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Abstract 
Wave overtopping is one of the most important processes for the design of 

seawalls. During the past 50 years methods for predicting wave overtopping of 

coastal structures have continuously been developed.  

However, it is evident from the existing literature that additional investigations 

into overtopping of small positive, zero and negative freeboard are needed. The 

present thesis describes numerical investigations based in this background.  

Wave overtopping is dependent on the processes associated with wave breaking. 

Therefore, a two dimensional breaking wave numerical model has been developed 

and used to study the phenomena of wave overtopping. The model is based on the 

Reynolds averaged Navier-Stokes equations for the mean flow and ( )k ε−  

equations for turbulent kinetic energy, k, and the turbulence dissipation rate, ε . 

The model accuracy in simulating propagation of linear and irregular waves has 

been evaluated. The overall performance of the model is considered satisfactory.  

The development of guidelines for calculating overtopping discharge for different 

seawall slopes is presented. All slopes have been subjected to a wide range of 

irregular waves. The influence of how the slopes of seawalls, wave type (breaking 

and non-breaking) and crest freeboard affect the overtopping discharges has been 

investigated.  

Based on the numerical data, a new expression for breaking and non-breaking 

waves on smooth impermeable slopes is proposed. With the new expression it is 

possible to predict overtopping discharges of smooth seawalls in small positive, 

zero and negative freeboard. 
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CHAPTER 1 
 
 

Introduction   
 
Research into wave overtopping of coastal structures has been the subject of 

numerous investigations over the past 50 years. Since then the overtopping 

prediction tools for typical sea defense structures have continuously been refined. 

The term “wave overtopping” is used here to refer to the process where waves hit 

a sloping structure run up the slope and, if the crest level of the slope is lower than 

the highest run up level, overtop the structure. The wave overtopping discharge is 

thus defined as overtopping volume [m3] per time [s] and structure width [m].  

Figure 1.1 shows an example of wave overtopping at Samphire Hoe seawall, UK. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Severe wave overtopping at the Samphire Hoe seawall, UK (from 

CLASH project, www.clash-eu.org (2001)). 
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Wave overtopping is considered one of the most important processes for the 

design of seawalls, and also to be responsible for many seawall failures in the 

past. For example, many seawalls failed due to wave overtopping during the 

extreme storm surge disasters in 1953 (Netherlands), 1962 and 1976 (Germany 

and Denmark) (Bleck et al., 2000). In the mean time, the crest levels of seawalls 

have been increased along the British, German, Dutch and Danish coasts. 

Nevertheless, wave overtopping cannot be avoided completely due to the random 

nature of the waves and the uncertainties associated with the determination of the 

design water levels and the costs of uneconomically high seawall and their 

damaging effects to the surrounding environment.  

The motivation for predicting the overtopping of structures has until now been 

linked to the design of structures protecting mankind and objects of value against 

the violent force of the surrounding sea. Typically rubble mound or vertical wall 

breakwaters have been used for the protection of harbours, and seawalls and 

offshore breakwaters have been used for the protection of beaches and land. All 

these structures are designed to avoid overtopping or at least reduce it to a 

minimum as overtopping can lead either to functional or structural failure of 

structures.  

Here functional failure refers to cases where for example large wave overtopping 

discharges might damage persons, ships, the structure itself or equipment on it or 

generate waves behind the structure (in case water is present there), which again 

is hazardous to the manoeuvring or mooring of ships. An example of such 

conditions is shown in Figure 1.2. Structural failure refers to cases where the 
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overtopping discharge is heavy enough to damage the crest or lee side of the 

breakwater or seawall which ultimately can lead to the collapse of the structure.  

Figure 1.2: Wave run-up and overtopping at Zeebrugge breakwater (Belgium), 

during (mild) storm conditions (from OPTICREST project, 

awww.rug.ac.be/opticrest (2001)). 

 

Breaking waves in the surf zone play an essential role in nearly all-coastal 

processes. The breaking waves generate strong turbulence and are in general 

accompanied by strong energy dissipation. Breaking modifies wave forces on the 

coastal structures when the wave-structure interaction occurs. This is important 

when the construction of structures in coastal regions is considered.  

The most critical processes for overtopping are the form and severity of wave 

breaking. Recent studies have showed that current overtopping formulae, which 

do not take full account of the complexity of wave breaking, can significantly 

underestimate overtopping discharges (Besley et al., 1998).  
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Global climate has been changed during the last years and the mean water levels 

have increased all over the world. Sea level rises will have a number of important 

impacts on humans. About half of world’s population lives within 200 kilometre 

of the ocean, and many millions live in coastal areas that are less than 5 m above 

sea level (Hardy, 2003).  

Sea level rise impacts include increased beach erosion and flooding of coastal 

habitats. The existing coastal structures, which were designed for certain water 

level, are now likely to be attacked by greater amounts of wave overtopping. It is 

important to be able to predict flood water volumes in this case (small positive 

freeboard). There is currently no guidance on estimating these volumes. 

During storm surges seawalls are exposed to waves. The amount of overtopping 

water increases when the water level rises. If the water level rises above the crest 

level of the structure flood water is not only caused by the wave overtopping 

action, but also by overflow.  

Design formulae used to calculate wave overtopping assume that water in front of 

the structure to be below the crest level of the structure. On the other hand, the 

existing formulae for overflow (e.g. weir formulae) do not take into account the 

effect of waves. New formulae for predicting the case of combined wave 

overtopping and overflow (negative freeboard) are still needed for the planning 

and engineering response.  

1.2 Scope of the study 
In light of the outlined state of development of design overtopping formulae, the 

author has carried out a generic study of wave overtopping of seawalls as a Ph.D. 
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project. This work aims to provide guidelines for how to calculate overtopping 

discharges for a range of seawall slopes when subjected to a broad range of 

irregular breaking and non-breaking waves in small positive, zero and small 

negative freeboard. Here freeboard is referred to vertical distance between mean 

water level and seawall crest level. 

In this study the influence of how the slopes of seawalls, wave type (breaking and 

non-breaking) and crest freeboard effect the overtopping discharges have been 

investigated. This has been achieved through studies of the existing literature, 

theoretical considerations and numerical model tests.  

Numerical models are now playing a very important role in research and design of 

coastal structures. Some numerical models are under development and have been 

validated by coastal researchers.  

Two numerical models are used in this study. The first numerical model is SOLA-

VOF, which is based on the Navier-Stokes equations. SOLA-VOF has been 

developed by Nichols et al. (1980) at Los Alamos National Laboratory, New 

Mexico, USA. The second model, is a two-dimensional breaking wave numerical 

model, (2-D BWNM), which is based on the Reynolds Averaged Navier-Stokes 

equations for mean flow and ( )k ε−  equations for turbulent kinetic energy, k, and 

the turbulence dissipation rate, ε . The two-dimensional breaking wave numerical 

model has been developed by Liu and Lin (1997).  

The numerical models have been validated using laboratory data, other numerical 

models, analytical solutions and empirical design formulae.   
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By using the numerical model results, the influence of the freeboard on 

overtopping and combined overflow and overtopping has been investigated. New 

formulae for cases of small positive, zero and small negative freeboard, which are 

not covered by existing empirical equations, have been formulated, in the 

expectation that they will be useful for designers. 

The research has three main aims: 

• To introduce a new numerical model which is able to simulate random 

breaking waves in shallow water 

• To produce new formulae for the case of small positive and zero freeboard 

as existing overtopping design formulae do not account for these cases. 

• To investigate the case of combined overtopping and overflow and 

introduce new suggested design formulae that can be used in design 

purposes. 

Summary of the present state of knowledge concerning wave overtopping is 

presented in next Chapter (Chapter 2). Overtopping discharge levels, an overview 

of recent overtopping investigations, the effects of wave climate, structure 

geometry and others topics relevant to the current study are described.  

In Chapter 3, the first numerical model (SOLA-VOF) used in this research is 

illustrated. SOLA-VOF mathematical equations governing fluid motion, volume 

of fluid (VOF) technique, numerical implementation, boundary conditions and 

three cases of study are presented. 
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A literature review concerning the two-dimensional breaking wave numerical 

model (2-D BWNM), mathematical formulation of 2-D BWNM and initial 

boundary condition are presented in Chapter 4. 

Different cases of study have been investigated to evaluate two-dimensional 

breaking wave numerical model (2-D BWNM) in Chapter 5.  

Cases of small positive, zero and small negative freeboard conditions are studied 

in Chapters 6 and 7. The results are used in conjunction with existing formulae to 

propose a unified set of design equations to predict combined overflow and 

overtopping volumes for different wave conditions as shown in Chapter 8. 

Conclusion from the research and recommendations for future work are presented 

in Chapter 9. 

 

 

 
7 

 
 

 



CHAPTER 2 
 
 

Literature Review 
 
In this chapter a summary of the present state of knowledge concerning wave 

overtopping is presented. When possible, this review focuses on studies where 

more canonical/idealised layouts of the structure are investigated (i.e., 

overtopping of linear smooth slopes rather than site- specific sea defence 

profiles). 

The first section of this chapter described the overtopping discharge levels, then 

an overview of the recent overtopping investigations. In subsequent sections, the 

effects of wave climate, structure geometry and others topics relevant to the 

current study are presented. 

2.1 Overtopping discharge levels 
Under random wave attack, overtopping discharges vary by up to several orders 

of magnitude from one wave to another, meaning that wave overtopping is a very 

non-linear function of wave height and wave period. This time variation is 

difficult to measure and quantify in the laboratory and hence overtopping 

discharges are most often given in terms of average discharge. To assess 

admissible overtopping discharges for different objects, several researchers have 

studied the impact of overtopping water volumes on different obstacles placed on 

top of an overtopped structure.  Goda (2000) developed overtopping guidelines 

based on prototype investigations consisting of wave climate measurements and 

expert impressions of the impact of overtopping volumes on different objects 

situated on top of breakwaters. These guidelines have been adopted by the 
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Japanese code of practice, and by Coastal Engineering Manual (Burchartch and 

Hughes, 2003). Table 2.1.1 present critical values of the average overtopping 

discharge, q, for typical structure types when considering sea defense structures. 

The values given in this table must be regarded only as rough guidelines. 

 Safety of traffic Structural safety 

 
100

Vehicles Pedestrians Building Embankment 
seawalls 

Grass sea 
dikes 

Revetments 
seawalls 

Damage even 
for paved 
promenade 

 
 
 
 
10-1

Damage even 
if fully 
protected 

Damage if 
promenade not 
paved 

Damage if 
back stop not 
protected 

 
 
 
 
10-2

Damage 

Damage if 
crest not 
protected  

 
 
 
 
10-3

Very 
dangerous 

Start of 
damage 

Unsafe at any 
speed 

Dangerous 
sea 

es 
on grass 
dik

 
 
 
 
10-4

Unsafe parking 
on horizontal 
composite break 
water 

Dangerous 
on Vertical 

 wall B.W

Structural 
damage 

Unsafe parking 
on vertical wall 
break water 
 

 
 
 
 
 
10-5

 

Uncomfort-
able but not 
dangerous 

 
 
 
10-6

Unsafe driving at 
high speed 

Minor 
damage to 
fittings, 
sign posts, 
etc. 

 
 
 
10-7

Safe driving at all 
speed 

Wet, but 
comfortable 

No 
damage 

No damage 

No damage 

No damage 

q (m3/s/ m)      
Table 2.1.1: Criteria for critical overtopping discharge (from Burchartch and 

Hughes (2003)). 
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2.2 Overview of recent overtopping investigations 
When investigating wave overtopping of coastal structures it is evident that the 

discharge depends not only on environmental conditions such as wave height, 

wave period and water level, but also on the geometrical layout and material 

properties of the structure. Thus, there is almost an infinite array of possible 

combinations. Therefore, although a lot of investigations related to wave 

overtopping have been conducted, none of these cover all situations. Each of the 

investigations typically covers one or a few specific cases, which are then 

conducted by means of physical model tests in the laboratories (typically small-

scale models). Such investigations usually lead to an empirical relationship 

between the environmental conditions, geometrical layout and material properties 

of the structure and the overtopping discharge.  

Methods available to predict overtopping rates include numerical modelling, site-

specific model testing and empirical formulae. Most numerical models have been 

validated using small-scale tests with limited structural and incident wave 

conditions. In application the dimensionless overtopping discharge, Q, is 

estimated using interpolation if necessary. Site-specific hydraulic model testing is 

impractical for preliminary design due to the time and expenses involved. As a 

result, engineers rely heavily upon empirical overtopping formulae for conceptual 

and preliminary design. Regular waves are rarely found in the real world, and 

increasingly less frequently used in the laboratory. The overtopping investigations 

based on model tests of various coastal structures exposed to irregular waves are 

summarized briefly in Table 2.2.2, along with the resulting overtopping discharge 

prediction formulae.  
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Authors Structures Overtopping 
model 

Dimensionless 
overtopping 
discharge Q 

Dimensionless 
freeboard R 

Owen 
(1980), 
Owen (1982) 

 

 

 

 

 

Bradbury 
and Allsop 
(1988) 

 

Aminti and 
Franco 
(1988) 

 

 

Ahrens and 
Heimbaugh 
(1988) 

 

Pedersen and 
Burchartch 
(1992) 

 

Franco et al. 
(1994) 

 

 

 

Van der 
Meer and 
Janssen 
(1995) 

 

Impermeable smooth, 
rough, straight and 
bermed slopes under 
offshore random wave. 

1 . 5 5 . 5
s

d
H

⎛ ⎞≤ ≤⎜ ⎟
⎝ ⎠

. 0 3 5 . 0 5 5s

m o

H
L

⎛ ⎞≤ ≤⎜ ⎟
⎝ ⎠

0 . 5 4 . 0C

S

R
H

⎛ ⎞≤ ≤⎜ ⎟
⎝ ⎠

 

 

Rock armoured 
impermeable slopes with 
crown walls 

 

Rock, cube and Tetrapod 
double layer armor on 
rather impermeable slopes 
crown walls (single sea 
state) 

 

7 different sea-wall / 
revetment designs 

 

 

Rock armoured rather 
impermeable slopes with 
crown walls  

 

Vertical wall breakwater 
with and without 
perforated front. 

0 . 9 2 . 2C

S

R
H

⎛ ⎞≤ ≤⎜ ⎟
⎝ ⎠

 

                             
Impermeable, smooth, 
rough, Straight and 
bermed slopes 

 

 

 

bRaeQ −=  

 

 

 

 

 

 

baRQ −=  

 

 

baRQ −=  

 

 

 

bRaeQ −=  

 

 

 

aRQ =  

 

 

bRaeQ −=  

 

 

 

 

bRaeQ −=  

 

 

 

 

3

2

s m o

m

s

q

g H T

Sq

g H

π
⎛ ⎞
⎜ ⎟

=⎜ ⎟
⎜ ⎟
⎝ ⎠
 

 

 

s m o

q

g H T
 

 

s m o

q

g H T
 

 

 

 

3
sgH

q  

 

 

2
m o

m o

q T

L
 

 

3
sgH

q  

 

 

 

3 ta n
p

s

Sq

g H α

 For 2pξ <  

3
sgH

q  

For 2pξ ≥  

1

2
c m

s r

R S

H π γ
 

 

 

 

 

 

2

2
c m

s

R S

H π
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

2

2
c m

s

R S

H π
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

 

( )3

1
2

pos

c

LH

R  

 

 

s

C

H

R
 

 

γ
1

Hs

Rc  

 

 

 

1

tan
pc

s

SR

H α γ
 

For 2pξ <  

γ
1

s

c

H

R  

For 2pξ ≥  

Table 2.2.2: Models for overtopping discharge formulae, partly based on table VI-

5-7 in Burchartch and Hughes (2003). 
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Authors Structures Overtopping 
model 

Dimensionless 
overtopping 
discharge (Q) 

Dimensionless 
freeboard  (R) 

Pedersen 
(1996) 

 

 

Hedges and 
Reis (1998) 

 

 

 

Hebsgaard et 
al. (1998) 

 

 

 

Schuttrumpf 
et al. (2001) 

Rock armoured 
impermeable slopes with 
crown walls 

RQ =

 

Impermeable smooth, 
rough, straight and 
bermed slopes [Data from 
Owen (1982)] 

  

 

Rubble mound structure 
with and without super 
structure, armour layer of 
rounded stones quarry 
rocks, and Dolos. 

 

Impermeable smooth 1:6 
slope (for no freeboard 
(Rc=0) and without 
overtopping (Rc > Rmax)). 

 

 

 

bRaQ )1( −=

for 0 1R≤ <  

0=Q  

for  1≥R

 

bRaeQ −=  

 

 

 

 

bRaeQ −=  

(a dependent 
on 

mξ ) 

2
mo

mo

L

qT
 

 

3
maxgRu

q  

 

 

 

3ln ( )p s

q

S g H

 

 

 

 

32 sgH

q  

 

5
5

3

tan
3 .2 1 0 s

c c

H

R A B

α−×

 

 

maxRu

R c  

 

 

 

γ
1*

s

c

H

R   

(  dependent on 

slope angle and crest 
width) 

*
CR

 

m s

R c

Hξ
 

 

Table 2.2.2 Models for overtopping discharge formulae partly based on table VI-

5-7 in Burchartch and Hughes (2003), continued. 

 

Figure 2.2.1 describes the phenomenon of wave overtopping and presents main 

parameters using in wave overtopping formulae. 

Figure 2.2.1: Diagram of key quantities used to describe wave overtopping at 

sloping seawalls. 
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A comprehensive overview of coastal structures in general and also more details 

of some of the prediction formulae can be found in Burchartch and Hughes 

(2003). In the following subsections, more focus is given to three empirical 

formulae [Van der Meer and Janssen (1995), Owen (1980) and Hedges and Reis 

(1998)] for wave overtopping of a simple sloped seawall subjected to random 

waves approaching normal to the slope. These formulae are chosen for 

comparison and validation the numerical model performance in Chapter 5 

(Section 5.5.2.4). Reasons of why choosing these three formulae are illustrated in 

following three subsections.  

2.2.1 Van der Meer and Janssen overtopping formulae 
Van der Meer and Janssen (1995) made a distinction between breaking (plunging) 

and non-breaking (surging) waves on the slope. Their set of formulae is related to 

breaking waves and is also valid up to a maximum of non-breaking region.  

Van der Meer’s formulae for straight impermeable sloped seawalls are:   

For breaking waves:  2pξ <

3

tan 1
0.06 exp 5.2

p rs

q
Q

gH β

α

b h

R
ξ γ γ γ γ

⎛
= = −⎜⎜

⎝ ⎠

⎞
⎟⎟

                                           (2.2.1) 

c

s p

R
R

H ξ
= , tan

p

pS

αξ =   and   
2

2 s
p

p o

H
S

g T

π
=                                        (2.2.2) 

For non-breaking waves:  2pξ >

3

1
0 .2 ex p 2 .6 c

s r b hs

Rq
Q

Hg H βγ γ γ γ
⎛

= = −⎜⎜
⎝ ⎠

⎞
⎟⎟

                                           (2.2.3) 

The coefficients rhb γγγ ,, and βγ are introduced to take into account the influence 

of a berm, shallow foreshore, roughness and angle of wave attack, respectively. 
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All these coefficients are in the range 0.5 to 1.0, meaning that when maximizing 

overtopping, the coefficients should be 1.0, which is the case for no berm, no 

shallow foreshore, smooth slope (no roughness and impermeable) and head-on 

waves. Van der Meer and Janssen (1995) study based on both small and large-

scale model tests and includes tests with geometries usable in the current study 

(straight and impermeable slopes).  

Van der Meer’s formulae are the most commonly used method for calculation of 

the average overtopping rate. Schüttrumpf and Oumeraci (2000) recommended 

Van der Meer’s formulae for the design of sea dikes in Germany.  

Results from small wave flume of the Leichtweiss Institute (LWI) for Hydraulics 

of the Technical University of Braunschweig, Oumeraci et al. (1999), with nature 

sea spectra, have shown that the overtopping model by Van der Meer fits well for 

single peak wave spectra.  

2.2.2 Owen overtopping formulae 
Owen (1980) proposed an exponential relationship between dimensionless mean 

overtopping discharge ( )Q  and dimensionless freeboard ( )R . He carried out an 

extensive series of model tests for a range of seawall designs subject to different 

random wave climates. The modelled seawalls were all of the same general type: 

a flat-topped embankment fronted in some cases by a flat berm.  

In Owen’s method, the wave height is represented by an equivalent post-breaking 

wave height. The post-breaking wave height is an equivalent wave height 

designed to give the correct overtopping discharge as confirmed from physical 

model tests where significant wave breaking take place (Besley, 1999).   
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Owen’s formula for an impermeable smooth straight seawall is: 

(exp
S mo

q
Q a

gH T
= = − )bR                                                                              (2.2.4) 

c

mo s

R
R

T gH
=                                                                                                  (2.2.5) 

Table 2.2.3 contains the values of a and b which are empirically derived 

coefficients depend on the profile of the seawall. 

Seawall slope a b 

1:1 0.00794 20.1 
1:1.5 0.00884 19.9 
1:2 0.00939 21.6 

1:2.5 0.01030 24.5 
1:3 0.01090 28.7 

1:3.5 0.01120 34.1 
1:4 0.01160 41.0 

1:4.5 0.01200 47.7 
1:5 0.01310 55.6 

Table 2.2.3: Values of empirical coefficients a and b in equation 2.1.4 from 

Besley (1999) 

 

Owen measured data for a number of different types of simply sloping seawalls. 

The data is therefore is more structure-specific than the Van der Meer method, 

which combines all data together. Besley (1999) recommended that the method 

proposed by Owen (1980) is used for estimating overtopping discharge at smooth, 

simply sloping and bermed seawalls around UK coastline.  

When the seawall has zero freeboard, equations (2.1.1, 2.1.3 and 2.1.4) correctly 

predict that the overtopping discharge is finite. However, these equations predict 

that Q is finite even when seawall has a very large freeboard well in excess of any 

possible run-up.  
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2.2.3 Hedges & Reis overtopping formulae 
Hedges and Reis (1998) constructed a model based on a regression against 

Owen’s data subject to the constraint that there is no overtopping if the sea-wall 

freeboard exceeds the maximum run-up on the face of the seawall.  

The physical boundary conditions Hedges and Reis (1998) studied are: 

• When the seawall has a large freeboard, the predicted overtopping 

discharge should be zero. 

• When the seawall has zero freeboard then the predicted overtopping 

discharge may be large but should still remain finite.  

Hedges & Reis’s formula is:  

( )3
1

b

c

s
s

Rq
Q a

C Hg C H

⎛
= = −⎜

⎝ ⎠

⎞
⎟

                                                                      (2.2.6) 

where C is the ratio of the maximum run-up (Rumax) to the significant height of 

the incident wave [ ( )1 .5 2 1 .3 5 pC ξ= × ×  for 2pξ < ]. 

The important features of the model are as follows (Hedges and Reis, 1998): 

• It satisfies the relevant physical boundary conditions, a feature which is 

especially important when the model is used near these boundaries. 

• It explicitly recognizes that regression coefficient (a) depends on the shape 

of the structure since the shape, partially at its crest, affects the discharge 

coefficient; coefficient (a) represents the dimensionless discharge when 

the dimensionless freeboard is zero. 

• Coefficient (b) depends on the detailed behaviour of the water surface on 

the seaward face of the structure; it increases as front slopes become 

flatter. 
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• Coefficient (C) relates the maximum run-up (Rumax) to the significant 

height of the incident waves and may be chosen to allow for the influences 

of the sea-wall slope, the surface roughness and porosity, and the incident 

wave steepness. Coefficient (C) can also account for storm duration in 

influencing Rumax.  

Hedges and Reis (1999) show that, for small allowable overtopping discharges 

associated with normal design conditions, there are considerable differences 

between predictions based on Owen’s model. 

2.3 Effect of wave climate 
The overtopping discharge is, as can be seen from Tables 2.1.1 and 2.2.2, 

dependent on the wave climate as given by the significant wave height, the water 

level (through the crest freeboard), and also in many cases the wave peak or mean 

period. However, various studies have also shown some dependency on other 

parameters related to the wave climate. These dependencies are considered in the 

following. 

2.3.1 Oblique waves 
Several authors have investigated the effect of oblique angles of wave attack. 

Banyard and Herbert (1995) have developed an equation that enables an 

overtopping ratio, Or, to be calculated.  

Or is defined as the ratio of overtopping at a given angle of wave attack, β, to that 

predicted under normal wave attack. 

Banyard and Herbert’s  (1995) equation for simply sloping seawalls is: 

21 0.000152rO β= −                                                                                         (2.3.7) 
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It is inferred from this equation that the predicted overtopping discharge is lower 

for all oblique angles of attack than for normal attack. It is also found that the 

slope of the seawall have a little effect in the predicted overtopping discharge 

(Besley, 1999).  

The effect of oblique wave attack is also included in the overtopping expressions 

by Van der Meer and Janssen (1995) through the reduction factor βγ for sloping 

structures. 

Napp et al. (2002) suggested that mean overtopping discharges of vertical 

seawalls reduce significantly with increasing angle of wave attack and that the 

occurrence of impulsive overtopping diminishes rapidly with obliquity of wave 

attack  > 30o. 

2.3.2 Directional spreading 
Franco et al. (1995) comment on the effect of directional spreading on 

overtopping discharge on both slopes and vertical walls. For slopes the effect of 

directional spreading is minimal for head on waves but results in faster decay for 

increasing angle of attack compared with long crested waves. For vertical wall 

structures the directional spreading reduces the overtopping discharge 

significantly even for head on waves. The reduction in overtopping discharge for 

multi directional and oblique waves is also reported by Sakakiyama and Kajima 

(1997). 

2.3.3 Spectral shape 
Typically, the model tests performed in overtopping investigations utilize 

standard wave spectra such as TMA (Bouws et al., 1985) or JONSWAP (Carter, 
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1982). These spectra apply to offshore conditions or conditions with simple 

foreshores.  TMA spectrum was derived specifically for shallow water conditions. 

In order to take more complicated situations into account, Van der Meer and 

Janssen (1995) incorporated double peaked spectra in their overtopping formulae 

by splitting the spectra into two, identifying the peak periods for each of the two 

parts and combining these into an equivalent peak period.  

Hawkes (1999) comments on swell and bimodal seas and states that they possibly 

represent the worst case (here worst case refers to most overtopping) sea states 

with regard to mean overtopping discharge.  

Hedges and Reis (1998) and Van der Meer and Janssen (1995) methods 

incorporate separate formulae for plunging waves, where overtopping is strongly 

dependent on wave period, and for surging waves, where it is much less 

dependent. According to Hawkes (1999), Hedges and Reis (1998) method seems 

the most promising.  

Schuttrumpf et al. (2001) performed large-scale model tests with natural spectra 

from field measurements which are multi peaked due to the influence of the 

foreshore.  Schuttrumpf et al. (2001) concluded that the peak period (Tpo) is of 

limited use for describing run up and overtopping and have proposed the mean 

period (Tmo) instead, as it appears in Table 2.2.2. 

2.4 Effect of structure geometry 
The overtopping discharge, as seen from Tables 2.1.1 and 2.2.2, is also dependent 

on the structure geometry. The most important parameter is the crest freeboard 

(Koford, 2002). However a number of other parameters describing the structure 
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geometry also influence the overtopping discharge. These parameters are 

considered in the following. 

2.4.1 Surface roughness and permeability 
Obviously, introducing surface roughness and permeability of the slope will 

reduce the overtopping discharges compared with an impermeable and smooth 

slope. Both Van der Meer and Janssen (1995) and Owen (1980) have given 

reduction factors to take this into account. 

2.4.2 Crest width 
Both Juhl and Sloth (1995) and Hebsgaard et al. (1998) have incorporated the 

effect of the width of the crest on the overtopping discharge by modifying the 

crest level in the expression for the overtopping discharge, depending on the crest 

width. As would be expected an increasing crest width results in decreasing 

overtopping discharges in the same roughness and permeability conditions 

(Koford, 2002). 

2.4.3 Slope angle and shape 
The dependency of the slope angle is typically included in the prediction formulae 

via  
pξ , i.e.,  in Van der Meer and Janssen (1995). However according to Van der 

Meer and Janssen (1995) the dependency of 
pξ disappears for surging waves. 

Other authors have made various statements regarding the influence of slope 

angle and shape that are reverent to the present study.  

Le Méhauté et al. (1968) also quote Grantham (1953) who stated that maximum 

run-up occurs for a given incident wave for slope angle α=30o.  
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In TACPAI (1974), it is mentioned that convex slopes increase run-up. According 

to CIRIA / CUR (1991) the slope angle becomes less important as crest heights 

are lower and larger overtopping occurs.  

2.4.4 Crest level 
Oumeraci et al. (1999) investigated overtopping of seawalls with very low crest 

freeboards (Rc down to zero) caused by high water levels. Their results agreed 

well with those of Van der Meer and Janssen (1995) for relative crest freeboards 

in the range tested by Van der Meer and Janssen (1995). However, for relative 

crest freeboards R c

s

RR H
⎛ =⎜
⎝ ⎠

⎞⎟  close to zero the tests by Oumeraci et al. (1999) 

show that the expression given by Van der Meer and Janssen (1995) overpredicts 

the average overtopping discharge. These data are also used by Schuttrumpf et al. 

(2001) to establish the overtopping expressions for no freeboard condition, as 

referred to in Table 2.2.2. 

2.5 Accuracy of overtopping discharge predictions 
 
Douglass (1986) reviewed and compared a number of methods for estimating 

irregular wave overtopping discharges. He concluded that calculated overtopping 

discharges using empirically derived equations should only be considered within a 

factor of 3 of the actual overtopping discharge. The methods considered deal with 

overtopping of coastal defense structures, and so the typical crest freeboards are 

relatively high and the overtopping discharges low. Under such conditions the 

overtopping discharge depends on relatively few and relatively large overtopping 

events, which again means that the overtopping discharge becomes very sensitive 

to the stochastic nature of irregular waves. It is expected that the uncertainty of 
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the overtopping discharge estimation will be reduced as the crest freeboard is 

reduced, since more and more of the waves overtop the structure (Koford, 2002). 

2.6 Theoretical and numerical calculations 
Hiroyoshi and Kono (1970) presented an overtopping expression based on a weir 

analogy. The expression was verified by model tests with regular waves. The 

dimensionless overtopping formula is:  

5
23

22
1

152
ozq

mk
kHTH gH

⎛= −⎜
⎝ ⎠

⎞
⎟                                                                 (2.6.8) 

where, mzk H= and zm is the vertical distance between mean sea water surface 

and wave crest.  

Based on this model Oezhan and Yalciner (1991) introduced an analytical model 

for solitary wave overtopping of a seawall.  

Another method based on wave energy considerations is used by Umeyama 

(1993) to formulate the wave overtopping discharge on a vertical barrier, and the 

model is compared with physical model tests.  

The recent years many attempts have been made to numerically model wave 

overtopping. Kobayashi and Wurjanto (1989) performed numerical modelling of 

regular wave overtopping of impermeable coastal structure on sloping beach. 

Their numerical model is used to predict the fairly detailed hydrodynamics 

associated with wave overtopping over the crest of a smooth impermeable seawall 

located on a sloping beach. 

Hiraishi and Maruyama (1998) presented a numerical model for calculation of 

overtopping discharges for a vertical breakwater in multi directional waves. The 
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basic assumption is that the overtopping discharge can be described by a weir 

expression as suggested by Hiroyoshi and Kono (1970). 

Hu et al. (2000) presented a 2-D numerical model for calculation of overtopping 

using non-linear shallow water equations. However, even this very recent study 

was primarily validated using regular waves.  

It seems that even with the computing power available today the task of numerical 

modelling of wave overtopping processes is still very demanding. However, once 

the computational power is sufficient, methods like the ones mentioned above, as 

well as other methods based on, e.g. volume of fluid (VOF), probably will be able 

to predict overtopping discharges also in irregular and 3-D waves. This will make 

it possible to study the overtopping process in greater detail than is possible in 

physical model tests. Again this will make it easier to design structures that better 

fulfil their purpose than do the structures of today (Koford, 2002). 

2.7 Numerical simulation of wave overtopping in breaking zone 
Breaking waves in surf zone play an essential role in nearly all-coastal processes. 

Breaking waves generate strong turbulence and are in general accompanied by 

strong energy dissipation. Breaking wave also modify wave forces on the coastal 

structures when the wave-structure interaction occurs. On the other hand, wave 

overtopping is a complex process to model which involves shoaling, wave 

reflection, wave breaking and turbulence and in which the random nature of the 

waves must be taken into account. 

The total volume of sea water overtopping in a particular storm is generally well 

predicted by current methods [Owen (1980), Van der Meer and Janssen (1995) 
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and Hedges and Reis (1998)]. However, Goda (2000) has showed that current 

formulae, which do not take full account of the complexity of wave breaking in 

shallow water, can significantly underestimate overtopping discharges. Analysis 

by Besley et al. (1998) shows that methods that exclude these effects can severely 

underestimate overtopping under breaking wave conditions, a finding supported 

by the numerical study of Hu et al. (2000). 

The simulation of breaking wave has been a challenging problem to many coastal 

researchers due to the complicated flow and turbulence structures. Recently, Lin 

and Liu (1998) presented a two-dimensional numerical model which solves the 

Reynolds Averaged Navier-Stokes (RANS) equations for mean flow field and the 

( ε−k ) equations for turbulent kinetic energy, k, and the turbulence dissipation 

rate, ε . In this model the volume of fluid (VOF) algorithm (Hirt and Nichols, 

1981) method is employed to track the free surface movements. Liu et al., (1999) 

extended the model by adding the capability of simulating flows in porous media 

and an improved ε−k  turbulence model with a non-linear algebraic Reynolds 

stress closure model is applied to describe the corresponding turbulence field. Lin 

and Liu, (1999) added an internal designed mass source functions for the equation 

of mass conservation in the internal flow region source to generate specific wave 

trains. The model is extended to simulate any kind of spectrum sea waves which 

is represented by a superposition of a finite number of linear wave modes with 

different wave height and wave period. Soliman et al., (2003) simulated and used 

the JONSWAP spectrum for studying random wave overtopping. More details 

about the numerical breaking wave model are presented in Chapter 4. 
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2.8 Wave overtopping at zero freeboard  
The existing formulae for wave overtopping do not account for the case of zero 

freeboard (Rc=0). Schuttrumpf et al. (2001) reported that the existing overtopping 

models for average overtopping rates by Van der Meer and Janssen (1995) and 

Van Gent (1999) are not valid for the boundary conditions Rc=0.  

Within the project "Loading of the inner slope of sea dikes by wave overtopping" 

(BMBF KIS 009) small and large scale model tests were performed to investigate 

the overtopping flow field and the interaction of wave overtopping with the soil 

properties. The small-scale model tests were performed in the small flume of the 

Leichtweiss Institute (LWI) for Hydraulics of the Technical University of 

Braunschweig. A more detailed description of the small-scale model tests is given 

by Oumeraci et al. (1999). The large-scale tests were performed in the large wave 

channel (GWK) of the Coastal Research Centre FZK, Hannover. More details of 

the large-scale model tests can be found in Oumeraci et al. (2001). 

Both models tests have been carried out with theoretical wave spectra like TMA 

or JONSWAP-spectra and with actually measured wave spectra in the field. Wave 

spectra have been collected from the German North Sea coast and Baltic coast 

and from the Dutch coast.  

Schüttrumpf (2001) conducted model tests with zero freeboard (Rc=0) and 

without overtopping (Rc>Rmax) and derived the following formulae:  

3
,2%

0.038. exp
2

c
m

us

Rq
Q b

RgH
ξ

⎛ ⎞
= = −⎜⎜

⎝ ⎠
⎟⎟                         2mξ <                       (2.8.9) 

33
,2%

0.160
(0.096 )exp

2
c

m us

Rq
Q b

RgH ξ
⎛ ⎞

= = − −⎜ ⎟⎜ ⎟
⎝ ⎠

2m                                 (2.8.10)      ξ ≥

 
25 

 
 

 



with:  = run-up height exceeded by 2% of the incident waves . %2,uR ( )m sHξ= ×

The results of Schüttrumpf (2001) are validated and extended for statistical 

overtopping parameters based on both the small scale (Oumeraci et al., 1999) and 

the large scale model (Oumeraci et al., 2001). 

Analysing the small-scale model tests for natural sea spectra and also for 

theoretical wave spectra (TMA) it was found, that the model by Schüttrumpf 

(2001) fits the laboratory data well. The dimensionless overtopping parameters 

show scattering for natural wave spectra. The reliability of the overtopping 

function is given by taking the b-coefficient as a normally distributed stochastic 

variable with an average of -3.67 and a standard deviation of 0.55 (Oumeraci et 

al., 2001).  

As mentioned before, the natural wave spectra collected at the German and Dutch 

coasts are generally multi peak spectra with a complex shape. The wave spectra 

will be divided into spectra that are measured in Wadden seas and estuaries and in 

spectra from open coasts. 

The more generic overtopping function developed by Schüttrumpf (2001) lies 

between that one for open coasts and that one for Wadden seas and estuaries. The 

generic formula by Schüttrumpf (2001) can be used for all natural wave spectra 

because it fits for all data as well as the special functions. The standard deviation 

σ is similar for all formulas (Oumeraci et al., 2001).  

2.9 Wave overtopping and overflow 
Existing defences, particularly those of more mature design, are likely to have 

been designed and constructed without the benefit of recent research on the 
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impacts of climate change on water levels and wave conditions. In many places, 

still water levels are predicted to rise. Furthermore, changes in atmospheric 

climate patterns may lead to potentially adverse changes in near shore wave 

conditions. The net result being that, without remedial works, existing structures 

will provide a diminishing level of service in relation to their original design. In 

turn this is likely to be accompanied by increased overtopping and incidence of 

flooding. Under extreme storm conditions, where high tide levels may be 

accompanied by meteorological surge, wave and wind set-up, the sea defences 

may operate under situations of small or even negative freeboard. For strategic 

and emergency response planning it is helpful to have some means of providing 

reliable estimates of flood volumes under these conditions. Existing design 

formulae exist for both overflow and overtopping, but not in combination. 

Furthermore, most empirical overtopping formulae have been derived on the basis 

of sets of laboratory experiments in which the freeboard is relatively large. 

Overflow and overtopping are often treated as separate mechanisms, whereas they 

are part of a continuum of hydrodynamic processes that can lead to severe 

flooding and damage to flood defences.  In part this separation of processes is due 

to very distinct structural design criteria for each case; seawalls are designed to 

limit overtopping and weirs are designed for particular overflow characteristics. 

However, this means that for the situations described above there is a gap in the 

guidance that current design formulae can provide. Namely, for negative 

freeboard when combined overtopping and overflow occurs.  
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CHAPTER 3 
 
 

SOLA-VOF  
 
 
The numerical model (SOLA-VOF) is based on the Navier-Stokes Equations 

(NSE) which describe the motions of essentially any fluid. The SOLA-VOF code 

calculates the solution of two-dimensional transient fluid flow with free 

boundaries and is based on the fractional volume of fluid (VOF) concept. In this 

chapter the mathematical equations governing fluid motion will be presented in 

Section 3.2. The volume of fluid (VOF) technique is given in section 3.3 and then 

is followed by the numerical implementation of the model. The boundary 

conditions of the model are illustrated in section 3.5. The behaviour of the open 

boundary condition in three cases of study will be presented in section 3.6. 

3.1 Introduction 
In structural dynamics, it is customary to employ Lagrangian coordinates as the 

basis for numerical solution algorithms. In fluid dynamics both Lagrangian and 

Eulerian coordinates have been used with considerable success. Because each 

coordinate representation has unique advantages and disadvantages, the choice of 

which representation to use depends on the characteristics of the problem to be 

solved. Lagrangian methods are characterized by a coordinate system that moves 

with the fluid. Accordingly, each computational cell always contains the same 

fluid elements. Body and surface forces on these elements are easy to define, so it 

is relatively straightforward to compute the dynamic response of the elements. In 

an Eulerian representation the grid remains fixed and the identity of individual 
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fluid elements is not maintained. The two methods differ, however, in the manner 

which the fluid elements are moved to next positions after their new velocities 

have been computed. In the Lagrangian case the grid simply moves with 

computed element velocities while in an Eulerian calculation it is necessary to 

compute the flow of fluid through the mesh.  The main advantage of the Eulerian 

approach is that the fluid can undergo arbitrarily large distortions without loss of 

accuracy, in contrast to Lagrangian methods. In particular, for problems where 

free boundaries undergo large deformations it is difficult to use Lagrangian 

methods (Nichols et al.. 1980); SOLA-VOF, solves the Eulerian equations of 

water for fluid dynamics problems involving free boundaries.  

Eulerian finite-difference methods for computing the dynamics of incompressible 

fluids are well established. The first method to successfully treat problems 

involving complicated free surface motions was the Marker and cell (MAC) 

method (Harlow and Welch, 1965).  This method was also the first technique to 

use pressure and velocity as the primary variables. The MAC method employed a 

distribution of marker particles to define fluid regions, and simply set free surface 

pressure at the centres of cells defined to contain the surface. No attempt was 

made to apply the pressure boundary condition at the actual location of the 

boundary with / in the surface-containing cell. This crude approximation was 

improved (Chan and Street, 1970) and marker particles were eliminated in favour 

of particle chains on the free surfaces (Nichols and Hirt, 1971). A simplified 

version of the basic solution algorithm (SOLA) used in the MAC method is 

available in a user-oriented code called SOLA. Although SOLA does not treat 
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free surfaces, an extended version, SOLA-SURF uses a surface height function 

method (Hirt et al., 1975). The basic simplicity and flexibility of the SOLA codes 

makes them excellent foundations for the development of more sophisticated 

codes. For this reason, a variable mesh version of the SOLA code, SOLA-VM, 

was chosen as a basis for the VOF technique. An experimental version of this new 

code, SOLA-VOF, was first reported in Nichols and Hirt (1975). The SOLA-VOF 

code, which considers the basic for most of the VOF type numerical models as 

shown in Table 3.1.1, is used in the first part of this study (Chapter 3). Since that 

time, many improvements have been made and the basic technique has matured 

through applications to a wide class of problem. For example McMaster and 

Gong (1979) and McMaster et al. (1980) have combined the SOLA-SURF code 

with a different interface tracking technique based on a VOF-like concept. 

Nichols et al. (1980) presented the updated version of SOLA-VOF code which 

has been used during the first part of this study. This general purpose code was 

selected because it has very promising features and is generally acknowledged as 

the basis for all subsequent developments. Figure 3.1.1 shows the family tree of 

VOF numerical models. The NASA-VOF2D code (Torrey et al.. 1985) contains 

many improvements. A partial-cell treatment FAVOR allows for curved or 

sloping boundaries without the need for curvi-linear coordinates.  
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Austin and 
Schlueter (1982) 

Wu (1994) 2DHYDROTUR 
Lemos (1992) 

SKYLLA 
Van der Meer et al.

(1992) 

VOFbreak2  
Troch (1997) 

Iwata et al. (1996) 

NASA-VOF2D 

Torrey et al. (1985) 

FLOW-3D 

Hirt and Harper (1985) 

RIPPLE, TELLURIDE

Kothe et al. (1991) and Kothe 

et al. (1997) 

Numerical model for 

breaking wave.  

Liu and Lin (1997)  

SOLA-VOF 

Hirt and Nichols, 1980 

 
 
Figure 3.1.1: Overview of key developments of VOF type numerical models. 
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SOLA-VOF and NASA-VOF2D codes have been developed at Los Alamos 

National Laboratory, (LANL), New Mexico, USA. After that, Hirt continued 

developments on the VOF model in the commercial CFD code FLOW-3D. It is 

regarded as a state-of-the-art CFD code with general applicability. At LANL, 

other successor codes have been developed since then: RIPPLE (Kothe et al., 

1991) for 2D and TELLURIDE (Kothe et al., 1997) for 3D simulations were 

developed at Los Alamos National Laboratory. In RIPPLE and TELLURIDE, a 

projection method is used to solve the incompressible flow. The pressure Poisson 

equation is solved with an incomplete Cholesky conjugate gradient technique. 

Particularly, the modelling of problems in which the surface tension is important, 

such as the filling, cooling and solidification processes of castings have been 

enhanced.  

Austin and Schlueter (1982) presented the first application of the SOLA-VOF 

model in the field of coastal engineering. The model predicted the flow field in a 

porous armour layer of a breakwater schematised as a rectangular block system. 

Although in a relatively crude form, these calculations were the start of the 

simulation of wave propagation and interaction with structures in coastal 

engineering. Lemos (1992) incorporated a ε−k  turbulence model in a SOLA-

VOF based code 2DHYDROTUR that allowed a limited description of the 

turbulence field. Lemos (1992) also implemented higher order finite difference 

schemes in a VOF-based code for improving stability and accuracy of the 

numerical solutions. These improved schemes were applied to simulations of 

wave impact on structures, and included the computation of the wave impact 
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forces. No wave absorption boundaries or open sea boundaries have been 

implemented. The SKYLLA model (Van der Meer et al., 1992) was developed at 

Delft Hydraulics. The first computations showed that it is possible to simulate 

breaking waves on a slope. Several extensions have been added since then. The 

most important is the inclusion of a conjugate gradient solver for the pressure 

Poisson equation (Van der Meer et al., 1992). Wu (1994) applied a VOF model 

based on the SOLA-VOF model for the simulation of breaking and non-breaking 

wave kinematics at and on vertical structures with various impermeable foreshore 

geometries. Wu (1994) simulated the complete impact pressure and the resulting 

loading while neglecting entrapped air. A weakly reflecting boundary condition 

similar to the SKYLLA model has been implemented in Wu’s model. Iwata et al. 

(1996) used a modified SOLA-VOF model for numerical comparison with 

experimental data from breaking and post-breaking wave deformation due to 

submerged impermeable structures. Waves were generated internally in the 

computational domain using the source generation technique (Brorsen and Larsen, 

1987). Absorption of the waves was done using the Sommerfeld radiation 

boundary condition. Troch (1997) presented the numerical model VOFbreak2 

based on the SOLA-VOF code. Several modifications are implemented to refine 

the numerical model for wave motion on and in coastal structures. Special 

attention is paid to applications involving rubble mound breakwaters. Wave 

boundary conditions are added, where any wave theory can be applied to provide 

the surface elevation and the velocity components in horizontal and vertical 

direction. The governing equations have been extended, to include the simulation 
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of porous flow inside the permeable coastal structure. The numerical model has 

been verified with both physical model data and prototype data. Some selected 

improvements from NASA-VOF2D have been implemented into VOFbreak2, 

such as a numerical deformer technique, and fixes on the donor–acceptor 

algorithm. Liu and Lin (1997) presented a numerical model for calculating the 

evolution of a breaking wave. The model is a combination of a modified version 

of RIPPLE (Kothe et al., 1991) and ε−k  turbulence model. The breaking wave 

numerical model is used in the second part of this study. More details of the 

breaking wave numerical model and its developments are presented in Chapter 4. 

Isobe et al. (1999) and Isobe (2001) developed a numerical wave flume for 

practical use in designing maritime structures which based on NASA-VOF2D. 

The computer code was named “CADMAS-SURF” which was open for general 

uses. 

3.2 Mathematical formulation of SOLA-VOF 

3.2.1 Navier-Stokes equations (NSE) 
Any flow of an incompressible Newtonian fluid subject to gravity can be 

described in the three dimensional flow by the Navier Stokes equations in a 

bounded domain Ω : 

1 1
m
iji i

j i
j i

u u p
u g

t x x jx

τ
ρ ρ

∂∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂
                                                               (3.2.1)  
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∂
                                                                                                            (3.2.2) 

The above equations represent the conservation of momentum and mass per unit 

mass in which  is the i-th velocity vector component (m/sec.), ρ the fluid iu
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density (kg/m3), p the pressure (N/m2), gi the i-th component of the gravitational 

acceleration (m/s2), and m
ijτ  the molecular viscosity stress tensor (N/m2).  

The momentum equation is derived from Newton’s second law which state that 

the rate of increase of momentum of a fluid particle is equal to sum of the forces 

on the fluid particle. The conservation equation is based on the concept of mass 

balance for a fluid element, i.e. the rate of increase of mass in a fluid element is 

equal to net rate of flow of mass into the fluid element. Details for the derivation 

of the Navier Stokes equations can be found in Versteeg and Malalasekera (1995).  

For a Newtonian fluid, 2m
ij ijτ µσ=  with µ  being the molecular viscosity 

(kg/m.sec.) and 
1

2
ji

ij
j i

uu

x x
σ

⎛ ⎞∂∂
= +⎜⎜ ∂ ∂⎝ ⎠

⎟⎟ , the rate of the strain tensor.  

The kinematic boundary which describes the free surface motion is expressed as, 

0i
i

p p
u

t x

∂ ∂
+ =

∂ ∂
                                                                                                 (3.2.3) 

3.3 Free surface fluid flow 

3.3.1 Introduction 
The accurate tracking of the free surface is very important for wave simulations. 

As mentioned earlier in Section 3.1, there are two types of approaches, Eulerian 

and Lagrangian. The Eulerian approach, which is more consistent with most of 

solvers of the NSE, tracks changes at fixed locations. This approach is the basis of 

the so-called volume of fluid (VOF) method originally developed by Nichols et 

al. (1980) and Hirt and Nichols (1981). The Lagrangian approach follows each 

particle on the free surface and/or in the interior domain based on the ambient 
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flow velocities. A brief review of these numerical algorithms for the analysis of 

viscous flows with moving interface is presented in the following sections. 

3.3.2 Eulerian methods 
Eulerian methods are characterized by a coordinate system that is either stationary 

in the laboratory reference frame or moving in a certain prescribed manner in 

order to accommodate the continually changing shape of the solution domain 

(Floryan and Rasmussen, 1989). The Eulerian algorithms can be divided into 

three main types: fixed grid methods, adaptive grid methods, and mapping 

methods.  

3.3.2.1 Fixed grid methods 
In this method the grid is fixed in the domain. There are two basic ways of 

tracking the interface, i.e., surface tracking and volume tracking. The surface 

tracking methods represent an interface as a series of interpolated curves through 

a discrete set of points on the interface. At each time step, the information about 

the location of the points and sequence in which they are connected is saved. The 

points are then moved according to an interface evolution equation. The 

information regarding location as well as orientation and curvature of the 

interface is explicitly available during the whole calculation process.  

The volume tracking methods do not store a representation of the interface but 

reconstruct it whenever necessary. The reconstruction is done cell by cell and is 

based on the presence of a marker quantity within the cell.  
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MAC method  

The simplest reconstruction algorithm for the volume tracking method has been 

proposed by Welch et al. (1966) as part of the MAC method. The MAC method 

marks different fluids with massless marker particles. The interface is defined as 

being somewhere inside the cells that contain marker particles of both fluids. The 

MAC method does not give any details of the exact location, orientation, and the 

curvature of the interface.  

Volume of Fluid Method (VOF) 

Many reconstruction algorithms use the fraction of cell volume occupied by one 

of the fluids as the marker quantity. If this fraction is 0 for a given cell, the fluid 

does not occupy the cell and there is no interface in that cell. Conversely, if the 

fraction is 1, the cell is completely occupied by the fluid and again there is no 

interface present. An interface is to be constructed only if the fraction is between 

0 and 1. Since there is only one piece of information regarding the interface per 

cell available, certain arbitrariness is reconstructing the shape of the interface has 

to be allowed. The accuracy with which the reconstructed interfaces approximate 

the real interface is difficult to judge and different types of distortions are possible 

(Barr and Ashurst, 1984). The VOF (volume of fluid) method of Hirt and Nichols 

(1981) defined a function F (x,y,t) that is equal to unity at any point occupied by 

fluid and zero elsewhere. When averaged over the cells of a computational mesh, 

the average value of F in a cell is equal to the fractional volume of the cell 

occupied by fluid. In particular, a unit value of F corresponds to a cell full of 

fluid, whereas a zero value indicates that the cell contains no fluid. Cells with F 
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values between zero and one contain a free surface. The VOF method requires 

only one storage for each mesh cell, which is consistent with the storage 

requirements for all other dependent variables. 

In addition to defining which cells contain a boundary, the F function can be used 

to define where fluid is located in a boundary cell. The normal direction to the 

boundary lies in the direction in which the value of F changes most rapidly. 

Because F is a step function, however, its derivatives must be computed in a 

special way, as described below. When properly computed, the derivatives can 

then be used to determine the boundary normal. Finally, when the normal 

direction and the value of F in a boundary cell are known, a line cutting the cell 

can be constructed that approximates the interface there. In addition, surface 

curvatures can be computed for the definition of surface tension forces.  

The time dependence of F is governed by the equation,  

0
F F F

u v
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
                                                                                      (3.3.4) 

For a computational cell centred at (i,j) the above equation can be rewritten in the 

following finite difference form,  
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in which , ,  and  denote the F values on the right, left, top and 

bottom faces of the computational cell, respectively.  

n
RF n

LF n
TF n

BF

In an Eulerian mesh, the flux of F moving with the fluid through a cell must be 

computed, the standard finite difference form would lead to a smearing of the F 

function and interfaces would lose their definition.  Fortunately, the fact that F is a 
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step function with values of zero or one, permits the use of a Donor-Acceptor 

method which was originally developed by Johnson (1970). Thus, the VOF 

technique provides a means of following fluid regions through an Eulerian mesh 

of stationary cells. The VOF method uses a minimum of stored information, and 

because it follows regions rather than boundaries, it avoids problems associated 

with intersecting surfaces. The VOF method was also be extended to three-

dimensional computations, where its conservative use of stored information is 

advantageous. 

3.3.2.2 Adaptive grid methods 
Adaptive grid methods alter the computational grid so that the interface always 

coincides with one of the grid lines. The interface is then a well-defined, 

continuous curve and information regarding its location, orientation, and 

curvature is readily available. The main advantage of this approach is that it is 

possible to maintain sharp resolution of the interface, while the disadvantage is 

the difficulty in adjusting the grids to follow the highly deformed interfaces 

(Floryan and Rasmussen, 1989).  

3.3.2.3 Mapping methods 
In the mapping method the unknown irregularly shaped flow domain is 

transformed onto a fixed regularly shaped computational domain. The mapping 

appears explicitly as one of the unknown functions and has to be determined 

together with the field variables (Floryan and Rasmussen, 1989).  
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3.3.3 Lagrangian methods 
Lagrangian methods are characterized by a coordinate system that moves with the 

fluid. Accordingly, each computational cell always contains the same fluid 

elements. These methods are suited for moving boundary problems as they permit 

material interfaces to be specifically delineated and precisely followed. The main 

two problems with the Lagrangian methods are mesh tangling and numerical 

inaccuracy due to highly irregular meshes (Floryan and Rasmussen, 1989). The 

mesh-tangling problem arises because a mesh fixed topology quickly becomes 

singular in flows undergoing large distortions as shown in Figure 3.3.2. 

 

 

                                                    + v 

 
                                                     - v 

 

Figure 3.3.2: Grid deformation for a shear flow calculation using a Lagrangian 

triangular grid (Floryan and Rasmussen, 1989). 

3.3.4 Discussion 
The methods developed for the analysis of moving boundary problems for the 

Navier-Stokes equations have been described very briefly. Among these, the 

volume of fluid (VOF) methods allows practical treatment of the complex free 

surface condition. In principle, the VOF method could be used to track any 

surface of discontinuity in material properties, in tangential velocity, or any other 

property. The particular case being represented determines the specific boundary 
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conditions that must be applied at the location of the boundary. The VOF method 

in conjunction with the marker and cell method (MAC) is employed in SOLA-

VOF code and in the Two-dimensional breaking wave numerical model, (2-D 

BWNM), which is used in the second part of this study (Chapter 4). 

3.4 Model implementation 
The success of modelling wave propagation using the Navier-Stokes equations 

relies on the accuracy of the numerical solver to the mathematical equations 

which include the scheme to track the free surface. As mentioned before, the 

finite difference method is used throughout the computation. A rectangular 

computational domain is first discretized by m n×  rectangular cells as sketched in 

Figure 3.4.3. Cells have variable sizes, ∆xi for the ith column and ∆yj for the jth 

row. All scalar quantities, i.e., p, are defined in the centre of the cells. The vector, 

i.e., the x-component and y-component of the mean velocities,  and u υ , are 

defined in the cell faces as shown in Figure 3.4.3. The volume of fluid function F 

is used to identify mesh cell that contains fluid of density ρF. A free surface or 

interface cell (i,j) is defined as a cell containing a non-zero value of F and having 

at least one neighbouring cell ( i ±1, j) or (i, j±1) that contains a zero value of F. 

Cells with zero F values are empty. Cells with non-zero F values and no empty 

neighbours are treated as cells full of ρF fluid (Nichols et al., 1980). 

Finite difference solutions of the four unknowns u , υ , p and F, are obtained as 

following: 

1- Explicit approximations of the Navier–Stokes, (Equation 3.2.1), are used to 

compute the first guess for new-time-level velocities. 
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2- To satisfy continuity, Equation 3.2.2, the pressure–velocity iteration is used, 

pressures are iteratively adjusted in each cell and the velocity changes induced by 

each pressure change are added to the velocities computed in step 1.  

3- The F function defining fluid regions must be updated to give the new fluid 

configuration. Repetition of these steps will advance a solution through any 

desired time interval. At each step, of course, suitable boundary conditions must 

be imposed at all mesh and free surface boundaries. 
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Figure 3.4.3: Finite difference meshes and cell classifications in SOLA-VOF 

model. 
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3.5 Boundary conditions 
It is important to set boundary conditions at all mesh boundaries and at surface of 

all internal structures. In the following two sections the details of these boundary 

conditions is presented. 

3.5.1 Mesh boundaries 
Two conditions may be set using the layer of cells surrounding the mesh, the free 

slip condition and no-slip condition.  

Consider for example the left boundary:  

1- No-slip Condition: The normal velocity and the tangential velocity component 

are set to be zero for all j cells. 

u1,j = 0, υ1,j = - υ2,j, p1,j = p2,j and F1,j=F2,j . 

According to this condition, all components of the velocity on the bottom are 

zero, however, this boundary condition is applicable only when the resolution is 

fine enough to resolve the viscous boundary layer. If a coarse grid is used, the 

application of the no-slip condition can result in an underestimation of the 

velocity immediately above the bottom (Lin, 1998). 

2- Free slip condition: The normal velocity must be zero and the tangential 

velocity should have no normal gradient for all j cells. 

u1,j = 0, υ1,j = υ2,j, p1,j = p2,j and F1,j=F2,j . 

This condition provides more accurate velocity information near a solid boundary 

(Lin, 1998). For that reason, the free slip condition is used in this study instead of 

the no-slip condition on the solid boundary. 
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3.5.2 Free surface boundary conditions 
This boundary condition is satisfied by setting the surface cell pressure (pi,j) equal 

to the value obtained by a linear interpolation between the pressure specified at 

the surface (ps) and the pressure inside the fluid (pn). For this scheme to work, the 

adjacent cell chosen for the interpolation should be such that the line connecting 

its centre to the centre of the surface cell is closest to the normal to the free 

surface (Nichols et al., 1980). An equation for the surface, S, giving this result is 

,(1 ) n sS p p i jpη η= − + −                                                                                  (3.5.6) 

where,  ( d
d c=η ) is the ratio of the distance between the cell centres and the 

distance between the free surface and the centre of the interpolation cell as shown 

in Figure 3.5.4 (Nichols et al., 1980). 
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Cell 

Free Surface

Surface Cell 

Figure 3.5.4 Definition of quantities used in defining free surface pressure 

boundary condition. 
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3.5.3 Open (Radiation) outflow boundary condition 
A radiation boundary condition is used at the open sea boundary to minimise non-

physical wave reflections. The open boundary condition, which is also referred to 

as the radiation boundary condition, is then needed to allow the wave going out of 

the computational domain without significant reflection.  

The mathematical formulation of the open boundary condition on the right side of 

the computational domain is described as follows: 

0oC
t x

φ φ∂ ∂
+ =

∂ ∂
                                                                                               (3.5.7) 

where,  is the phase celerity of wave at the open boundary and oC φ  represents the 

wave property such as the mean velocities or mean free surface displacement 

(Lin, 1998).  

The phase velocity is calculated as follows, with neglecting variations in the 

atmospheric pressure: 

( )2
tanh

2o

gL
C

L

π
π
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d a

⎤+ ⎥   for short wave                                      (3.5.8) 

( )oC g d a= +    for long wave                                      (3.5.9) 

Other numerical test shows that this boundary condition works fairly well up to 

the intermediate non-linear waves, i.e., H/d < 0.3 (Lin, 1998). 

3.5.4 Sponge boundary condition 
Another alternative for the open boundary condition is absorbing (sponge) 

boundary condition. The absorbing boundary condition is allowing the generated 

and reflected waves to leave the computational domain. Larsen and Dancy (1983) 

presented an efficient numerical passive absorber for use in short wave models. 
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An absorption function a(x) is applied on velocities in a numerical sponge layer 

with length xs after each time step calculation. As shown in Figure 3.5.5, the 

absorption function at the start of the sponge layer equals 1 and gradually 

decreases to 0 near the end. The sponge layer is located at the closed end of the 

wave flume. The width of the sponge layer can vary between (0.60 - 1.0) 

wavelength and the absorption function tubes an elliptic form (see e.g. Troch and 

De Rouck (1998)):       

2

1( ) 1
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x x
a x

x

⎛ ⎞−
= − ⎜
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⎟                                                                      (3.5.10) 

 

                                                                             

 

 

 

    a (x) 

 

                                                                       1 
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                                                                                                 xs

             a (x)

Figure 3.5.5: Numerical sponge layer with width xs placed at the end of the 

numerical wave model (Troch and De Rouck, 1998). 
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The disadvantage of this latter method is that the length of the computational 

domain is considerably increased because a relatively long absorption layer is 

required for absorption of the generated and reflected waves at the boundaries.  

3.5.5 Internal obstacle boundaries 
An internal obstacle can be simulated by flagging those cells of a mesh that are to 

be blocked out. Because the relaxation factor BETAi,j used in the pressure 

iteration must be positive, using negative values of this variable is a suitable flag 

for obstacle cells. A convenient, but arbitrary choice, is to assign a value of 

BETA= -1.0 to obstacle cells. No velocities or pressures are calculated in obstacle 

cells, and all the velocity components on faces of obstacle cells are automatically 

set to zero. In the boundary conditions subroutine, values for volume fractions and 

pressure are set in all obstacle cells bordering fluid cells. These values are 

computed to be equal to the averages of these quantities in the adjacent fluid cells. 

All other obstacle cells have zero values for F and p. With this prescription, the 

fluid obstacle boundaries are prevented from being interpreted as free surfaces, as 

they would be without some sort of additional testing. In addition, it should be 

noted that because all velocity components within obstacle cells are set to zero, 

no-slip tangential velocity conditions at obstacle boundaries are only first order 

accurate. That is, tangential velocities are zero at locations shifted into the 

obstacles one-half of a cell width from the actual boundary location. 

3.6 Model testing 
Three cases of study are presented using the numerical model, SOLA-VOF (non-

breaking numerical model). The first case is linear wave propagation on a 
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constant depth. Then a standing wave is generated in rectangular channel with a 

flat bed. Finally, the model is employed to study the non-breaking solitary wave 

run-up on a steep slope. 

3.6.1 Linear wave theory 
Linear wave theory was derived using the concepts of two-dimensional ideal fluid 

flow. This is a reasonable starting point for deep-water waves, which are not 

greatly influenced by viscosity, surface tension and turbulence. Figure 3.6.6 

depicts a sinusoidal wave of wave length (L), height (H) and period (T).  

 

 

 

Figure 3.6.6: Definition sketch for the linear wave theory. 
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The variation of surface elevation with time, from the still water level, is denoted 

by η and given by: 

η= ⎟
⎠
⎞

⎜
⎝
⎛ −

T

t

L

xH π2cos
2

                                                                                    (3.6.11) 

The corresponding equations for the horizontal (ζ, u) and vertical (ξ, υ) 

displacements and velocities of a particle at a mean depth (d) below the still water 

level are: 
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3.6.2 Linear wave inflow boundary condition 
The linear wave inflow boundary condition is programmed into the boundary 

condition subroutine of the SOLA-VOF code. In order to test the seaward linear 

wave boundary condition and the outflow radiation boundary condition, a 

simulation of regular wave propagation has been conducted as presented in the 

following subsection. 
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3.6.3 Linear wave propagation in constant water depth 
In this simulation a sequence of regular waves with 1.0 m wave height, 3.0s wave 

period and 14.0 m wave length are introduced into 6.0 m deep still water. 

Comparison with the theoretical water level is presented in the Figure 3.6.7. Near 

the beginning of the domain, the regular wave level is observed with wave heights 

and lengths consistent with the theoretical calculation. After one wave length 

significant difference between the SOLA-VOF results and the theoretical one 

could be observed. 

0.0
1.0

2.0
3.0
4.0

5.0
6.0

7.0
8.0

0.0 3.5 7.0 10.5 14.0 17.5 21.0 24.5 28.0

 X axis
(m)

W
at

er
 d

ep
th

 
(m

)

SOLA-VOF

Analytical

Figure 3.6.7: Comparison between the SOLA-VOF and the analytical free wave 

surface after t =21.0 sec. (T = 3.0 sec., L =14.0 m, H = 1.0 m and d =6.0 m). 

 

This difference is due to insufficient efficiency of the open boundary condition at 

the end of the domain. The open boundary condition in SOLA-VOF still needs 

more improvement allowing all the amount of wave transfer to go out of the 

domain. Another reason may be the non-linearity of the input wave since 

0.5d
L < . 
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3.6.4 Standing wave reflection at a vertical wall 
A standing wave is generated in rectangular channel with a flat bed. The right 

boundary is considered to be an impermeable vertical wall with 100% reflection. 

The other end of the channel is an inlet boundary where sinusoidal waves are 

imposed. The incident sinusoidal generated wave height is 0.01 m with a wave 

period = 2.0 sec. and the mean water depth is 0.20 m.  The length of the incident 

wave calculated by linear wave theory is 2.7 m. The channel is 5.4 m long which 

is equal to two wave lengths.   

In total, 270 cells are used in the x-direction with a cell size of 0.02 m. In the y-

direction 64 cells are used with a cell size of 0.005 m. The basic time step is 0.04 

second and the simulation time is t=8.0 seconds. After approximately 6.0 seconds, 

theoretically, the above arrangement creates standing waves with a height of 0.04 

m as shown in Figure 3.6.8. Computationally, this provides an opportunity to test 

the obstacle boundary condition at the end of the domain which is considered to 

be an impermeable vertical wall with 100% reflection. Figure 3.6.9 illustrates the 

simulated standing wave pattern by showing snapshots of the free surface 

configuration and velocity field at five time instants within a time interval of 0.5 

sec. Troch and De Rouck (1999) studied same example with the same wave 

characteristics and water depth using VOFbreak2 numerical model. Troch and De 

Rouck (1999) applied an active wave generating-absorbing boundary condition in 

start of the domain of study. Analytical comparison of the calculated free surface 

configuration and velocity field between SOLA-VOF and VOFbreak2 numerical 

models gives approximately 90% agreement.  
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Figure 3.6.8: Computed standing waves due to reflection from a vertical wall 

(Incident wave characteristics Hi = 0.01 m, T = 2.0 s, d = 0.20 m). 

 

The main difference between the previous two examples is the right boundary 

condition at the end of the domain. In the first example when the radiation 

boundary condition was used, significant difference between the numerical and 

theoretical free surface and wave velocity are observed (Figure 3.6.7). While in 

the second example when the impermeable vertical wall with 100% reflection 

used, good agreement was found (Figures 3.6.8 and 3.6.9). If the time of 

calculation exceeds than 8.0 seconds the free surface profile gives significant 

difference in comparison with the theoretical solution due to the inefficiency in 

the radiation boundary condition in the start of the domain.  
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Figure 3.6.9: Snapshots of free surface configuration and velocity field for 

standing wave period. (Incident wave characteristics Hi = 0.01 m, T = 2.0 s, d 

= 0.20 m.) 
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3.6.5 Solitary wave inflow boundary condition 
The solitary wave is a finite amplitude wave with permanent shape; the non- 

linearity and frequency dispersion are perfectly balanced during the wave 

propagation. The solitary wave form lies entirely above the still water level. It is a 

wave translation because the water particles are displaced a distance in the 

direction of wave propagation as the wave passes. Based on the potential flow 

approximation, a Boussinesq equation can be derived. The solitary wave is a 

special solution of the Boussinesq equation. The free surface of the solitary wave 

is given by (Liu and Lin, 1997): 

( ⎥
⎦

⎤
⎢
⎣

⎡
−= ctx

d

H
hHtx

3
2

4

3
sec),(η )                                                                 (3.6.16) 

The solitary wave celerity is: 

)( dHgc +=                              (3.6.17) 

3.6.6 Non-breaking solitary wave run-up on beach 
In this case of study, non-breaking solitary wave run-up on a steep beach with a 

slope of 30o is investigated. The toe of the beach is 6.49 m away from the solitary 

wave boundary condition. The still water level is 0.18 m and the wave height is 

0.03 m. The computational domain is discretized with a 140  cell uniform 

grid with ∆x= 0.05m and ∆y=0.015m. The wave celerity (c) and the free surface 

displacement 

20×

η  are specified at the left boundary conditions similarly to that in 

section 3-6-4. The results of the non-breaking solitary wave at time t = 4.0 and 4.2 

sec. are shown in Figures 3.6.10 and 3.6.11. These time series are chosen to be 

consistent with results of Liu and Lin (1997). Comparison between the numerical 
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model results (SOLA-VOF) and experimental results of Liu and Lin (1997) gives 

good agreement in the velocity magnitude and direction.  
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Figure 3.6.10: The velocities component according to the solitary wave theory at 

t=4.0 sec. 
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Figure 3.6.11: The velocities component according to the solitary wave theory at 

t=4.2 sec. 
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Figures 3.6.12 and 3.6.13 present comparison of free surface profile between 

modified SOLA-VOF and Liu and Lin (1997) numerical model. The comparison 

of the free surface profiles goes towards the same trend raised in the previous two 

examples (Sections 3.6.3 and 3.6.4).  
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Figure 3.6.12: Comparison of the free surface elevation between SOLA-VOF and 

Liu and Lin’s numerical models at t=4.0 sec. 
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Figure 3.6.13: Comparison of the free surface elevation between SOLA-VOF and 

Liu and Lin’s numerical models at t=4.2 sec. 
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It is clear from Figures 3.6.12 and 3.6.13 that at the boundaries, more efficient 

“open boundary” or “absorbing boundary” condition is required, allowing the 

transmitted and reflected waves to leave the computational domain without 

disturbing the interaction of the incident waves with the seawall.  

3.7 Conclusions 
Three cases of study using the new development non-breaking numerical model 

SOLA-VOF are presented. The linear wave inflow boundary condition was tested 

first, it is clear from this case of study that after one wave length there are 

significant difference between the SOLA-VOF results and the theoretical one. 

The open boundary condition needs more improvement allowing all the amount 

of wave transfer to leave the domain without any effect towards the new 

generating waves. 

In the second case of study, the reflected wave boundary condition has been 

validated. The reflected wave boundary condition has been successfully tested 

against known exact solutions.  

 In some of the wave hydrodynamics studies, the reflected wave needs to 

propagate out of the computational domain or be absorbed by the inflow 

boundary. That is very clear in the third case of study which the non-breaking 

solitary wave run-up on beach has been studied. The results show that there is a 

requirement for an open boundary condition at the seaward end of the domain. 

Recently, new researchers introduce new absorbing boundary condition i.e. Liu 

and Lin (1997); Troch and De Rouck (1999); Isobe (2001) which solve the 

difficulties in the modified version of the SOLA-VOF numerical model.  

 
57 

 
 

 



The two-dimension breaking wave numerical model (2-D BWNM) which is used 

in the second part of this study (Chapters 4, 5, 6 and 7) covers the shortcoming in 

the SOLA-VOF moded. The 2-D BWNM solves very efficiently the problem of 

wave generation and radiation at the seaward boundary, and is discussed in detail 

in Chapter 4. The model of Troch and De Rouck (1999) and Isobe (2001) uses 

adaptive wave absorption at the seaward boundary and required detailed 

calculation to modify the wave generating conditions at the seaward boundary. 

Isobe (2001) model is just tested against regular waves. The model can be also 

applied to irregular waves but the calculation time is substantially increased by 

about 10 times compared to that with regular waves (Takahashi et al. (2002)).  

The 2-D BWNM model has the capability to simulate any kind of regular and 

irregular wave boundary condition as shown in Chapter 5. 

The SOLA-VOF does not account for the case of breaking waves which are 

included and successfully tested in the 2-D BWNM as described in details in Liu 

and Lin (1997). More details of the two-dimensional breaking wave numerical 

model are given in the following chapters. 
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CHAPTER 4 
 
 

Two-Dimensional Breaking Wave Numerical Model 
(2-D BWNM) 
 
 
A two - Dimensional Breaking Wave Numerical Model (2-D BWNM) which is 

capable of simulating regular and irregular wave overtopping over coastal 

structures is presented in this chapter. The 2-D BWNM is based on the model 

developed by Lin (1998) which solves the Reynolds Averaged Navier-Stokes 

(RANS) equations for mean flow field and the second order ( )k ε−  equations for 

turbulent kinetic energy, k, and the turbulence dissipation rate, ε . A literature 

review concerning the breaking wave numerical models is presented in Section 1. 

The mathematical formulation of the 2-D BWNM is illustrated in Section 2. 

Section 3 contains the initial boundary condition which is used in the numerical 

simulation. 

4.1 Introduction 
Breaking waves in the surf zone play an essential role in nearly all-coastal 

processes. For example, breaking waves generate strong turbulence which 

increases the mixing rate and therefore has an important impact on sediment 

transport in the surf zone. As a result, the beach profile is changed under the 

continuous action of breaking waves. Breaking waves also modify wave forces on 

the coastal structures when wave-structure interaction occurs. This is important 

when the construction of structures in coastal regions is considered. Wave 

breaking processes are in general accompanied by strong energy dissipation 
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which transfers the organized wave energy to heat. Therefore, to protect coastal 

structures along the shoreline, wave breaking could be artificially induced to 

damp out the wave energy by constructing a certain shape of submerged structure 

in surf zone.  

The simulation of breaking wave has been a challenging problem to many coastal 

researchers due to the complicated flow and turbulence structures. The progress in 

creating numerical models for wave breaking processes has been relatively slow. 

Because of the limitation of computer speed, the early numerical simulation of 

breaking wave was mainly based on the depth-averaged equations, which include 

both shallow water equations and Boussinesq equations (Peregrine, 1967). The 

energy dissipation due to the breaking processes was incorporated into these 

equations through simple dissipative terms. For example, the momentum 

correction method was used by Schaffer et al. (1993) and Johnson et al. (1996) to 

represent the dissipation induced by the breaking wave. The eddy viscosity model 

was used by Zelt (1991), and Karambas and Koutitas (1992) in their breaking 

wave simulations. Dodd (1998), presented an upwind finite volume numerical 

model based on the one-dimensional non-linear shallow water equations on a 

sloping bed, including the effects of bed shear stress. Hu et al. (2000), presented 

one-dimensional high resolution finite volume model (AMAZON). The 

AMAZON model is based on solving the non linear shallow water equations. A 

modern upwind scheme of the Godunov-type using an HLL approximate 

Riemann solver is used which captures bore waves in both transcritical and 

supercritical flows. The robust HLL-type approximate Riemann solver has been 
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used instead of the more computationally expensive exact Riemann solver. 

Though computationally efficient, this approach cannot predict the details of the 

characteristics of turbulence transport during the wave breaking. The vertical 

variations of velocities are also lost due to the depth averaging process. To obtain 

the turbulence and vorticity transport information as well as the vertical variations 

of velocity information, a more sophisticated hydrodynamic model is needed.  

Like any turbulent flow of incompressible fluid, the breaking wave can also be 

described by the basic incompressible Navier-Stokes equations (NSE). In 

principle, the direct numerical simulation for the NSE, which was pioneered by, 

Orszag and Patterson (1972) and Rogallo (1981) using pseudo-spectral methods, 

can also be used to study wave breaking. However, due to the large demand of 

computational time required by direct numerical simulation, most of its 

applications are for low Reynolds number (Re) flows (Kim et al., 1987). For 

breaking waves with high Re and the added complication of strong free surface 

deformation, the direct numerical simulation is not feasible with the current 

computer power.  

Another alternative is based on the Reynolds Averaged Navier-Stokes (RANS) 

equations. In the RANS equations, only the mean flow motion is described and 

the effects of turbulence on the mean flow are represented by Reynolds stresses 

which are proportional to the correlation of turbulence velocities. Lin (1998) and 

Lin and Liu (1998) proposed a new model to investigate the breaking waves by 

solving the RANS equations for the mean flow. Their model is a combination of 

the modified version of RIPPLE which was originally developed at Los Alamos 
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National Laboratory (Kothe et al., 1991) and the ε−k  turbulence model (Liu and 

Lin, 1997). Finite difference solutions to the incompressible Reynolds equations 

for the mean flow field and the ε−k  equations for the turbulent field are obtained 

on a non-uniform mesh. The volume of fluid (VOF) algorithm (Nichols et al., 

1980 and Hirt and Nichols, 1981) method is employed to track the free surface 

movements. Lin (1998) compared numerical solutions with the experimental data 

for both spilling breaking waves (Ting and Kirby, 1996) and plunging breaking 

waves (Ting and Kirby, 1995) in terms of free surface elevation, mean velocity 

components and turbulence intensity. The overall agreement was satisfactory. 

More details of the comparison can be found in Lin (1998).  

Following this, many developments were added to the original code. Liu et al., 

(1999) extended the model by adding the capability of simulating flows in porous 

media and an improved ε−k  turbulence model with the non-linear algebraic 

Reynolds stress closure model was applied to describe the corresponding 

turbulence field. Then, Lin and Liu, (1999) added an internal designed mass 

source functions for the equation of mass conservation in the internal flow region 

source to generate specific wave trains. Also, they extended the model to simulate 

any kind of spectrum sea waves which is represented by a superposition of a finite 

number of linear wave modes with different wave height and wave period. The 

author used the JONSWAP spectrum to study the phenomena of wave 

overtopping (Soliman et al., 2003). These required modifications of the source 

term to model JONSWAP characteristics (See Section 4.3.3.3). 
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4.2 Mathematical formulation of 2-D BWNM 

4.2.1 Reynolds Averaged Navier-Stokes equations (RANS) 
Navier Stokes equations describe the governing equation for a wide range of flow 

motions, including potential flow and turbulent flow. However, in the case of 

turbulent flows with high Reynolds number (Re), small-scale turbulent 

fluctuations with high resolution are required. The direct numerical simulation for 

Navier Stokes equations in these cases is extremely difficult.  

The Reynolds number is defined by, c c
e

U D
R

ν
=  

Where, Uc is the characteristic velocity scale, Dc is the characteristic length scale 

and µν ρ=  is the kinematic viscosity. 

As an alternative to the direct solution of the NSE, another method has been 

derived to describe the mean motions of turbulence flows. Both the velocity field 

and the pressure field are split into mean component and turbulent fluctuations as 

follows: 

/
ii uuu +=                                                                                                      (4.2.1) 

/p p p= +                                                                                                     (4.2.2) 

/ρ ρ ρ= +                                                                                                     (4.2.3) 

in which  denotes the mean quantities, the prime /  represents the turbulent 

fluctuations. By assuming that the turbulent fluctuations are random, we have 

0iu p ρ′ ′ ′= = = . Substituting (4.2.1), (4.2.2), and (4.2.3) into (3.1.1) and 

(3.2.1) and taking the ensemble average of the resulting equations, we obtain the 
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governing equations for the mean flow field, which is called the Reynolds 

Averaged Navier Stokes (RANS) equations,  

1 1
m
ij i ji i

j i
j i j

u uu u p
u g

t x x x

τ

ρ ρ jx

′ ′∂ ∂∂ ∂ ∂
+ = − + + −

∂ ∂ ∂ ∂ ∂
                        (4.2.4) 

0i

i

u

x

∂
=

∂
                                                                                                         (4.2.5) 

where m
ijτ  is the mean viscous stress, 2m

ij ijτ µ σ=  with 

1

2
ji

ij
j i

uu

x x
σ

⎛ ⎞∂∂
⎜ ⎟= +
⎜ ⎟∂ ∂⎝ ⎠

. 

By merging the viscous stress and the Reynolds stress together, i.e., 

ij

m
ij i ju uτ τ ρ ′ ′= − , and neglecting density fluctuations near the free surface, 

Equation 4.2.4 can be rewritten as follows: 

1 1 iji i
j i

j i

u u p
u g

t x x jx

τ

ρ ρ

∂∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂
                                         (4.2.6) 

The main factor that is taken into account by Lin (1998) in the mean flow 

computation are the Reynolds stresses, Rij = i ju uρ ′ ′− . This correlation had 

been modelled by a non-linear eddy viscosity model (improved ε−k  equations) 

as described in detail in the following section.  

4.2.2 Turbulence closure model 
To solve the Reynolds equations for the mean flow, one must relate Reynolds 

stresses to the mean velocity. Extensive research work has been done to seek the 

proper closure model for the Reynolds stresses (e.g. Launder et al. (1975) and 
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Launder et al. (1972)). Liu et al., (1999) recommended the ε−k  model 

approaches and defined  and k ε as follows: 

1

2 i ik u u′ ′=            , 

2

i

j

u

x
ε ν

⎛ ⎞′∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠

                                                              (4.2.7) 

4.2.3 Reynolds stress transport model 
Launder et al., (1975) presented the general transport equations for the Reynolds 

stresses which is considered the basic equation for the ε−k  as follows:  
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k i jk

k k

i j j i
i j k i k j k
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j i k k

u u u u
u u p u

t x x

u u u u
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δ δ
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′ ′∂ ′ ′∂ ∂ ′ ′ ′ ′+ = − +
∂ ∂ ∂

⎛ ⎞′ ′∂ ∂ ∂∂ ′ ′ ′ ′ ′ ′ ′⎜ ⎟− − − −
⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞′ ′∂ ∂⎛ ⎞′ ′′ ∂ ∂
+ + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

x∂
                             (4.2.8) 

The left hand side of the equation calculates the rate of the change of turbulence 

kinetic energy following the mean flow field. The first two terms on the right 

hand side represent the total diffusion of Reynolds stress through the turbulent 

pressure work, turbulent fluxes, and molecular viscous force. The third row term 

denotes the production of Reynolds stress due to the working of Reynolds stresses 

against the mean flow gradients. The fourth term represents the interaction 

between the pressure fluctuation and the rate of strain of turbulence which does 

not contribute to the total change of turbulence energy but redistribute the 

turbulence energy in different directions. The last term is the tensor of viscous 

energy dissipation rate ijε . The transport equation, (Equation 4.2.8), contains a 

few higher order correlation terms, i.e., diffusion terms, pressure strain rate 
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correlation term, and dissipation term. The numerical solution to the Reynolds 

stress transport model is computationally expensive, the applications of such 

model are usually for small scale problems. Moreover, the difference among 

many proposed closure models for the diffusion and pressure strain rate 

correlations terms also increases the uncertainties of the model (Lin, 1998).  

For these reasons, Liu et al., (1999) recommended the ε−k  model which 

considers a simple model with the similar accuracy of the Reynolds stress 

transport model and less uncertainty of closure models. Details of the model and 

the applied improvements are explained in the following section.  

4.2.4 ε−k  model 

In ε−k  model, instead of tracking Reynolds stress components through the 

transport equations, the model solves only two transport equations for the 

turbulence energy which characterizes the velocity scale of turbulence. The 

transport equation for k can be easily derived from Equation 4.2.8 by letting i=j, 

1 i
j j j i j

j j j j

k uk k
u u p u k u u

t x x x x
ρ µ ε

ρ
⎛ ⎞∂ ∂∂ ∂ ∂ ′ ′ ′ ′ ′+ = − + − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

−            (4.2.9) 

The above equation is much simpler than Equation 4.2.8 since the pressure strain 

rate correlation term disappeared due to the indices summation and the dissipation 

term become a scalar. The diffusion and dissipation terms in Equation 4.2.9 can 

be modelled by the gradient diffusion given the following equations (Lin, 1998),  

it
j

j j k j j

uk k k
u

t x x x x

ν
i ju uν ε

σ
⎛ ⎞ ∂⎛ ⎞∂ ∂ ∂ ∂ ′ ′+ = + −⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

−                                    (4.2.10) 
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where, kσ , εσ , 1C ε  and 2C ε  are empirical coefficients. These empirical 

coefficients have been determined by performing many simple experiments; The 

recommended values are (Rodi, 1980): 

1.0kσ = , 1.3εσ = , 1 1.44C ε = , 2 1.92C ε =                                                     (4.2.12) 

Since the Reynolds stresses are not calculated directly from the transport 

equations, a closure model that relates the Reynolds stresses to , ,k ε  and the strain 

rates of the mean flow is needed.  

Conventionally, the linear isotropic eddy viscosity model is used for this purpose 

(Rodi, 1980). However, this model has the weakness from both the theoretical 

point of view and the actual computations. Because of the use of isotropic eddy 

viscosity concept, the anisotropy of both viscosity and turbulence cannot be 

realistically represented. In addition, because a linear relation is used, some 

higher-order physical mechanisms between the Reynolds stresses and mean strain 

rates are omitted. In the actual numerical computation, the conventional eddy 

viscosity model may fail under some extreme cases such as the strong vorticial 

motion. One possible cure for this problem is to employ a non-linear algebraic 

Reynolds stress model with the enforcement of realizability as proposed by Pope 

(1975) and Shih et al. (1996). With the use of such a model, the simplicity of the 

ε−k  model is retained and the accuracy of the modelling result is improved. 

This turbulence closure model is used in this study.  

Other even simpler turbulence models are also available. For example, the so-

called one-equation model, k model (Rodi, 1980), or the Prandtl's mixing length 

model can also be used to estimate Reynolds stresses. These models are easy to 
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apply, but the accuracy of the modelling results is questionable for complex 

flows. Furthermore, the coefficients used in these models vary case by case that 

increases the uncertainties when the model is applied to a new case. 

4.2.4.1 Linear eddy viscosity model 
The linear isotropic eddy viscosity model is applied to approximate the Reynolds 

stresses using the information of  and k ε  as well as the strain rate of the mean 

flow. The model specify the relation between Reynolds stresses and the rates of 

strain of the mean flow as follows 

2
2

3i j t ij iju u kν σ′ ′ = − + δ                                                                              (4.2.13) 

in which tν  is the turbulent eddy viscosity, depending on the local state of 

turbulence and can be approximated by,  

2

t d

k
Cν

ε
=                                                                                                      (4.2.14) 

where Cµ  is empirical coefficient (Cµ  = 0.09 , (Rodi, 1980)) and ijδ  is the 

Kronecker delta.  

4.2.5 Improved ε−k  model 
Because of the use of isotropic eddy viscosity assumption, Equation 4.2.13 will 

not represent the correct physics for anisotropic turbulence in complex turbulent 

flows (Lin, 1998). To solve this problem, Pope (1975), proposed a general closure 

model, a non-linear algebraic stress model, which called the non-linear eddy 

viscosity model. The function of the linear terms of the strain rate of the mean 

flow has been implemented as well as the higher order terms. Shih et al. (1996) 

proposed set coefficients for all quadratic terms for this type of model and 
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calibrated the coefficients using turbulent flow over a step. Lin and Liu (1999), 

adapted Shih et al. (1996)‘s approach to give:  

2
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                            (4.2.15) 

The values of the empirical coefficients C1, C2 and C3 are as follows: 

C1=0.0054, C2= -0.0171, C3=0.0027.  

The details of the procedures to get all the previous empirical coefficients can be 

found in Lin (1998).  

Lin (1998) modified the empirical coefficients in the following ways to satisfy the 

realisable requirements, i.e.,   

1 2
max max

2 32 2
max max

2 1 1
,

3 7.4 185.2

1 1
,

58.5 370.4

C C
S

C C
D D

µ

⎛ ⎞
= =⎜ ⎟+⎝ ⎠

= − = −
+ +

D+
                                                       (4.2.16)                         

where, max maxmax , maxi

i j

uk k
S D iu

x xε ε
⎡ ⎤⎡ ⎤∂ ∂

= = ⎢ ⎥⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦ ⎣ ⎦
                                    (4.2.17) 

The adaption of above modification will ensure the non-negativity of turbulence 

velocity and bounded Reynolds stress. The employment of the non-linear 

algebraic stress model can greatly improve the accuracy of numerical results 
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because of the fulfilment of more physical constraints. The non-linear algebraic 

stress model captures most of physics described by the Reynolds stress transport 

model but also retains the simple form of ε−k  model. For simplicity, the Lin and 

Liu (1998) model included only the quadratic terms which represent most of the 

non-linear anisotropy characteristics of turbulence. 

4.3 Initial conditions 
The initial conditions for the mean flow can be based on the laboratory 

measurements or analytical solutions. In most cases, the initially quiet flow is 

specified with the zero mean velocities and hydrostatic pressure. For the 

turbulence field, the specification of initial condition requires more careful 

treatment. Lin (1998) conducted numerical experiments to specify the initial 

condition for the turbulence flow. According to these experiments, the initial 

values of  and k ε  suggested by Lin are as follows: 

21

2 tk u=  with, tu icδ=                                                                                   (4.3.18) 

2

d
t

k
Cε

ν
=  with, tν ξν=                                                                                (4.3.19) 

where,  is the wave celerity on the inflow boundary, ic δ =0.0025 and ξ  = 0.1. 

4.3.1 Boundary condition on solid boundary and free surface for mean flow 
In the wave hydrodynamics study, the most common solid boundary is the 

impermeable bottom which is generally static. At the solid boundary, the fluid 

velocity must be the same as that of the boundary itself (Ui), ui  = Ui.  
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In the 2-D BWNM, the free slip boundary condition is defined, 0nu =  and 

0k
u

n

τ∂
=

∂
, where the subscripts n  and kτ  denote the outward normal direction 

and two orthogonal tangential directions ( )1,2k = , respectively.  The free slip 

boundary condition which imposes less impact of boundary on the tangential 

velocity component provides some accurate velocity information near the solid 

boundary (Lin, 1998). 

On the other hand, along the free surface the continuity of both normal and 

tangential stress components are required. By neglecting the surface tension, the 

dynamic boundary conditions are expressed as (Lin, 1998): 

2 n
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u
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µ ∂

− + =
∂

        , k
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k

u u
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n
τ

τµ
τ

∂⎛ ⎞∂
+ =⎜ ⎟∂ ∂⎝ ⎠

                                              (4.3.20) 

where,  and nS
k

Sτ are the specific stress components induced by air on the free 

surface. The kinematic boundary condition which describe the free surface motion 

is expressed as, 

0i
i

u
t x

ρ ρ∂ ∂
+ =

∂ ∂
                                                                                              (4.3.21) 

Using equation (4.3.20) may lead to the spurious oscillations of free surface as 

observed and discussed by Nichols and Hirt (1971). In the 2-D BWNM, the 

simpler boundary conditions on the free surface are used, i.e., 0p =  and 

0k
u

n

τ∂
=

∂
, these conditions neglect the air effect and normal stress of fluid. The 

numerical tests show that such boundary conditions produce rather accurate free 
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surface information when a grid larger than the thickness of the free surface 

boundary layer is used (Lin, 1998). 

4.3.2 Boundary condition on solid boundary and free surface for ε−k  model 

In principle,  becomes zero on the solid surface. However, in practical 

computations, the grid size normally cannot adequately resolve the turbulent 

boundary layer. Thus, the boundary conditions for  and 

k

k ε  are generally 

specified in the turbulent boundary layer instead of right on the wall. In the 

turbulent boundary layer the cross-stream shear stress dominates and remains a 

constant. Invoking the boundary layer approximation, Liu and Lin (1997) derived 

the following equation: 

2

2
0

u u

y y

υ
ν

′ ′∂ ∂
− +

∂ ∂
=                                                                                  (4.3.22) 

with y being the coordinate normal to the mean flow direction. By taking the 

integration from the wall to the place out of the viscous sub layer, where the 

viscous effect can be neglected, produce the following equation: 

2
*

0

1
y y w

y

u
u v u

y
ν τ

ρ=

=

∂
′ ′− =− =

∂
=                                                             (4.3.23) 

Based on dimensional analysis the mean velocity gradient in this region can be 

expressed as:  

*
d u u

dy ky
=                                                                                                      (4.3.24) 

with *
wu τ

ρ= being the fractional velocity where wτ  is the cross stream shear 

stress on the wall and k=0.41 being the von Karman constant (Lin, 1998). 

 
72 

 
 

 



Integration equation 4.3.24 lead to the so-called logarithmic-law profile for the 

streamwise velocity: 

*

1
ln

u u y
E

u k ν
∗⎛= ⎜

⎝ ⎠
⎞
⎟                                                                                         (4.3.25) 

where, E=9.0 for smooth wall (Lin, 1998). Because the dissipation rate is 

approximately the same as the production rate, i.e., P ε= , from equations 4.3.23 

and 4.3.24 we have:  

3
*

d u u
P u v

dy ky
ε ′ ′= = − =                                                                             (4.3.26) 

From equation 4.2.13 the eddy viscosity tν can be obtained  

*t

u
ku y

d u

dy

υ
ν

′ ′
= − =                                                                                        (4.3.27) 

The eddy viscosity is proportional to the distance from the wall in the turbulent 

layer. Substituting equations 4.3.26 and 4.3.27 into equation 4.2.14 yields 

2
*u

k
Cµ

=                                                                                                        (4.3.28) 

Equations 4.3.26 and 4.3.28 constitute the boundary conditions for  and k ε  at the 

computational point immediately adjacent to the solid boundary. The fractional 

velocity can be found from equation 4.3.25 once the mean velocity u has been 

calculated. 

On the free surface, Lin (1998) assumed that turbulence does not diffuse across 

the free surface. Consequently, the normal flux of  and k ε  should vanish on the 

free surface,  
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k

n

∂
=

∂
   , 0

n

ε∂
=

∂
                                                                                          (4.3.29) 

4.3.3 Internal inflow boundary condition  
The 2-D BWNM uses a new scheme to specify the inflow boundary condition 

which was originally developed by Lin and Liu (1999). The scheme is based on 

the concept that any specific wave trains can be generated by using a designed 

mass source function for the equation of mass conservation in the internal flow 

region.  

The new scheme removes the difficulty in specifying incident waves through an 

inflow boundary with the presence of strong wave reflection as shown in the 

Chapter 3 model tests  (Section 3.6).  

This method is very useful for a long duration simulation of coastal wave 

dynamics where the wave reflection is significant. A wide range of waves 

commonly met in field and used in the laboratory, i.e., linear wave, random wave, 

Stokes wave, cnoidal wave and solitary wave can be generated. The new scheme 

was compared with theories, Lin and Liu (1999), and the accuracy is very good. It 

is also demonstrated, from both theoretical argument and numerical tests that the 

reflected wave will not interfere with the wave generation process using the 

source function, which is an important consideration when doing lengthy 

computations when reflected waves are present. Thus, this scheme is very suitable 

to the case of wave overtopping over seawall structures.   

4.3.3.1 Mathematical formulation 
To generate a wave using a mass source, the conservation of mass equation 

(Equation 3.2.2) is modified as follows: 
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( , , )
u

s x y t
x y

υ∂ ∂
+ =

∂ ∂
                                                                                 (4.3.30) 

where = nonzero mass source function within the source region.  ( , , )s x y t

In actual computations using the finite difference scheme, a rectangular source 

region composed of m n× cells is applied. The relation between the source 

function  and the expected time history of free surface displacement ( , , )s x y t ( )tη  

above the source region is as follows (Lin and Liu, 1999): 

( )
0 0

( , , ) 2
t t

os x y t d dt C t dtη
Ω

Ω =∫ ∫ ∫                                                                     (4.3.31) 

where, Co = phase velocity of the target wave and Ω  is the source region. The 

factor 2 is used in the right side of Equation 4.3.31 because the waves are 

generated on both sides of the source region.  

4.3.3.2 Linear wave  
The linear wave theory was derived using the concepts of two-dimensional ideal 

fluid which consider a reasonable starting point for ocean waves which are not 

greatly influenced by viscosity, surface tension and turbulence. Details of linear 

wave theory were explained earlier in Section (3.6.1).  

Substituting Equation 3.6.11 into Equation 4.3.31, the corresponding source 

function can be derived 

( )( ) cosoC H
s t t

A
ω=                                                                                       (4.3.33) 

where ω  is the wave frequency and A is the source region area.  
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4.3.3.3 Irregular wave   
An irregular wave train is represented in the model by a superposition of a finite 

number of linear wave modes with different wave height and wave frequency. For 

a known energy spectrum of an irregular wave train, the inverse Fourier 

transformation can be used to reconstruct the wave train with a finite number of 

wave modes. So, the random wave train can be generated by superposing different 

wave modes from i=1 to n as follows: 

(
1

( ) sini

n
o i

i i
i

C H
s t t

A
)ω θ

=

= ∑ +                                                                          (4.3.34) 

where iθ  is the phase angle of the ith wave modes.  

4.3.3.4 Internal mass source location and size   
Several numerical experiments were conducted by Lin and Liu (1999) using the 

same source function at a different source region. It is found that a source region 

located about one third of the water depth from the still water surface level, 

generates waves that best match the theory. The placement of the source region 

very close to the free surface generates a steeper wave, while the source region 

very close to the bottom generates smaller wave. More details of the numerical 

experiments can found in Lin and Liu (1999).  

Additional numerical tests show that the generated wave is insensitive to the size 

of the source region, as long as the height of the source region is greater than one 

to tenth of water depth.  

Further extensive numerical experiments indicate that the optimal design of the 

source region should satisfy the following rules of thumb (Lin and Liu, 1999): 

• The width of the source region should be less 5% of the wave length. 

 
76 

 
 

 



• The height of the source region should be in the range of 1/4 – 1/2 of the 

water depth (Lin and Liu, 2000). 

• The distance between the centre of the source region and the still water 

level should be in the range of 1/3 – 1/2 of the water depth. 

• The source region should be at least 1/2 wave length away from the open 

boundary to avoid unwanted artificial reflection (Lin and Liu, 2000). 

These rules have been followed in all numerical simulations produced by 2-D 

BWNM. 

4.3.4 Open (Radiation) outflow boundary condition  
The new scheme to specify the inflow boundary condition, which was described 

in Section 4.3.3, removes the difficulty in specifying incident waves through an 

inflow boundary condition with the presence of strong reflection. Only the open 

(radiation) boundary condition is needed at the boundaries in the simulation to 

allow the wave going out of the computational domain. The open boundary 

condition was described in Section 3.5.3.  

4.4 Summary of the governing and boundary conditions 
equations: 
It is useful here to have a brief summary of the 2-D BWNM governing equations 

as follows: 

- The equations governing the mass and momentum conservation of the mean 

flow are: 

0i

i

u

x

∂
=

∂
                                                                                                       (4.4.35) 
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1 iji i
j

j i

u u p
u

t x x i
j

g
x

τ

ρ

∂∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂
                                              (4.4.36) 

- The ε−k  model reads (Lin and Liu, 1998): 

it
j

j j k j j

uk k k
u

t x x x x

ν
i ju uν ε

σ
⎛ ⎞ ∂⎛ ⎞∂ ∂ ∂ ∂ ′ ′+ = + −⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

−                                    (4.4.37) 

2

1 2 it
j t

j j j j

u
u C

t x x x k xε
ε

ν
2ij C

kε
ε ε ε εν ν σ

σ
⎛ ⎞ ∂⎛ ⎞∂ ∂ ∂ ∂

+ = + + −⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

ε
              (4.4.38) 

- The initial turbulence model conditions are: 

21

2 tk u=  with, tu icδ=                                                                                   (4.3.39) 

2

d
t

k
Cε

ν
=  with, tν ξν=                                                                                (4.3.40) 

- The boundary conditions for mean flow are: 

At solid boundary:  

0nu =  and 0k
u

n

τ∂
=

∂
                                                                               (4.4.41) 

At free surface:  

0p =  and 0k
u

n

τ∂
=

∂
                                                                                   (4.4.42) 

- The boundary conditions for turbulence flow are: 

At solid boundary:  

2
*

d

u
k

C
=  and 

3
*

d u u
u

dy ky
ε υ′ ′= − =                                                            (4.4.43) 

At free surface: 
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k

n

∂
=

∂
 and 0

n

ε∂
=

∂
                                                                                       (4.4.44) 

4.5 Numerical implementation  
In the numerical model, the RANS equations are solved using the finite difference 

two-step projection method (Chorin, 1968). The forward time difference method 

is used to discretize the time derivative. The convection terms are discretized by 

the combination of central difference method and upwind method (Hybrid 

scheme). The central difference method is employed to discretize the pressure 

gradient terms and stress gradient terms. The transport equations for k  and ε  are 

solved with similar methods. For further details on the numerical implementation, 

readers are referred to Lin and Liu (1997, 1998). 

In the following chapter, different cases of study have been investigated to 

evaluate the performance of the 2-D BWNM.  
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CHAPTER 5 
 
Model Testing 

5.1 Introduction 
The purpose of this chapter is to describe the evaluation of the performance of the 

2-D BWNM. After the presentation of the mathematical formulation and the 

initial boundary condition of the 2-D BWNM in the previous chapter, the 

performance of the numerical model needs to be tested. Three main cases of study 

have been studied to check the accuracy of the numerical model. The first case 

shows the overflow without waves over vertical structures. Results of the average 

discharge are compared with the well-known weir equation. Secondly, the case of 

linear wave overtopping over a sloping seawall is presented and the results are 

compared with other analytical and laboratory data. The third case studies 

irregular wave overtopping of seawalls with slopes in the range from 1:1 to 1:6. 

The computed average discharge is compared with the laboratory data collected 

by Van der Meer and Janssen (1995) and with the well-known overtopping design 

formulae used for design. New formulae are proposed for the case of irregular 

wave overtopping over smooth sloped seawall on the basis of a series of 

numerical simulations. The chapter concludes with a detailed discussion of these 

cases and the performance of the 2-D BWNM.  

5.2 Mesh setup 
The aspect ratio of ∆x and ∆y is important issue closely related to the VOF free 

surface tracking method. Normally, the aspect ratio of ∆x/∆y = 1 is preferred (Lin 

and Liu, 2000). However, for certain cases, say, a small amplitude long wave with 
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its horizontal length scale (characterized by wave length) being much larger than 

the vertical scale (characterized by water depth or wave height), to maintain an 

aspect ratio of one is too expensive to be feasible. In such case, ∆x normally needs 

to be order of magnitude greater than ∆y to make the computation economical.  

When a wave breaking problem is investigated, the requirement of the certain 

aspect ratio is more stringent. Normally, a wave breaks when the wave front slope 

reaches tan (22o) = ∆y/∆x (0.4) (Lin and Liu, 2000). If the aspect ratio of ∆x and 

∆y is much larger than 1/0.4 = 2.5, a wave may experience false breaking before it 

actually breaks, following the same argument above. Therefore, for breaking 

wave simulation, the aspect ratio should be smaller than or equal 2.5 to avoid 

numerical inaccuracies due to false breaking (Lin and Liu, 2000). 

For the mesh cells dimensions (∆x and ∆y), the rules applied for the source region 

that was explained in details in Chapter 4 (Section 4.3.3.4) are applied here also. 

5.3 Overflow without waves at vertical seawall 
If the water level rises above the crest level of the structure, for example during 

extreme storm surges, overflow occurs. That is, sea water flows over the top of 

the crest of the seawall. Design formulae used to calculate wave overtopping 

assume that water in front of the structure to be below the crest level of the 

structure. One can extrapolate for water levels at the crest of the structure, but 

scale model tests for seawalls show, that the amount of overtopping is 

overestimated by the existing formulae for zero freeboard (Rc=0), (Bleck et al., 

2000). On the other hand, the existing formulae for overflow (e.g. weir formulae) 

do not take into account the effect of waves.  
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The case of overflow without waves at a broad crested weir is studied first using 

the 2-D BWNM. In this case the water level is above the crest level of the 

structure and the freeboard () is negative. This is an introductory situation for 

the case of combined wave overtopping and overflow which is presented and 

discussed in the next chapter. Chadwick and Morfett (1998) expressed the 

discharge formula over a broad crested weir as follows: 

cR

 
3

21.705
cweir dq C= × R                                                                                     (5.3.1) 

where,  is the overflow depth and is the discharge coefficient. cR dC

A number of empirical discharge formulae have been developed which 

incorporate the value of . It can be shown by dimensional analysis that dC

, c
d e

s

RC f R d
⎛= ⎜
⎝ ⎠

⎞⎟

FC

, where, Re is Reynolds number and ds is the weir height. 

The problems of calibration (i.e. adjusting  experimentally) become far greater 

when the discharge is small. Under these conditions, the effect of viscosity and 

surface tension combine to bring about unstable, fluctuating flow conditions.  

dC

A number of empirical discharge formulae have been developed which 

incorporate . In Chadwick and Morfett (1998) an equations for  are in the 

form: 

dC dC

0.848dC =                                                                                                   (5.3.2) 

0.91 0.21 0.24 0.35c c
F

L c s

R R
C

B R d

⎛ ⎞
+ + −⎜ +⎝ ⎠

0 ⎟                                                     (5.3.3) 

where, BL is the weir width. 
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Figure 5.3.1: The free surface profile for the overflow without wave ( 0≤cR ). 

 
Figure 5.3.1 gives the cross section of the structure and the water surface profile. 

The water depth is 4.0m, weir width is 1.0m and the freeboard (Rc) ranges from 

0.0 to –0.8m. In total 400 cells are used in the x-direction with a cell size of 0.25m 

and 80 cells in the y-direction with a cell size of 0.1m. The basic time step is 0.04s 

and the total simulation time is 30s.  

The comparison between discharge rate of weir equation and the 2-D BWNM is 

presented in Table 5.3.1 and Figure 5.3.2. It can be seen from the Figure 5.3.2 that 

the results produced from the 2-D BWNM compare very well with the weir 

equation for small negative freeboard. For freeboard less than -0.5m the 2-D 

BWNM underpredicts the overflow discharge as much as 1% to 12% compared to 

the weir equation. This may be related to the uncertainty in discharge coefficient 
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( ) value. Another reason for the difference between the weir equation and 2-D 

BWNM discharge rates is that the weir equation is based on the Bernoulli 

equation as a starting point. The actual flow over a weir is complex, usually being 

unsteady and involving viscous effects. These effects are not covered in the 

Bernoulli equation. Another reason is related to the numerical model accuracy in 

calculating discharge volume due to mesh size. Using smaller mesh size will lead 

to more accurate results. 

dC

Run No. Rc                 

[m] 
qweir  

[m3/m`/s] 
q2-D BWNM 

[m3/m`/s] 

W-1 0.0 0.000 0.000 
W-2 -0.1 0.039 0.024 
W-3 -0.2 0.114 0.127 
W-4 -0.3 0.215 0.233 
W-5 -0.4 0.341 0.340 
W-6 -0.5 0.490 0.483 
W-7 -0.6 0.662 0.626 
W-8 -0.7 0.857 0.782 
W-9 -0.8 1.075 0.938 

Table 5.3.1: Comparison between 2-D BWNM and modified weir equation. 
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Figure 5.3.2: Comparison between the 2-D BWNM and the weir equation for the 

case of overflow without waves. 
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5.4 Linear wave overtopping at sloping seawalls 
Saville (1955) collected extensive small-scale laboratory test data for wave 

overtopping at sloping seawalls. The experiments were based on regular waves 

overtopping a sloping seawall with slopes of 1:3. Hu et al. (2000) summarised 

this data and used it to test a numerical model (AMAZON) which is based on the 

non-linear shallow water (NLSW) equations. The profile of tested seawalls is 

illustrated in Figure 5.4.3, where dt, ds, and Rc represent water depth below SWL 

at the seaward boundary, water depth below SWL at the toe of the structure and 

the crest level of the structure above SWL (freeboard).  

Twenty cases of study cover a wide range of wave characteristics, positive 

freeboard and water depths with 1:10 smooth beach slope. The configuration and 

the results for these runs are presented in Table 5.4.2 and also illustrated in Figure 

5.4.4.  The dimensionless discharge Q was defined by Hu et al. (2000) as: 

s

q
Q

H gH
=                                                                                                    (5.4.4) 

where, q is the dimensional average overtopping discharge, g is the gravitational 

acceleration and Hs is the significant wave height.  
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Figure 5.4.3: Sketch explains the case study of regular waves overtopping at 

sloping seawalls. 

 

To be consistent with the results produced Hu et al. (2000), the boundary wave 

conditions were the same as specified by Hu et al. (2000) and an average value of 

Q was calculated during the fourth and fifth wave period( )54 ≤≤ T .  

The results produced with 2-D BWNM compared well with the measured data as 

shown in Figure 5.4.4. Table 5.4.2 shows details of each run and the output from 

2-D BWNM model together with the laboratory experiments and the AMAZON 

results. 

As measured by the sum of the modulus of the differences between the laboratory 

and model results over the 20 cases, 2-D BWNM provides 12% improvement in 

the performance of AMAZON. On purely theoretical grounds one would expect 

the Navier-Stokes equations to provide a more robust means for the simulation of 

wave overtopping than the non-linear shallow water equations; the latter are 
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derived on the assumption that the vertical velocity is much less that the 

horizontal velocity, i.e. hydrostatic pressure is assumed. This assumption is not 

strictly applicable in the surf zone. 

 

Run 

No. 

S.W 

Slope 

dt

(m) 

ds 

(m) 

Rc

(m) 

Hs 

(m) 

T 

(s) 

Q(10-3)  

Amazon 

Q(10-3) 

 Saville 

Q(10-3) [-] 

2-D BWNM

1 1:3 3.0 0.75 0.50 0.95 4.73 39 66 46 
2 1:3 3.0 0.75 1.00 0.95 4.73 15 41 3 
3 1:3 3.0 1.50 0.50 0.95 4.73 81 64 72 
4 1:3 3.0 1.50 1.00 0.95 4.73 24 36 25 
5 1:3 4.0 2.00 0.67 0.99 6.55 86 90 86 
6 1:3 4.0 0.75 0.50 1.08 7.98 64 60 66 
7 1:3 4.5 0.75 1.00 1.06 7.98 27 17 40 
8 1:3 4.0 0.75 1.50 1.08 7.98 11 4 4 
9 1:3 4.0 1.50 0.50 1.08 7.98 101 94 103 
10 1:3 4.0 1.50 1.00 1.08 7.98 53 40 48 
11 1:3 4.0 1.50 1.50 1.08 7.98 24 8 33 
12 1:3 6.0 1.00 0.67 1.20 12.8 90 91 115 
13 1:3 6.0 2.00 0.67 1.20 12.8 108 130 138 
14 1:3 6.0 2.00 1.33 1.20 12.8 41 77 61 
15 1:3 6.0 2.00 2.00 1.20 12.8 7.5 25 30 
16 1:3 6.0 2.00 2.67 1.20 12.8 0 11 11 
17 1:1.5 4.92 0.75 0.50 1.04 7.98 50 49 63 
18 1:1.5 4.92 0.75 1.50 1.04 7.98 5.6 13 19 
19 1:1.5 4.17 0.0 0.50 1.07 7.98 34 39 39.7 
20 1:1.5 4.17 0.0 1.00 1.07 7.98 8.9 20 13 

Table 5.4.2: Comparison between 2-D BWNM and AMAZON numerical models 

with the laboratory measured dimensionless overtopping discharges. 
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Figure 5.4.4: Comparison between 2-D BWNM and AMAZON models with the 

laboratory measured dimensionless overtopping discharges. 

5.5 Irregular wave overtopping at sloping seawalls 

5.5.1 Sea states used in the 2-D BWNM tests 
The irregular waves which are used in the following model tests are generated 

using the parameterised JONSWAP-spectrum (Carter, 1982): 

( )2 4 5 4 4( ) 0.205 exp 1.25s p pE f H T f T f δγ− − − −= −                                                 (5.5.5) 

2

2

( 1)
exp

2
pT f

δ
σ

⎡ ⎤− −
= ⎢ ⎥

⎢ ⎥⎣ ⎦
                                                                                     (5.5.6) 

where:  

( )E f  is frequency spectral density function. 

0.07σ =  for T f  and 1p ≤ 0.09σ =  for T f . 1p >

f is the wave frequency. 

γ  is spectral enhancement factor. 
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The JONSWAP spectrum is characterized by a parameter γ  which is called the 

peak enhancement parameter; this controls the sharpness of the spectral peak. The 

value of the peak enhancement parameter (γ ) of 3.3 is an average figure derived 

by Hasselmann (1973). They found individual values within the range of 1-6. 

Detailed analysis of these γ  values by Ochi (1979) showed that they have a 

normal distribution with a mean 3.3 and a standard deviation of 0.79, i.e. 95% 

between 1.75 and 4.85.  

For linear waves the total energy density, E, is twice the potential energy density 

(Ep) of a wave, 

2

2
8p

gH
E E

ρ
= =                                                                                             (5.5.7) 

Using Equations (4.3.34, 5.5.6 and 5.5.7) heights of representative waves can be 

estimated. Figure 5.5.5 shows an example of JONSWAP frequency spectral 

density function with peak enhancement parameter γ  = 1, 3.3 and 6.  
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Figure 5.5.5: Relation between JONSWAP spectrum and wave frequency (Hs = 

1.22m, Tm = 3.80s and Tp = 5.0s). 
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Many cases of study with different significant wave heights, peak and mean wave 

periods are made to identify the number of components frequencies should be 

used to well adequately represent the JONSWAP spectrum. It is found from 

reanalysis of the generated waves that between 35 to 45 frequencies are required 

to present the JONSWAP spectrum well. The statistical analysis of the generated 

irregular wave gives the same input wave characteristics i.e. significant wave 

height, peak wave period and mean wave period. The error between input and 

generated significant wave heights, mean and peak wave periods range from 5 to 

10% in all cases. Examples of the generated irregular waves which used in the 

following cases of study are shown in Figures 5.5.6 to 5.5.9.  

 

 

 

Figure 5.5.6: Input irregular wave (JONSWAP spectrum Hs = 1.24m, Tp = 4.43s, 

Tm = 3.85s and ds=8.0m). 
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Figure 5.5.7: Input irregular wave (JONSWAP spectrum Hs = 1.40m, Tp = 4.55s, 

Tm = 3.96s and ds=8.0m). 

 

Figure 5.5.8: Input irregular wave (JONSWAP spectrum, Hs = 1.75m, Tp = 5.13s, 

Tm = 4.46s and ds=8.0m). 

 

Figure 5.5.9: Input irregular wave (JONSWAP spectrum Hs = 2.34m, Tp = 6.04s, 

Tm = 5.52s and ds=8.0m). 
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5.5.2 Irregular wave overtopping over smooth sloped seawalls  
Van der Meer and Janssen (1995) proposed set of wave overtopping formulae for 

irregular waves. They based their formula on an extensive series of both small and 

large scale model tests on the overtopping response of various seawalls. The 

experiments were carried out in Delta flume of Delft Hydraulics laboratory. The 

laboratory results of the irregular wave overtopping (JONSWAP spectrum) have 

been used to evaluate the 2-D BWNM. Three different slopes of smooth seawall 

are studied 1:1, 1:2 and 1:4. Details of these different cases are described in the 

following sections. 

5.5.2.1 Comparison with laboratory data for seawalls with slope 1:1 
In this case, a total of 16 tests have been run using 2-D BWNM. Figure 5.5.10 

gives the cross section of the 1:1 sloped seawall with the wave surface profile. 

The water depth is 8.00m and the generated irregular wave accordance with 

JONSWAP spectrum. 

 

Figure 5.5.10: Cross section for seawall with slope 1:1 with the non-breaking 

wave surface profile after 45 sec. 
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Run No. Rc (m) Hs (m) Tp (s) Tm (s) 

L-1 1.00 0.79 3.50 3.04 
L-2 1.00 1.23 4.35 3.78 
L-3 1.00 1.73 5.18 4.50 
L-4 1.50 0.86 3.50 3.04 
L-5 1.50 1.29 4.39 3.82 
L-6 1.50 1.75 5.22 4.54 
L-7 2.00 0.86 3.50 3.04 
L-8 2.00 1.29 4.39 3.82 
L-9 2.00 1.75 5.22 4.54 
L-10 2.00 2.34 6.04 5.25 
L-11 2.50 1.40 4.55 3.96 
L-12 2.50 1.85 5.30 4.61 
L-13 2.50 2.42 6.08 5.29 
L-14 3.00 1.25 4.38 3.81 
L-15 3.00 1.69 5.16 4.49 
L-16 3.00 2.26 6.01 5.23 

Table 5.5.3: Configuration of the small-scale tests of seawall with slope 1:1. 

 
Details of the configuration for 16 runs are presented in Table 5.5.3. In total 400 

cells are used in the x-direction with a cell size of 0.25m. In the y-direction 120 

cells are used with a cell size of 0.1m.  
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Figure 5.5.11: Comparison between 2-D BWNM and Laboratory measured 

dimensional overtopping discharges. 
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In Figure 5.5.11 the results from the tests with linear slopes are plotted together 

with results given by Van der Meer and Janssen (1995). The comparison between 

the laboratory and 2-D BWNM overtopping discharge shows that there is good 

agreement between the laboratory data and the numerical results. Analytically, the 

average error between the laboratory work and the numerical model is 17.5 %. 

However, scale effects are an important parameter in the laboratory work. Grune 

(1982) studied examples of the scale effects on run up and overtopping. Here it 

emerges that the run-up is generally larger than predicted by commonly used 

formulae such as Van der Meer et al. (1992) and Owen (1980).  

The same tendency is found by Van de Walle et al. (2002) from full-scale 

measurements on the Zeebrugge breakwater in Belgium. Van de Walle et al. 

(2002) compare full-scale run-up measurements with the measurements from 

small-scale model tests performed with wave conditions reproducing the full-

scale conditions. They concluded that the differences between the field and the 

laboratory results are due to scale effects. In the 2D-BWNM simulations real 

scale has been taken (scale 1:1) while large-scale tests have been used in the 

laboratory work. It is clear from figure 5.5.11, that the significant difference 

between the numerical and laboratory results occurs in L-3, L-10 and L-13. These 

cases have the largest wave characteristics i.e. significant wave height and mean 

wave period. Scale has a strongest impact in these cases. The average error 

decreases to 10% with the exclusion of these three cases. Other reasons are 

referred to the uncertainty in laboratory work, as well as numerical and modelling 

errors in the computational model. 
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Figure 5.5.12: Time history of the cumulative overtopping volume for case L-10, 

(Hs = 2.34m, Tp = 6.04s, Tm = 5.25s and ds=8.0m). 
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Figure 5.5.13: Time history of the instantaneous overtopping volume, (Hs = 

0.83m, Tp = 5.00s, Tm =3.60). 

 
The overtopping rate is an important parameter to measure the effectiveness of the 

sloped seawall. Figures 5.5.12 and 5.5.13 show the cumulative and instantaneous 

overtopping volume calculated by the numerical model. The non-linearity in the 

overtopping mass is clear from the figures and this is due to the irregular nature of 

the waves as shown in Figures 5.5.5 to 5.5.8. Figure 5.5.13 shows that the 

instantaneous overtopping volume is almost constant after the first 30 seconds. In 

order to reduce the calculation time and have the opportunity to investigate a large 

range of cases the simulation time has been defined as 180s, with a basic time step 

of 0.04s.  Unfortunately, Van der Meer and Janssen (1995) did not give details 

about the way their determined the computational time. 
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Figure 5.5.14: Irregular wave overtopping on a 1:1 sloping seawall from time 5 to 

40s. (Hs = 1.73m, Tp = 5.18s, Tm = 4.5s and ds=8.0m). 
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Figure 5.5.15: Irregular wave overtopping on a 1:1 sloping seawall from time 45 

to 80s. (Hs = 1.73m, Tp = 5.18s, Tm = 4.5s and ds=8.0m). 
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One example of the propagation of the irregular wave over the sloped seawall is 

shown in Figures 5.5.14 and 5.5.15. The input irregular wave characteristics 

(JONSWAP spectrum) are Hs = 1.73m, Tp = 5.18s, Tm = 4.5s and ds=8.0m. These 

Figures demonstrate clearly the shape of wave over the calculation period and 

illustrate how the overtopping volume increases over time.  

5.5.2.2 Comparison with laboratory data for seawalls with slope 1:2 
In this case, a total of 16 tests have been run using 2-D BWNM. Figure 5.5.16 

gives the cross section of the 1:2 sloped seawall and the free surface profile. 

Details of the configurations for 16 runs are presented in Table 5.5.4. The model 

has the same mesh set-up, time step and the simulation time as the previous case. 

 

Figure 5.5.16: Cross section for seawall with slope 1:2 with the non-breaking 

wave surface profile after 85 sec. 

 
Figure 5.5.17 suggests a similar conclusion to that of Figure 5.5.11. That is, the 2-

D BWNM gives results in close agreement with the laboratory work by Van der 

Meer and Janssen (1995). An average error between the laboratory work and the 

numerical model is 25%. It can be noticed from figure 5.5.16 that the most 
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significant errors happened for cases with very small wave overtopping volumes 

(K-5 and K-8). One reason could be numerical errors due to an inappropriate 

mesh size. Using smaller mesh size could have improved the accuracy of the 

numerical model results. 

Run No. Rc (m) Hs (m) Tp (s) Tm (s) 

K-1 1.00 0.79 3.51 3.05 
K-2 1.00 1.23 4.43 3.85 
K-3 1.00 1.73 5.13 4.46 
K-4 1.50 0.86 3.54 3.08 
K-5 1.50 1.29 4.31 3.75 
K-6 1.50 1.75 5.14 4.47 
K-7 2.00 0.86 3.51 3.05 
K-8 2.00 1.29 4.37 3.80 
K-9 2.00 1.75 5.20 4.52 
K-10 2.00 2.34 6.04 5.25 
K-11 2.50 1.40 4.60 4.00 
K-12 2.50 1.85 5.37 4.67 
K-13 2.50 2.42 6.08 5.29 
K-14 3.00 1.25 4.39 3.82 
K-15 3.00 1.69 5.19 4.51 
K-16 3.00 2.26 6.01 5.23 

Table 5.5.4: Configuration of the small-scale tests of seawall with slope 1:2. 
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Figure 5.5.17: Comparison between 2-D BWNM and Laboratory measured 

dimensional overtopping discharges. 
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Figure 5.5.18 shows relationship between dimensionless freeboard and 

dimensionless non-breaking wave overtopping of the 2-D BWNM, Van der Meer 

and Janssen (1995)’s design formula (Equation 2.2.3) and Van der Meer and 

Janssen (1995)’s laboratory data for 1:1 and 1:2 sloped seawalls.  

As measured by the sum of the modulus of the differences between the Van der 

Meer and Janssen (1995)’s formula and 2-D BWNM results, the 2-D BWNM 

provides 15% improvement in the performance of laboratory data.  

Significant differences between the numerical and laboratory data could be 

noticed in some cases especially in very small volume of wave overtopping 

( )0.001Q < . This average error could be due to the scale effects, the finite 

duration of both the numerical simulation time and laboratory test time in dealing 

with random wave, and the uncertainty in laboratory work, as well as numerical 

rounding errors in the computational model. 
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Figure 5.5.18: Comparison between 2-D BWNM results, Van der Meer’s formula 

and Van der Meer’s laboratory data as basis for equation 2.1.3 (non-breaking 

wave, ). 2pξ >
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5.5.2.3 Comparison with laboratory data for seawalls with slope 1:4 
A total of 11 tests have been run using 2-D BWNM. Figure 5.5.19 gives the cross 

section of the 1:4 sloped seawall and the free surface profile. Details of the 

configurations for 16 runs are presented in Table 5.5.5. The model has the same 

mesh set-up, time step and the simulation time as the previous two cases of study. 

 
 Figure 5.5.19: Cross section for seawall with slope 1:4 with the breaking wave 

surface profile after 20 sec. 

  
Run No. Rc (m) Hs (m) Tp (s) Tm (s) 

J-1 1.00 0.78 3.53 3.07 
J-2 1.00 1.22 4.38 3.81 
J-3 1.00 1.7 5.19 4.51 
J-4 1.50 1.26 4.38 3.81 
J-5 1.50 1.75 5.16 4.49 
J-6 1.50 2.35 6.03 5.24 
J-7 2.00 1.26 4.38 3.81 
J-8 2.00 1.71 5.16 4.49 
J-9 2.00 2.29 4.88 4.24 
J-10 3.00 1.72 5.19 4.51 
J-11 3.00 2.32 6.07 5.28 

Table 5.5.5: Configuration of the small-scale tests of seawall with slope 1:4 
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The same tendency of slope 1:1 and slope 1:2 has been found in slope 1:4 as can 

seen in Figure 5.5.20. The results of the numerical model match well with the 

laboratory work by Van der Meer and Janssen (1995). The average difference 

between the laboratory work and the numerical model is 23%.  
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Figure 5.5.20: Comparison between 2-D BWNM and Laboratory measured 

dimensional overtopping discharges. 

 
Figure 5.5.21 presents the comparison between dimensionless wave overtopping 

of 2-D BWNM, Van der Meer’s formula and the laboratory data used as the basis 

for the Van der Meer and Janssen’s  (1995) design formula for breaking wave. 

As measured by the sum of the modulus of the differences between the Van der 

Meer and Janssen (1995)’s formula and 2-D BWNM results, the 2-D BWNM 

provides 29% improvement in the performance of laboratory data.  

 Figure 5.5.21 has the same tendency of Figure 5.5.18 that there are significant 

differences between the numerical and laboratory data in some cases. These 

differences concentrate in very small volume of wave overtopping ( )0.0001Q ≤ .  
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It can be referred here also to the same reasons explained before in Section 

5.5.2.2, that scale effects, laboratory measurements accuracy, finite duration of 

both the numerical simulation time and laboratory test time in dealing with the 

random waves and the numerical rounding errors in the computational model 

could be reasons of the significant differences. 
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Figure 5.5.21: Comparison between 2-D BWNM results, Van der Meer’s formula 

and Van der Meer’s laboratory data as basis for equation 2.1.3 (breaking 

wave, ). 2pξ <

5.5.2.4 Comparison with the existing design formula for seawalls with slope 
1:3 and 1:4 
As mentioned earlier in Chapter two (section 2.2), three empirical design 

formulae for wave overtopping of a simple sloped seawall subjected to irregular 

waves approaching normal to the slope are chosen here to validate the 2-D 

BWNM:  

• Owen (1980). 

• Van der Meer and Janssen (1995). 

• Hedges and Reis (1998).  
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A total of 18 tests were run with a water depth of 4.5m, dimensionless freeboard 

(R) ranging from 0.3 to 1.0 and irregular breaking waves with a JONSWAP 

spectrum with significant wave height (Hs) from 0.83 - 1.48m, mean wave period 

(Tm) from 3.8-4.6s and peak wave period (Tp) from 5.0 – 6.02s. In total 320 cells 

are used in the x-direction with a cell size of 0.25m. In the y-direction 120 cells 

are used with a cell size of 0.1m. The basic time step is 0.04s and the simulation 

time is 90s. The value of γ in the JONSWAP spectrum is set to 3.3 and the 

spectrum is represented by 40 component frequencies between 0.15 and 0.265 Hz. 

Figure 5.5.22 gives the cross section of the seawall with slope 1:3 and shows the 

breaking wave surface. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5.22: Cross section for seawall with slope 1:3 with the breaking wave 

surface profile after 45 sec. 

 

Figures 5.5.23 and 5.5.24 show the comparison between the results produced by 

2-D BWNM and the empirical formulae for dimensionless freeboard (R) range 

from 0.3 to 1.0. It can be seen from the figures that the empirical formulae 
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underestimate the amount of breaking wave overtopping under irregular wave 

attack in comparison with the numerical results. The new numerical approach 

goes some way towards addressing the issues raised by Besley et al. (1998) and 

Goda (2000), which were that if wave breaking in shallow water is not taken into 

account, prediction methods developed for deep water will significantly 

underestimate overtopping discharge. The difference between the numerical 

results and empirical formulae increases when dimensionless freeboard decreases. 

Schuttrumpf et al. (1998) reported that the amount of overtopping is 

underestimated by the existing empirical formulae for small and zero freeboard 

which supports the results of the 2-D BWNM (Figures 5.5.19 and 5.5.20). 
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Figure 5.5.23: Comparison between 2-D BWNM and empirical design formulae 

for irregular breaking wave overtopping over 1:3 sloped seawall.  
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Figure 5.5.24: Comparison between 2-D BWNM and empirical design formulae 

for irregular breaking wave overtopping over 1:4 sloped seawall. 

 
The analysis of the results from these series of cases for two different slopes (1:3 

and 1:4) under irregular breaking wave attack ( 2pζ < ) are used to define the 

following new suggested design formula:  

 

( )
3

tan
0.09 exp 4.12

ps

q
Q R

gH

α
ζ

= = −                         (5.5.8)( )0.3 1R≤ <

An exponential form has used here formulae to be consistent with Van der Meer’s 

formulae. More details about Van der Meer’s formulae and its advantage could be 

found in Chapter 2 (Section 2.2.1 and Section 2.2.2).  

The comparison between the Equation 5.5.8 and Van der Meer’s equation is 

shown in Figure 5.5.25. The Figure supports the acknowledgement that widely 

current overtopping design formulae are significantly underestimating the 

overtopping discharge. 
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Figure 5.5.25: Comparison of 2-D BWNM suggested design formula and Van der 

Meer and Janssen’s (1995) design formula for 1:3 and 1:4 sloped seawall 

. ( )0.3 1R≤ <

5.6 Discussion 
This chapter introduces the results for three cases. These results are used to 

evaluate the performance of the 2-D BWNM by making a comparison between 

the numerical results and laboratory data, other numerical models and empirical 

design formulae used in the design purposes.  

The first case of study did not include the effect of waves. It tested the 

performance of the 2-D BWNM for the case of negative freeboard without waves 

over a vertical structure. The results for different negative freeboard for the range 

( 0 0c

s

R

d
≤ ≤ − .20 ) were presented and compared very well with the weir equation. 

Comparison of results between the numerical model and the weir equation 
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indicates that 2-D BWNM gives between 1% to 12% less overflow volume than 

weir equation. Reasons for that difference were discussed in Section 5.3. 

This case considers the basic for studying the case of wave overtopping and 

overflow. The case of overtopping and overflow will be presented in Chapter 7.  

Secondly, the case of wave overtopping over 1:3 and 1:1.5 smooth slope seawalls 

was considered. In this case the linear wave boundary condition is chosen as an 

inflow boundary condition. The average dimensionless wave overtopping rates 

were compared with other numerical model results based on the non-linear 

shallow wave equation (AMAZON) and with laboratory data. The performance of 

the new model is good and the analysis of the result has shown that the 2-D 

BWNM can give a 12% improvement over the AMAZON numerical model as a 

general guide.  

Finally, the third case considered wave overtopping with irregular wave boundary 

condition. This case is divided into two cases, the first one studied three different 

seawall slopes 1:1, 1:2 and 1:4. The numerical results are compared with the 

laboratory data collected by Van der Meer and Janssen (1995) which they used to 

investigate their design formulae for breaking and non-breaking wave 

overtopping. The comparison for the non-breaking wave (slope 1:1 and 1:2) and 

breaking wave (slope 1:4) gives good agreement between the numerical results 

and the laboratory results. Analysis of the results for the three slopes gives 22% 

difference between the numerical and laboratory work. This average error could 

be due to the scale effects and the uncertainty in laboratory work.  
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The second case studied seawall slopes of 1:3 and 1:4, for which the numerical 

results were compared with the empirical design formulae of Owen (1980); Van 

der Meer and Janssen (1995) and Hedges and Reis (1998). The comparison 

highlights the same issue raised by Besley et al. (1998) and Goda (2000), that the 

existing design formulae underestimate the amount of wave overtopping for small 

freeboard.  

The analysis of the 2-D BWNM results leads to a new proposed design formula 

for overtopping by breaking waves. The new design formula is as follows: 

 

( )
3

tan
0.09 exp 4.12

ps

q
Q R

gH

α
ζ

= = −  ( )0.3 1R≤ <                      (5.5.9)

More validation with filed data is recommended in the future work before the new 

overtopping formula used for design purposes.  

All the previous examples and the comparison with other tested numerical 

models, laboratory data and empirical formulae indicate that the numerical model 

performs well. The next two chapters concentrate on the cases which are not 

covered completely by the current design formulae. The 2-D BWNM is used as a 

numerical flume to perform a series of experiments for small, zero and negative 

freeboard conditions. Curves describing a functional relationship between 

overtopping volume, freeboard and wave conditions are derived. The results are 

used in conjunction with existing formulae to propose a unified set of design 

equations to predict combined overflow and overtopping volumes for different 

wave conditions. 
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CHAPTER 6 
Small Positive and Zero Freeboards 

6.1 Introduction 
The design crest height of a coastal structure is strongly dependent on the design 

water level. If the structure crest level is less than the maximum run up the wave 

overtopping occurs. Structures are normally designed to limit overtopping to a 

predefined level (not necessary zero), under specified design conditions. Under 

extreme storm conditions some wave overtopping may be expected due to the 

uncertainties in the estimation of incoming wave parameters and the design water 

level. As a result wave overtopping is an important parameter for the design of 

many coastal structures.  

In the last years, the climate has been changed and the global sea level rises. Tide-

gauge records, in some cases covering the last 100 years, show a general increase 

in sea level of 2.4±0.9 mm per year (Hardy, 2003). The existing coastal structures 

which were designed for certain water levels may now experience higher water 

levels, wave frequently, and experience a greater amounts of wave overtopping, 

due to reduced freeboard.  

Existing overtopping design formulae do not account for the case of small 

freeboard. Schuttrumpf et al. (2001) reported that the existing overtopping models 

for average overtopping rates by Van der Meer and Janssen (1995) and Van Gent 

(1999) are not valid for the condition of small and / or zero freeboard. For 

example, the Van der Meer formula for breaking waves (Equation 2.2.1) is 

applicable in the range 2.0  (Burchartch and Hughes, 2003).0.3R> >  It will be 
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helpful for engineers to have new design formulae cover the case of small positive 

until zero freeboard.  

The performance of 2-D BWNM had been evaluated in the previous chapter. In 

this chapter, the cases of small and zero freeboard are presented. New design 

formulae for these two cases is shown with their comparison with the recent 

design formulae of Schuttrumpf et al. (2001). 

Generally, The main purpose of this chapter is to study wave overtopping using 2-

D BWNM and to introduce new proposed formulae for designers that cover two 

main cases: 

• Small positive freeboard ( )0.3 0.0R≥ > . 

• Zero freeboard ( )0.0R = . 

6.2 Wave overtopping at small positive freeboard under irregular 
wave conditions 
The case of irregular wave overtopping over sloped seawalls had been presented 

in Chapter 5. Comparison between calculated wave overtopping volume with 

laboratory work of Van der Meer and Janssen (1995) and with the well known 

empirical design formulae of Owen (1980), Van der Meer and Janssen (1995) and 

Hedges and Reis (1998) have been shown in Section 5.5.2 and good agreement 

has been found. In this part of this chapter, further investigation is presented for 

the case of small freeboard, ( )0.3 0.0R≥ > , which is outside the range of 

applicability of engineering design formulae.  
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 Run 
No. 

Hs 

(m) 

Tm 

(s) 

Tp 

(s) 

Rc 

(m) 

pξ  

[-]

R 

[-] 

1 1.22 3.8 5.00 0.1125 1.89 0.05 

2 1.22 3.8 5.00 0.2250 1.89 0.10 

3 1.22 3.8 5.00 0.3375 1.89 0.15 

4 1.22 3.8 5.00 0.4500 1.89 0.20 

5 1.22 3.8 5.00 0.5625 1.89 0.24 

6 1.22 3.8 5.00 0.6750 1.89 0.29 

7 1.39 4.0 5.00 0.1125 1.77 0.05 

8 1.39 4.0 5.00 0.2250 1.77 0.09 

9 1.39 4.0 5.00 0.3375 1.77 0.14 

10 1.39 4.0 5.00 0.4500 1.77 0.18 

11 1.39 4.0 5.00 0.5625 1.77 0.23 

12 1.39 4.0 5.00 0.6750 1.77 0.27 

13 1.39 4.0 5.00 0.7875 1.77 0.32 

14 1.24 3.9 5.00 0.1125 1.87 0.05 

15 1.24 3.9 5.00 0.2250 1.87 0.10 

16 1.24 3.9 5.00 0.3375 1.87 0.15 

17 1.24 3.9 5.00 0.4500 1.87 0.19 

18 1.24 3.9 5.00 0.5625 1.87 0.24 

19 1.24 3.9 5.00 0.6750 1.87 0.29 

20 0.83 3.6 5.00 0.1125 2.29 0.14 

21 0.83 3.6 5.00 0.2250 2.29 0.27 

22 1.48 4.6 6.02 0.1125 2.06 0.08 

23 1.48 4.6 6.02 0.2250 2.06 0.15 

24 1.48 4.6 6.02 0.3375 2.06 0.23 

25 1.48 4.6 6.02 0.4500 2.06 0.30 

26 0.72 4.7 7.30 0.0563 3.58 0.08 

27 0.72 4.7 7.30 0.1125 3.58 0.16 

28 0.72 4.7 7.30 0.1688 3.58 0.23 

Table 6.2.1: Irregular wave characteristics used in the case of small freeboard 

wave overtopping at 1:3 sloped seawall ( )0.3 0.0R≥ >  
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6.2.1 Wave overtopping at small positive freeboard under irregular wave 
attack for 1:3 sloped seawall 
A total of 28 tests were run using the 2-D BWNM for 1:3 sloped seawall. The 

setup of these tests is shown in Figure 6.2.1 and in Table 6.2.1. As is clear from 

Table 6.2.1, the wave characteristics are chosen to cover wide range of significant 

wave heights, mean and peak wave periods and freeboard height. The runs cover 

the breaking and non-breaking waves and are concentrated within the range of 

small dimensionless freeboard, ( )0.3 0.0R≥ > . In total 320 cells are used in x-

direction and 120 in y-direction. The cell size is 0.25m and 0.1m in x and y 

directions. The JONSWAP spectrum is chosen to simulate the nature of irregular 

waves as described in details in Chapter 5 (Section 5.5.1).  

Figure 6.2.1: Definition sketch of the computational domain and free water 

surface used for the numerical simulation of wave overtopping at small 

freeboard [Run no. 5 (Table 6.2.1): H(0.3 0.0R≥ > ) s = 1.22m, Tm = 3.80s 

and Tp = 5.0s]. 
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Figure 6.2.2: Irregular wave overtopping on a 1:3 sloping seawall from time 10 to 

45s. [Run no. 5 (Table 6.2.1): Hs = 1.22m, Tm = 3.80s and Tp = 5.0s]. 
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Figure 6.2.3: Irregular wave overtopping on a 1:3 sloping seawall from time 50 to 

75s. [Run no. 5 (Table 6.2.1): Hs = 1.22m, Tm = 3.80s and Tp = 5.0s]. 
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The duration of the calculation is 90 seconds with an initial time step of 0.04s. 

Reasons for choosing this time interval were explained in Figures 5.5.12 and 

5.5.13 for calculated cumulative and instantaneous overtopping volume. Figure 

5.5.13 showed that the instantaneous overtopping volume is almost constant after 

the first 30 seconds. It was possible to reduce the simulation time down to 90 

seconds here for small positive, zero and negative freeboards due to the continuity 

of wave overtopping action during the calculation time.   

Figure 6.2.4: Plunging breaking wave produces by 2-D BWNM on a 1:3 sloping 

seawall [Run no. 5 (Table 6.2.1): Hs =1.22m, Tm = 3.80s, Tp = 5.0s and 

pξ =1.89]. 

Propagation of irregular waves is shown in Figures 6.2.2 and 6.2.3 for case study 

No. (5), with Hs = 1.22m, Tm = 3.80s, Tp = 5.00s and ds =4.5m. The surf similarity 

parameter (pξ ) in this case is equal to 1.89. The plunging breaking is expected for 

this value. The plunging breaker normally occurs on a relatively steep slope. 
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Right before the wave plunges, the wave shape become asymmetric and the wave 

front steepness and curls downward, forming a large plunging jet. As this stage of 

wave overturning, the flow motion remains essentially irrotational. The numerical 

model produces the plunging wave well as presented in Figure 6.2.4 

Details of the irregular waves propagation over sloped seawall at small positive 

freeboard can be found in Appendix A.  

More details about comparison of the numerical solutions with experimental data 

for both plunging and spilling breaking waves can be found in Lin (1998) and Lin 

and Liu (1998) in terms of free surface elevation, mean velocity components and 

turbulence intensity. 

Figure 6.2.5 shows the calculated overtopping volume along with the time of 

calculation. The non-linearity in the overtopping mass is clear in Figure 6.2.5 and 

this due to the irregular nature of the waves.  

Figure 6.2.5: Time history of the cumulative wave overtopping volume for 1:3 

sloped seawall for small positive freeboard ( )0.3 0.0R≥ > . [Run no. 5 (Table 

6.2.1): Hs = 1.22m, Tm = 3.80s and Tp = 5.0s]. 
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Comprehensive analysis has been done to the overtopping volume calculated from 

the 2-D BWNM. The cases of study have been divided into breaking and non-

breaking waves according to the value of surf similarity parameterpξ  of Van der 

Meer and Janssen (1995).  

Figure 6.2.6 explains the relation between the dimensionless freeboard and the 

dimensionless wave overtopping for breaking and non-breaking waves. The 

exponential function is used here to define the relation between dimensionless 

overtopping discharge and dimensionless freeboard. Owen (1980) was the first 

who gave explicitly the exponential relationship. Most of other researches have 

used this kind of relationship to describe their overtopping data as can be found in 

details in Chapter 2 (Section 2.1).  
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Figure 6.2.6: New design formulae for irregular wave overtopping over 1:3 sloped 

seawall for breaking and non-breaking waves for small freeboard 
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The analysis of these data leads to the following suggested design formulae for 

the case of small freeboard ( )0.3 0.0R≥ > : 

 

- Breaking waves ( 2pξ < ): ( )0.053exp 2.05Q                                  (6.2.1)R= −

- Non-breaking waves ( 2pξ ≥ ): ( )0.227exp 0.94Q = − R                      (6.2.2)

R2 (square of the Pearson product moment correlation coefficient) is an indicator 

that reveals how closely the estimated values for the formula trend line 

correspond to the actual input data. The formula trend line is most reliable when 

R2 value is at or near 1. The R2 values for Equations (6.2.1) and (6.2.2) are 0.92 

and 0.94 respectively.  

6.2.2 Wave overtopping at small positive freeboard under irregular wave 
attack for 1:4 sloped seawall 
Table 6.2.2 shows wave characteristics, freeboard, surf similarity parameter and 

dimensionless freeboard used for 1:4 sloped seawall. Definition sketch of the 

computational domain and the free water surface after 15 second are shown in 

Figure 6.2.7 for case study No. (18), with Hs = 0.72, Tm = 4.7, Tp = 7.30 and water 

depth = 4.5m. The same concept of previous section is considered as these 

characteristics are chosen to cover wide range of significant wave heights, mean 

and peak wave periods and freeboard height in the breaking and non-breaking 

zone in small dimensionless freeboard ( )0.3 0.0R≥ > . 
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Figure 6.2.7: Definition sketch of the computational domain and free water 

surface used for the numerical simulation of wave overtopping at small 

freeboard [Run no. 18 (Table 6.2.2): H(0.3 0.0R≥ > ) s = 0.72m, Tm = 4.70s 

and Tp = 7.30s]. 

 
The JONSWAP spectrum is also chosen to simulate the nature of irregular wave 

with the same details as discussed in Section 6.2.1. 

In total 400 cells were used in x-direction and 120 in y-direction. The cell size is 

0.25m and 0.1m in x and y directions. The period of simulation was 90 second 

with initial time step 0.04 second.  

Figure 6.2.8 shows the overtopping mass rate calculated by the numerical model. 

The irregular nature of the waves affects the rate of wave overtopping which is 

evident from the figure.  
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Run 
No. 

Hs              

(m) 
Tm             

(s) 
Tp            

(s) 
Rc           

(m) 
pξ             

[-]

R         
[-] 

1 1.22 3.8 5.00 0.1125 1.41 0.07 

2 1.22 3.8 5.00 0.2250 1.41 0.13 

3 1.22 3.8 5.00 0.3375 1.41 0.20 

4 1.22 3.8 5.00 0.4500 1.41 0.26 

5 1.39 4 5.00 0.1125 1.33 0.06 

6 1.39 4 5.00 0.2250 1.33 0.12 

7 1.39 4 5.00 0.3375 1.33 0.18 

8 1.39 4 5.00 0.4500 1.33 0.24 

9 1.48 4.6 6.02 0.1125 1.55 0.05 

10 1.48 4.6 6.02 0.2250 1.55 0.10 

11 1.48 4.6 6.02 0.3375 1.55 0.15 

12 1.48 4.6 6.02 0.4500 1.55 0.20 

13 1.48 4.6 6.02 0.5625 1.55 0.25 

14 1.48 4.6 6.02 0.6750 1.55 0.29 

15 0.81 4.1 5.73 0.1125 1.99 0.14 

16 0.81 4.1 5.73 0.2250 1.99 0.28 

17 0.72 4.7 7.30 0.0563 2.69 0.08 

18 0.72 4.7 7.30 0.1125 2.69 0.16 

19 0.72 4.7 7.30 0.1688 2.69 0.23 

20 0.72 4.7 7.30 0.2250 2.69 0.31 

Table 6.2.2: Irregular wave characteristics used in the case of small freeboard 

wave overtopping at 1:4 sloped seawall ( )0.3 0.0R≥ > . 
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Figure 6.2.8: Time history of the cumulative wave overtopping volume for 1:4 

sloped seawall for small positive freeboard ( )0.3 0.0R≥ > [Run no. 18 (Table 

6.2.2): Hs = 0.72m, Tm = 4.70s and Tp = 7.30s]. 
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Figure 6.2.9: New design formulae for irregular wave overtopping over 1:4 sloped 

seawall for breaking and non-breaking waves for small freeboard 
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The analysis of the overtopping volume results calculated from the 2-D BWNM 

leads to the following formulae for breaking and non-breaking waves: 

 

- Breaking waves ( 2pξ < ): ( )0.041exp 1.74Q                       (6.2.3)R= −

- Non-breaking waves ( 2pξ ≥ ): ( )0.229exp 0.98Q = − R           (6.2.4)

The R2 values for Equations (6.2.3) and (6.2.4) are 0.85 and 0.63 as shown in 

Figure 6.2.9.  The values of R2 are less than calculated for slope 1:3 (Figure 

6.2.6). The decreasing in R2 values is due to the decreasing in surf similarity 

parameter values (pξ ). As shown in Tables 6.2.1 and 6.2.2, the values of pξ  

ranges from 1.33 to 1.55 in slope 1:4 while in slope 1:3 ranges from 1.77 to 1.89. 

The decrease in surf similarity parameter (pξ ) leads to more wave breaking which 

affect directly the amount of wave overtopping. These give more scatter to the 

dimensionless wave overtopping which reduced the values of R2.  

6.3 Wave overtopping at zero freeboard under irregular wave 
condition in breaking and non-breaking zone 
The case of zero freeboard has not received much attention. Most of the existing 

formulae for wave overtopping do not account for the case of zero freeboard. 

Schüttrumpf (2001) conducted model tests with zero freeboard (Rc=0) and 

without overtopping (Rc>Rmax) and derived the following formulae:  

3
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with:  %2,uR m H sξ= × = run-up height exceeded by 2% of the incident waves. 

More details about Schüttrumpf (2001)’s formulae and theirs goodness of fit were 

presented in Chapter 2 (Section 2.8). Schüttrumpf (2001)’s is used here to validate 

the 2-D BWNM results for the case of zero freeboard.  

A series of cases has been performed using the 2-D BWNM for 1:3 and 1:4 

sloped seawall, for both breaking and non-breaking irregular waves to obtain 

average overtopping rates for the case of zero freeboard. Details of the wave 

characteristics are shown in Table 6.3.3. JONSWAP spectrum is chosen also here 

to present the irregular wave. Figure 6.3.10 presents the computational domain of 

1:3 sloped seawall and the free water surface at time = 5.0s. in the numerical 

simulation. The number of cells in x-direction is 320 cells with cell size = 0.25 m 

and 120 cells in y-direction with cell size = 0.1 m. with water depth = 4.5m. The 

duration of the simulation was 90 seconds with an initial time step of 0.04 

seconds.  

 

Run No. Hs                 

(m) 
Tm               

(s) 
Tp              

(s) 

1 0.56 3.50 5.06 
2 0.72 4.70 7.30 
3 0.80 4.70 7.20 
4 0.81 4.10 5.73 
5 0.82 3.60 5.00 
6 0.83 3.60 5.00 
7 0.83 3.70 5.00 
8 1.22 3.80 5.00 
9 1.23 3.90 5.00 
10 1.24 3.90 5.00 
11 1.39 4.00 5.00 
12 1.48 4.60 6.02 

Table 6.3.3: Irregular wave characteristics used in case of zero freeboard. 
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Figure 6.3.10: Definition sketch of the computational domain and free water 

surface used for the numerical simulation of wave overtopping at zero 

freeboard. [Run no. 6 (Table 6.3.3): Hs = 0.83m, Tm = 3.60s and Tp =5.00s]. 

 

The free surface profile over the time of calculation is shown in Figures 6.3.11 

and 6.3.12. The surf similarity parameter (pξ ) in this case is equal to 1.715. The 

plunging breaking is expected for this value. The numerical model produces the 

plunging wave well as presented in Figure 6.3.13. Details of the irregular waves 

propagation over sloped seawall at zero freeboard can be found in Appendix B. 
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Figure 6.3.11: Irregular wave overtopping on a 1:3 sloping seawall from time 10 

to 45s. [Run no. 6 (Table 6.3.3): Hs = 0.83m, Tm = 3.60s and Tp =5.00s]. 
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Figure 6.3.12: Irregular wave overtopping on a 1:3 sloping seawall from time 50 

to 85s. [Run no. 6 (Table 6.3.3): Hs = 0.83m, Tm = 3.60s and Tp =5.00s]. 
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Figure 6.3.13: Details of breaking free surface profile [Run no. 6 (Table 6.3.3): Hs 

= 0.83m, Tm = 3.60s, Tp =5.00s, and pξ =1.89].  

 

Figure 6.3.14 presents the overtopping rate which is considered an important 

parameter in wave overtopping phenomena. As before the unsteady volume of the 

overtopping is clear from this figure. The comparison between the 2-D BWNM 

dimensionless overtopping discharges with the formulae presented by 

Schüttrumpf (2001) formulae is shown in Figure 6.3.15. This shows a good 

agreement between the numerical model and Schuttrumpf’s formulae in most 

cases. The average differences between numerical and laboratory results are 16%. 

However, Figure 6.3.15 could also be interpreted as showing the model 

consistently over predicts observations for larger overtopping. This could be due 

 
128 

 
 

 



to the measurement uncertainties in the volume of wave overtopping in the 

laboratory work. 

 
Figure 6.3.14: Time history of the wave cumulative overtopping volume for 1:3 

sloped seawall for zero freeboard [Run no. 6 (Table 6.3.3): Hs = 0.83m, Tm = 

3.60s and Tp =5.00s]. 
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Figure 6.3.15: Comparison between 2-D BWNM and Schuttrumpf et al (2001) 

dimensionless overtopping discharge for breaking waves on a sloping 

seawall.  
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6.3.1 New design formulae for zero freeboard under irregular wave attack 
for sloped seawall in the breaking and non-breaking zone 
The relation between the surf similarity parameter and the dimensionless wave 

overtopping is shown in Figure 6.3.16 in the breaking and non-breaking zone. It 

can be concluded from the Figure that there is a strong relation between the wave 

overtopping and the surf similarity parameter. The wave overtopping is increased 

with the increased surf similarity parameter in both breaking and non-breaking 

cases.  
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Figure 6.3.16: Relation between dimensionless wave overtopping and surf 

similarity parameter at zero freeboard at sloped seawall.  
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More analysis for the numerical results has been done and this analysis leads to a 

new suggested design formulae for wave overtopping at zero freeboard of 1:3 and 

1:4 sloped smooth seawall under irregular wave attacks.  

These equations are illustrated in Figures 6.3.17 and 6.3.18. These formulae give 

exponential relation between dimensionless wave overtopping and wave 

characteristics (Hs , Tp) and seawall slope (tanα ) and are written as following:  

 

- Breaking waves ( 2pξ < ): 0.20exp 2.51
tan

pS
Q

α

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

      (6.3.8) 

- Non-breaking waves ( 2pξ ≥ ): 0.83exp 3.28
tan

pS
Q

α

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

  (6.3.9) 

R2 (square of the Pearson product moment correlation coefficient) values for both 

equations are 0.83, indicating that Equations (6.3.8) and (6.3.9) are a good fit to 

the data.  

Generally, there is shortage of laboratory data for the case of zero freeboard. The 

suggested formulae should be validated using laboratory, field or other numerical 

model data before being used for design purposes.  
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Figure 6.3.17: Wave overtopping at zero freeboard for breaking waves at 1:3 and 

1:4 sloped seawall. 
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Figure 6.3.18: Wave overtopping at zero freeboard for non-breaking waves at 1:3 

and 1:4 sloped seawall. 
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6.4 Summary  
This chapter concentrated in two main parts which are not covered by any design 

formulae in recent times.  The two parts are: 

1- Small positive freeboard( )0.3 0.0R≥ > . 

2- Zero freeboard( )0.0R = . 

Using numerical simulation the cases of breaking and non-breaking wave attack 

on a smooth sloped seawall have been studied. The dimensionless freeboard and 

wave overtopping of Van der Meer and Janssen (1995) have been used to extend 

existing formulae. Also, the surf similarity parameter used by Van der Meer and 

Janssen (1995) has been used to define the breaking and non-breaking zone. The 

rationale behind Van der Meer’s definitions can be found in the literature review, 

Chapter (2). 

In the following chapter the case of overtopping and overflow for smooth sloped 

seawalls under irregular breaking and non-breaking wave attack is studied. The 

results are used to define new design formulae.  
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CHAPTER 7 
Wave Overtopping and Overflow 

7.1 Introduction 
In some cases, especially during storms, water levels can rise above the crest 

level. In these cases, overflow may also occur in addition to wave overtopping. 

This phenomenon may cause great damage to the coastal structures. On the other 

hand, existing formulae for overflow (e.g. weir formulae) do not take into account 

the effect of waves. The case of wave overtopping and overflow for smooth 

sloped seawalls under irregular wave attack is presented in this chapter and the 

output results are used to define new design formulae.  

7.2 Wave overtopping and overflow 
During storm surges seawalls are exposed to waves. Depending on the crest level 

of the structure wave overtopping can occur. The amount of overtopping water 

increases when the water level rises. If the water level rises above the crest level 

of the structure, for example during extreme storm surges, flood water is not only 

caused by the wave overtopping action, but also by overflow.  

On the other hand, global climate has been changed during the last years and the 

mean water levels have increased all over the world. For example tide-gauge 

records, in some cases covering the last 100 years, show a general increase in sea 

level of 2.4±0.9 mm per year (Hardy, 2003). Existing coastal structures that have 

not been designed to account for this will be more vulnerable to combined 

overflow and overtopping. It therefore important to be able to predict flood water 

volumes for these structures.  
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There is currently no guidance on estimating these volumes. Hence, the case of 

combined wave overtopping and overflow for different sloped seawalls has been 

studied using the two-dimensional breaking wave numerical model (2-D 

BWNM).  

The structure of this chapter is as follows. First, overtopping and overflow due to 

irregular breaking waves on three different seawall slopes 1:3, 1:4 and 1:6 

(Sections 7.2.1, 7.2.2 and 7.2.3 in sequence). Then, the case of overtopping and 

overflow due to irregular non-breaking waves on two different seawall slopes 1:3 

and 1:4 is investigated (Sections 7.2.4 and 7.2.5 in sequence). Finally, a synthesis 

of results is presented in Section 7.3 accompanying with suggested design 

formulae. 

7.2.1 Wave overtopping and overflow under irregular breaking wave attack 
for 1:3 sloped seawall 
A series tests were performed for 1:3 sloped seawall using the two-dimensional 

breaking wave numerical model (2-D BWNM). Figure 7.2.1 presents the cross 

section and the water surface profile at 5s. The water depth ranges from 4.5m to 

5.75m. The generated JONSWAP spectrum characteristics associated with the 

dimensional and dimensionless freeboard are shown in Table 7.2.1. The wave 

characteristics are chosen in the breaking zone area to achieve a surf similarity 

parameter of less than 2 ( 2pξ < ). In total, 320 cells were used in the x-direction 

with a cell size of 0.25m. In the y-direction 120 cells are used with a cell size of 

0.1m. The initial time step is 0.04 second and the duration of calculation is 90 

seconds.  

 

 
135 

 
 

 



Figure 7.2.1: Cross section and free surface profile at t=5s for breaking waves 

overtopping and overflow over 1:3 sloped seawall. [Run no. 12 (Table 7.2.1): 

Hs = 1.24m, Tm = 3.90s and Tp = 5.00s]. 

 
Run 
No. 

Hs               

(m) 
Tm             

(s) 
Tp           

(s) 
Rc          

(m) 
R         
[-] 

1 1.22 3.80 5.00 -0.061 -0.027 

2 1.22 3.80 5.00 -0.122 -0.053 

3 1.22 3.80 5.00 -0.244 -0.106 

4 1.39 4.00 5.00 -0.278 -0.113 

5 1.22 3.80 5.00 -0.366 -0.159 

6 1.22 3.80 5.00 -0.488 -0.212 

7 1.39 4.00 5.00 -0.556 -0.226 

8 1.22 3.80 5.00 -0.610 -0.265 

9 1.24 3.90 5.00 -0.620 -0.267 

10 1.22 3.80 5.00 -0.732 -0.318 

11 1.22 3.80 5.00 -0.854 -0.371 

12 1.24 3.90 5.00 -0.868 -0.374 

13 1.22 3.80 5.00 -0.976 -0.424 

14 1.22 3.80 5.00 -1.098 -0.477 

15 1.22 3.80 5.00 -1.220 -0.530 

Table 7.2.1: Irregular breaking wave characteristics and dimension and 

dimensionless freeboard for the case of wave overtopping and overflow over 1:3 

sloped seawall. 
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Figure 7.2.2: Time history of cumulative breaking waves overtopping and 

overflow volume for 1:3 sloped seawall [Run no. 12 (Table 7.2.1): Hs = 

1.24m, Tm = 3.90s and Tp = 5.00s]. 

 

The time history of wave overtopping and overflow volume is shown in Figure 

7.2.2. The flat spots in Figure 7.2.2 happen when no overtopping and overflow is 

occurring. This happens because of the passage of a wave trough takes the 

instantaneous water level at the structure below its crest. This is an important 

difference to the case of overflow only. The simulation of wave overtopping and 

overflow over the 1:3 sloped seawall is shown in Figures 7.2.3 and 7.2.4. These 

figures show how the wave propagates towards the seawall. The free surface 

profile during time of simulation is shown in these figures every 5 seconds.  
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Figure 7.2.3: Breaking waves overtopping and overflow on 1:3 slope seawall 

from time 10.0 to 45.0s. [Run no. 12 (Table 7.2.1): Hs = 1.24m, Tm = 3.90s 

and Tp = 5.00s]. 
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Figure 7.2.4: Breaking waves overtopping and overflow on 1:3 slope seawall 

from time 50.0 to 85.0s [Run no. 12 (Table 7.2.1): Hs = 1.24m, Tm = 3.90s 

and Tp = 5.00s]. 
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Figure 7.2.5: Comparison between weir equation and 2-D BWNM for irregular 

breaking waves on a 1:3 sloped seawall. 

 
There is shortage of field, laboratory or numerical data for the case of small 

negative freeboard. So, 2-D BWNM results are compared with results obtained 

from the well-known weir equation as shown in Figure 7.2.5. Chadwick and 

Morfett (1998) presented formula that expresses the discharge over a sharp edged 

weir as follows: 

 
3

2
2

2
3 cweir dq C g R=                                                                                      (7.2.1) 

where,  is the overflow depth and is the discharge coefficient. cR dC

The comparison shows some differences between the two results. The difference 

decreases as the magnitude of the freeboard, cR , increases. The difference is 

expected, as the weir equation does not include the effect of waves. As the 

magnitude of the freeboard, cR , increases, the effect of the waves reduces and the 
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results converge to those obtained from the weir equation. This was also indicated 

in Chapter 5 (Section 5.3) when the case of overflow without waves presented. In 

the case of overflow without waves the overflow volumes of 2-D BWNM were in 

very good agreement with the weir equation as shown in Figure 5.3.2. 

7.2.2 Wave overtopping and overflow under irregular breaking wave attack 
for 1:4 sloped seawall  
Figure 7.2.6 presents the cross section and the water surface profile at 10s. for 1:4 

sloped seawall in the breaking zone. The water depth ranges from 4.5 to 5.6m. 

The generated JONSWAP spectrum characteristics associated with the dimension 

and dimensionless freeboard are shown in table 7.2.2. Number of cells in the x-

direction increased to 400 with a cell size of 0.25m and the duration of calculation 

is increased 90 seconds. The rate of overtopping and overflow volume calculated 

by the numerical model is shown in Figure 7.2.7. The flat spots is noticed also in 

Figure 7.2.7 which are happened when no overtopping and overflow is occurring. 

This happens because of the passage of a wave trough takes the instantaneous 

water level at the structure below its crest.  

Figure 7.2.6: Cross section and free surface profile at t=10s for the breaking 

waves overtopping over 1:4 sloped seawall [Run no. 11 (Table 7.2.2): Hs = 

1.22m, Tm = 3.80s and Tp = 5.00s]. 
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Run 
No. 

Hs 

(m) 

Tm 

(s) 

Tp 

(s) 

Rc 

(m) 

R 

[-] 

1 1.22 3.80 5.00 -0.061 -0.035 

2 1.22 3.80 5.00 -0.122 -0.071 

3 1.48 4.60 6.02 -0.296 -0.129 

4 1.22 3.80 5.00 -0.244 -0.141 

5 0.83 3.70 5.00 -0.249 -0.175 

6 1.22 3.80 5.00 -0.366 -0.212 

7 1.22 3.80 5.00 -0.488 -0.283 

8 1.22 3.80 5.00 -0.610 -0.353 

9 1.48 4.60 6.02 -0.888 -0.388 

10 1.22 3.80 5.00 -0.732 -0.424 

11 1.22 3.80 5.00 -0.854 -0.495 

12 0.83 3.70 5.00 -0.747 -0.525 

13 1.22 3.80 5.00 -0.976 -0.566 

14 1.22 3.80 5.00 -1.098 -0.636 

Table 7.2.2: Irregular breaking wave characteristics and the dimension and 

dimensionless freeboard for the case of wave overtopping and overflow over 1:4 

sloped seawall. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2.7: Time history of cumulative breaking waves overtopping volume for 

1:4 sloped seawall [Run no. 11 (Table 7.2.2): Hs = 1.22m, Tm = 3.80s and Tp = 

5.00s]. 
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Figure 7.2.8: Breaking waves overtopping and overflow on 1:4 slope seawall 

from time 5.0 to 40.0s. [Run no. 11 (Table 7.2.2): Hs = 1.22m, Tm = 3.80s and 

Tp = 5.00s]. 
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Figure 7.2.9: Breaking waves overtopping and overflow on 1:4 slope seawall 

from time 45.0 to 80.0s. [Run no. 11 (Table 7.2.2): Hs = 1.22m, Tm = 3.80s 

and Tp = 5.00s]. 
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Figures 7.2.8 and 7.2.9 present the simulation of overtopping and overflow over 

1:4 slope seawall. The free surface is presented during the numerical simulation 

time with time step 5.0 second. .  

Figure 7.2.10 shows the analogous set of points to Figure 7.2.5. The difference 

between the numerical results and weir equation decreases as the magnitude of the 

freeboard, cR  increases. 
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 Figure 7.2.10: Comparison between weir equation and 2-D BWNM for irregular 

breaking waves on a 1:4 sloped seawall. 
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7.2.3 Wave overtopping and overflow under irregular breaking wave attack 
for 1:6 sloped seawall 
Series tests are performed for 1:6 sloped seawall in the breaking zone using the 

two-dimensional breaking wave numerical model (2-D BWNM). Figure 7.2.11 

presents the cross section and the water surface profile at 5s. The water depth 

ranges from 4.5 to 5.70m. The JONSWAP spectrum characteristics associated 

with the dimensional and dimensionless freeboard are shown in Table 7.2.3. The 

wave characteristics are chosen in the breaking zone area to achieve the surf 

similarity is less than 2 ( 2pξ < ). In total 480 cells used in the x-direction with a 

cell size of 0.25m and 120 cells in the y-direction with a cell size of 0.1m. The 

initial time step is 0.04 second and the duration of calculation is 90 seconds. 

Figure 7.2.11: Cross section and free surface profile at t = 5.0s for breaking waves 

overtopping and overflow over 1:6 sloped seawall. [Run no. 12 (Table 7.2.3): 

Hs = 1.22m, Tm = 3.80s and Tp = 5.00s].  
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Run 
No. 

Hs 

(m) 

Tm 

(s) 

Tp 

(s) 

Rc 

(m) 

R 

[-] 

1 0.56 3.50 5.06 -0.056 -0.071 

2 1.22 3.80 5.00 -0.061 -0.053 

3 1.22 3.80 5.00 -0.122 -0.106 

4 1.22 3.80 5.00 -0.244 -0.212 

5 0.8 4.70 7.20 -0.320 -0.239 

6 1.22 3.80 5.00 -0.366 -0.318 

7 1.22 3.80 5.00 -0.488 -0.424 

8 0.56 3.50 5.06 -0.560 -0.710 

9 1.22 3.80 5.00 -0.610 -0.530 

10 0.8 4.70 7.20 -0.640 -0.477 

11 1.22 3.80 5.00 -0.732 -0.636 

12 1.22 3.80 5.00 -0.854 -0.742 

Table 7.2.3: Irregular breaking wave characteristics and the dimension and 

dimensionless freeboard for the case of wave overtopping and overflow over 1:6 

sloped seawall. 

Figure 7.2.12: Time history of cumulative breaking waves overtopping and 

overflow volume for 1:6 sloped seawall [Run no. 12 (Table 7.2.3): Hs = 

1.22m, Tm = 3.80s and Tp = 5.00s].  
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Figure 7.2.13: Breaking wave overtopping and overflow on 1:6 slope seawall 

from time 5.0 to 40.0s. [Run no. 12 (Table 7.2.3): Hs = 1.22m, Tm = 3.80s and 

Tp = 5.00s].  
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Figure 7.2.14: Breaking wave overtopping and overflow on 1:6 slope seawall 

from time 45.0 to 80.0s. [Run no. 12 (Table 7.2.3): Hs = 1.22m, Tm = 3.80s 

and Tp = 5.00s].  
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To demonstrate the accumulation of water volume, the rate of combined 

overtopping and overflow is calculated and presented in Figure 7.2.12. The flat 

spots in Figure 7.2.12 happen when no overtopping and overflow is occurring.  

The snapshots from the simulation from Run no. 12 are shown in Figures 7.2.13 

and 7.2.14.  

Figure 7.2.15 shows the comparison between the 2-D BWNM results and weir 

equation and indicates similar trends to those found for seawalls slopes 1:3 and 

1:4. 
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Figure 7.2.15: Comparison between weir equation and 2-D BWNM for irregular 

breaking waves on a 1:6 sloped seawall.  
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7.2.4 Wave overtopping and overflow under irregular non-breaking wave 
attack for 1:3 sloped seawall  
A further series of tests were performed for 1:3 sloped seawall. The JONSWAP 

spectrum characteristics associated with the dimensional and dimensionless 

freeboard are shown in Table 7.2.4. Figure 7.2.16 presents the cross section and 

the water surface profile at 5s. The wave characteristics are chosen to achieve in 

the non-breaking waves by ensuring the surf similarity is more than 2 ( 2pξ > ). 

The mesh setup is the same as for case of seawall with slope 1:3 (Section 7.2.1). 

The initial time step is 0.04 second and the duration of the simulation is 90 

seconds. 

 

Figure 7.2.16: Cross section and free surface profile at t=5s for non-breaking 

wave overtopping and overflow over 1:3 sloped seawall. [Run no. 10 (Table 

7.2.4): Hs = 0.80m, Tm = 7.20s and Tp = 4.70s]. 
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Run 
No. 

Hs 

(m) 

Tm 

(s) 

Tp 

(s) 

Rc 

(m) 

R 

[-] 

1 1.48 4.60 6.02 -0.148 -0.1 

2 0.80 4.70 7.20 -0.160 -0.2 

3 0.80 4.70 7.20 -0.240 -0.3 

4 0.80 4.70 7.20 -0.320 -0.4 

5 0.56 3.50 5.06 -0.392 -0.7 

6 0.80 4.70 7.20 -0.480 -0.6 

7 0.56 3.50 5.06 -0.504 -0.9 

8 0.80 4.70 7.20 -0.640 -0.8 

9 1.48 4.60 6.02 -0.740 -0.5 

10 0.80 4.70 7.20 -0.800 -1.0 

Table 7.2.4: Irregular non-breaking wave characteristics, dimension and 

dimensionless freeboard for the case of wave overtopping and overflow over 1:3 

sloped seawall. 

 

Figure 7.2.17: Time history of the cumulative non-breaking wave overtopping and 

overflow volume at a 1:3 sloped seawall. [Run no. 10 (Table 7.2.4): Hs = 

0.80m, Tm = 7.20s and Tp = 4.70s]. 
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Figure 7.2.17 represents the relation between cumulative overtopping volume and 

time of calculation. The non-linearity behaviour of irregular waves can be 

noticed. The flat spots in Figure 7.2.17 happen when no overtopping and overflow 

is occurring which is an important difference to the case of overflow only.  

Figures 7.2.18 and 7.2.19 explain the propagation of non-breaking wave over the 

simulation period. The figures present free surface profile of irregular wave 

during time of simulation.  

The overtopping and overflow rate of 2-D BWNM is compared with weir 

equation as shown in Figure 7.2.20. Figure 7.2.20 indicates similar trends to those 

shown in Figures 7.2.5, 7.2.10 and 7.2.15 for breaking waves on 1:3, 1:4 and 1:6 

sloped seawalls respectively. There are significant differences between the two 

results. The difference decreases as the magnitude of the freeboard, cR , increases. 

As explained before, this difference is expected, as the weir equation does not 

include the effect of waves. 
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Figure 7.2.18: Wave overtopping and overflow on 1:3 slope seawall in non-

breaking zone from time 10.0 to 45.0s. [Run no. 10 (Table 7.2.4): Hs = 0.80m, 

Tm = 7.20s and Tp = 4.70s]. 
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Figure 7.2.19: Wave overtopping and overflow on 1:3 slope seawall in non-

breaking zone from time 50.0 to 85.0s. [Run no. 10 (Table 7.2.4): Hs = 0.80m, 

Tm = 7.20s and Tp = 4.70s].  
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 Figure 7.2.20: Comparison between weir equation and 2-D BWNM for irregular 

non-breaking waves on a 1:3 sloped seawall. 

 

7.2.5 Wave overtopping and overflow under irregular non-breaking wave 
attack for 1:4 sloped seawall 
Cross section and water surface profile of 1:4 sloped seawall attacks by irregular 

non-breaking waves are presented in Figure 7.2.21. The water depth ranges from 

4.5 to 5.85m. The JONSWAP spectrum characteristics associated with the 

dimensional and dimensionless freeboard are shown in table 7.2.5. The mesh 

setup is the same as explained in Section 7.2.2.  
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Figure 7.2.21: Cross section and free surface profile at t=5s for the non-breaking 

wave overtopping and overflow over 1:4 sloped seawall [Run no. 8 (Table 

7.2.5): Hs = 0.72m, Tm = 7.30s and Tp = 4.70s].  

 

Run 
No. 

Hs 

(m) 

Tm 

(s) 

Tp 

(s) 

Rc 

(m) 

R 

[-] 

1 0.80 4.70 7.2 -0.080 -0.1 

2 0.56 3.50 5.06 -0.112 -0.2 

3 0.80 4.70 7.2 -0.240 -0.3 

4 0.80 4.70 7.2 -0.320 -0.4 

5 0.56 3.50 5.06 -0.336 -0.6 

6 0.80 4.70 7.2 -0.400 -0.5 

7 0.80 4.70 7.2 -0.560 -0.7 

8 0.72 4.70 7.3 -0.576 -0.8 

9 0.80 4.70 7.2 -0.720 -0.9 

10 0.72 4.70 7.3 -0.720 -1.0 

Table 7.2.5: Irregular non-breaking wave characteristics, dimension and 

dimensionless freeboard for the case of wave overtopping and overflow over 1:4 

sloped seawall. 
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Figure 7.2.22: Time history of the cumulative non-breaking overtopping and 

overflow volume for 1:4 sloped seawall [Run no. 8 (Table 7.2.5): Hs = 0.72m, 

Tm = 7.30s and Tp = 4.70s].  

 

The rate of overtopping and overflow volume for Run number 8 is shown in 

Figure 7.2.22. The figure gives the same trend of Figure 7.2.17 related to non- 

steady with overtopping/overflow volume increasing associated with the non-

linearity of generated irregular waves. 

Figures 7.2.23 and 7.2.24 present the simulation of non-breaking wave 

overtopping and overflow over 1:4 slope seawall. The free surface profiles of the 

generated wave over time of simulation are showed in these figures.   
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Figure 7.2.23: Wave overtopping and overflow on 1:4 slope seawall in the non-

breaking zone from time 5.0 to 45.0s. [Run no. 8 (Table 7.2.5): Hs = 0.72m, 

Tm = 7.30s and Tp = 4.70s].  
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Figure 7.2.24: Wave overtopping and overflow on 1:4 slope seawall in the non-

breaking zone from time 50.0 to 85.0s. [Run no. 8 (Table 7.2.5): Hs = 0.72m, 

Tm = 7.30s and Tp = 4.70s]. 
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Figure 7.2.25 shows the comparison between the wave overtopping and overflow 

calculated from 2-D BWNM with weir equation. As explained before, the 

difference between the two results is due to weir equation did not include the 

effect of waves. Same conclusion arises before in Figures 7.2.5, 7.2.10, 7.2.15 and 

7.2.20 is presented in Figure 7.2.25 also. The difference between 2-D BWNM and 

weir equation decreases as the magnitude of the freeboard, cR , increases. 
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Figure 7.2.25: Comparison between weir equation and 2-D BWNM for irregular 

non-breaking waves at a 1:4 sloped seawall. 
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7.3 Synthesis of results 
Results from numerical simulation of irregular breaking and non-breaking wave 

overtopping and overflow for different seawall slopes were presented in the 

previous sections (Sections 7.2.1, 7.2.2, 7.2.3, 7.2.4 and 7.2.5). Comparisons of 

numerical model results with the weir equation were shown in these previous 

sections. 

In this section, relation the between the dimensionless wave overtopping and 

dimensionless freeboard for different sloped seawalls for small negative freeboard 

is presented (Soliman and Reeve, 2003). It is useful to mention here that the 

definition of the dimensionless parameters is due to Van der Meer and Janssen 

(1995). Reasons of that could be found in Chapter 2 (Section 2.2.1).  

7.3.1 Breaking wave overtopping and overflow 

The case of breaking wave overtopping and overflow ( )2pξ <  is studied first. 

Analysis of the numerical wave overtopping and overflow results for sloped 

seawalls (Section 7.2.1, 7.2.2 and 7.2.3) leads to the following suggested design 

formulae for small negative freeboard under breaking wave attack 

:  ( )0.0 0.8R> ≥ −

 

Slope 1:3 ( )0.046exp 2.71Q = − R                                   (7.3.2)

Slope 1:4 ( )0.048exp 2.14Q = − R                                   (7.3.3)

Slope 1:6  ( )0.051exp 1.53Q = − R                                   (7.3.4)
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Figure 7.3.26 presented the previous relation between the dimensionless wave 

overtopping and dimensionless freeboard. Values of R2, which is an indicator of 

goodness of fit, reveals how closely the estimated values for the formula trend 

line correspond to the actual. For Equations (7.3.2), (7.3.3) and (7.3.4) the R2 

values are 0.98, 0.97 and 0.97 respectively. These values of R2 are very near to 

one which indicates a very good level of fit. 
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Figure 7.3.26: Breaking waves overtopping data as a basis for Equations 7.3.1, 

7.3.2 and 7.3.3. 
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7.3.2 Non-breaking wave overtopping and overflow 
Results for non-breaking waves (Sections 7.2.4 and 7.2.5) for sloped seawall are 

analysed also and are demonstrated in Figures 7.3.27 and 7.3.28. The concluded 

design formulae for small negative freeboard ( )0.0 0.8R> ≥ − under irregular 

non-breaking wave attack are: 

 

Slope 1:3 ( )0.198exp 1.62Q = − R                                                      (7.3.5)

Slope 1:4 ( )0.288exp 0.83Q = − R                                                      (7.3.6)

The R2 values for Equations (7.3.5) and (7.3.6) are 0.84, 0.94 respectively.  

R2 for Equation (7.3.5) is less than Equations (7.3.2), (7.3.3) and (7.3.4) for 

breaking waves but still indicates a good level of fit. 
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  Figure 7.3.27:Non-breaking wave overtopping data as a basis for Equation 7.3.4. 
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Figure 7.3.28: Non-breaking wave overtopping data as a basis for Equation 7.3.5. 

7.4 Discussion 
This chapter provided more information of irregular breaking and non-breaking 

wave overtopping and overflow. Using numerical simulation the cases of 

breaking and non-breaking wave attack on a smooth sloped seawall are studied.  

To be consistent with the case of small positive freeboard which was presented in 

Chapter 6, the dimensionless freeboard and wave overtopping of Van der Meer 

and Janssen (1995) have been used here also. The surf similarity parameter used 

by Van der Meer and Janssen (1995), has been used to define the breaking and 

non-breaking zone. A multiplicity of formulae for different conditions is not 

helpful for the practitioner and from a theoretical viewpoint is not satisfying. 

Formulae covering the range of freeboards considered in the previous sections are 

derived in the next chapter.  
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CHAPTER 8 

Design Formulae for Small Positive, Zero and 
Negative Freeboard 
The two-dimensional breaking wave numerical model (2-D BWNM) has been 

applied to study wave overtopping for small positive, zero and negative freeboard 

under breaking and non-breaking waves attack. Results and suggested design 

formulae have been presented in details in previous two chapters.  

A multiplicity of formulae for different conditions is not helpful for the 

practitioner and from a theoretical viewpoint is not satisfying. In this chapter, a 

simple and explicit mathematical solution is applied to merge small positive and 

negative formulae into a single composite equation.   

In first section of this chapter (Section 8.1), the suggested design overtopping 

formulae in different cases is summarized and presented. Then definition of 

Logarithmic matching method and its wide applications is explained (Section 

8.2). The logarithmic matching technique and its numerical models are illustrated 

in Section 8.3.  In Section 8.4 the logarithmic matching method is applied to the 

overtopping formulae. One suggested design formulae cover range of small 

positive, zero and negative freeboards is conducted. Finally, Conclusion of this 

chapter and advantages of new suggested design overtopping formulae are 

presented in Section 8.5. 
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8.1 Synthesis of design formulae 
Before using the mathematical solution, it useful first to summarize the suggested 

design formulae presented in the last chapter. 

The set of suggested design formulae of wave overtopping under breaking and 

non-breaking waves attack for sloped seawall, which have been produced in the 

previous two chapters, are divided into four main categories as follows: 

1- Breaking waves for 1:3 slope:  ( )2pξ <  

(0.053exp 2.05Q R= − )   ( )0.3 0.0R≥ >                                     (8.1.1) 

(0.046exp 2.71Q R= − )   ( )0.0 0.8R> ≥ −                                   (8.1.2) 

2- Non-breaking waves for 1:3 slope: ( )2pξ >

)

 

(0.227exp 0.94Q R= −   ( )0.3 0.0R≥ >                                     (8.1.3) 

(0.198exp 1.62Q R= − )   ( )0.0 0.8R> ≥ −                                   (8.1.4) 

3- Breaking waves for 1:4 slope: ( )2pξ <  

(0.041exp 1.74Q R= − )   ( )0.3 0.0R≥ >                                     (8.1.5) 

(0.048exp 2.14Q R= − )   ( )0.0 0.8R> ≥ −                           (8.1.6) 

4- Non-breaking waves for 1:4 slope: ( )2pξ >

)

 

(0.229exp 0.98Q R= −   ( )0.3 0.0R≥ >                                     (8.1.7) 

(0.288exp 0.83Q R= − )   ( )0.0 0.8R> ≥ −                           (8.1.8) 

The logarithmic solution is applied to these four sections. One design formula for 

each case covers range of small positive, zero and negative freeboard is 

concluded. 
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8.2 Logarithmic matching method  
Recently, Guo (2002b) proposed a logarithmic matching method. It states that for 

a complicated non-linear problem or an experimental curve, if one can find two 

asymptotes, in extreme cases, which can be expressed as logarithmic or power 

laws, then the logarithmic matching can combine the two asymptotes into a single 

composite solution. Guo (2002a) derived an explicit solution to the wave 

dispersion equation. The solution is very simple and reproduces the numerical 

result for any water depth. The maximum relative error of the proposed solution is 

about 0.75% which is sufficient for practical calculation.   

The applications of the logarithmic matching have been successfully tried in 

several other cases in open channel flows, coastal hydrodynamics and sediment 

transport such as:  

• Inverse problem of Manning equation in rectangular open-channels.  

• Connection of different laws in computational hydraulics. 

• Criterion of wave breaking. 

• Wave current turbulence model. 

• Sediment settling velocity. 

• Velocity profiles of sediment-laden flows. 

• Sediment transport capacity.  

All these applications agree very well with numerical solutions or experimental 

data. More details of the previous application can be found in Guo (2002a). 
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8.3 Logarithmic matching technique  
In this section, the logarithmic matching technique, which is applied to wave 

overtopping formulae, is illustrated.  

Specifically, suppose one can find two asymptotic solutions for a non-linear 

problem, using an numerical or experimental method, the two asymptotes can be 

expressed by or transferred into the following form: 

1 lny K x C= + 1   for ox x< ,                                                        (8.3.9) 

and 

2 lny K x C= + 2   for ox x>                                                        (8.3.10) 

In the two equations above, x is an independent variable, y is a dependent 

variable, K1 and K2 are two slopes based on logarithmic scale, C1 and C2 are two 

intercepts, and x0 is the location of the cross point of the two asymptotes.  

To merge the two asymptotes into a single composite equation, two logarithmic 

models are proposed, Guo (2002b), Model I is 

2 1
1 ln ln 1

o

K K x
y K x C

x

β

β

⎡ ⎤⎛ ⎞−
⎢ ⎥= + + +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

1                                                        (8.3.11) 

and Model II is  

1 2
2 2ln ln 1 exp

o

K K x
y K x C

x

β

β

⎧ ⎫⎡ ⎤⎛ ⎞− ⎪ ⎢ ⎥= + − − +⎨ ⎜ ⎟
⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

⎪
⎬                                          (8.3.12) 

In the two models, xo is determined by 

1 2

2 1

expo

C C
x

K K

⎛ −
= ⎜ −⎝ ⎠

⎞
⎟                                                                                        (8.3.13) 
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and 0β ≠ is a transitional shape parameter that is determined by any of the 

following two methods: 

• The collocation method: Using the measurement data at the cross point 

( ,o o )x y  to determine the value of β , i.e., solving β  from the following 

equation. 

Ü ( ),oy x yβ o=                                                                          (8.3.14) 

in which the function y is Equation (8.3.11) or Equation (8.3.12). 

• The least squares method (Griffiths and Smith, 1991).  

Model I and model II, Equations (8.3.11) and (8.3.12), can directly solve the 

problems with power laws or logarithmic laws. For two asymptotic exponential 

laws, the following transformation is helpful. 

• Suppose that the two asymptotic exponential laws, 

Ü 1
1

K XY eλ=   for oX X2                                        (8.3.15) 

Ü 2
2

K XY eλ=   for oX X4                                        (8.3.16) 

• Let  

Ü ln                                                                                  (8.3.17) Y y=

Ü lnX x=                                                                                  (8.3.18) 

Ü 1ln C1λ =                                                                                (8.3.19) 

Ü 2ln C2λ =                                                                                (8.3.20) 

• Equations  (8.3.15) and (8.3.16) can be rewritten as: 

Ü 1ln lnY K X 1λ= +   for oX X2                             (8.3.21) 

Ü 2ln lnY K X 2λ= +   for oX X4                             (8.3.22) 
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• Substituting Equations (8.3.17), (8.3.18), (8.3.19) and (8.3.20) into 

Equations  (8.3.21) and (8.3.22) leads to the following Equations: 

Ü                                                                       (8.3.23) 1 lny K x C= + 1

2Ü                                                                      (8.3.24) 2 lny K x C= +

• Equations  (8.3.23), (8.3.24) are similar as Equations  (8.3.9) and (8.3.10). 

Thus model I or model II can be applied to merge the two exponential 

laws. For example, substituting Equations (8.3.17), (8.3.18), (8.3.19) and 

(8.3.20) into Equation (8.3.11) gives: 

Ü ( )2 1
1 1ln ln ln 1 oX XK K

Y K X eβλ
β

−− ⎡ ⎤= + + +⎣ ⎦                         (8.3.25) 

Ü ( ) ( ){ }2 1 /

1 1ln ln 1 o
K K

X XY K X e
ββλ

−−⎡ ⎤= + +⎣ ⎦                              (8.3.26) 

or  

Ü ( ) ( )2 1 /
1

1 1 o
K K

X XK XY e e
ββλ

−−⎡ ⎤= +⎣ ⎦                                             (8.3.27) 

and Equation (8.3.13) becomes 

Ü 
( )1 2

2 1

ln /
oX

K K

λ λ
=

−
                                                                    (8.3.28) 

• Since value of dimensionless freeboard (R) is small, the exponential law 

then becomes 

Ü                                                    (8.3.29) exp( ) (1 )Q a bR a bR= − ≈ −

In this case Equation (8.3.23), (8.3.24), (8.3.25) and (8.3.28) can be simplified as  

Ü                                                                          (8.3.30) 1Y K X C= + 1

2Ü                                                                         (8.3.31) 2Y K X C= +
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Ü ( )2 1
1 1 ln 1 oX XK K

Y K X C eβ

β
−− ⎡ ⎤= + + +⎣ ⎦                                (8.3.32) 

Ü 1 2

2 1
o

C C
X

K K

−
=

−
                                                                        (8.3.33) 

8.4 New suggested design formulae for wave overtopping and 
overflow: 
In this section Guo’s logarithmic matching method, Equations (8.3.30), (8.3.31), 

(8.3.32) and (8.3.33), is applied to get one design formula for the cases of small 

positive, zero and negative ( )0.3 0.8R≥ ≥ − . 

General procedures of applying the logarithmic matching is as follows: 

• Using two equations of small positive and small negative freeboards 

which are summarized in Section 8.1. 

• Since value of R is small, the exponential Equations (8.1.1) to (8.1.8) can 

be simplified using Equation 8.3.29. 

• Determine the slopes K1 and K2 and the intercepts C1 and C2 

• Calculate the cross point Xo from Equation (8.3.33). 

• Construct a general approximate solution by Equation (8.3.32). 

• Solve the parameter β by applying the collocation method, Equation 

(8.3.14). 

The following cases will be studied: 

• Breaking waves for 1:3 sloped seawall. 

• Non-Breaking wave for 1:3 sloped seawall. 

• Breaking wave for 1:4 sloped seawall. 

• Non-breaking wave for 1:4 sloped seawall. 
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Applying the previous procedures in the previous four cases is presented in the 

following sections.  

8.4.1 Combined formulae for wave overtopping and overflow for breaking 
wave of 1:3 smooth sloped seawall 
By applying the logarithmic matching technique, which was described in previous 

section, to Equations (8.1.1) and (8.1.2) following equation has been conducted: 

( )0.02ln 1 exp 15.04 2.57 0.37 0.005Q R R⎡ ⎤= + + − −⎣ ⎦   ( )0.3 0.8R≥ > −      (8.4.34) 

Comparison of Equation (8.4.34) with numerical data is presented in Figure 8.4.1. 

 

Figure 8.4.1: Comparison between the 2-D BWNM results and the logarithmic 

matching solution.  
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Relative error can be defined as: 

100%calculated numerical

numerical

Q Q
Error

Q

−
= ×                                                               (8.4.35) 

The average relative error over the freeboard range ( )0.3 0.8R≥ > −  is 5.2 % that 

is sufficient in practice.  

8.4.2 Combined formulae for wave overtopping and overflow for non-
breaking wave of 1:3 smooth sloped seawall 
The same logarithmic matching technique can be applied to Equations (8.1.3) and 

(8.1.4). Following equation could be derived: 

( )0.029ln 1 exp 15 1.92 0.63 0.173Q R R⎡ ⎤= + + − +⎣ ⎦   ( )0.3 0.8R≥ > −          (8.4.36) 

Figure 8.4.2 shows a comparison of Equation (8.4.36) with 2-D BWNM results. 

An error analysis shows that Equation (8.4.36) has an accuracy of 7.9 % over 

.  ( )0.3 0.8R≥ > −

 
Figure 8.4.2: Comparison of Equation (8.4.36) with numerical data. 
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8.4.3 Combined formulae for wave overtopping and overflow for breaking 
wave of 1:4 sloped seawall 
The logarithmic matching technique is applied to Equations (8.1.5) and (8.1.6).  

Following equation has been conducted: 

( )0.029ln 1 exp 7.94 2.04 0.313 0.016Q R R⎡ ⎤= + + − −⎣ ⎦    ( )0.3 0.8R≥ > −   (8.4.37) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4.3: Comparison between the 2-D BWNM results and the logarithmic 

matching solution. 

 

Comparison of Equation (8.4.37) with numerical data is presented in Figure 8.4.3. 

Equation 8.4.37 has an accuracy of 8.9 % over the freeboard range.  

8.4.4 Combined formulae for wave overtopping and overflow for non-
breaking wave of 1:4 smooth sloped seawall 
By applying the logarithmic matching technique to Equations (8.1.7) and (8.1.8) 

following equation has been conducted: 
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( )0.019ln 1 exp 15 1.92 0.48 0.192Q R⎡ ⎤= + + − +⎣ ⎦ R      ( )0.3 0.8R≥ > −      (8.4.38) 

Figure 8.4.4 shows a good agreement between Equation (8.4.38) and a numerical 

data. Equation (8.4.38) has an accuracy of 4.4 % over the freeboard range.  

 
 
Figure 8.4.4: Comparison of Equation (8.4.38) with numerical data. 

8.5 Synthesis of results 
In this section, Summary of new suggested design formulae between the 

dimensionless wave overtopping and dimensionless freeboard for different sloped 

seawalls for small positive, zero and negative freeboard, ( ) , are 

presented as follows:  

0.3 0.8R≥ > −

1- Breaking waves for 1:3 smooth slope:  ( )2pξ <  

( )0.02ln 1 exp 15.04 2.57 0.37 0.005Q R⎡ ⎤= + + − −⎣ ⎦ R                                   (8.4.39) 
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2- Non-breaking waves for 1:3 smooth slope: ( )2pξ >

R

 

( )0.029ln 1 exp 15 1.92 0.63 0.173Q R⎡ ⎤= + + − +⎣ ⎦                                       (8.4.40) 

3- Breaking waves for 1:4 smooth slope: ( )2pξ <  

( )0.029ln 1 exp 7.94 2.04 0.313 0.016Q R⎡ ⎤= + + − −⎣ ⎦ R                                 (8.4.41) 

4- Non-breaking waves for 1:4 smooth slope: ( )2pξ >

R

 

( )0.019ln 1 exp 15 1.92 0.48 0.192Q R⎡ ⎤= + + − +⎣ ⎦                                       (8.4.42) 

8.6 Summary  
The logarithmic matching technique of Guo’s  (2002b) has been applied to merge 

small positive, zero and negative freeboard formulae into a single composite 

equation.  New overtopping expressions for breaking and non-breaking waves on 

smooth impermeable slopes are presented. The new expressions for wave 

overtopping and overflow are simple and easy to applied by engineers. 

The new expressions can be used to predict overtopping discharges of smooth 

seawalls in small positive, zero and negative freeboard. 
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CHAPTER 9 

Conclusion 

9.1 Summary 
The concept of wave overtopping over smooth sloped seawalls has been 

described. Examples of empirical engineering design formulae widely used in 

design purposes have been presented. It was evident from the existing knowledge 

that additional investigations into overtopping of small positive, zero and negative 

freeboard were needed.  

Numerical model tests have been conducted using varying slope geometries have 

been used during the tests. All tested setups have been subjected to a wide range 

of sea states.  Simulation of irregular wave spectrum (JONSWAP) was developed 

in the two-dimensional breaking wave numerical model (2-D BWNM) using an 

internal designed mass source.  

The results of the model tests have been compared with results from the literature. 

A new overtopping expression for breaking and non-breaking waves on smooth 

impermeable slopes is presented. This new expression is based on formulae 

proposed expression given by Van der Meer and Janssen (1995). The original 

formula has been modified to be valid for the following cases: 

• Small positive freeboard ( )0.3 0.0R≥ > . 

• Zero freeboard ( )0.0R = . 

• Small negative freeboard ( )0.0 0.8R> ≥ − . 
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With the new expressions it is possible to predict overtopping discharges of 

smooth seawalls in small positive, zero and negative freeboard.  

The newly developed numerical model (2-D BWNM) has been validated against 

the following: 

• Analytical solution of the weir equation.  

• Laboratory data with linear waves [Saville (1955)]. 

• Laboratory data for JONSWAP irregular wave [Van der Meer and Janssen 

(1995)]. 

• Numerical Model (AMAZON) for linear waves [Hu et al. (2000)]. 

• Empirical design formulae based on laboratory experiments [Owen 

(1980); Van der Meer et al. (1992); Hedges and Reis (1998); Schüttrumpf 

(2001)]. 

9.2 Wave overtopping at small positive freeboard 
The two-dimensional breaking wave numerical model (2-D BWNM) that is based 

on the breaking wave model developed by Lin (1998) has been presented. 

Simulation of irregular wave attacks using an internal mass source has been added 

and tested. The model accuracy in simulating propagation of different kind of 

waves (linear wave and irregular wave) has been evaluated. The overall 

performance of the model is considered satisfactory.  

New design formulae based on numerical results of two-dimensional breaking 

wave numerical model for breaking and non-breaking wave overtopping at small 

positive freeboard  have been proposed. These formulae are an (0.3 0.0R≥ > )
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extension of the existing overtopping expression for breaking and non-breaking 

waves presented by Van der Meer and Janssen (1995). 

The proposed expression allows for the prediction of overtopping discharges for 

relative crest freeboards down to zero. 

 Furthermore, the new expression also includes the effect of breaking waves in the 

shallow water zone. Two different seawall slopes (1:3 and 1:4) have been tested 

with a wide range of irregular wave characteristics.  

The numerical tests with different freeboards indicate that wave overtopping 

decreases as the seawall slope increases. The tests also indicate that breaking 

wave overtopping is less than non-breaking wave overtopping for different 

seawall slopes. These observations are in line with the existing design formulae 

[Owen (1980); Van der Meer et al. (1992); Hedges and Reis (1998); Schüttrumpf 

(2001)]. 

In the last years, the climate has been changing and global sea level are rising 

(Hardy, 2003). The new formulae will be useful to engineers in assessing existing 

coastal structures which were designed for conditions that may have been defined 

without the benefit of recent climate change research. The new expressions cover 

the range of small positive and zero freeboard which was not covered by design 

formulae until now.  

9.3 Wave overtopping and overflow at small negative freeboard 
If the water level rises above the crest level of the structure, for example during 

extreme storm surges, flooding is not only caused by wave overtopping action, 

but also by overflow. Existing coastal structures that have not been designed to 
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account for this will be more vulnerable to combined overflow and overtopping. 

There is currently no guidance on estimating these volumes. 

The case of overtopping and overflow for smooth sloped seawalls under irregular 

wave attack has been studied using a two-dimensional breaking wave numerical 

model. A new expression covering freeboard range ( )0.0 0.8R> ≥ −  has been 

presented. Three different seawall slopes (1:3, 1:4 and 1:6) have been tested with 

wide range of irregular wave characteristics. The new expression covers cases of 

both breaking and non-breaking waves.  

The issues that arise in small positive freeboard cases are also present in the case 

of negative freeboard. The numerical tests with different freeboards indicate that 

wave overtopping decreases as the seawall slope decreases and breaking wave 

overtopping is less than non-breaking wave overtopping for different seawall 

slopes. 

9.4 Future research 
The 2-D BWNM model can be used as a numerical flume for studying any 

practical problems in the future. Flexibility of the model and its time of 

calculation are considered two main important advantages. The model is very 

encouraging in this point, as one second simulation for irregular wave needs about 

ten minutes calculation using a personal computer with a typical configuration. As 

new generations of computers become available, processing time will reduce and 

more detailed numerical simulation will be possible.  
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The new model has been implemented to study cases of wave overtopping for the 

range of small positive, zero and small negative freeboard which are not covered 

by any current design formulae.  

New expressions have been presented that cover cases of small positive, zero and 

small negative freeboard for smooth sloped seawalls. Using the equations 

described in Chapter 8, it is possible to develop preliminary designs, and to 

improve the performance of existing seawalls. The researcher recognises that the 

progression of research results into design practice can take some time. 

Nevertheless, the researcher hopes that the new formulae will be used by 

designers to investigate and improve the performance of seawalls.   

Part of the results conducted from this research has been published in the 

following conferences: 

• Soliman, A., M. S. Raslan and D. E. Reeve (2003). Numerical simulation 

of wave overtopping using two dimensional breaking wave model. 

Proceedings of Coastal Engineering VI: Computer modelling of seas and 

coastal regions, Cadiz, Spain, (Ed. C Brebia, D Almorza & F Lopez-

Aguayo), pp. 439-447. 

 

• Soliman, A. and D. E. Reeve (2003). Numerical study for small freeboard 

wave overtopping and overflow of sloping sea wall. To appear in 

Proceeding of Coastal Structures 2003, Portland, Oregon. 

Other two journal papers are under preparation now and hopefully published in 

the next few months.  
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The investigation has dealt with a limited set of conditions. There are a number of 

ways in which the applicability of the approach has been adopted and could be 

extended. For example,  

• More validation for the new wave overtopping expressions using full scale 

field data. 

• Including more complicated seawall geometries, such as bermed slopes, 

slope with crown wall and recurved walls. 

• The effects of surface roughness.  

• Accounting for porosity in both the beach and defence structure. 

• The infiltration and erosion on the landside of seawall. This study requires 

sediment transport calculations and morphological updating. 
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Appendix A 

Irregular wave propagation on 1:3 sloping sea wall at small 
positive freeboard  

[Hs = 0.83 m, Tm = 3.60s and Tp = 5.00 sec.] 
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Appendix B 

Irregular wave propagation on 1:3 sloping sea wall at zero 
freeboard 

[Hs = 0.83 m, Tm = 3.60s and Tp = 5.00 sec.] 
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