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Abstract

Wave overtopping is one of the mostpaontant processes for the design of
seawalls. During the past 50 years moels for predicting wave overtopping of
coastal structures have continuously been developed.

However, it is evident from the existifgerature that additional investigations

into overtopping of small positive, zero and negative freeboard are needed. The
present thesis describes numerical investigations based in this background.

Wave overtopping is dependent on thecpsses associated with wave breaking.
Therefore, a two dimensional breakingweaaumerical model has been developed

and used to study the phenomena of waxertopping. The model is based on the

Reynolds averaged Navier-Stokes equations for the mean flow(land)

equations for turbulent kinetic enerdgy,and the turbulence dissipation rade,

The model accuracy in simulating propaga of linear and irregular waves has
been evaluated. The overall performance of the model is considered satisfactory.
The development of guidelines for calculating overtopping discharge for different
seawall slopes is presented. All slopes hbgen subjected to a wide range of
irregular waves. The influence of how tslepes of seawalls, wave type (breaking
and non-breaking) and crest freeboareetfthe overtopping discharges has been
investigated.

Based on the numerical data, a nexpression for breaking and non-breaking
waves on smooth impermeable slopes is proposed. With the new expression it is
possible to predict overtopping discharges of smooth seawalls in small positive,

zero and negative freeboard.
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CHAPTER 1

Introduction

Research into wave overtopping of cohsmuctures has been the subject of
numerous investigations over the p&gl years. Since then the overtopping
prediction tools for typical sea defense stunes have continuously been refined.
The term “wave overtopping” is used here to refer to the process where waves hit
a sloping structure run up thepk and, if the crest level of the slope is lower than
the highest run up level, overtop the sttwe. The wave overtopping discharge is
thus defined as overtopping volume®[rper time [s] and structure width [m].

Figure 1.1 shows an example of wave overtopping at Samphire Hoe seawall, UK.

Figure 1.1: Severe wave overtoppingtla® Samphire Hoe seawall, UK (from
CLASH projectwww.clash-eu.or@2001)).



http://www.clash-eu.org/

Wave overtopping is considered one tbé most important processes for the
design of seawalls, and also to bepssible for many seawall failures in the
past. For example, many seawalldeid due to wave overtopping during the
extreme storm surge disasters in 1953 (Netherlands), 1962 and 1976 (Germany
and Denmark) (Bleckt al., 2000). In the mean time, tloeest levels of seawalls
have been increased along the Britisherman, Dutch and Danish coasts.
Nevertheless, wave overtopping cannot be avoided completely due to the random
nature of the waves and the uncertainties®asated with the determination of the
design water levels and the costs wfeconomically high seawall and their
damaging effects to the surrounding environment.

The motivation for predicting the overtoppgi of structures has until now been
linked to the design of structures mroting mankind and objects of value against
the violent force of the surrounding s&gpically rubble mound or vertical wall
breakwaters have been used for the protection of harbours, and seawalls and
offshore breakwaters have been usedterprotection of beaches and land. All
these structures are designed to dvovertopping or at least reduce it to a
minimum as overtopping can lead eitherftmctional or structural failure of
structures.

Here functional failure refers to casshere for example large wave overtopping
discharges might damage persons, ships structure itself or equipment on it or
generate waves behind the structure (irecaater is present there), which again

is hazardous to the manoeuvring or mooring of ships. An example of such

conditions is shown in Figure 1.2. Strucl failure refers to cases where the



overtopping discharge is heavy enough tonadge the crest or lee side of the

breakwater or seawall which ultimately can lead to the collapse of the structure.

Figure 1.2: Wave run-up and overtoppiag Zeebrugge breakwater (Belgium),
during (mild) storm  conditions (from OPTICREST project,

awww.rug.ac.be/opticrest (2001)).

Breaking waves in the surf zone play assential role in nearly all-coastal
processes. The breaking waves genestiteng turbulence and are in general
accompanied by strong energy dissipatiBreaking modifies wave forces on the
coastal structures when the wave-structure interaction occurs. This is important
when the construction of structures in coastal regions is considered.

The most critical processes for overtopping are the form and severity of wave
breaking. Recent studies have showleat current overtopping formulae, which

do not take full account of the complexitfy wave breaking, can significantly

underestimate overtopping discharges (Bedley., 1998).



Global climate has been changed during the last years and the mean water levels
have increased all over the world. Sezleises will have a number of important
impacts on humans. About half of wdid population lives within 200 kilometre

of the ocean, and many millions live in ctzdsareas that are less than 5 m above
sea level (Hardy, 2003).

Sea level rise impacts include increasexhch erosion and flooding of coastal
habitats. The existing coastal structures, which were designed for certain water
level, are now likely to be attacked gyeater amounts of wave overtopping. It is
important to be able to predict flood water volumes in this case (small positive
freeboard). There is currently no guidance on estimating these volumes.

During storm surges seawalls are exposed to waves. The amount of overtopping
water increases when the water level risiethe water level rises above the crest
level of the structure flood water is not only caused by the wave overtopping
action, but also by overflow.

Design formulae used to calculate waveroygping assume that water in front of

the structure to be below the crest legEkhe structure. On the other hand, the
existing formulae for overflow (e.g. wefiormulae) do not take into account the
effect of waves. New formulae for predicting the case of combined wave
overtopping and overflow (negative freeboard) are still needed for the planning

and engineering response.

1.2 Scope of the study
In light of the outlined state of dele@ment of design overtopping formulae, the

author has carried out a generic studyvaf/e overtopping of seawalls as a Ph.D.



project. This work aims to provide giglines for how to calculate overtopping
discharges for a range of seawall sbpehen subjected to a broad range of
irregular breaking and non-breaking waves in small positive, zero and small
negative freeboard. Here freeboard is mefé to vertical distance between mean
water level and seawall crest level.

In this study the influence of how the slepa seawalls, wave type (breaking and
non-breaking) and crest freeboard effdue overtopping discharges have been
investigated. This has been achieverbtigh studies of the existing literature,
theoretical considerations and numerical model tests.

Numerical models are now playing a verypiontant role in research and design of
coastal structures. Some numerical nie@ee under development and have been
validated by coastal researchers.

Two numerical models are used in thiady. The first numerical model is SOLA-
VOF, which is based on the Naviem&és equations. SOLA-VOF has been
developed by Nicholgt al. (1980) at Los AlamodNational Laboratory, New
Mexico, USA. The second model, is aohdimensional breaking wave numerical

model, (2-D BWNM), which is based on the Reynolds Averaged Navier-Stokes

equations for mean flow ar(k - &) equations for turbulent kinetic enerdy and

the turbulence dissipation rate, The two-dimensional breaking wave numerical
model has been developed by Liu and Lin (1997).
The numerical models have been validaisohg laboratory data, other numerical

models, analytical solutions and empirical design formulae.



By using the numerical model resyltthe influence of the freeboard on
overtopping and combined overflow and depping has been investigated. New
formulae for cases of small positive, zarad small negative freeboard, which are
not covered by existing empirical equets, have been formulated, in the
expectation that they will be useful for designers.

The research has three main aims:

e To introduce a new numerical model which is able to simulate random
breaking waves in shallow water

e To produce new formulae for the case of small positive and zero freeboard
as existing overtopping design formulae do not account for these cases.

e To investigate the case of combined overtopping and overflow and
introduce new suggested design formulae that can be used in design
purposes.

Summary of the present state of knowledge concerning wave overtopping is
presented in next Chapter (Chapter@yertopping discharge levels, an overview

of recent overtopping investigations, tldfects of wave climate, structure
geometry and others topics relevant to the current study are described.

In Chapter 3, the first numerical mod&@OLA-VOF) used in this research is
illustrated. SOLA-VOF mathematicafjeations governing fluid motion, volume

of fluid (VOF) technique, numericamplementation, boundary conditions and

three cases of study are presented.



A literature review concerning the twibmensional breaking wave numerical
model (2-D BWNM), mathematical foulation of 2-D BWNM and initial
boundary condition are presented in Chapter 4.

Different cases of study have been shgated to evaluate two-dimensional
breaking wave numerical model (2-D BWNM) in Chapter 5.

Cases of small positive, zero and smatjatese freeboard conditions are studied
in Chapters 6 and 7. The results are usezbnjunction with existing formulae to
propose a unified set of design equatidaspredict combined overflow and
overtopping volumes for different wave conditions as shown in Chapter 8.
Conclusion from the research and recomdations for future work are presented

in Chapter 9.



CHAPTER 2

Literature Review

In this chapter a summary of the present state of knowledge concerning wave
overtopping is presented. When possilhes review focuses on studies where
more canonical/idealised layouts of the structure are investigated (
overtopping of linear smooth slopes rather than site- specific sea defence
profiles).

The first section of this chapter dedail the overtopping discharge levels, then
an overview of the recent overtopping invgations. In subsequent sections, the
effects of wave climate, structure geometry and others topics relevant to the

current study are presented.

2.1 Overtopping discharge levels
Under random wave attack, overtopping deges vary by up to several orders

of magnitude from one wave to anoth@eaning that wave overtopping is a very
non-linear function of wave height andave period. This time variation is
difficult to measure and quantify ithe laboratory and hence overtopping
discharges are most often given imme of average discharge. To assess
admissible overtopping discharges for différebjects, several researchers have
studied the impact of overtopping wateumes on different obstacles placed on

top of an overtopped structure. Go@#®00) developed overtopping guidelines
based on prototype investigations consisting of wave climate measurements and
expert impressions of the impact of overtopping volumes on different objects
situated on top of breakwaters. These guidelines have been adopted by the
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Japanese code of practice, and by @bdsngineering Manual (Burchartch and

Hughes, 2003). Table 2.1.1 present caitivalues of the average overtopping

discharge, q, for typical structure typeben considering sea defense structures.

The values given in this table must be regarded only as rough guidelines.

Safety of traffic Structural safety
Vehicles Pedestrians  Building Embankment Grass sea| Revetments
10 seawalls dikes seawalls
Unsafe at any Very Structural | Damage even Damage Damage ever
speed dangerous | damage if fully for paved
protected promenade
Damage if
10t promenade not
paved
Damage if No damage
back stop not
107 protected
Damage if
crest not| Start of
protected damage
No damage
10°
Dangerous No damage
Unsafe parking on grassea
on horizontal dikes
. Dangerous
10* | composite breal on Vertical
water
Unsafe parking wall B.W
on vertical wall
break water Uncomfort- | Minor
able but not| damage tg
dangerous | fittings,
10° sign posts,
| Unsafe driving at etc.
high speed
gn sp Wet, but
10° comfortable
Safe driving at all No
speed damage
107
q (n?/s/ m)

Table 2.1.1: Criteria for critical overtopping discharge (from Burchartch and
Hughes (2003)).



2.2 Overview of recent overtopping investigations
When investigating wave overtopping of coastal structures it is evident that the

discharge depends not only on environtakronditions such as wave height,
wave period and water level, but alen the geometrical layout and material
properties of the structure. Thus, therealmost an infinite array of possible
combinations. Therefore, although a lof investigations related to wave
overtopping have been conducted, none eséhcover all situations. Each of the
investigations typically covers one @ few specific cases, which are then
conducted by means of physical model tests in the laboratories (typically small-
scale models). Such investigations ulyudead to an empirical relationship
between the environmental conditions, getmoal layout and material properties

of the structure and the overtopping discharge.

Methods available to predict overtoppingesainclude numerical modelling, site-
specific model testing and empirical forraal Most numerical models have been
validated using small-scale tests with limited structural and incident wave
conditions. In application the dimeasless overtopping discharge, Q, is
estimated using interpolation if necessary. Site-specific hydraulic model testing is
impractical for preliminary design due to the time and expenses involved. As a
result, engineers rely heavily upon engal overtopping formulae for conceptual
and preliminary design. Regular waveg aarely found in the real world, and
increasingly less frequently used in thboratory. The overtopping investigations
based on model tests of various coastaicttires exposed to irregular waves are
summarized briefly in Table 2.2.2 0alg with the resulting overtopping discharge

prediction formulae.
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Authors Structures OvertoppingDimensionless | Dimensionless
model overtopping freeboard R
discharge Q
Owen Impermeable smooth, Q = ae ™ q R, [S, 1
(1980), rough,  straight  and gH T, H. N2z 7.
Owen (1982)| bermed  slopes  under S ° '
offshore random wave. _ a4/ %ﬂ
1.55[% js 5.5 \/gH:
035 < [H/ js 055
0.5 < (R%Sjs 4.0
2
Bradbury Rock o Iarmoure_(tth =aR™" | _ 4 ( R, ] Sw
and Allsop |mpermeaII e slopes wi gH T, H. o
(1988) crown walls
L e R, ) [S
Aminti and Rock, cube and TetrapgdQ = aR gH .T.. c m
Franco double layer armor omn H, 27
rather impermeable slopes
(1988) .
crown walls (single sea
state)
Q _ ae—bR Rc
Ahrens and| 7 different sea-wall 9 - (H 2L
Heimbaugh | revetment designs gH ¢ P
(1988)
P H
edersen aanock armoured rather Q = @R aT,.. :
Burchartch | . . —_me Re
impermeable slopes with L2
(1992) mo
crown walls
Rc 1
- ae ¥ q T
l(zlrggz;) etal. Vertical wall breakwatet < = % e Hs y
with  and  without g
perforated front.
0.9 < (R%Sjg 2.2
van der| Impermeable,  smooth, . S R, V/Sp 1
Meer and| rough, Straight ang Q = ae~ q - P H, tana y
Janssen bermed slopes \JgH? Vtana
(1995) Forg <2 Forg, <2
q R 1
oH "y
Fore > 2 Forg > 2

Table 2.2.2: Models for overtopping discharge formulae, partly based on table VI-
5-7 in Burchartch and Hughes (2003).
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Authors Structures Overtopping | Dimensionless| Dimensionless
model overtopping freeboard (R)
discharge (Q)
Pedersen Rock armoured Q = R aT s HS tana
(1996) impermeable slopes with L2 3.2x10 R AB
crown walls
Impermeable smooth, @ = a(l- R)” R
ggigazgg;c rough, straight andforO<R<1 d = oy <
bermed slopes [Data from GRU ey mex
Owen (1982)] Q=0
forR>1
Hebsgaardt | Rubble mound structure Q = ae ™® q R' 1
al. (1998) with and without supef — HC —
structure, armour layer gf In(S,)VaH 7
rounded stones quarty (R, dependent of
rocks, and Dolos. slope angle and crest
width)
Schuttrumpf | Impermeable smooth 1:6 ,
etal. (2001) | slope (for no freeboarg Q = ae" A q Rc
(R=0) and without T
. a dependent /2gH 2 H
overtopping (R> Rnay)- S)ng )p g s s

Table 2.2.2 Models for overtopping discharge formulae partly based on table VI-

5-7 in Burchartch and Hughes (2003), continued.

Figure 2.2.1 describes the phenomenonva¥fe overtopping and presents main

parameters using in wave overtopping formulae.

Irregular wave propagation

Hs, Tp>

SWL

Wave overtopping
[Qap)

N

ol

¢ /

TSQQ wall slope angle

Figure 2.2.1: Diagram of key quantitieésed to describe wave overtopping at

sloping seawalls.
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A comprehensive overview of coastal structures in general and also more details
of some of the prediction formulae cde found in Burchartch and Hughes
(2003). In the following subsections, mofecus is given to three empirical
formulae [Van der Meer and Jans$&@95), Owen (1980) and Hedges and Reis
(1998)] for wave overtopping of a simpgtoped seawall subjected to random
waves approaching normal to theomt. These formulae are chosen for
comparison and validation the numerical model performance in Chapter 5
(Section 5.5.2.4). Reasons of why choosing these three formulae are illustrated in
following three subsections.

2.2.1Van der Meer and Janssen overtopping formulae

Van der Meer and Janssen (1995) madestnction between breaking (plunging)

and non-breaking (surging) waves on the sldpgeir set of formulae is related to
breaking waves and is also valid up to a maximum of non-breaking region.

Van der Meer’s formulae for straight impermeable sloped seawalls are:

For breaking wavess, < 2

Q-4 ytana 0.06exr{— SR (2.2.1)
JogH: & YeVo¥n? g
R tana 27 H
R = C £ = and S_ = ——°% (2.2.2)
He, 77 /S, 9Ty
For non-breaking waves;, > 2
Q=—3 _-0.2exp - 2 61 1 (2.2.3)
9H53 Hs 77o7n? g

The coefficientsy,,y,,7, andy , are introduced to take into account the influence

of a berm, shallow foreshore, roughnessd angle of wave attack, respectively.
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All these coefficients are in the rang® @ 1.0, meaning that when maximizing
overtopping, the coefficients should e, which is the case for no berm, no
shallow foreshore, smooth slope (no roughness and impermeable) and head-on
waves. Van der Meer and Janss&f96) study based on both small and large-
scale model tests and includes tests @gilmetries usable in the current study
(straight and impermeable slopes).

Van der Meer’s formulae are the masimmonly used method for calculation of

the average overtopping rate. Schuttrumpf and Oumeraci (2000) recommended
Van der Meer’s formulae for the design of sea dikes in Germany.

Results from small wave flume of theitletweiss Institute (LWI) for Hydraulics

of the Technical University of Braunschweig, Oumeral. (1999), with nature

sea spectra, have shown that the overtapprodel by Van der Meer fits well for
single peak wave spectra.

2.2.2 Owen overtopping formulae

Owen (1980) proposed an exponential relationship between dimensionless mean

overtopping dischargg¢Q) and dimensionless freeboafgt). He carried out an

extensive series of model tests for a raofjeeawall designs subject to different
random wave climates. The modelled seawatise all of the same general type:

a flat-topped embankment fronted in some cases by a flat berm.

In Owen’s method, the wave height ipresented by an equivalent post-breaking
wave height. The post-breaking wave digi is an equivalent wave height

designed to give the correct overtoppitigcharge as confirmed from physical

model tests where significant wave breaking take place (Besley, 1999).

14



Owen’s formula for an impermeable smooth straight seawall is:

-9 _ _ 2.2.4
Q o .T aexp(-bR) ( )
R
R=_ ' (2.2.5)
Tmo\lgHS

Table 2.2.3 contains the values of a and b which are empirically derived

coefficients depend on the profile of the seawall.

Seawall slope a b
1:1 0.0079 2.1
1:1.5 0.0088&! 19.¢

1:2 0.0093¢ 21.6
1:2.5 0.0103C 24.5

1:3 0.0109C 28.7
1:3.5 0.01120 34.1

1:4 0.01160 410
1:4.5 0.0120C 47.1

1.5 0.01310 55.€

Table 2.2.3: Values of empirical coefficients a and b in equation 2.1.4 from
Besley (1999)

Owen measured data for a number of défe types of simply sloping seawalls.

The data is therefore is more structure-specific than the Van der Meer method,
which combines all data together. dB&y (1999) recommended that the method
proposed by Owen (1980) is used for eating overtopping discharge at smooth,
simply sloping and bermed seawalls around UK coastline.

When the seawall has zero freeboard, equations (2.1.1, 2.1.3 and 2.1.4) correctly
predict that the overtopping discharge rHté. However, these equations predict
that Q is finite even when seawall hageay large freeboard well in excess of any

possible run-up.

15



2.2.3 Hedges & Reisovertopping formulae
Hedges and Reis (1998) constructednadel based on a regression against

Owen’s data subject to the constraint that there is no overtopping if the sea-wall
freeboard exceeds the maximum run-up on the face of the seawall.
The physical boundary conditions Hedges and Reis (1998) studied are:
e When the seawall has a large freeboard, the predicted overtopping
discharge should be zero.
e When the seawall has zero freeboard then the predicted overtopping
discharge may be large but should still remain finite.

Hedges & Reis’s formula is:

B q (R (2.2.6)
RN

whereC is the ratio of the maximum run-uBimax) to the significant height of

the incident wave¢ =1.52x (1.35<¢& ) for&, < 21,

The important features of the model are as follows (Hedges and Reis, 1998):

e |t satisfies the relevant physicabundary conditions, a feature which is
especially important when the model is used near these boundaries.

e It explicitly recognizes that regression coefficiegtdepends on the shape
of the structure since the shape, pdytiat its crest, affects the discharge
coefficient; coefficient 4) represents the dimensionless discharge when
the dimensionless freeboard is zero.

e Coefficient p) depends on the detailed behaviour of the water surface on
the seaward face of the structurejncreases as front slopes become

flatter.
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e Coefficient C) relates the maximum run-ufRyx) to the significant
height of the incident waves and may be chosen to allow for the influences
of the sea-wall slope, the surface roughness and porosity, and the incident
wave steepness. Coefficier€)(can also account for storm duration in
influencing Rurx.

Hedges and Reis (1999) show that, for small allowable overtopping discharges
associated with normal design conditiorieere are considerable differences

between predictions based on Owen’s model.

2.3 Effect of wave climate
The overtopping discharge is, as can be seen from Tables 2.1.1 and 2.2.2,

dependent on the wave climate as given by the significant wave height, the water
level (through the crest freeboard), and atsmany cases the wave peak or mean
period. However, various studies haalso shown some dependency on other
parameters related to the wave climdieese dependencies are considered in the
following.

2.3.1 Oblique waves

Several authors have investigated theecffof oblique angles of wave attack.
Banyard and Herbert (1995) have deped an equation that enables an
overtopping ratio, ©to be calculated.

O is defined as the ratio of overtopping at a given angle of wave gtackthat
predicted under normal wave attack.

Banyard and Herbert's (1995) equation for simply sloping seawalls is:

O, =1-0.00015> (2.3.7)
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It is inferred from this equation th#te predicted overtopping discharge is lower
for all obligue angles of attack thanrfoormal attack. It is also found that the
slope of the seawall have a little effantthe predicted overtopping discharge
(Besley, 1999).

The effect of oblique wave attackatso included in the overtopping expressions

by Van der Meer and Janssei®95) through the reduction facter, for sloping

structures.

Napp et al. (2002) suggested that mean kwpping discharges of vertical
seawalls reduce significantly with increasing angle of wave attack and that the
occurrence of impulsive overtopping dimirgshrapidly with obliquity of wave
attack > 30.

2.3.2 Directional spreading

Franco et al. (1995) comment on the effeaif directional spreading on
overtopping discharge on both slopes andicarwalls. For slopes the effect of
directional spreading is minimal for head waves but results in faster decay for
increasing angle of attack compared witng crested waves. For vertical wall
structures the directional spreading reduces the overtopping discharge
significantly even for head on wavéghe reduction in overtopping discharge for
multi directional and oblique waves asso reported by Sakakiyama and Kajima
(1997).

2.3.3 Spectral shape

Typically, the model tests performeith overtopping investigations utilize

standard wave spectra such as TMA (Boetval., 1985) or JONSWAP (Catrter,
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1982). These spectra apply to offshonditions or conditions with simple
foreshores. TMA spectrum was derived specifically for shallow water conditions.
In order to take more complicated situations into account, Van der Meer and
Janssen (1995) incorporated double peattra in their overtopping formulae

by splitting the spectra into two, identifig the peak periods for each of the two
parts and combining these into an equivalent peak period.

Hawkes (1999) comments on swell and bim@#as and states that they possibly
represent the worst case (here worst cagers to most overtopping) sea states
with regard to mean overtopping discharge.

Hedges and Reis (1998) and Van der Meer and Janssen (1995) methods
incorporate separate formulae for plurgywaves, where overtopping is strongly
dependent on wave period, and for surging waves, where it is much less
dependent. According to Hawkes (1998kdges and Reis (1998) method seems
the most promising.

Schuttrumpfet al. (2001) performed large-scale model tests with natural spectra
from field measurements which are mytieaked due to the influence of the
foreshore. Schuttrumpt al. (2001) concluded that the peak periogy)Ts of
limited use for describing run up and oepping and have proposed the mean

period (Tno) instead, as it appears in Table 2.2.2.

2.4 Effect of structure geometry
The overtopping discharge, as seen from@al1.1 and 2.2.2, is also dependent

on the structure geometry. The most important parameter is the crest freeboard

(Koford, 2002). However a number of other parameters describing the structure
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geometry also influence the overtopping discharge. These parameters are
considered in the following.

2.4.1 Surface roughness and per meability

Obviously, introducing surface roughneasd permeability of the slope will
reduce the overtopping discharges compared with an impermeable and smooth
slope. Both Van der Meer and Jamsg4995) and Owen (1980) have given
reduction factors to take this into account.

2.4.2 Crest width

Both Juhl and Sloth (1995) and Hebsgaeardl. (1998) have incorporated the
effect of the width of the crest dhe overtopping discharge by modifying the
crest level in the expression for the depping discharge, depending on the crest
width. As would be expected an ieasing crest width results in decreasing
overtopping discharges in the same roughness and permeability conditions
(Koford, 2002).

2.4.3 Slope angle and shape

The dependency of the slope angle is typically included in the prediction formulae

via ¢ ,i.e., inVan der Meer and Jansg@995). However according to Van der
Meer and Janssen (1995) the dependency afisappears for surging waves.

Other authors have made various statei® regarding the influence of slope
angle and shape that are reverent to the present study.
Le Méhautéet al. (1968) also quote Grantham (1953) who stated that maximum

run-up occurs for a given incident wave for slope angia(.
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In TACPAI (1974), it is mentioned that convex slopes increase run-up. According
to CIRIA / CUR (1991) the slope angledomes less important as crest heights
are lower and larger overtopping occurs.

244 Crest level

Oumeraciet al. (1999) investigated overtopping séawalls with very low crest
freeboards (Rdown to zero) caused by high water levels. Their results agreed
well with those of Van der Meer andndsen (1995) for relative crest freeboards
in the range tested by Van der Meadalanssen (1995). However, for relative

crest freeboards IER _ F% j close to zero the tests by Oumeratcal. (1999)

show that the expression given by Vam Meer and Janssen (1995) overpredicts
the average overtopping discharge. These data are also used by Schettaimpf
(2001) to establish the overtopping exgiess for no freeboard condition, as

referred to in Table 2.2.2.

2.5 Accuracy of overtopping discharge predictions

Douglass (1986) reviewed and compared a number of methods for estimating
irregular wave overtopping discharges. ¢tancluded that calculated overtopping
discharges using empirically derived etioias should only be considered within a
factor of 3 of the actual overtopping disolp@ The methods considered deal with
overtopping of coastal defense structuges] so the typical crest freeboards are
relatively high and the overtopping discharges low. Under such conditions the
overtopping discharge depends on relayifelv and relatively large overtopping
events, which again means that thertyjgping discharge becomes very sensitive

to the stochastic nature of irregular waviéds expected that the uncertainty of

21



the overtopping discharge estimation will be reduced as the crest freeboard is

reduced, since more and more of the waves overtop the structure (Koford, 2002).

2.6 Theoretical and numerical calculations
Hiroyoshi and Kono (1970) presented an overtopping expression based on a weir

analogy. The expression was verified tmpdel tests with regular waves. The
dimensionless overtopping formula is:

%
9 2.3 (1_ ij i (2.6.8)
THY2gH 15 KH

where, k = % and z, is the vertical distance twveeen mean sea water surface

and wave crest.

Based on this model Oezhan and Yalciner (1991) introduced an analytical model
for solitary wave overtopping of a seawall.

Another method based on wave energnsiderations is used by Umeyama
(1993) to formulate the wave overtopping discharge on a vertical barrier, and the
model is compared with physical model tests.

The recent years many attempts have been made to numerically model wave
overtopping. Kobayashi and Wurjantt9g89) performed numerical modelling of
regular wave overtopping of impermeakldeastal structure on sloping beach.
Their numerical model is used toeplict the fairly detailed hydrodynamics
associated with wave overtopping over thest of a smooth impermeable seawall
located on a sloping beach.

Hiraishi and Maruyama (1998) presented a numerical model for calculation of

overtopping discharges for a vertical breaker in multi directional waves. The
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basic assumption is that the overtoppdigcharge can be described by a weir
expression as suggested by Hiroyoshi and Kono (1970).

Hu et al. (2000) presented a 2-D numerical model for calculation of overtopping
using non-linear shallow water equatiorkwever, even this very recent study
was primarily validated using regular waves.

It seems that even with the computing gowavailable today the task of numerical
modelling of wave overtopping processestifi very demanding. However, once
the computational power is sufficiemyethods like the ones mentioned above, as
well as other methods based on, e.g. va@whfluid (VOF), probably will be able

to predict overtopping discharges alsarmnegular and 3-D waves. This will make

it possible to study the overtopping process in greater detail than is possible in
physical model tests. Again this will makesasier to design structures that better

fulfil their purpose than do the structures of today (Koford, 2002).

2.7 Numerical ssimulation of wave overtopping in breaking zone
Breaking waves in surf zone play an essential role in nearly all-coastal processes.

Breaking waves generate strong tudmde and are in general accompanied by
strong energy dissipation. Breaking wavsoamnodify wave forces on the coastal
structures when the wave-structure iattion occurs. On the other hand, wave
overtopping is a complex process toodel which involves shoaling, wave
reflection, wave breaking and turbulermed in which the random nature of the
waves must be taken into account.

The total volume of sea water overtopping in a particular storm is generally well

predicted by current methods [Owel980), Van der Meer and Janssen (1995)
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and Hedges and Reis (1998)]. Howewénda (2000) has showed that current
formulae, which do not take full account thie complexity of wave breaking in
shallow water, can significantly undetiesate overtopping discharges. Analysis

by Besleyet al. (1998) shows that methods that exclude these effects can severely
underestimate overtopping under breakivgyve conditions, a finding supported

by the numerical study of Het al. (2000).

The simulation of breaking wave has beechallenging problem to many coastal
researchers due to the complicated flow and turbulence structures. Recently, Lin
and Liu (1998) presented a two-dimemsl numerical model which solves the
Reynolds Averaged Navier-Stokes (RAN§uations for mean flow field and the
(k—¢&) equations for turbulent kinetic enerdy,and the turbulence dissipation
rate, ¢. In this model the volume of fldi (VOF) algorithm (Hirt and Nichols,
1981) method is employed to track the free surface movementst dlivi(1999)
extended the model by adding the capability of simulating flows in porous media
and an improvedk — ¢ turbulence model with a non-linear algebraic Reynolds
stress closure model is applied to ddsethe corresponding turbulence field. Lin
and Liu, (1999) added an internal dgsd mass source functions for the equation
of mass conservation in the internal floggion source to generate specific wave
trains. The model is extended to simalany kind of spectrum sea waves which

is represented by a superposition of a finite number of linear wave modes with
different wave height and wave period. Solingaal., (2003) simulated and used

the JONSWAP spectrum for studying randevave overtopping. More details

about the numerical breaking wave model are presented in Chapter 4.
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2.8 Wave overtopping at zero freeboard
The existing formulae for wave overtopping do not account for the case of zero

freeboard (R=0). Schuttrumpgt al. (2001) reported that the existing overtopping
models for average overtopping rates\tan der Meer and Janssen (1995) and
Van Gent (1999) are not valid for the boundary conditigg¥®R

Within the project "Loading of the innslope of sea dikes by wave overtopping”
(BMBF KIS 009) small and large scale motists were performed to investigate
the overtopping flow field and the intation of wave overtopping with the soil
properties. The small-scale model testseygerformed in the small flume of the
Leichtweiss Institute (LWI) for Hydrdies of the Technical University of
Braunschweig. A more detailed descriptmfrthe small-scale model tests is given
by Oumerackt al. (1999). The large-scale tests wperformed in the large wave
channel (GWK) of the Coastal Reseaf@bntre FZK, Hannover. More details of
the large-scale model tests can be found in Oumetraki(2001).

Both models tests have been carried out with theoretical wave spectra like TMA
or JONSWAP-spectra and with actually maasl wave spectra in the field. Wave
spectra have been collected from therman North Sea coast and Baltic coast
and from the Dutch coast.

Schattrumpf (2001) conducted maddeests with zero freeboard D) and

without overtopping (R*Rnay) and derived the following formulae:

Q- \/ﬁzo.ossgm ex;E—b R ) Eo< 2 (2.8.9)
q 0.160 R
Q- — (0.096- Yexp —b £ >2 (2.8.10)
\2gH? & p{ RJ,Z%J
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with: R, ,, = run-up height exceeded by 2% of the incident wdves, x H,).

The results of Schattrumpf (2001) avalidated and extended for statistical
overtopping parameters based on both the small scale (Ourstealacil999) and

the large scale model (Oumeratal., 2001).

Analysing the small-scale model tediw natural sea spectra and also for
theoretical wave spectra (TMA) it wdsund, that the model by Schuttrumpf
(2001) fits the laboratory data welThe dimensionless overtopping parameters
show scattering for natural wave espra. The reliability of the overtopping
function is given by taking the b-coefficieas a normally distributed stochastic
variable with an average of -3.67 and a standard deviation of 0.55 (Oumteraci
al., 2001).

As mentioned before, the natural wavedpa collected at the German and Dutch
coasts are generally multi peak spectithva complex shape. The wave spectra
will be divided into spectra that are meesd in Wadden seas and estuaries and in
spectra from open coasts.

The more generic overtopping function developed by Schittrumpf (2001) lies
between that one for open coasts and that one for Wadden seas and estuaries. The
generic formula by Schattrumpf (2001) can be used for all natural wave spectra
because it fits for all data as well ag tpecial functions. The standard deviation

o is similar for all formulas (Oumeraei al., 2001).

2.9 Wave overtopping and overflow
Existing defences, particularly those mbre mature design, are likely to have

been designed and constructed withthe benefit of recent research on the
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impacts of climate change on water lsvand wave conditions. In many places,
still water levels are predicted to rise. Furthermore, changes in atmospheric
climate patterns may lead to potentiaiglverse changes in near shore wave
conditions. The net result being that, without remedial works, existing structures
will provide a diminishing level of serviga relation to their original design. In
turn this is likely to be accompanidy increased overtopping and incidence of
flooding. Under extreme storm conditis, where high tide levels may be
accompanied by meteorological surge, wawel wind set-up, the sea defences
may operate under situations of smallewen negative freeboard. For strategic
and emergency response planning it is fulfo have some means of providing
reliable estimates of flood volumes under these conditions. Existing design
formulae exist for both overflow and awepping, but not in combination.
Furthermore, most empirical overtoppingrfaulae have been derived on the basis
of sets of laboratory experiments in which the freeboard is relatively large.
Overflow and overtopping are often treatexdseparate mechanisms, whereas they
are part of a continuum of hydrodynampcocesses that can lead to severe
flooding and damage to flood defences. Irt ffais separation of processes is due
to very distinct structural design criterfor each case; seawalls are designed to
limit overtopping and weirs are designed for particular overflow characteristics.
However, this means that for the situations described above there is a gap in the
guidance that current design formel can provide. Namely, for negative

freeboard when combined overtopping and overflow occurs.
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CHAPTER 3

SOLA-VOF

The numerical model (SOLA-VOF) is &&d on the Navier-Stokes Equations
(NSE) which describe the motions of egsaly any fluid. The SOLA-VOF code
calculates the solution of two-dimensional transient fluid flow with free
boundaries and is based on the fractionalima of fluid (VOF) concept. In this
chapter the mathematical equations governing fluid motion will be presented in
Section 3.2. The volume ofuild (VOF) technique is given in section 3.3 and then

is followed by the numerical implementation of the model. The boundary
conditions of the model are illustrated in section 3.5. The behaviour of the open

boundary condition in three cases of study will be presented in section 3.6.

3.1 Introduction
In structural dynamics, it is customary émploy Lagrangian coordinates as the

basis for numerical solution algorithms. fluid dynamics both Lagrangian and
Eulerian coordinates have been used with considerable success. Because each
coordinate representation has unique ath@es and disadvantages, the choice of
which representation to use depends andharacteristics of the problem to be
solved. Lagrangian methods are charazgetiby a coordinate system that moves

with the fluid. Accordingly, each computational cell always contains the same
fluid elements. Body and surface forces ogsthelements are easy to define, so it

is relatively straightforward to computiee dynamic response of the elements. In

an Eulerian representation the grid remains fixed and the identity of individual
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fluid elements is not maintained. The two methods differ, however, in the manner
which the fluid elements are moved riext positions after their new velocities
have been computed. In the Lagramgicase the grid simply moves with
computed element velocities while in an Eulerian calculation it is necessary to
compute the flow of fluid through the mesfihe main advantage of the Eulerian
approach is that the fluid can undergoitaaily large distortions without loss of
accuracy, in contrast to Lagrangian methods. In particular, for problems where
free boundaries undergo large deformatiaings difficult to use Lagrangian
methods (Nicholst al.. 1980); SOLA-VOF, solves the Eulerian equations of
water for fluid dynamics problems involving free boundaries.

Eulerian finite-difference methods foomputing the dynamics of incompressible
fluids are well established. The firsnethod to successfully treat problems
involving complicated free surface mmtis was the Marker and cell (MAC)
method (Harlow and Welch, 1965). Thistimed was also the first technique to
use pressure and velocity as the pynvariables. The MAC method employed a
distribution of marker particles to defifi@id regions, and simply set free surface
pressure at the centres of cells defined to contain the surface. No attempt was
made to apply the pressure boundaondition at the actual location of the
boundary with / in the surface-containing cell. This crude approximation was
improved (Chan and Street, 1970) and mageeticles were eliminated in favour

of particle chains on the free surfag@éichols and Hirt, 1971). A simplified
version of the basic_gation dgorithm (SOLA) used in the MAC method is

available in a user-oriented coddled SOLA. Although SOLA does not treat
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free surfaces, an extended version, SEBURF uses a surface height function
method (Hirtet al., 1975). The basic simplicity and flexibility of the SOLA codes
makes them excellent foundations foe tbevelopment of more sophisticated
codes. For this reason, arnable nesh version of the SOLA code, SOLA-VM,
was chosen as a basis for the VOF technigueexperimental version of this new
code, SOLA-VOEFEwas first reported in Nicholnd Hirt (1975). The SOLA-VOF
code, which considers the basic for most of the VOF type numerical models as
shown in Table 3.1.1, is used in the fipsirt of this study (Chapter 3). Since that
time, many improvements have been madd the basic technique has matured
through applications to a wide class of problem. For example McMaster and
Gong (1979) and McMastet al. (1980) have combined the SOLA-SURF code
with a different interface trackinge¢hnique based on a VOF-like concept.
Nichols et al. (1980) presented the updated v@nsof SOLA-VOF code which

has been used during the first parttlif study. This general purpose code was
selected because it has very promising features and is generally acknowledged as
the basis for all subsequent developmehigure 3.1.1 shows the family tree of
VOF numerical models. The NASA-VOF2D code (Toretyal.. 1985) contains
many improvements. A partial-cell tres¢nt FAVOR allows for curved or

sloping boundaries without the need for curvi-linear coordinates.
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SOLA-VOF

Hirt and Nichols, 1980

T

Austin and 2DHYDROTUR SKYLLA Wu (1994)
Schlueter (1982) Lemos (1992) Van der Meekgt al.
(1992)
VOFbreak Iwataet al. (1996)

Troch (1997)

NASA-VOF2D

Torreyet al. (1985)
I

RIPPLE, TELLURIDE FLOW-3D

Kotheet al. (1991) and Kothe Hirt and Harper (1985)

etal. (1997

Numerical model for
breaking wave.

Liu and Lin (1997)

Figure 3.1.1: Overview of key developnts of VOF type numerical models.
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SOLA-VOF and NASA-VOF2D codes havieeen developed at Los Alamos
National Laboratory, (LANL), New MexiGoUSA. After that, Hirt continued
developments on the VOF model in the commercial CFD code FLOW-3D. It is
regarded as a state-of-the-art CF&de with general applicability. At LANL,
other successor codes have beeveldped since then: RIPPLE (Kotlee al.,
1991) for 2D and TELLURIDE (Kothet al., 1997) for 3D simulations were
developed at Los Alamos Nationalldaratory. In RIPPLE and TELLURIDE, a
projection method is used to solve theampressible flow. The pressure Poisson
equation is solved with an incomple@holesky conjugate gradient technique.
Particularly, the modelling of problems in which the surface tension is important,
such as the filling, cooling and solidifition processes of castings have been
enhanced.

Austin and Schlueter (1982) presented fhrst application of the SOLA-VOF
model in the field of coastal engineerifithe model predicted the flow field in a
porous armour layer of a breakwater sohtsed as a rectangular block system.
Although in a relatively crude form, thescalculations were the start of the
simulation of wave propagation and interaction with structures in coastal
engineering. Lemos (1992) incorporatek a ¢ turbulence model in a SOLA-
VOF based code 2DHYDROTUR thatlcaved a limited description of the
turbulence field. Lemos (1992) also irapiented higher order finite difference
schemes in a VOF-based code for improving stability and accuracy of the
numerical solutions. These improved schemes were applied to simulations of

wave impact on structures, and includbe& computation of the wave impact
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forces. No wave absorption boundaries open sea boundaries have been
implemented. The SKYLLA model (Van der Mestral., 1992) was developed at
Delft Hydraulics. The first computatiorghowed that it is possible to simulate
breaking waves on a slope. Several extarsihave been added since then. The
most important is the inclusion of a conjugat@dient solver for the pressure
Poisson equation (Van der Medral., 1992). Wu (1994) applied a VOF model
based on the SOLA-VOF model for thenulation of breaking and non-breaking
wave kinematics at and on vertical structures with various impermeable foreshore
geometries. Wu (1994) simulated the cdetg impact pressure and the resulting
loading while neglecting entrapped aft.weakly reflecting boundary condition
similar to the SKYLLA model has beemplemented in Wu’'s model. lwath al.
(1996) used a modified SOLA-VOF adel for numerical comparison with
experimental data from breaking apdst-breaking wave deformation due to
submerged impermeable structures. Waves were generated internally in the
computational domain using the source gatien technique (Brorsen and Larsen,
1987). Absorption of the waves was donsing the Sommerfeld radiation
boundary condition. Troch (1997) pesged the numerical model VOFbréak
based on the SOLA-VOF code. Several rfiodtions are implemented to refine
the numerical model for wave motion @nd in coastal structures. Special
attention is paid to applicationgvolving rubble mound breakwaters. Wave
boundary conditions are added, where anyeatheory can be applied to provide
the surface elevation and the velocitgmponents in horizontal and vertical

direction. The governing equations have been extended, to include the simulation
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of porous flow inside the permeable coastal structure. The numerical model has
been verified with both physical modeltdaand prototype data. Some selected
improvements from NASA-VOF2D havbeen implemented into VOFbréak
such as a numerical deformeechnique, and fixes on the donor—acceptor
algorithm. Liu and Lin (1997) presentednumerical model for calculating the
evolution of a breaking wave. The modeki€ombination of a modified version
of RIPPLE (Kotheet al., 1991) andk — ¢ turbulence model. The breaking wave
numerical model is used in the secondt pd this study. More details of the
breaking wave numerical model and its depenents are presented in Chapter 4.
Isobe et al. (1999) and Isobe (2001) develop@ numerical wave flume for
practical use in designing maritime'wgtures which based on NASA-VOF2D.
The computer code was named “CADMASBRF” which was open for general

uses.

3.2 Mathematical formulation of SOLA-VOF

3.2.1 Navier-Stokes equations (NSE)
Any flow of an incompressible Newtam fluid subject to gravity can be

described in the three dimensional fldw the Navier Stokes equations in a

bounded domaif :

ou, oo,  10p 107
u —- = +=—1

Mg Mo 2P g = (3.2.1)
ot 'ox,  pox p X

Mg (3.2.2)
X

The above equations represent the eoration of momentum and mass per unit

mass in whichu, is the i-th velocity vector component (m/seg)the fluid

34



density (kg/m), p the pressure (N/f g the i-th component of the gravitational

acceleration (mf3, and z; the molecular viscosity stress tensor (Rm

The momentum equation is derived frodewton’s second law which state that
the rate of increase of momentum of adlparticle is equal to sum of the forces
on the fluid particle. The conservatioguation is based on the concept of mass
balance for a fluid elementg. the rate of increase ofass in a fluid element is
equal to net rate of flow of mass inteetfiuid element. Details for the derivation

of the Navier Stokes equations can terfd in Versteeg and Malalasekera (1995).

For a Newtonian fluid, 7j' =2uo; with « being the molecular viscosity

1( ou ou. .
(kg/m.sec.) andr; =~ —L+—L |, the rate of the strain tensor.
2( 0x; 0%

The kinematic boundary which describes the free surface motion is expressed as,

@wi@:O (3.2.3)
ot OX,

3.3 Free surfacefluid flow

3.3.1 Introduction
The accurate tracking of the free surface is very important for wave simulations.

As mentioned earlier in Section 3.1, theare two types of approaches, Eulerian
and Lagrangian. The Eulerian approachjclwhs more consistent with most of
solvers of the NSE, tracks changes at fikexdtions. This approach is the basis of
the so-called volume of fluid (VOF) riteod originally developed by Nichokt

al. (1980) and Hirt and Niwls (1981). The Lagrangian approach follows each

particle on the free surface and/or ire timterior domain based on the ambient
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flow velocities. A brief review of theseumerical algorithms for the analysis of
viscous flows with moving interface is presented in the following sections.

3.3.2 Eulerian methods

Eulerian methods are characterized by a coatdi system that is either stationary

in the laboratory reference frame or moving in a certain prescribed manner in
order to accommodate the continually changing shape of the solution domain
(Floryan and Rasmussen, 1989). The Eulerian algorithms can be divided into
three main types: fixed grid nieids, adaptive grid methods, and mapping
methods.

3.3.2.1 Fixed grid methods

In this method the grid is fixed in the domain. There are two basic ways of
tracking the interface, i.e., surfacedking and volume tracking. The surface
tracking methods represent an interface agries of interpolated curves through

a discrete set of points on the interface. At each time step, the information about
the location of the points and sequencwimch they are connected is saved. The
points are then moved according to arerface evolution equation. The
information regarding location as wedls orientation and curvature of the
interface is explicitly available during the whole calculation process.

The volume tracking methods do not stareepresentation of the interface but
reconstruct it whenever necessary. The reconstruction is done cell by cell and is

based on the presence of a marker quantity within the cell.
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MAC method

The simplest reconstruction algorithnr fine volume tracking method has been
proposed by Welclket al. (1966) as part of the MAC method. The MAC method
marks different fluids with massless marlparticles. The interface is defined as
being somewhere inside the cells that aontmarker particles of both fluids. The
MAC method does not give any details oé tkxact location, orientation, and the
curvature of the interface.

Volume of Fluid Method (VOF)

Many reconstruction algorithms use thadtion of cell volume occupied by one
of the fluids as the marker quantity. If this fraction is O for a given cell, the fluid
does not occupy the cell and there is norfate in that cell. Conversely, if the
fraction is 1, the cell is completelycaupied by the fluid and again there is no
interface present. An interface is to mnstructed only if the fraction is between
0 and 1. Since there is only one piecandbrmation regarding the interface per
cell available, certain arbitrariness eonstructing the shape of the interface has
to be allowed. The accuracy with which the reconstructed interfaces approximate
the real interface is difficult to judge addferent types of distortions are possible
(Barr and Ashurst, 1984). The VOF (volumefloid) method ofHirt and Nichols
(1981) defined a function F (x,y,t) thatagual to unity at any point occupied by
fluid and zero elsewhere. When averagedr the cells of a computational mesh,
the average value of F in a cell igual to the fractional volume of the cell
occupied by fluid. In particular, a unialue of F corresponds to a cell full of

fluid, whereas a zero value indicates that the cell contains no fluid. Cells with F
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values between zero and one contain a free surface. The VOF method requires
only one storage for each mesh cell,ichhis consistent with the storage
requirements for all other dependent variables.

In addition to defining which cells caih a boundary, the F function can be used

to define where fluid is located inkmundary cell. The normal direction to the
boundary lies in the direction in whichethvalue of F changes most rapidly.
Because F is a step function, however,désivatives must be computed in a
special way, as described below. When properly computed, the derivatives can
then be used to determine the boundary normal. Finally, when the normal
direction and the value of F in a bounglgell are known, a line cutting the cell

can be constructed that approximates thterface there. In addition, surface
curvatures can be computed for the definition of surface tension forces.

The time dependence of F is governed by the equation,

9F L9 LVOF ) (3.3.4)
ot oX oy

For a computational cell centred at (the above equation can be rewritten in the

following finite difference form,

N+ n At n+ n n+ n At n+ n n+ n
Firjl: Fi,i - (u ]:.LFR _u ]J.-.FL]_ (U, 11FT _U' .llFBJ (335)
AX HE'J -] i,j

i 2

in which F, F", F' and F;' denote the F values on the right, left, top and
bottom faces of the computational cell, respectively.
In an Eulerian mesh, the flux of F magi with the fluid through a cell must be

computed, the standard finite differerfoem would lead to a smearing of the F

function and interfaces would lose their défon. Fortunately, the fact that F is a
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step function with values of zero one, permits the use of a Donor-Acceptor
method which was originally dewged by Johnson (1970). Thus, the VOF
technique provides a means of followingidl regions through an Eulerian mesh

of stationary cells. The VOF method useminimum of stored information, and
because it follows regions rather than boundaries, it avoids problems associated
with intersecting surfaces. The VOF method was also be extended to three-
dimensional computations, where its conservative use of stored information is
advantageous.

3.3.2.2 Adaptive grid methods

Adaptive grid methods alter the computational grid so that the interface always
coincides with one of the grid lineShe interface is then a well-defined,
continuous curve and information regagg its location, orientation, and
curvature is readily available. The maidvantage of this approach is that it is
possible to maintain sharp resolutiontbé interface, while the disadvantage is
the difficulty in adjusting the grids téollow the highly deformed interfaces
(Floryan and Rasmussen, 1989).

3.3.2.3 Mapping methods

In the mapping method the unknown irregularly shaped flow domain is
transformed onto a fixed regularly sleabcomputational domain. The mapping
appears explicitly as one of the unknofumctions and has to be determined

together with the field variables (Floryan and Rasmussen, 1989).
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3.3.3 Lagrangian methods
Lagrangian methods are characterized bg@dinate system that moves with the

fluid. Accordingly, each computational cell always contains the same fluid

elements. These methods are suited for moving boundary problems as they permit

material interfaces to be specificallylideated and precisely followed. The main

two problems with the Lagrangian rhetls are mesh tangling and numerical

inaccuracy due to highly irregular meshes (Floryan and Rasmussen, 1989). The

mesh-tangling problem arises because a mesh fixed topology quickly becomes

singular in flows undergoing large distortions as shown in Figure 3.3.2.

Figure 3.3.2: Grid deformation for aesdr flow calculation using a Lagrangian

triangular grid (Floryan and Rasmussen, 1989).

3.3.4 Discussion
The methods developed for the anaysf moving boundary problems for the

Navier-Stokes equations have been dbed very briefly. Among these, the
volume of fluid (VOF) methods allows getical treatment of the complex free
surface condition. In principle, the VOmethod could be used to track any

surface of discontinuity in material profpies, in tangential velocity, or any other

property. The particular case being represented determines the specific boundary
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conditions that must be applied a¢ tlocation of the boundary. The VOF method
in conjunction with the marker andlcenethod (MAC) is employed in SOLA-
VOF code and in the Two-dimensionaleaking wave numerical model, (2-D

BWNM), which is used in the second part of this study (Chapter 4).

3.4 Model implementation
The success of modelling wave propagiatusing the Navier-Stokes equations

relies on the accuracy of the numericalveo to the mathematical equations
which include the scheme to track tiree surface. As mentioned before, the
finite difference method is used tlughout the computation. A rectangular
computational domain is first discretized by n rectangular cells as sketched in
Figure 3.4.3. Cells have variable sizas; for the I" column anday; for the "

row. All scalar quantities, i.e., p, are defd in the centre of the cells. The vector,
i.e., the x-component and y-component of the mean velocitieand v, are
defined in the cell faces as shown igiie 3.4.3. The volume of fluid function F

is used to identify mesh cellahcontains fluid of densitge. A free surface or
interface cell (i,j) is defined as a cell containing a non-zero value of F and having
at least one neighbouring cell (i £1, j) orjfl) that contains a zero value of F.
Cells with zero F values are empty. Cells with non-zero F values and no empty
neighbours are treated as cells fulpefluid (Nicholset al., 1980).

Finite difference solutions of the four unknowas v, p andF, are obtained as
following:

1- Explicit approximations of the NavieBtokes, (Equation 3.2.1), are used to

compute the first guess for new-time-level velocities.
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2- To satisfy continuity, Equation 3.2.the pressure—velocity iteration is used,
pressures are iteratively adjusted in eeglhand the velocity changes induced by
each pressure change are added to the velocities computed in step 1.

3- The F function defining dlid regions must be updated to give the new fluid
configuration. Repetition of theseeps will advance a solution through any
desired time interval. At each step,anfurse, suitable boundary conditions must

be imposed at all mesh and free surface boundaries.

AXiq AX; AXis1
AYj+1
T T ij+1/2V
F
AY; |, Ui-172, | Pij _>Ui+1/2,j
T ij-1/2V
Ay [ »

Figure 3.4.3: Finite difference meshand cell classifications in SOLA-VOF

model.
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3.5 Boundary conditions
It is important to set boundary conditions at all mesh boundaries and at surface of

all internal structures. In the followirtgvo sections the details of these boundary

conditions is presented.

3.5.1 Mesh boundaries

Two conditions may be set using the lagé cells surrounding the mesh, the free

slip condition and no-slip condition.

Consider for example the left boundary:

1- No-slip Condition: The normal velocity and the tangential velocity component
are set to be zero for all j cells.

Upj = 0,01) = -v2j, Prj = Pzjand k=2

According to this condition, all compomis of the velocity on the bottom are

zero, however, this boundary condition gphcable only when the resolution is

fine enough to resolve the viscous boundagelalf a coarse grid is used, the

application of the no-slip condition camsult in an underestimation of the

velocity immediately above the bottom (Lin, 1998).

2- Free slip condition: The normal velty must be zero and the tangential
velocity should have no normal gradient for all j cells.

Urj = 0,01) = v2j, Prj = Pzjand f=F;.

This condition provides more accurate velocity information near a solid boundary

(Lin, 1998). For that reason, the free slgndition is used in this study instead of

the no-slip condition on the solid boundary.
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Cell

3.5.2 Free surface boundary conditions
This boundary condition is satisfied by setting the surface cell pressyreqyel

to the value obtained by a linear intergma between the pressure specified at
the surface (@ and the pressure inside the fluid)(g-or this scheme to work, the
adjacent cell chosen for the interpolation should be such that the line connecting
its centre to the centre of the surfacdl e closest to the normal to the free

surface (Nichol®t al., 1980). An equation for the surface, S, giving this result is

S=(1-n)p,+17P,— P, (3.5.6)
where, = dA) is the ratio of the distandeetween the cell centres and the

distance between the free surface and theeen the interpolation cell as shown

in Figure 3.5.4 (Nicholst al., 1980).

/7 Surface Cell
*x f Free Surface

\g

o>

rpolation

M

Figure 3.5.4 Definition of quantities ed in defining free surface pressure

boundary condition.
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3.5.3 Open (Radiation) outflow boundary condition
A radiation boundary condition is usedtla¢ open sea boundary to minimise non-

physical wave reflections. The open boundaowgdition, which is also referred to
as the radiation boundary condition, is timeeded to allow the wave going out of
the computational domain without significant reflection.

The mathematical formulation of the opkeoundary condition on the right side of

the computational domain is described as follows:

%+CO%:O (3.5.7)
ot OX

whereC, is the phase celerity of wave at the open boundaryparepresents the
wave property such as the mean eéles or mean free surface displacement
(Lin, 1998).

The phase velocity is calculated as faly with neglecting variations in the

atmospheric pressure:

C,= \/g—Ltanh[z—”(d + a)} for short wave (3.5.8)
2 L
C,=49(d+a) for long wave (3.5.9)

Other numerical test shows that thisundary condition works fairly well up to

the intermediate non-linear waves, i.e., H/d < 0.3 (Lin, 1998).

3.5.4 Sponge boundary condition

Another alternative for the open boundary condition is absorbing (sponge)
boundary condition. The absorbing boundeoydition is allowing the generated
and reflected waves to leave the compional domain. Larsen and Dancy (1983)

presented an efficient numerical passaleEsorber for use in short wave models.
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An absorption function a(x) is appliexh velocities in a numerical sponge layer
with length x after each time step calculation. As shown in Figure 3.5.5, the
absorption function at the start ofetrsponge layer equals 1 and gradually
decreases to 0 near the end. The spong la located at the closed end of the
wave flume. The width of the spondayer can vary between (0.60 - 1.0)
wavelength and the absorption function tilaa elliptic form (see e.g. Troch and

De Rouck (1998)):

a(x) = 1—(’(_’(1] (3.5.10)
X,

a(x)

a (x)

< % >

Figure 3.5.5: Numerical sponge layer with width ptaced at the end of the
numerical wave model (Troch and De Rouck, 1998).
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The disadvantage of this latter methodthat the length of the computational
domain is considerably increased because a relatively long absorption layer is
required for absorption of the generated and reflected waves at the boundaries.
3.5.5 Internal obstacle boundaries

An internal obstacle can be simulated agfiing those cells of a mesh that are to

be blocked out. Because the relaxation factor BETu#sed in the pressure
iteration must be positive, using negative ealwf this variable is a suitable flag

for obstacle cells. A convenient, but @rdry choice, is to assign a value of
BETA= -1.0 to obstacle cells. No velocgier pressures are calculated in obstacle
cells, and all the velocity components acds of obstacle cells are automatically
set to zero. In the boundary conditions suibine, values for volume fractions and
pressure are set in all obstacle cells bordering fluid cells. These values are
computed to be equal to the averagethe$e quantities in the adjacent fluid cells.

All other obstacle cells have zero values Foand p. With this prescription, the
fluid obstacle boundaries are prevented flogng interpreted as free surfaces, as
they would be without some sort of atilthal testing. In addition, it should be
noted that because all velocity composewithin obstacle cells are set to zero,
no-slip tangential velocity conditions abstacle boundaries are only first order
accurate. That is, tangential velocities are zero at locations shifted into the

obstacles one-half of a cell width from the actual boundary location.

3.6 Model testing
Three cases of study are presentedguiie numerical model, SOLA-VOF (non-

breaking numerical model). The firgtase is linear wave propagation on a
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constant depth. Then a standing wavgeaserated in rectangular channel with a
flat bed. Finally, the model is emplay¢o study the non-breaking solitary wave
run-up on a steep slope.

3.6.1 Linear wavetheory

Linear wave theory was derived using the concepts of two-dimensional ideal fluid
flow. This is a reasonable starting poior deep-water waves, which are not
greatly influenced by viscosity, surfadension and turbulence. Figure 3.6.6

depicts a sinusoidal wave of wave length (L), height (H) and period (T).

[

TN B2
N\

Figure 3.6.6: Definition sketch for the linear wave theory.
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The variation of surface elevation with tinfepm the still water level, is denoted

by n and given by:

H X t
=—COoS2r| ——— 3.6.11
=5 (L Tj ( )

The corresponding equations for the horizontal ) and vertical &, v)

displacements and velocities of a partale mean depth (d) below the still water

level are:
;=" w sinoqg X_L (3.6.12)
2 sinhkd L T
yo mfcostkzed)] o (x t (3.6.13)
T sinhkd L T
5 — E[—Slnhk(z+d):|coszﬂ-[i_lj (3614)
2 sinhkd L T
inhk
p = 7H | sinhk(z+d) sinzz(l—ij (3.6.15)
T sinhkd L T

3.6.2 Linear wave inflow boundary condition
The linear wave inflow boundary condition is programmed into the boundary

condition subroutine of the SOLA-VOF cada order to test the seaward linear
wave boundary condition and the oatfl radiation boundary condition, a
simulation of regular wave propagationshiaeen conducted as presented in the

following subsection.
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3.6.3 Linear wave propagation in constant water depth
In this simulation a sequence of regulaveswith 1.0 m wave height, 3.0s wave

period and 14.0 m wave length are introduced into 6.0 m deep still water.
Comparison with the theoretical water leigpresented in the Figure 3.6.7. Near
the beginning of the domain, the regulawvedevel is observed with wave heights
and lengths consistent with the thdéma& calculation. After one wave length
significant difference between the SONAGF results and the theoretical one

could be observed.

8.0
7.0 -
60 T s
5.0
4.0 -
3.0 -
2.0+
1.0
0.0 \ \ \ \ \ \ \

0.0 3.5 70 105 140 175 21.0 245 280

X axis

(m)

Water depth
(m)

—— SOLA-VOF
—l— Analytical

Figure 3.6.7: Comparison between theL30/OF and the analytical free wave
surface after t =21.0 sec. (T =3.0sec., L =14.0 m, H=1.0 m and d =6.0 m).

This difference is due to insufficient efficiency of the open boundary condition at
the end of the domain. The open boundeoyndition in SOLA-VOF still needs
more improvement allowing all the amount of wave transfer to go out of the

domain. Another reason may be the thioearity of the input wave since

%<o.5.
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3.6.4 Standing wave r eflection at a vertical wall
A standing wave is generated in rectaaguwthannel with a flat bed. The right

boundary is considered to be an impernheakertical wall with 100% reflection.

The other end of the channel is imtet boundary where sinusoidal waves are
imposed. The incident sinusoidal genedateave height is 0.01 m with a wave
period = 2.0 sec. and the mean water depth20 m. The length of the incident
wave calculated by linear wave theory is 2.7 m. The channel is 5.4 m long which
is equal to two wave lengths.

In total, 270 cells are used in tkalirection with a cell size of 0.02 m. In tge
direction 64 cells are used with a ceftesiof 0.005 m. The basic time step is 0.04
second and the simulation time is t=8.0 seconds. After approximately 6.0 seconds,
theoretically, the above arrangement creataading waves with a height of 0.04

m as shown in Figure 3.6.8. Computatibnahis provides an opportunity to test
the obstacle boundary condition at the endhef domain which is considered to

be an impermeable vertical wall with 100%flection. Figure 3.6.9 illustrates the
simulated standing wave pattern bilowing snapshots of the free surface
configuration and velocity field at five tieinstants within a time interval of 0.5
sec. Troch and De Rouck (1999) studeaine example with the same wave
characteristics and water depth using VOFbteaknerical model. Troch and De
Rouck (1999) applied an active wavengmting-absorbing boundary condition in
start of the domain of study. Analyticebmparison of the calculated free surface
configuration and velocity fiel between SOLA-VOF and VOFbreakumerical

models gives approximately 90% agreement.
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— 0.215- t=6sec. t=7.0sec.—— water level
é 0.210-
e
< 0.205\/\/—\/\/
% 0.200
*§ 0'195/\/\/\\/\
o]
= 0.190
0.185-
0.180

0.000 0.675 1.350 2.025 2.700 3.375 4.050 4.725 5.400
Distance

Figure 3.6.8: Computed standing waves doigeflection from a vertical wall
(Incident wave characteristics Hi=0.01 m, T=2.0s,d = 0.20 m).

The main difference between the pms two examples is the right boundary
condition at the end of the domain. In the first example when the radiation
boundary condition was used, significantfetience between the numerical and
theoretical free surface and wave veloarg observed (Figure 3.6.7). While in

the second example when the impermealadical wall with 100% reflection
used, good agreement was found (FiguBes.8 and 3.6.9). If the time of
calculation exceeds than 8.0 seconds the free surface profile gives significant
difference in comparison with the theocati solution due to the inefficiency in

the radiation boundary condition in the start of the domain.
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3.6.5 Solitary wave inflow boundary condition
The solitary wave is a finite amplitudeave with permanent shape; the non-

linearity and frequency dispersion aperfectly balanced during the wave
propagation. The solitary wave form lies eglfyrabove the still water level. It is a
wave translation because the water particles are displaced a distance in the
direction of wave propagation as thewsagpasses. Based on the potential flow
approximation, a Boussinesq equation d¢enderived. The solitary wave is a
special solution of the Boussinesq equatiThe free surface of the solitary wave

is given by (Liu and Lin, 1997):

,| |3 H
n(x,t) = Hsech {‘/ZF(X_G)} (3.6.16)

The solitary wave celerity is:

c=409(H +d) (3.6.17)

3.6.6 Non-breaking solitary wave run-up on beach
In this case of study, non-breaking solitary wave run-up on a steep beach with a

slope of 30 is investigated. The toe of thedxh is 6.49 m away from the solitary
wave boundary condition. The still water level is 0.18 m and the wave height is
0.03 m. The computational domain is discretized with48x 20 cell uniform

grid with Ax= 0.05m and\y=0.015m. The wave celerity (c) and the free surface
displacementy are specified at the left boundasgnditions similarly to that in
section 3-6-4. The results of the non-biiagksolitary wave at time t = 4.0 and 4.2

sec. are shown in Figures 3.6.10 and 3.6.11. These time series are chosen to be

consistent with results of Liu andriL.{1997). Comparison between the numerical
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model results (SOLA-VOF) and experimentasults of Liu and Lin (1997) gives

good agreement in the velocity magnitude and direction.
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Figure 3.6.11: The velocities component according to the solitary wave theory at

4.2 sec.
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Figures 3.6.12 and 3.6.13 present cangon of free surface profile between
modified SOLA-VOF and Liu and Lin1@97) numerical model. The comparison
of the free surface profiles goes towardsdame trend raised in the previous two

examples (Sections 3.6.3 and 3.6.4).

0.3
0.25

0.2
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Figure 3.6.12: Comparison of the freefaue elevation between SOLA-VOF and

Liu and Lin’s numerical models at t=4.0 sec.
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Figure 3.6.13: Comparison of the freefaae elevation between SOLA-VOF and

Liu and Lin’s numerical models at t=4.2 sec.
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It is clear from Figures 3.6.12 and 3.6.1attlat the boundaries, more efficient
“open boundary” or “absorbing boundargbndition is required, allowing the
transmitted and reflected waves teave the computational domain without

disturbing the interaction of the incident waves with the seawall.

3.7 Conclusions
Three cases of study using the neweadepment non-breaking numerical model

SOLA-VOF are presented. The linear wanftow boundary condition was tested
first, it is clear from this case ofusty that after one wave length there are
significant difference between the SOLA-VOF results and the theoretical one.
The open boundary condition needs more improvement allowing all the amount
of wave transfer to leave the domawithout any effect towards the new
generating waves.

In the second case of study, the reffeélcivave boundary condition has been
validated. The reflected wave boundary condition has been successfully tested
against known exact solutions.

In some of the wave hydrodynamics studies, the reflected wave needs to
propagate out of the computational domain or be absorbed by the inflow
boundary. That is very clear in therthcase of study which the non-breaking
solitary wave run-up on beach has been stlidi he results show that there is a
requirement for an open boundary coruatitiat the seaward end of the domain.
Recently, new researchers introduce ragorbing boundary condition i.e. Liu
and Lin (1997); Troch and De Roud¢k999); Isobe (2001) which solve the

difficulties in the modified version of the SOLA-VOF numerical model.
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The two-dimension breaking wave numerical model (2-D BWNM) which is used
in the second part of this study (Chaptr®, 6 and 7) covers the shortcoming in
the SOLA-VOF moded. The 2-D BWNM sas very efficiently the problem of
wave generation and radiation at the seaward boundary, and is discussed in detail
in Chapter 4. The model of Troch ab& Rouck (1999) and Isobe (2001) uses
adaptive wave absorption at the seaward boundary and required detailed
calculation to modify the wave gengerg conditions at the seaward boundary.
Isobe (2001) model is just tested agtiregular waves. The model can be also
applied to irregular waves but the calculation time is substantially increased by
about 10 times compared to that with regular waves (Takaktshi (2002)).

The 2-D BWNM model has the capability stmulate any kind of regular and
irregular wave boundary condition as shown in Chapter 5.

The SOLA-VOF does not account foretltase of breaking waves which are
included and successfully tested in thB BWNM as described in details in Liu

and Lin (1997). More details of the tmdimensional breaking wave numerical

model are given in the following chapters.
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CHAPTER4

Two-Dimensional Breaking Wave Numerical Model
(2-D BWNM)

A two - Dimensional Breaking Wave Numerical Model (2-D BWNM) which is
capable of simulating regular and irregular wave overtopping over coastal
structures is presented in this chapfehe 2-D BWNM is based on the model

developed by Lin (1998) which solveke Reynolds Averaged Navier-Stokes

(RANS) equations for mean flofield and the second ord(ak—g) equations for

turbulent kinetic energyk, and the turbulence dissipation rate, A literature
review concerning the breaking wave nuro@rimodels is presented in Section 1.
The mathematical formulation of ti&D BWNM is illustrated in Section 2.
Section 3 contains the initial boundary ctimth which is used in the numerical

simulation.

4.1 Introduction
Breaking waves in the surf zone play assential role in nearly all-coastal

processes. For example, breakingves generate strong turbulence which
increases the mixing rate and therefbies an important impact on sediment
transport in the surf zone. As a resulte beach profile is changed under the
continuous action of breaking waves. Briegkwaves also modify wave forces on
the coastal structures when wave-structure interaction occurs. This is important
when the construction of structures aoastal regions is considered. Wave

breaking processes are in genemacompanied by strong energy dissipation

59



which transfers the organized wave energy to heat. Therefore, to protect coastal
structures along the shoreline, waveedking could be artificially induced to
damp out the wave energy by constructngertain shape of submerged structure

in surf zone.

The simulation of breaking wave has beechallenging problem to many coastal
researchers due to the complicated feowvd turbulence structures. The progress in
creating numerical models for wave bre@kprocesses has been relatively slow.
Because of the limitation of computeregpul, the early numerical simulation of
breaking wave was mainly based on thptbeaveraged equations, which include
both shallow water equations and Boussq equations (Peregrine, 1967). The
energy dissipation due to the breaking processes was incorporated into these
equations through simple dissipative terms. For example, the momentum
correction method was used by Schaéfeal. (1993) and Johnsaat al. (1996) to
represent the dissipation induced by binheaking wave. The eddy viscosity model
was used by Zelt (1991), and Karamlzasl Koutitas (1992) in their breaking
wave simulations. Dodd (1998), presehten upwind finite volume numerical
model based on the one-dimensional non-linear shallow water equations on a
sloping bed, including the effects of bed shear stresst ldlu (2000), presented
one-dimensional high resolution finite volume model (AMAZON). The
AMAZON model is based on solving thn linear shallow water equations. A
modern upwind scheme of the Godurtgpe using an HLL approximate
Riemann solver is used which capturbore waves in both transcritical and

supercritical flows. The robust HLL-typgpproximate Riemann solver has been
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used instead of the more compuatlly expensive exact Riemann solver.
Though computationally efficient, this apaich cannot predict the details of the
characteristics of turbulence transport during the wave breaking. The vertical
variations of velocities are also lost doethe depth averaging process. To obtain
the turbulence and vorticity transport infortoa as well as the vertical variations

of velocity information, a more sophisticated hydrodynamic model is needed.

Like any turbulent flow of incompresselfluid, the breaking wave can also be
described by the basic incompressible Navier-Stokes equations (NSE). In
principle, the direct numerical simtilen for the NSE, which was pioneered by,
Orszag and Patterson (1972) and RogéliB81) using pseudo-spectral methods,
can also be used to study wave breaking. However, due to the large demand of
computational time required by directumerical simulation, most of its
applications are for low Reynolds numbery)(Rows (Kim et al., 1987). For
breaking waves with high f/Rand the added complication of strong free surface
deformation, the direct numerical simiita is not feasible with the current
computer power.

Another alternative is based on theyRelds Averaged Navier-Stokes (RANS)
equations. In the RANS equations, only the mean flow motion is described and
the effects of turbulence on the meamwflare represented by Reynolds stresses
which are proportional to the correlationtafbulence velocities. Lin (1998) and

Lin and Liu (1998) proposed a new modelinvestigate the breaking waves by
solving the RANS equations for the mdéow. Their model is a combination of

the modified version of RIPPLE which wariginally developed at Los Alamos
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National Laboratory (Kothet al., 1991) and the& — ¢ turbulence model (Liu and

Lin, 1997). Finite difference solutions tbe incompressible Reynolds equations
for the mean flow field and thke— ¢ equations for the turbulent field are obtained
on a non-uniform mesh. The volume ftdid (VOF) algorithm (Nicholset al.,

1980 and Hirt and Nichols, 1981) methisdemployed to track the free surface
movements. Lin (1998) compared numeralutions with the experimental data

for both spilling breaking waves (Tirgnd Kirby, 1996) and plunging breaking
waves (Ting and Kirby, 1995) in terms of free surface elevation, mean velocity
components and turbulence intensity.eTaverall agreement was satisfactory.
More details of the comparison can be found in Lin (1998).

Following this, many developments wesdded to the original code. Lat al.,
(1999) extended the model by adding theatdlgy of simulating flows in porous
media and an improvedt — ¢ turbulence model with the non-linear algebraic
Reynolds stress closure model was applied to describe the corresponding
turbulence field. Then, Lin and Liu, (1999) added an internal designed mass
source functions for the equation of masaservation in the internal flow region
source to generate specific wave trainsoAthey extended the model to simulate
any kind of spectrum sea waves which gresented by a superposition of a finite
number of linear wave modes with diffatevave height and wave period. The
author used the JONSWAP spectrum to study the phenomena of wave
overtopping (Solimaret al., 2003). These required modifications of the source

term to model JONSWAP characteristics (See Section 4.3.3.3).
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4.2 M athematical formulation of 2-D BWNM

4.2.1 Reynolds Averaged Navier-Stokes equations (RANYS)
Navier Stokes equations describe the gangrequation for a wide range of flow

motions, including potential flow and turbulent flow. However, in the case of
turbulent flows with high Reynolds number R small-scale turbulent
fluctuations with high resolution are reged. The direct numerical simulation for
Navier Stokes equations in these cases is extremely difficult.

UCDC
14

The Reynolds number is defined g, =
Where,U. is the characteristic velocity scal®; is the characteristic length scale
andv = % is the kinematic viscosity.

As an alternative to the direct soluti of the NSE, another method has been
derived to describe the mean motionsubulence flows. Both the velocity field

and the pressure field are split into meamponent and turbulent fluctuations as

follows:

u=(u)+u (4.2.1)
p=(p)+p (4.2.2)
p=(p)+p' (4.2.3)

in which ¢y denotes the mean quantities, the primespresents the turbulent

fluctuations. By assuming that the hutent fluctuations are random, we have
(Wy=(p)=(p")=0. Substituting (4.2.1), (4.2.2), and (4.2.3) into (3.1.1) and

(3.2.1) and taking the ensemble averagéhefresulting equations, we obtain the
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governing equations for the mean flofreld, which is called the Reynolds

Averaged Navier Stokes (RANS) equations,

o(u a(u, 0 of{zy') 0 u'u;
<8t>+<uj> 8<xj>:_<,i> a<>:)>+g‘+<;> c<?xj>_ <8xj > (424)
aé:Q 0 (4.2.5)

where (z') is the mean viscous stress,(z]")=2u(oy)  with

By merging the viscous stress and the Reynolds stress together, i.e.,
<rii>:<ri}“>—p<u{u]>, and neglecting density flucitions near the free surface,

Equation 4.2.4 can be rewritten as follows:

o, 0 o(r;
) o2 L0, g, L0k 20

The main factor that is taken in@ccount by Lin (1998) in the mean flow
computation are the Reynolds stressl@,s;—(p><ui'u;>. This correlation had

been modelled by a non-linear eddy viscosity model (imprdved equations)

as described in detail in the following section.

4.2.2 Turbulence closure model
To solve the Reynolds equations foe tmean flow, one must relate Reynolds

stresses to the mean velocity. Extensivaeaech work has been done to seek the

proper closure model for the Reynolds stresses (e.g. Laehaér(1975) and
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Launder et al. (1972)). Liu et al., (1999) recommended th&-& model

approaches and definddand ¢ as follows:

k= %(u{u{} &= V<(Z—)l:j > (4.2.7)

4.2.3 Reynolds stress transport model
Launderet al., (1975) presented the general transport equations for the Reynolds

stresses which is considered the basic equation fdt the as follows:

L ) U022 (o o

ot OX, p OX,
o(uu’ Oy, e
_%[@l’u;u{»—v—gx‘('>]—<U,Uk> éxkj>_<ujuk>% (4.2.8)

p'( oy ou oy’ ou;
+—| —+—|)-2V(| ———
pOX;  OX OX, OX,

The left hand side of the equation calculates the rate of the change of turbulence
kinetic energy following the mean flofield. The first two terms on the right
hand side represent the total diffusion of Reynolds stress through the turbulent
pressure work, turbulent fluxes, and swmllar viscous force. The third row term
denotes the production of Reynolds stresstdube working of Reynolds stresses
against the mean flow gradients. Theurth term represents the interaction
between the pressure fluctuation and ride of strain of turbulence which does

not contribute to the total change tfrbulence energy but redistribute the
turbulence energy in different directions.€eTlast term is the tensor of viscous

energy dissipation rate; . The transport equation, (Equation 4.2.8), contains a

few higher order correlation terms, i.d@iffusion terms, pressure strain rate
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correlation term, and dissipation term.eThumerical solution to the Reynolds
stress transport model is computationally expensive, the applications of such
model are usually for small scale problems. Moreover, the difference among
many proposed closure models fore thliffusion and pressure strain rate
correlations terms also increases the uncertainties of the model (Lin, 1998).

For these reasons, Liat al., (1999) recommended th&—& model which
considers a simple model with them#ar accuracy of the Reynolds stress
transport model and less uncertainty of closure models. Details of the model and

the applied improvements are explained in the following section.

4.2.4 k- & model
In k—& model, instead of tracking Reynolds stress components through the

transport equations, the model solves only two transport equations for the
turbulence energy which characterizes the velocity scale of turbulence. The

transport equation fde can be easily derived from Equation 4.2.8 by letti#)g

ok ok 10 . , o(k e
E+<uj>a_xj:_;8_xj(<ujp>+p<ujk>_#%j>J_<uiuj>ﬁ_g (4.2.9)

The above equation is much simpler tlaquation 4.2.8 since the pressure strain
rate correlation term disappeared duthtvindices summation and the dissipation

term become a scalar. The diffusiordatissipation terms in Equation 4.2.9 can

be modelled by the gradient diffusion given the following equations (Lin, 1998),

a—k+<uj>a—k=i LARATLS —<u{u]>a<ui>—g (4.2.10)
ot ox;  ox; (\ oy OX; oX;

%5 1y V08 _ 0 (v, )% |, ¢ & ou) o &

at+<uj>axj = +v x +Cy, = 2v (o) ~t-Cu (4.2.11)

i &
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where, o,, o,, C, and C,  are empirical coefficients. These empirical

coefficients have been determined g®rforming many simple experiments; The
recommended values are (Rodi, 1980):

0, =1.0, 5, =1.3, C, =1.44, C,, =1.92 (4.2.12)

Since the Reynolds stresses are not calculated directly from the transport

equations, a closure model that relates the Reynolds stredses tmd the strain

rates of the mean flow is needed.

Conventionally, the linear isotropic eddysgosity model is used for this purpose
(Rodi, 1980). However, this model has the weakness from both the theoretical
point of view and the actual computatiomecause of the use of isotropic eddy
viscosity concept, the anisotropy of both viscosity and turbulence cannot be
realistically represented. In addition, because a linear relation is used, some
higher-order physical mechanisms between the Reynolds stresses and mean strain
rates are omitted. In the actual nuroalicomputation, the conventional eddy
viscosity model may fail under some extre cases such as the strong vorticial
motion. One possible cure for this problem is to employ a non-linear algebraic
Reynolds stress model with the enforegrnof realizability as proposed by Pope
(1975) and Shilet al. (1996). With the use of sueéhmodel, the simplicity of the

k—¢& model is retained and the accuraafythe modelling result is improved.
This turbulence closure model is used in this study.

Other even simpler turbulence models algo available. For example, the so-
called one-equation modeéd,model (Rodi, 1980), or ¢hPrandtl's mixing length

model can also be used to estimate R&gstresses. These models are easy to
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apply, but the accuracy of the modelling results is questionable for complex
flows. Furthermore, the coefficients usedthese models vary case by case that
increases the uncertainties when the model is applied to a new case.

4.2.4.1 Linear eddy viscosity model

The linear isotropic eddy viscosity model is applied to approximate the Reynolds
stresses using the information bfand ¢ as well as the strain rate of the mean
flow. The model specify the relation beten Reynolds stresses and the rates of

strain of the mean flow as follows
1! 2
(uup)=-2v, <aij>+§k5” (4.2.13)

in whichy, is the turbulent eddy viscosity, depending on the local state of

turbulence and can be approximated by,

k2
v =Cy— (4.2.14)

where C, is empirical coefficient €, = 0.09 , (Rodi, 1980)) and; is the

Kronecker delta.

4.2.5Improved k—& model
Because of the use of isotropic eddgcosity assumption, Equation 4.2.13 will

not represent the correct physics for atrigpic turbulence in complex turbulent
flows (Lin, 1998). To solve this problerRppe (1975), proposed a general closure
model, a non-linear algebraic stresgdal, which called the non-linear eddy
viscosity model. The function of the linearms of the strain rate of the mean
flow has been implemented as wadl the higher order terms. Stathal. (1996)

proposed set coefficients for all quadratic terms for this type of model and
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calibrated the coefficients using turbuldlow over a stepLin and Liu (1999),

adapted Shilet al. (1996)‘s approach to give:

(uu)=2ks, -C E(M+MJ

3 " e ox OX

o[, el 2etosts, |
ox o Oox o% 3 d% % (4.2.15)

K +C2[a<u,>6<uj>}a<u>a<u|>§_}
ox, ox 3 ox ox
+Cg(8<uk>8<uk>_}a<u|)a<ul)5”J

ox ox; 3 0% 0%

The values of the empirical coefficientg, C; and G are as follows:

C,=0.0054, =-0.0171, @=0.0027.

The details of the procedures to get all the previous empirical coefficients can be
found in Lin (1998).

Lin (1998) modified the empirical coefficiemin the following ways to satisfy the

realisable requirements, i.e.,

2( 1 1
e e Y o
* 3| 7.4+8,, 185.2- D

max (4.2.16)
c-__ 1 1
? 585+D2, ' °  370.4D2,
Where,SmaX:Emax M ,DmaX:E ma M (4.2.17)
g OX e X,

The adaption of above modification wdhsure the non-negativity of turbulence
velocity and bounded Reynolds stress. The employment of the non-linear

algebraic stress model can greatly improve the accuracy of numerical results
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because of the fulfilment ahore physical constraints. The non-linear algebraic
stress model captures most of physics described by the Reynolds stress transport
model but also retains the simple formkof ¢ model. For simplicity, the Lin and

Liu (1998) model included only the quaticaterms which represent most of the

non-linear anisotropy characteristics of turbulence.

4.3 Initial conditions
The initial conditions for the meanof can be based on the laboratory

measurements or analytical solutions.nhost cases, the initially quiet flow is
specified with the zero mean velocities and hydrostatic pressure. For the
turbulence field, the specification of initial condition requires more careful
treatment. Lin (1998) conducted nunoati experiments to specify the initial
condition for the turbulence flow. Accardy to these experiments, the initial

values ofk and ¢ suggested by Lin are as follows:

k=%uf with, u, =8¢ (4.3.18)
k2

&=Cy— with, v, =&v (4.3.19)
Vt

where, G is the wave celerity on the inflow bounda#y0.0025 andf = 0.1.

4.3.1 Boundary condition on solid boundary and free surface for mean flow
In the wave hydrodynamics study,ethmost common solid boundary is the

impermeable bottom which is generallatst. At the solid boundary, the fluid

velocity must be the same as that of the boundary itddlf\§ = Ui.
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In the 2-D BWNM, the free slip boundary condition is definéd,)=0 and

o{u,)

on

=0, where the subscripts and z, denote the outward normal direction

and two orthogonal tangential directio(lbzl, 2), respectively. The free slip

boundary condition which imposes less impact of boundary on the tangential
velocity component provides some accuragdocity information near the solid
boundary (Lin, 1998).

On the other hand, along the free aod the continuity of both normal and
tangential stress components are required. By neglecting the surface tension, the

dynamic boundary conditions are expressed as (Lin, 1998):

ou ou.  au
—-pD+2 n — , k4N =Sz_ 4.3.20
P+2u—r=% ﬂ[ n arkJ k ( )

where, §, and S, are the specific stress comporgetduced by air on the free

surface. The kinematic boundary conditiwhich describe the free surface motion

is expressed as,

§£+q§£:0 (4.3.21)
o ox

Using equation (4.3.20) may lead to thaurious oscillations of free surface as
observed and discussed by Nichoted aHirt (1971). In the 2-D BWNM, the
simpler boundary conditions othe free surface are usede., p=0 and

o{u,)

on

=0, these conditions neglect the aireeff and normal stress of fluid. The

numerical tests show that such boundary conditions produce rather accurate free
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surface information when a grid largdran the thickness of the free surface
boundary layer is used (Lin, 1998).

4.3.2 Boundary condition on solid boundary and free surfacefor k—¢ model

In principle, k becomes zero on the solid surface. However, in practical
computations, the grid size normallyncat adequately resolve the turbulent
boundary layer. Thus, the boundary conditions korand ¢ are generally
specified in the turbulent boundary layestead of right on the wall. In the
turbulent boundary layer the cross-stream shear stress dominates and remains a
constant. Invoking the boundary layer appmation, Liu and Lin (1997) derived

the following equation:

~ 6<u’u'> Ly 0? <u>

1=0 (4.3.22)
oy oy

with y being the coordinate normal tbe mean flow direction. By taking the
integration from the wall to the place toof the viscous sub layer, where the

viscous effect can be neglected, produce the following equation:

_<uv>‘y—y=_v% =%rw=uf (4.3.23)

Based on dimensional analysis the mealooiy gradient in this region can be

expressed as:

$=% (4.3.24)

with U, =, /% being the fractional velocity where, is the cross stream shear

stress on the wall arlé-0.41 being the von Karman constant (Lin, 1998).
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Integration equation 4.3.24 lead to the so-called logarithmic-law profile for the

streamwise velocity:
w_1 (cuy
_:Em E=Z (4.3.25)

where, E=9.0 for smooth wall (Lin,998). Because the dissipation rate is
approximately the same as the production iiagg, P = ¢, from equations 4.3.23

and 4.3.24 we have:

P:g:—<u'v’>%:k% (4:3.26)

From equation 4.2.13 the eddy viscositgan be obtained

=ku.y (4.3.27)

The eddy viscosity is proportional toetldistance from the wall in the turbulent

layer. Substituting equations 4.3.26 and 4.3.27 into equation 4.2.14 yields

u.
C

u

k =

(4.3.28)

Equations 4.3.26 and 4.3.28 constitute the boundary conditioksdod ¢ at the

computational point immediately adjatdn the solid boundary. The fractional
velocity can be found from equation 4.3.25 once the mean veI@c)iiyas been
calculated.

On the free surface, Lin (1998) assuntledt turbulence does not diffuse across

the free surface. Consequently, the normal fluk aind £ should vanish on the

free surface,
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6k_0 os

o 220 (4.3.29)
on on

4.3.3 Internal inflow boundary condition
The 2-D BWNM uses a new schemedpecify the inflow boundary condition

which was originally developed by Lind Liu (1999). The scheme is based on
the concept that any specific wave traga be generated by using a designed
mass source function for the equation of mass conservation in the internal flow
region.

The new scheme removes the difficultyspecifying incident waves through an
inflow boundary with the presence ofr@tg wave reflection as shown in the
Chapter 3 model tests (Section 3.6).

This method is very useful for a longuration simulation of coastal wave
dynamics where the wave reflection sgnificant. A wide range of waves
commonly met in field and used in the laboratory, i.e., linear wave, random wave,
Stokes wave, cnoidal wave and solitarywe/@an be generated. The new scheme
was compared with theories, Lin and Li®9B), and the accuracy is very good. It

is also demonstrated, from both thear@tiargument and numerical tests that the
reflected wave will not interfere witthe wave generation process using the
source function, which is an imparit consideration when doing lengthy
computations when reflected waves are present. Thus, this scheme is very suitable
to the case of wave overtopping over seawall structures.

4.3.3.1 Mathematical formulation

To generate a wave using a mass @@uthe conservation of mass equation

(Equation 3.2.2) is modified as follows:
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o) o) _
ax + & =3s(X,Y,t) (4.3.30)

where s(x, y,t) = nonzero mass source function within the source region.

In actual computations using the finite difference scheme, a rectangular source
region composed ofmxncells is applied. The relation between the source

function s(x, y,t) and the expected time histarf/free surface displacementt)

above the source region is as follows (Lin and Liu, 1999):

[ ——

j s(x, y,t)dQdt = chon(t)dt (4.3.31)

where, G = phase velocity of the target wave afdis the source region. The
factor 2 is used in the right sidef Equation 4.3.31 because the waves are
generated on both sides of the source region.

4.3.3.2 Linear wave

The linear wave theory was derived usthg concepts of two-dimensional ideal
fluid which consider a reasonable $tag point for ocean waves which are not
greatly influenced by viscosity, surfacenségon and turbulence. Details of linear
wave theory were explained earlier in Section (3.6.1).

Substituting Equation 3.6.11 into Equmti 4.3.31, the corresponding source
function can be derived

C"’A\H cos(wt) (4.3.33)

s(t) =

wherew is the wave frequency and A is the source region area.
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4.3.3.3 Irregular wave
An irregular wave train is representedtime model by a superposition of a finite

number of linear wave modes with differeviive height and wave frequency. For
a known energy spectrum of an irregulwave train, the inverse Fourier
transformation can be used to reconstthetwave train with a finite number of
wave modes. So, the random wave trainlmagenerated by superposing different

wave modes frone1l to n as follows:

s(t) = Z CQAHi sin(wt+6,) (4.3.34)

i=1

whered, is the phase angle of tiftwave modes.

4.3.3.4 Internal mass sour ce location and size
Several numerical experiments were asctédd by Lin and Liu (1999) using the

same source function at a different souegion. It is found that a source region
located about one third of the water depth from the still water surface level,
generates waves that best match tleom The placement of the source region
very close to the free surface generatesteeper wave, while the source region
very close to the bottom generates smaller wave. More details of the numerical
experiments can found in Lin and Liu (1999).

Additional numerical tests show that thengeated wave is insensitive to the size

of the source region, as long as the heajftthe source region is greater than one

to tenth of water depth.

Further extensive numerical experiments indicate that the optimal design of the
source region should satisfy the following rules of thumb (Lin and Liu, 1999):

e The width of the source region should be less 5% of the wave length.
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e The height of the source region shoulditeéhe range of 1/4 — 1/2 of the
water depth (Lin and Liu, 2000).
e The distance between the centre & #ource region and the still water
level should be in the range of 1/3 — 1/2 of the water depth.
e The source region should be at leag WAve length away from the open
boundary to avoid unwanted artificial reflection (Lin and Liu, 2000).
These rules have been followed ith mumerical simulations produced by 2-D

BWNM.

4.3.4 Open (Radiation) outflow boundary condition
The new scheme to specify the infllwundary condition, which was described

in Section 4.3.3, removes the difficulity specifying incident waves through an
inflow boundary condition with the presce of strong reflection. Only the open
(radiation) boundary condition is needed at the boundaries in the simulation to
allow the wave going out of the mputational domain. The open boundary

condition was described in Section 3.5.3.

4.4 sSummary of the governing and boundary conditions
eguations:
It is useful here to have a briefrsmary of the 2-D BWNM governing equations

as follows:
- The equations governing the mass and momentum conservation of the mean

flow are:

o) g (4.4.35)
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>6<ui> 1 o(p) o{zy) (4.4.36)

ot Ty a0 o

- The k—& model reads (Lin and Liu, 1998):

LIV S| TR L A W PLICH R (4.4.37)
otV ax  ox |\ oy X ox,

o€ o 0 || w o€ & o(u) g

iy === = Z . -C, =— 4.4.38

at +<u'>axj o (ag e [ (1) x (4:4:39)

- The initial turbulence model conditions are:

k =%uf with, u, =8¢ (4.3.39)
2

&=C, K with, v, =&v (4.3.40)
Vt

- The boundary conditions for mean flow are:

At solid boundary:

o) _
(u,)=0 and—_ == =0 (4.4.41)

At free surface:

8<urk>
p=0and———+~=0 (4.4.42)
on

- The boundary conditions for turbulence flow are:

At solid boundary:

ande=—(uv) (4.4.43)

At free surface:
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a—k=0 and%zo (4.4.44)
on on

4.5 Numerical implementation
In the numerical model, the RANS equati@ns solved using the finite difference

two-step projection method (Chorin9d8). The forward time difference method

is used to discretize the time derivatiVidne convection terms are discretized by
the combination of central differea method and upwind method (Hybrid
scheme). The central difference methoceimsployed to discretize the pressure
gradient terms and stress graditamns. The transport equations forand ¢ are
solved with similar methods. For further details on the numerical implementation,
readers are referred to Lin and Liu (1997, 1998).

In the following chapter, different cases of study have been investigated to

evaluate the performance of the 2-D BWNM.
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CHAPTERS

Model Testing

5.1 Introduction
The purpose of this chapter is to describe the evaluatiore gfettiormance of the

2-D BWNM. After the presentation of é¢hmathematical formulation and the
initial boundary condition of the 2-D BMM in the previous chapter, the
performance of the numerical model netalbe tested. Three main cases of study
have been studied to check the accuraficthe numerical model. The first case
shows the overflow without waves over tieal structures. Results of the average
discharge are compared with the well-knowgir equation. Secondly, the case of
linear wave overtopping over a sloping seawall is presented and the results are
compared with other analytical andbtaatory data. The third case studies
irregular wave overtopping of seawalls wdlopes in the range from 1:1 to 1:6.
The computed average discharge is coepavith the laboratory data collected
by Van der Meer and Janssen (199%] with the well-known overtopping design
formulae used for design. New formulae groposed for the case of irregular
wave overtopping over smooth slopedawall on the basis of a series of
numerical simulations. The chapter conckigéth a detailed discussion of these

cases and the performance of the 2-D BWNM.

5.2 Mesh setup
The aspect ratio ofix andAy is important issue closely related to the VOF free

surface tracking method. Normally, the aspect ratiaxohy = 1 is preferred (Lin

and Liu, 2000). However, for certain casesy, a small amplitude long wave with
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its horizontal length scale (characterizgdwave length) being much larger than
the vertical scale (characterized by walepth or wave height), to maintain an
aspect ratio of one is too expensive to be feasible. In suchrcasermally needs

to be order of magnitude greater thignto make the computation economical.
When a wave breaking problem is investigated, the requirement of the certain
aspect ratio is more stringent. Normaliywave breaks when the wave front slope
reaches tan (22= Ay/Ax (0.4) (Lin and Liu, 2000)If the aspect ratio ofx and

Ay is much larger than 1/0.4 = 2.5, awganay experience false breaking before it
actually breaks, following the samegament above. Therefore, for breaking
wave simulation, the aspect ratio shoblel smaller than or equal 2.5 to avoid
numerical inaccuracies due to false breaking (Lin and Liu, 2000).

For the mesh cells dimensionsx(andAy), the rules applied for the source region

that was explained in details in Chapter 4 (Section 4.3.3.4) are applied here also.

5.3 Overflow without waves at vertical seawall
If the water level rises above the cresteleof the structure, for example during

extreme storm surges, overflow occursaflls, sea water flows over the top of
the crest of the seawall. Design formulae used to calculate wave overtopping
assume that water in front of the structure to be below the crest level of the
structure. One can extrapolate for watarele at the crest of the structure, but
scale model tests for seawalls shothat the amount of overtopping is
overestimated by the existing formulae for zero freeboagdO)R (Blecket al.,

2000). On the other hand, the existingrialae for overflow (e.g. weir formulae)

do not take into account the effect of waves.

81



The case of overflow without waves at @dwl crested weir is studied first using
the 2-D BWNM. In this case the watervéd is above the crest level of the
structure and the freeboar® ) is negative. This is an introductory situation for
the case of combined wave overtoppiagd overflow which is presented and
discussed in the next chapter. Chatk and Morfett (1998) expressed the

discharge formula over a broad crested weir as follows:

3
G =1.705¢C, R [? (5.3.1)
where, R, is the overflow depth an@, is the discharge coefficient.

A number of empirical discharge rfaulae have been developed which

incorporate the value of,. It can be shown by dimensional analysis that
C,=f (&, %j where, Ris Reynolds number art is the weir height.

The problems of calibration.€. adjustingC, experimentally) become far greater
when the discharge is small. Under the®nditions, the effect of viscosity and
surface tension combine to bring about unstable, fluctuating flow conditions.

A number of empirical discharge rfaulae have been developed which

incorporateC, . In Chadwick and Morfett (1998) an equations @ are in the

form:

C, =0.848; (5.3.2)

C: =0.91+ 0.21&+ 0.2 R - 0.3 (5.3.3)
B, R +d,

where,B, is the weir width.
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free surface profile at tT=0
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Figure 5.3.1: The free surface profile for the overflow without wae( ). 0

Figure 5.3.1 gives the cross section @ #itructure and the water surface profile.
The water depth is 4.0m, weir width is 1.0m and the freebd&jdgnges from
0.0 to —0.8m. In total 400 cells are used inxiwrection with a cell size of 0.25m
and 80 cells in thg-direction with a cell size of 0.1nThe basic time step is 0.04s
and the total simulation time is 30s.

The comparison between discharge @taveir equation and the 2-D BWNM is
presented in Table 5.3.1 and Figure 5.3.2aft be seen from the Figure 5.3.2 that
the results produced from the 2-D BWNbbmpare very well with the weir
equation for small negative freeboard.r Freeboard less than -0.5m the 2-D
BWNM underpredicts the overflow discharge much as 1% to 12% compared to

the weir equation. This may be relatedhe uncertainty in discharge coefficient
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(C,) value. Another reason for the diffece between the weir equation and 2-D

BWNM discharge rates is that the iwequation is based on the Bernoulli
equation as a starting point. The actual flover a weir is complex, usually being
unsteady and involving viscous effects. These effects are not covered in the
Bernoulli equation. Another reason is teldto the numerical model accuracy in
calculating discharge volume due to megte. Using smaller mesh size will lead

to more accurate results.

Run No. R Oweir O2-D BWNM
[m] [m¥m’/s] [m¥m’/s]

W-1 0.0 0.000 0.000
W-2 -0.1 0.039 0.024
W-3 -0.2 0.114 0.127
W-4 -0.3 0.215 0.233
W-5 -0.4 0.341 0.340
W-6 -0.5 0.490 0.483
W-7 -0.6 0.662 0.626
W-8 -0.7 0.857 0.782
W-9 -0.8 1.075 0.938

Table 5.3.1: Comparison between 2-D BWNM and modified weir equation.

2.0
)
=
S = 1.5+ —l—broad-creasted wei—— 2-D NBWM
g a
£s
z E 1.0 1
o®
T E
Q>.) = 0 5 -
3 .
O-O * T T T 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Overflow Depth
(m)

Figure 5.3.2: Comparison between th® BWNM and the weir equation for the

case of overflow without waves.
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5.4 Linear wave overtopping at sloping seawalls
Saville (1955) collected extensive small-scale laboratory test data for wave

overtopping at sloping seawalls. The expents were based on regular waves
overtopping a sloping seawallith slopes of 1:3. Hwet al. (2000) summarised

this data and used it to test a numarimodel (AMAZON) which is based on the
non-linear shallow water (NLSW) equations. The profile of tested seawalls is
illustrated in Figure 5.4.3, whedg, ds, andR; represent water depth below SWL

at the seaward boundary, water depth WeRWL at the toe of the structure and
the crest level of the structure above SWL (freeboard).

Twenty cases of study cover a wide range of wave characteristics, positive
freeboard and water depths with 1grfiooth beach slope. The configuration and
the results for these runs are presentethainle 5.4.2 and also illustrated in Figure

5.4.4. The dimensionless discha@&vas defined by Het al. (2000) as:

S (5.4.4)

AR

where,q is the dimensional average overtopping dischagge,the gravitational

acceleration an#; is the significant wave height.
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Figure 5.4.3: Sketch explains the cadady of regular waves overtopping at

sloping seawalls.

To be consistent with the results produceddtal. (2000), the boundary wave

conditions were the same as specified byetal. (2000) and an average value of
Q was calculated during the fourth and fifth wave pefdodT <5).

The results produced with 2-D BWNM coamed well with the measured data as
shown in Figure 5.4.4. Table 5.4.2 stwodetails of each run and the output from
2-D BWNM model together with the baratory experiments and the AMAZON
results.

As measured by the sum of the modwiashe differences between the laboratory
and model results over the 20 caseB BWNM provides 12% improvement in
the performance of AMAZON. On puretheoretical grounds one would expect

the Navier-Stokes equations to providmare robust means for the simulation of

wave overtopping than the non-linear shallow water equations; the latter are
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derived on the assumption that the \eativelocity is much less that the
horizontal velocity, i.e. hydrostatic m®ure is assumed. This assumption is not

strictly applicable in the surf zone.

Run| SW d ds Re Hs T Q(10% [ Q(10°% | Q(10% []
No. | Slope | (m) (m) (m) (m) (s) | Amazon| Saville | 2-D BWNM
1 1:3 3.0| 0.75 050 0.95 4.73 39 66 46
2 1:3 3.0| 0.75 1.00 0.95 4.73 15 41 3
3 1:3 3.0| 150 050 0.95 4.73 81 64 72
4 1:3 3.0 150 1.00 0.95 4.73 24 36 25
5 1:3 40| 2.000 0.67 0.99 6.5 86 90 86
6 1:3 40| 0.75 050 1.08 7.98 64 60 66
7 1:3 45| 0.75 1.00 1.06 7.98 27 17 40
8 1:3 40| 0.75 150 1.08 7.98 11 4 4
9 1:3 40| 150 050 1.08 7.98 101 94 103
10 | 1:3 40| 150 1.00 1.08 7.98 53 40 48
11| 1:3 40| 150 150 1.08 7.98 24 8 33
12 | 1:3 6.0 1.00 0.67 1.20 128 90 91 115
13| 1:3 6.0 200 0.67 1.20 12/8 108 130 138§
14 | 1:3 6.0 200 133 120 128 4] 77 61
15| 1:3 6.0 200 200 120 128 7.5 25 30
16 | 1:3 6.0 200 267 120 12/8 0 11 11
17 | 1:1.5| 492 0.73 050 1.04 7.98 5( 49 63
18 | 1:1.5| 492 0.73 150 1.04 7.98 5.6 18 19
19 | 1:1.5| 4.17) 0.00 050 1.07 7.98 34 39 39.7
20 | 1:1.5| 4.17, 0.0f 100 1.07 7.98 8.9 20 13

Table 5.4.2: Comparison between BBWNM and AMAZON numerical models

with the laboratory measured dimensionless overtopping discharges.
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Figure 5.4.4. Comparison between ZBWWNM and AMAZON models with the
laboratory measured dimensionless overtopping discharges.
5.5 Irregular wave overtopping at sloping seawalls

5.5.1 Sea statesused in the 2-D BWNM tests
The irregular waves which are usedtie following model tests are generated

using the parameterised JONSWAP-spectrum (Carter, 1982):

E(f) =0.205—|§Tp*“f*5 er— 1.25541‘*4);/‘5 (5.5.5)
(-T,f -1
S=exp— - —5— (5.5.6)
20
where:

E(f) is frequency spectral density function.
0 =0.07for T f <1 ando=0.09for T f >1.

f is the wave frequency.

y is spectral enhancement factor.
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The JONSWAP spectrum is characterized by a parametshich is called the

peak enhancement parameter; this contr@ssharpness of the spectral peak. The
value of the peak enhancement parametéraf 3.3 is an average figure derived

by Hasselmann (1973). They found indivilwalues within the range of 1-6.
Detailed analysis of thesg values by Ochi (1979) showed that they have a
normal distribution with a mean 3.3 and a standard deviation of 0.79, i.e. 95%
between 1.75 and 4.85.

For linear waves the total energy densityjs twice the potential energy density

(Ep) of a wave,

pgH?
E =26, = (5.5.7)

Using Equations (4.3.34, 5.5.6 and 5.5@é)ghts of representative waves can be
estimated. Figure 5.5.5 shows anamwle of JONSWAP frequency spectral

density function with peak enhancement parameterl, 3.3 and 6.

3.0
2.5
=y =6.0

B‘ I —
= 2.0 y=3.3
c
3 _ —y=1.0
> e 15
o w
)
[
] 1.0 4

0.5

0.0 T "

0.10 0.15 0.20 0.25 0.30 0.35

Frequency

()
Figure 5.5.5: Relation between JONSP spectrum and wave frequencys(H
1.22m, T, = 3.80s and J= 5.0s).

89



Many cases of study with different sigo#int wave heights, peak and mean wave
periods are made to identify the numlzércomponents frequencies should be
used to well adequately represent @NSWAP spectrum. It is found from
reanalysis of the generated waves thaivben 35 to 45 frequencies are required

to present the JONSWAP spectrum well. Bietistical analysis of the generated
irregular wave gives the same input wave characterisgcsignificant wave
height, peak wave period and mean waegiod. The error between input and
generated significant wave heights, maad peak wave periods range from 5 to
10% in all cases. Examples of the generated irregular waves which used in the

following cases of study are shown in Figures 5.5.6 to 5.5.9.

12

10 .

P

water depth (i)
Jag]
|

I I I I 1 I I I
[m] 10 20 30 40 =1u] 50 Fa =0 =0
t (=ec)

Figure 5.5.6: Input irregufavave (JONSWAP spectrumsid 1.24m, T, = 4.43s,
Tm = 3.85s and &8.0m).
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Figure 5.5.7: Input irregufavave (JONSWAP spectrumsi# 1.40m, |, = 4.55s,
Tm=3.96s and &8.0m).
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Figure 5.5.8: Input irregular wave (JONSWAP spectrugw H.75m, | = 5.13s,
Tm=4.46s and &8.0m).
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Figure 5.5.9: Input irregufavave (JONSWAP spectrumsi# 2.34m, T, = 6.04s,
Tm=5.52s and &8.0m).
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5.5.2 Irregular wave overtopping over smooth sloped seawalls
Van der Meer and Janssen (1995) propastdf wave overtopping formulae for

irregular waves. They based their formataan extensive series of both small and
large scale model tests on the overtopping response of various seawalls. The
experiments were carried out in Delta flume of Delft Hydraulics laboratory. The
laboratory results of the irregular weaovertopping (JONSWAP spectrum) have
been used to evaluate the 2-D BWNM.r@d different slopes of smooth seawall

are studied 1:1, 1:2 and 1:4. Detailstloése different cases are described in the
following sections.

5.5.2.1 Comparison with laboratory data for seawallswith slope 1.1

In this case, a total of 16 tests have been run using 2-D BWNM. Figure 5.5.10
gives the cross section of the 1:1 slopedwall with the wave surface profile.
The water depth is 8.00m and the generated irregular wave accordance with

JONSWAP spectrum.

free surface profile at t/T=0

1 1 1 1 1 1 1 1 1
] 10 20 30 40 S0 &0 70 &0 S0 100
® (rn)

1 1 1 1 1 1 1
] 10 20 30 A0 S0 =18 w0 30 20 100

Figure 5.5.10: Cross section for seawaith slope 1:1 with the non-breaking

wave surface profile after 45 sec.
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Run No. R(m) Hs(m) To(S) Tn(S)
L-1 1.00 0.79 3.50 3.04
L-2 1.00 1.23 4.35 3.78
L-3 1.00 1.73 5.18 4.50
L-4 1.50 0.86 3.50 3.04
L-5 1.50 1.29 4.39 3.82
L-6 1.50 1.75 5.22 4.54
L-7 2.00 0.86 3.50 3.04
L-8 2.00 1.29 4.39 3.82
L-9 2.00 1.75 5.22 4.54
L-10 2.00 2.34 6.04 5.25
L-11 2.50 1.40 4.55 3.96
L-12 2.50 1.85 5.30 4.61
L-13 2.50 2.42 6.08 5.29
L-14 3.00 1.25 4.38 3.81
L-15 3.00 1.69 5.16 4.49
L-16 3.00 2.26 6.01 5.23

Table 5.5.3: Configuration of the small-scale tests of seawall with slope 1:1.

Details of the configuration for 16 runsegpresented in Table 5.5.3. In total 400
cells are used in thedirection with a cell size of 0.25m. In tlyedirection 120

cells are used with a cell size of 0.1m.

0.35

0.30 H2D-BWNM
OVan der Meer (1995)

0.25 A

0.20

0.15 A

q (m2/sec.)

0.10 A

Mean wave overtopping

0.05 A

0.00 +—L1, —
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L-11 L-12 L-13 L-14 L-15 L-16

Cases of study of slope 1:1

Figure 5.5.11: Comparison betweeaD BWNM and Laboratory measured

dimensional overtopping discharges.
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In Figure 5.5.11 the results from the gestith linear slopes are plotted together
with results given by Van der Meercdanssen (1995). The comparison between
the laboratory and 2-D BWNM overtomg discharge shows that there is good
agreement between the laboratory daththe numerical results. Analytically, the
average error between the laboratory warkl the numerical model is 17.5 %.
However, scale effects are an importpatameter in the laboratory work. Grune
(1982) studied examples of the scate@s on run up and overtopping. Here it
emerges that the run-up is generallygéa than predicted by commonly used
formulae such as Van der Megtral. (1992) and Owen (1980).

The same tendency is found by Van de Walleal. (2002) from full-scale
measurements on the Zeebrugge breakwater in Belgium. Van de &valle
(2002) compare full-scale run-up measurements with the measurements from
small-scale model tests performed witlave conditions reproducing the full-
scale conditions. They concluded thag ttifferences between the field and the
laboratory results are due to scaleeef§. In the 2D-BWNM simulations real
scale has been taken (scale 1:1) whilgdascale tests have been used in the
laboratory work. It is clear from figar5.5.11, that the significant difference
between the numerical and laboratory resodtsurs in L-3, L-10 and L-13. These
cases have the largest wave characterisgcsignificant wave height and mean
wave period. Scale has a strongestauoipin these cases. The average error
decreases to 10% with the exclusiontbése three cases. Other reasons are
referred to the uncertainty in laboratorprk, as well as numerical and modelling

errors in the computational model.
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Figure 5.5.12: Time history of the rrwlative overtopping volume for case L-10,
(Hs=2.34m, T, = 6.04s, T, = 5.25s and &8.0m).
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Figure 5.5.13: Time history of thmstantaneous overtopping volume,s(H
0.83m, T, = 5.00s, |, =3.60).

The overtopping rate is an important partanéo measure the effectiveness of the
sloped seawall. Figures 5.5.12 and 5.5.13 show the cumulative and instantaneous
overtopping volume calculated by thenmerical model. The non-linearity in the
overtopping mass is clear from the figures #mnsl is due to the irregular nature of

the waves as shown in Figures 5.5.55t6.8. Figure 5.5.13 shows that the
instantaneous overtopping volume is almmmtstant after the first 30 seconds. In
order to reduce the calculation time and hiédneeopportunity to investigate a large
range of cases the simulation time has lfimed as 180s, with a basic time step

of 0.04s. Unfortunately, Van der Meand Janssen (1995) did not give details

about the way their determined the computational time.
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Figure 5.5.14: Irregular wave overtoppiog a 1:1 sloping seawall from time 5 to
40s. (H=1.73m, [, =5.18s, T, = 4.5s and &8.0m).
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Figure 5.5.15: Irregular wave overtoppiog a 1:1 sloping seawall from time 45
to 80s. (H=1.73m, | = 5.18s, T, = 4.5s and &8.0m).
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One example of the propagation of theegular wave over the sloped seawall is
shown in Figures 5.5.14 and 5.5.15.eThput irregular wave characteristics
(JONSWAP spectrum) aresk 1.73m, | = 5.18s, |, = 4.5s and &8.0m. These
Figures demonstrate clearly the shapevave over the calculation period and
illustrate how the overtopping volume increases over time.

5.5.2.2 Comparison with laboratory data for seawallswith slope 1.2

In this case, a total of 16 tests have been run using 2-D BWNM. Figure 5.5.16
gives the cross section of the 1:2 slkbwpmeawall and the free surface profile.
Details of the configurations for 16 ruage presented in Table 5.5.4. The model

has the same mesh set-up, time step and the simulation time as the previous case.

free surface profile at t/T=0

L L L L L L L L L
a 10 =20 30 40 50 18] w0 80 S0 100
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L L L L L L L L
a 10 =20 30 40 50 18] w0 80 S0 100

Figure 5.5.16: Cross section for seawaith slope 1:2 with the non-breaking

wave surface profile after 85 sec.

Figure 5.5.17 suggests a similar conclusiothai of Figure 5.5.11. That is, the 2-
D BWNM gives results in close agreemevith the laboratory work by Van der
Meer and Janssen (1995). An averagerebetween the laboratory work and the

numerical model is 25%. It can betited from figure 5.5.16 that the most
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significant errors happened for cases with very small wave overtopping volumes
(K-5 and K-8). One reason could be numerical errors due to an inappropriate
mesh size. Using smaller mesh size dob&ave improved the accuracy of the

numerical model results.

Run No. R(m) Hs(m) To(S) Tn(S)
K-1 1.00 0.79 3.51 3.05
K-2 1.00 1.23 4.43 3.85
K-3 1.00 1.73 5.13 4.46
K-4 1.50 0.86 3.54 3.08
K-5 1.50 1.29 4.31 3.75
K-6 1.50 1.75 5.14 4.47
K-7 2.00 0.86 3.51 3.05
K-8 2.00 1.29 4.37 3.80
K-9 2.00 1.75 5.20 452
K-10 2.00 2.34 6.04 5.25
K-11 2.50 1.40 4.60 4.00
K-12 2.50 1.85 5.37 4.67
K-13 2.50 2.42 6.08 5.29
K-14 3.00 1.25 4.39 3.82
K-15 3.00 1.69 5.19 4,51
K-16 3.00 2.26 6.01 5.23

Table 5.5.4: Configuration of the small-scale tests of seawall with slope 1:2.
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Cases of study for slope 1:2

Figure 5.5.17: Comparison betwe2rD BWNM and Laboratory measured
dimensional overtopping discharges.

99



Figure 5.5.18 shows relationship tlween dimensionless freeboard and
dimensionless non-breaking wave overiogpof the 2-D BWNM, Van der Meer
and Janssen (1995)’'s design formulay&ion 2.2.3) and Van der Meer and
Janssen (1995)’s laboratory data for 1:1 and 1:2 sloped seawalls.

As measured by the sum of the modubfishe differences between the Van der
Meer and Janssen (1995)'s formwaad 2-D BWNM results, the 2-D BWNM
provides 15% improvement in the performance of laboratory data.

Significant differences between the nuroal and laboratory data could be
noticed in some cases especially vieary small volume of wave overtopping

(Q<0.00). This average error could be due the scale effects, the finite

duration of both the numerical simulation time and laboratory test time in dealing
with random wave, and the uncertaintylaoratory work, as well as numerical

rounding errors in the computational model.
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Figure 5.5.18: Comparison between 2-D BWNM results, Van der Meer’s formula
and Van der Meer’s laboratory datatasis for equation 2.1.3 (non-breaking

waves, > 2).
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5.5.2.3 Comparison with laboratory data for seawallswith slope 1:4
A total of 11 tests have been run us® BWNM. Figure 5.5.19 gives the cross

section of the 1:4 sloped seawall attd free surface profile. Details of the
configurations for 16 runs are presented in Table 5.5.5. The model has the same

mesh set-up, time step and the simulation time as the previous two cases of study.
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Figure 5.5.19: Cross section for seliwdth slope 1:4 with the breaking wave

surface profile after 20 sec.

a0 100

Run No. R(m) Hs (m) Tp(s) Tm(S)
J-1 1.00 0.78 3.53 3.07
J-2 1.00 1.22 4.38 3.81
J-3 1.00 1.7 5.19 451
J-4 1.50 1.26 4.38 3.81
J-5 1.50 1.75 5.16 4.49
J-6 1.50 2.35 6.03 5.24
J-7 2.00 1.26 4.38 3.81
J-8 2.00 1.71 5.16 4.49
J-9 2.00 2.29 4.88 4.24
J-10 3.00 1.72 5.19 451
J-11 3.00 2.32 6.07 5.28

Table 5.5.5: Configuration of the small-scale tests of seawall with slope 1:4
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The same tendency of slope 1:1 and slbj2ehas been found in slope 1:4 as can
seen in Figure 5.5.20. The resultstibé numerical model match well with the
laboratory work by Van der Meer and Janssen (1995). The average difference

between the laboratory work and the numerical model is 23%.

0.14

0.12 E2D-BWNM
OVan der Meer (1995)
0.10
0.08
0.06
0.04 -
0.02 ﬂ
0.00 : : 1 : ——

J-4-1  J-4-2  J-4-3 J-4-4 )45 J-4-6  J-4-7 J-4-8 J-4-9 J-4-10 J-4-11

Mean wave overtopping
q (mZ/sec.)

Cases of study for slope 1:4

Figure 5.5.20: Comparison betweehD BWNM and Laboratory measured

dimensional overtopping discharges.

Figure 5.5.21 presents the comparid@tween dimensionless wave overtopping

of 2-D BWNM, Van der Meer’s formula and the laboratory data used as the basis
for the Van der Meer and Janssen’s (1995) design formula for breaking wave.

As measured by the sum of the modubfighe differences between the Van der
Meer and Janssen (1995)'s formwaad 2-D BWNM results, the 2-D BWNM
provides 29% improvement in the performance of laboratory data.

Figure 5.5.21 has the same tendency of Figure 5.5.18 that there are significant
differences between the numerical anbtlolatory data in some cases. These

differences concentrate in vesynall volume of wave overtoppin@ < 0.0007).
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It can be referred here also to the same reasons explained before in Section
5.5.2.2, that scale effects, laboratory measurements accuracy, finite duration of
both the numerical simulation time and ledtory test time in dealing with the
random waves and the numerical rounding errors in the computational model

could be reasons of the significant differences.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
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1.0E-04+—
M Meer's Lab. data (1995)

A Meer's formula (Equation 2.2.1)

1.0E-05

Figure 5.5.21: Comparison between 2-D BWNM results, Van der Meer’s formula
and Van der Meer’s laboratory data as basis for equation 2.1.3 (breaking

waves, <2).

5.5.2.4 Comparison with the existing design formula for seawallswith slope
1:3and 1.4

As mentioned earlier in Chapter two (section 2.2), three empirical design
formulae for wave overtopping of a sim@ped seawall subjected to irregular
waves approaching normal to the sloge chosen here to validate the 2-D
BWNM:

e Owen (1980).

e Van der Meer and Janssen (1995).

e Hedges and Reis (1998).
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A total of 18 tests were run with a watdepth of 4.5m, dimensionless freeboard

(R) ranging from 0.3 to 1.0 and igelar breaking waves with a JONSWAP
spectrum with significant wave heiglid from 0.83 - 1.48m, mean wave period

(Tm) from 3.8-4.6s and peak wave peridd)(from 5.0 — 6.02s. In total 320 cells

are used in the-direction with a cell size of 0.25m. In tlyedirection 120 cells

are used with a cell size of 0.1m. Thesibaime step is 0.04s and the simulation
time is 90s. The value of in the JONSWAP spectrum is set to 3.3 and the
spectrum is represented by 40 component frequencies between 0.15 and 0.265 Hz.
Figure 5.5.22 gives the cross section & seawall with slope 1:3 and shows the

breaking wave surface.

free surface profile at time=0.0 sec.
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Figure 5.5.22: Cross section for seawaih slope 1:3 with the breaking wave

surface profile after 45 sec.

Figures 5.5.23 and 5.5.24 show thenparison between the results produced by
2-D BWNM and the empirical formulae for dimensionless freeboard (R) range

from 0.3 to 1.0. It can be seen frome figures that the empirical formulae

104



underestimate the amount of breakiwwgve overtopping under irregular wave
attack in comparison with the numerical results. The new numerical approach
goes some way towards addressing the issues raised by Beale{1998) and

Goda (2000), which were that if wave breaking in shallow water is not taken into
account, prediction methods develdpdor deep water will significantly
underestimate overtopping dischargehe difference between the numerical
results and empirical formulae increases when dimensionless freeboard decreases.
Schuttrumpf et al. (1998) reported that the amount of overtopping is
underestimated by the existing empiriéatmulae for small and zero freeboard

which supports the results of the 2-D BWNM (Figures 5.5.19 and 5.5.20).
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Figure 5.5.23: Comparison between BWNM and empirical design formulae

for irregular breaking wave overtopping over 1:3 sloped seawall.
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Figure 5.5.24: Comparison between BWNM and empirical design formulae

for irregular breaking wave overtopping over 1:4 sloped seawall.

The analysis of the results from theseesenf cases for two different slopes (1:3

and 1:4) under irregular breaking wave attagk € 2) are used to define the

following new suggested design formula:

g +tana
Q =
\/QH: o

=0.09exp- 4.1R)  (0.3<R<1Y) (5.5.8

An exponential form has used here foramto be consistent with Van der Meer’s
formulae. More details about Van der Meer’s formulae and its advantage could be
found in Chapter 2 (Section 2.2.1 and Section 2.2.2).

The comparison between the Equatiob.®.and Van der Meer’'s equation is
shown in Figure 5.5.25. The Figure supports the acknowledgement that widely
current overtopping design formulaare significantly underestimating the

overtopping discharge.
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Figure 5.5.25: Comparison of 2-D BWN8&liggested design formula and Van der
Meer and Janssen’s (1995) desigmfola for 1:3 and 1:4 sloped seawall
(0.3<R<1).

5.6 Discussion

This chapter introduces the results tbree cases. These results are used to
evaluate the performance of the 2-D BWNM by making a comparison between
the numerical results and laboratory data, other numerical models and empirical
design formulae used in the design purposes.

The first case of study did not includke effect of waves. It tested the
performance of the 2-D BWNM for the @aef negative freeboard without waves

over a vertical structure. The results flifferent negative freeboard for the range

(o< % < -0.20) were presented and comparedyweell with the weir equation.

Comparison of results between the numerical model and the weir equation
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indicates that 2-D BWNM gives betwedéft to 12% less overflow volume than
weir equation. Reasons for that difference were discussed in Section 5.3.

This case considers the basic for studying the case of wave overtopping and
overflow. The case of overtopping and overflow will be presented in Chapter 7.
Secondly, the case of wave overtopping dv8rand 1:1.5 smooth slope seawalls
was considered. In this case the linear wave boundary condition is chosen as an
inflow boundary condition. The averagkmensionless wave overtopping rates
were compared with other numericalodel results based on the non-linear
shallow wave equation (AMAZON) and withboratory data. The performance of

the new model is good and the analysis of the result has shown that the 2-D
BWNM can give a 12% improvement @vthe AMAZON numerical model as a
general guide.

Finally, the third case considered wave overtopping with irregular wave boundary
condition. This case is divided into two easthe first one studied three different
seawall slopes 1:1, 1:2 and 1:4. Theneuical results are compared with the
laboratory data collected by Van der Meer and Janssen (1995) which they used to
investigate their design formulador breaking and non-breaking wave
overtopping. The comparison for the naedking wave (slope 1:1 and 1:2) and
breaking wave (slope 1:4) gives goodemment between the numerical results
and the laboratory results. Analysistbé results for the three slopes gives 22%
difference between the numerical and labory work. This average error could

be due to the scale effects and the uncertainty in laboratory work.
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The second case studied seawall slopes of 1:3 and 1:4, for which the numerical
results were compared with the emgati design formulae of Owen (1980); Van

der Meer and Janssen (1995) and Hedges and Reis (1998). The comparison
highlights the same issue raised by Beslegl. (1998) and Goda (2000), that the
existing design formulae underestimate #mount of wave overtopping for small
freeboard.

The analysis of the 2-D BWNM resulisads to a new proposed design formula

for overtopping by breaking waves. The new design formula is as follows:

9 _vtana _ g g exf(- 4.1R) (0.3<R< 1) (5.5.9

Q=
\/gHi o

More validation with filed data is recommaed in the future work before the new
overtopping formula used for design purposes.

All the previous examples and the campon with other tested numerical
models, laboratory data and empiricainfmilae indicate that the numerical model
performs well. The next two chaptecencentrate on the cases which are not
covered completely by the current desfgrmulae. The 2-D BWNM is used as a
numerical flume to perform a series of experiments for small, zero and negative
freeboard conditions. Curves describing a functional relationship between
overtopping volume, freeboard and wavenditions are derived. The results are
used in conjunction with existing foutae to propose a unified set of design
equations to predict combined ovevilaand overtopping volumes for different

wave conditions.
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CHAPTER 6
Small Positive and Zero Freeboards

6.1 Introduction
The design crest height of a coastal cite is strongly dependent on the design

water level. If the structure crest level is less than the maximum run up the wave
overtopping occurs. Structures are normally designed to limit overtopping to a
predefined level (not necessary zero), under specified design conditions. Under
extreme storm conditions some wave ¢epping may be expected due to the
uncertainties in the estimation of incoming wave parameters and the design water
level. As a result wave overtopping is @mportant parameter for the design of
many coastal structures.

In the last years, the climate has beesnged and the global sea level rises. Tide-
gauge records, in some cases coverindaste100 years, show a general increase

in sea level of 240.9 mm per year (Hardy, 2003). dlexisting coastal structures
which were designed for certain watevels may now experience higher water
levels, wave frequently, and experieregreater amounts of wave overtopping,
due to reduced freeboard.

Existing overtopping design formulae do not account for the case of small
freeboard. Schuttrumget al. (2001) reported that the existing overtopping models
for average overtopping rates by Vam teer and Janssen (1995) and Van Gent
(1999) are not valid for the condition afmall and / or zero freeboard. For
example, the Van der Meer formular foreaking waves (Equation 2.2.1) is

applicable in the rang.0> R> 0.3 (Burchartch and Hughes, 2008)will be
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helpful for engineers to have new design formulae cover the case of small positive
until zero freeboard.

The performance of 2-D BWNM had been evaluated in the previous chapter. In
this chapter, the cases of small areto freeboard are presented. New design
formulae for these two cases is showithwtheir comparison with the recent
design formulae of Schuttrumgtfal. (2001).

Generally, The main purpose of this chapgelo study wave overtopping using 2-

D BWNM and to introduce new proposéamrmulae for designers that cover two

main cases:

e Small positive freeboar(0.3> R> 0.0).

e Zero freeboard R=0.0).

6.2 Wave overtopping at small positive freeboard under irregular
wave conditions
The case of irregular wave overtopping over sloped seawalls had been presented

in Chapter 5. Comparison betweencecdhted wave overtopping volume with
laboratory work of Van der Meer artinssen (1995) and with the well known
empirical design formulae of Owen (198®an der Meer and Janssen (1995) and
Hedges and Reis (1998) have been shown in Section 5.5.2 and good agreement

has been found. In this part of this chapter, further investigation is presented for

the case of small freeboard0.3>R> 0.0, which is outside the range of

applicability of engineering design formulae.
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Run Hs Tm Tp Rc & R
No- 1 (m) (s) (s) (m) ! [
1 1.22 3.8 5.00 0.1125 1.89 0.05
2 1.22 3.8 5.00 0.2250 1.89 0.10
3 1.22 3.8 5.00 0.3375] 1.89 0.15
4 1.22 3.8 5.00 0.4500 1.89 0.20
5 1.22 3.8 5.00 0.5625] 1.89 0.24
6 1.22 3.8 5.00 0.6750 1.89 0.29
7 1.39 4.0 5.00 0.1125] 1.77 0.05
8 1.39 4.0 5.00 0.2250 1.77 0.09
9 1.39 4.0 5.00 0.3375] 1.77 0.14
10 1.39 4.0 5.00 0.4500 1.77 0.18
11 1.39 4.0 5.00 0.5625 1.77 0.23
12 1.39 4.0 5.00 0.6750 1.77 0.27]
13 1.39 4.0 5.00 0.7875 1.77 0.32
14 1.24 3.9 5.00 0.1125 1.87 0.05
15 1.24 3.9 5.00 0.2250 1.87 0.10
16 1.24 3.9 5.00 0.3375 1.87 0.15
17 1.24 3.9 5.00 0.4500 1.87 0.19
18 1.24 3.9 5.00 0.5625 1.87 0.24
19 1.24 3.9 5.00 0.6750 1.87 0.29
20 0.83 3.6 5.00 0.1125 2.29 0.14
21 0.83 3.6 5.00 0.2250 2.29 0.27
22 1.48 4.6 6.02 0.1125 2.06 0.08
23 1.48 4.6 6.02 0.2250 2.06 0.15
24 1.48 4.6 6.02 0.3375 2.06 0.23
25 1.48 4.6 6.02 0.4500 2.06 0.30
26 0.72 4.7 7.30 0.0563 3.58 0.08
27 0.72 4.7 7.30 0.1125 3.58 0.16
28 0.72 4.7 7.30 0.1688 3.58 0.23

Table 6.2.1: Irregular wave characteristics used in the case of small freeboard

wave overtopping at 1:3 sloped seaw@l3> R> 0.0
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6.2.1 Wave overtopping at small positive freeboard under irregular wave

attack for 1:3 sloped seawall

A total of 28 tests were run using tBeD BWNM for 1:3 sloped seawall. The

setup of these tests is shown in Figurel6dhd in Table 6.2.1. As is clear from

Table 6.2.1, the wave characteristics dresen to cover wide range of significant

wave heights, mean and peak wavequsiand freeboard height. The runs cover

the breaking and non-breaking waves arel @ncentrated within the range of

small dimensionless freeboar(D.SZ R> O.(). In total 320 cells are used A

direction and 120 iry-direction. The cell size is 0.25m and 0.1m in x and y

directions. The JONSWAP spectrum is chosesimulate the nature of irregular

waves as described in details in Chapter 5 (Section 5.5.1).
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Figure 6.2.1: Definition sketch of éhcomputational domain and free water

surface used for the numerical sintida of wave overtopping at small

freeboard(0.3> R> 0.0 [Run no. 5 (Table 6.2.1): 4 1.22m, T, = 3.80s

and T, = 5.0s].
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Figure 6.2.2: Irregular wave overtopping @1i:3 sloping seawall from time 10 to
45s. [Run no. 5 (Table 6.2.1)sH 1.22m, T, = 3.80s and J= 5.0s].
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Figure 6.2.3: Irregular wave overtopping ®i.:3 sloping seawall from time 50 to
75s. [Run no. 5 (Table 6.2.1)sH 1.22m, T, = 3.80s and J= 5.0s].
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The duration of the calculation is 90 eads with an initial time step of 0.04s.
Reasons for choosing this time interwe¢re explained in Figures 5.5.12 and
5.5.13 for calculated cumulative andstantaneous overtopping volume. Figure
5.5.13 showed that the instantaneous oypging volume is almost constant after
the first 30 seconds. It was possiliéereduce the simulation time down to 90
seconds here for small positive, zero anglatige freeboards due to the continuity

of wave overtopping action during the calculation time.
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Figure 6.2.4: Plunging breaking waveoguces by 2-D BWNM on a 1:3 sloping
seawall [Run no. 5 (Table 6.2.1);s B#1.22m, T, = 3.80s, } = 5.0s and
&,=1.89].

Propagation of irregular waves is shoimrfFigures 6.2.2 and 6.2.3 for case study

No. (5), with H = 1.22m, T, = 3.80s, F = 5.00s and g£4.5m. The surf similarity

parameter £,) in this case is equal to 1.89. The plunging breaking is expected for

this value. The plunging breaker normally occurs on a relatively steep slope.
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Right before the wave plunges, the wave shape become asymmetric and the wave
front steepness and curls downward, formarigrge plunging jet. As this stage of
wave overturning, the flow motion remaiessentially irrotational. The numerical
model produces the plunging wave well as presented in Figure 6.2.4

Details of the irregular waves propagation over sloped seawall at small positive
freeboard can be found in Appendix A.

More details about comparison of the nuiwedrsolutions with experimental data

for both plunging and spilling breaking wes can be found in Lin (1998) and Lin
and Liu (1998) in terms of free surfacewtion, mean velocity components and
turbulence intensity.

Figure 6.2.5 shows the calculated d@@pping volume along with the time of
calculation. The non-linearity in the ovegrpong mass is clear in Figure 6.2.5 and

this due to the irregular nature of the waves.

tirme of history of overtopping mass
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Figure 6.2.5: Time history of the cwlative wave overtopping volume for 1:3

sloped seawall for small positive freebogfd3> R> 0.0. [Run no. 5 (Table

6.2.1): H=1.22m, T, = 3.80s and J= 5.0s].
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Comprehensive analysis has been dortedamvertopping volume calculated from
the 2-D BWNM. The cases of study habveen divided into breaking and non-

breaking waves according to the value of surf similarity paraietef Van der

Meer and Janssen (1995).

Figure 6.2.6 explains the relation betwabe dimensionless freeboard and the
dimensionless wave overtopping foreaking and non-breaking waves. The
exponential function is used here tofide the relation between dimensionless
overtopping discharge and dimensiasdreeboard. Owen (1980) was the first
who gave explicitly the exponential relationship. Most of other researches have
used this kind of relationship to describeir overtopping data as can be found in

details in Chapter 2 (Section 2.1).
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Figure 6.2.6: New design formulae foregular wave overtopping over 1:3 sloped
seawall for breaking and non-breaking waves for small freeboard

(0.3=2R>0.0.

118



The analysis of these data leadghte following suggested design formulae for

the case of small freeboa(ﬂ.sz R> O.C):

- Breaking waves{, < P Q=0.053exg- 2.0R) (6.2.1))

- Non-breaking wavess, > )2 Q=0.227 exj{— 0.9R) (6.2.2

R? (square of the Pearson product momentetation coefficient) is an indicator

that reveals how closely the estimated values for the formula trend line
correspond to the actual input data. The formula trend line is most reliable when
R? value is at or near 1. The’ Ralues for Equations (6.2.1) and (6.2.2) are 0.92

and 0.94 respectively.

6.2.2 Wave overtopping at small positive freeboard under irregular wave
attack for 1:4 sloped seawall

Table 6.2.2 shows wave characteristics, freeboard, surf similarity parameter and
dimensionless freeboard used for 1:4pgld seawall. Definition sketch of the
computational domain and the free waserface after 15 second are shown in
Figure 6.2.7 for case study No. (18), with#0.72, T, = 4.7, T, = 7.30 and water
depth = 4.5m. The same concept of pyas section is considered as these
characteristics are chosen to cover wialege of significant wave heights, mean

and peak wave periods and freeboardyttein the breaking and non-breaking

zone in small dimensionless freeboéﬁﬁz R> O.C).
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Figure 6.2.7: Definition sketch of éhcomputational domain and free water

surface used for the numerical simida of wave overtopping at small

freeboard(0.3> R> 0.0 [Run no. 18 (Table 6.2.2): + 0.72m, T, = 4.70s
and T, = 7.30s].
The JONSWAP spectrum is also chosewsitoulate the nature of irregular wave
with the same details as discussed in Section 6.2.1.
In total 400 cells were used ¥adirection and 120 iy-direction. The cell size is
0.25m and 0.1m in x and y directionEhe period of simulation was 90 second
with initial time step 0.04 second.
Figure 6.2.8 shows the overtopping mage rlculated by the numerical model.
The irregular nature of the waves affethe rate of wave overtopping which is

evident from the figure.
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Run Hs T Tp R & R
No. (m) (s) (s) (m) 4 [-]
1 1.22 3.8 5.00 0.1125 1.41 0.07
2 1.22 3.8 5.00 0.2250, 1.41 0.13
3 1.22 3.8 5.00 0.3375 1.41 0.20
4 1.22 3.8 5.00 0.4500] 1.41 0.26
5 1.39 4 5.00 0.1125 1.33 0.06
6 1.39 4 5.00 0.2250 1.33 0.12
7 1.39 4 5.00 0.3375 1.33 0.18
8 1.39 4 5.00 0.4500 1.33 0.24
9 1.48 4.6 6.02 0.1125 1.55 0.05
10 1.48 4.6 6.02 0.2250 1.55 0.10
11 1.48 4.6 6.02 0.3375 1.55 0.15
12 1.48 4.6 6.02 0.4500 1.55 0.20
13 1.48 4.6 6.02 0.5625 1.55 0.25
14 1.48 4.6 6.02 0.6750 1.55 0.29
15 0.81 4.1 5.73 0.1125 1.99 0.14
16 0.81 4.1 5.73 0.2250 1.99 0.28
17 0.72 4.7 7.30 0.0563 2.69 0.08
18 0.72 4.7 7.30 0.1125 2.69 0.16
19 0.72 4.7 7.30 0.1688 2.69 0.23
20 0.72 4.7 7.30 0.2250 2.69 0.31

Table 6.2.2: Irregular wave characteristics used in the case of small freeboard

wave overtopping at 1:4 sloped seaw@li3> R> 0.0).
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The analysis of the overtopping volumesults calculated from the 2-D BWNM

leads to the following formulae for breaking and non-breaking waves:

- Breaking waves{, < 2 Q=0.041lexg- 1.7R) (6.2.3

- Non-breaking wavess, > )2 Q=0.229exg- 0.9R) (6.2.4)

The R values for Equations (6.2.3) and (6.2.4) are 0.85 and 0.63 as shown in
Figure 6.2.9. The values of’Rire less than calculated for slope 1:3 (Figure
6.2.6). The decreasing in*Ralues is due to the decreasing in surf similarity

parameter valuesé(). As shown in Tables 6.2.1 and 6.2.2, the valueg of

ranges from 1.33 to 1.55 in slope 1:4il@hn slope 1:3 ranges from 1.77 to 1.89.

The decrease in surf similarity parameté&y)(leads to more wave breaking which

affect directly the amount of wave overtopping. These give more scatter to the

dimensionless wave overtopping which reduced the value$ of R

6.3 Wave overtopping at zero freeboard under irregular wave
condition in breaking and non-breaking zone
The case of zero freeboard has not receiadh attention. Most of the existing

formulae for wave overtopping do not aoob for the case of zero freeboard.
Schittrumpf (2001) conducted maddeests with zero freeboard {F0) and

without overtopping (R*Rnay) and derived the following formulae:

q R
- =0.038 —b 2 6.2.6
Q TR - exr{ RJ,Z%) Em < (6.2.6)
q 0.160 R
Q= =(0.096- Yexp —b E>2 (6.2.7)
\2gH? & FE ,2%}
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with: R, », =&, xH = run-up height exceeded by 2% of the incident waves.

More details about Schittrumpf (2001smulae and theirs goodness of fit were
presented in Chapter 2 (Section 2.8). Schiitpf (2001)’s is used here to validate
the 2-D BWNM results for the case of zero freeboard.

A series of cases has been perfamsing the 2-D BWNM for 1:3 and 1:4
sloped seawall, for both breaking andn-breaking irregular waves to obtain
average overtopping rates for the casezefo freeboard. Details of the wave
characteristics are shown in Table 6.3GNSWAP spectrum is chosen also here
to present the irregular wave. Figure 6Bpresents the computational domain of
1:3 sloped seawall and the free waterfaze at time = 5.0s. in the numerical
simulation. The number of cells ¥direction is 320 cells with cell size = 0.25 m
and 120 cells iry-direction with cell size = 0.1 nwith water depth = 4.5m. The
duration of the simulation was 90 secondih an initial time step of 0.04

seconds.

Run No. H Tm Tp

(m) (s) (s)
1 0.56 3.50 5.06
2 0.72 4.70 7.30
3 0.80 4.70 7.20
4 0.81 4.10 5.73
5 0.82 3.60 5.00
6 0.83 3.60 5.00
7 0.83 3.70 5.00
8 1.22 3.80 5.00
9 1.23 3.90 5.00
10 1.24 3.90 5.00
11 1.39 4.00 5.00
12 1.48 4.60 6.02

Table 6.3.3: Irregular wave characteristics used in case of zero freeboard.
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Figure 6.3.10: Definition sketch of éhcomputational domain and free water
surface used for the numerical simulation of wave overtopping at zero
freeboard. [Run no. 6 (Table 6.3.3) #0.83m, T, = 3.60s and J=5.00s].

The free surface profile ovéhe time of calculation is shown in Figures 6.3.11

and 6.3.12. The surf similarity parametét, ) in this case is equal to 1.715. The

plunging breaking is expected for thialue. The numerical model produces the
plunging wave well as presented in Fig6r8.13. Details of the irregular waves

propagation over sloped seawall at zero freeboard can be found in Appendix B.
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Figure 6.3.13: Details of breaking free sué profile [Run no6 (Table 6.3.3): H
=0.83m, T, = 3.60s, | =5.00s, and5, =1.89].

Figure 6.3.14 presents the overtopping ratdach is considered an important
parameter in wave overtopping phenomena. As before the unsteady volume of the
overtopping is clear from this figur@&he comparison between the 2-D BWNM
dimensionless overtopping dischasg with the formulae presented by
Schattrumpf (2001) formulae is shown Figure 6.3.15. This shows a good
agreement between the numerical modetl Schuttrumpf's formulae in most
cases. The average differences betweenenical and laboratory results are 16%.
However, Figure 6.3.15 could also be interpreted as showing the model

consistently over predicts observations for larger overtopping. This could be due
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to the measurement uncertaintiesthe volume of wave overtopping in the

laboratory work.
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Figure 6.3.14: Time history of the we cumulative overtopping volume for 1:3
sloped seawall for zero freebogRlun no. 6 (Table 6.3.3): 4+ 0.83m, T, =
3.60s and J=5.00s].
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6.3.1 New design formulae for zero freeboard under irregular wave attack
for sloped seawall in the breaking and non-breaking zone

The relation between the surf similariparameter and the dimensionless wave
overtopping is shown in Figure 6.3.16tme breaking and non-breaking zone. It
can be concluded from the Figure that ¢éhisra strong relation between the wave
overtopping and the surf similarity pamater. The wave overtopping is increased
with the increased surf similarity aneter in both breaking and non-breaking

cases.

00 05 10 15 20 25 3.0 35 40

1.0E+00 | | | | | | |
+ non-breaking
m  breaking
Non breaking equation .
Breaking equation 3 ¢
C 1.0E-01-
j
1.0E-02

Figure 6.3.16: Relation betweetdimensionless wave overtopping and surf

similarity parameter at zero freeboard at sloped seawall
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More analysis for the numerical resultshmeen done and this analysis leads to a
new suggested design formulae for wavertnpping at zero freeboard of 1:3 and
1:4 sloped smooth seawall under irregular wave attacks.

These equations are illustrated in Figudes17 and 6.3.18. These formulae give
exponential relation between dimerdess wave overtopping and wave

characteristicsHs, Tp) and seawall slope (tan) and are written as following:

| S
- Breaking wavesd, < P Q=0.20exp — 2.5%— (6.3.8)
ana
: NES
- Non-breaking wavesi{ > )2 Q=0.83exp - 3.2%— (6.3.9)
ana

R? (square of the Pearson product moneantelation coefficient) values for both
equations are 0.83, indicating that Equations (6.3.8) and (6.3.9) are a good fit to
the data.

Generally, there is shortage of laborgtdata for the case of zero freeboard. The
suggested formulae should be validateidgi$aboratory, field or other numerical

model data before being used for design purposes.
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Figure 6.3.17: Wave overtopping at zémreeboard for breaking waves at 1:3 and

1:4 sloped seawall.
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Figure 6.3.18: Wave overtopping at zémeeboard for non-breaking waves at 1:3
and 1:4 sloped seawall.
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6.4 Summary
This chapter concentrated in two maiarts which are not covered by any design

formulae in recent times. The two parts are:

1- Small positive freeboa(.3> R> 0.0.

2- Zero freeboar@R=10.0).

Using numerical simulation the casesboéaking and non-breaking wave attack

on a smooth sloped seawall have beendistl. The dimensionless freeboard and
wave overtopping of Van der Meer andhgsen (1995) have been used to extend
existing formulae. Also, the surf simiigr parameter used by Van der Meer and
Janssen (1995) has been used to define the breaking and non-breaking zone. The
rationale behind Van der Meer's definitions can be found in the literature review,
Chapter (2).

In the following chapter the case ofestopping and overflow for smooth sloped
seawalls under irregular breaking and non-breaking wave attack is studied. The

results are used to define new design formulae.
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CHAPTER 7
Wave Overtopping and Overflow

7.1 Introduction
In some cases, especially during stormafer levels can rise above the crest

level. In these cases, overflow may atsur in addition to wave overtopping.
This phenomenon may cause great damagleet@oastal structures. On the other
hand, existing formulae for overflow (e.g. wBrmulae) do not take into account
the effect of waves. The case of wave overtopping and overflow for smooth
sloped seawalls under irregular wave atteckresented in this chapter and the

output results are used to define new design formulae.

7.2 Wave overtopping and overflow
During storm surges seawalls are exposewaves. Depending on the crest level

of the structure wave overtopping caocur. The amount of overtopping water
increases when the water level risegshd water level rises above the crest level

of the structure, for example during ettre storm surges, flood water is not only
caused by the wave overtopping action, but also by overflow.

On the other hand, global climate has been changed during the last years and the
mean water levels have increased all over the world. For example tide-gauge
records, in some cases covering the 186 years, show a general increase in sea
level of 2.4-0.9 mm per year (Hardy, 2003). Existing coastal structures that have
not been designed to account for twgdl be more vulnerable to combined
overflow and overtopping. It therefore impamt to be able to predict flood water

volumes for these structures.
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There is currently no guidance on estimg these volumes. Hence, the case of
combined wave overtopping and overfléov different sloped seawalls has been
studied using the two-dimensional ebking wave numerical model (2-D
BWNM).

The structure of this chapter is as fell First, overtopping and overflow due to
irregular breaking waves on three difiat seawall slopes 1:3, 1:4 and 1:6
(Sections 7.2.1, 7.2.2 and 7.2.3 iggence). Then, the case of overtopping and
overflow due to irregular non-breaking ves on two different seawall slopes 1:3
and 1:4 is investigated (Sections 7.2.4 &@®R.5 in sequence). Finally, a synthesis
of results is presented in Sectigh3 accompanying with suggested design

formulae.

7.2.1 Wave overtopping and overflow under irregular breaking wave attack
for 1.3 sloped seawall

A series tests were performed for k18ped seawall using the two-dimensional
breaking wave numerical model (2-D BWMI). Figure 7.2.1 presents the cross
section and the water surface profile at 5s. The water depth ranges from 4.5m to
5.75m. The generated JONSWAP spectreimaracteristics associated with the
dimensional and dimensionless freeboard are shown in Table 7.2.1. The wave
characteristics are chosen in the breakinge area to achieve a surf similarity

parameter of less than Z (< ).24n total, 320 cells were used in the x-direction

with a cell size of 0.25m. In the y-diremti 120 cells are used with a cell size of
0.1m. The initial time step is 0.04 second and the duration of calculation is 90

seconds.
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Figure 7.2.1: Cross section and free acef profile at t=5s for breaking waves

overtopping and overflow over 1:3 slopselaawall. [Run no. 12 (Table 7.2.1):
Hs=1.24m, T, = 3.90s and J= 5.00s].

Run Hs Tm To Rc R
No. (m) (s) (s) (m) -]
1 1.22 3.80 5.00 -0.061 -0.027
2 1.22 3.80 5.00 -0.122 -0.053
3 1.22 3.80 5.00 -0.244 -0.104
4 1.39 4.00 5.00 -0.278 -0.113
5 1.22 3.80 5.00 -0.366 -0.159
6 1.22 3.80 5.00 -0.488 -0.217
7 1.39 4.00 5.00 -0.556 -0.226
8 1.22 3.80 5.00 -0.610 -0.265
9 1.24 3.90 5.00 -0.620 -0.267
10 1.22 3.80 5.00 -0.732 -0.318
11 1.22 3.80 5.00 -0.854 -0.371
12 1.24 3.90 5.00 -0.868 -0.374
13 1.22 3.80 5.00 -0.976 -0.424
14 1.22 3.80 5.00 -1.098 -0.477
15 1.22 3.80 5.00 -1.220 -0.53(

Table 7.2.1: Irregular breaking wave characteristics and dimension and
dimensionless freeboard for the casavafe overtopping and overflow over 1:3

sloped seawall.
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Figure 7.2.2: Time history of curaiive breaking waves overtopping and
overflow volume for 1:3 sloped seawall [Run no. 12 (Table 7.2.1)=H
1.24m, T, = 3.90s and J= 5.00s].

The time history of wave overtopping and overflow volume is shown in Figure
7.2.2. The flat spots in Figure 7.2.2pp&n when no overtopping and overflow is
occurring. This happens because of thassage of a wave trough takes the
instantaneous water level at the structbedow its crest. This is an important
difference to the case of overflow onljjhe simulation of wave overtopping and
overflow over the 1:3 sloped seawallsisown in Figures 7.2.3 and 7.2.4. These
figures show how the wave propagates towards the seawall. The free surface

profile during time of simulation is shown in these figures every 5 seconds.
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Figure 7.2.3: Breaking waves overtopgiand overflow on 1:3 slope seawall
from time 10.0 to 45.0s. [Run no. 12 (Table 7.2.19=HL.24m, T, = 3.90s
and T, = 5.00s].
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Figure 7.2.4. Breaking waves overtopgiand overflow on 1:3 slope seawall
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and T, = 5.00s].
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Figure 7.2.5: Comparison between wequation and 2-D BWNM for irregular

breaking waves on a 1:3 sloped seawall.

There is shortage of field, laboratooy numerical data for the case of small
negative freeboard. So, 2-D BWNM resudtiee compared with results obtained
from the well-known weir equation ash@vn in Figure 7.2.5. Chadwick and
Morfett (1998) presented formula that expresses the discharge over a sharp edged

weir as follows:

2 3
i =§cd,/2g\Rc\2 (7.2.1)
where R, is the overflow depth an@, is the discharge coefficient.

The comparison shows some differenbesveen the two results. The difference

decreases as the magnitude of the freeboRrd,increases. The difference is

expected, as the weir equation does imatude the effect of waves. As the

magnitude of the freeboardR., increases, the effect of the waves reduces and the
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results converge to those obtained fromweir equation. This was also indicated
in Chapter 5 (Section 5.3) when the casearflow without waves presented. In
the case of overflow without waves the overflow volumes of 2-D BWNM were in

very good agreement with the weir equation as shown in Figure 5.3.2.

7.2.2 Wave overtopping and overflow under irregular breaking wave attack
for 1:4 sloped seawall

Figure 7.2.6 presents the cross section and the water surface profile at 10s. for 1:4
sloped seawall in the breaking zone. The water depth ranges from 4.5 to 5.6m.
The generated JONSWAP spectrum charaties associated with the dimension

and dimensionless freeboard are showtabie 7.2.2. Number of cells in the x-
direction increased to 400 with a celtesiof 0.25m and the duration of calculation

is increased 90 seconds. The ratewdrtopping and overflow volume calculated

by the numerical model is shown in Figur@.7. The flat spots is noticed also in
Figure 7.2.7 which are happened wheromertopping and overflow is occurring.

This happens because of the passage of a wave trough takes the instantaneous

water level at the structure below its crest.

free surface profile at t.T=0
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Figure 7.2.6: Cross section and freefate profile at t=10s for the breaking
waves overtopping over 1:4 slopeebwall [Run no. 11 (Table 7.2.2) H
1.22m, T, = 3.80s and J= 5.00s].
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Run He Tm Tp Rc R
No- (m) (s) (s) (m) [
1 1.22 3.80 5.00 -0.061 -0.035
2 1.22 3.80 5.00 -0.122 -0.071
3 1.48 4.60 6.02 -0.296 -0.129
4 1.22 3.80 5.00 -0.244 -0.141
5 0.83 3.70 5.00 -0.249 -0.175
6 1.22 3.80 5.00 -0.366 -0.217
7 1.22 3.80 5.00 -0.488 -0.283
8 1.22 3.80 5.00 -0.610 -0.353
9 1.48 4.60 6.02 -0.888 -0.388
10 1.22 3.80 5.00 -0.732 -0.424
11 1.22 3.80 5.00 -0.854 -0.494
12 0.83 3.70 5.00 -0.747 -0.524
13 1.22 3.80 5.00 -0.976 -0.56¢
14 1.22 3.80 5.00 -1.098 -0.63¢

Table 7.2.2: Irregular breaking wave characteristics and the dimension and
dimensionless freeboard for the case of wave overtopping and overflow over 1:4

sloped seawall.

time of history of overtopping mass
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Figure 7.2.7: Time history of cumulatisbreaking waves overtopping volume for
1:4 sloped seawall [Run no. 11 (Table 7.2.29=HL.22m, T, = 3.80s and J=
5.00s].
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Figure 7.2.8: Breaking waves overtopgiand overflow on 1:4 slope seawall
from time 5.0 to 40.0s. [Run no. 11 (Table 7.2.2)=H.22m, T, = 3.80s and
T, = 5.00s].

143



£l
OWNED
! |
| I S |

' ' '
[m] 10 =20 =0 A0 =0 =0 Foa =0 20 100

12
10

1
OKNLDD
J

' ' '
[m] 10 =20 =0 40 =0 =0 o =0 20 100

1=
10

1
ON OO
j
I I |

12
10

u

1

oKD

j
| I I I |

12
10

i

U
ON D
! |
I I |

12
10

u

U
ON &0
s |

1=
10

il

y|
OWN @
j
I |

Figure 7.2.9: Breaking waves overtopgiand overflow on 1:4 slope seawall
from time 45.0 to 80.0s. [Run no. 11 (Table 7.2.2)=HL.22m, T, = 3.80s
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Figures 7.2.8 and 7.2.9 present thawdation of overtopping and overflow over
1:4 slope seawall. The free surface isgented during the numerical simulation
time with time step 5.0 second. .

Figure 7.2.10 shows the analogous set oftgato Figure 7.2.5. The difference

between the numerical results and weiagpn decreases as the magnitude of the

freeboard,R. increases.
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Figure 7.2.10: Comparison betweenimexjuation and 2-D BWNM for irregular

breaking waves on a 1:4 sloped seawall.
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7.2.3 Wave overtopping and overflow under irregular breaking wave attack
for 1.6 sloped seawall

Series tests are performed for 1:6 slopedwall in the breaking zone using the
two-dimensional breaking wave nunwai model (2-D BWNM). Figure 7.2.11
presents the cross section and the water surface profile at 5s. The water depth
ranges from 4.5 to 5.70m. The JONSP spectrum characteristics associated
with the dimensional and dimensionlessetpoard are shown in Table 7.2.3. The
wave characteristics are chosen in the breaking zone area to achieve the surf

similarity is less than 24, < R In total 480 cells used in the x-direction with a

cell size of 0.25m and 120 cells in thealiyection with a cell size of 0.1m. The

initial time step is 0.04 second and the duration of calculation is 90 seconds.
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0 1 = 1 1 1
D 20 40 B0 =l 100 120
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i -
2 -
0 1 1
] 20 40 G0 a0 100 120

¥ ()
Figure 7.2.11: Cross section and free surfaodile at t = 5.0s for breaking waves
overtopping and overflow over 1:6 slopselaawall. [Run no. 12 (Table 7.2.3):
Hs=1.22m, T, = 3.80s and J= 5.00s].
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Run He Tm Ty Rc R
No- (m) (s) (s) (m) [
1 0.56 3.50 5.06 -0.056 -0.071
2 1.22 3.80 5.00 -0.061 -0.053
3 1.22 3.80 5.00 -0.122 -0.106
4 1.22 3.80 5.00 -0.244 -0.217
5 0.8 4.70 7.20 -0.320| -0.239
6 1.22 3.80 5.00 -0.366 -0.3189
7 1.22 3.80 5.00 -0.488 -0.424
8 0.56 3.50 5.06 -0.560 -0.71(0
9 1.22 3.80 5.00 -0.610 -0.53(
10 0.8 4.70 7.20 -0.640 -0.477
11 1.22 3.80 5.00 -0.732 -0.63¢
12 1.22 3.80 5.00 -0.854 -0.742

Table 7.2.3: Irregular breaking wave characteristics and the dimension and
dimensionless freeboard for the casavate overtopping and overflow over 1:6

sloped seawall.

time of history of overtopping mass
15':' T T T T T T T T T
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0 10 20 30 40 a0 B0 70 30 =1 100

t (sec)

Figure 7.2.12: Time history of owlative breaking waves overtopping and
overflow volume for 1:6 sloped seawall [Run no. 12 (Table 7.2.3)=H
1.22m, T, = 3.80s and J= 5.00s].
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Figure 7.2.14: Breaking wave overtopgi and overflow on 1:6 slope seawall
from time 45.0 to 80.0s. [Run no. 12 (Table 7.2.3)=HL.22m, T, = 3.80s
and T, = 5.00s].
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To demonstrate the accumulation of teravolume, the rate of combined

overtopping and overflow is calculateddapresented in Figure 7.2.12. The flat
spots in Figure 7.2.12 happen when no overtopping and overflow is occurring.

The snapshots from the simulation frétan no. 12 are shown in Figures 7.2.13
and 7.2.14.

Figure 7.2.15 shows the comparisonween the 2-D BWNM results and weir

equation and indicates similar trendsttose found for seawalls slopes 1:3 and

1:4.
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Figure 7.2.15: Comparison between waguation and 2-D BWNM for irregular

breaking waves on a 1:6 sloped seawall.
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7.2.4 Wave overtopping and over flow under irregular non-breaking wave
attack for 1:3 sloped seawall

A further series of tests were perfued for 1:3 sloped seawall. The JONSWAP
spectrum characteristics associated witie dimensional and dimensionless
freeboard are shown in Table 7.2.4. Fegi.2.16 presents the cross section and
the water surface profile at 5s. The wave characteristics are chosen to achieve in

the non-breaking waves by ensuring the surf similarity is more thap 2 (). 2

The mesh setup is the same as for caseaivall with slope 1:3 (Section 7.2.1).

The initial time step is 0.04 seconddathe duration of the simulation is 90

seconds.
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Figure 7.2.16: Cross section and freefaee profile at t=5s for non-breaking
wave overtopping and overflow over Is®bped seawall. [Run no. 10 (Table
7.2.4): H=0.80m, T, = 7.20s and J= 4.70s].
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Run He Tm Ty Rc R
No- (m) (s) (s) (m) [
1 1.48 4.60 6.02 -0.148 -0.1
2 0.80 4.70 7.20 -0.160 -0.2
3 0.80 4.70 7.20 -0.240 -0.3
4 0.80 4.70 7.20 -0.320 -0.4
5 0.56 3.50 5.06 -0.392 -0.7
6 0.80 4.70 7.20 -0.480 -0.6
7 0.56 3.50 5.06 -0.504 -0.9
8 0.80 4.70 7.20 -0.640 -0.8
9 1.48 4.60 6.02 -0.740 -0.5
10 0.80 4.70 7.20 -0.800 -1.0

Table 7.2.4: Irregular non-breaking wave characteristics, dimension and
dimensionless freeboard for the casavate overtopping and overflow over 1:3

sloped seawall.

time of history of overtopping mass
1"‘1D T T T T T T T T T
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1] 10 20 30 40 50 60 70 a0 90

t (sec)

Figure 7.2.17: Time history of the mulative non-breaking wave overtopping and
overflow volume at a 1:3 sloped sedlv [Run no. 10 (Table 7.2.4): H
0.80m, T, = 7.20s and J= 4.70s].
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Figure 7.2.17 represents the relation between cumulative overtopping volume and
time of calculation. The non-linearity ha&viour of irregular waves can be
noticed. The flat spots in Figure 7.2.4d@ppen when no overtopping and overflow

is occurring which is an important difference to the case of overflow only.

Figures 7.2.18 and 7.2.19 explain thegagation of non-breaking wave over the
simulation period. The figures preseinee surface profile of irregular wave
during time of simulation.

The overtopping and overflow rate @&D BWNM is compared with weir
equation as shown in Figure 7.2.20. Figti220 indicates similar trends to those
shown in Figures 7.2.5, 7.2.10 and 7.2.15 for breaking waves on 1:3, 1:4 and 1:6
sloped seawalls respectively. There are significant differences between the two

results. The difference decreases as the magnitude of the freeRgartreases.

As explained before, this difference is expected, as the weir equation does not

include the effect of waves.
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Figure 7.2.18: Wave overtopping andediow on 1:3 slope seawall in non-
breaking zone from time 10.0 to 45.0s. [Run no. 10 (Table 7.2:4):0:80m,
Tm=7.20s and J= 4.70s].
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Figure 7.2.19: Wave overtopping andeolow on 1:3 slope seawall in
breaking zone from time 50.0 to 85.0s. [Run no. 10 (Table 7.2:4)0:80m,

Tm=7.20s and J= 4.70s].
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Figure 7.2.20: Comparison betweenimeguation and 2-D BWNM for irregular

non-breaking waves on a 1:3 sloped seawall.

7.2.5 Wave overtopping and overflow under irregular non-breaking wave
attack for 1:4 sloped seawall

Cross section and water surface profilelgf sloped seawall attacks by irregular
non-breaking waves are presented in Fegri2.21. The water depth ranges from
4.5 to 5.85m. The JONSWAP spectrucharacteristics associated with the
dimensional and dimensionless freeboard shown in table 7.2.5. The mesh

setup is the same as explained in Section 7.2.2.
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Figure 7.2.21: Cross section and free atefprofile at t=5s for the non-breaking

wave overtopping and overflow ovér4 sloped seawall [Run no. 8 (Table
7.2.5): H=0.72m, T, = 7.30s and J= 4.70s].

Run He Tm Tp R: R

No. (m) (s) (s) (m) [
1 0.80 4,70 7.2 -0.080 -0.1
2 0.56 3.50 5.06 -0.112 -0.2
3 0.80 4.70 7.2 -0.240 -0.3
4 0.80 4.70 7.2 -0.320 -0.4
5 0.56 3.50 5.06 -0.336 -0.6
6 0.80 4.70 7.2 -0.400 -0.5
7 0.80 4.70 7.2 -0.560 -0.7
8 0.72 4.70 7.3 -0.576 -0.8
9 0.80 4.70 7.2 -0.720 -0.9
10 0.72 4.70 7.3 -0.720 -1.0

Table 7.2.5: Irregular non-breaking wave characteristics, dimension and

dimensionless freeboard for the casavafe overtopping and overflow over 1:4

sloped seawall.
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Figure 7.2.22: Time history of the cumulative non-breaking overtopping and
overflow volume for 1:4 slopedeawall [Run no. 8 (Table 7.2.5)5H 0.72m,
Tm=7.30s and J= 4.70s].

The rate of overtopping and overflow volume for Run number 8 is shown in
Figure 7.2.22. The figure gives the satrend of Figure 7.2.17 related to non-
steady with overtopping/overflow volumacreasing associated with the non-
linearity of generated irregular waves.

Figures 7.2.23 and 7.2.24 present the simulation of non-breaking wave
overtopping and overflow over 1:4 slopeasvall. The free surface profiles of the

generated wave over time of simulation are showed in these figures.
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Figure 7.2.23: Wave overtopping and die@v on 1:4 slope seawall in the non-
breaking zone from time 5.0 to 45.0sufRno. 8 (Table 7.2.5): Hs = 0.72m,
Tm = 7.30s and Tp = 4.70s].
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Figure 7.2.24: Wave overtopping and diev on 1:4 slope seawall in the non-
breaking zone from time 50.0 to 85.(Run no. 8 (Table 7.2.5): Hs = 0.72m,
Tm = 7.30s and Tp = 4.70s].
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Figure 7.2.25 shows the comparison kestw the wave overtopping and overflow
calculated from 2-D BWNM with weirequation. As explained before, the
difference between the two results isedio weir equation did not include the
effect of waves. Same conclusion aribefore in Figures 7.2.5, 7.2.10, 7.2.15 and
7.2.20 is presented in Figure 7.2.25 alBoe difference between 2-D BWNM and

weir equation decreases as the magnitude of the freelRaridcreases.
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Figure 7.2.25: Comparison between waguation and 2-D BWNM for irregular
non-breaking waves at a 1:4 sloped seawall.
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7.3 Synthesis of results
Results from numerical simulation ofegular breaking and non-breaking wave

overtopping and overflow for differergeawall slopes were presented in the
previous sections (Sections 7.2.1, 7.2.2, 7.2.3, 7.2.4 and 7.2.5). Comparisons of
numerical model results with the weagquation were shown in these previous
sections.

In this section, relation the between the dimensionless wave overtopping and
dimensionless freeboard for different sddpseawalls for small negative freeboard

is presented (Soliman and Reeve, 2003)s luseful to mention here that the
definition of the dimensionless parametessdue to Van der Meer and Janssen

(1995). Reasons of that could be found in Chapter 2 (Section 2.2.1).

7.3.1 Breaking wave overtopping and overflow
The case of breaking wave overtopping and overf(@@K 2) is studied first.

Analysis of the numerical wave ovepfing and overflow results for sloped
seawalls (Section 7.2.1, 7.2.2 and 7.2e28ds to the following suggested design

formulae for small negative freelbda under breaking wave attack

(0.0>R>-0.9:

Slope 1:3  Q=0.046exg— 2.7R) (7.3.2)
Slope 1:4  Q=0.048ex{— 2.1R) (7.3.9

Slope 1:6  Q=0.05lexg— 1.5B) (7.3.4)
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Figure 7.3.26 presented the previous relation between the dimensionless wave
overtopping and dimensiorsie freeboard. Values offRwhich is an indicator of
goodness of fit, reveals how closely tbgtimated values for the formula trend

line correspond to the actual. For Equati¢fs3.2), (7.3.3) and (7.3.4) thé’R
values are 0.98, 0.97 and 0.97 respectively. These valuesaseRery near to

one which indicates a very good level of fit.

0.40
A Slope 1:3
¢ Slope 1:4 - 0.35
m  Slope 1:6
- 0.30
— (=0.046exp(-2.71R) R2=0.98
= (=0.048exp(-2.14R) R2=0.97 L 0.25
¢ m—()=0.051exp(-1.53R) R2=0.97
- 020 O
- 0.15
- 0.10
- 0.05
‘ ‘ ‘ 0.00
-0.80 -0.60 -0.40 -0.20 0.00

Figure 7.3.26: Breaking waves overtoppindadas a basis for Equations 7.3.1,
7.3.2 and 7.3.3.
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7.3.2 Non-br eaking wave overtopping and over flow
Results for non-breaking waves (Sections 7.2.4 and 7.2.5) for sloped seawall are

analysed also and are demonstrateligures 7.3.27 and 7.3.28. The concluded

design formulae for small negative freeboe(t(m0> Rz—O.& under irregular

non-breaking wave attack are:

Slope 1:3  Q=0.198exi{- 1.6R) (7.35)
Slope 1:4  Q=0.288exi{- 0.8B) (7.35)

The Rvalues for Equations (7.3.5) and (7.3.6) are 0.84, 0.94 respectively.
R? for Equation (7.3.5) is less than Etjoas (7.3.2), (7.3.3) and (7.3.4) for

breaking waves but still indicates a good level of fit.

1.00

- 0.80

- 0.60

- 0.40

——Q=0.198exp(-1.62R) L 0.20
R2=0.84 A

T ‘ ‘ ‘ 0.00
-1.00 -0.80 -0.60 -0.40 -0.20 0.00

[-]

Figure 7.3.27:Non-breaking wave overtopping data as a basis for Equation 7.3.4.
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1.00

- 0.80
- 0.60
- 0.40

- 0.20
——Q=0.288exp(-0.83R) R2=0.94
‘ ‘ ‘ ‘ 0.00
-1.00 -0.80 -0.60 -0.40 -0.20 0.00
R

[-]

Figure 7.3.28: Non-breaking wave overtopping data as a basis for Equation 7.3.5.

7.4 Discussion
This chapter provided more informai of irregular breaking and non-breaking

wave overtopping and overflow. Uginnumerical simulation the cases of
breaking and non-breaking wave attack on a smooth sloped seawall are studied.

To be consistent with the case of small positive freeboard which was presented in
Chapter 6, the dimensionless freeboandl wave overtopping of Van der Meer

and Janssen (1995) have been used here also. The surf similarity parameter used
by Van der Meer and Janssen (1995), besn used to define the breaking and
non-breaking zone. A multiplicity of foratae for different conditions is not
helpful for the practitioner and from aeibretical viewpoint is not satisfying.
Formulae covering the range of freeboards considered in the previous sections are

derived in the next chapter.
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CHAPTERS8

Design Formulae for Small Positive, Zero and

Negative Freeboard
The two-dimensional breaking wave merical model (2-D BWNM) has been

applied to study wave overtopping for shpositive, zero and negative freeboard
under breaking and non-breaking waves attack. Results and suggested design
formulae have been presented in details in previous two chapters.

A multiplicity of formulae for different conditions is not helpful for the
practitioner and from a theoretical viewpoistnot satisfying. In this chapter, a
simple and explicit mathematical solutianapplied to merge small positive and
negative formulae into a single composite equation.

In first section of this chapter (Section 8.1), the suggested design overtopping
formulae in different cases is summarizadd presented. Then definition of
Logarithmic matching method and its widgplications is explained (Section
8.2). The logarithmic matching technique and its numerical models are illustrated
in Section 8.3. In Section 8.4 the logamic matching method is applied to the
overtopping formulae. One suggestedsige formulae cover range of small
positive, zero and negative freeboards isdeted. Finally, Conclusion of this
chapter and advantages of new suggkstiesign overtopping formulae are

presented in Section 8.5.
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8.1 Synthesis of design formulae

Before using the mathematical solutionyseful first to summarize the suggested

design formulae presented in the last chapter.

The set of suggested design formutdevave overtopping under breaking and

non-breaking waves attack for sloped sai§wvhich have been produced in the

previous two chapters, are divided into four main categories as follows:

1- Breaking waves for 1:3 slopeéfp < 2)

Q=0.053exf— 2.0R) (0.3=R> 0.0

Q=0.046exg— 2.7R) (0.0>R>-0.9

2- Non-breaking waves for 1:3 slor(e;?.p > 2)
Q=0.227exg— 0.9R) (0.3=R> 0.0
Q=0.198exg— 1.6R) (0.0>R>-0.8

3- Breaking waves for 1:4 sIop@p < 2)

Q=0.041lexg— 1.7R) (0.3>R> 0.0
Q=0.048exi{— 2.1R) (0.0>R>-0.9

4- Non-breaking waves for 1:4 slop(e, > 2)

Q=0.229exg- 0.9R) (0.3 R> 0.0

Q=0.288ex{~ 0.8R) (0.0>R>-0.9

(8.1.1)

(8.1.2)

(8.1.3)

(8.1.4)

(8.1.5)

(8.1.6)

(8.1.7)

(8.1.8)

The logarithmic solution is applied toetbe four sections. One design formula for

each case covers range of small posjtizero and negative freeboard is

concluded.
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8.2 L ogarithmic matching method
Recently, Guo (2002b) proposed a logarithmatching method. It states that for

a complicated non-linear problem or axperimental curve, if one can find two
asymptotes, in extreme cases, which banexpressed as logarithmic or power
laws, then the logarithmic matching can combine the two asymptotes into a single
composite solution. Guo (2002a) dedven explicit solution to the wave
dispersion equation. The solution is vesiynple and reproduces the numerical
result for any water depth. The maximurfatiee error of the proposed solution is
about 0.75% which is sufficient for practical calculation.
The applications of the logarithmic tohing have been successfully tried in
several other cases in open channalvfl, coastal hydrodynamics and sediment
transport such as:

e Inverse problem of Manning equation in rectangular open-channels.

e Connection of different laws in computational hydraulics.

e Criterion of wave breaking.

e Wave current turbulence model.

e Sediment settling velocity.

e Velocity profiles of sediment-laden flows.

e Sediment transport capacity.
All these applications agree very wellttvnumerical solutions or experimental

data. More details of the previous application can be found in Guo (2002a).
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8.3 Logarithmic matching technique
In this section, the logarithmic matchirigchnique, which is applied to wave

overtopping formulae, is illustrated.
Specifically, suppose one can find two asymptotic solutions for a non-linear
problem, using an numerical or experin@mhethod, the two asymptotes can be

expressed by or transferred into the following form:

y=K;Inx+C, forx<x,, (8.3.9)
and
y=K,Inx+C, forx> x, (8.3.10)

In the two equations above, is an independent variablg, is a dependent
variable,K; andK; are two slopes based on logarithmic sc@leandC, are two
intercepts, andpds the location of the cross point of the two asymptotes.

To merge the two asymptotes into a single composite equation, two logarithmic

models are proposed, Guo (2002b), Model I is

« g
1+ [—j
X
and Model Il is

B
y=K,In x+%ln {1— ex{—(i] ]}wz (8.3.12)

In the two modelsy, is determined by

y =K, Inx+ Ke=Kipy +C, (8.3.11)

Cl_CZ
- s 2 8.3.13
X, exp( KZ—KJ ( )
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and g = Ois a transitional shape parameter that is determined by any of the
following two methods:
e The collocation method: Using the meesment data at the cross point

(xo,yo) to determine the value o, i.e., solving/ from the following

equation.
> Y(%:8)=Y, (8.3.14)
in which the function y is Equation (8.3.11) or Equation (8.3.12).
e The least squares method (Griffiths and Smith, 1991).
Model | and model Il, Equations (8.3.1anhd (8.3.12), can directly solve the
problems with power laws or logarithenlaws. For two asymptotic exponential
laws, the following transformation is helpful.

e Suppose that the two asymptotic exponential laws,

> Y =26 for X < X, (8.3.15)
> Y =26 for X > X, (8.3.16)

o Let
> InY=y (8.3.17)
» X=Inx (8.3.18)
> In4=C (8.3.19)
» Ini,=C, (8.3.20)

e Equations (8.3.15) and (8.3.16) can be rewritten as:

> InY=K X+In4 for X < X, (8.3.21)

> InY=K,X+In4, for X > X, (8.3.22)
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Substituting Equations (8.3.17), (8.3.18), (8.3.19) and (8.3.20) into
Equations (8.3.21) and (8.3.22) leads to the following Equations:
> y=K/Inx+C, (8.3.23)
> y=K,Inx+C, (8.3.24)
Equations (8.3.23), (8.3.24) are similar as Equations (8.3.9) and (8.3.10).
Thus model | or model Il can be applied to merge the two exponential
laws. For example, substituting Equeis (8.3.17), (8.3.18), (8.3.19) and

(8.3.20) into Equation (8.3.11) gives:

> mv:mx+mﬂﬁJ9;KHnﬁ+J“*{] (8.3.25)
K2-K1)/p
> mv:&x+m¢@@+ﬁ“*fy )} (8.3.26)
or
—K1)/
> Y:@é“@+&“ﬂq”K“3 (8.3.27)

and Equation (8.3.13) becomes

> x -NA/%) (8.3.28)

° Kz - Kl
Since value of dimensionless freeboard (R) is small, the exponential law

then becomes

> Q=aexpbR)=a(l-bR) (8.3.29)

In this case Equation (8.3.23), (8.3.24), (8.3.25) and (8.3.28) can be simplified as

> Y=KX+C (8.3.30)

> Y=K,X+C (8.3.31)
2 2
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> Y=KX +C1+%In[l+ /] (8.3.32)

(8.3.33)

8.4 New suggested design formulae for wave overtopping and
overflow:
In this section Guo’s logarithmic matecig method, Equations (8.3.30), (8.3.31),

(8.3.32) and (8.3.33), is applied to get one design formula for the cases of small

positive, zero and negati\(@.3> R>-0.9.

General procedures of applying the logarithmic matching is as follows:
e Using two equations of small positive and small negative freeboards
which are summarized in Section 8.1.
e Since value of R is small, the expotiehEquations (8.1.1) to (8.1.8) can
be simplified using Equation 8.3.29.
e Determine the slopes;kand K; and the interceptsi:@Gnd G
e Calculate the cross point,Xrom Equation (8.3.33).
e Construct a general approximate solution by Equation (8.3.32).
e Solve the parametep by applying the collocation method, Equation
(8.3.14).
The following cases will be studied:
e Breaking waves for 1:3 sloped seawall.
e Non-Breaking wave for 1:3 sloped seawall.
e Breaking wave for 1:4 sloped seawall.

e Non-breaking wave for 1:4 sloped seawall.
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Applying the previous procedures in theeyious four cases is presented in the

following sections.

8.4.1 Combined formulae for wave overtopping and overflow for breaking
wave of 1:3 smooth sloped seawall

By applying the logarithmic matching temque, which was described in previous

section, to Equations (8.1.1) and (8.1.2) following equation has been conducted:

Q=0.02In 1+ exf 15.0R+ 2.57- O0.®- 0.00f0.32R>-0.9 (8.4.34)

Comparison of Equation (8.4.34) with nunoatidata is presented in Figure 8.4.1.

Data 1: Breaking wave over 1.3 sloped s2a wall
0.3 T T T T T T

0.25

0.2

0.05

0.05 i i i i i i
0.8 0.6 0.4 0.2 0 0.2 0.4 0.6

Figure 8.4.1: Comparison between th® BWNM results and the logarithmic

matching solution.
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Relative error can be defined as:

Error = e ~Quuneica 9 900, (8.4.35)

numerical

The average relative error over the freeboard rg0g& R>-0.8 is 5.2 % that

is sufficient in practice.

8.4.2 Combined formulae for wave overtopping and overflow for non-
breaking wave of 1:3 smooth sloped seawall

The same logarithmic matching technique barapplied to Equations (8.1.3) and

(8.1.4). Following equation could be derived:

Q=0.029IN &+ ex 1R+ 1.99- 0.63- 0.170.3>R>-0.8 (8.4.36)

Figure 8.4.2 shows a comparison of Equation (8.4.36) with 2-D BWNM results.

An error analysis shows that Equati(4.36) has an accuracy of 7.9 % over

(0.3>R>-0.9.

Cata 2: Mon-brealing wave over 1:3 sloped s=a wall

09

-1 -8 0.8 -0.4 -0.2 o 0.2 0.4

Figure 8.4.2: Comparison of Equation (8.4.36) with numerical data.

174



8.4.3 Combined formulae for wave overtopping and overflow for breaking
wave of 1:4 sloped seawall

The logarithmic matching technique is &p@ to Equations (8.1.5) and (8.1.6).

Following equation has been conducted:

Q=0.029IN &+ ex 7.9+ 2.04- 0.3R3- 0.0160.32R>-0.8 (8.4.37)

Datal: Breaking wave aver 1:4 shoped sea vall
L L] 1 1

T T
0 DCalawkh R =<0
+ Datawkh R =0
— — Asymploles

pashb WLl h i [=—— Compoosite expression ||

015 -
o @
I:l-l - ... .E
005 b i
ol _
008 i i i i i i
A 0.8 A 04 02 ] 0.2

Figure 8.4.3: Comparison between th® BWNM results and the logarithmic

matching solution.

Comparison of Equation (8.4.37) with nunoatidata is presented in Figure 8.4.3.

Equation 8.4.37 has an accuracy of 8.9 % over the freeboard range.

8.4.4 Combined formulae for wave overtopping and overflow for non-
breaking wave of 1:4 smooth sloped seawall

By applying the logarithmic matching technique to Equations (8.1.7) and (8.1.8)

following equation has been conducted:
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Q=0.019I0 & exp 1R+ 1.99- 0.48+ 0.192 (0.32R>-0.§ (8.4.38)

Figure 8.4.4 shows a good agreement betviegration (8.4.38) and a numerical

data. Equation (8.4.38) has an accuracy of 4.4 % over the freeboard range.

.3 ¥ I ] I ! L
. : : Slope = 1.3, Dalafor -0E =R =0
Slope = 1.3, Dalafor 0= R = 0.3
: : : i| = = Compasile equalion
A7 == Shpe = 14, Dala for QB <R<D |
’ | Slope = 1.4 Calafor 0 <R < 0.3
Q8
= s S S S
=]
u_d_............;..............;.......... o
[ el T e TR EERCE RN
o1 i i ; i i i
i 0.E 0.6 0.4 0.2 0 0.2 04

Figure 8.4.4: Comparison of Equation (8.4.38) with numerical data.

8.5 Synthesis of results
In this section, Summary of newuggested design formulae between the

dimensionless wave overtopping and dimenigss freeboard for different sloped

seawalls for small positive, zero and negative freebog@@®>R>-0.8, are

presented as follows:

1- Breaking waves for 1:3 smooth slopfe?, < 2)

Q=0.02In & exy 15.0R+ 2.57- O0.®- 0.005 (8.4.39)
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2- Non-breaking waves for 1:3 smooth slo@g; > 2)

Q=0.029In &+ ex 1R+ 1.99- 0.68+ 0.173 (8.4.40)

3- Breaking waves for 1:4 smooth sloiﬁé;, < 2)

Q=0.029IN 1+ ex 7.9+ 2.04- 0.3R3 0.016 (8.4.41)

4- Non-breaking waves for 1:4 smooth slo(xép' > 2)

Q=0.019I & exp 1R+ 1.99- 0.48+ 0.192 (8.4.42)

8.6 Summary
The logarithmic matching technique otiGs (2002b) has been applied to merge

small positive, zero and negative freeboard formulae into a single composite
equation. New overtopping expressidosbreaking and non-breaking waves on
smooth impermeable slopes are presented. The new expressions for wave
overtopping and overflow are simple and easy to applied by engineers.

The new expressions can be usegrtedict overtopping discharges of smooth

seawalls in small positive, zero and negative freeboard.
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CHAPTER9

Conclusion

9.1 Summary
The concept of wave overtopping over smooth sloped seawalls has been

described. Examples of empirical emggering design formulae widely used in
design purposes have been presentaslast evident from the existing knowledge
that additional investigations into ovepping of small positive, zero and negative
freeboard were needed.

Numerical model tests have been conddietsing varying slope geometries have
been used during the tests. All testediggthave been subjected to a wide range
of sea states. Simulation of irregulgave spectrum (JONSWAP) was developed
in the two-dimensional breaking wameimerical model (2-D BWNM) using an
internal designed mass source.

The results of the model tests have beampared with results from the literature.
A new overtopping expression for bréak and non-breaking waves on smooth
impermeable slopes is presented. Thesv expression is based on formulae
proposed expression given by Van deedvl and Janssen (1995). The original

formula has been modified to be valid for the following cases:

e Small positive freeboar(i0.3> R> 0.0).
e Zero freeboard R=0.0).

e Small negative freeboar®.0> R>-0.§.
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With the new expressions it is possibio predict overtopping discharges of
smooth seawalls in small positive, zero and negative freeboard.
The newly developed numerical modetld2BWNM) has been validated against
the following:
e Analytical solution of the weir equation.
e Laboratory data with linear waves [Saville (1955)].
e Laboratory data for JONSWAP irregulalave [Van der Meer and Janssen
(1995)].
e Numerical Model (AMAZON) for linear waves [Het al. (2000)].
e Empirical design formulae based on laboratory experiments [Owen
(1980); Van der Meeet al. (1992); Hedges and Reis (1998); Schuttrumpf

(2001)].

9.2 Wave overtopping at small positive freeboard
The two-dimensional breaking wave nurncatimodel (2-D BWNM) that is based

on the breaking wave model developbg Lin (1998) has been presented.
Simulation of irregular wave attacks ngian internal mass source has been added
and tested. The model accuracy in dating propagation of different kind of
waves (linear wave and irregular v& has been evaluated. The overall
performance of the model is considered satisfactory.

New design formulae based on numerigsdults of two-dimensional breaking

wave numerical model for breaking and non-breaking wave overtopping at small

positive freeboaro(O.Bz R> 0.() have been proposed. These formulae are an
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extension of the existing overtoppingpeession for breaking and non-breaking
waves presented by Van der Meer and Janssen (1995).

The proposed expression allows for girediction of overtopping discharges for
relative crest freeboards down to zero.

Furthermore, the new expression alsoudek the effect of breaking waves in the
shallow water zone. Two different seawslibpes (1:3 and 1:4) have been tested
with a wide range of irregular wave characteristics.

The numerical tests with differenteiboards indicate that wave overtopping
decreases as the seawall slope increaBes tests also indicate that breaking
wave overtopping is less than non-bregk wave overtopping for different
seawall slopes. These observations arknm with the existing design formulae

[Owen (1980); Van der Meet al. (1992); Hedges and Reis (1998); Schuttrumpf
(2001)].

In the last years, the climate has bebanging and global sea level are rising
(Hardy, 2003). The new formulae will be ugleto engineers in assessing existing
coastal structures which were designed for conditions that may have been defined
without the benefit of recent climate cigge research. The new expressions cover
the range of small positive and zeredboard which was not covered by design

formulae until now.

9.3 Wave overtopping and overflow at small negative freeboard
If the water level rises above the cresteleof the structure, for example during

extreme storm surges, flooding is ratly caused by wave overtopping action,

but also by overflow. Existing coastal sttures that have not been designed to
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account for this will be more vulnerabto combined overflow and overtopping.
There is currently no guidance on estimating these volumes.
The case of overtopping and overflow smnooth sloped seawalls under irregular

wave attack has been studied usingva-dimensional breaking wave numerical

model. A new expression covering freeboard raf@®>R>-0.§ has been

presented. Three different seawall slope8,(1:4 and 1:6) have been tested with
wide range of irregular wave charactiéds. The new expression covers cases of
both breaking and non-breaking waves.

The issues that arise in small positive fre@rd cases are also present in the case
of negative freeboard. The numerical tesith different freeboards indicate that
wave overtopping decreases as the sbasi@pe decreases and breaking wave
overtopping is less than non-breakingweaovertopping for different seawall

slopes.

9.4 Futureresearch
The 2-D BWNM model can be used asnumerical flume for studying any

practical problems in the future. Flexibility of the model and its time of
calculation are considered two main important advantages. The model is very
encouraging in this point, as one secemdulation for irregular wave needs about
ten minutes calculation using a personal patar with a typical configuration. As

new generations of computers becomailable, processing time will reduce and

more detailed numerical simulation will be possible.

181



The new model has been implementedttaly cases of wave overtopping for the
range of small positive, zero and small negative freeboard which are not covered
by any current design formulae.

New expressions have been presenteddinatr cases of small positive, zero and
small negative freeboard for smoothod seawalls. Using the equations
described in Chapter 8, it is possilite develop preliminary designs, and to
improve the performance of existing sedwalhe researcher recognises that the
progression of research results into design practice can take some time.
Nevertheless, the researcher hopes that the new formulae will be used by
designers to investigate and improve the performance of seawalls.

Part of the results conducted from thissearch has been published in the
following conferences:

e Soliman, A., M. S. Raslan and B. Reeve (2003). Numerical simulation

of wave overtopping using two rdensional breaking wave model

Proceedings of Coastal Engineerivif Computer modelling of seas and
coastal regions, Cadiz, Spain,d(EC Brebia, D Almorza & F Lopez-

Aguayo), pp. 439-447.

e Soliman, A. and D. E. Reeve (2008lumerical study for small freeboard

wave overtopping and overflow of sloping sea wdalb appear in

Proceeding of Coastal Structures 2003, Portland, Oregon.
Other two journal papers are under preparation now and hopefully published in

the next few months.
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The investigation has dealt with a limitsett of conditions. There are a number of
ways in which the applicability of the approach has been adopted and could be
extended. For example,
e More validation for the new wave avepping expressions using full scale
field data.
e Including more complicated seawall geometries, such as bermed slopes,
slope with crown wall and recurved walls.
e The effects of surface roughness.
e Accounting for porosity in both the beach and defence structure.
e The infiltration and erosion on the lamds of seawall. This study requires

sediment transport calculations and morphological updating.
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Appendix A

Irregular wave propagation on 1:3 sloping sea wall at small
positive freeboard
[Hs =0.83 m, |, = 3.60s and J= 5.00 sec.]
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Appendix B

Irregular wave propagation on 1:3 sloping sea wall at zero
freeboard

[Hs =0.83 m, |, = 3.60s and J= 5.00 sec.]
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