item i and constraint (5-5) are the integrality 

requirements of the shelf space allocation variables.  

However, there are some drawbacks with this model. Firstly, the model includes 

many problem parameters, especially the n n×  number of cross elasticities (iuγ ) for a 

problem with n items. It is a challenging task to get a reliable estimation of these 

values. Secondly, although the demand function (5-1) takes into consideration the 

shelf location impact, it will encourage a shelf space allocation decision which 

scatters facings of the same types of products among many shelves. By doing this, 

the demand of that item can be increased. This is due to the characteristics of 

polynomial function.  For example, for a polynomial function 0.5( )f x x= , 

(2) (1) (1)f f f≤ + . This means that with the demand function of (5-1), the demand 

can be increased by simply moving part of facings from the current shelf to another 

shelf even if this shelf has the same location quality to the previous one. This may 

not fit well with the real-world environment where displaying the same products 

together on a shelf may be able to attain greater demand than by displaying them 

separately. Finally, the objective function employed in the above model is complex 

and could be computationally expensive to calculate and optimise. Yang (Yang, 2001) 

proposed a simpler linear model by assuming that total net profit was linear with the 

number of facings of an item. However, this assumption is unrealistic for the real-

world retail environment.  

5.2.2 A simplified model 

To simplify the problem, in this chapter, it is assumed that:  

1) The shelf space constraints in depth and height are ignored. The problem is 

therefore a one-dimensional space allocation problem.  
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2) The retailer can prevent the occurrence of out-of-stock situations. All items 

are fully stocked. 

3) The total profit of item i is proportional to its unit profit ip  (equivalent to 

iη =1). 

4) The cross elasticities between products are much smaller than the direct space 

elasticity and can be ignored.  

5) The shelf-life of the products does not affect the demand of the products.  

Note that in chapter 6, we will consider a shelf space allocation problem for fresh 

produce (that is, assumption 5, above, is removed), which generally have limited 

shelf-life and freshness is one of aspect that affects demand. Therefore, the last 

assumption does not hold for fresh produce.   

Suppose a problem with m shelves and n items, each stock-keeping unit is defined 

by a five-tuple (il , ip , iβ , iL , iU ) where il  (respectively, ip , iβ , iL , iU ) is the size 

(respectively profit, space elasticity, lower bounds, upper bounds) of item i. The 

capacity of shelf j is denoted by jT . Based on the assumptions we discussed above, 

the problem can be expressed as:  

  max           
1
( )i

n

i i ii
P p xβα

=
=∑                                            (5-6) 

subject to   
1

    1,...,
n

i ij ji
l x T j m

=
≤ =∑                                 (5-7) 

1
      1,..., ;

m

i i j ij
L x U i n

=
≤ ≤ =∑                        (5-8) 

{0,1,  2,  3 ...}   1,...,    1,...,ijx i n j m∈ = =         (5-9) 

The decision variables are ijx , representing the number of facings of item i on shelf j 

and
1

m

i i jj
x x

=
=∑  is the total number of facings of item i. iα  is a scale parameter and 

iα >0. iβ  is the space elasticity and 0 1iβ≤ ≤ . The objective is to maximise the 
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overall profit without violating the given constraints. The model is a non-linear, 

multi-constraint optimisation problem. If 1iβ → , the model degenerates into a 

bounded multi-knapsack problem.  

5.2.3 An upper bound of the model 

As shelf space allocation problems cannot be solved to optimality in polynomial 

time (Borin et al., 1994), we usually do not know the optimal solution and hence 

cannot evaluate the quality of a given solution by comparing it with the optimal 

solution. Yang (Yang, 2001) compared his results with the optimal solution obtained 

by carrying out a complete enumeration. However, this method is only suitable for 

very small problem instances. For a shelf space allocation problem with n items 

(each item has an upper bound of facings U) and m shelves, it may require up to 

m nU ×  iterations to find the optimal solution by using an exhaustive search. Even for a 

small problem instance: n=6, m=3, U=6, this could be computationally expensive. 

Another common method is to relax the problem to a simpler one whose optimal 

objective value is taken as an upper bound of the original problem. In this research a 

two-stage relaxation method was used, which can be described as follows: 
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Figure 5-2: Approximate function i
ixβ  with a linear function 

 

Stage 1: The original non-linear model (5-6) is relaxed to a linear model. This is 

accomplished by applying a first order Taylor expansion to i
ixβ  at the point ix  
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( ,i i iL x U x Z+≤ ≤ ∈ ) (as illustrated in figure 5-2). The model then becomes an 

integer programming (IP) problem: 

maximise  ( 1)

1
[ ( ) ]i i

n

IP i i i i i i ii
P p x x x xβ βα β −

=
= − +∑                       (5-10) 

or  

maximise   
1

( )
n

IP i i ii
P p l xα

=
= ⋅ ⋅∑                                       (5-11) 

subject to the constraints (5-7), (5-8) and (5-9), where ( 1)( ) ( )i i

i i i i i il x x x x xβ ββ −= − + . 

Suppose * * * *
1 2( , ,..., )nX x x x=  is the optimal solution for the original model (5-6) 

and *P  is its corresponding optimal objective value. *
IPP  is the optimal objective 

value for the IP model (5-11). From figure 5-2, we have: 

* * * * *

1 1 1 1
( ) ( ) [ ( ) ( ) ]i i

n n n n

i i i i i i i i i i i ii i i i
P p x p l x p l x p xβ βα α α α

= = = =
= = ⋅ ⋅ − ⋅ ⋅ −∑ ∑ ∑ ∑  

  * * *

1 1
[ ( ) ( ) ]i

n n

IP i i i i i ii i
P p l x p x βα α

= =
≤ − ⋅ −∑ ∑   *

IPP≤                                        (5-12) 

Hence, the gap between *IPP  and *P  is no less than: 

     * *
1 1 1

( ) ( ) i
n n

i i i i i ii i
G p l x p x βα α

= =
= ⋅ −∑ ∑  

( 1)* *

1
[ ( ) ( ) ]i i i

n

i i i i i i i ii
p x x x x xβ β βα β −

=
= + − −∑                          (5-13) 

From equation (5-13), it can be seen that the closer ix  is to *
ix , the smaller the gap 

is. In order to keep 1G  as a small value, we let ix = '
ix  where ' ' ' '

1 2( , ,..., )nX x x x=  is the 

best solution found by the algorithms (see section 5.4). 

Stage 2: Based on the approximation from stage 1, the integer constraint (5-9) in 

the IP model is ignored and the model now becomes a linear programming (LP) 

model. The software “lp_solve”  (a free LP software package) was used to obtain the 

optimal objective (denoted by*
LPP ) of this LP problem. We took this value as the 
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relaxed upper bound of the shelf space allocation model (denoted byubP ), i.e. 

*ub
LPP P= . 

5.3 Optimisation of the Model 

Several types of hyper-heuristics were applied to optimise the problem. The 

author specifically investigated the simulated annealing hyper-heuristic following its 

success in solving the bin packing problem. Hyper-heuristics are high level strategies 

which make calls to appropriate low-level heuristics in order to tackle different 

problems or problem instances with good quality solutions. However, in the 

simulated annealing hyper-heuristic, the algorithm is concerned with the acceptance 

criteria of each low-level heuristic call. Instead of accepting all low-level heuristic 

calls as other hyper-heuristic algorithms do, the simulated annealing hyper-heuristic 

only accepts some of the “deteriorating” low-level heuristic calls (a heuristic that 

results in an inferior solution), controlled by the simulated annealing Metropolis 

probability. From figure 4-1, it can be seen that, to implement the simulated 

annealing hyper-heuristic, one needs to generate an initial solution and define a set of 

problem-specific low-level heuristics. The parameters related to simulated annealing 

(e.g. initial and stopping temperature, temperature reduce scale, etc.) are supposed to 

be able to automatically tuned by the algorithm itself in order not to undermine the 

generality of the hyper-heuristics. The following subsections address these issues.  

5.3.1 Low-level heuristics 

Before describing the low-level heuristics which were used in the hyper-heuristics, 

we firstly define three order lists.  

− 01P : item_contribution_list: item list ordered by /i i ip lα⋅  decreasingly. 
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− 02P : item_length_list: item list ordered by length il  increasingly; 

− 0S : shelf_freelength_list: shelf list sorted by the current free shelf space 

decreasingly. 

A total of twelve low-level heuristics were used in this application. They are 

categorised into four types: add product(s), delete product(s), swap and interchange. 

Note that each low-level heuristic only searches within the feasible region of the 

solution space. If a low-level heuristic cannot produce a new feasible solution, the 

current solution is returned.   

− Add_random: this heuristic adds one facing of a random item to the first 

shelf of 0S . A maximum of five attempts are made if the heuristic fails to 

generate a feasible solution. 

− Add_exact: this heuristic searches and adds one facing of the biggest possible 

item to all shelves (begins from the first shelf of 0S ) until all shelves cannot 

be assigned any more items.  

− Add_best_contribution: this heuristic repeatedly selects a shelf from 0S  

(begins from the first shelf of 0S ), repeatedly searches and adds as many 

facings of an item as possible from 01P  (begins from the first item of 01P ) 

until all shelves cannot be allocated any more items. 

− Add_best_improvement: this heuristic selects the first shelf of 0S  and 

allocates one facing space to the item which gives the best improvement to 

the objective function. 

− Delete_random: this heuristic deletes one facing of a random item from a 

random shelf. A maximum of five attempts are made if the heuristic fails to 

generate a feasible solution. 
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− Delete_least_contribution1: this heuristic deletes one facing of the item with 

the least contribution value ( /i i ip lα⋅ ) from a random shelf. 

− Delete_least_contribution2: this heuristic deletes one facing of the item with 

the least contribution value from all shelves.  

− Delete_least_improvement: this heuristic deletes one facing of the item that 

causes the least decrease in the objective value from a random shelf.  

− Swap_random: this heuristic randomly deletes one facing of an item from a 

random shelf and adds as many possible facings of another randomly selected 

item. A maximum of five attempts are made if the heuristic fails to generate a 

feasible solution. 

− Swap_best: this heuristic repeatedly selects a shelf from 0S , deletes one 

facing of the item with the lowest contribution value and adds one facing of 

another item with a higher/highest contribution value until the last shelf is 

swapped.   

− Interchange_improvement: this heuristic randomly selects two different 

items from two random shelves with non-zero residual capacity and 

interchanges one facing or multiple facings of the two items. The basic idea 

behind this heuristic is that the small free space can be transferred to the shelf 

with a larger free space so that another facing could be added to that shelf 

later.  

− Interchange_random: this heuristic selects two different items from two 

random shelves and exchanges one facing of the two items. A maximum of 

five attempts are made if the heuristic fails to generate a feasible solution. 
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5.3.2 Initial solution 

Considering the similarity between the shelf space allocation problem and the 

knapsack problem, the initial solution was generated by a heuristic which was also 

used in the knapsack problem (Martello and Toth, 1990a). The pseudo-code of the 

heuristic is shown in figure 5-3. 

Check if the total available space is large enough to satisfy the minimum 
facing requirements for every item; 
Allocate the space to every item in 02P  to meet the minimum facing 

requirements; 
Select the first shelf from 0S ; 

Do 
Select the first item from 01P ; 

Do  
  If free space is no less than the length of this item 

Allocate the maximum space to this item to meet its upper 
facing bound; 

  Endif 
  Select the next item from 01P ; 

Loop until it reaches the last item in the list 01P ; 

Select the next shelf from 0S ; 

Loop until it reaches the last shelf of 0S ; 
 

Figure 5-3: A greedy heuristic approach for the shelf space allocation 
 

5.3.3 SA parameters 

Typically, a simulated annealing algorithm has four parameters (except for the 

neighbourhood definition): initial temperature st , temperature reduction rate β , 

number of iterations at each temperature (nrep) and stopping condition(s). To test the 

generality of our simulated annealing hyper-heuristic algorithm, we used the same 

parameters that were employed in solving the bin packing problem (see section 

4.3.3.2): the initial temperature was set at 00.3 ( )st f s=  where 0( )f s  is the objective 

value of initial solution s0. The temperature is then reduced repeatedly according to 
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the function /(1 )t t tβ→ + . At each temperature, only one repetitions was executed 

(i.e. nrep=1) and the algorithm stopped when the temperature dropped to 0.1. The 

temperature reduction rate β  was calculated by ( ) /( )s f average allowed s ft t T T t tβ = − ⋅ ⋅ ⋅  

where allowedT  is the total CPU time allowed by the user and allowedT  is the average 

time spent for one iteration. In this application, the computation limit was set to 600 

seconds (i.e. allowedT =600 seconds). Hence, the total number of repetition K can be 

calculated by /allowed averageK T T= . Being consistent with chapter 4, we denote this 

version of the algorithm by SAHH.  

Another version of the simulated annealing hyper-heuristic algorithm was 

implemented where the initial and stopping temperatures were calculated in a more 

intuitive way, similar to the method proposed in (Johnson et al., 1989; Johnson et al., 

1991). At the beginning of the search, /100K  random solutions were sampled from 

the initial solution to approximately determine the maximal objective difference maxδ  

and minimal objective difference minδ ( min 0δ ≠ ). The starting temperature was then 

set to a value such that about 85% of such inferior moves would be accepted. 

According to the Metropolis probability function, we have max / ln(0.85)st δ= − . 

Similarly, the stopping temperature was set to a value such that only about 1% of 

inferior moves would be accepted, i.e. min / ln(0.01)ft δ= − . We denote this version of 

the algorithm by SAHH_adpt. 

5.3.4 Other approaches 

For the purpose of comparison, we also implemented the following heuristic and 

meta-heuristic approaches.  
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Choice function hyper-heuristics (CFHH) 

In section 4.3, two choice function based hyper-heuristics (CFHH and CFSAHH) 

have been employed to optimise the one-dimensional bin packing problem. CFHH is 

the choice function based hyper-heuristic that was developed and studied in 

(Soubeiga, 2003). CFSAHH is an extended version of CFHH which incorporates a 

simulated annealing acceptance criterion. In this chapter, these two hyper-heuristics 

with the same parameter settings as chapter 4 were also applied to the shelf space 

allocation problem.  

 

Initialise 
Assign appropriate initial weight w(i) to each heuristic i; 
Set max_tabu_len, the maximal length of the tabu list, to an 
appropriate value; 
Generate an initial solution s0; 

Repeat 
Select the non-tabu low-level heuristic H* with the highest weight; 
Apply H* to the current solution s, resulting in a neighbour solution s’; 
If  f(s’) - f(s) > 0 

w(H*)  = w(H*)+1; 
Else  

w(H*)  = w(H*)-1; 
Push heuristic H* into the tabu list; 
If the maximal length of the tabu list is reached, release the first 
heuristic in the tabu list; 
If f(s’) - f(s) < 0, release all heuristics in the tabu list except 
heuristic H*; 

Endif 
's s← ; 

Until stopping criteria are met. 
 

Figure 5-4: The pseudo code of a tabu search based hyper-heuristic for a 
maximisation problem 

Source: (Burke et al., 2003c) 
 

Tabu search based hyper-heuristic (TSHH) 

A recently developed tabu search based hyper-heuristic approach (Burke et al., 

2003c) was also applied to the problem, abbreviated to TSHH. The main idea behind 

this algorithm is the incorporation of a tabu list in the heuristic selection mechanism 

that forbids the selection of some low-level heuristics at certain stages of the search. 
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For a maximisation problem with an objective function f(x). TSHH can be described 

by figure 5-4. Note that this tabu search hyper-heuristic differs from a general tabu 

search in that the tabu list stores low-level heuristics rather than solution attributes. 

Also note that once an inferior solution is generated by a low-level heuristic, all the 

heuristics in the tabu list are released because the current solution has been modified 

and the heuristics in the tabu list may now be useful.  

In this application, the parameters were set as follows (these are the same as 

Burke et al., 2003c). Suppose a total of k low-level heuristics were used, the maximal 

length of tabu list was set to k/2. The upper bound and lower bound of weights for 

each low-level heuristic were set to k and 0 respectively. Once a heuristic’s weight 

exceeded one of its boundaries, it was set to the corresponding boundary.  

Initialise 
Assign appropriate initial weight w(i) to each heuristic i; 
Set max_tabu_len, the maximal length of the tabu list, to an 
appropriate value; 
Set initial temperature ts, stopping temperature tf and total iterations K. 
Generate an initial solution s0, t=ts; 

Repeat 
Select the non-tabu low-level heuristic H* with the highest weight; 
Apply H* to the current solution s, resulting in a neighbour solution s’; 
If  f(s’) - f(s) > 0 

w(H*)  = w(H*)+1; 
's s← ; 

Else  
w(H*)  = w(H*)-1; 
Push heuristic H* into the tabu list; 
If the maximal length of the tabu list is reached, release the first 
heuristic in the tabu list; 
If f(s’) - f(s) < 0 

Release all heuristics in the tabu list except heuristic H*; 
If exp( / ) (0,1)t randomδ >  's s← ; 

Else 
's s← ; 

Endif 
Endif 

/(1 )t t tβ= + ; 
Until stopping criteria are met. 

 
Figure 5-5: The pseudo code of a TSSAHH for a maximisation problem 



Chapter5 Optimisation of a General Shelf Space Allocation Problem 
 

115 

Furthermore, a hybridised version of tabu search based hyper-heuristic was also 

implemented, denoted by TSSAHH, which adopts the simulated annealing 

acceptance criteria described in section 4.2.3. Figure 5-5 presents a detailed 

description of the algorithm. The parameters with regards to simulated annealing are 

the same as SAHH. 

Random heuristic methods 

Two simple random heuristic methods, RHOI (Random Heuristics Only 

Improving) and RHAM (Random Heuristics All Moves), were also applied to the 

problems. Both methods randomly call the low-level heuristics at each iteration. 

RHOI repeatedly selects a random low-level heuristic and applies it to the current 

solution until some stopping criteria are met (in this chapter, the stopping criterion is 

600 seconds computational time), during which only those heuristics that can 

improve the objective function value are accepted. RHAM works in a similar way 

but all moves are accepted. 

Simulated annealing algorithms 

Two conventional simulated annealing algorithms, SA_swap and SA_interchange, 

were also applied to the problems. Both of the algorithms employ the same cooling 

schedule that was used in SAHH but utilise different neighbourhood structures. In 

SA_swap, the neighbourhood structure was defined by randomly swapping one 

facing of two different items (i.e. randomly select an item from a random shelf, 

delete one facing of this item from the shelf and add one facing of another randomly 

chosen item to the shelf). The neighbourhood in SA-interchange was generated by 

randomly selecting two different items from two random shelves, interchanging one 

facing of the two items, and then adding as many facings as possible of the item with 

the largest possible item_contribution value to the shelf that has the largest free space. 
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Note that if the above neighbourhood moves produced an infeasible solution, another 

attempt was made until a feasible move is generated.  

5.4 Experimental Results 

As there is no real-world data available (due to commercial confidentiality) and 

neither is there any benchmark data available from the literature, a number of 

simulated problems were generated as follows. The length of the products conforms 

to a uniform distribution between 25 and 60. The net profit pi (i=1,…n) of the 

products were created by a normal distribution in the similar way to the one that was 

described in (Yang, 2001). The mean of pi is uniformly drawn from the range [3, 3.5] 

and the ratio of the mean to standard deviation has a uniform distribution from 0.05 

to 0.15. iα , iβ , iL , iU  and jT  have uniform distributions in the ranges of [1, 2], [0.1, 

0.4], [2, 3], [7,10] and [300, 450] respectively. In the light of Yang’s (Yang, 2001) 

experimental results which show that the problem size is a potential factor affecting 

algorithm performance, in this research, five problem instances with different 

problem sizes were generated to test this relationship. For simplicity, we shall call it 

data set S (denoted by S1, S2, S3, S4 and S5 respectively). We also took into account 

the influence of space availability in the performance of the algorithms. As the 

number of facings of each item has a lower bound and an upper bound, the available 

shelf space of a problem must be greater than a minimal space value to satisfy the 

lower bound of facings and should also not exceed a maximal space value to avoid 

the situation that the shelf space is sufficient enough such that all items can reach the 

upper bounds of facings and no optimisation is required. Two parameters, r_min and 

r_max, were introduced to describe the space availability. r_min represents the ratio 

of the minimal space to the available space and r_max is the ratio of the available 
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space to the maximal space. Hence both r_min and r_max are in the range of [0, 1]. 

Seven problem instances (denoted by R1, R2, ..., R7 respectively) with different 

r_min and r_max values were generated to test the corresponding algorithms’ 

performance.  

Table 5-1 and 5-2 shows the problem sizes, space availability ratios and the upper 

bound values ( ubP ) of these twelve instances.  

All algorithms were coded in Microsoft Visual C++ version 6.0 and all 

experiments were run on a PC Pentium IV 1.8GHZ with 256MB RAM running 

Microsoft Windows 2000 professional Version 5. All algorithms started from the 

same initial solution produced by the greedy heuristic described in section 5.3.2 and 

we allowed 600 seconds computation time to give a fair comparison. All algorithms 

were run 30 times and their average objective value (hP ), minimal objective value 

(min) and maximal objective value (max) were observed. The corresponding 

standard deviations (stdev) were calculated and compared. The performance of the 

different algorithms was evaluated by the ratio of their average objective value (hP ) 

to the relaxed upper bound (ubP ).  

 
Table 5-1: Five test problem instances with different sizes (data set S) 

  S1 S2 S3 S4 S5 

r_min / r_max 0.95 / 0.24 0.95 / 0.33 0.95 / 0.25 0.95 / 0.24 0.95 / 0.24 

(m, n) (5,20) (12, 54) (22, 60) (30,80) (40, 100) 

ubP  186.53 422.25 610.67 884.62 1077.376 

 
Table 5-2: Seven test problem instances with different space availability ratios (data set R) 

 R1 R2 R3 R4 R5 R6 R7 

r_min/r_max 0.95 / 0.33 0.85 / 0.35 0.7 / 0.46 0.6 / 0.53 0.5 / 0.66 0.4 / 0.79 0.34 / 0.95 

(m, n) (12, 54) (11, 48) (15, 48) (16, 48) (17, 48) (22, 48) (29, 50) 

ubP  422.25 401.33 411.05 435.55 471.30 526.04 482.64 
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The first round of experiments was carried out on the data set R to test the 

performance of different algorithms under different shelf space availabilities. Figure 

5-6, table 5-3a and 5-3b present the corresponding computational results. It can be 

seen that both SAHH, SAHH_adpt, CFHH and CFSAHH have greatly improved 

over the initial greedy heuristic. SA_swap also produced good quality solutions 

while SA_interchange performed much worse. This shows that the performance of 

the simple simulated annealing algorithm can be largely dependent on the 

neighbourhood structure. It can also be seen that SAHH and SAHH_adpt 

outperformed all other algorithms in all cases with surprisingly high quality solutions. 

Both SAHH and SAHH_adpt achieved over 99% of the upper bound for six problem
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Figure 5-6: The average performance of different algorithms on the data set R 
 

instances and 98.5% of the upper bound for one instance. This is a very good 

performance considering the fact that the upper bound was obtained by a two-stage 

relaxation and the algorithms used the same parameters to those that were used in 
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Table 5-3a: The performance of different algorithms for the data set R (see 5-3b for other results) 

 R1 R2 R3 R4 R5 R6 R7 

(r_min, r_max) (0.95, 0.33) (0.85, 0.35) (0.7, 0.46) (0.60, 0.53) (0.50, 0.66) (0.40, 0.79) (0.34, 0.95) 

(m, n) (12, 54) (11, 48) (15, 48) (16, 48) (17, 48) (22, 48) (29, 50) 

Pub 422.25 401.33 411.05 435.55 471.30 526.04 482.64 

Ph 410.81 388.24 390.47 416.75 449.55 507.96 475.95 
Greedy 

Ph/Pub 0.97% 0.967 0.95 0.957 0.954 0.966 0.986 

Ph 418.74 397.70 404.96 431.20 467.43 522.18 481.67 

min 418.42 397.39 404.61 430.94 467.23 521.72 481.29 

max 419.04 398.12 405.49 431.47 467.65 522.65 481.94 

Ph/Pub 0.992 0.991 0.985 0.990 0.992 0.993 0.998 

SAHH 

stdev 0.16 0.17 0.20 0.13 0.10 0.22 0.14 

Ph 418.77 397.79 404.95 431.19 467.33 522.26 481.62 

min 418.42 397.45 404.54 430.53 466.93 521.73 481.37 

max 419.17 398.05 405.42 431.57 467.92 522.49 481.98 

Ph/Pub 0.992 0.991 0.985 0.990 0.992 0.993 0.998 

SAHH_adpt 

stdev 0.23 0.14 0.22 0.22 0.26 0.18 0.14 

Ph 418.36 396.85 404.44 430.63 467.19 521.73 481.58 

min 412.10 388.24 402.29 428.14 464.89 520.21 480.90 

max 419.04 397.55 405.00 431.29 467.71 522.34 481.89 

Ph/Pub 0.991 0.989 0.984 0.989 0.991 0.992 0.998 

CFHH 

stdev 1.21 1.61 0.64 0.75 0.46 0.44 0.18 

Ph 418.74 397.29 404.45 429.87 465.84 521.54 481.44 

min 418.07 395.73 403.06 426.33 460.81 519.87 480.38 

max 419.17 398.15 405.10 431.12 467.40 522.63 481.88 

Ph/Pub 0.992 0.990 0.984 0.987 0.988 0.991 0.998 

CFSAHH 

stdev 0.27 0.65 0.54 0.97 1.85 0.65 0.33 

Ph 418.39 396.08 394.94 421.38 453.77 516.27 480.04 

min 417.41 394.45 391.25 419.93 451.11 511.94 478.43 

max 419.14 397.23 400.56 423.09 455.47 518.09 481.50 

Ph/Pub 0.991 0.987 0.961 0.967 0.963 0.981 0.995 

TSHH 

stdev 0.38 0.62 2.35 0.77 1.07 1.46 0.76 

Ph 418.25 395.64 395.93 421.02 455.19 518.10 480.47 

min 417.07 393.93 393.29 418.73 452.63 514.29 479.61 

max 418.78 396.71 400.60 422.15 457.19 520.10 481.15 

Ph/Pub 0.991 0.986 0.963 0.967 0.966 0.985 0.996 

TSSAHH 

stdev 0.35 0.63 1.77 0.74 1.06 1.21 0.39 

 

solving the bin packing problem in chapter 4. The performance of most of the 

algorithms slightly decreased when r_min and r_max reached the middle of their 
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ranges. This is probably because when r_min is large while r_max is small, the shelf 

space is very scarce and the optimal solution is near the lower bound and hence is 

relatively easier to obtain. Similarly, when r_min is small and r_max is large, space 

is abundant so that the optimal solution is almost the upper bound. However, when 

the available shelf space belongs to none of these two cases, the problem becomes 

harder to solve.   

 
Table 5-3b: The performance of different algorithms on the data set R (continued ) 

 R1 R2 R3 R4 R5 R6 R7 

(r_min, r_max) (0.95, 0.33) (0.85, 0.35) (0.7, 0.46) (0.60, 0.53) (0.50, 0.66) (0.40, 0.79) (0.34, 0.95) 

(m, n) (12, 54) (11, 48) (15, 48) (16, 48) (17, 48) (22, 48) (29, 50) 

Pub 422.25 401.33 411.05 435.55 471.3 526.04 482.64 

Ph 418.16 396.14 402.21 425.23 459.23 521.03 481.38 

min 417.23 395.56 401.54 423.14 457.74 520.44 481.09 

max 418.92 396.68 403.12 426.47 460.42 521.68 481.65 

Ph/Pub 0.990 0.987 0.978 0.976 0.974 0.990 0.997 

RHOI 

stdev 0.47 0.32 0.42 0.84 0.67 0.34 0.16 

Ph 418.39 396.90 404.46 430.29 466.84 521.15 481.10 

min 418.07 396.67 404.12 429.88 466.57 520.63 480.82 

max 418.78 397.23 404.84 430.91 467.14 521.49 481.40 

Ph/Pub 0.991 0.989 0.984 0.988 0.991 0.991 0.997 

RHAM 

stdev 0.15 0.13 0.18 0.22 0.15 0.20 0.15 

Ph 417.27 396.59 403.68 429.25 466.01 520.35 480.85 

min 416.23 395.98 403.07 428.00 464.53 519.61 480.23 

max 418.15 397.10 404.34 430.21 466.68 521.35 481.50 

Ph/Pub 0.988 0.988 0.982 0.986 0.989 0.989 0.996 

SA_swap 

stdev 0.42 0.27 0.31 0.51 0.44 0.43 0.26 

Ph 412.80 389.73 393.43 417.97 450.28 510.72 478.78 

min 412.67 389.00 392.66 417.83 449.84 510.55 478.19 

max 413.47 390.21 394.13 418.19 451.43 511.32 479.38 

Ph/Pub 0.978 0.971 0.957 0.960 0.955 0.971 0.992 

SA_inter 
change 

stdev 0.30 0.37 0.45 0.08 0.49 0.26 0.33 

 
 

The second round of experiments investigated the effect of the problem size on 

the performance of different algorithms. To avoid the influence of the space  

availability, as can be seen from table 5-1 all the problem instances were created 



Chapter5 Optimisation of a General Shelf Space Allocation Problem 
 

121 

 

Table 5-4a: The performance of different algorithms on the data set S (see table 5-4b for other results) 

 S1 S2 S3 S4 S5 

(r_min, r_max) (0.95, 0.24) (0.95, 0.33) (0.95, 0.25) (0.95, 0.24) (0.95, 0.24) 

(m, n) (5,20) (12, 54) (22, 60) (30,80) (40, 100) 

Pub 186.53 422.25 610.67 884.62 1077.376 

Ph 151.73 410.81 511.51 753.35 928.07 
Greedy 

Ph/Pub 0.813 0.973 0.838 0.852 0.861 

Ph 186.53 418.74 599.75 870.01 1052.61 

min 186.53 418.42 590.27 862.77 1040.24 

max 186.53 419.04 603.97 872.49 1058.81 

Ph/Pub 1.000 0.992 0.982 0.983 0.977 

SAHH 

stdev 0.00 0.16 3.08 2.51 4.37 

Ph 186.53 418.77 600.18 867.60 1056.44 

min 186.53 418.42 594.47 857.17 1045.79 

max 186.53 419.17 603.97 872.49 1062.98 

Ph/Pub 1.000 0.992 0.983 0.981 0.981 

SAHH_adpt 

stdev 0.00 0.24 2.09 3.30 3.78 

Ph 182.18 418.36 572.15 836.26 1006.71 

min 160.43 412.10 527.72 774.71 928.07 

max 186.53 419.04 600.82 866.27 1049.03 

Ph/Pub 0.977 0.991 0.937 0.945 0.934 

CFHH 

stdev 7.13 1.23 27.47 32.55 45.38 

Ph 183.34 418.74 586.45 858.23 1035.80 

min 169.13 418.07 528.04 796.07 956.60 

max 186.53 419.17 605.77 880.91 1058.81 

Ph/Pub 0.983 0.992 0.960 0.970 0.961 

CFSAHH 

stdev 4.84 0.28 22.60 25.14 30.84 

Ph 186.53 418.39 595.60 833.73 987.97 

min 186.53 417.41 583.06 822.69 937.91 

max 186.53 419.14 603.97 848.35 1039.49 

Ph/Pub 1.000 0.991 0.975 0.942 0.917 

TSHH 

stdev 0.00 0.39 3.96 6.08 23.36 

Ph 182.18 418.25 569.46 825.19 961.98 

min 177.83 417.07 543.10 806.75 937.91 

max 186.53 418.78 587.23 836.24 986.24 

Ph/Pub 0.977 0.991 0.933 0.933 0.893 

TSSAHH 

stdev 4.42 0.36 10.14 7.13 12.39 

 

such that their space availability ratios are almost the same. Figure 5-7 and tables 5-

4a and 5-4b show the corresponding experimental results and comparison. It can be 
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seen that, once again, SAHH and SAHH_adpt outperformed all other algorithms,  

including two simple simulated annealing algorithms. For the smallest problem 

instance S1, four algorithms, SAHH, SAHH_adpt, TSHH and RHAM, consistently 

produced the optimal solution for all 30 runs (when Ph/Pub=1, it means that the 

algorithm has solved the problem to the upper bound. The solution found by the 

algorithm is the optimal solution). The results also show that most algorithms

 

 Table 5-4b: The performance of different algorithms on the data set S (continued) 

 S1 S2 S3 S4 S5 

(r_min, r_max) (0.95, 0.24) (0.95, 0.33) (0.95, 0.25) (0.95, 0.24) (0.95, 0.24) 

(m, n) (5,20) (12, 54) (22, 60) (30,80) (40, 100) 

Pub 186.53 422.25 610.67 884.62 1077.376 

Ph 185.57 418.16 598.69 866.62 1048.22 

min 172.18 417.23 594.47 857.17 1037.87 

max 186.53 418.92 603.97 872.49 1059.05 

Ph/Pub 0.995 0.990 0.980 0.980 0.973 

RHOI 

stdev 3.64 0.48 3.00 4.56 5.33 

Ph 186.53 418.39 594.58 859.51 1039.01 

min 186.53 418.07 589.24 857.45 1029.47 

max 186.53 418.78 599.77 866.27 1048.22 

Ph/Pub 1.000 0.991 0.974 0.972 0.964 

RHAM 

stdev 0.00 0.43 2.12 2.77 5.96 

Ph 177.54 417.27 563.03 835.60 964.58 

min 169.13 416.23 543.10 818.57 944.51 

max 177.83 418.15 583.06 845.96 987.11 

Ph/Pub 0.952 0.988 0.922 0.945 0.895 

SA_swap 

stdev 1.59 0.43 9.24 6.36 10.80 

Ph 151.73 412.80 566.85 816.81 1026.59 

min 151.73 412.67 543.10 796.07 1018.37 

max 151.73 413.47 583.06 835.91 1035.44 

Ph/Pub 0.813 0.978 0.928 0.923 0.953 

SA_interchange 

stdev 0.00 0.30 10.78 10.64 4.18 

 
performed slightly worse when the problem size increased but both SAHH and 

SAHH_adpt still obtained more than 97% of the relaxed upper bound for a very large 

problem (m=40, n=100).  
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As SAHH and SAHH_adpt outperformed all other algorithms for both data sets, 

in the next three sections we carried out a specific comparison and analysis on the 

simulated annealing hyper-heuristics.  
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Figure 5-7: The average performance of different algorithms on the data set S 

 

5.4.1 Comparison with conventional simulated annealing algorithms 

As discussed in chapter 4, the simulated annealing hyper-heuristics 

simultaneously make use of a set of heuristics or neighbourhood functions. However, 

in a conventional simulated annealing algorithm, only a single neighbourhood 

structure is used. This section gives a more detailed comparison and analysis of their 

performance for the shelf space allocation problem. Figures 5-8 and 5-9 present a 

clearer comparison of the average performance and standard deviation between 

SAHH, SAHH_adpt, SA_swap and SA_interchange for the data set S and R 

respectively.  
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Figure 5-8: The average objective value and standard deviation of simulated annealing hyper-
heuristics and the conventional simulated annealing for the data set S over 30 runs 

 
 

From both figures, it can be seen that the two simulated annealing hyper-

heuristics, SAHH and SAHH_adpt, clearly outperformed two general SA algorithms, 

SA_swap and SA_interchange, for all tested instances both in terms of average 

objective values and standard deviation, which reflects the consistency and 

robustness of the algorithms. It also appears that, for the shelf space allocation 
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Figure 5-9: The average objective value and standard deviation of simulated annealing hyper-
heuristics and the conventional simulated annealing for the data set R over 30 runs 

 

problem, the simulated annealing hyper-heuristic is robust and not sensitive to the 

change of the starting and stopping temperatures. SAHH and SAHH_adpt have 

almost the same performance for all instances in the data set R and most of the 
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instances in data set S even when their starting temperatures are very different. For 

example, when solving the problem instance R1, the starting temperature of SAHH 

was almost 4 times the value of SAHH_adpt, but both algorithms resulted in the 

same quality solutions. For problem instance S5, the starting temperature of SAHH 

was 7 times the value of SAHH_adpt, however, SAHH was only slightly beaten by 

SAHH_adpt by a margin of 0.4% (see table 5-4a).  

In contrast, figures 5-8 and 5-9 show that both SA_swap and SA_interchange 

seem to be very sensitive to the change of the neighbourhood structures and the 

problem instances. For data set R, SA_swap performed much better than 

SA_interchange. This shows that for this set of problem instances, neighbourhood 

“swap” appears much better than the neighbourhood “interchange” even though the 

rest of the SA parameters are the same. Therefore choosing a “correct” 

neighbourhood structure is crucial for the success of SA. However, there is no 

guarantee that the neighbourhood “swap” is better than “interchange” for all problem 

instances. From figure 5-9, it can be seen that SA_swap performed better than 

SA_interchange for small problem instances and worse than SA_interchange for the 

large problem sizes. This shows that, for conventional SA, a good neighbourhood 

structure for a given problem instance does not guarantee good performance for 

another problem instance. However, by synergising several neighbourhood functions 

(or low-level heuristics), simulated annealing hyper-heuristics are able to achieve 

solutions with better quality and are also more general across different problem 

instances.   

5.4.2 A comparison among different hyper-heuristics 

Chapter 4 has discussed the motivation for the introduction of a simulated 

annealing acceptance criterion in the hyper-heuristic framework. It is expected that 
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by the incorporation of an SA acceptance criterion, the performance of the current 

hyper-heuristic framework would be improved. To test this hypothesis, the average 

performance and the standard deviation of all hyper-heuristic algorithms have been 

plotted in figures 5-10, 5-11, 5-12 and 5-13 (SAHH was not included because its 

performance is very similar to SAHH_adpt).  
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Figure 5-10: The average performance of different 

hyper-heuristics for the data set S over 30 runs 
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Figure 5-11: The standard deviation of different hyper-

heuristics for the data set S over 30 runs 
 

When solving data set S, it can be seen from figure 5-10 and 5-11 that CFSAHH, 

the choice function based hyper-heuristic with the assistance of an SA acceptance 

criterion, outperformed the pure choice function hyper-heuristic CFHH both in terms 
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of the average objective value and the algorithm’s robustness measured by the 

standard deviation. This is in line with our expectation. However, both CFHH and 

CFSAHH were still inferior to SAHH_adpt (or SAHH) which randomly selects 

different low-level heuristics rather than using the choice function heuristic selection 

mechanism. Being contrary to our expectation, SA assisted tabu search hyper-

heuristic, TSSAHH, failed to show superiority to TSHH. This is probably because 

the deterministic heuristic selection strategies in the CFHH and TSHH may be 

unsuitable for simulated annealing which, in essence, is a stochastic method. The 

deterministic heuristic selection may undermine the neighbourhood reachability. 

Comparing the tabu search hyper-heuristics and the choice function based hyper-

heuristics, neither algorithm demonstrated superior performance over the other for 

this data set. TSHH performs better than CFHH and CFSAHH on the instance S1 and 

S3, while it was beaten by both CFHH and CFSAHH on the instance S4 and S5. 

Both algorithms have similar results on the instance S2. However, results obtained 

by both TSHH and TSSAHH show better consistency than those by CFHH and 

CFSAHH whose corresponding standard deviation increased very quickly with the 

increase of the problem size.  
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Figure 5-12: The average performance of different hyper-
heuristics for the data set R over 30 runs 
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For the data set R, figure 5-12 and 5-13 shows that SAHH_adpt, again, 

outperforms all of the other four hyper-heuristics, although in one or two instances 

the difference between them are relatively small (see table 5-3a for the details). In 

terms of the average objective value, CFHH and CFSAHH obtained relatively good 

results that are close to the results by SAHH_adpt. However, the standard deviation 

of SAHH_adpt is much smaller than CFHH and CFSAHH. TSHH and TSSAHH 

performed badly for most instances except R1. Comparing CFHH and CFSAHH, no 

clear-cut difference can be observed. Similarly, there is no clear difference between 

TSHH and TSSAHH although TSSAHH seem to produce more consistent results 

with a smaller standard deviation on this data set.  
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Figure 5-13: The standard deviation of different hyper-
heuristics for the data set R over 30 runs 

5.4.3 Robustness analysis 

As all above meta-heuristic approaches include some random elements, different 

results may be obtained if running the same algorithm several times. It is not 

desirable that those results are significantly different from each other. An algorithm 

should be robust enough that the results obtained by different runs are clustered 

closely around the mean value. The standard deviation values in table 5-3a, 5-3b, 5-

4a and 5-4b provides overall information of an algorithm’s consistency and 
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robustness. We also plot the distribution of the results obtained by different 

algorithms over 30 runs. For reasons of space, only results for the instance S5 are 

presented, as shown in figures 5-14 to 5-23 respectively. Similar distribution plots 

can be obtained for the majority of other instances. The horizontal axis represents the 

objective values an algorithm obtains. The vertical axis represents the number of 

occurrence that a given objective value appeared over 30 runs. It can be seen that 

both the results from SAHH and SAHH_adpt are clustered closely around their mean 

values. However, all of the other algorithms are either producing results scattered 

 

 
Figure 5-14: The objective value distribution of 

30 SAHH runs on instance S5 
Figure 5-15: The objective value distribution of 

30 SAHH_adpt runs for instance S5 
 

 
Figure 5-16: The objective value distribution of 

30 CFHH runs for instance S5 
Figure 5-17: The objective value distribution of 

30 CFSAHH runs for instance S5 
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Figure 5-18: The objective value distribution of 

30 TSHH runs for instance S5 
Figure 5-19: The objective value distribution of 

30 TSSAHH runs for instance S5 

 
 

Figure 5-20: The objective value distribution of 
30 RHOI runs for instance S5 

Figure 5-21: The objective value distribution of 
30 RHAM runs for instance S5 

 

 
Figure 5-22: The objective value distribution of 

30 SA_swap runs for instance S5 
Figure 5-23: The objective value distribution of 

30 SA_interchange runs for instance S5 
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widely along the horizontal axis, or are obtaining a much smaller average objective 

value. 

5.5 Summary and Remarks 

This chapter considered a general shelf space allocation problem that has been 

previously studied by the other researchers. A simplified, while practical, model was 

proposed as an alternative to a complex model which is not suitable for real-world 

applications. The model is a non-linear combinatorial problem and was shown to be 

related to the multi-knapsack problem. As an extension of the multi-knapsack 

problem, the shelf space allocation problem is difficult to solve. To give a better 

evaluation of the solution quality obtained by different algorithms, an upper bound of 

the objective function was derived by a two-stage relaxation method. In the first step, 

the non-linear model was transformed to a linear integer programming (IP) model by 

applying a first order Taylor expansion over the objective function. In the second 

step, the IP model was further relaxed to a linear programming (LP) model whose 

optimal solution was taken as the upper bound of the original non-linear shelf space 

allocation model.  

Heuristic and meta-heuristic approaches, especially simulated annealing hyper-

heuristics, have been investigated for the optimisation of a general shelf space 

allocation problem. The simulated annealing hyper-heuristic differs from other 

hyper-heuristics in that it is not only concerned with the intelligent selection of 

appropriate heuristics but also provides a robust acceptance criterion that 

systematically changes the acceptance ratio of inferior heuristic moves. Experiments 

and analysis have been carried out to compare SA based hyper-heuristics with two 

other hyper-heuristics that have been proposed by previous researchers. The SA 
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based hyper-heuristic has also been compared with two general simulated annealing 

algorithms.  

All of the algorithms have been tested on twelve simulated problem instances 

which can be divided into two sets, corresponding to two potential factors that may 

affect the performance of an algorithm. In the first set, space availability is 

considered and evaluated by two values, the ratio of minimal space requirements to 

the available space and the ratio of available space to the maximal space 

requirements. Seven problem instances with different ratios have been generated. 

The second data set consists of five problem instances of different problem sizes.  

From the experimental results on these data sets, it has been observed that for the 

general simulated annealing algorithm, the neighbourhood structure plays a very 

important role in influencing the performance of an algorithm and an optimal 

neighbourhood structure may not exist across all problem instances. Among the 

problem instances that were tested in this chapter, it has been found that the 

performance of a given neighbourhood is dependent on the problem instance. A 

neighbourhood structure that works well on some problem instances may not 

perform well for other instances. However, the simulated annealing hyper-heuristic 

approach could simultaneously explore several neighbourhoods using different low-

level heuristics. The experimental results show that this algorithm outperformed two 

random heuristic methods, two choice function based hyper-heuristics, two tabu 

search based hyper-heuristics and two versions of the conventional simulated 

annealing algorithms. The simulated annealing hyper-heuristic also does not seem to 

be parameter-sensitive, which has always been a problem for conventional simulated 

annealing algorithms. Overall, the simulated annealing hyper-heuristics has produced 
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high quality solutions and even for the largest problem instance, they still achieved 

over 98% of the upper bound.  

The low-level heuristics used in this chapter can be refined or more intelligent 

low-level heuristics may be designed and input in the simulated annealing hyper-

heuristics. However, after discussions with our industrial collaborators, they are 

satisfied with their current shelf space allocation solutions and suggested us to work 

on another even more important shelf space allocation problem, fresh food. This is an 

area in which they have a particular interest due to increasing market competition. 

The problem is difficult because of the deterioration of the fresh food and the 

difficulty in managing inventory and shelf space allocation for such products. Indeed, 

the industries are not usually interested in finding the optimal solution which is 

usually unknown for many real-world problems. What they are seeking is a new 

approach that can be quickly and easily implemented to improve their current 

approaches. The next two chapters 6 and 7 will address this new problem. In Chapter 

6 a model is formulated that can be used to manage inventory control and shelf space 

allocation specifically for fresh produce. A multi-start generalised reduced gradient 

algorithm (GRG) is developed for the problem. In chapter 7 several other popular 

heuristic and meta-heuristic approaches are investigated for the optimisation of the 

problem formulated in chapter 6.  
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CHAPTER 6. MANAGING FRESH PRODUCE INVENTORY 

AND SHELF SPACE ALLOCATION 

6.1 Introduction  

The profit on general foods, such as cans, frozen vegetables, fruit juices, etc., is 

gradually decreasing due to highly competitive retail conditions. The demand for 

these products is also slowing. On the other hand, the demand for some other 

merchandise, such as fresh produce, organic food and children clothes, has increased 

dramatically owing to improving living standards (Johnson, 2002). This requires 

retailers to concentrate more in these areas. This chapter considers an inventory 

control and shelf space allocation problem specifically for fresh produce, such as 

vegetables, fruits, fresh meats, etc. The main characteristics of fresh items are their 

very short shelf-life and decaying utilities (or freshness) over time.  

Most of the literature treats fresh produce as deteriorating items with a random 

lifetime and non-decaying utilities (Nahmias, 1982; Goyal and Giri, 2001). In this 

research, we assume that the shelf-life of product has a continuous utility and 

physically deteriorates over time. Freshness is one of the main criteria in evaluating a 

product’s quality and could dramatically affect its demand if its condition is inferior. 

To obtain a good financial performance from fresh goods, it requires the adoption of 

strict temperature control and intelligent inventory and shelf management systems. 

Furthermore, although a large number of deteriorating inventory models have been 

proposed in previous research, most of them are based on the analysis of a single-

item, without the constraints of shelf space which arise when considering a range of 

goods. There is no work in the literature which has integrated a deteriorating 

inventory model with a shelf space allocation model (which plays a very important 
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role in retail decision making due to the scarcity of shelf resources). In this chapter, 

we formulate a fresh produce management model which can simultaneously decide 

the ordering policy and allocate shelf space among different items, together with 

consideration of utility deterioration. Some properties of the model are concluded 

which could significantly reduce the search space. A generalised reduced gradient 

algorithm (GRG) is proposed and extended in order to optimise this problem. Finally, 

the results on a numerical example are provided. Since the GRG algorithm may not 

be efficient for larger problem instances, in chapter 7, we shall investigate heuristic 

and meta-heuristic approaches for the optimisation of this problem. The main content 

of this chapter is drawn from (Bai and Kendall, 2005a). 

6.2 Drawbacks of the Previous Models 

Perishable inventory has been intensively studied and a large number of models 

have been proposed in the literature. See (Nahmias, 1982; Raafat, 1991; Goyal and 

Giri, 2001) for comprehensive reviews. However, most models assume that a fixed 

fraction of the inventory deteriorates completely over time but the utilities of the 

items do not decay before their expiration dates. Few models specifically consider 

the fresh produce with the characteristics we mentioned in section 6.1. In summary, 

these models have the following drawbacks:  

1) Most models (Liu, 1990; Jain and Silver, 1994) assume that fresh produce, 

such as vegetables, fruit and fresh meat, have a random lifetime (normally 

assuming an exponentially distributed lifetime). However, an item’s utilities do 

not decay over time. Hence different ages of items capture the same demand 

however fresh they are as long as they are not completely spoilt. This is 

contradictory to the common sense view as freshness is one of the most 

important qualities for fresh produce.  
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2) Some models (Mandal and Phaujdar, 1989; Giri et al., 1996) formulate the 

demand as a deterministic function of instantaneous inventory with the 

assumption that all stock could be displayed on the shelves. However, this 

situation seldom occurs in most supermarkets because the shelf space for fresh 

food is normally limited. It is also expensive due to the low temperature 

requirements. Therefore, only a part of the inventory can be displayed on the 

shelf. Shelf space allocation among different items is especially important in 

this situation. The significance of shelf space allocation for non-perishable 

merchandise has already been well addressed in previous research (Kotzan and 

Evanson, 1969; Curhan, 1972; Borin et al., 1994; Urban, 1998; Yang and Chen, 

1999; Bai and Kendall, 2005).  

3) The approaches that were used to optimise the models (Ben-Daya and Raouf, 

1993; Kar et al., 2001) disregarded the integer nature of the solution and 

assumed that the objective function is a quasi-concave function and is 

differentiable. The last assumption is usually too strict for problems which 

involve many constraints.   

Different deteriorating inventory models have been classified into two types in the 

literature: fixed lifetime models and random lifetime models. Examples of fixed 

lifetime models include photographic film, medicine, computer chips, canned food, 

etc. A major characteristic of this type of model is that inventory control caters for 

different ages of items with either a First-In-First-Out (FIFO) or Last-In-First-Out 

(LIFO) issuing policy (Nandakumar and Morton, 1990; Liu and Lian, 1999). 

However, fresh produce was usually treated as a typical example of a random 

lifetime product due to uncertain spoilage (Liu, 1990; Jain and Silver, 1994). These 
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models usually assumed a constant fraction of inventory decay or obsolescence over 

time (called exponential decay in some publications).  

Since fresh produce only has a very limited shelf life, most of the literature 

employed a single-period inventory model although different forms of demand 

function are used. Both stochastic and deterministic demand inventory models have 

been proposed for the perishable products. Ben-Daya and Raouf (Ben-Daya and 

Raouf, 1993) proposed a multi-item, single-period perishable inventory model with a 

uniform distribution demand. The objective was to maximise the total profit of all the 

items during one period. The “optimal” solution was calculated by a Lagrangean 

optimisation with the assumption that the objective is differentiable. The integer 

nature of the variables was also disregarded. Furthermore, the method is not efficient 

when there are a large number of constraints.  

Rajan et al. (Rajan et al., 1992) proposed a dynamic pricing and ordering decision 

making model for decaying produce, in which the demand was assumed to be 

deterministic and dependent on the selling price. The products were assumed to have 

an exponential deterioration. Abad (Abad, 1996) also formulated the demand 

function as a function of instantaneous price. A closed-form mathematical procedure 

was carried out to solve the problem and parameter sensitivities were analysed. 

However, the approach is heavily dependent on the mathematical description of the 

model so that even adding a single constraint could result in this approach becoming 

invalid.  

Some other models formulated the demand as a deterministic function of 

instantaneous inventory. Mandal and Phaujdar  (Mandal and Phaujdar, 1989) 

formulated a single-period inventory model for deteriorating items. The demand rate 

was linearly dependent on the instantaneous inventory level and the inventory 
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deteriorated according to a given function. Backordering was allowed and holding 

and shortage costs were also considered in the model. The objective was to minimise 

the average cost. The model was optimised by applying the derivative to the 

objective function. The variables included the time slots for different inventory 

stages and maximal stock level and maximal stock deficit. Giri et al. (Giri et al., 1996) 

formulated the demand as a polynomial function of instantaneous inventory in their 

perishable inventory model which also assumed an exponential decay. The objective 

was to maximise the profit, with order quantity and reorder point (or cycle time) as 

decision variables. Some time-dependent demand functions were also proposed in 

deteriorating inventory models to describe changing demand over time. Xu and 

Wang (Xu and Wang, 1990) assumed a linear time-dependent demand function 

within a limited time horizon. Exponentially time-dependent demand was also 

proposed to simulate a rapidly increasing/declining market (Hollier and Mak, 1983; 

Zhou et al., 2003). Yet Urban and Baker (Urban and Baker, 1997) used a 

multiplicative demand function of price, time and inventory level in their single-

period inventory model with the aim of finding optimal ordering and pricing policies 

for non-perishable products.  

The first research to consider the effect of utility deterioration on demand is 

(Fujiwara and Perera, 1993) in their formulation of an Economic Order Quantity 

(EOQ) perishable inventory model. In this publication, an exponential penalty 

function ( 1) ( 0, 0)teβα α β− > >  was used to measure the cost of keeping an aging 

item in inventory. A closed form of economic order quantities was obtained by a 

quadratic approximation of exponential terms. The results show that this model is 

consistent with other EOQ models with exponential decay. Sarker et al. (Sarker et al., 

1997) also attempted to incorporate the negative effect of aging inventory on demand. 
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In their production-inventory model, the demand function in the inventory build-up 

phase and depletion phase considered a constant term and a negative term which is 

proportional to instantaneous inventory (i.e. ( ) ( )f t D I tβ= − , where ( )f t  is the 

demand function, 0β > , D is the constant demand and I(t) is the instantaneous 

inventory level). However, illogically, the demand during the inventory depletion 

phase is actually an increasing function due to the continuous decrease of the 

inventory I(t) over time. This contradicts the authors’ initial intention to represent a 

declining demand with aging inventory.  

Almost all of the models described above only considered a single item without 

any constraints being included. The optimal solution was normally obtained by some 

mathematical derivations. Recently, researchers have begun to incorporate the shelf 

space allocation technologies into their inventory systems. Kar (Kar et al., 2001) 

proposed a single-period inventory model for multi-deteriorating items with the 

constraints of shelf space and investment. The problem considers selling the 

deteriorating items from two stores. At the beginning of the period the ordered items 

are separated into fresh items and items that have begun to deteriorate. The fresh 

items are shipped to the main store, selling with a high price and the deteriorating 

items are delivered to the second store and sold at a lower price.  During the period 

all decayed items in the main store are retained and delivered to the second store. 

The demand rate in the first store was formulated as a function of the item selling 

price and instantaneous inventory. However, the demand in the second store was 

only dependent on the selling price. A generalised reduced gradient (GRG) method 

was used to optimise the model. However, as stated in (Lasdon et al., 1978), GRG 

may not be efficient or robust for larger problem sizes and can only guarantee a local 

optimum. Besides, the assumption of non-integer variables and a differentiable 
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objective function are the major drawbacks of this approach in solving many NP-

Hard problems with integer variables. Hence, some meta-heuristic approaches 

(Glover and Kochenberger, 2003) have been introduced to optimise these models. 

Borin et al. (Borin et al., 1994) used a simulated annealing approach to solve a 

product assortment and shelf space allocation problem. Genetic algorithms were 

employed in Urban’s publication (Urban, 1998) to solve an integrated product 

assortment, inventory and shelf space allocation model. 

6.3 Model Formulation 

Instead of assuming that fresh food has a random lifetime with an exponential 

decay, in this research it is assumed that the demand for the fresh produce is 

deterministic and is both dependent on the displayed inventory level and the 

freshness of the goods. The freshness condition decreases according to a known 

function over time. The main difference between these two assumptions is that the 

former assumes that all items that have not yet deteriorated capture the same demand 

however fresh they are. This may sound reasonable for long lifetime perishable items 

(like photographic film and medicine) but is unrealistic for fresh produce as 

freshness is one of the most important aspects in evaluating their quality. In this 

research all fresh items are assumed to have a fixed, but very short, lifetime and will 

not entirely lose utilities before their expiration date. However, freshness keeps 

deceasing over time, which has an effect on demand. It should be noted that the 

assumption of a fixed lifetime of fresh produce, with decreasing utilities is realistic 

considering the advances in food planting, packing and conservation technologies, 

especially the introduction of temperature control systems in most supermarkets.  

The following notations are used in our model:  
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− ( )iD t  is the demand function of item i over time t. 

− ( )if t  is a decreasing function (within the range of [0,1]), representing the 

freshness condition of item i over time. A larger value indicates a higher 

level of freshness. 

− ( )iI t  is the inventory level of the stock at time t. 

− iq  is the procurement quantity of item i. 

− is  is the number of the facings assigned to item i. 

− ir  is the surplus of item i at the end of the cycle. 

− W is the total shelf space available.  

− ia  is the space required for one facing of item i. 

− ip  is the unit selling price of item i. 

− dip  is the unit discount price of item i. This price should be low enough 

such that all of the remaining items at the end of period can be sold very 

quickly at this price. 

− aic  is the unit acquisition cost of item i. 

− hic  is the unit holding cost of item i (including the costs caused by inventory 

loses, damage, maintenance, interest, insurance, etc.). 

− sc  is the shelf cost per unit space. 

− Coi is the constant order cost of item i (independent of the order quantity iq ). 

− eiT  is the lifetime of item i after which the item is rotten (i.e. cannot be sold). 

− Li is the lower bound of the number of facings of item i. 

− Ui is the lower bound of the number of facings of item i. 

− iT  is the length of the cycle period of item i. 
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Many researchers (Kar et al., 2001; Urban, 2002) use the function depicted in 

figure 6-1 to describe the change of inventory level over time t. From time 0 to t1i, si 

facings of item i are displayed on the shelf with some of stock stored in the 

backroom. As sales are made, the items in the backroom are moved to the shelf until 

stock in the backroom reaches zero (corresponding to the point when time reaches 

t1i). Therefore, during this period, the shelf is fully stocked and the demand is only a 

function of product freshness. From time t1i to t2i, the shelf is only partly stocked and  

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1: Graphical representation of inventory level changes over time 
 

 

the demand is both dependent on the freshness and the instantaneous inventory level. 

Once the time reaches point Ti, a new order of quantity qi is placed for item i 

(assuming no lead time) and the r i surplus of item i are sold at a discount price pdi. In 

this research, we will adopt this representation together with a polynomial demand 

function that is widely used in many shelf space allocation models (Corstjens and 

Doyle, 1981b; Giri et al., 1996; Urban and Baker, 1997; Urban, 1998): 
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where iα  and iβ are scale parameter and the space elasticity of item i respectively 

and 0,  0< 1i iα β> < . In this research, we assume that the demand function conforms 

to a multiplicative form of the instantaneous inventory and the item’s freshness 

condition, i.e. *( ) ( ) ( )i i iD t D t f t= ⋅  where ( )if t  is a continuously decreasing function 

over time and 0 ( ) 1if t≤ ≤ . ( )if t  could be a linear, quadratic or an exponential 

function of time. During the beginning of the period, the items are fresh and the 

value of freshness function is almost 1. The demand rate is only affected by the 

displayed inventory level. However, as time elapses, ( )if t gradually decreases and 

the demand is scaled down according to how long an item has been kept in inventory. 

To be consistent with the exponential decay assumption in the literature, here, we 

assume that the item’s freshness condition decreases exponentially over time, i.e. 

( ) it
if t e σ−= , where iσ  is a constant decay rate and >0iσ . Hence we have: 

 1*

1 2

                  0
( ) ( ) ( )

[ ( )]           

i i

i i

t
i i i

i i i t
i i i i

s e t t
D t D t f t

I t e t t t

β σ

β σ

α
α

−

−

 ≤ ≤= ⋅ = 
< ≤

               (6-2) 

Based on the assumptions above, the inventory level of item i can be described by 

the following differential equation: 

( ) / ( )i idI t dt D t= −                                         (6-3) 

During time [0, t1i], we have  

 ( ) / i i t
i i idI t dt s eβ σα −= −                                      (6-4) 

with the boundary conditions (0)i iI q=  and 1( )i i iI t s= . The solution of eq. (6-4) is: 

 ( ) ( 1)    
i

i ti i
i i

i

s
I t q e

β
σα

σ
−= + −                                 (6-5) 

and   

 1

( )1
ln(1 )

i

i i i
i

i i i

q s
t

sβ
σ

σ α
−= − −                                     (6-6) 
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During time [t1i, t2i], we have the following differential equation: 

 ( ) / [ ( )] i i t
i i idI t dt I t eβ σα −= − ⋅                                  (6-7) 

with the boundary conditions 1( )i i iI t s=  and 2( ) 0i iI t = . The solution of eq. (6-7) is: 

 
1

(1 )(1 )
( ) [ ]  i iti i

i i
i

I t e Kσ βα β
σ

− −−= +                              (6-8) 

and  

2

( ( ))1
ln(1 )

(1 ) i

i i i i i
i

i i i i

q q s
t

sβ
β σ

σ α β
− −= − −

−
                         (6-9) 

where [ ( )] i
i i i i i i iK q q s sββ µ−= − − −  and  

(1 )i i
i

i

α βµ
σ
−= . 

In general, we have the following inventory function: 

 
1

1
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               (6-10) 

The length of cycle period Ti ( ( )i i iI T r= ) is:  

 (1 )1 1
ln ( )i

i i i
i i

T r Kβ

σ µ
− 

= − − 
 

                            (6-11) 

The holding cost during [0, t1i] is: 

1
1

1 1 20
( ( 1) ) [( ) (1 ) ]

i i i
i

i i i
t t ti i i i i i

i hi i hi i i
i i i

s s s
HC c q e dt c q t e

β β β
σ σα α α

σ σ σ
− −= + − = − + −∫    

  (6-12) 

The holding cost during [t1i, Ti] is: 

 
1

1
(1 )

2 ([ ] )
i

i i

i

T t
i hi i it

HC c e K dtσ βµ − −= +∫                         (6-13) 
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The approximate expression of 2iHC  can be calculated as follows. Denote 

1

(1 )( ) [ ]i it
i iy t e Kσ βµ − −= + . Divide range [t1i, Ti] into k identical ranges by point x0= t1i, x1, 

x2,…, xk= Ti. We have: 

1

1

(1 )
2

1
0 1 1

([ ] )

( ) 1
        [ ( ( ) ( )) ( ) ... ( )].

2

i
i i

i

T t
i hi i it

hi i i
k k

HC c e K dt

c T t
y x y x y x y x

k

σ βµ − −

−

= +

−≈ + + + +

∫
 

 

However, calculation results show that this part is very small and a simpler form 

is used in this thesis (using ( ) / 2i is r+  as an approximation of average inventory 

during [t1i, Ti]): 

 2 1( )( ) / 2i hi i i i iHC c s r T t≈ + −                              (6-14) 

Therefore, the average profit of item i per unit time being the total income less any 

costs involved divided by the time of the period, we have: 

1 2

1
( , , ) [ ( ) ]i i i i i i i di i ai i oi i i s i i

i

M s q r p q r p r c q C HC HC c s a
T

= − + − − − − −         (6-15) 

The objective is to maximise the overall profit of all items during the unit time: 

1
max       ( , , )

n

i i i ii
M M s q r

=
=∑                                   (6-16) 

subject to: 

  
1

n

i ii
s a W

=
≤∑                                                       (6-17) 

            1,2,...,i i iL s U i n≤ ≤ =                             (6-18) 

             1,2,...,i i ir s q i n≤ ≤ =                              (6-19) 

                    1,2,...,i ir q i n< =                             (6-20) 

0              1,2,...,i eiT T i n< ≤ =                             (6-21) 
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, {1,2,3,...}    1,2,...,i is q i n∈ =                             (6-22) 

{0,1,2,...}         1,2,...,ir i n∈ =                             (6-23) 

The decision variables are shelf space, order quantity and the amount of surplus at 

the end of the cycle. Constraint (6-17) ensures that the total shelf space allocated to 

each item is no more than the total available shelf space. Constraint (6-18) makes 

sure that the space allocated to each item must be within an upper and a lower bound. 

Constraint (6-19) ensures that the order quantity of each item must be no less than 

the shelf displayed quantity which itself should be greater than the number of surplus. 

Constraint (6-20) makes sure the order quantity is larger than surplus. Constraint 

(6-21) ensures that the length of the period iT  is non-zero and less than the product 

validity period. Constraint (6-22) and (6-23) ensures that the number of facings, 

order quantity and the number of surplus are integers. The model is a non-linear 

combinatorial optimisation problem and is difficult to optimise by utilising 

conventional mathematical approaches.  

Suppose we have n products, the total number of variables is 3 n× . From the 

model, we have the upper and lower bound of variables r i ( 0 i ir s< ≤ ) and si 

( i i iL s U< ≤ ) and lower bound of qi ( i iq s≥ ). The upper bounds of qi can be obtained 

from constraint (6-21). Since  

(1 )1 1
ln ( )i

i i i ei
i i

T r K Tβ

σ µ
− 

= − − ≤ 
 

                           (6-24) 

we have  

(1 )1

(1 ) (1 )
i i i i ei iTi i i

i i i i i i
i i i i

q r s s s e sβ β β σ βα β α
β σ β σ

− −≤ + − −
− −

          (6-25) 
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Let x    represents the largest integer no greater than value x, the upper bound of 

order quantity ub
iq  is  

(1 )1

(1 ) (1 )
i i i i ei iTub i i i

i i i i i i
i i i i

q r s s s e sβ β β σ βα β α
β σ β σ

− − 
= + − − − − 

       (6-26) 

An interesting derivation of the model is that inventory depletes exponentially 

over time (see eq.(6-10)), which is consistent with the exponential decay models in 

the literature. In addition, when 0iσ → , 1i t
ie tσ σ− → − , the inventory function 

becomes the same polynomial function derived in (Urban, 2002). 

A further analysis of the model gives the following theorem:  

Theorem: For given values of si ( i i iL s U< ≤ ,1 i n≤ ≤ ), the model (6-16) can be 

decomposed into n sub-problems with each sub-problem corresponding to optimising 

function (6-15) subject to the constraints (6-19, 6-20, 6-21, 6-22, 6-23). 

Proof:  For a fixed value of si ( i i iL s U< ≤ ,1 i n≤ ≤ ), the constraints (6-17, 6-18) 

can be ignored and the maximal profit of ith item (denoted by *
iM ) is independent of 

the decision variables of other items. Therefore, the optimal value of M (denoted by 

*M ) is equal to the sum of the optimal value of Mi, i.e. * *

1

n

ii
M M

=
=∑ . 

The theorem means that if the shelf space allocation decisions are made, the 

problem can be solved by independently searching for a pair of optimal order 

quantity (qi) and surplus (r i) for each item i (1 i n≤ ≤ ). As mentioned above, both 

variables have a lower bound and an upper bound. A simple way to achieve this is to 

carry out an exhaustive search, whose computational complexity is ( )ub
i iO q s . The 

complexity for solving an n-item problem is ( ).ub
i iO nq s Some mathematical 

approaches (binary search and the Newton method for example) may be more 
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efficient if the function (6-15) can be proven to be a unimodal function. However, 

this is very difficult due to the complexity of the function.  

By the theorem, we can reduce the size of the problem search space significantly. 

The original problem model (6-16) has a search space of a 3n×  dimensional vector 

where n is the number of the items. However, with the theorem, the problem can be 

decomposed into two sub-problems: the first sub-problem aims to optimise n shelf 

space allocation variables (si). The second sub-problem is to search for the optimal 

values of ordering quantity (qi) and surplus (r i), for the given space allocation 

decisions made in the first sub-problem. Because the second sub-problem can be 

efficiently accomplished within a polynomial computational time, the search space is 

cut down to searching for a set of shelf space allocation decisions si in order to 

maximise the total profit. Once the shelf space allocation variables are decided, the 

corresponding optimal order quality and surplus can be decided efficiently. In this 

sense, the problem can be deemed as a nonlinear bounded knapsack problem.  

However, even though the size of the problem search space can be decreased 

substantially and the model can be reduced to a nonlinear bounded knapsack problem, 

the problem is still NP-Hard (Bretthauer and Shetty, 2002). A generalised reduced 

gradient (GRG) algorithm was initially modified and developed to optimise the 

problem, which we describe in the next section.  

6.4 A GRG Based Solution Procedure For the Problem 

We initially used a generalised reduced gradient (GRG) algorithm to optimise the 

model. The GRG algorithm has been shown to be efficient in solving non-linear 

programming problems with smooth objective functions and its applications in 

optimising the inventory and shelf space allocation model include (Urban, 1998; Kar 

et al., 2001), with good results being reported.  
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Set MaxIter; 
Set iter = 0; 
Loop 

//Initialisation sub-procedure 
For each item i (1 i n≤ ≤ ) set i is L= , i iq s= , 0ir = ; 
 Loop 

Select a random item j; 
1j js s= + ; 

Until no more facings can be added without violating the space 
constraint (6-17); 

For each item i 
Find the optimal values of qi and r i; 

Output solution 0( , , )i i iS q s r  
 
//GRG calling sub-procedure 
S’=Solver(S0); 
 
//Solution repair sub-procedure  
Round every is , iq , ir  (1 i n≤ ≤ ) in S’  to their nearest integers 
While space constraint (6-17) is violated 

Rank the items by their unit space profit value /( )i i iM a s ; 
Delete one facing of the item with the smallest unit space profit 
value (if this operation causes a constraint violation, the next item 
in the ranking list is considered);  

 Loop 
If free shelf space > the size of the smallest item 

Repeat 
Rank the items by their unit space profit value /( )i i iM a s ; 
Add one facing of the item with the largest unit space profit 
value (the next item in the ranking list is considered if the 
operation results in a constraint violation); 

Until no more facings can be added without violating the space 
constraint (6-17); 

Endif 
For each item i (1 i n≤ ≤ ) 

Find the optimal values of qi and r i; 
 Endfor 
Remember the best solution (Sbest) found so far; 
iter++; 

Until iter = MaxIter; 
Output Sbest; 

 
Figure 6-2: Pseudo code of the multi-start GRG algorithm 

 

The GRG algorithm is imbedded in many spreadsheet software packages. The one 

we used is called Solver, which is included in Microsoft Excel 2002. The GRG 
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algorithm has two major drawbacks: 1. it can only solve continuous-variable models. 

Although the package included in Microsoft Excel 2002 can deal with integer 

variables, it takes too long for the search to converge (1800 seconds of computation 

time is needed even for a problem with 6 items, running on a PC with Pentium IV

1.8GHZ and 256MB RAM. For a problem with 18 products, the algorithm does not 

converge even after one hour). 2. GRG usually only gives a local optimum which is 

closest to the initial solution. Some preliminary experiments showed that, if the 

initial solution is not carefully chosen, GRG performs very badly. To solve these 

shortcomings, in this application, we used a multi-start GRG algorithm together with 

a solution repair heuristic to optimise the model. The multi-start search could prevent 

GRG from getting stuck at a local optimum and the repair heuristic is to recover the 

solution feasibility. Each run of the algorithm can be divided into three sub-

procedures: initialisation, calling GRG and solution repair, described as in figure 6-2. 

To prevent the GRG getting stuck at a local optimum, MaxIter runs of GRG were 

executed starting from different initial states (solutions) and the best solution was 

outputted as the final solution. In this application, we set MaxIter = 5 after some 

preliminary experiments considered both algorithmic performance and the required 

computational time. The initialisation sub-procedure was used to generate a set of 

diverse solutions that can be used by GRG. Note that because GRG is only efficient 

in handling continuous variables, a relaxed model (ignoring integer constraints (6-22) 

and (6-23)) was input into the Excel. Therefore, the solution output by GRG is not 

feasible. The solution repair sub-procedure was used to recover the feasibility of the 

solution and further improve it by using a simple local search method described in 

figure 6-2 (several other rounding heuristics were tried and the one presented in this 

chapter generally performs best across the five problem instances we tested). All 
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results were averaged over ten runs on a PC with a Pentium IV 1.8GHZ CPU and 

256MB RAM, running Microsoft Windows 2000 professional Version 5. 

 

Table 6-1: Parameters of a numerical example 

Item ai pi cai chi pdi Co Įi ȕi ıi 

1 0.028 5.03 2.46 0.19 1.23 34.3 28.53 0.1532 0.06 

2 0.061 9.37 5.67 0.20 2.84 48.9 23.62 0.2273 0.07 

3 0.025 5.10 2.70 0.26 1.35 35.6 25.59 0.2089 0.06 

4 0.060 11.48 6.11 0.16 3.06 47.9 22.40 0.2143 0.04 

5 0.036 6.74 3.53 0.30 1.77 33.9 15.62 0.2955 0.03 

6 0.033 5.97 3.41 0.27 1.71 39.1 10.50 0.3104 0.03 

    W=0.608(m2),  cs=5.0(pounds/m2/unit time), Li =1, Ui =12, Tei =7(days) 

 

Table 6-2: Solutions of the numerical example 

 Solution by GRG Optimal Solution 

Item qi si ri Ti qi si ri Ti 

1 83 3 0 2.68 81 2 0 2.78 

2 78 2 0 3.17 78 2 0 3.17 

3 77 3 0 2.61 77 3 0 2.61 

4 88 3 0 3.35 88 3 0 3.35 

5 64 3 0 3.17 64 3 0 3.17 

6 50 1 0 5.19 56 2 0 4.68 

Objective 347.45 347.58 

 

6.5 A Numerical Example 

To allow a better understanding of the model and the solution procedure described 

above, a numerical example with 6 items was generated (denoted by BORIN94/6).  

The problem scale parameters (Įi) and space elasticities (ȕi) are taken from (Borin et 

al., 1994) and the other parameters are listed in table 6-1. The GRG algorithm 

described in section 6.4 was run 10 times with different initial random solutions. The 

algorithm consistently returned the same solution which is shown in table 6-2. For 

the purpose of an comparison, an exhaustive search was also carried out to get an 

optimal solution which is listed in table 6-2.  It can be seen that for this numerical 
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example, the solution obtained by GRG is very close to the optimal solution. The 

relative deviation from optimality is only 0.04% (
347.58 347.45

100%
347.58

− ⋅ ). 

6.6 Summary and Remarks 

In this chapter, a practical single-period inventory and shelf space allocation 

model has been proposed for fresh produce. Integrating an inventory model and shelf 

space allocation model is necessary because of the close relationship between 

inventory control and shelf space allocation. Many previous inventory models 

assume that the entire inventory can be displayed on the shelf. However, this is not 

practical because the shelf space for displaying fresh food is a very expensive 

resource and most retailers can only display part of the inventory on the shelf, with 

the rest being stored in the back room. Therefore, an inventory model should 

consider the availability of the shelf space. On the other hand, because the fresh 

produce only has limited shelf lifetime, it is necessary that all products should be 

sold out before their expiry dates. The shelf space allocation decisions should also 

consider the amount of the inventory and allocate more space to those products that 

have bigger inventories. 

The second practicality of the model proposed in this chapter lies in the fact that 

our model introduces the freshness condition as a factor that could influence the 

demand of fresh produce. The freshness condition is continuously decreasing over 

time due to the utility decay associated with fresh produce. This is in contrast with 

existing fresh produce inventory models in the literature that usually assume that 

fresh produce has a random lifetime (normally assuming an exponentially distributed 

lifetime) and that item utilities do not decay over time. 
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In the proposed model, the demand for a fresh item is assumed to be deterministic 

and conforms to a multiplicative form of the displayed stock-level and items’ 

freshness condition. The items’ freshness condition is assumed to drop exponentially 

over time but could still capture some demand. Unlike other research, the proposed 

model considers the integer nature of the solution.  

Some properties of the model have been analysed. It has been found that given a 

shelf space allocation decision si, the inventory control variables qi and r i can be 

optimised to optimality. Therefore, although the original problem model (6-16) has a 

search space of a 3n×  dimensional vector where n is the number of the items, this 

search space can be reduced significantly by decomposing the problem using a two-

step procedure: searching for a combination of shelf space allocation decisions and 

searching for the corresponding inventory variables for a given shelf space allocation 

decision obtained in the first step. The problem in the first step is similar to a non-

linear bounded knapsack problem, which is still NP-Hard. For the problem in the 

second step, there exists at least one method that can solve it to optimality bounded 

by the time complexity of ( )ub
i iO q s .  

Because the problem in the first step is still NP-Hard, it is normally unrealistic to 

obtain the optimum of the model in reasonable computational time. A generalised 

reduced gradient (GRG) algorithm imbedded in Microsoft Excel 2002 Solver was 

used to optimise the model. To prevent GRG from getting stuck at local optima, the 

GRG algorithm was run several times from different initial points and the best 

solution was taken as the final solution. A post-procedure heuristic was also used to 

recover the feasibility of the solution. Finally a numerical example was given to 

allow readers a better understanding of the model and the solution procedure. 
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Although the multi-start GRG algorithm can produce good quality solutions, it may 

not be efficient when dealing with larger problem instances. 

In the next chapter we will investigate several heuristic and meta-heuristic 

approaches for this problem. A set of larger sizes of problem data sets will be 

generated and the computational performance of the different algorithms will be 

evaluated and compared for these data sets.  
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CHAPTER 7. HEURISTICS AND META-HEURISTICS FOR 

THE FRESH PRODUCE INVENTORY CONTROL 

AND SHELF SPACE ALLOCATION PROBLEM 

7.1 Introduction 

In chapter 6, we formulated a practical shelf space allocation and inventory 

control model for the retail of fresh produce. The decision variables are the displayed 

facings si, order quantity qi and the amount of surplus r i for each item i. For an n-item 

problem, the total number of variables is 3 n× . Further analysis of the model has 

shown that this search space can be reduced by decomposing the problem into a 

nonlinear bounded knapsack problem and a problem that can be solved by a 

polynomial time bounded algorithm (see section 6.3). A multi-start GRG algorithm 

was used to optimise the model. However, due to the NP-Hard nature of the 

nonlinear knapsack problem (Bretthauer and Shetty, 2002), GRG algorithm may not 

be efficient for large sizes of problem instances. Therefore, in this chapter, several 

heuristic and meta-heuristic approaches are investigated and compared for five 

problem instances. This chapter is mainly drawn from (Bai and Kendall, 2005d). 

7.2 Test data sets  

Although the numerical example in chapter 6 is helpful in understanding the 

model and testing the performance of the solution procedure, it is necessary to test 

the algorithm over larger problem instances. For this purpose, we created four larger 

benchmark problem instances using the parameters in table 7-1 (denoted by FRESH2, 

FRESH3, FRESH4 and FRESH5 respectively). The problem size ranges from 18 to 
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64 products. Those data sets can be downloaded from 

http://www.cs.nott.ac.uk/~gxk/research/.  

Table 7-1: Parameters for generating problem instances 

Parameters Values Parameters Values 

n 18/32/49/64 Li 1 

Įi U(10, 30) Ui 12 

ȕi U(0.15, 0.3) pdi 0.5cai 

ıi U(0.03, 0.1) cs 5.0 pounds/m2/day 

ai U(0.01,0.09) m2 Co U(30, 50) pounds 

cai N(100ai, 0.4) pounds Tei 7 days 

pi N(1.8cai, 0.4) pounds W 2.5* minSpace 

chi U(0.1,0.3) pounds   

U(a, b): Uniform Distribution   N(c, d): Normal Distribution 
minSpace: the minimal space needed to satisfy products’ minimal facings requirement 

7.3 Optimisation of the Single-item Inventory 

As illustrated in the previous chapter, given a set of shelf space allocation 

decisions si (1 i n≤ ≤ ) that satisfy the constraint (6-17), the optimal values of qi and 

r i of item i (1 i n≤ ≤ ) can be independently obtained by an exhaustive search with 

polynomial computational time. Further study of the model indicates that this 

exhaustive search procedure can be improved upon.  

Let us firstly consider a single-item problem: for a given shelf space decision s, 

the problem is to search for a pair of order quantity and the amount of surplus (q and 

r) such that the unit space profit function (eq. 6-15) is maximised, subject to the 

constraints (6-19)-(6-23). Although no evidence has proven that function (6-15) is a 

unimodal function with respect to q, s and r, all of our experiments have shown this 

property. Figure 7-1 and figure 7-2 illustrates the relationships between the profit 

function (6-15) and the decision variables q, s and r. It can be seen that the profit 

function (6-15) has only one maximal value. The figures also show the sensitivity of 

profit function over the decision variables. From the figures, it can be seen that the 

profit function is more sensitive to the changes of facings s than order quantity q and 
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surplus quantity r. This suggests that retailers should decide more carefully about 

displayed facings. A bad decision could result in a massive profit loss.  
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Figure 7-1: Graphic representation of an item’s profit function with respect to facings s and 

order quantity q (surplus r = 0) 
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Figure 7-2: Graphic representation of an item’s profit function with respect to facings s 

and surplus r (order quantity q = 90) 
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Figure 7-1 and figure 7-2 also show that the profit function (6-15) changes 

smoothly with the change of q, s and r. This encourages us to search for more 

efficient search methods. Generally, the Newton method can be used to achieve the 

optimal solution. However, because function (6-15) has a very complex form and no 

explicit expressions of derivatives can be obtained, it is very difficult to employ the 

Newton method in this case. Alternatively, a binary search was used in this research 

to get the optimal value of order quantity q. Meanwhile because r is relatively small 

(in most UK supermarkets, the number of facings of an item s is generally less than 

12 and r<s), an enumeration method was used in the search for the optimal value of r.  

Input s’; 
Set ', 0,  0,  ,  0.001;opt opt opts s q r M ε= = = =−∞ =  

 For each r=0 to s 
Set lq s= ; 

Set ub
rq q= ; 

Calculate ( , , )l lM q s r  and ( , , )r rM q s r ; 

While ( 1r lq q− > ) 

  ( ) / 2l rq q q= +   ; 

  Calculate ( , , )M q s r ; 

       If ( ( , , )M q s r Mε ε− − < ) 

                ;   ;l lq q M M= =  

  Else 
          ;   ;r rq q M M= =  

  Endif 
  Loop 
  If ( l rM M< ) 

 '
opt rq q= , '

opt rM M= ; 

  Else 
             '

opt lq q= , '
opt lM M= ; 

  Endif 
  If( '

opt optM M< ) 

  ' ' , , opt opt opt opt optq q r r M M= = = ; 

  Endif 
Endfor 
Output  optq , optr ; 

 
Figure 7-3: The pseudo code of the procedure proc_qr(s') 
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Figure 7-5 presents the pseudo code for the binary search algorithm which, for 

simplicity, is denoted by proc_qr(s’). Suppose the shelf space allocated to an item is 

s’, for each possible value of r, a lower bound and an upper bound of q were 

calculated from inequalities (6-19) and (6-25) (denoted by ql and qr respectively). 

The algorithm then divides the range [ql, qr] into two equal parts (i.e. ( ) / 2l rq q q= + ) 

and checks in which half the optimal order quantity '
optq  lies. If '

optq  lies in the left 

half, it sets qr =q, otherwise it sets ql =q. This process is repeated until the length of 

the range [ql, qr] decreases to 1 and the optimal order quantity '
optq  is one of range 

boundaries (i.e. ql or qr). The total number of iterations of this procedure is no more 

than 2' log
ubqs  where upq  is the upper bound of order quantity. Because it is difficult 

to calculate the derivative of function (6-15), we used the method below to determine 

on which side the optimal order quantity '
optq  lies. Denote M as the profit when order 

quantity is q and M ε− the profit when we decrease q by a very small value ε  (see 

figures 7-3 and 7-4). If lM Mε− > ,  
'
optq  is at left side of q, otherwise, '

optq  is at right 

side of q.  

    

Figure 7-4: The relationship between order quantity and its unit time profit function (q>qopt) 

 

qopt ql q-İ qr q=(ql+qr)/2 

M Mε− >  

Order quantity q 

P
ro

fi
t 

case 1: q > qopt 



Chapter 7 Optimisation of Fresh Produce Inventory and  Shelf  Space Allocation 
 

160 

    

Figure 7-5: The relationship between order quantity and its unit time profit function (q<qopt) 
 

7.4 Greedy Heuristics for the Problem 

In section 7.3, we have developed a sub-procedure proc_qr(s’) to obtain the 

optimal solution for a single-item inventory problem, with constant shelf space s’ 

being allocated to the item. In this section, we shall consider the original problem 

(model (6-16)) where there are multiple items in the inventory with limited shelf 

space resources to display them. The items have to compete against each other for 

the shelf space such that the total profit is maximised. Once the amount of shelf 

space allocated to each item is determined, the procedure proc_qr(s’) can be applied 

to every item to find the corresponding optimal order quantity and the number of 

surplus. There could be many ways to allocate shelf space among items. A common 

sense rule to accomplish this would be to allocate shelf space in favour of more 

profitable items. The problem, in fact, degenerates into a problem similar to a 

bounded knapsack problem. However, it is also different. In the knapsack problem 

(see section 2.3.2), the profits of the items are constants and therefore each item’s 

unit-space profit (i.e. profit/space) is constant as well. However, the space allocation 

problem in this research is much more difficult because the unit-space profit of every 

qopt q

M Mε− <  

Order 
P

ro
fi

t 

case 2: q < qopt 

q=(ql+qr)/2 



Chapter 7 Optimisation of Fresh Produce Inventory and  Shelf  Space Allocation 
 

161 

item is changing with the change of allocated shelf space. This chapter introduces 

four greedy heuristics for this problem.  

    

Figure 7-6: The graphic illustration of the greedy algorithms 
 

Figure 7-6 shows the basic idea behind the algorithms. For a given amount of 

shelf space, each item is an intelligent entity optimising its own inventory variables 

(q and r) using the procedure proc_qr(s’). However, with the limited shelf space 

resources, these items have to compete and cooperate with each other such that the 

total profit of these items is maximised. Items that make less profit per unit shelf 

space must release part of their space to those which could make more profit if given 

more shelf space. Two functions were used to rank the profitability of different items 

with respect to the shelf space (denoted by C1 and C2 respectively). The first function 

is an item’s unit space profitability, defined by 1 ( ) /( )i i i iC M s a s= . The second 

function is defined by 2 ( ( ) ( )) /( )i i i i iC M s M s aε ε= − −  where ε  is a small positive 

value (the derivative value is an ideal criterion but is difficult to calculate in this 

case). Because the profit function (6-15) is a non-linear function with respect to the 

facings s, both C1 and C2 are not constant and shall change with the changes of s. 

 
Resources: 

Shelf Space 

item 1 
item 2 

item 4 

item 3 

item i 

item n 

… 
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Therefore, both profitability values C1 and C2 need to be recalculated at each solution 

construction step. There are two possible points where the greedy heuristics can start 

from. A greedy heuristic can start from a solution that has met the minimal space 

requirements and then repeatedly add a facing to the shelf according to the ranking 

functions C1 or C2 without violating the constraint (6-17).  It can also start from a 

point where the facings of each item is equal to its upper bound and then repeatedly 

delete a facing according to the functions C1 or C2 until the space constraint (6-17) is 

satisfied. Therefore, there are a total of four combinations, denoted by GH1, GH2, 

GH3 and GH4 respectively, described as follows: 

Step 1: 
For each item i (1 i n≤ ≤ ) 

i is L= ; 

Call proc_qr(si) to get optimal qi and r i; 
Calculate C1 value for item i; 

Endfor 
Step 2: 
If (FreeSpace > MinProdSpace) 

Select an item j with largest possible profitability value of C1 
and whose size is smaller than free space and the number of 
facing sj is less than its upper bound; 
If no such item is available, stop the procedure 
Else 

1j js s= + ; 

Call proc_qr(sj) to get optimal qj and r j; 
Update C1 for item j; 

          Go to step 2; 
  Endif 

Else  
Stop and output the solution. 

Endif 
 

Figure 7-7: Pseudo code of GH1 
 

GH1 (Greedy_Fwd): This heuristic starts from a shelf space allocation decision 

that satisfies the minimal space requirements of each item and repeatedly adds to the 

shelf a facing of the item with the largest profitability value according to the criterion 

C1. The heuristic stops as soon as no more facings can be added to the shelf. During 
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this process, if adding a facing causes a constraint violation, the profitability value of 

this item is set to a very small value such that the item is of no further consideration. 

A full description of the algorithm is given in figure 7-7.  

 

Step 1: 
For each item i (1 i n≤ ≤ ) 

i is U= ; 

Call proc_qr(si) to get optimal qi and r i; 
Calculate C1 value for item i; 

Endfor 
 
Step 2: 
While (SpaceUsed > SpaceAvailable) 

Select an item j with the largest possible profitability value of 
C1 and whose facing (sj) has not reached its lower bound; 

1j js s= − ; 

Call proc_qr(sj) to obtain the optimal qj and r j; 
Update C1 for item j; 

Loop 
 
Step 3: 
If (FreeSpace > MinProdSpace) 

Select an item k with the smallest possible profitability value of 
C1 and whose area is smaller than free space and where the 
number of facing sk is less than its upper bound; 
If no such item is available, stop the procedure 
Else 

1k ks s= + ; 

Call proc_qr(sk) to obtain optimal qk and rk 
Update C1 for item k; 

          Go to step 3; 
  Endif 

Else 
        Stop and output solution. 
Endif  

 
 

Figure 7-8: Pseudo code of GH2 
 

GH2 (Greedy_Bwd): This heuristic starts from an initial shelf space allocation 

that is equal to the corresponding upper bounds. Then the heuristic repeatedly deletes 

a facing of the item with the smallest profitability value of C1 until the shelf space 
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constraint is satisfied. Afterward, a sub-procedure is executed which tries to add (if 

possible) as many as possible facings to the shelf according the criterion of C1 (see 

figure 7-8 for a detailed description). 

GH3 (Greedy_Derivative_Fwd): This heuristic is the same as GH1 except that 

the greedy criterion is C2 instead of C1.  

GH4 (Greedy_Derivative_Bwd): This heuristic is the same as GH2 except in 

using C2 as the greedy criterion.  

 
Table 7-2: The performance of the greedy heuristics in comparison with multi-start GRG  

 BORIN94/6 FRESH2 FRESH3 FRESH4 FRESH5 

n 6 18 32 49 64 

 obj cpu(s) obj cpu(s) obj cpu(s) obj cpu(s) obj cpu(s) 

Multi-start 
GRG 347.45 3.2 1129.6 73.6 2056.46 74.3 3163.98 179.2 4387.16 209.7 

GH1 344.55 0.03 1126.8 0.03 2042.07 0.05 3144.02 0.05 4360.44 0.09 

GH2 344.55 0.05 1129.09 0.13 2041.59 0.28 3147.28 0.55 4358.96 0.91 

GH3 347.45 0.02 1131.64 0.02 2053.71 0.03 3159.17 0.06 4384.62 0.09 

GH4 346.90 0.06 1131.33 0.25 2054.14 0.50 3160.91 1.06 4382.66 1.45 

obj: the objective value of the solution obtained by different algorithms (for multi-start GRG, this is 
the average value of 10 runs). 
cpu(s): average CPU time consumed by different algorithms (in seconds). 

 
 
Table 7-2 gives a comparison of the four greedy heuristics and the multi-start 

GRG algorithm (proposed in chapter 6) on the five test problem instances described 

in section 7.2. It can be seen that all greedy heuristics are very fast, compared with 

the multi-start GRG algorithm. GH1 and GH3 are also faster than GH2 and GH4. This 

is probably because the facings in the final solution are closer to their lower bound 

facings than to the upper bound facings for these instances. In terms of the solution 

quality, GH3 and GH4 performed better than GH1 and GH2 and are even competitive 

when compared with the multi-start GRG algorithm, which took much longer. 

Neither GH3 nor GH4 performed better than the other in terms of solution quality. 
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GH3 is better on the instance BORIN94/6, FRESH2, FRESH5 while GH4 is better 

than GH3 on the other two instances. However, GH3 consumed less time than GH4. 

7.5 Further Improvement over the Greedy Heuristics 

Although the greedy heuristics in section 7.4 are very efficient in generating high 

quality solutions, for obvious reasons, they are prone to getting stuck at local optima. 

Three different meta-heuristic approaches have been adapted to the problem in an 

attempt to further improve the solutions obtained by these greedy heuristics.  

7.5.1 A GRASP algorithm for the problem 

A GRASP (greedy randomised adaptive search procedure) algorithm has been 

applied to the problem. GRASP is a multi-start meta-heuristic approach that explores 

the search space from different starting points. The idea of applying GRASP to this 

problem is that we have two profitability functions, C1 and C2, available for this 

problem. The greedy heuristics based on the function C2 produces high quality 

solutions. This function can be utilised in the solution construction stage of a GRASP 

algorithm. Figure 7-9 presents the pseudo code of the GRASP algorithm used in this 

research. A total of max_rep runs are used and each run consists of a solution 

construction phase and a local search phase which improves the solution obtained in 

the construction phase. The solution construction phase is very similar to the greedy 

algorithm GH3 except that a parameter Į is introduced to control the degree of 

randomness and greediness. The case Į=0 corresponds to a random construction 

process, while Į=1 is equivalent to the greedy algorithm GH3. The local search phase 

is a simple hill-climbing algorithm which repeatedly generates a candidate solution 

by swapping one facing of two random items and moves to it if a better solution is 

found. The local search phase stops when the number of total repetitions exceeds a 
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given value ls_max_rep. After the preliminary experiments, we set Į=0.85, 

max_rep=100 and ls_max_rep=n2.  

 

For nrep = 1 to max_rep 
/*  solution construction phase  */ 
Start from an empty solution; 
For each item i (1 i n≤ ≤ ) 

i is L= ; 

Call proc_qr(si) to obtain the optimal qi and r i; 
Calculate C2 value for item i; 

Endfor 
Initialise candidate list (CL); 
While (FreeSpace > MinProdSpace and CL ≠ ∅ ) 

min
2 2min{ ( ) | }C C i i CL← ∈ ; 
max
2 2max{ ( ) | }C C i i CL← ∈ ; 

Construct Restricted Candidate List (RCL) by 
min max min

2 2 2 2{item |  & ( ) ( )RCL i i CL C i C C Cα← ∈ ≥ + − ; 
Select an item j from RCL at random; 

1j js s= + ; 

Call proc_qr(sj) to get the optimal qj and r j; 
Update the candidate list CL; 
Update C2 value for item j; 

Loop 
 
/*  local search phase  */ 
LocalSearch(ls_max_rep, solution); 
Update best solution found so far; 
nrep = nrep + 1; 

Endfor  
 

Figure 7-9: A GRASP algorithm for the problem 
 

7.5.2 A simulated annealing algorithm for the problem 

A simple simulated annealing algorithm is also used to optimise the problem. The 

neighbourhood structure is defined by randomly swapping a facing of two items, 

with the procedure proc_qr(s’) being called immediately after swapping. The cooling 

schedule is similar to the one used in the algorithm SAHH_adpt in section 5.3.3. The 

initial temperature st  is set a value such that only 85% of inferior moves are accepted 

and the algorithm stops when the acceptance rate of inferior moves falls to 1%. The 
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temperature is gradually reduced according to Lundy and Mees’s cooling function 

/(1 )t t tβ→ + (Lundy and Mees, 1986) and at each temperature only one iteration is 

executed. For the purpose of a fair comparison with GRASP, the total number of 

iterations allowed by SA is set to 2100K n= ×  (same as the total iterations allowed 

by GRASP) and the temperature deduction parameter can be calculated by 

( - ) /s f s ft t K t tβ = × × . Once again, the algorithm starts from the solution produced 

by GH3. Note that although the total number of iterations by GRASP and SA are the 

same, GRASP may take longer because of the extra time spent during the solution 

construction phase. This is especially true when the number of iterations of GRASP, 

max_rep, is very large.  

7.5.3 Hyper-heuristic approaches for the problem 

The hyper-heuristics discussed in section 5.3 were also implemented using the 

following low-level heuristics:  

− 2-opt: this heuristic swaps one facing of two different random items, i.e. 

selects two random items i and j, let 1i is s= + , 1j js s= − . 

− 3-opt1: this heuristic randomly selects three different items, i, j, k, set 

1i is s= − , 1j js s= − , 1k ks s= + .  

− 3-opt2: this heuristic randomly selects three different items, i, j, k set 

1i is s= + , 1j js s= + , 1k ks s= − .  

− 4-opt: this heuristic selects four different random items, deletes one facing of 

two random items and adds one facing of the other two items.  

All the hyper-heuristics started from the same solution generated by GH3 and the 

approximate computational time was set to a same value that was spent by the multi-
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start GRG algorithm (see table 7-2). The parameters were the same as those values 

used in chapters 4 and 5.  

7.6 Experimental results 

The above algorithms were coded in Microsoft Visual C++ version 6.0 and all 

experiments were run on a PC Pentium IV 1.8GHZ with 256MB RAM running 

Microsoft Windows 2000 Professional Version 5. All meta-heuristics were run 30 

times for each instance, using different random seeds. The computational results are 

averaged and presented in the tables 7-3 and 7-4.  

It can be seen that the results obtained by GH3 are very close to the results by 

different meta-heuristic algorithms. The biggest improvement for the instance 

BORIN94/6 is only 0.04% (
347.58-347.45

100%
347.45

× ). Four algorithms have 

consistently solved this small instance to optimality over 30 runs (the optimal 

solution of the numerical example was obtained by a complete search). For the other 

four instances, the biggest improvements over the initial solutions are 0.17%, 0.16%, 

0.16% and 0.06% respectively. Similar results were obtained even when the 

algorithms were given much more computational time or more repetitions. For the 

instance FRESH2, three algorithms (GRASP, SAHH, TSSAHH) consistently 

produced the same solution over 30 runs. We have a strong feeling that these results 

are already very close to the optima. However, this is only conjecture and cannot be 

proven due to the NP-Hard nature of the problem.  

Among these algorithms, the GRASP algorithm performed well when compared 

with the multi-start GRG algorithm and the general SA. It was only marginally 

outperformed by multi-GRASP on instance FRESH3. However, on larger problem 

instances, both GRASP and SA consumed more computational time than the multi-
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av. cpu 

0.09 

209.7 

438.99 

401.20 

185.09 

209.70 

185.28 

209.71 

185.29 

FRESH5 

64 

stdev 

-- 

0.43 

0.31 

0.51 

0.37 

0.00 

1.32 

0.00 

0.32 

 

 

av. obj. 

4384.62 

4387.16 

4387.23 

4387.16 

4387.42 

4384.62 

4386.27 

4384.62 

4387.41 

 

 

av. cpu 

0.06 

179.2 

245.30 

226.70 

148.91 

179.21 

223.17 

179.21 

135.55 

FRESH4 

49 

stdev 

-- 

0.51 

0.34 

0.41 

0.27 

0.00 

2.04 

0.33 

0.25 

 

 

av. obj. 

3159.17 

3163.98 

3164.14 

3163.81 

3164.18 

3159.17 

3160.69 

3159.23 

3164.21 

 

 

av. cpu 

0.03 

74.3 

78.90 

72.24 

60.62 

74.31 

110.36 

74.31 

56.31 

FRESH3 

32 

stdev 

-- 

0.97 

0.17 

0.61 

0.27 

0.00 

0.81 

0.00 

0.17 

 

 

av. obj. 

2053.71 

2056.46 

2056.43 

2055.04 

2056.93 

2053.71 

2054.24 

2053.71 

2057.09 

 

 

av. cpu 

0.02 

73.6 

23.64 

19.11 

61.26 

73.61 

70.09 

73.61 

62.50 

FRESH2 

18 

stdev 

-- 

0.00 

0.00 

0.36 

0.00 

0.04 

0.28 

0.00 

0.00 

 

 

av. obj. 

1131.64 

1129.6 

1133.51 

1133.22 

1133.51 

1131.65 

1131.79 

1131.64 

1133.51 

 

av. cpu 

0.02 

3.2 

2.79 

2.23 

3.70 

3.20 

3.78 

3.20 

3.72 

6 

stdev 

-- 

0.00 

0.00 

0.00 

0.00 

0.04 

0.06 

0.05 

0.00 

BORIN94/6 

 

av. obj. 

347.45 

347.45 

347.58 

347.58 

347.58 

347.46 

347.55 

347.56 

347.58 

Table 7-3: A comparison of different algorithms on five fresh produce instances 

 

n 

 

Initial 
(GH3) 

Multi-Start 
GRG 

GRASP 

SA 

SAHH 

CFHH 

CFSAHH 

TSHH 

TSSAHH 

av. obj.: average objective value of 30 runs 
stdev: standard deviation of 30 runs 
av. cpu: average CPU time spent 
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stdev 

0.43 

0.31 

0.51 

0.37 

0.00 

1.32 

0.00 

0.32 

 

worst 

4386.66 

4386.65 

4385.85 

4386.71 

4384.62 

4384.62 

4384.62 

4386.94 

64 

best 

4387.73 

4387.92 

4387.72 

4387.92 

4384.62 

4387.79 

4384.62 

4387.92 

FRESH5 

 

av. obj. 

4387.16 

4387.23 

4387.16 

4387.42 

4384.62 

4386.27 

4384.62 

4387.41 

stdev 

0.51 

0.34 

0.41 

0.27 

0.00 

2.04 

0.33 

0.25 

 

worst 

3163.33 

3163.52 

3163.21 

3163.27 

3159.17 

3159.17 

3159.17 

3163.59 

49 

best 

3164.59 

3164.60 

3164.6 

3164.60 

3159.17 

3164.37 

3161.00 

3164.60 

FRESH4 

 

av. obj. 

3163.98 

3164.14 

3163.81 

3164.18 

3159.17 

3160.69 

3159.23 

3164.21 

stdev 

0.97 

0.17 

0.61 

0.27 

0.00 

0.81 

0.00 

0.17 

 

worst 

2055.17 

2056.33 

2053.71 

2056.49 

2053.71 

2053.71 

2053.71 

2056.49 

32 

best 

2057.15 

2056.74 

2055.76 

2057.16 

2053.71 

2055.83 

2053.71 

2057.16 

FRESH3 

 

av. obj. 

2056.46 

2056.43 

2055.04 

2056.93 

2053.71 

2054.24 

2053.71 

2057.09 

stdev 

0.00 

0.00 

0.36 

0.00 

0.04 

0.28 

0.00 

0.00 

 

worst 

1129.60 

1133.51 

1132.32 

1133.51 

1131.64 

1131.64 

1131.64 

1133.51 

18 

best 

1129.60 

1133.51 

1133.51 

1133.51 

1131.85 

1132.68 

1131.64 

1133.51 

FRESH2 

 

av. obj. 

1129.6 

1133.51 

1133.22 

1133.51 

1131.65 

1131.79 

1131.64 

1133.51 

stdev 

0.00 

0.00 

0.00 

0.00 

0.04 

0.06 

0.05 

0.00 

 

worst 

347.45 

347.58 

347.58 

347.58 

347.45 

347.45 

347.45 

347.58 

6 

best 

347.45 

347.58 

347.58 

347.58 

347.58 

347.58 

347.58 

347.58 

BORIN94/6 

 

av. obj. 

347.45 

347.58 

347.58 

347.58 

347.46 

347.55 

347.56 

347.58 

Table 7-4: Robustness of different algorithms 

 

n 

 

Multi-Start 
GRG 

GRASP 

SA 

SAHH 

CFHH 

CFSAHH 

TSHH 

TSSAHH 

av. obj.: average objective value among 30 runs 
best: best objective value among 30 runs 
worst: worst objective value among 30 runs 
stdev: standard deviation of 30 runs 
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start GRG. Comparing the different hyper-heuristics, both CFHH and TSHH were 

unable to improve the initial solution or only achieved a very small improvement. 

However, the performances of both algorithms were improved when a simulated 

annealing acceptance criterion was introduced (corresponding to CFSAHH and 

TSSAHH respectively).  

In general, two types of hyper-heuristics performed best among all the algorithms. 

TSSAHH out performed all of the other algorithms for four instances and was only 

marginally beaten by SAHH on the remaining one instance. SAHH performed well 

and obtained best results on three instances (BORIN94/6, FRESH2 AND FRESH5). 

Even for the other two instances, it ranked as the second best algorithm and found 

solutions that are very close to the best solutions. This is a very good performance 

considering that the parameters of the algorithm used in this paper are exactly the 

same as those used in the previous applications from chapters 4 and 5.  

7.7 Summary and Remarks 

This chapter has investigated heuristic and meta-heuristic approaches for the 

optimisation of the fresh produce shelf space allocation model in chapter 6. A single-

item inventory problem was firstly analysed and solved by a binary search procedure. 

Based on this, four greedy heuristic methods were then developed for the multi-item 

problems. The experimental results have shown that, compared with the multi-start 

GRG algorithm and meta-heuristics used in this chapter, these greedy heuristic 

methods are very efficient and capable of producing high quality solutions in much 

shorter time. Among the four greedy heuristics, the best algorithm is the one that 

repeatedly allocates shelf space to the item with the largest C2 value. The solutions 

created by this heuristic were taken as initial solutions and further improved by 
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several meta-heuristic approaches, including a GRASP algorithm, a general 

simulated annealing and three simulated annealing hyper-heuristics.  

All meta-heuristics can only achieve (if at all) small improvements over the initial 

solutions. Increasing the computational time and the number of iterations does not 

produce significantly better results. It seems that the results obtained by our 

algorithm are already close to the optimal solutions. Among all the meta-heuristic 

approaches, two types of hyper-heuristics, SAHH and TSSAHH outperformed all 

other algorithms in terms of solution quality while using the same (or even less)  

computational time. This includes the multi-start GRG algorithm, the GRASP 

algorithm and a general simulated annealing algorithm. Considering the successes on 

three different, while related, problems (bin packing in chapter 4, general shelf space 

allocation problem in chapter 5 and fresh food inventory and shelf space allocation in 

this chapter), hyper-heuristics with the assistance of the simulated annealing appears 

to be a very promising and generic search technique for the other similar 

combinatorial optimisation problems.  
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

The problem of shelf space allocation has recently received increasing attention 

due to fierce competition in the retail industry. In order to improve efficiency and 

financial performance, retailers are willing to adopt more sophisticated systems in 

retail decision making processes. Shelf space allocation is an area that can increase a 

store’s sales and increase customer satisfaction. In this thesis, we have developed and 

investigated practical models and efficient optimisation techniques for shelf space 

allocation problems. The main work in this thesis is in two main areas: 

8.1 From the Shelf Space Allocation Perspective 

This thesis has introduced and studied two mathematical models for two types of 

shelf space allocation problems.  

A practical model for general products shelf space allocation 

As stated in the aims and scopes, the overall aim of this research is to investigate 

novel approaches that can be used to generate automated, optimised planograms. 

Bearing this in mind, the thesis firstly discussed several issues and potential 

constraints that are involved in shelf space allocation decisions. Due to the diverse 

nature of the problem an abstracted problem has been devised and a simplified, while 

practical, model has been proposed with the advantages of practicability and ease of 

implementation. It has been shown that this model is an extension of the bounded 

multi-knapsack problem, a problem which is NP-Hard. A two-stage relaxation 

method was used to obtain an upper bound of the model, by which one can 

effectively compare and evaluate the quality of solutions obtained by different 

algorithms. Besides, the gap between the upper bound and the current solution can 
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provide a user with a useful estimation of maximal possible improvement over the 

current solution.  

A model for managing shelf space and inventory for fresh produce 

The thesis has also studied a special shelf space allocation problem for fresh 

produce. This problem is particularly important for many retailers due to the 

increasing demand for fresh food. Because of very short shelf-lifetime, all fresh 

produce has to be sold before their expiry dates in order to avoid losses. This poses a 

real challenge for retailers. In this thesis a shelf space allocation model for fresh 

produce has been developed in integration with a single-period inventory model. The 

thesis contributes to the literature as this is the first fresh produce model that 

integrates shelf space allocation and inventory control. In formulating the model, the 

thesis, for the first time, introduces the term ‘freshness condition’ as a factor that 

influences demand for the product. It differs from the existing deteriorating models 

in the literature, which usually assume that products have a random lifetime but a 

non-decaying utility. Further study of this model has shown that the size of the 

search space can be reduced by decomposing the problem into a knapsack problem 

and a single inventory problem which can be efficiently optimised by a binary search 

procedure. We consider this as a major contribution of the thesis. 

8.2 From Meta-heuristics Perspective 

Both shelf space allocation problems studied in this thesis are closely related to 

the knapsack problem and the bin packing problem, which are NP-Hard. There is no 

known polynomial-time bound algorithm that can guarantee to solve them to 

optimality. In this thesis we have focused on heuristic and meta-heuristic approaches 

to search for the near-optimal (if not optimal) solutions for the problems. There are 

potentially many meta-heuristics (and their variants) available for solving NP-Hard 
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combinatorial optimisation problems. Among them, hyper-heuristic is a generic 

approach that has recently attracted increasing research attention and has been 

successfully applied to several difficult scheduling problems. Instead of applying 

hyper-heuristics directly to the shelf space allocation problem, we initially tested 

hyper-heuristics on the well-known bin packing problem in comparison with other 

state-of-the-art algorithms. If this algorithm performs well on the bin packing 

problem (which it did), it is very likely that the hyper-heuristic is also suitable for the 

shelf space allocation problem because of the close relationship between the two 

problems. 

Proposing a simulated annealing hyper-heuristic 

The existing hyper-heuristics either explicitly or implicitly focus on “choosing”, 

at each decision point, appropriate low-level heuristics according to their previous 

performance. However, these deterministic heuristic selection strategies may not 

always be suitable because of the stochastic nature of some low-level heuristics. In 

this thesis, a simulated annealing algorithm was incorporated into the current hyper-

heuristics in order to alter (and improve) the acceptance criteria of heuristic moves.  

The resulting algorithm, called the simulated annealing based hyper-heuristic, was 

tested on the one-dimensional bin packing problem and applied to two shelf space 

allocation problems. Below are some observations and conclusions from the three 

applications. 

Applying hyper-heuristics to 1D bin packing problem   

The thesis, for the first time, applied hyper-heuristics to the 1D bin packing 

problem to test its performance. The reasons we chose the 1D bin packing problem 

are as follows: Unlike some classical problems (such as bin packing, TSP, 

timetabling, stock cutting, etc.) which have large benchmark data sets available in the 
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literature, shelf space allocation problems do not have benchmark data available that 

allow us to compare the proposed algorithm with other approaches. Furthermore, the 

thesis has used new models because we believe the current shelf space allocation 

models in the literature are not practical for the production of automated planograms. 

It would have taken a considerable amount of work if we compared our proposed 

algorithms with every other search technique. However, shelf space allocation is 

closely related to bin packing, which does have a large set of benchmark data sets 

available. It is assumed that if the simulated annealing hyper-heuristics could 

produce high quality solutions for the bin packing problem, there is a reasonable 

possibility that it will perform well for shelf space allocation problems as well.  

The experimental results on the bin packing problem have shown that the 

introduction of simulated annealing into the choice function based hyper-heuristics 

did improve its performance. However, it was inferior to the simulated annealing 

hyper-heuristic with random heuristic selection strategy, which also beat the 

grouping genetic algorithm (GGA) and a branch-and-bound based method (BISON), 

both in terms of solution quality and computational time. The simulated annealing 

hyper-heuristic produced better quality solutions than a variable neighbourhood 

search (VNS) algorithm in terms of solution quality, while it needed more 

computational time. Overall, the simulated annealing hyper-heuristic solved around 

1340 instances out of 1370 to optimality on average. For those instances that were 

not solved to optimality, they were only 1 bin away from the optimum. The success 

of the simulated annealing hyper-heuristic on the bin packing problem encouraged us 

to apply it to two shelf space allocation problems. Some other meta-heuristic 

approaches have also been implemented for the purposes of comparison. Below are 

some observations and conclusions. 
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Optimisation of general shelf space allocation problem 

Several hyper-heuristics have been implemented and applied to the general shelf 

space allocation problem. The thesis especially investigated simulated annealing 

hyper-heuristics and compared them with two conventional simulated annealing 

algorithms and other types of hyper-heuristics without the assistance of a simulated 

annealing acceptance criterion. For the twelve problem instances, it was observed 

that the performance of a conventional simulated annealing is heavily dependent on 

the choice of neighbourhood structure and the optimal neighbourhood structure may 

change from one problem instance to another. However, simulated annealing hyper-

heuristics seem not to be parameter-sensitive and performed much better than the 

conventional SA algorithms in terms of both average solution quality and results 

consistency. Again, it has been shown that the performance of the existing two types 

of hyper-heuristics, choice function based hyper-heuristics and tabu search hyper-

heuristics, can be improved by introducing a SA acceptance criterion. However, the 

best algorithm turned out to be the simulated annealing hyper-heuristics with a 

uniform heuristic selection probability. This type of simulated annealing hyper-

heuristics produced solutions that were over 98% of the upper bounds for every 

tested instance.  

Optimisation of fresh produce shelf space allocation and inventory 

The thesis has also investigated the shelf space allocation problem specifically for 

fresh produce. Several heuristic and meta-heuristic approaches have been applied to 

five problem instances of different sizes, and their performance was compared. This 

comparison included four constructive heuristics, an improved generalised reduced 

gradient (GRG) algorithm, SA, GRASP and five versions of hyper-heuristics. The 

experimental results have shown that the proposed constructive heuristics are very 
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efficient and produce high quality solutions. All meta-heuristics can only give a 

small improvement even with a very large computational time. This is probably 

because that the solutions obtained by these algorithms may be very close to the 

upper bounds. Among all meta-heuristics, simulated annealing hyper-heuristic and 

the tabu assisted simulated annealing hyper-heuristic algorithms are consistently 

superior to the other algorithms.   

Overall, we have studied different optimisation approaches over three different, 

while related, space allocation problems. The research has mainly focused on the 

hyper-heuristic techniques that have recently been attracting research interest in 

scheduling and general optimisation. Across all three problems, it has been observed 

that the simulated annealing hyper-heuristics outperformed both the general meta-

heuristic approaches (simulated annealing, grouping genetic algorithm, variable 

neighbourhood search, multi-start GRG and GRASP) and other existing hyper-

heuristics for these problems. Introducing a SA acceptance criterion into the current 

hyper-heuristic framework has been beneficial. However, the simulated annealing 

hyper-heuristics with random heuristic selection performed better than the simulated 

annealing hyper-heuristics assisted by a choice function or by a tabu list. This is 

probably because the stochastic nature of SA is not complimentary with deterministic 

strategies used both in choice function and tabu list based hyper-heuristics.  

8.3 Further work 

With regard to the future work on the problem modelling, it will be interesting to 

integrate the research results (models and algorithms) into current planogram 

software. One can also extend the current shelf space allocation models to two (or 

even three) dimensions, in which case extra constraints might have to be considered. 

However, one would not have to spend a lot of time adapting hyper-heuristics to the 
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new models. As the new problem is still very similar to the previous problems, a user 

would only need to slightly change the low-level heuristics used in the previous 

model in order to adapt to the new problem. This further shows the advantages of a 

hyper-heuristic methodology. 

Another interesting direction would be the integration of the automated 

planograms with the newly emerging RFID (Radio Frequency Identification) 

technologies (RFID Journal, 2005). RFID is a new ID technology that may 

eventually replace bar codes. A typical RFID system consists of a RFID tag which is 

attached to a product, and stores data, and a RFID reader which retrieves and 

updates product information stored on the tag. Two major advantages of RFID over 

bar codes are: 1. the product information can be retrieved and sent to a computer 

automatically when the products pass a reader (bar codes need to be scanned 

manually). 2. the data on a RFID tag can be updated dynamically by the reader while 

the data on the bar code cannot normally be altered. This functionality is very useful 

in just-in-time manufacturing, supply chain management and inventory management 

when one wants to track the physical location of products. RFID technology has been 

used in many companies in different industries. In retailing, Wal-Mart is a pioneer in 

adopting this technology. The integration of planogram software with RFID 

technology will make it possible to automate or semi-automate product 

replenishment from the storeroom to the shop floor shelves. Currently, this process is 

completely manual and is not efficient.  

From an optimisation perspective, it would be interesting to further improve the 

current simulated annealing hyper-heuristics in a number of ways. Firstly, it has been 

observed in this thesis that the deterministic heuristic selection hyper-heuristic 

approaches (CFSAHH and TSSAHH) do not perform as well as the simulated 
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annealing hyper-heuristics with uniform heuristic selection. The most likely reason is 

that the probabilistic nature of SA is not complimentary with deterministic heuristic 

selection strategies. In the future it may be worthwhile investigating some stochastic 

heuristic selection approaches under the simulated annealing hyper-heuristic 

framework. Secondly, throughout the three problems, it has been observed that the 

design of the low-level heuristics is crucial in influencing the performance of the 

hyper-heuristics. In the current hyper-heuristics the low-level heuristics correspond 

to some simple neighbourhood move strategies. Several issues are not yet clear when 

designing these heuristics, such as how to balance the greediness and randomness of 

a heuristic, and how the low-level heuristics should be designed to help guide the 

search for promising areas when the objective function fails to guide the search.  

Further research should be carried out in order to gain a better understanding of these 

issues. Another interesting research direction is in designing a hyper-heuristic 

framework which manages several different types of local search explorers (low-

level heuristics). These local search explorers do not have to be simple 

neighbourhood functions. They can be different search strategies (SA, TS and VNS, 

for example) or the same strategy with different parameters (for example several SA 

algorithms with different parameters). The local search explorers both compete and 

cooperate during the process of problem solving.  Finally, the proposed simulated 

annealing hyper-heuristic may be improved by using more complicated temperature 

cooling strategies (for example, by allowing reheating). 

Furthermore, the performance of the current meta-heuristics may be improved by 

hybridising with some exact methods, such as linear programming, branch-and-

bound, dynamic programming, etc. Meta-heuristics are believed to be able explore a 

large search space within a short time while exact methods can explore a specific 
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small area exhaustively. Hybridisation of them may lead to a better quality solution 

within reasonable computation time.  
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