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Abstract

In this thesis we study some graph colouring problems which arise from math-

ematical models of frequency assignment in radiocommunications networks, in

particular from models formulated by Hale and by Tesman in the 1980s.

The main body of the thesis is divided into four chapters. Chapter 2 is

the shortest, and is largely self-contained; it contains some early work on the

frequency assignment problem, in which each edge of a graph is assigned a

positive integer weight, and an assignment of integer colours to the vertices is

sought in which the colours of adjacent vertices differ by at least the weight of

the edge joining them.

The remaining three chapters focus on problems which combine frequency

assignment with list colouring, in which each vertex has a list of integers from

which its colour must be chosen. In Chapter 3 we study list colourings where

the colours of adjacent vertices must differ by at least a fixed integer s, and

in Chapter 4 we add the additional restriction that the lists must be sets of

consecutive integers. In both cases we investigate the required size of the lists

so that a colouring can always be found.

By considering the behaviour of these parameters as s → ∞ we formulate
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continuous analogues of the two problems, considering lists which are real in-

tervals in Chapter 4, and arbitrary closed real sets in Chapter 5. This gives rise

to two new graph invariants, the consecutive choosability ratio τ(G) and the

choosability ratio σ(G). We relate these to other known graph invariants, pro-

vide general bounds on their values, and determine specific values for various

classes of graphs.
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‘Can you do addition?’ the White Queen asked. ‘What’s one and one

and one and one and one and one and one and one and one and one?’

‘I don’t know,’ said Alice. ‘I lost count.’

Lewis Carroll, Alice Through the Looking Glass
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Chapter 1

Introduction

1.1 Motivation

The study of graph colouring originally arose from the famous four-colour

problem (see, for example, [1,34] for comprehensive accounts), asking whether

the regions of any map can be coloured with four colours so that countries

with a common border have different colours. Whilst this can be considered to

be a real-world application of graph theory, it is in some sense no more than

a mathematical curiosity, since cartographers rarely concern themselves with

minimising the number of colours they use.

However, graph colouring has benefited in recent decades from a surge in

interest due to various real world applications (see [20] for a recent survey),

with frequency assignment among the most prominent of these applications.

Consider a network of radio transmitters, each of which must be assigned

one or more operating frequencies. If two nearby transmitters are operating on

1



1.1 Motivation Chapter 1: Introduction

the same frequency then they have the potential to interfere with each other.

In the simplest model, the frequencies assigned to such pairs of transmitters

are required to be distinct, and the objective is to minimise the total number

of frequencies used.

Graph colouring is a natural model for this problem. The vertices of a graph

represent the transmitters, and an edge is added between any pair of vertices

(transmitters) which have the potential to interfere. Then the frequencies

correspond to colours assigned to the vertices, where adjacent vertices must

receive distinct colours.

In more elaborate models, the required separation between frequencies may

be larger for pairs of transmitters which are closer together, or for multiple

frequencies assigned to the same transmitter; the objective is usually then to

minimise the difference between the minimum and maximum frequencies used

(the span of the assignment). The assumption has generally been made that

“frequencies should be assigned to discrete, evenly spaced points in a dedicated

portion of the spectrumÔ [14], and consequently the colours are usually taken

to be integers.

In a special issue of the Proceedings of the IEEE (Vol. 68, 1980) devoted en-

tirely to radio spectrum management techniques, a paper by Hale [14] presents

the first formulation in precise graph-theoretical language of various frequency

assignment problems. Hale considers transmitters located in the plane, and

derives restrictions on the frequencies assigned to each pair of nearby trans-

mitters as a function of the Euclidean distance between them.

Two main models of frequency assignment have arisen from Hale’s paper.

2



1.2 Graph definitions Chapter 1: Introduction

In the first model, called T -colouring, a fixed set T of nonnegative integers

is specified, and the difference between the colours of any pair of adjacent

vertices must not lie in T . The second model, which has become known as

‘the’ frequency (or channel) assignment problem, assigns a positive integer

weight to each edge of the graph, and the colours assigned to adjacent vertices

must differ by at least the weight of the edge joining them.

Tesman [24, 25] combined the T -colouring model with list colouring, in

which each vertex (transmitter) has a list from which its colour (frequency)

must be chosen. This model has applications where there are pre-existing

restrictions on the frequencies available for a given transmitter, for example,

as a result of frequencies which are already in use.

As the demand placed upon the available radio spectrum has continued to

grow, so has practical interest in frequency assignment problems, with the em-

phasis on finding approximate algorithms, and on generating upper and lower

bounds to assess the efficiency of such algorithms. However, there is also a

considerable volume of pure graph-theoretical research into various derivatives

and generalisations of these models.

1.2 Graph definitions

For ease of reference we define here all the common graphs and graph properties

which we will require later. For most of the standard notation we follow

Bollobás [6].

A graph G consists of a set V (G) of vertices and a set E(G) of edges,

3



1.2 Graph definitions Chapter 1: Introduction

where E(G) ⊆ V (G)(2). By way of convention, when a single graph G is under

consideration, we will write V = V (G) for its vertex set and E = E(G) for its

edge set. Furthermore, n will always denote |V |, the order of G.

The complete graph Kn has n vertices and an edge between each pair of

vertices. The complement of G, denoted G, has vertex set V (G) = V (G) and

edge set E(G) = V (G)(2) \ E(G). In particular, Kn is the empty graph on n

vertices.

A subgraph H of G is a graph with V (H) ⊆ V (G) and E(H) ⊆ E(G).

Note that for H to be a graph, we must have E(H) ⊆ V (H)(2). H is a proper

subgraph of G if H 6= G. If E(H) = V (H)(2) ∩ E(G) then H is an induced

subgraph; writing S = V (H), we call H = G[S] the subgraph induced by S.

The neighbourhood of a vertex v ∈ V is NG(v) = {w ∈ V : vw ∈ E}, and

the degree dG(v) of v equals |NG(v)|. If a single graph G is under consideration,

we write N(v) for NG(v), and dG(v) for d(v). The minimum and maximum

degree over all vertices of G are denoted δ(G) and ∆(G) respectively.

If S ⊆ V then G−S = G[V \S], the induced subgraph formed by removing

the vertices in S. If F ⊆ E then G − E = (V,E \ F ). For brevity, if v ∈ V

and e ∈ E we write G− v = G− {v} and G− e = G− {e}.

If G and H are two graphs with disjoint vertex sets, their union G∪H has

vertex set V (G)∪V (H) and edge set E(G)∪E(H). The join G+H of G and

H is G ∪H together with all possible edges between V (G) and V (H).

A graph isomorphism from G to H is a bijective map φ : V (G) → V (H)

such that φ(u)φ(v) ∈ E(H) iff uv ∈ E(G). The automorphisms of G form a

group Aut(G); G is (vertex-)transitive (respectively, edge-transitive) if there
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1.3 Other notation Chapter 1: Introduction

is an automorphism φ ∈ Aut(G) mapping any vertex (edge) of G to any other.

The path Pn (n ≥ 2) has vertices v1, . . . , vn and edges v1v2, v2v3, . . . , vn−1vn.

The cycle Cn (n ≥ 3) consists of Pn plus an additional edge v1vn; cycles are

odd or even, according as the number of vertices is odd or even.

A graph G is connected if given any two vertices u, v ∈ V , there is a path in

G from u to v. A component of a graph G is a maximal connected subgraph.

An independent set inG is a subset S ⊆ V such thatG[S] is empty. A graph

G is bipartite if there is a partition of the vertices into two independent sets.

The complete bipartite graph Kr,s has vertex set V = V1 ∪ V2, where |V1| = r

and |V2| = s, and all possible edges between V1 and V2; it is isomorphic to

Kr +Ks. A graph K1,r is called a star graph. By analogy we define k-partite

graphs, and complete k-partite graphs Kr1,...,rk .

If the vertices of G can be ordered v1, . . . , vn such that each vertex vi is

adjacent to at most k vertices vj with j < i, then G is said to be k-degenerate.

There are various equivalent definitions of this property; one is that every

subgraph of G has minimum degree at most k.

1.3 Other notation

In Chapters 2 and 3 we work exclusively in the integers, and write [a, b] for

the set {x ∈ Z : a ≤ x ≤ b}.

In Chapters 4 and 5 we work in the reals as well as the integers, and reserve

the notation [α, β] for the set {λ ∈ R : α ≤ λ ≤ β}. We write {a, . . . , b} for

{x ∈ Z : a ≤ x ≤ b}. We will also use Greek letters to denote real numbers

5



1.4 Graph colouring and list colouring Chapter 1: Introduction

and sets and real-valued functions, to distinguish them from integers and sets

of integers for which we use Roman letters. The only exceptions will normally

be established terminology such as χ(G) for the chromatic number of G.

1.4 Graph colouring and list colouring

A colouring of a graph G is a function c which assigns a colour c(v) to each

vertex v ∈ V . A colouring c is proper if adjacent vertices have different colours,

i.e. c(v) 6= c(w) whenever vw ∈ E. Usually these colours are taken to be

integers. Within this thesis we will also consider scenarios where the colours

assigned are real numbers, and a different definition of ‘proper’ will apply.

A graph G is k-colourable if there exists a proper colouring c : V →

{1, . . . , k}, and the chromatic number χ(G) of G is the smallest integer k

such that G is k-colourable. The task of determining χ(G) is the ‘classical’

graph colouring problem. Note that G is k-colourable iff it is k-partite.

List colouring is a generalisation of graph colouring, formulated by Vizing

[28] and independently by Erdős, Rubin and Taylor [9]. A list assignment for

a graph G is a function L which assigns to each vertex v ∈ V a list (set) of

colours L(v); in this thesis we will always have L(v) ⊆ Z. If |L(v)| = k for each

v ∈ V , then L is a k-list assignment. An L-colouring of G is then a function

c : V → Z such that c(v) ∈ L(v) for all v ∈ V . If a proper L-colouring of G

exists for every k-list assignment L, then G is said to be k-choosable, and the

choosability ch(G) of G is the smallest k such that G is k-choosable.

Clearly, if a graph is k-choosable then it is k-colourable, and so χ(G) ≤

6



1.4 Graph colouring and list colouring Chapter 1: Introduction

ch(G). However, these two parameters can be arbitrarily far apart; graphs are

constructed in [9] for which χ(G) = 2 but ch(G) ≥ k for any k ≥ 2.

If G is not connected, then χ(G) is simply the maximum of χ(C) over all

components C of G. The same is true of ch(G) as well as of most colouring

parameters. For this reason we will often restrict our attention to connected

graphs, without loss of generality.

We will often construct a proper colouring of a graph by colouring the

vertices in turn, or by starting from a pre-colouring of a subset of the vertices.

Let S ⊂ V and v ∈ V \ S, and let c : S → Z be a proper colouring of G[S].

We will say that x is a valid colour for v if setting c(v) = x gives a proper

colouring of G[S ∪ {v}].

7



Chapter 2

Frequency assignment

2.1 Introduction

A weighted graph (G, s) = (V,E, s) consists of a graph G = (V,E) together

with a weight function s : E → N which assigns a positive integer weight to

each edge. To simplify notation we will often extend the domain of s to all of

V (2), setting s(e) = 0 if e ∈ V (2) \ E.

A colouring c : V → [1, k] of (G, s) is feasible if |c(v) − c(w)| ≥ s(vw) for

all vw ∈ E. The span sp(G, s) of (G, s) is the smallest k for which a feasible

colouring c : V → [1, k] exists. (Note that some authors define the span to

be the minimum difference between the smallest and largest colours used in

a feasible colouring, giving a value one less than sp(G, s) as defined here.) If

s(e) = 1 for all e ∈ E then a feasible colouring of (G, s) is simply a proper

colouring of G, and so sp(G, s) = χ(G).

We extend some basic graph properties to weighted graphs. The degree of

8



2.2 Brooks-type bounds Chapter 2: Frequency assignment

a vertex v in (G, s) is defined to be

ds(v) = dG,s(v) =
∑

w∈N(v)

s(vw),

and δs(G) and ∆s(G) respectively denote the minimum and maximum of ds(v)

over all v ∈ V .

We begin by giving the value of sp(G, s) where s is constant on E, which

implies an easy upper bound on sp(G, s) for general (G, s). This is essentially

a special case of a result of Cozzens and Roberts [8, Theorem 4], and also

appears as Proposition 2.3.1 in [17].

Lemma 2.1 If (G, s) is a weighted graph with s(e) = s ∈ N for all e ∈ E,

then sp(G, s) = s(χ(G)− 1) + 1. £

Corollary 2.2 If (G, s) is a weighted graph and M = max{s(e) : e ∈ E},

then sp(G, s) ≤ M(χ(G)− 1) + 1. £

2.2 Brooks-type bounds

We look at analogues of the following well-known theorem of Brooks [7].

Theorem 2.3 (Brooks’ Theorem) For any graph G, χ(G) ≤ ∆(G) + 1.

Furthermore, if G is connected, then equality holds iff G is a complete graph

or an odd cycle. £

This result can be generalised to weighted graphs in the natural way.

9



2.2 Brooks-type bounds Chapter 2: Frequency assignment

Theorem 2.4 For a weighted graph (G, s),

sp(G, s) ≤ ∆s(G) + 1. (2.1)

Proof. We construct a colouring c : V → [1,∆s(G) + 1] as follows. Let

G1 = G, and choose a vertex v1 of maximum weighted degree ∆s(G1). Let

c(v1) = ∆s(G1)+1, and let G2 = G1−v1. Now choose a vertex v2 of maximum

weighted degree ∆s(G2) in (G2, s), and let c(v2) = ∆s(G2)+1 andG3 = G2−v2.

Continue in this way, assigning colour 1 to the final vertex vn. Then c is a

feasible colouring of (G, s). For suppose vivj ∈ E, where i < j, and s = s(vivj).

Then

c(vj) = ∆s(Gj)+1 = dGj ,s(vj)+1 ≤ dGi,s(vj)+1−s ≤ ∆s(Gi)+1−s = c(vi)−s,

where the first inequality holds since the edge vivj is in Gi but not in Gj. £

Theorem 2.4 is proved by McDiarmid in [16], using a different algorithm.

However, the algorithm above can be augmented to prove a sharper bound

based on the following result of Stacho [23]:

Theorem 2.5 (L. Stacho [23]) The chromatic number χ(G) of a graph G

satisfies

χ(G) ≤ ∆2(G) + 1,

where

∆2(G) = max
u∈V

max
v∈N(u)

d(v)≤d(u)

d(v).

10



2.2 Brooks-type bounds Chapter 2: Frequency assignment

Equivalently, ∆2(G) is the largest degree that a vertex v can have subject to

the condition that v is adjacent to a vertex whose degree is at least as large as

its own. Hence Theorem 2.5 improves the bound χ(G) ≤ ∆(G) + 1 if no two

vertices of maximum degree are adjacent. Defining ∆2
s(G) by substituting ds

for d throughout the definition of ∆2(G), we can prove the following theorem.

Theorem 2.6 For a weighted graph (G, s),

sp(G, s) ≤ ∆2
s(G) + 1.

Proof. Let c be the colouring of (G, s) constructed in the proof of Theorem

2.4, and define c′(v) = min{c(v),∆2
s(G) + 1}. We will show that c′ is also a

feasible colouring of (G, s).

Let I = {v ∈ V : c(v) > ∆2
s(G) + 1}; then I is an independent set. Thus if

vivj ∈ E then either vi /∈ I and vj /∈ I, or w.l.o.g. vi ∈ I and vj /∈ I. In the

first case, c′(vi) = c(vi) and c′(vi) = c(vj), and so |c′(vi)− c′(vj)| ≥ s(vivj). In

the second case, since c(vi) > c(vj) we must have i < j, and so

c′(vj) = dGj ,s(vj) + 1 ≤ dG,s(vj) + 1− s ≤ ∆2
s(G) + 1− s = c′(vi)− s,

where the first inequality holds since vivj is in G but not in Gj, and the second

inequality holds because vj is adjacent to vi in G, and dG,s(vi) ≥ dGi,s(vi) =

c(vi)− 1 > ∆2
s(G). £

Stacho shows that for fixed ∆2(G) ≥ 3, determining whether χ(G) ≤ ∆2(G)

is an NP-complete problem. Hence the problem of determining whether the

11



2.3 Counting feasible colourings Chapter 2: Frequency assignment

bound in Theorem 2.6 is attained is also NP-complete.

Fiala et al. [10] prove a very general theorem regarding generalised list

T -colourings, which we discuss further in Section 5.6. The full statement of

the theorem is too long to include here, but we note that it can be used to

characterise the weighted graphs for which equality holds in Theorem 2.4.

Theorem 2.7 If (G, s) is a weighted graph and G is connected, then equality

holds in Theorem 2.4 iff G is a complete graph or an odd cycle and s is constant

on E(G). £

2.3 Counting feasible colourings

A classical result in graph theory, first proved by Birkhoff [5], states that the

number of colourings of a simple graph G using t colours is a polynomial in t.

Theorem 2.8 For any graph G, there exists a monic polynomial P (G; t) of

degree n, such that the number of proper colourings c : V → [1, t] of G is equal

to P (G; t) for all t ∈ N ∪ {0}.

We can show that the corresponding statement holds for weighted graphs,

provided that t is large enough. We will extend one of the many known proofs

of Theorem 2.8, using the Inclusion-Exclusion Principle: for a finite collection

of finite sets A1, . . . , An,

∣

∣

∣

∣

n
⋃

i=1

Ai

∣

∣

∣

∣

=
∑

∅6=J⊆[1,n]

(−1)|J |−1

∣

∣

∣

∣

⋂

j∈J

Aj

∣

∣

∣

∣

.
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2.3 Counting feasible colourings Chapter 2: Frequency assignment

Theorem 2.9 Let (G, s) be a weighted graph. Then there exists a monic poly-

nomial P (G, s; t) of degree n, such that the number f(G, s; t) of feasible colour-

ings of (G, s) using t colours is equal to P (G, s; t) for all integers t ≥ t0, where

t0 = max

{

r−1
∑

i=1

(

s(vivi+1)− 1
)

: v1v2 · · · vr a path in G

}

.

This result is proved by McDiarmid in [16] for t ≥ t1 = (n− 1)(M − 1), where

M = max{s(e) : e ∈ E}, as well as in [32] with no explicit bound on t. Our

proof, obtained independently, is simpler in nature, and refines McDiarmid’s

bound: clearly, any of the sums in the expression for t0 has at most n − 1

terms, each of which is at most M − 1. Hence t0 ≤ t1, and strict inequality

will hold in many cases (for example, if G has no Hamiltonian path).

Proof of Theorem 2.9. By definition, f(G, s; t) is the number of functions

c : V → [1, t] for which |c(v)− c(w)| ≥ s(vw) for all vw ∈ E. Thus we have

f(G, s; t) =

∣

∣

∣

∣

⋂

vw∈E

{c : V → [1, t] : |c(v)− c(w)| ≥ s(vw)}
∣

∣

∣

∣

= tn −
∣

∣

∣

∣

⋃

vw∈E

{c : V → [1, t] : |c(v)− c(w)| < s(vw)}
∣

∣

∣

∣

.

Applying the Inclusion-Exclusion Principle we obtain

f(G, s; t) =
∑

F⊆E

(−1)|F |
∣

∣{c : V → [1, t] : (∀vw ∈ F ) |c(v)− c(w)| < s(vw)}
∣

∣.

We now split the sets in this expression according to the specific values

of c(v) − c(w). To do this consistently we will need to choose (arbitrarily)

13



2.3 Counting feasible colourings Chapter 2: Frequency assignment

a reference orientation −→vw for each edge vw ∈ E. Let ~E be the set of these

oriented edges. Then

f(G, s; t) =
∑

F⊆E

(−1)|F |
∑

h:~F→Z

|h|<s

∣

∣Q(F, h; t)|,

where

Q(F, h; t) = {c : V → [1, t] : (∀vw ∈ F ) c(w)− c(v) = h(−→vw)},

and the shorthand |h| < s means that |h(−→vw)| < s(vw) for each vw ∈ F .

Now we need to evaluate |Q(F, h; t)| as a function of t for each F ⊆ E and

h : ~F → Z with |h| < s.

Suppose F contains a cycle v1v2 · · · vrv1. Then if Q(F, h; t) is nonempty we

must have

h(−−→v1v2) + h(−−→v2v3) + · · ·+ h(−−−→vr−1vr) + h(−−→vrv1) = 0, (2.2)

where h(−→wv) = −h(−→vw). If (2.2) holds for all cycles in F , we say that h

is consistent. Now assume that h is consistent. Let C(V, F ) be the set of

components of the graph (V, F ), and for C ∈ C(V, F ), define

ρ(C, h) = max

{

r−1
∑

i=1

h(−−−→vivi+1) : v1v2 · · · vr a path in C

}

.
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2.3 Counting feasible colourings Chapter 2: Frequency assignment

Let c ∈ Q(F, h; t), and let x be the smallest colour used by c on C. This

fixes c on the rest of C, and the largest colour used must be x + ρ(C, h).

Thus the number of possible restrictions of c ∈ Q(F, h; t) to C is t − ρ(C, h)

if t ≥ 1 + ρ(C, h), and zero otherwise. Since we can colour the components of

(V, F ) independently, we have

|Q(F, h; t)| =



























0 if h is inconsistent,

0 if t < ρ(C, h) for some C, and
∏

C∈C(V,F )

(

t− ρ(C, h)
)

otherwise.

Note that this product is zero if t = ρ(C, h) for any C ∈ C(V, F ). Accordingly,

we set

P (G, s; t) =
∑

F⊆E

(−1)|F |
∑

h:~F→Z

|h|<s

h consistent

∏

C∈C(V,F )

(

t− ρ(C, h)
)

. (2.3)

Then P (G, s; t) is a polynomial in t, and P (G, s; t) = f(G, s; t) for all t ∈ N

with

t ≥ max{ρ(C, h) : C ⊆ G, |h| < s} = max{ρ(G, h) : |h| < s} = t0.

To see that P (G, s; t) is monic with degree n, note that the product in (2.3)

has degree n iff F is empty. This completes the proof of Theorem 2.9. £

Let G be a path v1v2 · · · vn, and let s be any weight function on E(G).

If t = t0 − 1 then the only terms on which f(G, s; t) and P (G, s; t) disagree

correspond to Q(E,±h; t), where h(−−−→vivi+1) = s(vivi+1)− 1 for i = 1, . . . , n− 1.
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2.4 Vertex demands Chapter 2: Frequency assignment

Accordingly, |f(G, s; t0 − 1) − P (G, s; t0 − 1)| = 2, showing that our value of

t0 cannot be improved for these graphs. Note also that Theorem 2.9 reduces

to Theorem 2.8 when s(e) = 1 for all e ∈ E(G).

2.4 Vertex demands

Let (G, s) be a weighted graph with a demand function t : V → N, and a pa-

rameter s0 ∈ N called the vertex separation. A multicolouring C of (G, s; t, s0)

is a function which assigns to each vertex v ∈ V a set C(v) ⊂ N of t(v) distinct

colours. We say that C is a feasible multicolouring of (G, s; t, s0) if

(i) for all v ∈ V and x, x′ ∈ C(v) we have |x− x′| ≥ s0, and

(ii) for all vw ∈ E, x ∈ C(v) and y ∈ C(w), we have |x− y| ≥ s(vw).

The span of C is the largest colour appearing in any of the sets C(v),

and the span sp(G, s; t, s0) of (G, s; t, s0) is the minimum span over all feasible

multicolourings C.

The problem of computing the span of (G, s; t, s0) can be reduced to the

problem of computing the span for an ordinary weighted graph as follows. Let

G(t) be the graph formed by ‘inflating’ each v ∈ V into a complete graph Kt(v);

more formally, G(t) has a set of t mutually adjacent vertices v1, . . . , vt(v) for

each v ∈ V (G), and an edge between vi and wj whenever vw ∈ E(G). Let

s∗ be the weight function on G(t) with s∗(vivj) = s0 for all v ∈ V (G) and

16
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1 ≤ i < j ≤ t(v), and s∗(viwj) = s(vw) whenever vw ∈ E(G). Then

sp(G, s; t, s0) = sp(G(t), s∗).

We end this chapter by computing an exact value of sp(G, s; t, s0) in a

special case. Let s(e) = 1 for all e ∈ E(G), in which case we write the span

as sp(G; t, s0), and let G be a complete graph. Then there are two simple

lower bounds for sp(G; t, s0). The first is
∑

v∈V t(v), since this is the total

number of colours to be assigned, and they must all be distinct. The second

is s0(t(v) − 1) + 1, for any vertex v ∈ V , since the t(v) colours assigned to v

must all differ by at least s0. We will show that these are essentially the only

two factors which determine sp(Kn; t, s0).

Theorem 2.10 Let n, s0 ∈ N and G = Kn, and let t be a demand function

for G. Write

T =
∑

v∈V

t(v), t1 = max
v∈V

t(v), and M1 = {v ∈ V : t(v) = t1}.

Then

sp(G; t, s0) = max
{

T, s0(t1 − 1) + |M1|
}

.

The following definition and lemma are required in the proof of Theorem

2.10. Let π ∈ Sn be a permutation acting on [1, n]. We say that π is (p, k)-

separating if for i, j ∈ [1, n], 1 ≤ |i− j| < p implies |π(i)− π(j)| ≥ k.

Lemma 2.11 Let n, p, k ∈ N with p, k ≤ n. There exists a (p, k)-separating

permutation on [1, n] iff n ≥ pk.

17
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Proof. To show that n ≥ pk is a necessary condition, let π ∈ Sn be (p, k)-

separating. Let x = π−1(k) and choose S = [a, a+ p− 1] such that x ∈ S.

Then |π(i)− π(j)| ≥ k whenever i, j ∈ S and i 6= j, and so minπ(S) = k and

maxπ(S) ≥ k + (|S| − 1)k = pk. But π(S) ⊆ [1, n] and so pk ≤ n.

Conversely, suppose n ≥ pk. If n and k are coprime, we simply set

π(i) ≡ ki (mod n); then 1 ≤ |i − j|n < p implies |π(i) − π(j)|n ≥ k, where

|i− j|n = min{|i− j|, n− |i− j|}. This implies that π is (p, k)-separating.

If n and k have greatest common divisor h > 1, define ρ(i) = k
h
i (mod n

h
),

a (p, k
h
)-separating permutation on [1, n

h
]. Construct π ∈ Sn as follows:

1 ≤ i ≤ n

h
=⇒ π(i) = hρ(i),

n

h
< i ≤ 2n

h
=⇒ π(i) = hρ

(

i− n

h

)

− 1,

2n

h
< i ≤ 3n

h
=⇒ π(i) = hρ

(

i− 2n

h

)

− 2,

· · ·
(h− 1)n

h
< i ≤ n =⇒ π(i) = hρ

(

i− (h− 1)n

h

)

− (h− 1).

Let i, j ∈ [1, n] with 1 ≤ j − i < p; then j − i < p ≤ n
k
≤ n

h
. Thus either

(t−1)n
h

< i < j ≤ tn
h
for some t ∈ [1, h], in which case

|π(i)− π(j)| = h

∣

∣

∣

∣

ρ

(

i− (t− 1)n

h

)

− ρ

(

j − (t− 1)n

h

)
∣

∣

∣

∣

≥ k,
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or i ≤ tn
h
< j. In this case ρ

(

i− (t−1)n
h

)

= n
h
−
(

tn
h
−i

)

k
h
and ρ

(

j− tn
h

)

=
(

j− tn
h

)

k
h
,

where these values are in [1, n
h
] because tn

h
− i < n

k
and j − tn

h
< n

k
; and so

π(i)− π(j) =

[

n−
(

tn

h
− i

)

k − (t− 1)

]

−
[(

j − tn

h

)

k − t

]

= n− (i− j)k + 1 ≥ n− (p− 1)k + 1 > k.

Thus π ∈ Sn is (p, k)-separating, as required. £

Note that in the definition of (p, k)-separating, if we were to replace |i− j|

by |i− j|n, or |π(i)−π(j)| by |π(i)−π(j)|n, then Lemma 2.11 would no longer

be true: for example, consider the case n = 4, p = k = 2.

Proof of Theorem 2.10. We have already observed that sp(G; t, s0) ≥ T .

Also, since the sets C(v) in a feasible multicolouring are pairwise disjoint,

we have minC(v) ≥ |M1| for some v ∈ M1, and hence maxC(v) ≥ |M1| +

s0(t1 − 1). This establishes the lower bound; it remains to construct a feasible

multicolouring C with the required span.

We proceed by induction on s0. If s0 = 1 then any choice of disjoint sets

C(v) of size t(v) for each v ∈ V is a feasible assignment for (G; t, s0), and so

sp(G; t, s0) = T and T ≥ t1|M1| ≥ t1 − 1 + |M1|, verifying the theorem in this

case. So assume s0 ≥ 2. We consider two cases.

Case 1: T ≥ s0(t1−1)+ |M1|. In this case we seek a feasible multicolouring

C of (G; t, s0) with
⋃

v∈V C(v) = [1, T ].

Note that if T ≥ s0t1 then Lemma 2.11 implies the result of the theorem, as

follows. Let π be a (t1, s0)-separating permutation on [1, T ], and set C(v1) =

{π(1), π(2), . . . , π(t(v1))}, C(v2) = {π(t(v1) + 1), . . . , π(t(v1) + t(v2))}, and
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so on. Then C is a feasible multicolouring of (G; t, s0), since |x − y| ≥ s0

whenever x, y ∈ C(v). So suppose s0t1 > T ; since we are assuming that

T ≥ s0(t1 − 1) + |M1|, this implies that s0 > |M1|.

To set up the inductive step, let G′ = G−M1 and V ′ = V (G′), and define

T ′ =
∑

v∈V ′ t(v), t2 = max{t(v) : v ∈ V ′} and M2 = {v ∈ V ′ : t(v) = t2}; then

T ′ = T−t1|M1| and t2 ≤ t1−1. Multicolour the vertices ofM1 = {v1, . . . , v|M1|}

by setting C(vi) = {i, i+ s0, . . . , i+ s0(t1 − 1)}. Let

f : [1, T ′] → [1, T ] \
|M1|
⋃

i=1

C(vi)

be the unique order-preserving bijection between these two sets. Then for

x, y ∈ [1, T ′], |x − y| ≥ s0 − |M1| implies |f(x) − f(y)| ≥ s0. Thus, given

a feasible multicolouring C ′ of (G′; t, s0 − |M1|) with C ′(v) ⊆ [1, T ′] for each

v ∈ V ′, we can complete C to a feasible multicolouring of (G; t, s0) by setting

C(v) = f(C ′(v)) for each v ∈ V ′. Since T ′ = T − t1|M1| ≥ s0(t1 − 1) + |M1| −

t1|M1| = (s0 − |M1|)(t1 − 1) ≥ (s0 − |M1|)t2, we can use Lemma 2.11 as before

to show that such a C ′ exists.

Case 2: s0(t1 − 1) + |M1| > T . In this case, since T ≥ t1|M1|, we have

s0(t1 − 1) > (t1 − 1)|M1|, and so s0 > |M1|. Let G′, V ′, T ′, t2 and M2 be as in

Case 1. Construct the multicolouring C of M1 as before, and let

f : [1, (s0 − |M1|)(t1 − 1)] → [1, s0(t1 − 1) + |M1|] \
|M1|
⋃

i=1

C(vi)
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be the order-preserving bijection between these sets. As before, in order to

complete C we seek a feasible multicolouring C ′ of (G′; t, s0 − |M1|), this time

with C ′(v) ⊆ [1, (s0 − |M1|)(t1 − 1)]. We use the inductive hypothesis to show

the existence of C ′; thus we need to show that T ′ ≤ (s0 − |M1|)(t1 − 1) and

(s0 − |M1|)(t2 − 1) + |M2| ≤ (s0 − |M1|)(t1 − 1).

The first of these two inequalities holds as T ′ = T − t1|M1| < s0(t1 − 1) +

|M1| − t1|M1| = (s0 − |M1|)(t1 − 1). Next, note that the number t2|M2| of

colours required by M2 must be at most T ′ < (s0 − |M1|)(t1 − 1); and that

since 1 ≤ t2 ≤ t1 − 1, we have (t2 − (t1 − 1))(t2 − 1) ≤ 0, which rearranges to

give t1−1
t2

≤ t1 − t2. Thus |M2| < (s0 − |M1|) t1−1
t2

≤ (s0 − |M1|)(t1 − t2), and so

(s0 − |M1|)(t2 − 1) + |M2| < (s0 − |M1|)(t1 − 1).

This shows that C ′ exists, and as in Case 1 we complete C to a feasible

multicolouring of (G; t, s0) by setting C(v) = f(C ′(v)) for each v ∈ V ′. Thus

in either case we have constructed a feasible multicolouring of (G; t, s0) with

the required span, and this completes the proof of Theorem 2.10. £

Theorem 2.10 is proved independently by Gerke and McDiarmid [12], in a

more general form: they consider a constant edge weight s(e) = s1 ∈ N, with

1 ≤ s1 ≤ s0 (in our result, s1 = 1). We include our proof since the method is

different, and since the result of Lemma 2.11 may be of independent interest.
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Chapter 3

List colouring with separation

3.1 Introduction

In this chapter we define and investigate list colouring with separation, also

known as Tr-list colouring.

For a graph G = (V,E) and s ∈ N, a colouring c : V → Z is said to have

separation s if |c(v) − c(w)| ≥ s for all vw ∈ E. This is precisely a feasible

colouring of the weighted graph (G, s) with s(e) = s for all e ∈ E, as in

Chapter 2, and a proper colouring is precisely a colouring with separation 1.

We combine list colouring and separation in the natural way. As defined

in Chapter 1, a k-list assignment for G is a function L which assigns to each

vertex v ∈ V a list L(v) ⊆ Z with |L(v)| = k. The choosability with separation

s, denoted chs(G), is the smallest k such that for every k-list assignment L,

there exists an L-colouring of G with separation s.

This topic was studied extensively by Tesman [24,25], and more recently by
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Alon and Zaks [4] and others, under the name Tr-choosability, a development of

T -colouring as initiated by Hale [14] as a model for radio frequency assignment.

Given a graph G = (V,E) and a set T of non-negative integers, a T -colouring

of G is a function c : V → Z such that |c(v) − c(w)| /∈ T for all vw ∈ E.

Usually, T is assumed to contain 0; and in particular, Tr = {0, 1, . . . , r}, so

that a Tr-colouring of G has |c(v)− c(w)| ≥ r + 1 for all vw ∈ E.

GivenG, T as above and a list assignment L forG, in Tesman’s notation, an

L-T -colouring of G is an L-colouring which is also a T -colouring (using a slight

abuse of terminology). If an L-T -colouring exists for every k-list assignment L

then G is T -k-choosable, and the T -choosability T -ch(G) of G is the smallest

k for which G is T -k-choosable.

Thus a Tr-colouring is the same as a colouring with separation r + 1, and

Tr-ch(G) = chr+1(G). Our notation is based on the use of weights in the

frequency assignment problem and has the advantage of being less cumber-

some, and the results we obtain are expressed more neatly in terms of s than

r = s− 1. However, it does not admit the full generality of T -colouring.

Exact values of chs(G) are computed by Tesman in [24] for G a complete

graph, a tree, or an odd cycle, and are summarised in the following theorem.

Theorem 3.1 (Tesman [24]) Let s ∈ N.

(i) If G = Kn then chs(G) = s(n− 1) + 1.

(ii) If G is an odd cycle C2r+1, then chs(G) = 2s+ 1.

(iii) If G is a tree on n vertices then chs(G) =
⌊

2s
(

1− 1
n

)⌋

+ 1. £
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Tesman described the value of chs(G) for even cycles as ‘the most glaring open

problem’ in his thesis [24]. The correct value was conjectured by Alon and

Zaks [4], and proved by Sitters [21].

Theorem 3.2 (Sitters [21]) If s ∈ N and r ≥ 2, then

chs(C2r) =
⌊

2s
(

1− 1
4r−1

)
⌋

+ 1. £

In Section 3.2, we consider the problem of finding an upper bound for

chs(G) given only the values of s and ch(G). In Section 3.3 we investigate how

large chs(G) can be for planar and outerplanar graphs G.

3.2 Bounding chs(G) in terms of ch(G)

3.2.1 Preliminaries

A lower bound on chs(G) in terms of s and ch(G) is presented by Alon and

Zaks in [4].

Theorem 3.3 (Alon, Zaks [4]) For any graph G and any s ∈ N,

chs(G) ≥ s(ch(G)− 1) + 1. £

Taking G to be a complete graph, and comparing Theorem 3.1(i), we see

that Theorem 3.3 is tight for all values of s and ch(G).

The work in this section is centred around the following conjecture.
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Conjecture 3.4 For any graph G and any s ∈ N,

chs(G) ≤ (2s− 1)(ch(G)− 1) + 1.

Clearly, if Conjecture 3.4 holds as well as Theorem 3.3, then given any G and

s as above, knowing ch(G) would determine chs(G) to within a factor of 2.

D. R. Woodall has observed that for s ≥ 2,

chs(G) ≤ (s− 1)(ch2(G)− 1) + 1. (3.1)

It follows that a linear bound on ch2(G) in terms of ch(G) would imply a linear

bound on chs(G) in terms of ch(G) for any s ≥ 2. In Section 5.2 we generalise

(3.1) to give bounds on chs(G) in terms of chr(G) whenever r, s ≥ 2.

A graph G is chordal if every cycle in G has a chord, that is, if G has

no induced subgraph isomorphic to Cm for m ≥ 4. Tesman [24] proved the

following theorem for such graphs, which implies that Conjecture 3.4 holds

(and that ch(G) = χ(G)) if G is chordal.

Theorem 3.5 (Tesman [24]) If G is a chordal graph and s ∈ N, then

chs(G) ≤ (2s− 1)(χ(G)− 1) + 1.

25



3.2 Bounding chs(G) in terms of ch(G) Chapter 3: List colouring with separation

3.2.2 Upper bounds using degeneracy

Conjecture 3.4 is motivated by the next theorem, for which we need to define

the colouring number col(G) of a graph G:

col(G) = 1 + max
H⊆G

δ(H). (3.2)

Equivalently, col(G) is the smallest k ∈ N such that G is (k−1)-degenerate.

The colouring number is an upper bound for ch(G) (and hence for χ(G)) as

follows: let the vertices of G be ordered v1, . . . , vn so that each vi is adjacent

to at most col(G) − 1 vertices vj with j < i. Then if each vertex has a list

of size col(G), we can construct a proper colouring by giving each vertex vi in

turn the smallest colour c(vi) not already used on any of its neighbours.

Theorem 3.6 For any graph G and any s ∈ N,

chs(G) ≤ (2s− 1)(col(G)− 1) + 1,

and this bound is tight for all values of s and col(G).

Proof. As in the proof that ch(G) ≤ col(G), let the vertices of G be ordered

v1, . . . , vn so that each vi is adjacent to at most col(G) − 1 vertices vj with

j < i. Colouring each vertex vi in turn, for each already coloured vertex vj

there are 2s−1 colours [c(w)− (s− 1), c(w) + s− 1] which are not valid for vi.

Thus if the size of the lists assigned to the vertices exceeds (2s−1)(col(G)−1),

we can complete the colouring with separation s, and the bound follows.
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To show that the bound can be attained, we need a k-degenerate graph

whose vertices are assigned lists of size (2s− 1)k, for which no colouring with

separation s exists. The graph K1 trivially suffices if k = 0, so assume k ≥ 1.

Let t = (2s − 1)k and take G = Kk,tk , with vertex set V = {u0, . . . , uk−1} ∪

{vi0,...,ik−1
: i0, . . . , ik−1 ∈ [0, t− 1]}. Assign the following lists:

L(up) = [2pt, (2p+ 1)t− 1],

L(vi0,...,ik−1
) =

⋃

0≤p≤k−1

[2pt+ ip − (s− 1), 2pt+ ip + s− 1].

The intervals in the above union are disjoint, as (2(p+1)t+ip+1−(s−1))−

(2pt+ ip + s− 1) ≥ 2t− (t− 1)− (2s− 2) = (2s− 1)k− (2s− 3) ≥ 2 > 0, and

hence |L(v)| = t for all v ∈ V . But whichever choice of colours c(up) = 2pt+ ip

we make for the vertices u0, u1, . . . , uk−1, we find that L(vi0,...,ik−1
) contains

precisely those colours which are not valid for the vertex vi0,...,ik−1
, and so

there is no colouring of G with separation s. £

Observe that with t = (2s−1)k andG = Kk,tk as in the above proof, tk ≥ kk

and so G is not k-choosable, as noted in [9]. Hence ch(G) = col(G) = k + 1,

which implies that if Conjecture 3.4 is true, it is also tight for all values of s

and ch(G).

Theorem 3.6 can be used in conjunction with the following result due to

Alon [3], which links ch(G) to the minimum degree δ(G), to prove an expo-

nential bound on chs(G) in terms of s and ch(G).

Theorem 3.7 (Alon [3]) If s ∈ N and G is a graph whose minimum degree
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δ(G) satisfies

δ(G) >
4(s2 + 1)2

(log2 e)
2
22s,

then ch(G) > s. £

Theorem 3.8 For any graph G with ch(G) = k and any s ∈ N,

chs(G) ≤ (2s− 1)
(k2 + 1)2

(log2 e)
2
4k+1 + 1.

Proof. Writing ch(G) = k, and noting that ch(H) ≤ k for all subgraphs

H ⊆ G, we can use Theorem 3.7 to bound col(G):

col(G) = 1 + max
H⊆G

δ(H) ≤ 4(k2 + 1)2

(log2 e)
2
22k + 1.

Hence, applying Theorem 3.6, we obtain the required result. £

Though this is a very long way from the bound of Conjecture 3.4, it does

at least establish that some bound of the required form does exist. Estimating

the bound in Theorem 3.8 as ch(G) = k → ∞, we obtain

chs(G) = O(sk44k).

Even in the case of 2-choosable graphs G, the bound given by Theorem

3.8 is approximately chs(G) ≤ 1538s− 768, which is quite some way from the

correct bound which we are about to prove.
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3.2.3 Bound for 2-choosable graphs

In this section we prove the following theorem, verifying Conjecture 3.4 in the

case ch(G) = 2.

Theorem 3.9 For any graph G with ch(G) = 2 and any s ∈ N,

chs(G) ≤ 2s.

The proof of Theorem 3.9 relies on A. L. Rubin’s characterisation of 2-choos-

able graphs [9], for which we need the following two definitions.

The core of a graph G is obtained by successively removing vertices of

degree 1 until none remain. If G is assigned lists of size 2, and we remove a

vertex v of degree 1 and colour G − v from its lists, we can always choose a

colour for v which differs from that of its neighbour. By iterating this ‘pruning’

process, we see that G is 2-choosable iff its core is 2-choosable.

The Θ-graph Θa,b,c consists of two distinguished vertices u,w connected by

three paths P1, P2 and P3 of lengths a, b and c respectively. Two examples are

shown in Figure 3.1.

ru

r r r

rw 
 

  

@
@

@@

@
@

@@
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r r r
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r

r
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@
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¨¨̈
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A
AA

Figure 3.1: Θ2,2,2 (∼= K2,3), and Θ2,2,4.
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Now we can state the theorem characterising 2-choosable graphs:

Theorem 3.10 (Rubin [9]) A connected graph G is 2-choosable iff its core

is K1, or C2m+2 or Θ2,2,2m for some m ≥ 1.

For the two lemmas to follow we will need some additional terminology. Let

P = uv1v2 · · · vl−1w be a path of length l, with a list assignment L such that

|L(vp)| = 2s for 1 ≤ p ≤ l− 1. Construct the set F = F (P ) ⊆ L(u)×L(w) as

follows: (x, y) ∈ F iff there is no L-colouring of P with separation s such that

c(u) = x and c(w) = y. Clearly there is an L-colouring of P with separation s

iff F 6= L(u)× L(w).

The set F can be characterised as follows: for x ∈ L(u) and y ∈ L(w), let

I1(x) = [x− (s− 1), x+ s− 1],

I2(x) =
⋂

c∈L(v1)\I1(x)

[c− (s− 1), c+ s− 1],

I3(x) =
⋂

c∈L(v2)\I2(x)

[c− (s− 1), c+ s− 1],

· · ·

Il(x) =
⋂

c∈L(vl−1)\Il−1(x)

[c− (s− 1), c+ s− 1].

Evidently, |Ip(x)| ≤ 2s− 1 < 2s = |L(vp)| for each p = 1, . . . , l − 1, and so

L(vp) \ Ip(x) 6= ∅. If we want to colour P from its lists, starting with c(u) = x,

the sets Ip(x) are constructed precisely so that the colour we choose for v1

must not be in I1(x), the colour we choose for v2 must not be in I2(x), and so
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on. It follows that

(x, y) ∈ F ⇐⇒ y ∈ Il(x). (3.3)

Alternatively, we can start at w, and define

Jl−1(y) = [y − (s− 1), y + s− 1],

Jl−2(y) =
⋂

c∈L(vl−1)\Jl−1(y)

[c− (s− 1), c+ s− 1],

· · ·

J0(y) =
⋂

c∈L(v1)\J1(y)

[c− (s− 1), c+ s− 1].

Then

(x, y) ∈ F ⇐⇒ x ∈ J0(y), (3.4)

and furthermore, for each p = 1, . . . , l − 1,

(x, y) ∈ F ⇐⇒ L(vp) ⊆ Ip(x) ∪ Jp(y), (3.5)

since there is an L-colouring of P with c(u) = x, c(vp) = c and c(w) = y if and

only if c ∈ L(vp) \ (Ip(x) ∪ Jp(y)).

Since Il(x) and J0(y) are intervals, (3.3) and (3.4) respectively imply the

following properties (which we call convexity):

y1 < y2 < y3 and (x, y1), (x, y3) ∈ F =⇒ (x, y2) ∈ F, (3.6)

x1 < x2 < x3 and (x1, y), (x3, y) ∈ F =⇒ (x2, y) ∈ F. (3.7)
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The sets Ip are nonincreasing in size with increasing p. To see this, fix

p ∈ [1, l − 1] and let a and b be the minimum and maximum elements of

L(vp) \ Ip(x). Then

|Ip+1(x)| = |[a− (s− 1), a+ s− 1] ∩ [b− (s− 1), b+ s− 1]|

= max{2s− |[a, b]|, 0}

≤ |L(vp)| − |L(vp) \ Ip(x)|,

which gives

|Ip+1(x)| ≤ |L(vp) ∩ Ip(x)| ≤ |Ip(x)|. (3.8)

The following lemma is used later as an auxiliary result, but is stated

separately as it may be of interest in itself.

Lemma 3.11 Let P = uv1v2 · · · vl−1w be a path of length l, whose vertices are

assigned lists L(v) such that |L(vp)| = 2s for 1 ≤ p ≤ l − 1, and |L(u)| +

|L(w)| > 2s. Then there is an L-colouring of P with separation s, such that

at least one of u and w is assigned the minimum colour in its list.

Proof. We use induction on the path length l. Write L(u) = {x1, . . . , xi} and

L(w) = {y1, . . . , yj}, with the elements arranged in ascending order in each

case. First we considering the case l = 1, i.e. P = uw. Since i+j > 2s, we have

(xi−x1)+(yj−y1) ≥ 2s−1, and hence either xi−y1 ≥ s or yj−x1 ≥ s. In the

former case we have an L-colouring of P by setting c(u) = xi and c(w) = y1,

and in the latter case, by setting c(u) = x1 and c(w) = yj.
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Now assume that l > 1, and that the lemma is true for a path of length

l−1. Suppose no colouring of P of the required type exists, so that (xs, y1) ∈ F

for each s = 1, . . . , i and (x1, yt) ∈ F for each t = 1, . . . , j. We will obtain a

contradiction.

By (3.3), {y1, . . . , yj} ∈ Il(x1) and so, by repeated application of (3.8),

|L(v1) ∩ I1(x1)| ≥ |I2(x1)| ≥ |Il(x1)| ≥ j. (3.9)

We consider two separate cases.

Case 1: maxL(v1) /∈ I1(x1). Then, since (x1, y1) ∈ F and (xi, y1) ∈ F ,

maxL(v1) ∈ J1(y1) by (3.5)

=⇒ minL(v1) /∈ J1(y1) since |J1(y1)| ≤ 2s− 1 < |L(v1)|

=⇒ minL(v1) ∈ I1(xi) by (3.5)

=⇒ minL(v1) ≥ xi − (s− 1)

=⇒ |L(v1) ∩ I1(x1)| ≤ (2s− 1)− (xi − x1) ≤ 2s− i.

Together with (3.9), this shows that i+ j ≤ 2s, contrary to the hypothesis of

the lemma. In this case, the above ‘exchange’ trick using (3.5) allows us to

establish the result without using the inductive hypothesis.

Case 2: maxL(v1) ∈ I1(x1). This means that minL(v1) /∈ I1(x1) and

hence, by (3.5),

minL(v1) ∈ J1(yt) for 1 ≤ t ≤ j. (3.10)
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Also, since maxL(v1) ≤ x1+s−1, we have |L(v1)∩I1(xi)| ≤ (2s−1)−(xi−x1) ≤

2s − i, and so L(v1) contains elements minL(v1) = x′
1 < x′

2 < · · · < x′
i such

that x′
s /∈ I1(xi) and hence

x′
s ∈ J1(y1) for 1 ≤ s ≤ i. (3.11)

Thus, writing P ′ = v1v2 · · · vl−1w and L′(v1) = {x′
1, . . . , x

′
i}, L′(w) =

L(w) = {y1, . . . , yj} and L′(vp) = L(vp) for 2 ≤ p ≤ l − 1, by (3.10) and

(3.11) there is no L-colouring of P ′ with separation s such that at least one

of v1 and w is assigned the minimum colour in its list. This contradicts the

inductive hypothesis, and so completes the proof of Lemma 3.11. £

The key to the proof of Theorem 3.9 is the following lemma.

Lemma 3.12 If the vertices of G = Θ2a,2b,2c are assigned lists L(v) of size

2s (a, b, c, s ∈ N), and L(u) 6= L(w), then there is an L-colouring of G with

separation s.

Proof. For h ∈ {1, 2, 3} construct the set Fh = F (Ph) as above. Then there

is an L-colouring of G with separation s iff F1 ∪ F2 ∪ F3 6= L(u)× L(w).

So suppose there is no such colouring of G, i.e.

F1 ∪ F2 ∪ F3 = L(u)× L(w). (3.12)

By examining the sets F1, F2 and F3 we will eventually deduce that L(u) =

L(w), contradicting the hypothesis of the lemma.
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We will write L(u) = {x1, x2, . . . , x2s} and L(w) = {y1, y2, . . . , y2s}, with

the elements arranged in ascending order. The following pair of properties of

the sets Fh is crucial to the proof of the lemma:

i ≤ j and (x1, yi) ∈ Fh =⇒ (x2s, yj) /∈ Fh, (3.13)

i ≤ j and (xi, y1) ∈ Fh =⇒ (xj, y2s) /∈ Fh. (3.14)

Proof of (3.13) and (3.14): For h = 1, 2, 3 let m = a, b, c respectively.

Suppose (x1, yi) ∈ Fh and (x2s, yj) ∈ Fh. So by (3.3), I2m(x1) 6= ∅ 6=

I2m(x2s) and by (3.8), for 1 ≤ p ≤ 2m− 1,

|L(vp) ∩ Ip(x1)| ≥ |Ip+1(x1)| ≥ |I2m(x1)| > 0,

and similarly, L(vp) ∩ Ip(x2s) 6= ∅.

Now x2s − x1 ≥ 2s− 1 since |L(u)| = 2s, and so

max I1(x1) = x1 + s− 1 < x2s − (s− 1) = min I1(x2s). (3.15)

Since L(v1) ∩ I1(x1) 6= ∅ 6= L(v1) ∩ I1(x2s),

minL(v1) ≤ max I1(x1) < min I1(x2s) ≤ maxL(v1),
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and so minL(v1) /∈ I1(x2s) and maxL(v1) /∈ I1(x1). Again, maxL(v1) −

minL(v1) ≥ 2s− 1 since |L(v1)| = 2s, and so

max I2(x2s) = minL(v1) + s− 1 < maxL(v1)− (s− 1) = min I2(x1).

Since L(v2) ∩ I2(x1) 6= ∅ 6= L(v2) ∩ I2(x2s),

minL(v2) ≤ max I2(x2s) < min I2(x1) ≤ maxL(v2),

and so minL(v2) /∈ I2(x1) and maxL(v2) /∈ I2(x2s). Repeating the above

process, we see that for 1 ≤ q ≤ m,

max I2q−1(x1) < min I2q−1(x2s)

and max I2q(x2s) < min I2q(x1).

Since yi ∈ I2m(x1) and yj ∈ I2m(x2s), it follows that yi > yj and thus i > j,

which establishes (3.13). The proof of (3.14) is very similar. £

It follows from (3.13) and (3.14) that no two of (x1, y1), (x1, y2s) and

(x2s, y2s) can belong to the same Fh, and similarly if (x1, y2s) is replaced by

(x2s, y1). So we may assume that

(x1, y1) ∈ F1, (x2s, y2s) ∈ F2, (x1, y2s) ∈ F3, and (x2s, y1) ∈ F3.
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We need a final definition: the border of L(u)× L(w) is defined as

B =
{

(x, y) ∈ L(u)× L(w) : x ∈ {x1, x2s} or y ∈ {y1, y2s}
}

;

it consists of the starred cells in Figure 3.2.

x1 x2 · · · x2s

y1 ∗ ∗ ∗ ∗
y2 ∗ ∗
... ∗ ∗
y2s ∗ ∗ ∗ ∗

Figure 3.2: The border B of L(u)× L(w).

It follows from (3.13), (3.14) and convexity ((3.6) and (3.7)) that

F1 ∩B = {(xt, y1) : 1 ≤ t ≤ i} ∪ {(x1, yt) : 1 ≤ t ≤ j} (3.16)

for some values 1 ≤ i, j ≤ 2s − 1. Now we use Lemma 3.11 to bound the

size of the set F1 ∩ B. It can be seen that if i + j > 2s, (3.16) precisely

contradicts the statement of Lemma 3.11 for the path P1. Hence i + j ≤ 2s,

and |F1 ∩B| ≤ 2s− 1.

By symmetry (interchanging the roles of u and w, Ip and Jp, etc.) we can

deduce the corresponding properties of F2:

F2 ∩B = {(xt, y2s) : 2s− k + 1 ≤ t ≤ 2s}

∪ {(x2s, yt) : 2s− l + 1 ≤ t ≤ 2s} . (3.17)

37



3.2 Bounding chs(G) in terms of ch(G) Chapter 3: List colouring with separation

Since Lemma 3.11 is equally valid with the word ‘maximum’ substituted for

‘minimum’, we deduce that k + l ≤ 2s, and hence |F2 ∩B| ≤ 2s− 1.

Finally we consider F3 ∩ B. Since we are assuming (3.12) holds, F3 must

contain those elements of B not in F1 or F2, that is,

F3 ∩B ⊇ {(xt, y1) : i+ 1 ≤ t ≤ 2s}

∪ {(x2s, yt) : 1 ≤ t ≤ 2s− l}

∪ {(x1, yt) : j + 1 ≤ t ≤ 2s}

∪ {(xt, y2s) : 1 ≤ t ≤ 2s− k} . (3.18)

Note that (3.13) and (3.14) respectively imply the following:

(x1, yt) ∈ F3 =⇒ (x2s, yt) /∈ F3

and (xt, y1) ∈ F3 =⇒ (xt, y2s) /∈ F3,

which together with (3.18) show that i+1 > 2s−k and j+1 > 2s− l, so that

i + k ≥ 2s and j + l ≥ 2s. But since i + j ≤ 2s and k + l ≤ 2s, we must in

fact have equality throughout (as well as in (3.18)):

i+ j = k + l = i+ k = j + l = 2s.

The third and second terms in (3.18) respectively give {yj+1, . . . , y2s} ⊆

I2c(x1) and {y1, . . . , y2s−l} ⊆ I2c(x2s) (recalling that the path P3 has length

2c), so that |I2c(x1)| ≥ 2s − j = i and |I2c(x2s)| ≥ 2s − l = j. Repeated
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application of (3.8) then shows that, for p = 1, . . . , 2c− 1,

|L(vp) ∩ Ip(x1)| ≥ i and |L(vp) ∩ Ip(x2s)| ≥ j. (3.19)

However, since I1(x1) ∩ I1(x2s) = ∅, the sum of the left-hand sides in

(3.19) when p = 1 is at most |L(v1)| = 2s = i + j, and so equality must

hold (and L(v1) ⊆ I1(x1) ∪ I1(x2s)). In particular, by (3.15), this tells us

that minL(v1) ∈ I1(x1) and maxL(v1) ∈ I1(x2s). We now use the ‘exchange’

trick as in the proof of Lemma 3.11, using the facts that (x1, y2s) ∈ F3 and

(xi, y2s) ∈ F3, by (3.18):

minL(v1) ∈ I1(x1) =⇒ maxL(v1) /∈ I1(x1)

=⇒ maxL(v1) ∈ J1(y2s) by (3.5)

=⇒ minL(v1) /∈ J1(y2s)

=⇒ minL(v1) ∈ I1(xi) by (3.5)

=⇒ minL(v1) ≥ xi − (s− 1) (3.20)

=⇒ |L(v1) ∩ I1(x1)| ≤ (2s− 1)− (xi − x1)

≤ 2s− i = j. (3.21)

Combined with (3.19) this gives i ≤ j. But similar reasoning using the

facts that maxL(v1) ∈ I1(x2s), (x2s, y1) ∈ F3 and (xi+1, y1) ∈ F3 shows that

also j ≤ |L(v1) ∩ I1(x2s)| ≤ i. Hence we must have equality throughout:

i = j = k = l = s. (3.22)
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Figure 3.3 summarises what we know about each Fh ∩B at this point.

x1 · · · xs xs+1 · · · x2s

y1 F1 F1 F1 F3 F3 F3
... F1 F3

ys F1 F3

ys+1 F3 F2
... F3 F2

y2s F3 F3 F3 F2 F2 F2

Figure 3.3: The intersection of the border B of L(u)× L(w) with each Fh.

The conclusion (3.22) shows that we must also have equality in (3.20) and

(3.21), as well as in (3.19) for each p. Hence minL(v1) = xs − (s − 1) = x1

and |L(v1) ∩ I1(x1)| = s, and symmetrically, maxL(v1) = xs+1 + s − 1 = x2s

and |L(v1) ∩ I1(x2s)| = s. Thus we deduce that

L(u) = L(v1) = [x1, x1 + s− 1] ∪ [x2s − (s− 1), x2s].

We can now use the definitions of Ip(x) directly:

I2(x1) =
⋂

x2s−(s−1)≤c≤x2s

[c− (s− 1), c+ s− 1] = [x2s − (s− 1), x2s]

and I2(x2s) =
⋂

x1≤c≤x1+s−1

[c− (s− 1), c+ s− 1] = [x1, x1 + s− 1].

Since we have equality in (3.19), |L(v2) ∩ I2(x1)| = |L(v2) ∩ I2(x2s)| = s, and

it follows that L(v2) = L(v1) as above. Continuing this process we see that

L(u) = L(v1) = L(v2) = · · · = L(v2c−1) = L(w), which completes the proof of

Lemma 3.12. £
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It follows from the above proof that if there is no colouring of G = Θ2a,2b,2c

with separation s from lists of size 2s, the list assignment must in fact be

constant on one of the paths P1, P2 or P3. Note that we can indeed have

chs(G) > 2s if b > 1 and c > 1. A list assignment illustrating this for s = 1

and G = Θ2,4,4 is shown in Figure 3.4, which generalises to any s ∈ N if each

colour i in each list is replaced with the interval [is, is+ s− 1].

01

01

01

02

23

03

12

23

13

  

@@

¨̈

HH

@@

  

HH

¨̈

Figure 3.4: A list assignment showing that ch(Θ2,4,4) > 2.

Proof of Theorem 3.9. First, we observe that the technique of pruning

vertices of degree 1 also works for separation s. Suppose G is assigned lists of

size 2s, and we remove a vertex v of degree 1 and colour G− v from its lists.

We must choose a colour for v not contained in [c(w)− (s− 1), c(w) + s− 1],

where w is the sole neighbour of v in G, which we can do because the size of

this interval is 2s− 1. Thus if H is the core of G,

chs(G) ≤ 2s ⇐⇒ chs(H) ≤ 2s.

Applying Theorem 3.10, it suffices to consider the cases H = K1, H =

C2m+2 (m ≥ 1), and H = Θ2,2,2m (m ≥ 1). If H = K1 then G is 1-degenerate

(i.e. a tree), and the result follows from Theorem 3.6. We now establish the
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claims chs(C2m+2) ≤ 2s and chs(Θ2,2,2m) ≤ 2s simultaneously by induction on

m.

Note that C2m+2 ⊂ Θ2,2,2m, and so at each step we need only show that

chs(H) ≤ 2s for H = Θ2,2,2m. Let the vertices of H be assigned lists L(v) of

size 2s. Then by Lemma 3.12, we know H has an L-colouring with separation

s if L(u) 6= L(w). So assume L(u) = L(w), and form the graph H ′ from

H by identifying the vertices u and w (to give a new vertex u′ with N(u′) =

N(u)∪N(w)), and set L(u′) = L(u). Then any colouring of H ′ with separation

s will yield a colouring of H by setting c(u) = c(w) = c(u′).

If m = 1, then H ′ ∼= K1,3 (see Figure 3.5, top) and H ′ has an L-colouring

with separation s by Theorem 3.6. If m > 1, then core(H ′) ∼= C2m (Figure 3.5,

bottom), and H ′ has a colouring by the inductive hypothesis. £

We remark that the case chs(C2m+2) ≤ 2s was first established by Tesman

[24, Theorem 3.10], and the inductive argument in the above proof can be

avoided by using this result.

3.3 Planar and outerplanar graphs

We investigate the maximum value which chs(G) can take where s ∈ N is fixed

and G ranges over all planar or outerplanar graphs. Let mpl(s) denote the

maximum of chs(G) over all planar graphs G, and mop(s) the maximum over

all outerplanar graphs.

Every planar graph is 5-degenerate, and every outerplanar graph is 2-

degenerate [33, pp.240,243]. Together with Theorem 3.6, this tells us that
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mpl(s) ≤ 10s−4 and mop(s) ≤ 4s−1. For outerplanar graphs, we will use the

next lemma to show that this is the correct value.

Lemma 3.13 Let H be a graph with chs(H) = k, and let G = K1+ tH. Then

chs(G) ≤ k + 2s− 1, and equality holds if t ≥ k + 2s− 2.

Proof. Let L be a (k+2s−1)-list assignment for G. Let u be the ‘hub’ vertex

of G, and choose any x ∈ L(u). Define L′(v) = L(v) \ [x− (s− 1), x+ s− 1]

for v ∈ V \ {u}. Then |L′(v)| ≥ k for each v ∈ V \ {u}, and so there is an

L′-colouring with separation s of each copy of H. This gives an L-colouring of

G− u and leaves x as a valid colour for u, thus proving the inequality.

It now suffices to prove that equality holds when t = k + 2s − 2. Let

H1, . . . , Ht be the disjoint copies of H in G − u, and let Li be a (k−1)-list

assignment for Hi such that there is no Li-colouring of Hi with separation

s; we may assume that none of these lists contains any element smaller than
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Figure 3.5: Forming H ′ from H = Θ2,2,2m (for m = 1, 2).
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t + s. Let L(u) = [1, t], and for each i = 1, . . . , t and v ∈ V (Hi), let L(v) =

[i− (s− 1), i+ s− 1] ∪ Li(v). Then L is a t-list assignment for G.

Suppose c is an L-colouring of G with separation s; then c(u) = i for

some i ∈ [1, t]. But then c(v) /∈ [i− (s− 1), (i+ s− 1)] for v ∈ Hi, and so

c(v) ∈ Li(v). This gives an Li-colouring of Hi with separation s, contradicting

the definition of Li. Thus no such colouring c exists of G, and so chs(G) > t =

k + 2s− 2, as required. £

Theorem 3.14 For every s ∈ N, mop(s) = 4s− 1.

Proof. We observed above thatmop(s) ≤ 4s−1, and so we need an outerplanar

graph G for which chs(G) = 4s− 1. By Theorem 3.1(iii), chs(P2s) = 2s; so we

apply Lemma 3.13 with H = P2s and t = 4s− 2, to give G = K1 +(4s− 1)P2s

and ch(G) = 4s− 1 as required. £

Series-parallel (K4-minor-free) graphs are a larger class than outerplanar,

and so msp(s) = max{chs(G) : G is series-parallel} ≥ mop(s) = 4s− 1. On the

other hand, series-parallel graphs are also 2-degenerate, and somsp(s) ≤ 4s−1.

The result for planar graphs, as is often the case, is not so easily obtained.

Thomassen [26] provided an elegant proof that ch(G) ≤ 5 for every planar

graph G, and various authors [13,18,29] have given examples of planar graphs

which are not 4-choosable; thus mpl(1) = 5. By generalising these non-4-

choosable graphs we can show that mpl(s) ≥ 5s, but for s > 2 we can improve

upon this as in the following theorem.

Theorem 3.15 For every s ≥ 2, 6s− 2 ≤ mpl(s) ≤ 8s− 3.
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Proof. The lower bound follows by applying Lemma 3.13 a second time to

the graph G in Theorem 3.14. Alternatively, we can show that ch(G) > 6s− 3

if G = K2 + tP2s and t ≥ (6s − 3)2, by adapting the proof of Lemma 3.13 to

allow for two hub vertices.

Thomassen’s proof [26] that ch(G) ≤ 5 for any planar graph G is easily

adapted to show that chs(G) ≤ 8s − 3 for every s ∈ N. Our proof, although

obtained independently, is essentially identical to that of the same result given

by Wallace in his Ph.D. thesis [30], and is therefore omitted. £
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Chapter 4

Consecutive list colouring

4.1 Introduction

In this introduction we define the concept of consecutive list colouring, and

describe its relationship to some other graph colouring problems.

Consecutive list colouring can be regarded either as a generalisation of

classical graph colouring, or as a restriction of list colouring. A consecutive list

assignment is a function I which assigns to each vertex v ∈ V a set I(v) ⊆ Z of

consecutive integer colours. It is a k-consecutive list assignment if |I(v)| = k

for each v ∈ V . We can identify any k-consecutive list assignment with a

function a : V → Z, by setting I(v) = {a(v), . . . , a(v) + k − 1}. If a proper

I-colouring of G exists for every k-consecutive list assignment I, then G is said

to be k-consecutive-choosable, and the consecutive choosability cch(G) of G is

the smallest k such that G is k-consecutive-choosable.

Given the relationships between the three graph colouring problems de-
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scribed above, it is clear that

χ(G) ≤ cch(G) ≤ ch(G) (4.1)

for every graph G, since if G can be coloured from any lists of size k, then it

can certainly be coloured from any consecutive lists of size k; and if G can be

coloured from any consecutive lists of size k, then it can certainly be coloured

from the list {1, . . . , k} assigned to each vertex.

As noted in Section 1.4, χ(G) and ch(G) can be arbitrarily far apart. Given

this fact, we may be surprised by the following result.

Theorem 4.1 For any graph G, cch(G) = χ(G).

Proof. Write k = χ(G); we need to show that cch(G) ≤ k. Let h : V →

{1, . . . , k} be a proper k-colouring of G. Now given any k-consecutive list

assignment I, we wish to find a proper I-colouring of G. But for each v ∈ V

there must exist an integer c(v) ∈ I(v) such that c(v) ≡ h(v) (mod k). The

function c : V → Z thus defined is a proper I-colouring of G. £

Hence cch(G) is not a new parameter. However, consecutive choosability

becomes interesting when we introduce separation, as defined in Section 3.1.

The consecutive choosability with separation s, denoted cchs(G), is the smallest

k such that for every k-consecutive list assignment I, there exists an I-colouring

c with separation s, which we recall means that |c(v)−c(w)| ≥ s for all vw ∈ E.

Analogously to (4.1), we have the following pair of inequalities for any
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graph G and any s ∈ N:

sp(G, s) ≤ cchs(G) ≤ chs(G). (4.2)

Consecutive choosability with separation was briefly studied by Tesman, in

Section 3.3 of his Ph.D. thesis [24]. In his notation, as described in Section 3.1,

our cchs(G) corresponds to Tesman’s Ts−1-cch(G). However, his investigation

of the topic only extends to a comparison of chs(G) and cchs(G), showing that

they are equal for trees and odd cycles, but not for all graphs (specifically,

he shows that chs(C4) > cchs(C4) for s = 7, 9, 11, 12, 13, . . .). No further

results on consecutive choosability were published either in Tesman’s thesis or

elsewhere, although some of the known results in the general (non-consecutive)

case can be applied here.

As we shall see, cchs(G) can take only a small range of values for fixed

values of s and χ(G); specifically,

s(χ(G)− 1) + 1 ≤ cchs(G) ≤ sχ(G).

This in turn motivates the definition of a new graph invariant, which we call

the consecutive choosability ratio:

τ(G) = lim
s→∞

cchs(G)

s
.

In Section 4.2 we show that this limit exists, and find general relationships

between τ(G), cchs(G) and χ(G). In Section 4.3 we give an alternative char-
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acterisation of τ(G) in terms of assignments of real intervals, and show that

τ(G) is rational for all graphs G. Values of τ(G) for various classes of graphs G

are determined in Section 4.4. The relationship between τ(G) and the circular

chromatic number χc(G), and the spectrum of τ , are studied in Section 4.5.

4.2 The consecutive choosability ratio τ (G)

Upper and lower bounds on cchs(G), in terms of s and χ(G), are relatively

easy to obtain. Lemma 2.1 and equation (4.2) combine to give a lower bound

on cchs(G) as in the following theorem. We give a direct proof of the result,

since it illustrates a method of proof which will be useful later.

Theorem 4.2 For any graph G and any s ∈ N,

cchs(G) ≥ s(χ(G)− 1) + 1.

Proof. The result is trivial if G is empty (i.e. has no edges). Assuming G is

not empty, assign to each vertex v the list I(v) = {0, . . . , s(χ(G)− 1)− 1}. We

show that no I-colouring of G has separation s, and so cchs(G) > s(χ(G)−1).

Let c : V → Z be any I-colouring of G, and define h : V → Z by

setting h(v) =
⌊

c(v)
s

⌋

. Then 0 ≤ h(v) ≤ χ(G) − 2 for each v ∈ V .

Now h cannot be a proper colouring of G, since it only uses χ(G) − 1

colours. Thus there exists some edge vw ∈ E such that h(v) = h(w). Then

c(v), c(w) ∈ {sh(v), . . . , s(h(v) + 1)− 1}, and so |c(v)− c(w)| ≤ s− 1. Thus c

is not a colouring with separation s. £
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An upper bound for cchs(G) can be obtained by emulating the proof of

Theorem 4.1 above.

Theorem 4.3 For any graph G and any s ∈ N,

cchs(G) ≤ sχ(G).

Proof. Write k = χ(G), and let h : V → {1, . . . , k} be a proper k-colouring

of G. Now given any consecutive lists I(v) of size sk, we wish to find a proper

I-colouring of G with separation s. But for each v ∈ V there must exist an

integer c(v) ∈ I(v) such that c(v) ≡ sh(v) (mod sk). The function c : V → Z

thus defined is an I-colouring of G with separation s. £

Thus we have the following bounds on cchs(G):

s(χ(G)− 1) + 1 ≤ cchs(G) ≤ sχ(G), (4.3)

and dividing through by s, we see that

χ(G)− 1 <
cchs(G)

s
≤ χ(G). (4.4)

A natural question now arises: does the central term cchs(G)
s

in (4.4) tend to

a limit as s → ∞? To show that it does, we need the following lemma which

relates the values of cchs(G) and cchr(G) for any pair of natural numbers

s, r ∈ N. Note that this result is a generalisation of (4.3), since cch1(G) =

cch(G) = χ(G) by Theorem 4.1.
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Lemma 4.4 For any graph G and any s, r ∈ N,

⌊r

s
(cchs(G)− 1)

⌋

+ 1 ≤ cchr(G) ≤
⌈r

s
cchs(G)

⌉

.

Proof. Write cs = cchs(G). Firstly, note that the upper and lower bounds are

in fact equivalent:

cr ≤
⌈

r
s
cs
⌉

⇐⇒ cr ≤ r
s
cs +

s−1
s

⇐⇒ s
r
cr ≤ cs +

s−1
r

⇐⇒ s
r
(cr − 1)− r−1

r
+ 1 ≤ cs ⇐⇒

⌊

s
r
(cr − 1)

⌋

+ 1 ≤ cs ,

where the first and last implications hold because cr and cs are integers. So

it suffices to prove the upper bound cr ≤
⌈

r
s
cs
⌉

. This means that, given

any function a : V → Z, we need to show that there is an I-colouring with

separation r from the lists I(v) = {a(v), . . . , a(v) +
⌈

r
s
cs
⌉

− 1}.

To do this we define a scaling function p : Z → Z on the integers, by setting

p(i) =
⌊

r
s
i
⌋

. We will make use of the easily proved inequalities

⌊a⌋+ ⌊b⌋ ≤ ⌊a+ b⌋ ≤ ⌊a⌋+ ⌈b⌉. (4.5)

Let J(v) be the consecutive list {i ∈ Z : p(i) ∈ I(v)}. Each J(v) has size

at least cs. To see this, let x = min J(v). Then p(x− 1) ≤ a(v)− 1, and so

p(x− 1 + cs) ≤ a(v)− 1 +
⌈

r
s
cs
⌉

= max I(v),
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using the second inequality in (4.5). Thus {x, . . . , x+ cs − 1} ⊆ J(v), and so

|J(v)| ≥ cs.

By the definition of cs = cchs(G), it follows that there exists a J-colouring

h : V → Z with separation s. So set c(v) = p(h(v)). This gives an I-colouring

since c(v) ∈ p(J(v)) ⊆ I(v). To show that it has separation r, let vw be any

edge of G. Then w.l.o.g. h(w) ≥ h(v) + s, and so

c(w) ≥ p(h(v) + s) ≥ p(h(v)) + p(s) = c(v) + r,

using the first inequality in (4.5). Thus c is an I-colouring with separation r,

and this completes the proof of Lemma 4.4. £

Using Lemma 4.4 we can now assert that cchs(G)
s

does indeed tend to a

limit as s → ∞, and define the consecutive choosability ratio τ(G) to equal

this limit.

Theorem 4.5 For any graph G, the limit

τ(G) = lim
s→∞

cchs(G)

s

exists. Furthermore, χ(G)− 1 ≤ τ(G) ≤ χ(G).

Proof. Writing cs = cchs(G) as before, the result of Lemma 4.4 implies that

r
s
(cs − 1) < cr <

r
s
cs + 1, so that

cs
s
− 1

s
<

cr
r

<
cs
s
+

1

r

52



4.2 The consecutive choosability ratio τ(G) Chapter 4: Consecutive list colouring

and therefore
∣

∣

∣

cr
r
− cs

s

∣

∣

∣
<

1

min{r, s} .

Hence
(

cchs(G)
s

)

s∈N
is a Cauchy sequence, and so converges in R to a limit

τ(G). Moreover, since by (4.4) each of the terms in the sequence lies in the

real interval (χ(G)− 1, χ(G)], it follows that χ(G)− 1 ≤ τ(G) ≤ χ(G). £

We can obtain a small but significant improvement to our upper bound on

τ(G). In the proof of Theorem 4.3, the colouring c used only multiples of s.

We could equally have chosen to use members of any congruence class modulo

s, and we use this choice to our advantage in the following lemma.

Lemma 4.6 If G is a graph on n vertices and s ∈ N, then

cchs(G) ≤ sχ(G)−
⌈

sχ(G)

n

⌉

+ 1.

Proof. Write k = χ(G) and t = ⌈sk/n⌉ − 1 < sk/n, and let h : V →

{1, . . . , k} be a proper k-colouring of G. Given any consecutive lists I(v) of

size sk− t, we want to produce an I-colouring of G with separation s. Choose

b ∈ {0, . . . , sk − 1}. For each vertex v there exists c(v) ∈ I(v) such that

c(v) ≡ b+ sh(v) (mod sk), (4.6)

for all but t possible choices of b. But since nt < sk, there is some choice of b

for which a suitable c(v) can be chosen for every vertex v. With this b, (4.6)

gives an I-colouring of G with separation s as required. £
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Dividing the result of Lemma 4.6 through by s, and taking the limit as

s → ∞, we obtain the upper bound in the following theorem.

Theorem 4.7 For any graph G on n vertices,

χ(G)− 1 ≤ τ(G) ≤ χ(G)
(

1− 1
n

)

. £

Observe that the lower and upper bounds on τ(G) in Theorem 4.7 are equal

if χ(G) = n, i.e. if G is a complete graph:

Corollary 4.8 τ(Kn) = n− 1. £

As another consequence of Theorem 4.7, we can now state that τ(G) is a

refinement of χ(G). By this we mean that if we know τ(G) for a finite graph

G, we can obtain χ(G) immediately, since τ(G) < χ(G) ≤ τ(G) + 1 and so

χ(G) = ⌊τ(G)⌋+ 1.

(This need not be true if G is infinite, and τ(G) is not strictly a refinement

of χ(G) for infinite graphs. We return to this observation in Section 4.5.)

On the other hand, two graphs with the same chromatic number can have

different values of τ(G). Thus, like the circular chromatic number χc(G),

τ(G) contains more information about the structure of G than χ(G). The

relationship between τ(G) and χc(G) is discussed in Section 4.5.

In fact, as we shall see in Theorem 4.10, τ(G) contains precisely enough

information to tell us the value of cchs(G) for every s ∈ N (recall that
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cch1(G) = cch(G) = χ(G)). In the result of Lemma 4.4, note that the ex-

pressions inside the floor ⌊ · · · ⌋ and ceiling ⌈ · · · ⌉ are integers when r is a

multiple of s. Hence if r = ps, we can write

p(cchs(G)− 1) + 1 ≤ cchps(G) ≤ p cchs(G). (4.7)

As in Lemma 4.6, we can obtain a small improvement to this upper bound.

Lemma 4.9 If G is a graph on n vertices and p, s ∈ N, then

cchps(G) ≤ p cchs(G)− ⌈p/n⌉+ 1.

Proof. Set t = ⌈p/n⌉ − 1 < p/n and write cs = cchs(G) as before. Given any

consecutive lists I(v) of size pcs − t, we want to produce an I-colouring of G

with separation ps. Choose b ∈ {0, . . . , p− 1} and for each vertex v, let J(v)

be the consecutive list {i ∈ Z : b+ ip ∈ I(v)}.

Then |J(v)| = cs, except for t of the possible values of b, for which |J(v)| =

cs − 1. But since nt < p, there is some choice of b for which all the lists J(v)

have size cs. Hence for this b, there exists a J-colouring h : V → Z with

separation s. Now set c(v) = b + ph(v) to obtain an I-colouring of G with

separation ps. £

Note that if we specialise Lemma 4.9 to the case s = 1, we only obtain

cchp(G) ≤ p cch1(G)− ⌈p/n⌉+ 1 = pχ(G)− ⌈p/n⌉+ 1,
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which is not as strong as Lemma 4.6: our improvement to the upper bound

is missing a factor of χ(G). Nevertheless, Lemma 4.9 is enough to imply the

following theorem, which determines any cchs(G) in terms of τ(G).

Theorem 4.10 For any graph G and any s ∈ N,

cchs(G) = ⌊s τ(G)⌋+ 1.

Proof. Combining equation (4.7) and Lemma 4.9, we see that

p(cchs(G)− 1) + 1 ≤ cchps(G) ≤ p cchs(G)− ⌈p/n⌉+ 1.

Dividing through by p, and taking the limit as p → ∞, we obtain

cchs(G)− 1 ≤ sτ(G) ≤ cchs(G)− 1/n.

Since cchs(G) is an integer, this implies the result of the theorem. £

4.3 Real intervals and the rationality of τ (G)

So far the lists we have considered have been sets of consecutive integers.

Instead of increasing the separation s, we can equivalently fix the separation

to be 1, and choose the elements of I(v) at intervals of 1/s along the real line.

Now in the limit as s → ∞, we can regard I(v) as approximating a closed

interval of real numbers.

For κ ∈ R+, a κ-interval assignment is a function Γ which assigns to
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each vertex v ∈ V a closed real interval Γ(v) of length κ. We can identify

any κ-interval assignment with a function α : V → R by setting Γ(v) =

[α(v), α(v) + κ]. A Γ-colouring γ : V → R of G is proper if |γ(v)− γ(w)| ≥ 1

for all vw ∈ E.

We define the interval choosability τ ∗(G) to be the infimum of all κ ∈ R+

such that for every κ-interval assignment Γ, there exists a proper Γ-colouring.

As the following lemma shows, the infimum in the definition of τ ∗(G) is always

attained, and so can be replaced by a minimum.

Lemma 4.11 For any graph G, let κ = τ ∗(G). Then for every κ-interval

assignment Γ, there exists a proper Γ-colouring.

Proof. Given any function α : V → R we need to construct a proper Γ-

colouring from the intervals Γ(v) = [α(v), α(v) + κ]. For each r ∈ N, τ ∗(G) <

κ + 1
r
and so we know that there exists a proper colouring γr : V → R from

the intervals Γr(v) =
[

α(v), α(v) + κ+ 1
r

]

.

Write V = {v1, . . . , vn}. The vectors
(

γr(v1), . . . , γr(vn)
)

(r = 1, 2, . . .)

form a bounded sequence in Rn, and so by the Bolzano-Weierstrass Theorem,

there is a subsequence converging to a limit
(

γ(v1), . . . , γ(vn)
)

. This defines a

colouring γ : V → R of G. If vivj ∈ E then |γr(vi)−γr(vj)| ≥ 1 for each r ∈ N,

and so |γ(vi)− γ(vj)| ≥ 1; thus γ is a proper colouring of G. Furthermore, for

each vi ∈ V ,

γ(vi) ∈
⋂

r∈N

[

α(vi), α(vi) + κ+ 1
r

]

= [α(vi), α(vi) + κ] = Γ(vi),

and so γ : V → R is a Γ-colouring of G. £
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Our next task is to show that the consecutive choosability ratio τ(G) and

the interval choosability τ ∗(G) are in fact the same for all graphs G.

Theorem 4.12 For any graph G, τ(G) = τ ∗(G).

Proof. First, we show that τ ∗(G) ≤ τ(G). For s ∈ N, let κ = cchs(G)
s

. Then

given any κ-interval assignment Γ(v) = [α(v), α(v) + κ] for G, define consecu-

tive lists I(v) = [sα(v), s(α(v) + κ)] ∩ Z. Each of the lists I(v) contains at

least cchs(G) elements, and so there exists an I-colouring c : V → Z of G with

separation s. Now γ(v) = c(v)/s defines a proper Γ-colouring of G and so,

using Theorem 4.10,

τ ∗(G) ≤ κ =
cchs(G)

s
=

⌊s τ(G)⌋+ 1

s
≤ τ(G) +

1

s
. (4.8)

Since (4.8) holds for any s ∈ N, we deduce that τ ∗(G) ≤ τ(G).

For the reverse inequality, take s ∈ N and let k = ⌊sτ ∗(G)⌋+1. Given any k-

consecutive list assignment I(v) = {a(v), . . . , a(v) + k − 1}, we will show that

there exists an I-colouring ofG with separation s. Let Γ(v) = [a(v)/s, a(v)/s+

τ ∗(G)]. By Lemma 4.11 we know that there exists a proper Γ-colouring γ :

V → R. Now let c(v) = ⌊sγ(v)⌋ for v ∈ V . Then a(v) ≤ c(v) ≤ a(v) +

⌊sτ ∗(G)⌋, since a(v) is an integer, and so c : V → Z defines an I-colouring of

G. To show that it has separation s, let vw be any edge of G. Then w.l.o.g.

γ(w) ≥ γ(v)+1, and so c(w) = ⌊sγ(w)⌋ ≥ ⌊sγ(v)+s⌋ = ⌊sγ(v)⌋+s = c(v)+s.

Thus c has the required properties.

Hence cchs(G) ≤ ⌊sτ ∗(G)⌋ + 1 for any s ∈ N. Dividing through by s and

taking the limit as s → ∞, we see that τ(G) ≤ τ ∗(G) as required. £
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Theorem 4.12 tells us that the above definition of interval choosability is

simply an alternative definition of τ(G). When determining values of τ(G)

for various graphs G in later sections, sometimes it will be easier to phrase

the proof in terms of consecutive lists of integers, and in other cases it will be

easier to use real intervals.

We conclude this section by showing that τ(G) is rational, and that its

lowest denominator is at most the number of vertices of G. To do this we

introduce yet another definition of τ(G), which can be seen to be equivalent

to that given above for τ ∗(G). Given a graph G = (V,E) and a function

α : V → R, let κG(α) be the infimum of all κ ∈ R+ such that there exists a

proper Γ-colouring from the intervals Γ(v) = [α(v), α(v) + κ]. Then it is easy

to see that

τ(G) = τ ∗(G) = sup
α:V→R

κG(α). (4.9)

We can express κG(α) as the infimum of

max{γ(v)− α(v) : v ∈ V } (4.10)

over all proper colourings γ : V → R such that γ(v) ≥ α(v) for all v ∈ V .

For example, if α(v) = 0 for all v ∈ V then (4.10) is minimised by setting

γ(v) = c(v), where c : V → {0, . . . , χ(G)− 1} is any proper χ(G)-colouring of

G, and hence κG(α) = χ(G)− 1.

To simplify notation, we identify functions α : V → R with vectors x ∈ Rn

by setting xi = α(vi), where v1, . . . , vn is a fixed ordering of V . This allows us
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to regard κG as a function from Rn to R.

Theorem 4.13 For any graph G on n vertices, τ(G) is rational, and can be

expressed as τ(G) = p/q with q ≤ n.

Proof. Write τ = τ(G). We assume that G is not empty, so that τ > 0 and κG

is not identically zero. Fix x ∈ Rn and an ordering v1, . . . , vn of the vertices,

and let eij = 1 if vivj ∈ E and eij = 0 otherwise.

We seek a colouring γ : V → R such that γ(vi) ≥ xi for 1 ≤ i ≤ n, and

which minimises (4.10). To do this, for each permutation σ ∈ Sn we find such

a colouring which minimises (4.10) subject to the additional constraint

γ(vσ(1)) ≤ γ(vσ(2)) ≤ . . . ≤ γ(vσ(n)).

This is achieved by assigning, for each i = 1, . . . , n in turn, the smallest colour

γ(vσ(i)) ≥ xσ(i) such that γ(vσ(i))− γ(vσ(j)) ≥ eσ(i)σ(j) for every j < i. Taking

σ = id(Sn) for clarity, this algorithm proceeds as follows:

γ(v1) = x1,

γ(v2) = max{x2, γ(v1) + e12} = max{x2, x1 + e12},

γ(v3) = max{x3, γ(v1) + e13, γ(v2) + e23}

= max{x3, x1 + e13, x2 + e23, x1 + e12 + e23}, . . .

and hence, for this colouring, we obtain the following expression for (4.10):

max{γ(vi)− xi : 1 ≤ i ≤ n} = max
1≤j≤i≤n

{xj + t(i, j)− xi} ,

60



4.3 Real intervals and the rationality of τ(G)Chapter 4: Consecutive list colouring

where each t(i, j) is an integer between 0 and i−j (so that t(i, i) = 0). Finally,

we minimise over all σ ∈ Sn to obtain an expression for κG(x):

κG(x) = min
σ∈Sn

max
1≤j≤i≤n

{

xσ(j) + tσ(i, j)− xσ(i)

}

. (4.11)

Let F be the set of all the nonzero functionals xσ(j) + tσ(i, j)− xσ(i) in (4.11).

(We will not need to consider the zero functionals, as we assumed that τ > 0.)

From (4.11) we deduce that κG : Rn → R is continuous and piecewise

linear. It follows that the supremum in (4.9) is attained, and we can choose

z ∈ Rn such that κG(z) = τ . Now let S = {f ∈ F : f(z) = τ}, and

A = {x ∈ Rn : f(x) = g(x) ∀f, g ∈ S}.

Clearly, A is an affine subspace of Rn, and z ∈ A. Choose a representative

f ∈ S, and let ε = min{|g(z)− τ | : g ∈ F \ S}, and N = {x ∈ A : ‖x− z‖ <

ε/4}. Then for all g ∈ F and x ∈ N , |g(x)− g(z)| < ε/2, and it follows that

g(x) < f(x) if g(z) < f(z),

g(x) > f(x) if g(z) > f(z),

and g(x) = f(x) if g(z) = f(z) (i.e. if g ∈ S).

Together with (4.11), this implies that κG(x) = f(x) for all x ∈ N . But since

f(z) = τ = sup{κG(x) : x ∈ Rn} and f is linear, this implies that f has

constant value τ on N and hence on A, and so do all the other functionals in
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S since they are equal to f on A.

Let T ⊆ S be minimal such that A = {x ∈ Rn : f(x) = g(x) ∀f, g ∈ T}.

Form a (multi)graph H with vertex set V , and an edge er = virvjr for each of

the functionals fr(x) = xjr − xir + tr in T . We will now show that H contains

a cycle (possibly in the form of a pair of parallel edges). So suppose this is

not the case; then H is simple and 1-degenerate, that is, the vertices can be

reordered as v1, . . . , vn so that each vertex vi is adjacent to at most one vertex

vj with j < i. Choose λ ∈ R such that λ 6= τ , and construct x ∈ Rn as follows:

set x1 = 0; then for each i ∈ {2, . . . , n} in turn, set xi = xjr − λ+ tr if there is

an edge er = virvjr with jr < ir = i, and xi = 0 otherwise. This ensures that

f(x) = λ for each f ∈ T , and hence x ∈ A. However, this is a contradiction

since we showed above that f(x) = τ for all f ∈ S and x ∈ A. This shows

that H must contain a cycle C.

By relabelling the edges er of H (and the corresponding functionals fr) we

may assume that C = e1 · · · em, where 2 ≤ m ≤ n. Now orient the edges of C

so that it is a directed cycle; then let sm = +1 if −→er = −−−→virvjr , and sm = −1 if

er has the opposite orientation. Then

m
∑

r=1

srfr(z) =
m
∑

r=1

srtr = p ∈ Z,

since we have oriented C so that the xir and xjr terms cancel. But

m
∑

r=1

srfr(z) =
m
∑

r=1

srτ = qτ,
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where q ∈ Z and |q| ≤ m ≤ n. Note also that q cannot be zero, since this

would imply a dependence among the functionals f1, . . . , fm and contradict

the minimality of T . Hence q 6= 0, and τ(G) = τ = p/q as required. £

4.4 Determining τ (G)

In this section we introduce various techniques for finding upper and lower

bounds on τ(G), and use them to determine the value of τ(G) for various

classes of graphs G.

4.4.1 Bipartite graphs

We begin by using results of Tesman [24] to determine τ(G) for all bipartite

graphs G.

Theorem 4.14 If G is a connected bipartite graph on n vertices, then

τ(G) = 2
(

1− 1
n

)

.

Proof. For any s ∈ N and any tree Bn on n vertices, Tesman computes

the value of chs(Bn), as given in Theorem 3.1(iii), and later observes that

cchs(Bn) = chs(Bn) [24, Proposition 3.3.3]; thus cchs(Bn) =
⌊

2s
(

1− 1
n

)⌋

+ 1.

Taking the limit as s → ∞ we see that τ(Bn) = 2
(

1− 1
n

)

.
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Now let G be a connected bipartite graph on n vertices; since it contains a

spanning tree Bn, we deduce that

2
(

1− 1
n

)

= τ(Bn) ≤ τ(G) ≤ 2
(

1− 1
n

)

,

where the final inequality is the upper bound from Theorem 4.7. £

Since Theorem 4.14 is integral to much of what follows, we will present a

complete proof for the case when G is a star graph. Tesman’s proof of Theorem

3.1(iii) uses a similar method for star graphs, and proves the general result by

a complicated induction on the tree-height of a rooted tree.

Proof of Theorem 4.14 for star graphs. Let G = K1,r with vertices

u, v1, . . . , vr. We want to show that τ(G) = 2
(

1− 1
r+1

)

. By Theorem 4.10, this

is equivalent to showing that cchs(G) =
⌊

2s(1− 1
r+1

)
⌋

+ 1 for each s ∈ N.

Let s, t ∈ N with t < 2s, and let I be an assignment of consecutive lists

of size 2s− t. For each i ≤ r, suppose I(vi) = {ai, . . . , ai + 2s− t− 1}. Then

there are precisely t integers ai+s− t, . . . , ai+s−1 whose distance from every

element of I(vi) is less than s, and which therefore cannot be used to colour

u. Let Fi = {ai + s− t, . . . , ai + s− 1} and F =
⋃

i≤r Fi; now the colour c(u)

we choose for u extends to a colouring of G iff c(u) /∈ F .

Now suppose I(u) = {0, . . . , 2s− t− 1} and ai = it − s for i ≤ r, so that

F = {0, . . . , rt− 1}. We see that I(u) ⊆ F (and hence there is no I-colouring

of G) if 2s− t ≤ rt, that is, if t ≥ 2s
r+1

. Hence cchs(G) > 2s
(

1− 1
r+1

)

, and thus

cchs(G) ≥
⌊

2s(1− 1
r+1

)
⌋

+ 1 since cchs(G) is an integer.
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On the other hand, if 2s− t > 2s(1− 1
r+1

) then |I(u)| = 2s− t > rt ≥ |F |,

and hence we can always find a suitable c(u) ∈ I(u) \ F which extends to a

colouring of all of G. The upper bound cchs(G) ≤
⌊

2s(1− 1
r+1

)
⌋

+ 1 follows.

(Note that we can also deduce this from Lemma 4.6). £

For a disconnected graph G, τ(G) is the maximum of τ(H) over all the

connected components H of G. Hence the result of Theorem 4.14 holds for all

bipartite graphs G by setting n equal to the number of vertices in the largest

component of G.

4.4.2 Some graphs for which τ(G) = χ(G)− 1

We know that for any graph G, τ(G) ≥ χ(G) − 1. One class of graphs for

which this bound is attained is the class of colour-critical graphs. A graph G

is k-colour-critical if χ(G) = k, but χ(G− v) < k for every v ∈ V .

Theorem 4.15 If G is a k-colour-critical graph then τ(G) = k − 1.

Proof. We use the characterisation of τ(G) based on real intervals. Let Γ be

any (k−1)-interval assignment forG. Suppose w.l.o.g. that the smallest element

in any of the intervals Γ(v) is 0, and choose u ∈ V such that Γ(u) = [0, k− 1].

For v ∈ V \{u}, define I(v) = Γ(v)∩N, so that |I(v)| ≥ k−1. Then G−u has

a proper I-colouring c by Theorem 4.1, since cch1(G− u) = χ(G− u) = k− 1.

Finally, c extends to a Γ-colouring of G by setting c(u) = 0. £

This result allows us to determine τ(G) for odd cycles and (generalised)

odd wheels.

Corollary 4.16 For r ∈ N, τ(C2r+1) = 2 and τ(Kk + C2r+1) = k + 2. £
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Another class of graphs for which τ(G) = χ(G) − 1 consists of graphs of

the form G = Kk +Kr, where k ≥ 2 and r ≥ 1. To prove this result we use

the following lemma, which is quite similar to Theorem 4.15 above, although

it does not seem to be possible to deduce one from the other.

Lemma 4.17 Let G = (V,E) be a graph with u ∈ V . If a proper I-colouring

exists for every assignment I of consecutive lists such that |I(u)| ≥ χ(G) and

|I(v)| ≥ χ(G)− 1 for v ∈ V \ {u}, then τ(G) = χ(G)− 1.

Proof. Again, we use the characterisation of τ(G) based on real intervals. Let

k = χ(G) − 1 and let Γ be any k-interval assignment for G. Suppose w.l.o.g.

that Γ(u) = [0, k], and let I(v) = Γ(v) ∩ Z for v ∈ V . Then |I(v)| ≥ k for

v ∈ V , and |I(u)| = k + 1 = χ(G). Thus I is an assignment of consecutive

lists satisfying the conditions stated in the Lemma, and hence there exists a

proper I-colouring, which in turn is also a Γ-colouring. £

Theorem 4.18 For k, r ∈ N,

τ(Kk +Kr) =











2r
r+1

k = 1

k k ≥ 2.

Proof. The result for k = 1 follows from Theorem 4.14 for bipartite graphs.

So assume that k ≥ 2, and let H = Kk and G = H +Kr.

Let v1, . . . , vk be the vertices of H; we will apply Lemma 4.17 to G, with

u = vk. Given a consecutive list assignment I for G such that |I(vk)| = k + 1

and |I(v)| = k for v ∈ V (G)\{vk}, let ai = min I(vi) for i = 1, . . . , k. If ai = a

for all i ≤ k, then colour H by setting c(vi) = a+ i− 1 for i = 1, . . . , k− 1 and
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c(vk) = a + k. On the other hand, if the ai are not all the same, we do not

need the fact that |I(vk)| > k, and so we rearrange the vertices of H so that

a1 ≤ a2 ≤ · · · ≤ ak and colour the vertices of H by setting c(vi) = ai + i − 1

for i = 1, . . . , k.

This gives a proper I-colouring of H, and ensures that the set S of k

colours assigned to its vertices is not a list of consecutive integers. Now for

each remaining vertex v ∈ G \H, the interval I(v) contains k integers which

are consecutive. Hence I(v) 6= S, and there exists some colour in I(v) \ S

which we can assign to v. This completes the I-colouring of G. Hence, by

Lemma 4.17, τ(G) = χ(G)− 1 = k. £

4.4.3 More techniques for bounding τ(G) from above

Lemma 4.17 uses consecutive list assignments for G where the lists are not all

the same size to prove that τ(G) ≤ χ(G)− 1. In the following two generalisa-

tions we use the same technique to establish more general upper bounds.

Lemma 4.19 Let G = (V,E) be a graph with u ∈ V . If an I-colouring

with separation s exists for every assignment I of consecutive lists such that

|I(u)| ≥ k + 1 and |I(v)| ≥ k for v ∈ V \ {u}, then τ(G) ≤ k/s.

Proof. Let Γ be any (k/s)-interval assignment for G, and suppose w.l.o.g.

that Γ(u) = [0, k/s]. For v ∈ V , write Γ(v) = [α(v), α(v) + k/s], and let

I(v) = [sα(v), sα(v) + k] ∩ Z. Then |I(v)| ≥ k for v ∈ V , and |I(u)| = k + 1.

Thus I satisfies the conditions stated in the Lemma, and hence there exists an
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I-colouring c with separation s. Finally, we obtain a proper Γ-colouring γ by

setting γ(v) = c(v)/s. £

Lemma 4.20 Let G = (V,E) be a graph, and let U ⊆ V and 1 ≤ q ≤ |U |.

Suppose that whenever Q ⊆ U and |Q| = q, a proper I-colouring exists for

every assignment I of consecutive lists such that |I(v)| ≥ χ(G) for v ∈ Q and

|I(v)| ≥ χ(G)− 1 for v ∈ V \Q. Then

τ(G) ≤ χ(G)− 1 +
q − 1

|U | .

Proof. Write m = |U | and let κ = χ(G) − 1 + (q − 1)/m + δ, where δ > 0.

Let Γ be any κ-interval assignment for G. We will choose β ∈ [0, 1) and let

Iβ(v) = Γ(v) ∩ (Z + β) for v ∈ V , where Z + β = {n + β : n ∈ Z}. Note that

whatever β we choose, |Iβ(v)| ≥ χ(G)− 1 for all v ∈ V .

For v ∈ U , let fv(β) = 1 if |Iβ(v)| = χ(G) and fv(β) = 0 otherwise, and

let f(β) =
∑

v∈U fv(β). Then fv(β) = 1 iff β ∈ [α(v), α(v) + (q − 1)/m + δ]

(mod 1), where Γ(v) = [α(v), α(v) + κ], and so

∫

[0,1)

fv(β)dβ = (q − 1)/m+ δ;

and summing over v ∈ U , we obtain

∫

[0,1)

f(β)dβ = q − 1 +mδ.

Thus there exists β ∈ [0, 1) such that f(β) ≥ q−1+mδ, and hence f(β) ≥ q

since f(β) ∈ Z. It follows that for this choice of β, there is a set Q ⊆ U of
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size q such that |I(v)| ≥ χ(G) for all v ∈ Q. Thus Iβ is an assignment of

lists of consecutive integers (shifted by β) satisfying the conditions stated in

the lemma, and so there exists a proper Iβ-colouring, which in turn is also a

Γ-colouring. Hence τ(G) ≤ χ(G) − 1 + (q − 1)/m + δ, and since δ > 0 was

arbitrary, the result of the lemma follows. £

As an application of Lemma 4.20, we now determine τ(G) for graphs of

the form G = K1 + rKk, formed by taking r disjoint copies of Kk and joining

them to a single additional vertex.

Theorem 4.21 For k, r ∈ N, let G = K1 + rKk. Then τ(G) = k + 1− 2
r+1

.

Proof. If r = 1, then G = Kk+1 and the result follows from Corollary 4.8; if

k = 1, then G is a star graph and the result follows from Theorem 4.14. So

assume k ≥ 2 and r ≥ 2. Let u be the universal vertex in G, and let {vij :

1 ≤ i ≤ r, 1 ≤ j ≤ k} be the remaining vertices, such that vi1, . . . , vik induce a

complete graph for each i ≤ r. We will first establish that τ(G) ≥ k+1− 2
r+1

.

Let H be the subgraph of G induced by the vertices U = {u, v11, . . . , vr1};

then H ∼= K1,r and τ(H) = 2− 2
r+1

. Let κ = 2− 2
r+1

− δ, where δ > 0. Then

there exists a function α : U → R such that there is no proper Γ-colouring of

H from the intervals Γ(v) = [α(v), α(v) + κ]. Extend the function α to all of

V by setting α(vij) = α(vi1) for all i, j.

We will now show by contradiction that there is no proper Γ′-colouring of

G from the intervals Γ′(v) = [α(v), α(v)+k−1+κ]. Suppose such a colouring
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γ′ : V → R exists. For each i ≤ r we may assume w.l.o.g. that

γ′(vi1) ≤ γ′(vi2)− 1 ≤ γ′(vi3)− 2 ≤ · · · ≤ γ′(vik)− k + 1,

using the fact that these vertices are mutually adjacent. Thus for 1 ≤ j ≤ k,

γ′(vi1)− j + 1 ≤ γ′(vij) ≤ γ′(vik)− k + j, and so

α(vi1) + j − 1 ≤ γ′(vij) ≤ α(vi1) + j − 1 + κ.

Let t = min{⌊γ′(u)− α(u)⌋, k − 1}. Then γ′(u) ∈ [α(u) + t, α(u) + t+ κ],

and for 1 ≤ i ≤ r, γ′(vi t+1) ∈ [α(vi1) + t, α(vi1) + t + κ]. But this allows

us to construct a proper Γ-colouring γ of H by setting γ(u) = γ′(u) − t and

γ(vi1) = γ′(vi t+1) − t for 1 ≤ i ≤ r. This contradiction implies that τ(G) >

k − 1 + κ = k + 1 − 2
r+1

− δ, and hence τ(G) ≥ k + 1 − 2
r+1

, since δ > 0 was

arbitrary.

To show that τ(G) ≤ k + 1 − 2
r+1

we use Lemma 4.20, with U as above

and q = r. There are two cases to consider for the set Q: either Q = U \ u, or

Q = U \ {vi1}, where w.l.o.g. i = 1. Now given an assignment I of consecutive

lists as in Lemma 4.20, noting that χ(G) = k + 1, we can properly I-colour

the vertices of G in the following order if Q = U \ u:

u; v12, . . . , v1k, v11; v22, . . . , v2k, v21; . . . vr2, . . . , vrk, vr1;
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and in the following order if Q = U \ {v11}:

v11, . . . , v1k; u; v22, . . . , v2k, v21; v32, . . . , v3k, v31; . . . vr2, . . . , vrk, vr1.

As we come to colour each vertex, the size of its list is strictly greater than the

number of its neighbours which are already coloured, and so we can complete

the colouring. Thus, by Lemma 4.20, τ(G) ≤ χ(G)− 1+ r−1
r+1

= k+1− 2
r+1

as

required. £

4.4.4 Complete multipartite graphs

We begin this section with the result that the upper bound τ(G) ≤ χ(G)
(

1− 1
n

)

is obtained for balanced complete multipartite graphs. The proof uses the

following important lemma, which follows easily from Theorem 4.10.

Lemma 4.22 For any graph G and any s ∈ N,

τ(G) ≥ cchs(G)− 1

s
.

Proof. By Theorem 4.10, cchs(G) ≤ s τ(G) + 1. Rearranging this expression

gives the above result. £

Theorem 4.23 For k, r ≥ 2, if G = Kr,...,r is the complete k-partite graph

with r vertices in each class, then τ(G) = k − 1
r
.

Proof. Since G has kr vertices, Theorem 4.7 gives an upper bound of τ(G) ≤

k(1 − 1
kr
) = k − 1

r
. We use Lemma 4.22 to obtain the lower bound. Let
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{vij : 1 ≤ i ≤ r, 1 ≤ j ≤ k} be the vertices of G, such that v1j, . . . , vrj is a

colour class for each j. Assign consecutive lists I(vij) = {i, . . . , i+ kr − 2};

this is illustrated for G = K2,2,2 in Figure 4.1. We will suppose that c is an

I-colouring of G with separation r, and derive a contradiction.

r

r

r

r

r

r

PPPPP
°°°°°

°°°°°
PPPPP

S
S

S
S

S
S

³
³

³
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³
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³

¨¨¨¨¨¨¨¨̈

HHHHHHHHH

S
S

S
S

S
S

v11

v12

v13

v21
v22

v23

I(v1j) = {1, 2, 3, 4, 5}

I(v2j) = {2, 3, 4, 5, 6}

Figure 4.1: K2,2,2 with lists assigned as in Theorem 4.23.

The vertices vr1, . . . , vrk are pairwise adjacent and are all assigned the same

list {r, . . . , r + kr − 2}. By our assumption that c is an I-colouring of G with

separation r, any two of the k colours received by these vertices must differ by

at least r, and so the smallest of these colours must be at most r + kr − 2 −

(k − 1)r = 2r − 2. So w.l.o.g. we may suppose that r ≤ c(vr1) ≤ 2r − 2. Now

let i = c(vr1)− r + 1 and observe that 1 ≤ i ≤ r − 1.

The vertices vr1 and vi2, . . . , vik are pairwise adjacent. Since c is an I-

colouring of G, we have c(vij) ≥ i for 2 ≤ j ≤ k; but since i > c(vr1)− r and

c has separation r, we must in fact have c(vij) ≥ c(vr1) + r = i + 2r − 1 for

2 ≤ j ≤ k. Any two of the k − 1 colours received by the vertices vi2, . . . , vik

must differ by at least r, and so the largest of these colours must be at least

i + 2r − 1 + (k − 2)r = i + kr − 1. This exceeds the largest colour i + kr − 2

in the any of these vertices, contradicting our assumptions about c.
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The above argument shows that cchr(G) > kr − 1, that is, cchr(G) ≥ kr.

Thus by Lemma 4.22, τ(G) ≥ kr−1
r

= k − 1
r
as required. £

Note that not every complete multipartite graph attains the upper bound

τ(G) = χ(G)
(

1− 1
n

)

, as evidenced by Theorem 4.18. In our next theorem we

show that if the size of each colour class of G is smaller than the number of

classes, then the bound is only attained when G is balanced.

Theorem 4.24 Let k ≥ 2, and let r1, . . . , rk ∈ N be such that ri < k for

each i ∈ {1, . . . , k}. Let G = Kr1,...,rk and n = |V (G)| =
∑k

i=1 ri. Then

τ(G) ≤ k
(

1− 1
n

)

, and equality holds iff r1 = r2 = · · · = rk.

Proof. The inequality follows from Theorem 4.7 since χ(G) = k, and if

r1 = r2 = · · · = rk then equality follows from Theorem 4.23. Conversely,

suppose τ(G) = k
(

1− 1
n

)

; then Theorem 4.10 implies that cchn(G) = nk−k+1.

We will prove the theorem by showing that this implies that r1 = . . . = rk.

Let V1, . . . , Vk be the colour classes, so that |Vi| = ri. Draw n (k×k)-grids,

where the k rows in each grid correspond to the colour classes, and the nk

columns correspond to the elements of {0, . . . , nk − 1} in such a way that the

columns of each grid correspond to a residue class modulo n. This is illustrated

in Figure 4.2 for G = K1,1,2 (k = 3, r1 = r2 = 1, r3 = 2, n = 4).

By our assumption, there exists an (nk − k)-consecutive list assignment I

for G for which there is no I-colouring of G with separation n. For each v ∈ V ,

v ∈ Vi for some i ∈ {1, . . . , k}; for each of the k elements x ∈ {0, . . . , nk − 1}

such that I(v) contains no colour congruent to x modulo nk, draw a cross in

the cell (Vi, x). Since k ≤ n and the lists are consecutive, we draw a cross in
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at most one cell of each grid for each vertex. Also, the total number of crosses

(counting multiple crosses in the same cell) is exactly nk.

We call a set of k ticks in one of the grids a solution set if each row and

each column of that grid contains exactly one tick, and no cell contains both a

tick and a cross. An example of a solution set is given in Figure 4.2. Given a

solution set, we can construct an I-colouring of G with separation n as follows:

for each class Vi, there is a single ti ∈ {0, . . . , nk − 1} such that the cell (Vi, ti)

contains a tick. Then for each Vi and each v ∈ Vi, we choose c(v) ∈ I(v) such

that c(v) ≡ ti (mod nk), which gives the required colouring.

Since we assumed there is no I-colouring of G with separation n, there is

also no solution set. Looking at each grid, we can deduce that there must be

at least k crosses in that grid; since there are nk crosses overall, we deduce

that there are exactly k crosses in each grid, and hence in each grid, the k

crosses must form either a complete row or a complete column.

However, each vertex contributes at most one cross to each grid, and so

there are at most |Vi| = ri < k crosses in each row of each grid. This means

that the k crosses in each grid must form a column, and hence that there are

V1

V2

V3

0 4 8 1 5 9 2 6 10 3 7 11

× × ×
×× ×

×× × × × ×

√
√

√

Figure 4.2: The grids defined in Theorem 4.24, for G = K1,1,2.
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n crosses in each row. Thus r1 = r2 = · · · = rk =
n
k
, as required. £

We now turn our attention to the complete tripartite graphs G = K1,r,r.

Determining τ(G) for these graphs will enable us to do the same for even

wheels G = K1 + C2r as an immediate corollary.

Theorem 4.25 For r ≥ 2, τ(K1,r,r) = 3− 2
r+1

.

Proof. Let G = K1,r,r. The lower bound τ(G) ≥ 3− 2
r+1

follows from Theorem

4.21, since K1 + rK2 ⊂ G.

Let the vertex set be V = {u}∪{v1, . . . , vr}∪{vr+1, . . . , v2r}, and let I be an

assignment of consecutive lists such that |I(u)| = 3r+2 and |I(vi)| = 3r+1 for

1 ≤ i ≤ 2r. We will show that there must exist an I-colouring with separation

s = r+ 1, and hence τ(G) ≤ 3r+1
r+1

= 3− 2
r+1

by Lemma 4.19. Suppose w.l.o.g.

that I(u) = {0, . . . , 3r + 1}, and let J = {0, . . . , r} ∪ {2r + 2, . . . , 3r + 1} ⊂

I(u). Note that |J | = 2r + 1, and that x ∈ J implies x + r + 1 /∈ J . We will

choose b ∈ J , and construct an I-colouring such that c(u) = b and c(vi) ≡ b

(mod r + 1) for i = 1, . . . , 2r. Let

Di =
{

d ∈ Z \ {0} : b+ d(r + 1) ∈ I(vi)
}

;

we exclude zero from Di, since we cannot have c(vi) = b. The list I(vi) must

contain at least two multiples of r + 1, and so Di 6= ∅; furthermore, |Di| ≥

2 unless I(vi) ⊆ {b− r, . . . , b+ 2r + 1} or I(vi) ⊆ {b− (2r + 1), . . . , b+ r}.

Equivalently, writing I(vi) = {a(vi), . . . , a(vi) + 3r} for each i = 1, . . . , 2r, we
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have |Di| ≥ 2 unless b ∈ Fi, where

Fi = {a(vi) + r − 1, a(vi) + r, a(vi) + 2r, a(vi) + 2r + 1}.

Since x ∈ J implies x + r + 1 /∈ J , we have |J ∩ Fi| ≤ 2 for i = 1, . . . , 2r.

Summing over i, we have

2r
∑

i=1

|J ∩ Fi| ≤ 4r < 4r + 2 = 2|J |.

We can re-express this as

∑

b∈J

|{i : b ∈ Fi}| < 2|J |,

and hence, for some b ∈ J , there is at most one i ∈ {1, . . . , 2r} for which

b ∈ Fi, and hence |Di| = 1. With this choice of b, we may suppose that

w.l.o.g. |D1| ≥ 1, and |Di| ≥ 2 for i = 2, . . . , 2r. Observe that if |Di| ≥ 2 then

either Di contains two consecutive (non-zero) integers, or Di contains both −1

and +1. Partitioning Z \ {0} into sets S = {. . . ,−6,−4,−2, 1, 3, 5, . . .} and

T = {. . . ,−5,−3,−1, 2, 4, 6, . . .}, it follows that Di ∩ S 6= ∅ and Di ∩ T 6= ∅

for i = 2, . . . , 2r.

Let d1 ∈ D1; w.l.o.g. d1 ∈ S. Then choose di ∈ Di such that di ∈ S for

2 ≤ i ≤ r and di ∈ T for r + 1 ≤ i ≤ 2r. Finally, we have an I-colouring of G

with separation r+1 as required, by setting c(u) = b and c(vi) = b+ di(r+1)

for i = 1, . . . , 2r. By Lemma 4.19, this completes the proof of the theorem. £
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It follows that τ(G) = 3− 2
r+1

for any graph G such that K1 + rK2 ⊆ G ⊆

K1,r,r, which in particular is the case for even wheels K1 + C2r.

Corollary 4.26 For r ≥ 2, τ(K1 + C2r) = 3− 2
r+1

. £

4.4.5 The Petersen graph

As an application of two of the above lemmas, we determine the value of the

consecutive choosability ratio for the Petersen graph P . It has ten vertices and

chromatic number 3, which by Theorem 4.7 tells us that 2 ≤ τ(P ) ≤ 27/10. We

will use various properties of the Petersen graph and its automorphism group

Aut(P ) without proof; proofs can be found, for example, in the book [15].

u2

u3

u4u5

u1

v2

v4

v1 v3

v5

(a)

0,2

2,0

1,22,1

1,0
1

0

2 1

0

(b)

Figure 4.3: The Petersen graph P .

Theorem 4.27 τ(P ) = 5/2.

Proof. First we show that cch2(P ) > 5. With the vertices labelled as in Figure

4.3(a), assign lists I(ui) = {0, . . . , 4} and I(vi) = {1, . . . , 5} (i = 1, . . . , 5).

Since adjacent colours must differ by at least 2, the sequence of colours 0,2,4
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must occur, either clockwise or anticlockwise, around the outer pentagon; we

may assume w.l.o.g. that c(u1) = 0, c(u2) = 2, and c(u3) = 4. This implies

that c(v2) ∈ {4, 5} and c(v3) ∈ {1, 2}, and hence c(v5) = 3; however, this

leaves no valid colour for the vertex u5. Hence cch2(P ) ≥ 6, and so by Lemma

4.22, τ(P ) ≥ 5/2.

To prove that τ(P ) ≤ 5/2 we use Lemma 4.20, with U = V (P ) and q = 6.

Thus suppose we have six vertices with consecutive lists I(v) of size 3, and four

vertices, which we call deficient vertices, with lists of size 2; if we show that a

proper colouring from these lists always exists, the required result will follow.

For each v ∈ V (P ) we form a list L(v) ⊆ {0, 1, 2} from I(v) by replacing each

element by its residue modulo 3, and seek an L-colouring of P .

We consider first the case where there are two adjacent deficient vertices;

since P is edge-transitive, we may assume they are v1 and v3. Choose a third

deficient vertex w; there is a 5-cycle C ⊂ P containing v1, v3 and w, and since

Aut(P ) is transitive on 5-cycles, we may assume that V (C) = {v1, . . . , v5}.

Now C contains at least one vertex with a list of size 3, and so we can colour

C from its lists; and since a 5-cycle has a unique 3-colouring up to rotation

and permutation of the colours, we may assume that C is coloured as in Figure

4.3(b). Let c1 and c2 be the two colourings of P given in Figure 4.3(b), using

the first and the second colour respectively from each pair of colours for the

vertices ui. Since at most one of the vertices ui is deficient, one of c1 and c2

must give a proper L-colouring of P .

It remains to consider the case where the four deficient vertices form an

independent set. There are five independent sets of size 4 in P , obtained from
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each other by rotation of Figure 4.3(a), and so we may assume the deficient

vertices are u1, u3, v4 and v5. One of the colours 0,1,2 must occur at least three

times in the lists of these four vertices; we may assume it is 0. If 0 appears in

all four of these lists, then c2 as defined above is a proper L-colouring of P .

Otherwise, 0 appears in exactly three of the lists; w.l.o.g. 0 /∈ L(u1), and in this

case, swapping the colours of u2 and u3 under c1 gives a proper L-colouring.

Hence an L-colouring c of P always exists, and we can form an I-colouring

by choosing h(v) ∈ I(v) such that h(v) ≡ c(v) (mod 3). Hence the conditions

of Lemma 4.20 are satisfied, and so τ(P ) ≤ 3− 1 + 6−1
10

= 5/2 as required. £

4.4.6 Analogues of some well-known results

We first observe that the analogue for τ(G) of Brooks’ Theorem (Theorem 2.3)

is not difficult to derive.

Theorem 4.28 For any graph G, τ(G) ≤ ∆(G). Furthermore, if G is con-

nected, then equality holds iff G is a complete graph or an odd cycle.

Proof. We may assume G is connected. If G is a complete graph or an

odd cycle then τ(G) = χ(G) − 1 = ∆(G), as shown in the previous section.

Otherwise, by Theorems 2.3 and 4.7, we have τ(G) < χ(G) ≤ ∆(G). £

The Four Colour Theorem tells us that χ(G) ≤ 4 if G is planar, and if G is

outerplanar then χ(G) ≤ 3 since it is 2-degenerate, as observed in Section 3.3.

It follows that τ(G) < 4 for planar graphs, and τ(G) < 3 for outerplanar

graphs. Moreover, we can use Theorem 4.21 to get arbitrarily close to these

bounds, since K1 + rK3 is planar and K1 + rK2 is outerplanar. By Theorem
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4.10, this last observation also implies that the bounds cchs(G) ≤ 4s for planar

graphs and cchs(G) ≤ 3s for outerplanar graphs can be attained for all s ∈ N.

4.5 Relationship to circular colouring

We have alluded in previous sections to similarities between the consecutive

choosability ratio τ(G) and the circular chromatic number χc(G). In this sec-

tion we discuss these similarities, and use them to derive additional information

about τ(G).

4.5.1 Circular colouring

The circular chromatic number was introduced by Vince [27], under the name

‘star-chromatic number’ and with a slightly different definition from that given

below. We will only quote some known results regarding χc(G), and refer the

reader to the survey by Zhu [36] for proofs and further information.

We begin by defining circular colourings and χc(G). For ρ ∈ R+, let C =

[0, ρ). A ρ-circular colouring of a graph G is a function φ : V → C such that

1 ≤ |φ(v) − φ(w)| ≤ ρ − 1 for all vw ∈ E. This is equivalent to considering

C as a circle of length ρ, and ensuring that whenever vw ∈ E, the distance

around the circle between φ(v) and φ(w) is at least 1. The circular chromatic

number χc(G) is then defined as the infimum of all ρ ∈ R+ such that there

exists a ρ-circular colouring of G.

The infimum in the above definition is always attained, and χc(G) is ratio-

nal for all finite graphs G. Furthermore, χc(G) can be expressed as p/q with
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q ≤ α(G), where α(G) is the largest size of an independent set in G.

It can be shown that χ(G) − 1 < χc(G) ≤ χ(G), and so χ(G) = ⌈χc(G)⌉.

Recalling that χ(G)− 1 ≤ τ(G) < χ(G) and χ(G) = 1 + ⌊τ(G)⌋, we see that

χc(G) and τ(G) are both refinements of χ(G). (The applicability of these

statements to infinite graphs is discussed below.)

The following result establishes a direct relationship between τ(G) and

χc(G). It is a refinement of the upper bound in Theorem 4.7, since χc(G) ≤

χ(G) for all graphs G.

Theorem 4.29 For any graph G on n vertices,

τ(G) ≤ χc(G)
(

1− 1
n

)

.

Proof. Let ρ = χc(G) and C = [0, ρ), and let φ : V → C be a ρ-circular

colouring of G. Given an interval assignment Γ(v) = [α(v), α(v) + ρ(1 − 1
n
)],

we need to show that there exists a proper Γ-colouring γ of G. To do this we

seek β ∈ C such that for each v ∈ V , there exists γ(v) ∈ Γ(v) such that

γ(v) ≡ β + φ(v) (mod ρ). (4.12)

Regarding C as a circle of length ρ, for each v ∈ V there is an open interval

of length ρ/n of values of β ∈ C for which no colour γ(v) satisfies (4.12). But

n open intervals of length ρ/n cannot cover a circle of length ρ, and so some

β ∈ C exists such that (4.12) can be satisfied for all v ∈ V . Furthermore, for

each vw ∈ E, we have γ(v)− γ(w) ≡ φ(v)− φ(w) ∈ [1, ρ− 1] (mod ρ) and so
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|γ(v)− γ(w)| ≥ 1. Thus γ is a proper Γ-colouring of G. £

4.5.2 Infinite graphs

The inequalities χ(G) − 1 < χc(G) ≤ χ(G) can be shown to hold for infinite

as well as finite graphs; hence χ(G) = ⌈χc(G)⌉, and χc(G) is a refinement of

χ(G), for all graphs G.

In contrast, the statement χ(G) = 1 + ⌊τ(G)⌋ need not hold if G is infi-

nite, and hence τ(G) cannot be said to be a refinement of χ(G) for infinite

graphs, as the following example illustrates. Let G1 be an infinite collection of

independent edges, and G2 be an infinite path. Both graphs have chromatic

number 2. However, τ(G1) = 1, since τ(H) = 1 for each component H ∼= K2

of G1; whereas τ(G2) = 2, since for each n ∈ N, G2 contains the finite path Pn

on n vertices, and hence τ(G2) ≥ τ(Pn) = 2
(

1− 1
n

)

.

The equation χ(G) = 1 + ⌊τ(G)⌋ fails to hold for G2 because τ(G2) =

χ(G2) = 2. More generally, for k ∈ N we can obtain an infinite graph G for

which τ(G) = χ(G) = k+1, by taking infinitely many copies of Kk and joining

them to a single additional vertex. The proof that τ(G) = k + 1 follows from

Theorem 4.21, since K1 + rKk ⊆ G for all r ∈ N.

4.5.3 The spectrum of τ

We conclude by considering the spectrum of τ , that is, the set of possible

values of τ(G) over all finite graphs G. The corresponding question for χc(G)

is answered by Vince [27]: for any rational p/q ≥ 2, let G be the graph
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with vertex set {0, . . . , p− 1} and an edge xy iff q ≤ |x − y| ≤ p − q; then

χc(G) = p/q. On the other hand, χc(G) can take no non-integer value less

than 2. Thus the set of values taken by χc(G) over all finite graphs G is

{0, 1} ∪
(

Q ∩ [2,∞)
)

.

We have already seen that τ(G) is rational, and that if G is bipartite then

τ(G) = 2
(

1 − 1
n

)

, where n is the size of the largest component of G. On the

other hand, if G is not bipartite then τ(G) ≥ 2, and we conjecture that τ(G),

like χc(G), can take any rational value in this range.

Conjecture 4.30 The set of values taken by τ(G) over all finite graphs G is

{

2
(

1− 1
n

)

: n ∈ N
}

∪
(

Q ∩ [2,∞)
)

.

As a partial solution to this problem, we show that the spectrum of τ is

dense in the interval [2,∞). Given two graphs H and K, the lexicographic

product H[K] is defined to be the graph with vertex set V (H) × V (K) and

an edge between (u1, v1) and (u2, v2) if u1u2 ∈ E(H), or if u1 = u2 and

v1v2 ∈ E(K). Informally, we think of each vertex of H as being ‘inflated’ into

a copy of K.

Theorem 4.31 For any natural numbers p, q ∈ N with p > 2q, let H be any

graph with χc(H) = p/q, and let G = H[Kq]. Then

p− 1

q
≤ τ(G) <

p

q
.
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Proof. Write V (H) = {v1, . . . , vn}, and V (G) = {vri : 1 ≤ i ≤ n, 1 ≤ r ≤ q}

where vri v
s
j ∈ E(G) iff vivj ∈ E(H).

Let γ : V (H) → [0, p/q) be a p/q-circular colouring of H. Then γ′ :

V (G) → [0, p/q) defined by γ′(vri ) = γ(vi) is a p/q-circular colouring of G.

Thus χc(G) = χc(H) = p/q, and so τ(G) < p/q by Theorem 4.29.

To obtain the lower bound, we will show that cchq(G) ≥ p; by Lemma 4.22,

this implies that τ(G) ≥ p−1
q

as required. We define consecutive lists

I(vri ) = {r − 1, . . . , p+ r − 3},

and will show by contradiction that no I-colouring of G with separation q

exists. So suppose c is such a colouring. Define ri = max{r : c(vri ) ≤ p − 2}

(which is well defined since c(v1i ) ≤ p− 2) and a function γ : V (H) →
[

0, p−1
q

)

where γ(vi) = c(vrii )/q. We now show that γ is a p−1
q
-circular colouring of H,

which is a contradiction since χc(H) > p−1
q
.

Let vivj be any edge of H, and suppose that c(v
rj
j ) ≥ c(vrii ). We know

that c(v
rj
j )− c(vrii ) ≥ q, and thus γ(vj)− γ(vi) ≥ 1; we also need to show that

γ(vj) − γ(vi) ≤ p−1
q

− 1, that is, c(v
rj
j ) − c(vrii ) ≤ p − 1 − q. This condition

must be satisfied if c(vrii ) ≥ q − 1, since c(v
rj
j ) ≤ p − 2; so suppose that

c(vrii ) ≤ q − 2. Then ri ≤ q − 1, since c(vrii ) ≥ ri − 1 by the definition of

I(vrii ), and thus c(vri+1
i ) > p− 2 ≥ c(v

rj
j ) by the definition of ri. Finally, since

vri+1
i v

rj
j ∈ E(G) and c(vri+1

i ) ≤ p+ ri − 2, we deduce that

c(v
rj
j ) ≤ c(vri+1

i )− q ≤ p+ ri − 2− q ≤ p+ c(vrii )− 1− q
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as required, and so γ is a p−1
q
-circular colouring of H. This contradiction

completes the proof of the theorem. £

Note that for any real κ > 2, we can use the Theorem 4.31 to generate

sequences of graphs (Gq)q∈N and (Hq)q∈N such that τ(Gq) → κ from below,

by setting p = ⌊qκ⌋ so that p−1
q

≤ τ(Gq) < p

q
≤ κ < p+1

q
, and τ(Hq) → κ

from above, by setting p = ⌈qκ⌉ + 1 so that p−2
q

< κ ≤ p−1
q

≤ τ(Hq) < p

q
.

Furthermore, by taking the disjoint union of the graphs Gq, we can generate

an infinite graph G =
⋃

q∈N Gq such that τ(G) = κ.

4.6 Future research

An extensive literature has appeared regarding the circular chromatic number

since its introduction [27], and it is hoped that this research will stimulate a

similar level of interest in this new graph invariant.

A possible question is whether, for fixed k ∈ N with k ≥ 3, there is a

characterisation of those k-chromatic graphs G for which τ(G) = k − 1. (For

k = 2 it is simply those graphs with no two incident edges.) It would also be of

interest to say precisely which complete k-partite graphs, and perhaps which

graphs in general, attain the bound τ(G) = χ(G)
(

1− 1
n

)

.

It would be of interest to see Conjecture 4.30 settled, and particularly to

obtain a construction of a graph G with any given rational value of τ(G) ≥ 2.

Other possible questions related to the spectrum include the following: what

rational values 2 ≤ τ(G) < 4 can be obtained with G a planar graph, or

2 ≤ τ(G) < 3 with G an outerplanar graph?
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Chapter 5

The choosability ratio

5.1 Introduction

In Chapter 4 we defined the consecutive choosability ratio of a graph G to

be the limit of cchs(G)
s

as s → ∞. In this chapter we show that chs(G)
s

also

tends to a limit as s → ∞, which we call the choosability ratio σ(G) of G, and

investigate this limit.

The generalisation from consecutive sets to arbitrary sets of integers makes

the problem much more difficult; compare, for example, the relatively easily

derived bounds on cchs(G) in terms of χ(G) (equation 4.1) with our efforts

to bound chs(G) in terms of ch(G) (Section 3.2). This difficulty is further

manifested in that are unable to show directly, as we did in the consecutive

case (Lemma 4.4 and Theorem 4.5), that
(

chs(G)
s

)

s∈N
is a Cauchy sequence.

The best direct analogue of Lemma 4.4 we can obtain is the following.
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Lemma 5.1 Let G be a graph and s ≥ r ≥ 2. Then

chs(G) ≤
⌈

s− 1

r − 1

⌉

(chr(G)− 1) + 1.

Proof. Let t =
⌈

s−1
r−1

⌉

and k = chr(G), and let L be a an assignment of lists

for G of size t(k − 1) + 1. For each vertex v ∈ V , define a new list

L′(v) =
{

x ∈ Z : L(v) ∩ {xt, . . . , (x+ 1)t− 1} 6= ∅
}

.

Then |L′(v)| > k − 1 since |L(v)| > t(k − 1), and so there is an L′-colouring h

of G with separation r. For each v ∈ V choose c(v) ∈ L(v) such that h(v)t ≤

c(v) ≤ (h(v) + 1)t− 1. Then for each edge vw ∈ E, w.l.o.g. h(w)− h(v) ≥ r,

and so c(w) − c(v) ≥ h(w)t − ((h(v) + 1)t − 1) ≥ (r − 1)t + 1 ≥ s. Thus c is

an L-colouring of G with separation s, as required. £

If r = 2 then this result reduces to equation (3.1). In Section 5.2 we will

improve on the bound of Lemma 5.1 when s− 1 is not a multiple of r − 1.

Due to the difficulties mentioned above, we introduce in Section 5.2 the

continuous definition of σ(G) first, with arbitrary closed sets as lists, and then

show that it is equal to the limit of chs(G)
s

as s → ∞. We will need to make

use of the Lebesgue measure µ(Λ) of a set Λ ⊆ R. For the most part, the

only property of Lebesgue measure we will need is that if Λ is a disjoint union

of intervals (closed, open or half-open) then µ(Λ) is equal to the sum of the

lengths of those intervals. (Some formal definitions are given in the Appendix

to this chapter, where they are needed to prove a technical lemma.)
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In Section 5.3 we show that we do not need to consider all possible closed

lists when defining σ(G), but only finite unions of closed intervals. An analogue

of Brooks’ Theorem appears in Section 5.4, and general bounds and some

specific values for σ(G) are investigated in Section 5.5.

5.2 Choosability and measure

For κ ∈ R+, a real κ-list assignment is a function Λ which assigns to each

vertex v ∈ V a nonempty closed set Λ(v) ⊂ R of Lebesgue measure κ. As

before, a Λ-colouring γ : V → R of G is proper if |γ(v) − γ(w)| ≥ 1 for all

vw ∈ E. We define the measure choosability σ∗(G) to be the infimum of all

κ ∈ R+ such that for every real κ-list assignment Λ, there exists a proper

Λ-colouring.

We have specified that the lists must be nonempty to ensure that the

infimum in the definition of σ∗(G) is attained for empty graphs. If G = Kn

then we can choose any colours from any assignment of nonempty lists, and so

σ∗(G) = 0; but if we allowed empty lists, we would have a real 0-list assignment

admitting no proper colouring. We will show later in Lemma 5.6, as we did for

τ ∗(G) in Lemma 4.11, that the infimum in the definition of σ∗(G) is attained

for all graphs G, and so can be replaced by a minimum.

Firstly, for any s ∈ N, we relate the value of chs(G) to σ∗(G).

Lemma 5.2 For any graph G and any s ∈ N,

(s− 1)σ∗(G) + 1 ≤ chs(G) ≤ sσ∗(G) + 1.
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Proof. Let k = chs(G)− 1 and ε ∈ (0, 1), and let L be a k-list assignment for

G such that G has no L-colouring with separation s. Now for v ∈ V , define

Λ(v) =
⋃

x∈L(v)

[

x
s
, x+1−ε

s

]

.

Suppose γ : V → R is a Λ-colouring of G, and set c(v) = ⌊sγ(v)⌋ for each

v ∈ V ; then c is an L-colouring of G, and so it cannot have separation s.

Thus there is an edge vw ∈ E such that |c(v) − c(w)| ≤ s − 1. But then

|γ(v)− γ(w)| ≤ s−ε
s

< 1, and so γ is not a proper colouring of G. This shows

that σ∗(G) > µ(Λ(v)) = 1−ε
s
(chs(G) − 1). By rearranging this expression we

obtain chs(G) < s
1−ε

σ∗(G)+1, and the upper bound of the lemma follows since

ε ∈ (0, 1) was arbitrary.

The lower bound is immediate if s = 1, so assume s ≥ 2. Let κ = chs(G)−1
s−1

,

and let Λ be any real κ-list assignment for G. For v ∈ V , define

L(v) =
{

x ∈ Z : Λ(v) ∩
[

x
s−1

, x+1
s−1

)

6= ∅
}

.

No closed set of measure κ can lie within a union of chs(G)− 1 of these half-

open intervals, and so |L(v)| ≥ chs(G) for each v ∈ V . Thus there exists an L-

colouring c : V → Z with separation s. For each v ∈ V choose γ(v) ∈ Λ(v) such

that c(v)
s−1

≤ γ(v) < c(v)+1
s−1

. Then for each edge vw ∈ E, w.l.o.g. c(w)− c(v) ≥ s,

and so γ(w)− γ(v) > c(w)
s−1

− c(v)+1
s−1

≥ 1. Hence γ is a proper Λ-colouring of G,

and so σ∗(G) ≤ κ. Rearranging gives the lower bound of the lemma. £

Dividing through the result of Lemma 5.2 by s, and taking the limit as
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s → ∞, we see that the sequence
(

chs(G)
s

)

s∈N
does indeed converge to σ∗(G).

Now we can formally define the choosability ratio

σ(G) = lim
s→∞

chs(G)

s
,

and state the following theorem.

Theorem 5.3 For any graph G, σ(G) = σ∗(G). £

Lemma 5.2 also implies the following relation between chs(G) and chr(G)

for any pair of natural numbers s, r ∈ N.

Theorem 5.4 For any graph G and any s, r ∈ N,

⌈

s− 1

r
(chr(G)− 1)

⌉

+ 1 ≤ chs(G) ≤
⌊

s

r − 1
(chr(G)− 1)

⌋

+ 1.

If r = 1 then we interpret the last quantity in Theorem 5.4 as being infinite.

Note also that if r = 1, the lower bound is weaker than Theorem 3.3, and if

r = 2, the upper bound is weaker than equation 3.1: we lose some precision

by appealing to Lemma 5.2. On the other hand, if s − 1 is not a multiple of

r − 1, the upper bound of Theorem 5.4 improves on that of Lemma 5.1.

Proof of Theorem 5.4. We use the result of Lemma 5.2 twice to obtain each

inequality. Rearranging that result and substituting r for s, we have

chr(G)− 1

r
≤ σ∗(G) ≤ chr(G)− 1

r − 1
. (5.1)

Consequently, (s− 1) chr(G)−1
r

+1 ≤ (s− 1)σ∗(G)+1 ≤ chs(G) ≤ sσ∗(G)+1 ≤
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s chr(G)−1
r−1

+ 1. The theorem now follows since chs(G) is an integer. £

We can deduce immediately from Theorems 3.1 and 3.2 the value of σ(G)

when G is a complete graph, a cycle or a tree.

Theorem 5.5 (i) If G = Kn then σ(G) = n− 1.

(ii) If G is an odd cycle C2r+1, then σ(G) = 2.

(iii) If G is a tree on n vertices then σ(G) = 2
(

1− 1
n

)

.

(iv) If G is an even cycle C2r, then σ(G) = 2
(

1− 1
4r−1

)

. £

Note that σ(G) = τ(G) for complete graphs, trees and odd cycles, but not for

even cycles.

Having proved that σ∗(G) = σ(G) we use exclusively the latter notation for

the rest of this chapter, although we refer mostly to its formulation in terms

of closed real sets.

5.3 Simplifying σ(G)

Arbitrary closed sets can be cumbersome to work with as lists; this section

contains some results that simplify the situation, by showing that the only

lists we need to consider have much simpler forms. We may begin by observing

that if any list Λ(v) is unbounded, we can easily find a valid colour for v after

colouring the other vertices; thus we may assume that Λ(v) is bounded, and

hence compact, for each v ∈ V . This observation allows us to deduce that the

infimum in the definition of σ∗(G) (= σ(G)) is attained.
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Lemma 5.6 For any nonempty graph G, let κ = σ(G). Then for every real

κ-list assignment Λ, there exists a proper Λ-colouring.

Proof. Let Λ be any real κ-list assignment for G. For each vertex v ∈ V ,

we may choose βv ∈ R such that βv /∈ Λ(v) and βv > inf Λ(v), and let αv =

sup{λ < βv : λ ∈ Λ(v)}. Then αv ∈ Λ(v) since Λ(v) is closed and nonempty,

and Λ(v) ∩ (αv, βv] = ∅.

For each r ∈ N, define lists Λr(v) = Λ(v) ∪ (αv, αv +
1
r
]. If r ≥ 1

βv−αv

then Λ(v) and (αv, αv + 1
r
] are disjoint, and so µ(Λr(v)) = κ + 1

r
; thus if

r ≥ max{ 1
βv−αv

: v ∈ V }, Λr is a (κ + 1
r
)-list assignment for G, and so there

exists a proper Λr-colouring γr : V → R. As noted above, we may assume that

Λ(v) is bounded for each v ∈ V , and we observe that any convergent sequence

of colours γr(v) ∈ Λr(v) must have its limit in Λ(v). Now we complete the

proof exactly as for Lemma 4.11. £

The next important lemma allows us to deduce that for any graph G, there

is a constant M ∈ R+ such that in the definition of σ(G) we need only consider

lists which are closed subsets of [0,M ].

Lemma 5.7 Let G be a graph on n vertices. Suppose there exists a Λ-colouring

of G for every real κ-list assignment Λ for which Λ(v) ⊆ [0, κn] for each v ∈ V .

Then σ(G) ≤ κ.

The following lemma is a crucial step in the proof of Lemma 5.7. Its proof is

technical and relies on results from measure theory, and thus is given in the

Appendix to this chapter.
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Lemma 5.8 Let Λ ⊆ R be a Borel set with µ(Λ) = λ, and define f : R → [0, λ]

where f(x) = µ(Λ ∩ (−∞, x]). Then for any Borel set B ⊆ R,

µ(f(B)) = µ(Λ ∩B).

Proof of Lemma 5.7. Let Λ be any real κ-list assignment for G; we will

construct a proper Λ-colouring of G. As noted above, we may assume that

Λ(v) is compact for each v ∈ V . Write Λ =
⋃

v∈V Λ(v) and λ = µ(Λ); clearly

λ ≤ ∑

v∈V µ(Λ(v)) = κn. We define a function f : R → [0, λ], where

f(x) = µ
(

Λ ∩ (−∞, x]
)

.

Note that given x, y ∈ R, |f(x)− f(y)| ≤ |x− y|, and so f is continuous.

Define new lists Λ′(v) = f(Λ(v)). By Lemma 5.8, µ(Λ′(v)) = µ(Λ(v)) = κ,

and since f is continuous and Λ(v) is compact, Λ′(v) is closed; thus Λ′ is a

κ-list assignment for G. Also, we clearly have Λ′(v) ⊆ [0, λ] ⊆ [0, κn]. Thus

the conditions in the hypothesis of the lemma are satisfied, and so there exists

a proper Λ′-colouring γ′ : V → R. Finally, we can find γ(v) ∈ Λ(v) such that

f(γ(v)) = γ′(v) for each v ∈ V ; and as above, if vw ∈ E then

|γ(v)− γ(w)| ≥ |f(γ(v))− f(γ(w))| = |γ′(v)− γ′(w)| ≥ 1,

and so γ is a proper Λ-colouring of G, as required. £

If G has n vertices then σ(G) ≤ σ(Kn) = n− 1, and so Lemma 5.7 has the

following immediate corollary.
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Corollary 5.9 Let G be a graph on n vertices, and M = n(n−1). Then σ(G)

is the infimum of all κ ∈ R+ such that for every real κ-list assignment Λ with

Λ(v) ⊆ [0,M ], there exists a proper Λ-colouring. £

Next, we will show that the only lists we need to consider are finite unions

of closed intervals. For r ∈ N, we call Λ a κ-r-interval assignment if each set

Λ(v) is the union of at most r closed intervals of total length κ. We define τr(G)

to be the infimum of all κ ∈ R+ such that for every κ-r-interval assignment Λ,

there exists a proper Λ-colouring of G.

It is clear from these definitions that τ(G) = τ1(G) ≤ τ2(G) ≤ · · · , and

that τr(G) ≤ σ(G) for all r ∈ N; hence the sequence (τr(G))r∈N converges to

a limit. In fact, we can deduce from the proof of Lemma 5.2 that this limit is

σ(G), and so σ(G) is the infimum of all κ ∈ R+ such that for every r ∈ N and

every κ-r-interval assignment Λ, there exists a proper Λ-colouring of G.

Lemma 5.10 For any graph G, σ(G) = limr→∞ τr(G).

Proof. In the proof of the upper bound on chs(G) in Lemma 5.2, the lists

Λ(v) we used each consisted of k = chs(G) − 1 closed intervals, and thus we

proved that chs(G) ≤ sτk(G) + 1 for any s ∈ N. Assuming G is nonempty, we

have k → ∞ as s → ∞; thus dividing by s, and taking the limit as s → ∞,

we obtain σ(G) ≤ limk→∞ τk(G) as required. £

Note that Lemma 5.8 can be proved for finite unions of closed intervals

without resorting to measure-theoretic techniques. Lemma 5.10 can then be

used to deduce Lemma 5.7 and Corollary 5.9.
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We can go further than Lemma 5.10, and show that some τr(G) is equal to

σ(G) (and hence the sequence of values of τr(G) is eventually constant.) We

need the following lemma to establish this result. Given a real list assignment

Λ for G − u, define Ξ(u) to be the set of values ξ ∈ R for which there is a

proper colouring γ of G with γ(u) = ξ and γ(v) ∈ Λ(v) for v ∈ V \ {u}.

Lemma 5.11 For G, u and Λ as above, Ξ(u) is either empty, or is of the

form

(−∞, α1] ∪ [β1, α2] ∪ · · · ∪ [βr−1, αr] ∪ [βr,∞),

for some r ∈ N. Furthermore, r ≤ r0, where r0 depends only on G.

Proof. Clearly, Ξ(u) is empty iff there is no proper Λ-colouring of G− u. So

suppose this is not the case. Fix an ordering v1, . . . , vn of the vertices, and let

eij = 1 if vivj ∈ E and eij = 0 otherwise. For each permutation π ∈ Sn, let Γπ

be the set of colourings γ : V → R satisfying γ(v) ∈ Λ(v) for v ∈ V \ {u} and

γ(vπ(1)) ≤ γ(vπ(2)) ≤ . . . ≤ γ(vπ(n)). We define Ξπ(u) = {γ(u) : γ ∈ Γπ}, and

observe that Ξ(u) =
⋃ {Ξπ(u) : π ∈ Sn}.

Set k ∈ {1, . . . , n} such that vπ(k) = u. For i = 1, 2, . . . , k−1 in turn, assign

the smallest colour γ(vπ(i)) ∈ Λ(vπ(i)) such that γ(vπ(i)) − γ(vπ(j)) ≥ eπ(i)π(j)

for j < i. Then for i = n, n − 1, . . . , k + 1 in turn, assign the largest colour

γ(vπ(i)) ∈ Λ(vπ(i)) such that γ(vπ(j)) − γ(vπ(i)) ≥ eπ(i)π(j) for j > i. In any

colouring in Γπ, the colour ξ of u = vπ(i) must satisfy

max
1≤i<k

(

γ(vπ(i)) + eπ(i)π(k)
)

≤ ξ ≤ min
k<i≤n

(

γ(vπ(i))− eπ(i)π(k)
)

; (5.2)
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and for any ξ in this range, setting γ(u) = ξ gives a colouring γ ∈ Ξπ(u). If

k = 1, the lower bound in (5.2) is vacuous, and Ξπ(u) is of the form (−∞, α]; if

k = n, the upper bound is vacuous, and Ξπ(u) is of the form [β,∞). Otherwise,

Ξπ(u) is either a closed interval, or is empty (if the lower bound in (5.2) exceeds

the upper bound). Since Ξ(u) =
⋃ {Ξπ(u) : π ∈ Sn}, this shows that Ξ(u) is

of the required form. The maximum number of bounded closed intervals Ξπ(u)

that can arise in this way is (n−2)(n−1)!; hence the total number of intervals

in Ξ(u) is at most (n− 2)(n− 1)! + 2, and so r ≤ r0 = (n− 2)(n− 1)! + 1. £

Theorem 5.12 For any graph G there is r ∈ N such that τr(G) = σ(G).

Proof. Let n = |V |, and r0 be as in Lemma 5.11. Given any κ < σ(G), there

exists a real κ-list assignment Λ such that there is no proper Λ-colouring of G.

We will show that there is an assignment Λ∗ such that Λ∗(v) is a union of at

most r0 closed intervals and µ(Λ∗(v)) ≥ κ for each v ∈ V , and which admits

no proper Λ∗-colouring; thus κ < τr0(G). This will imply that τr0(G) ≥ σ(G)

and hence prove the theorem.

We construct Λ∗ from Λ as follows. For each vertex u ∈ V in turn, form

Ξ(u) as in Lemma 5.11. Since there is no Λ-colouring of G, Λ(u) must be

disjoint from Ξ(u); we will replace Λ(u) by a list Λ∗(u) which is a union of at

most r closed intervals, and satisfies Λ(u) ⊆ Λ∗(u) ⊆ R \ Ξ(u). This is easy

if Ξ(u) is empty, so assume it is not; then R \ Ξ(u) =
⋃r

i=1(αi, βi). Now let

Λi = Λ(u) ∩ (αi, βi), which is closed since αi, βi /∈ Λ(u), and

Λ∗(u) =
r
⋃

i=1

[minΛi, maxΛi],
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disregarding any i for which Λi is empty. By repeating this process for each

u ∈ V , we transform Λ into Λ∗ as required, where each Λ∗(u) is a union of at

most r ≤ r0 intervals. This completes the proof. £

Let r∗(G) denote the smallest r ∈ N such that τr(G) = σ(G). The above

theorem establishes that r∗(G) exists; however, the upper bound, of order n!,

is not very satisfying. It should surely be the case that τr(G) ≤ n; and we

offer the following stronger conjecture.

Conjecture 5.13 If k ≥ 1 and G is a k-degenerate graph, then r∗(G) ≤ k.

Equivalently, we conjecture that r∗(G) ≤ max{1, col(G)− 1}. We know from

Theorems 4.14 and 5.5 that τ(G) = τ1(G) = σ(G) for trees, and so Conjecture

5.13 holds when k = 1.

Theorem 5.12 greatly simplifies some of the theory surrounding the choos-

ability ratio: it tells us that we only need to consider lists which are finite

unions of closed intervals, and it is the key to proving that those graphs for

which τ(G) < ∆(G) (cf. Theorem 4.28) also satisfy σ(G) < ∆(G).

5.4 A Brooks-type bound for σ(G)

The investigation of the relationship between σ(G) and ∆(G) is motivated by

the following two theorems.

Theorem 5.14 (Vizing [28]) For any graph G, ch(G) ≤ ∆(G) + 1, and if

G is connected, equality holds iff G is a complete graph or an odd cycle. £
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Theorem 5.15 (Waller [31]) For any graph G, chs(G) ≤ s∆(G)+ 1, and if

G is connected, equality holds iff G is a complete graph or an odd cycle. £

Dividing the result of Theorem 5.15 through by s and taking the limit as

s → ∞, we see that σ(G) ≤ ∆(G) for all graphs G. In this section we will

show that strict inequality holds for the same set of graphs as in the above

theorems. To do this we will need to consider lists which are finite unions of

half-open intervals [a, b). When referring to half-open intervals we will always

mean bounded intervals of the form [a, b), and never (a, b].

Lemma 5.16 Let G be a graph and κ ∈ R. Suppose that a proper Λ-colouring

exists for every assignment Λ of lists such that

(i) each Λ(v) is a union of r half-open intervals,

(ii) µ(Λ(v)) ≥ κ for each v ∈ V (G).

Then τr(G) < κ.

Proof. The conditions of the lemma clearly imply that τr(G) ≤ κ, since any

union of closed intervals contains a union of half-open intervals of the same

measure. Suppose the result is false; then we have a graph G and κ = τr(G),

such that a proper Λ-colouring exists for every Λ satisfying (i) and (ii). We

will prove the theorem by deriving a contradiction.

For each s ∈ N, τr(G) > κ− 1
s
and so there exists a list assignment Λs such

that each Λs(v) is a union of at most r closed intervals of total length κ − 1
s
,

and such that no proper Λs-colouring of G exists. Write V = {v1, . . . , vn}, and
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parameterise the lists as follows:

Λs(vi) =
r
⋃

p=1

[

αs
p(vi), α

s
p(vi) + βs

p(vi)
]

,

where
∑r

p=1 β
s
p(vi) = κ − 1

s
for i = 1, . . . , n. By Corollary 5.9, we may also

assume that Λs(vi) ⊆ [0, n(n− 1)] for each s ∈ N and i = 1, . . . , n.

Let xs ∈ R2rn be the vector whose coordinates are the values of αs
p(vi)

and βs
p(vi), where 1 ≤ i ≤ n and 1 ≤ p ≤ r. These vectors form a bounded

sequence in R2rn, and so by the Bolzano-Weierstrass theorem, there is a sub-

sequence converging to a limit x, with coordinates αp(vi) and βp(vi), where
∑r

p=1 βp(vi) = κ for i = 1, . . . , n. Let these coordinates define lists

Λ(vi) =
r
⋃

p=1

[

αp(vi), αp(vi) + βp(vi)
)

.

By our assumption there is a proper Λ-colouring γ : V → R. Now let ε > 0 be

such that, for each i = 1, . . . , n,

γ(vi) ∈
r
⋃

p=1

[

αp(vi), αp(vi) + βp(vi)− ε
]

.

Find s ∈ N such that |αs
p(vi) − αp(vi)| < ε/3 and |βs

p(vi) − βp(vi)| < ε/3

whenever 1 ≤ i ≤ n and 1 ≤ p ≤ r. Now we can construct a proper Λs-

colouring γ′ : V → R by setting γ′(vi) = γ(vi) + ε/3 for i = 1, . . . , n. This is a

contradiction, since we asserted that no such colouring existed. £
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The next four lemmas are based on lemmas in Waller’s paper [31] leading

up to the proof that chs(G) ≤ s∆(G).

Lemma 5.17 Let G = (V,E) be a connected graph, and let u ∈ V . Let Λ be

an assignment of lists such that

(i) each Λ(v) is a finite union of half-open intervals,

(ii) µ(Λ(u)) > d(u),

(iii) µ(Λ(v)) ≥ d(v) for v ∈ V \ {u}.

Then G has a proper Λ-colouring.

Proof. We use induction on n = |V |. If n = 1 then the sole vertex u has a

non-empty list and the result is trivial. So assume n ≥ 2. Let Λ =
⋃

v∈V Λ(v),

and β = min Λ; this minimum is attained in Λ since Λ is a finite union of

half-open intervals. Let X = {v ∈ V : β ∈ Λ(v)}. We consider two cases.

Case 1: X = {u}. Set γ(u) = β. Now we use induction to colour each

component C of G − u. Let u′ ∈ C be adjacent to u; then minΛ(u′) > β,

and so the set of colours Λ′(u′) = Λ(u′) ∩ [β + 1,∞) available for u′ satisfies

µ(Λ′(u′)) > µ(Λ(u′)) − 1 ≥ dG(u) − 1 ≥ dC(u
′). Hence the conditions of the

lemma are satisfied for each C, and so we can complete the colouring of G.

Case 2: X \ {u} 6= ∅. Choose x ∈ X \ {u} at maximum distance from u,

and set γ(x) = β. Let C be the component of G− x that contains u. If v ∈ C

was adjacent to x in G, then the set of colours Λ′(v) available for v satisfies

µ(Λ′(v)) ≥ µ(Λ(v)) − 1 ≥ dG(v) − 1 ≥ dC(v); and the middle inequality is

strict if v = u. Hence we can colour C by the induction hypothesis.
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Every other component of G− x contains a vertex u′ ∈ N(x), which is at

greater distance from u than x, and so β /∈ Λ(u′). Hence we can complete the

colouring on these components in the same way as in Case 1. £

Note that condition (i) in Lemma 5.17 can be replaced by the weaker

statement ‘every bounded decreasing sequence in Λ(v) has its limit in Λ(v)’.

Lemma 5.18 Let G be an even circuit, and let Λ be an assignment of lists

such that

(i) each Λ(v) is a finite union of half-open intervals,

(ii) µ(Λ(v)) ≥ d(v) for v ∈ V (G).

Then G has a proper Λ-colouring.

Proof. By Theorem 5.5(iv) we know that σ(G) < 2. Clearly, then, we can

find Λ′(v) ⊂ Λ(v) such that Λ′(v) is closed and µ(Λ′(v)) ≥ σ(G), for each

v ∈ V (G). By definition of σ(G) we then have a Λ′-colouring of G, which is

also a Λ-colouring. £

Lemma 5.19 Let G be an even circuit with one chord, and let Λ be an as-

signment of lists as in Lemma 5.18. Then G has a proper Λ-colouring.

Proof. Let Λ, β and X be as in the proof of Lemma 5.17. Again we consider

two cases.

Case 1: X = V (G). Let x and y be the endvertices of the chord, and

let u 6= y be a vertex adjacent to x. Let γ(u) = β, and γ(v) = β for every

vertex v at even distance from u in the circuit G− xy. Any uncoloured vertex
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v ∈ V \ {x, y} can now be coloured with any colour γ(v) ≥ β + 1 from its list.

If y has already been assigned colour β then x can also be coloured with any

colour γ(x) ≥ β + 1 in Λ(x). Otherwise, let Λ′ = (Λ(x) ∪ Λ(y)) ∩ [β + 1,∞),

and β′ = min Λ′; w.l.o.g. β′ ∈ Λ(x). We can now complete the colouring of G

by setting γ(x) = β′ and choosing γ(y) ≥ β′ + 1 from Λ(y).

Case 2: X 6= V (G). In this case there exists a vertex x ∈ X which is

adjacent to a vertex u ∈ V (G) \X. Set γ(x) = β. As in the proof of Lemma

5.17, with Λ′(u) = Λ(u) ∩ [β + 1,∞), we have µ(Λ′(u)) > µ(Λ(u)) − 1 ≥

dG(u)− 1 ≥ dG−x(u). Hence u satisfies condition (ii) of Lemma 5.17 in G− x;

and every other vertex satisfies condition (iii) inG−x. SinceG−x is connected,

we can complete the colouring of G by Lemma 5.17. £

Lemma 5.20 Let G be a connected graph, and let G contain as an induced

subgraph an even circuit, or an even circuit with one chord. Let Λ be an

assignment of lists as in Lemma 5.18. Then G has a proper Λ-colouring.

Proof. Let S ⊆ V be the vertex set of the induced subgraph. Let Λ, β

and X be as in the proof of Lemma 5.17. We use induction on |V \ S|; if

|V \ S| = 0 then the result follows directly from Lemma 5.18 or 5.19. So

assume |V \ S| ≥ 1. We distinguish three cases.

Case 1: X \ S 6= ∅. Choose x ∈ X \ S at maximum distance from any

vertex of S, and set γ(x) = β. Let C be the component of G−x that contains

S. If v ∈ C was adjacent to x in G, then the set of colours Λ′(v) available for v

satisfies µ(Λ′(v)) ≥ µ(Λ(v))− 1 ≥ dG(v)− 1 ≥ dC(v). Hence we can colour C

by the induction hypothesis. Every other component of G−x contains a vertex
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u′ ∈ N(x), which is at greater distance from S than x, so we can complete the

colouring on these components as in Lemma 5.17.

Case 2: X À S. In this case there exists a vertex x ∈ X which is adjacent

to a vertex u ∈ S \X. Set γ(x) = β. All the vertices in S \ {x} are contained

in the same component C of G−x. Proceeding as in the proof of Lemma 5.17,

we have µ(Λ′(u)) > µ(Λ(u)) − 1 ≥ dG(u) − 1 ≥ dG−x(u). Hence u satisfies

condition (ii) of Lemma 5.17 in C; and every other vertex satisfies condition

(iii) in C. By Lemma 5.17, we can complete the colouring on this component.

Every other component of G−x contains only vertices not in S, and hence not

in X, and so we can complete the colouring on these components as above.

Case 3: X = S. Choose vertices of S to be given colour β as in Case 1 of

Lemma 5.19 (if the subgraph induced by S has no chord, then u can be any

vertex of S). Now remove the vertices of G coloured β to form G′, and let C

be any component of G′. If C contains a vertex v ∈ S then, since v has two

neighbours in G with colour β, we have µ(Λ′(v)) ≥ µ(Λ(v))− 1 > dG(v)− 2 ≥

dC(v); hence v satisfies condition (ii) of Lemma 5.17 in C, and we can use

Lemma 5.17 to colour C. Otherwise C consists of vertices not in S, and hence

not in X, and so we can complete the colouring on C as above. £

The final step we need is the following theorem due to A.L. Rubin [9].

Together with the above lemmas, it is then a short step to the theorem we are

aiming for.

Theorem 5.21 (Rubin [9]) If G is a 2-connected graph, and G is not a

complete graph or an odd circuit, then G contains as an induced subgraph an
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even circuit, or an even circuit with one chord. £

Lemma 5.22 Let G be a connected graph which is not a complete graph or

an odd circuit, and let Λ be an assignment of lists such that

(i) each Λ(v) is a finite union of half-open intervals,

(ii) µ(Λ(v)) ≥ ∆(G) for v ∈ V (G).

Then G has a proper Λ-colouring.

Proof. If G is 2-connected, the result is implied by Theorem 5.21 and Lemma

5.20. So let G be connected but not 2-connected. If any block B of G is not a

complete graph or an odd circuit, the result follows by applying Theorem 5.21

to B and then Lemma 5.20 to G. So assume each block of G is a complete

graph or an odd circuit.

Let B be an endblock of G; it contains a unique vertex v adjacent to

vertices in G − B. Taking u ∈ B − v we have d(u) < d(v), and so G is

non-regular. The result now follows immediately from Lemma 5.17, since

µ(Λ(v)) ≥ ∆(G) > d(u). £

Theorem 5.23 For any graph G, σ(G) ≤ ∆(G), and if G is connected, then

equality holds iff G is a complete graph or an odd cycle.

Proof. We may restrict our attention to connected graphs G. By Theorem

5.5 we know that if G is a complete graph or an odd circuit then σ(G) =

χ(G) − 1 = ∆(G). Otherwise, by Lemma 5.16 and Theorem 5.22, we know

that τr(G) < ∆(G) for each r ∈ N. By Theorem 5.12, there is r ∈ N such that

τr(G) = σ(G), and hence σ(G) < ∆(G) as required. £
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5.5 Bounds and values for σ(G)

In this section we briefly discuss general bounds on σ(G), and investigate the

value of σ(G) for two classes of graphs: wheels and complete bipartite graphs.

Along the way we will show that the natural analogues for σ(G) of various

results from Chapter 4 regarding τ(G) do not hold.

5.5.1 General bounds and inequalities

Equation (5.1) gives a lower bound on σ(G) in terms of chs(G) for all s ∈ N,

and an upper bound when s ≥ 2. For s = 1 we have the following conjecture,

which is implied by Conjecture 3.4.

Conjecture 5.24 For any graph G and any s ∈ N,

σ(G) ≤ 2(ch(G)− 1).

Recall Theorem 4.10, which stated that for any graph G and s ∈ N,

cchs(G) = ⌊s τ(G)⌋ + 1. Lemma 5.2 tells us that chs(G) ≤ ⌊s σ(G)⌋ + 1,

but equality does not hold in general. When equality does hold for all s ∈ N,

we will say that G is σ-exact.

All the graphs G for which we have stated the value of σ(G) so far are

σ-exact, but we already have enough information to prove that K2,36 is not

σ-exact. In the proof of Theorem 3.6 we showed that ch2(K2,36) = 7, and so

σ(K2,36) ≥ 7−1
2

= 3 by Lemma 5.2. However, ch(K2,36) = 3, and so we have

ch1(K2,36) = 3 < ⌊σ(K2,36)⌋+ 1.
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5.5.2 Wheels

Theorem 4.21 gives the value of τ(G) for graphs of the form G = K1 + rKk.

We begin by determining chs(G), and hence σ(G), for these graphs.

Theorem 5.25 For k, r ∈ N, let G = K1 + rKk. Then for each s ∈ N,

chs(G) =
⌊

(k + 1)s
(

1− 1
kr+1

)⌋

+ 1, and hence σ(G) = (k + 1)
(

1− 1
kr+1

)

.

Proof. If r = 1 then G = Kk+1, and if k = 1 then G = K1,r; in either case

the required result follows from Theorem 3.1. So assume k ≥ 2 and r ≥ 2.

As in the proof of Theorem 4.21, let u be the universal vertex in G, and let

{vij : 1 ≤ i ≤ r, 1 ≤ j ≤ k} be the remaining vertices.

Fix s ∈ N and t ∈ {1, . . . , s− 1}, and for j = 1, . . . , k, let L(v1j) =

{1, . . . , (k + 1)s− t}. Suppose c is a colouring of G[u, v11, . . . , v1k] ∼= Kk+1

with separation s such that c(v1j) ∈ L(v1j) for j = 1, . . . , k; we consider the

possible values of c(u). We may assume w.l.o.g. that

c(v11) ≤ c(v12)− s ≤ c(v13)− 2s ≤ · · · ≤ c(v1k)− (k − 1)s,

and one of the following must hold: c(u) ≤ c(v11)−s, in which case c(u) ≤ s−t;

c(u) ≥ c(v1k)+s, in which case c(u) ≥ ks+1; or c(v1 j−1)+s ≤ c(u) ≤ c(v1j)−s

for some j ∈ {2, . . . , k}, in which case (j − 1)s+ 1 ≤ c(u) ≤ js− t. Let F1 be

the set of colours x ∈ Z such that there is no colouring c of G[u, v11, . . . , v1k]

with separation s such that c(u) = x and c(v1j) ∈ L(v1j) for j = 1, . . . , k;

it follows from the above results that F1 =
⋃k

j=1 {js− t+ 1, . . . , js}, and so

|F1| = kt.
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Similarly, for i = 2, . . . , r, let L(vij) = {(i− 1)ks+ 1, . . . , (ik + 1)s− t}

for each j ∈ {1, . . . , k}, and define Fi by analogy with F1 above. Then the

sets F1, . . . , Fr are pairwise disjoint, and |Fi| = kt. Now if (k + 1)s− t ≤ krt,

we can complete L to a ((k + 1)s − t)-list assignment for G with L(u) ⊆

F1∪ · · ·∪Fr, and hence so that there is no L-colouring of G with separation s.

Thus chs(G) > (k+1)s−t whenever (k+1)s−t ≤ krt, that is, when t ≥ (k+1)s
kr+1

;

and so, since chs(G) is an integer, chs(G) ≥
⌊

(k + 1)s
(

1− 1
kr+1

)⌋

+ 1.

Now let L be any ((k + 1)s − t)-list assignment for G. The upper bound

chs(G) ≤
⌊

(k + 1)s
(

1− 1
kr+1

)⌋

+ 1 will follow once we have shown that in

general, with Fi as defined above, |Fi| ≤ kt for each i ∈ {1, . . . , r}. It will

suffice to show this just for i = 1.

Let W = {v11, . . . , v1k}. For q ∈ {0, . . . , k}, let cq be the L-colouring

of G[W ] with separation s which uses the smallest possible colours for some

q vertices in W , and the largest possible colours for the remaining vertices.

Formally, we construct cq as follows:

• If q ≥ 1, let x1 = min
⋃

v∈W L(v). Choose v1 ∈ W so that x1 ∈ L(v1)

(these subscripts are independent of the double subscripts above), and

set cq(v1) = x1.

• For 2 ≤ p ≤ q, let xp = min{x ∈ ⋃

v∈W\{v1,...,vp−1}
L(v) : x ≥ xp−1 + s}.

Choose vp ∈ W \ {v1, . . . , vp−1} so that xp ∈ L(vp), and set cq(vp) = xp.

• Now let Wq = W \ {v1, . . . , vq}. If q < k, let yqk = max
⋃

v∈Wq
L(v).

Choose wq
k ∈ Wq so that yqk ∈ L(wq

k), and set cq(w
q
k) = yqk.
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• For k > p > q, let yqp = max{y ∈ ⋃

v∈Wq\{w
q
p+1,...,w

q
k}
L(v) : y ≤ yqp+1 − s}.

Choose wq
p ∈ Wq\{wq

p+1, . . . , v
q
k} so that yqp ∈ L(wq

p), and set cq(w
q
p) = yqp.

Note that the values of xp and yp are independent of q, whereas the superscripts

on yqp and wq
p indicate that their values may depend on q.

Under ck, any colour x ≥ ck(vk)+ s is valid for u, and under c0, any colour

x ≤ c0(w
1
0)− s is valid for u; furthermore, for q ∈ {1, . . . , k − 1}, any colour x

such that cq(vq) + s ≤ x ≤ cq(w
q
q+1)− s is valid for cq(u). Hence

F1 ⊆
k
⋃

q=1

{cq−1(w
q−1
q )− s+ 1, . . . , cq(vq) + s− 1}.

Since we only need to show that |F1| ≤ kt, we are done if we show that

|{cq−1(w
q−1
q )− s+ 1, . . . , cq(vq) + s− 1}| ≤ t for each q ∈ {1, . . . , k}, that is,

cq−1(w
q−1
q )− cq(vq) ≥ 2s− t− 1.

For all v ∈ W and q ≥ 1, {x ∈ L(v) : x < cq(v1)} = ∅ by our choice of x1.

Then for all v ∈ W \ {v1} and q ≥ 2, {x ∈ L(v) : cq(v1) + s ≤ x < cq(v2)} = ∅

by our choice of x2, and so |{x ∈ L(v) : x < cq(v2)}| ≤ s. Continuing in this

way, for each p ∈ {1, . . . , q}, if v ∈ W \ {v1, . . . , vp−1}, we obtain |{x ∈ L(v) :

x < cq(vp)}| ≤ (p− 1)s; and in particular, since wq−1
q ∈ W \ {v1, . . . , vq − 1},

∣

∣{x ∈ L(wq−1
q ) : x < cq(vq)}

∣

∣ ≤ (q − 1)s. (5.3)

By an analogous argument, if q ≤ p ≤ k and v ∈ Wq−1 \ {wq−1
p+1, . . . , w

q−1
k }

then |{x ∈ L(v) : x > cq−1(w
q−1
p )}| ≤ (k − p)s; and in particular, since
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wq−1
q ∈ Wq−1 \ {wq−1

q+1, . . . , w
q−1
k },

∣

∣{x ∈ L(wq−1
q ) : x > cq−1(w

q−1
q )}

∣

∣ ≤ (k − q)s. (5.4)

Finally, we have

cq−1(w
q−1
q )− cq(vq) = |{cq(vq), . . . , cq−1(w

q−1
q )}| − 1

≥ |L(wq−1
q ) ∩ {cq(vq), . . . , cq−1(w

q−1
q )}| − 1

≥ |L(wq−1
q )| − (q − 1)s− (k − q)s− 1

= ((k + 1)− (q − 1)− (k − q))s− t− 1 = 2s− t− 1,

where the second inequality is implied by (5.3) and (5.4). Thus |F1| ≤ kt,

and similarly |Fi| ≤ kt for i = 2, . . . , r. This allows us to deduce the required

upper bound on chs(G), and completes the proof of the theorem. £

Comparing Theorems 4.21 and 5.25, we see that σ(G) > τ(G) for all graphs

G = K1 + rKk with k ≥ 2 and r ≥ 2.

For r ≥ 2, since K1 + rK2 ⊂ K1 + C2r, Theorem 5.25 implies that

σ(K1 + C2r) ≥ σ(K1 + rK2) ≥ 3
(

1− 1
2r+1

),

and for odd wheels K1 + C2r+1 (r ≥ 1), from Corollary 4.16 we have

σ(K1 + C2r+1) ≥ τ(K1 + C2r+1) ≥ 3.
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At first glance it is tempting to conjecture that equality holds in both cases;

but we will use the next lemma to show that in fact σ(K1 + Cm) → 4 as

m → ∞ (irrespective of the parity of m). Note that since chs(Cm) ≤ 2s + 1,

we have chs(K1 + Cm) ≤ 4s by Lemma 3.13, and so σ(K1 + Cm) ≤ 4.

Lemma 5.26 Let r ∈ N and n1, . . . , nr ≥ 2. For i = 1, . . . , r let Bi be a tree

on ni vertices, and let G = K1 + (B1 ∪ · · · ∪Br). Then

σ(G) ≥ min

{

2

(

2− 1

n1

)

, . . . , 2

(

2− 1

nr

)

,
2

r + 1

(

2r −
r

∑

i=1

1

ni

)}

.

Proof. Fix s ∈ N, and let ki = chs(Bi) − 1 for i = 1, . . . , r; by Theorem

3.1(iii), ki =
⌊

2s
(

1− 1
ni

)

⌋

. Let Li be a ki-list assignment for Bi such that

there is no Li-colouring of Bi with separation s. Now let k ∈ N be such that

k ≥ 2s > max{ki : i = 1, . . . , r} and k < min{ki + 2s : i = 1, . . . , r}, and set

bi = k − ki for i = 1, . . . , r. Define a list assignment L for G as follows:

L(v) = Li(v) ∪ {ai, . . . , ai + bi − 1} if v ∈ Bi, (5.5)

L(u) =
r
⋃

i=1

{ai + bi − s, . . . , ai + s− 1}, (5.6)

where the values a1, . . . , ar ∈ Z are chosen so that the unions in (5.5) and

(5.6) are disjoint, and the restrictions on k ensure that ai ≤ ai + bi − 1 and

ai + bi − s ≤ ai + s − 1. There is no L-colouring of G with separation s; for

suppose c is such a colouring. Then c(u) ∈ {ai + bi − s, . . . , ai + s− 1} for

some i ∈ {1, . . . , r}, and so c(v) /∈ {ai, . . . , ai + bi − 1} for all v ∈ Bi. But

this implies that c(v) ∈ Li(v), and so c restricted to Bi is an Li-colouring with
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separation s, contradicting the definition of Li.

Clearly |L(v)| = k for each v ∈ V \ {u}, and it follows that chs(G) > k

provided that |L(u)| ≥ k, that is, if

k ≤
r

∑

i=1

(2s− bi) = 2rs− rk +
r

∑

i=1

ki

⇐⇒ (r + 1)k ≤ 2rs+
r

∑

i=1

ki = 4rs−
r

∑

i=1

⌈

2s

ni

⌉

.

Recalling that the definitions (5.5) and (5.6) are only valid provided that k <

min{ki + 2s : i = 1, . . . , r} = min
{⌊

2s
(

2− 1
ni

)

⌋

: i = 1, . . . , r
}

, we have

chs(G) ≥ min







⌊

2s

(

2− 1

n1

)⌋

, . . . ,

⌊

2s

(

2− 1

nr

)⌋

,
4rs−∑r

i=1

⌈

2s
ni

⌉

r + 1







.

Dividing through this inequality by s and taking the limit as s → ∞, we obtain

the result of the lemma. £

Corollary 5.27 If r ≥ 2 and m ≥ r2, then σ(K1 + Cm) ≥ 4− 6
r+1

.

Proof. Apply Lemma 5.26 with ni = r and Bi
∼= Pr for each i = 1, . . . , r.

Then G = K1 + rPr ⊂ K1 + Cm, and so σ(K1 + Cm) ≥ σ(K1 + rPr) ≥

min
{

4− 2
r
, 2
r+1

(2r − 1)
}

= min
{

4− 2
r
, 4− 6

r+1

}

= 4− 6
r+1

. £

Corollary 5.28 If m ≥ 25 then σ(K1 + Cm) > 3.

Proof. Apply Lemma 5.26 with r = 6, n1 = · · · = n5 = 4 and n6 = 5, and

each Bi a path. Then
∑6

i=1 ni = 25, and so G ⊂ K1 + Cm and σ(K1 + Cm) ≥

σ(G) ≥ min
{

4− 2
4
, 2

7

(

12− 5
4
− 1

5

)}

= min
{

7
2
, 240−25−4

70

}

= 3 + 1
70
. £
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A little trial and error shows that m ≥ 25 is the best bound we can derive

in Corollary 5.28 from Lemma 5.26. It follows from this last result that there

is no analogue of Lemma 4.15 for the choosability ratio of critical graphs:

G = K1 + C25 is choice-critical in the sense that ch(G − v) < ch(G) for all

v ∈ V , and we even have ch(G) = χ(G) = 4 and ch(H) = χ(H) < 4 for all

proper subgraphs H ⊂ G; but σ(G) > 3 = ch(G)− 1.

5.5.3 Complete bipartite graphs

Let G = Kk,m. If m ≥ kk then ch(G) = k + 1, as noted in [9], and if

m ≥ (2s − 1)kkk then chs(G) = (2s − 1)k + 1 as in the proof of Theorem

3.6. We also note that for fixed k ∈ N, Theorem 3.6 and equation (5.1) imply

that σ(Kk,m) → 2k as m → ∞. Asymptotic results for general graphs of this

form are known: Alon and Zaks [4] use probabilistic methods to show that

there exist constants c1, c2 > 0 such that for all s ≥ 1 and n ≥ 2, c1s logn ≤

chs(Kn,n) ≤ c2s logn, and it follows that c1 logn ≤ σ(Kn,n) ≤ c2 logn.

The next theorem gives a lower bound on σ(Kk,m) when m is a kth power.

Theorem 5.29 For any k, r ∈ N, let G = Kk,rk . Then σ(G) ≥ 2rk
r+k

.

Proof. By Lemma 5.16 and Theorem 5.12, the result will follow if we exhibit

an assignment Λ of lists for G such that each Λ(v) is a union of half-open

intervals, and µ(Λ(v)) ≥ 2rk
r+k

for each v ∈ V .

As in the proof of Theorem 3.6, let the vertex set V = {u0, . . . , uk−1} ∪
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{vi0,...,ik−1
: i0, . . . , ik−1 ∈ {0, . . . , r − 1}}. Assign the following lists:

Λ(up) = [4pk, 4pk + 2kδ),

Λ(vi0,...,ik−1
) =

k−1
⋃

p=0

[4pk + 2kδ ip+1

r
− 1, 4pk + 2kδ ip

r
+ 1),

where we set δ ∈ (0, r
k
) to ensure that the upper end of each of these intervals

is larger than the lower.

For each p = 0, . . . , k − 1, whatever colour γ(up) we choose for up, there is

some ip ∈ {0, . . . , r − 1} such that γ(up) ∈ [4pk + 2kδ ip
r
, 4pk + 2kδ ip+1

r
). But

then for every λ ∈ Λ(vi0,...,ik−1
), |λ − γ(up)| < 1 for some p ∈ {0, . . . , k − 1},

and so there is no valid colour for vi0,...,ik−1
in its list. Thus there is no proper

Λ-colouring of G.

The lists all have the same measure when 2kδ = k(2− 2kδ
r
), which rearranges

to give δ = r
k+r

and µ(Λ(v)) = 2kr
k+r

for each v ∈ V . Hence in this case, Λ

satisfies all the conditions we required, and we deduce that σ(G) ≥ 2kr
k+r

. £

It is somewhat surprising that the bound we obtain in Theorem 5.29 is

symmetric in k and r, since the graph G is not symmetric in these parameters.

We remark that equality cannot hold for all k, r ∈ N, which can be seen from

the following two cases of Theorem 5.29:

k = 2, r = 8 =⇒ σ(K2,64) ≥ 32
10

= 3.2,

k = 6, r = 2 =⇒ σ(K6,64) ≥ 24
8
= 3.

It is clear that equality cannot hold in the second case since K2,64 ⊂ K6,64,
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and thus σ(K6,64) ≥ σ(K2,64) ≥ 3.2. However, if k = 1 or r = 1 then G is

a star graph, and Theorem 5.5 implies that equality holds. Furthermore, we

conjecture that equality holds at least for k = 2:

Conjecture 5.30 For r ∈ N, let G = K2,r2. Then σ(G) = 4r
r+2

= 4− 8
r+2

.

The technique of ‘forbidden sets’ used in the proof of Theorem 3.9 can be

used to make some progress towards Conjecture 5.30. Let G = K2,m with

vertex set V = {u,w} ∪ {v1, . . . , vm}, and let Λ be a real list assignment for

G. For i = 1, . . . ,m we define

Fi = {〈α, β〉 ∈ R2 : Λ(vi) ⊆ (α− 1, α+ 1) ∪ (β − 1, β + 1)}, (5.7)

the set of pairs of colours 〈α, β〉 such that if γ(u) = α and γ(w) = β, there is no

valid colour for vi in Λ(vi). (Here we use angle brackets 〈α, β〉 for ordered pairs,

to distinguish them from open intervals.) Then there is no proper Λ-colouring

of G iff Λ(u)× Λ(w) ⊆ ⋃m

i=1 Fi.

We will now derive a general bound on the measure of Fi in terms of the

measure of Λ(vi). Let µ(Λ(vi)) = κ ∈ [2, 4), and define

λ1
i = inf Λ(vi),

λ2
i = inf {λ ∈ Λ(vi) : µ

(

Λ(vi) ∩ [λ,∞)
)

≤ 2},

λ3
i = sup {λ ∈ Λ(vi) : µ

(

Λ(vi) ∩ (−∞, λ]
)

≤ 2},

λ4
i = supΛ(vi).

Note that λ1
i , λ

2
i , λ

3
i , λ

4
i ∈ Λ(vi) since Λ(vi) is closed, and λ1

i ≤ λ2
i < λ3

i ≤ λ4
i
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since 2 ≤ κ < 4.

Now suppose 〈α, β〉 ∈ Fi, so that Λ(vi) ⊆ (α − 1, α + 1) ∪ (β − 1, β + 1).

Note that α 6= β, since µ(Λ(vi)) ≥ 2 and so Λ(vi) 6⊆ (α − 1, α + 1), and that

〈α, β〉 ∈ Fi iff 〈β, α〉 ∈ Fi. Now assume α < β. We must have λ1
i ∈ (α−1, α+1)

and λ4
i ∈ (β − 1, β + 1); since λ3

i − λ1
i ≥ 2 and λ4

i − λ2
i ≥ 2, these imply

respectively that λ3
i ∈ (β − 1, β + 1) and λ2

i ∈ (α− 1, α+ 1). Thus

α ∈ (λ2
i − 1, λ1

i + 1) and β ∈ (λ4
i − 1, λ3

i + 1). (5.8)

Let F−
i = {〈α, β〉 ∈ Fi : α < β}; since λ2

i −λ1
i ≥ κ− 2 and λ4

i −λ3
i ≥ κ− 2,

equation (5.8) tells us that µ(F−
i ) ≤ (4 − κ)2. We can reduce this bound:

suppose α = λ2
i − 1+ δ and β = λ3

i +1− ε. Then since µ
(

Λ(vi)∩ (−∞, λ2
i ]
)

=

µ
(

Λ(vi) ∩ [λ3
i ,∞)

)

= κ − 2, we have µ(Λ(vi) ∩ (α − 1, α + 1)) ≤ κ − 2 + δ

and µ(Λ(vi) ∩ (β − 1, β + 1)) ≤ κ − 2 + ε. But 〈α, β〉 ∈ Fi then implies that

κ − 2 + δ + κ − 2 + ε ≥ µ(Λ(vi)) = κ, and so δ + ε ≥ 4 − κ. Combined with

the previous observations, we deduce that µ(F−
i ) ≤ 1

2
(4− κ)2.

Writing F+
i = Fi \ F−

i , clearly µ(F+
i ) = µ(F−

i ), and so

µ(Fi) ≤ (4− κ)2. (5.9)

If Λ(vi) = [0, κ] we can show that µ(F1) = (4 − κ)2, so this general bound is

sharp. Equation (5.9) allows us to derive the following result.

Lemma 5.31 Let κ ∈ [2, 4) and m ≤ 2κ2

(4−κ)2
, and G = K2,m. Then σ(G) ≤ κ.

Proof. Let Λ be a real κ-list assignment for G. Using the above notation, we
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know there is a proper Λ-colouring of G if Λ(u)×Λ(w) 6⊆ ⋃m

i=1 Fi, which must

hold if
∑m

i=1 µ(Fi ∩ (Λ(u)× Λ(w))) < µ(Λ(u)× Λ(w)) = κ2.

As we observed above, 〈α, α〉 /∈ Fi for any α ∈ R; so if α ∈ Λ(u) ∩ Λ(w),

we can find a suitable colouring γ with γ(u) = γ(w) = α. So assume that

Λ(u) ∩ Λ(w) = ∅; this implies that
(

Λ(u) × Λ(w)
)

∩
(

Λ(w) × Λ(u)
)

= ∅. By

the symmetry of Fi, µ(Fi ∩ (Λ(u)× Λ(w))) = µ(Fi ∩ (Λ(w)× Λ(u))), and so

µ(Fi ∩ (Λ(u)× Λ(w))) ≤ 1
2
(4− κ)2.

Hence we can find a proper Λ-colouring of G if 1
2
(4 − κ)2m < κ2, that is, if

m < 2κ2

(4−κ)2
, and so σ(G) ≤ κ in this case. Finally, if m = 2κ2

(4−κ)2
and κ < κ′ < 4

then m < 2κ′2

(4−κ′)2
, and so σ(G) ≤ κ′. Since κ′ is arbitrary, this implies that

σ(G) ≤ κ, and this completes the proof of the lemma. £

Writing κ = 4− δ, we transform the bound in Lemma 5.31 as follows:

m ≤ 2κ2

(4− κ)2
⇐⇒ m ≤ 2(4− δ)2

δ2

⇐⇒ 0 ≤ 32

δ2
− 16

δ
+ (2−m)

⇐⇒ 1

δ
≥ 16 +

√

162 − 4 · 32(2−m)

2 · 32 =
2 +

√
2m

8

⇐⇒ κ ≥ 4− 8

2 +
√
2m

.

Setting m = r2, and combining the above result with Theorem 5.29, we obtain

the following bounds on σ(K2,r2).
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Theorem 5.32 For r ≥ 2, let G = K2,r2. Then

4− 8

2 + r
≤ σ(G) ≤ 4− 8

2 + r
√
2
. £

5.6 Future research

Our efforts to determine various exact values of σ(G), even for such small

graphs as G = K2,4 or G = K1 + C5, have been frustratingly unsuccessful.

As further evidence for the difficulty of computing such parameters, we quote

Alon and Zaks, who state that their proof that chs(C4) ≤
⌊

12s
7

⌋

+1 “is a rather

lengthy case-by-case analysis, and is therefore omittedÔ (from their paper [4]).

Conjectures 3.4 and 5.24 are perhaps the most compelling for further study.

As with the (a : b)-choosability conjectures (see, for example, Woodall’s survey

[35]), it is likely that some greater insight into structural or other properties

of k-choosable graphs will be needed before significant progress can be made.

Attempts to adapt the techniques of Section 4.3 to prove that σ(G) is rational

for finite graphs G have also proved unsuccessful, though we conjecture that

this is the case.

We could ask questions about the spectrum of σ(G), by analogy with results

in Section 4.5, but with our limited ability to produce upper bounds on σ(G),

answers are unlikely to be forthcoming. We may at least look at the possible

values of σ(G) < 2, and ask whether they form a discrete set as do the values

of τ(G) < 2.

Fiala, Kráł and Škrekovski [10, 11] have recently introduced a common
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generalisation of the channel assignment problem and T -colouring, in which

each vertex has a list L(v) ⊆ Z and each edge has a set t(e) ⊆ N0. The goal

is to find a colouring c with c(v) ∈ L(v) for v ∈ V , and |c(v)− c(w)| /∈ t(vw)

for uv ∈ E. They prove a Brooks-type theorem characterising exactly those

list assignments L with |L(v)| = ∑

w∈N(v) |t(vw)| for all v ∈ V which admit

a colouring as described. As ever more generalised colouring problems are

introduced, it becomes correspondingly harder to derive interesting results

about them, but this is still an area worthy of further study.

118



5.7 Appendix: Lebesgue measure Chapter 5: The choosability ratio

5.7 Appendix: Lebesgue measure

We include here the formal definitions from measure theory which are needed

to define Lebesgue measure and to prove Lemma 5.8.

Let X be any set. A family Σ ⊆ P(X) is a σ-algebra if it satisfies

(i) ∅ ∈ Σ and X ∈ Σ,

(ii) if A ∈ Σ then X \ A ∈ Σ, and

(iii) if A1, A2, . . . ∈ Σ then
⋃∞

i=1 Ai ∈ Σ.

The smallest σ-algebra containing a family F ⊆ P(X) is called the σ-algebra

generated by F . The Borel σ-algebra B(R) is the σ-algebra generated by the

open subsets of R; its elements are the Borel sets. Naturally, there are many

other families which generate B(R), and one such family is {(−∞, x] : x ∈ R}

which we will use below.

Given a σ-algebra Σ ⊆ P(X), a function µ : Σ → [0,∞] is a measure on Σ

if it satisfies

(i) µ(∅) = 0, and

(ii) if A1, A2, . . . ∈ Σ are disjoint then µ (
⋃∞

i=1 Ai) =
∑∞

i=1 µ(Ai).

Theorem 5.33 There is a unique measure µ : B(R) → [0,∞], called Lebesgue

measure, which satisfies µ([a, b]) = b− a whenever −∞ < a ≤ b < ∞. £

The proof of Lemma 5.8 requires the following additional definition and

lemma. A family D ⊆ P(X) is a Dynkin system if it satisfies
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(i) X ∈ D,

(ii) if A,B ∈ D and A ⊆ B then B \ A ∈ D, and

(iii) if A1, A2, . . . ∈ D and A1 ⊆ A2 ⊆ · · · , then ⋃∞
i=1 Ai ∈ D.

Lemma 5.34 (Dynkin’s Lemma) Let F ⊆ P(X) be closed under inter-

section. Then any Dynkin system containing F also contains the σ-algebra

generated by F . £

Corollary 5.35 Let F ⊆ P(X) be closed under intersection, and let Σ be the

σ-algebra generated by F . Suppose that µ1 and µ2 are measures on Σ with

µ1(X) = µ2(X) < ∞. If µ1 and µ2 agree on F , then µ1 = µ2. £

For the proof of Dynkin’s Lemma see, for example, [2, p.153]. Corollary 5.35

follows by showing that D = {A ∈ Σ : µ1(A) = µ2(A)} is a Dynkin system.

Proof of Lemma 5.8. Let F = {(−∞, x] : x ∈ R}, and for a Borel set

B ⊆ R, define µ1(B) = µ(f(B)) and µ2(B) = µ(Λ ∩ B). The Borel sets are

generated as a σ-algebra by F , and F is closed under intersection. Since f is

continuous and nondecreasing, if Bx = (−∞, x] then either f(Bx) = (0, f(x)]

or f(Bx) = [0, f(x)], and so

µ1(Bx) = µ(f(Bx)) = f(x) = µ(Λ ∩Bx) = µ2(Bx).

Thus µ1 and µ2 agree on F , and so Lemma 5.8 follows from Corollary 5.35

once we have shown that µ1 and µ2 are measures.
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Let B1, B2, . . . be a sequence of disjoint Borel sets and B =
⋃∞

i=1 Bi; we

need to show that µ1(B) =
∑∞

i=1 µ1(Bi) and µ2(B) =
∑∞

i=1 µ2(Bi). The second

statement is straightforward, since

µ2(B) = µ(Λ ∩B) = µ

(

∞
⋃

i=1

(Λ ∩Bi)

)

=
∞
∑

i=1

µ(Λ ∩Bi) =
∞
∑

i=1

µ2(Bi).

Turning now to µ1, we will need the fact that µ(f(Bi) ∩ f(Bj)) = 0 when

i 6= j. For each y ∈ f(Bi) ∩ f(Bj), there exists x ∈ Bi such that f(x) = y,

and x′ ∈ Bj such that f(x′) = y. Let Γy ⊆ R be the interval [x, x′] or [x′, x]

(according as x < x′ or x′ < x). The intervals Γy all have nonzero length and

are pairwise disjoint, and so there can only be countably many of them. Hence

f(Bi) ∩ f(Bj) is countable, and so µ(f(Bi) ∩ f(Bj)) = 0.

Define C1 = f(B1), and Ci = f(Bi) \
⋃

j<iCj for i ≥ 2; then the above

argument shows that µ(Ci) = µ(f(Bi)). Furthermore, the sets C1, C2, . . . are

disjoint, and
⋃∞

i=1 Ci = f(B); hence

µ1(B) = µ(f(B)) =
∞
∑

i=1

µ(Ci) =
∞
∑

i=1

µ(f(Bi)) =
∞
∑

i=1

µ1(Bi).

Hence µ1 and µ2 are measures, as required. £
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