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Abstract

This thesis is concerned with statistical methodology for the analysis of stochas-

tic SIR (Susceptible→Infective→Removed) epidemic models. We adopt the

Bayesian paradigm and we develop suitably tailored Markov chain Monte Carlo

(MCMC) algorithms. The focus is on methods that are easy to generalise in

order to accomodate epidemic models with complex population structures. Ad-

ditionally, the models are general enough to be applicable to a wide range of

infectious diseases.

We introduce the stochastic epidemic models of interest and the MCMC meth-

ods we shall use and we review existing methods of statistical inference for

epidemic models. We develop algorithms that utilise multiple precision arith-

metic to overcome the well-known numerical problems in the calculation of the

final size distribution for the generalised stochastic epidemic. Consequently, we

use these exact results to evaluate the precision of asymptotic theorems previ-

ously derived in the literature. We also use the exact final size probabilities to

obtain the posterior distribution of the threshold parameter R0.

We proceed to develop methods of statistical inference for an epidemic model

with two levels of mixing. This model assumes that the population is parti-

tioned into subpopulations and permits infection on both local (within-group)

and global (population-wide) scales. We adopt two different data augmenta-

tion algorithms. The first method introduces an appropriate latent variable,

the final severity, for which we have asymptotic information in the event of

an outbreak among a population with a large number of groups. Hence, ap-

proximate inference can be performed conditional on a “major” outbreak, a

common assumption for stochastic processes with threshold behaviour such as

epidemics and branching processes.

In the last part of this thesis we use a random graph representation of the

v



epidemic process and we impute more detailed information about the infection

spread. The augmented state-space contains aspects of the infection spread

that have been impossible to obtain before. Additionally, the method is exact

in the sense that it works for any (finite) population and group sizes and it

does not assume that the epidemic is above threshold. Potential uses of the

extra information include the design and testing of appropriate prophylactic

measures like different vaccination strategies. An attractive feature is that the

two algorithms complement each other in the sense that when the number of

groups is large the approximate method (which is faster) is almost as accurate

as the exact one and can be used instead. Finally, it is straightforward to

extend our methods to more complex population structures like overlapping

groups, small-world and scale-free networks
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Chapter 1

Introduction to Stochastic

Epidemic Models, Bayesian

Statistics and Inference from

Outbreak Data

1.1 Introduction

In this thesis we will describe methods for Bayesian statistical inference for

stochastic epidemic models. The focus will be on general methodology for the

analysis of an epidemic model where the population is partitioned into groups.

However, the approach can often be extended to more complex, and realistic

population structures. The different methods are illustrated using both real

life and simulated outbreak data.

This chapter serves as an introduction to the main themes that this thesis

uses. Stochastic epidemic models are appropriate stochastic processes that can

1



be used to model disease propagation. Two processes of this kind are presented

and their behaviour is outlined. Subsequently we give a brief introduction to

Bayesian inference, which is the paradigm we shall follow throughout the thesis,

and the modern computational tools used to facilitate the analysis of realisti-

cally complex models. The last part of this chapter contains a short review of

the analysis of infectious disease data using stochastic epidemic models.

1.1.1 Epidemic Modelling

Stochastic and Deterministic Models

We will focus on homogeneous and heterogeneous stochastic epidemic mod-

els. Disease propagation is an inherently stochastic phenomenon and there

is a number of reasons why one should use stochastic models to capture the

transmission process. Real life epidemics, in the absence of intervention from

outside, can either go extinct with a limited number of individuals getting ul-

timately infected, or end up with a significant proportion of the population

having contracted the disease in question. It is only stochastic, as opposed to

deterministic, models that can capture this behaviour and the probability of

each event taking place. Additionally, the use of stochastic epidemic models

naturally facilitates estimation of important epidemiological parameters as will

become apparent in the following chapters. Finally, from a subjective point

of view, stochastic models are intuitively logical to define, since they naturally

describe the contact processes between different individuals. However, the need

for realistically complex models has made deterministic models more popular,

since it is possible to analyse numerically quite elaborate deterministic models.

Hence, it appears reasonable that effort should go towards developing general

methods of statistical analysis that can be applied to complex stochastic mod-

2



els.

Modelling Disease Propagation

In recent years there has been increasing interest in the use of stochastic epi-

demic models for the analysis of real life epidemics. The need for accurate

modelling of the epidemic process is vital, particularly because the financial

consequences of infectious disease outbreaks are growing, two important recent

examples being the 2001 foot and mouth disease (FMD) outbreak in the UK

and the severe acute respiratory syndrome (SARS) epidemic in the spring of

2003. For modelling of these high impact epidemics see Ferguson et al. (2001)

and Keeling et al. (2001) for FMD and Riley et al. (2003) and Lipsitch et al.

(2003) for SARS.

In order to prevent, or at least reduce, infection spread we need models

that can accurately capture the main characteristics of the disease in question

since understanding disease propagation is vital for the most effective reac-

tive measures. Additionally, if we want to adopt a proactive approach and

model vaccination strategies, we need methodology for performing statistical

inference for the parameters of epidemiological interest. Hence, it readily be-

comes apparent that it is vital that epidemic models of general applicability

and methodology for their statistical analysis should be developed.

Two Stochastic Epidemics

In this chapter we will describe two stochastic epidemic models. The so-called

generalised stochastic epidemic is a rather simple model defined on a homoge-

neous and homogeneously mixing population. It is called generalised because

the infectious period i.e., the time that an infective individual remains infec-

tious, can have any specified distribution. The special case where the infectious

3



period follows an exponential distribution makes the model Markovian and is

known as the general stochastic epidemic (e.g. Bailey (1975) chapter 6). Note

that certain non exponential infectious periods (like Gamma with integer shape

parameter) can be incorporated in a Markovian model using additional com-

partments. However, the generalised stochastic epidemic is a unified process,

even for infectious period distributions that cannot be written as the sum (or

linear combination) of exponentials.

Subsequently, we describe a more complex model where the population is

partitioned into groups and infectives have contacts both within and between

the group. This model is motivated by a desire for additional realism since it is

well known that disease spread is greatly facilitated in groups such as schools

and households. The main reference for this so-called epidemic model with

two levels of mixing is Ball et al. (1997). The generalised stochastic epidemic

is a special case of the two-level-mixing model when all the households are

of size one and we will evaluate our methods for this special case. Methods

for statistical inference for epidemics will be reviewed in section four of this

chapter. We shall now give a short introduction to Bayesian inference and the

modern computational methods used for the implementation of the Bayesian

paradigm.

1.1.2 Bayesian Inference

Introduction

Bayesian inference, similarly to likelihood inference requires a sampling model

that produces the likelihood, the conditional distribution of the data given

the model parameters. Additionally, the Bayesian approach will place a prior

distribution on the model parameters. The likelihood and the prior are then

4



combined using Bayes’ theorem to compute the posterior distribution. The

posterior distribution is the conditional distribution of the unknown quantities

given the observed data and is the object from which all Bayesian inference

arises.

We shall now introduce some notation. The model parameters are described

with the (potentially multi-dimensional) random variable θ. From the Bayesian

perspective, model parameters and data are indistinguishable, the only differ-

ence being that we possess a realisation of X, the observed data X = x. The

frequentist and Bayesian approaches, despite arising from different principles

do not necessarily give completely dissimilar answers. In fact, they can be con-

nected in a decision-theoretic framework through preposterior evaluations (see

Rubin, 1984). In this thesis we will adopt the Bayesian paradigm which, while

theoretically simple and more intuitive than the frequentist approach, requires

evaluation of complex integrals even in fairly elementary problems.

Modern Bayesian Statistics

The use of Bayesian methods in applied problems has exploded during the

1990s. The availability of fast computing machines was combined with a group

of iterative simulation methods known as Markov chain Monte Carlo (MCMC)

algorithms that greatly aided the use of realistically complex Bayesian models.

The idea behind MCMC is to produce approximate samples from the posterior

distribution of interest, by generating a Markov chain which has the posterior

as its limiting distribution. This revolutionary approach to Monte Carlo was

originated in the particle Physics literature in Metropolis et al. (1953). It was

then generalised by Hastings (1970) to a more statistical setting. However, it

was Gelfand and Smith (1990) that introduced MCMC methods to mainstream

statistics and since then, the use of Bayesian methods for applied statistical

5



modelling has increased rapidly.

A comprehensive account of MCMC-related issues and the advances in

statistical methodology generated by using this set of computational tools until

1995 is provided in Gilks et al. (1996). A contemporary similar attempt would

be almost impossible since the use of MCMC has enabled the analysis of many

complex models in the vast majority of the statistical application areas. In an

introductory technical level, Congdon (2001) describes the analysis of a wide

range of statistical models using BUGS, freely available software for Bayesian

Inference using MCMC, see Spiegelhalter et al. (1996). Many of these models,

including generalised linear mixed models, can only be approximately analysed

using classical statistical methodology. Conversely, it is straightforward to

analyse models of this complexity using routine examples of BUGS.

1.1.3 Inference from Outbreak Data using Epidemic Mod-

els

The Need for Epidemic Modelling

The statistical analysis of infectious disease data usually requires the develop-

ment of problem-specific methodology. There is a number of reasons for this

but the main features that distinguish outbreak data are the high dependence

that is inherently present and the fact that we can never observe the entire

infection process. In many cases the data from the incidence of an infectious

disease consist of only the final numbers of infected individuals. Hence, the

analysis should take into account all the possible ways that these individuals

could be infected. Moreover, even when the data contain the times that the

symptoms occur, we cannot observe the actual infection times. Also the true

epidemic chain, i.e. who infects who, is typically not observed either.

6



These reasons suggest that in order to accurately analyse outbreak data,

we need a model that describes a number of aspects of the underlying infection

pathway. Hence, inference about the data generating process can provide us

with an insight about the quantitative behaviour of the most important features

of the disease propagation. Additionally, the design of control measures against

a disease can be improved through a quantitative analysis based on an epidemic

model.

The rest of the chapter is organised as follows. The two stochastic epidemic

models and related results that we use throughout the thesis are presented in

section 2. In section 3 we first give a short introduction to Bayesian theory

while in the remainder of the section we present the main computational tools

required for the implementation of the Bayesian paradigm. The chapter con-

cludes with known statistical methodology for inference from infectious disease

data.

1.2 Stochastic Epidemic models

1.2.1 Generalised Stochastic Epidemic model

Epidemic model

We describe a simple model for the transmission of infectious diseases where the

population is assumed to be closed, homogeneous and homogeneously mixing.

We define as closed a population that does not contain demographic changes.

Hence, we assume that during the course of the epidemic no births or immigra-

tions occur. We also assume homogeneity of the population in the sense that

the individuals belong in the same group and each pair of individuals has the

same degree of social contacts with each other. This assumption will be relaxed
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later when we will assume that the population is partitioned into groups and

individuals will have additional within-group contacts.

The population consists of n individuals out of which m are initially infected

and they are able to have close contacts i.e., contacts that result in infection,

with other individuals of the population. The remaining n−m individuals are

assumed to be initially susceptible and can be potentially infected by the m

initial infectives. The infectious periods of different infectives are assumed to

be independent and identically distributed according to the distribution of a

random variable I, which can have any arbitrary but specified distribution.

While infectious, an individual makes contacts with each of the n individ-

uals of the population at times given by the points of a homogeneous Poisson

process with intensity λ
n
. The contacts result in immediate infection of the sus-

ceptible individual that the infective has contacted. The infectious individual

is removed from the infection process once its infectious period terminates. A

removed individual can be dead, in case of a fatal disease, or recovered and

immune to further infections. The Poisson processes of different individuals

are assumed to be mutually independent. The epidemic ceases as soon as there

are no infectives present in the population.

Epidemic models of this kind, where an individual is allowed to be in any

of the three states, susceptible, infective or removed, are often called S-I-R

epidemics. The special (Markovian) case where the infectious period follows

an exponential distribution is known as the general stochastic epidemic. The

assumption of an exponential infectious period is mathematically (and not bi-

ologically) motivated since it makes the probabilistic and statistical analysis

of the model simpler, see O’Neill and Becker (2002) and Streftaris and Gibson

(2004) for applications on diseases with Gamma and Weibull distributed infec-

tious periods respectively. The general stochastic epidemic was originated by
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Bartlett (1949) and has received a lot of attention in the probabilistic litera-

ture. However, it has been generalised in a large number of ways and we shall

describe later in this section exact results for the case with a general infectious

period.

Basic reproduction number

The most important parameter in epidemic theory is the basic reproduction

number R0 (Dietz, 1993) defined as the expected number of infections gener-

ated by a “typical” infected individual in a large susceptible population. In

the generalised stochastic epidemic a typical individual can be any of the in-

fectives since the model is homogeneous and homogeneously mixing. In more

complicated models the definition of a typical individual is not straightforward

and care is required in the definition of an appropriate threshold parameter.

We call R0 a threshold parameter since the value of R0 determines whether or

not a “major” epidemic can occur. Specifically, when R0 ≤ 1 the epidemic will

die out i.e., in an infinite population only a finite number of individuals will

ultimately become infected. In the case that R0 > 1 there is a positive proba-

bility that an infinitely large number of individuals will contract the disease in

question.

The threshold theorem, described in the previous section, is the most im-

portant result in the mathematical theory of epidemics and it was introduced

in Whittle (1955), see also Williams (1971) and Ball (1983). We will present

in the next section a rigorous derivation of the threshold parameter based on

a coupling of the initial stages of the epidemic with a branching process. For

the model presented here, R0 = λE[I]. We emphasize that the definition of

R0 as a threshold parameter and the related results are exactly valid only in

some asymptotic sense, typically as the population size becomes infinite. How-

9



ever, this is the most commonly used epidemiological parameter to date and

reducing R0 below unity is typically the aim of programs for epidemic control.

Final size distribution

We shall consider the case where only the final outcome of the epidemic is ob-

served. The final size of an epidemic is defined as the number of initially suscep-

tible individuals that ultimately become infected. Let φ(θ) = E(exp(−θI)), θ >

0 be the moment generating function of the infectious period I and pn
k the prob-

ability that the final size of the epidemic is equal to k, 0 ≤ k ≤ n. Then Ball

(1986) proved that

l
∑

k=0

(

n−k
l−k

)

pn
k

[

φ
(

λ(n−l)
n

)]k+m
=

(

n

l

)

, 0 ≤ l ≤ n. (1.1)

The system of equations in (1.1) is triangular and thus, in principle, it is

straightforward to calculate the final size probabilities recursively. However,

numerical problems appear due to rounding errors even for moderate popula-

tion sizes of order 50-100. Hence it readily becomes apparent that the calcu-

lation of the likelihood, the distribution of the data given a parameter value,

requires the development of a different method. In this thesis we will employ

two ways to overcome these difficulties. In chapter two we will evaluate the

likelihood using augmented precision arithmetic while in chapter four we shall

use a random graph that enables the evaluation of the likelihood. We will now

describe a more realistic, and complex, model for disease spread in a closed

population.
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1.2.2 Epidemic models with two levels of mixing

Basic model

In this section we introduce the two-level-mixing model. The statistical analysis

of this model will be described in later chapters. In this chapter we will define

the model and give an approximation for the early stages of an epidemic in a

population with local and global contacts. The relevant results that are required

for inference purposes will be described in chapter three.

Population Structure We consider the model described in Ball et al.

(1997). The model is defined in a closed population that is partitioned into

groups (e.g. households or farms) of varying sizes. Suppose that the popula-

tion contains mj groups of size j and let m =
∑∞

j=1 mj be the total number of

groups. Then the total number of individuals is N =
∑∞

j=1 jmj.

Epidemic Process We will make the S-I-R assumption so that each individ-

ual can, at any time t ≥ 0, be susceptible, infectious or removed. A susceptible

individual j may become infectious as soon as he is contacted by an infec-

tive and will remain so for a time Ij distributed according to any specified

non-negative random variable I. The epidemic is initiated at time t = 0 by

a (typically small) number of individuals while the rest of the population is

initially susceptible. We allow individuals to mix at two levels. Thus, while in-

fective, an individual makes population wide infectious contacts at times given

by the points of a Poisson point process with rate λG. Each such contact is

with an individual chosen uniformly at random from the N initially susceptible

individuals. Hence, the person to person rate is λG

N
. If the contacted individ-

ual has been infected before then the contact has no effect to the state of this

individual while if the contacted person is susceptible then he gets infective.
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Additionally, each infective individual makes person to person contacts with

any given susceptible in its own household according to a Poisson process with

rate λL. All the Poisson processes (including the two processes associated with

the same individual) and the random variables Ij, j = 1, . . . , N , describing the

infectious periods of different individuals, are assumed to be mutually indepen-

dent. Note here that by contact we mean the so-called close contacts that result

in the immediate infection of the susceptible. At the end of its infectious period

the individual is removed and plays no further role in the epidemic spread. The

epidemic ceases when there are no infectives present in the population.

Latent Period Note that this model does not assume a latent period for an

infected individual. However, the distribution of the final outcome of an SIR

epidemic is invariant to fairly general assumptions concerning a latent period,

see Ball et al. (1997). One way to see this is to consider the infection process

in terms of ”generations” of infectives. This is not always accurate for the

propagation of a disease when temporal data about the epidemic spread are

available, but there is no loss of generality when we consider final outcome

data. This can be seen by considering the random graph associated with the

epidemic and will become more clear when we will consider the construction

of the random graph in chapter four. In what follows we describe some results

regarding the coupling of the initial stages of the epidemic process with a

suitable branching process.

Branching process approximation

The threshold parameter is of considerable practical importance since it gives

information about epidemic control through prophylactic measures like vaccina-

tion. For stochastic epidemic models threshold parameters are typically defined
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as functions of the basic model parameters and the population structure.

The probabilistic properties of the two-level-mixing model are analysed

in Ball et al. (1997). The authors derive, among other limit theorems, a

threshold result using a coupling argument. Specifically, assuming there is a

population with infinitely many households, the initial stages of the epidemic

are coupled with a branching process (see e.g. Jagers (1975)). The state-

space of this branching process is the set of groups, with each group acting as

a ”superindividual”. Thus, the early phase of the epidemic is coupled with a

suitable stochastic process for which there is a large amount of theory available.

Subsequently the authors prove, as the number of households goes to infinity,

that during the early stages of the epidemic the probability of a global infectious

contact with a member of an infected household is negligible.

Let us assume that for n = 1, 2, . . . , the proportion mn

m
of groups of size

n converges to θn as the population size N → ∞. Let also ĝ =
∑∞

n=1 nθn be

the asymptotic mean group size and assume that ĝ < ∞. Then it is shown in

section 3.5 of Ball et al. (1997) that there exists, as the number of households

goes to infinity, a threshold parameter defined by R∗ = λGE(I)ν. Here ν =

ν(λL) = 1
ĝ

∑∞
n=1(1 + µn−1,1(1))nθn is the mean size of an outbreak in a group,

started by a randomly chosen individual, in which only local infections are

permitted and the initial infective in the group is included in ν. Also µn−1,1(1)

is the mean final size of an epidemic in a group with a single initial infective

and n − 1 initial susceptibles where only local infections count. This quantity

will be evaluated later using equation (3.4).

For simpler models this parameter would typically be the so-called basic

reproduction number. However, for complex models it is not always straight-

forward to define the basic reproduction number. Thus, we will be referring to

R∗ as the threshold parameter. In the case of a homogeneously mixing popu-

13



lation, which in the current framework corresponds to all the households being

of size 1, the threshold parameter would be R0 = λGE(I).

R∗ is the threshold parameter that determines the behaviour of the coupled

branching process. Hence, by standard branching process theory, if R∗ ≤ 1 the

branching process goes extinct, or equivalently, the epidemic will die out with

probability 1. The epidemic extinction is defined in the asymptotic sense as

mentioned in the previous section. Hence, in an infinite number of households,

only a finite number of households will ultimately contain infected individuals.

In the case of R∗ > 1 there is a positive probability that a major epidemic

will occur. Thus, in a rigorous treatment of the non-extinction case, out of an

infinite number of groups, a positive proportion of them will get infected from

outside. The interpretation of the above results in terms of applications is that

if one wants to prevent major epidemics using vaccination or other means of

control, it will be necessary to keep R∗ below unity. Thus, it quickly becomes

apparent that the estimation of the transmission parameters of the model is

vital.

Approximating the initial stages of the epidemic is one of the two most

important types of limit theorems in the epidemic theory. The second type

describes results related to a normal approximation for the final size of an

outbreak in the event of a major epidemic. Results of this kind for the two-

level-mixing model will be described in chapter three, where a central limit

theorem will be used for approximate statistical inference for this model.

This thesis utilises the Bayesian approach to statistical inference and in

the next section we give a summary of the theory and the tools required for its

implementation.
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1.3 Bayesian Statistical Inference

1.3.1 Basic theory

In this section we will review the fundamentals of the Bayesian paradigm in a

basic non-technical level. For a rigorous and detailed approach see Bernardo

and Smith (1994).

Bayes’ Theorem

In the Bayesian approach, in addition to specifying the model for the observed

data x = (x1, . . . , xn) given the vector of the unknown parameters θ, in the

form of the likelihood function L(x | θ), we also define the prior distribution

π(θ). Inference concerning θ is then based on its posterior distribution, given

by

π(θ | x) =
L(x | θ)π(θ)

∫

L(x | θ)π(θ)dθ
∝ L(x | θ)π(θ). (1.2)

We refer to this formula as Bayes’ Theorem. The integral in the denominator

is essentially a normalising constant and its calculation has traditionally been

a severe obstacle in Bayesian computation. We shall demonstrate in the next

section how we can avoid its calculation using MCMC methods. The second

form in 1.2 can be thought of as “the posterior is proportional to the likelihood

times the prior”. Clearly the likelihood may be multiplied by any constant (or

any function of x alone) without altering the posterior. Moreover, Bayes’ Theo-

rem may also be used sequentially: suppose we have collected two independent

data samples, x1 and x2. Then
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π(θ | x1,x2) ∝ L(x1,x2 | θ)π(θ)

= L2(x2 | θ)L1(x1 | θ)π(θ)

∝ L2(x2 | θ)π(θ | x1). (1.3)

That is, we can obtain the posterior for the full dataset (x1,x2) by first eval-

uating π(θ | x1) and then treating it as the prior for the second dataset x2.

Thus, we have a natural setting when the data arrive sequentially over time.

Prior distributions

In this section we briefly present the most popular approaches for the choice of

a prior distribution. Additionally to the priors we mention here there exist the

so called elicited priors, created using an expert’s opinion. However, elicitation

methods go beyond the scope of this thesis and we shall not give more details

here.

Conjugate priors When choosing a prior from a parametric family, some

choices may be more computationally convenient than others. In particular,

it can be possible to select a distribution which is conjugate to the likelihood,

that is, one that leads to a posterior belonging to the same family as the

prior. It is shown in Morris (1983) that exponential families, where likelihood

functions often belong, do in fact have conjugate priors, so that this approach

will typically be available in practice. The use of MCMC does not require

the specification of conjugate priors. However, they can be computationally

convenient and their use is recommended when it is possible and appropriate.

Non-informative priors In many practical situations no reliable prior in-

formation concerning θ exists, or inference based solely on the data is desirable.
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In this case we typically wish to define a prior distribution π(θ) that contains

no information about θ in the sense that it does not favour one θ value over

another. We may refer to a distribution of this kind as a noninformative prior

for θ and argue that the information contained in the posterior about θ stems

from the data only.

In the case that the parameter space is Θ = {θ1, . . . , θn}, i.e., discrete and

finite, then the distribution

π(θi) =
1

n
, i = 1, . . . , n,

places the same prior probability to any candidate θ value. Likewise, in the case

of a bounded continuous parameter space, say Θ = [a, b],−∞ < a < b < ∞,

then the uniform distribution

π(θ) =
1

b − a
, a < θ < b,

appears to be noninformative.

For unbounded spaces the definition of noninformative distribution is not

straightforward. In the case that Θ = (−∞,∞) a distribution like π(θ) = c

is clearly improper since
∫

π(θ)dθ = ∞. However, Bayesian inference is still

possible in the special case where
∫

 L(x | θ)dθ = D < ∞. Then

π(θ | x) =
L(x | θ)c

∫

L(x | θ)cdθ
=

L(x | θ)

D
.

There is not however a “default” prior for all cases. The uniform prior is

not invariant under reparameterisation. Thus, an uninformative prior can be

converted, in the case of a different model, to an informative one. One approach

that overcomes this difficulty is Jeffreys prior given by

π(θ) ∝ |I(θ)|1/2,
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where | · | denotes the determinant and I(θ) is the expected Fisher information

matrix, having ij-element

Iij(θ) = EX|Θ

[

∂2

∂θi∂θj

L(x | θ)

]

.

In this thesis we will adopt the view of Box and Tiao (1973, p.23) who suggest

that all that is important is that the data dominate whatever information is

contained in the prior, since as long as this happens, the precise form of the

prior is not important. Hence, we typically employ a few different priors with

large variance and as long as the inference results do not change, then we shall

consider our inference procedures as “objective”.

Inference Procedures

Having obtained the posterior distribution of interest we now have all the in-

formation that the data contain for the parameters. A natural first step is to

plot the density function to visualise the current state of our knowledge. Fur-

thermore, we can obtain summaries of our posteriors which can give us all the

information that can be obtained using a classical approach to inference plus,

in certain cases, additional information. We will mention the most commonly

used in practice, point estimation and interval estimation.

Point estimation Point estimation is readily available through π(θ | x).

The most frequently used location measures are the mean, the median and the

mode of the posterior distribution since they all have appealing properties. In

the case of a flat prior the mode is equal to the maximum likelihood estimate.

For symmetric posterior densities the mean and the median are identical. More-

over, for unimodal symmetric posteriors all the three measures coincide. For

asymmetric posteriors the choice is not always straightforward. The median is

often preferred since, in the case of one-tailed densities, the mode can be very
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close to non-representative values while the mean can be heavily influenced in

the presence of outliers. In practice, after visualising the posterior density, or

a number of scatterplots in the case of multivariate densities, the evaluation of

at least the mean and the median is recommended.

Interval estimation A 100 × (1 − α)% credibility set for θ is a subset C of

Θ such that

1 − α ≤ P (C | x) =

∫

C

π(θ | x)dθ,

where integration is replaced by summation for discrete components of θ. In

the case of continuous posteriors the ≤ is typically replaced by =.

This definition enables appealing statements like “The probability that θ

lies in C given the observed data x is at least (1−α)”. This comes in contrast

with the usual interpretation of the confidence intervals based on the frequency

of a repeated experiment. Probably the most attractive credibility set is the

highest posterior density, or HPD, set defined as

C = {θ ∈ Θ : π(θ | x) ≥ ξ(α)},

where ξ(α) is the largest constant satisfying P (C | x) ≥ 1 − α. A credibility

set of this kind is appealing because it consists of the most likely θ values. In a

sampling based approach the calculation of the HPD set requires a numerical

routine. Hence, it is easier to calculate the equal tail credibility set by simply

taking the α/2- and (1 − α/2)-quantiles of π(θ | x) which equals the HPD set

for symmetric unimodal densities.

There are a number of different approaches to Bayesian model assessment

and model choice. We will not consider these issues here since they extend

beyond the scope of this thesis. For a discussion of several key ideas in the field,

including Bayes factors and model averaging, see Berger (1985). We will now
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consider a collection of algorithms that greatly facilitate the implementation of

Bayesian modelling known as Markov chain Monte Carlo (MCMC) algorithms.

1.3.2 Bayesian Computation

The main idea behind MCMC is to generate a Markov chain which has as its

unique limiting distribution the posterior distribution of interest. It dates back

to the seminal paper of Metropolis et al. (1953) although the computational

power required was not available at the time. The original generation mecha-

nism was generalised by Hastings (1970) in the Metropolis-Hastings algorithm

that we shall describe in the following section.

The Metropolis-Hastings algorithm

The objective of the Metropolis-Hastings (M-H) algorithm is to generate ap-

proximate samples from a density π(θ) known up to a normalising constant.

Given a conditional density q(θ′ | θ) the algorithm generates a Markov chain

(θn) through the following steps:

1. Start with an arbitrary initial value θ0

2. Update from θn to θn+1 (n = 0, 1, . . . ) by

(a) Generate ξ ∼ q(ξ | θn)

(b) Evaluate α = min
{

π(ξ)q(θn|ξ)
π(θn)q(ξ|θn)

, 1
}

(c) Set

θn+1 =











ξ with probability α,

θn otherwise.

The distribution π(θ) is often called the target distribution whereas the dis-

tribution with density q(· | θ) is the proposal distribution. The algorithm
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described above will have the correct stationary distribution as long as the

chain produced is irreducible and aperiodic. This holds true for an enormous

class of proposals and usually it suffices, but is not necessary, that the support

of the proposal distribution q(· | θ) contains the support of π for every θ. How-

ever, the generality of the theorem suggests that the selection of the proposal

can be rather decisive. In practice, a proposal with poor overlap between the

high density region of π and q(· | θ) may considerably slow convergence. We

will now describe the most popular proposal distributions.

The Independent Case A proposal distribution is called independent if it

does not depend on θ. This family of distributions admits the form

q(θ′ | θ) = f(θ′).

This class of proposals can in theory result in algorithms with satisfactory

properties as described in Mengersen and Tweedie (1996). In practice the choice

of the actual proposal can affect the mixing of the Markov chain drastically.

A proposal that is badly calibrated, i.e., a distribution with little support over

the high density region of the target distribution, can have extremely slow

mixing. Ideally the proposal should resemble the target density being somewhat

more diffuse. Usually MCMC algorithms are not based on an independence

sampler alone but make use of a number of proposals. However, it is worth

emphasizing that a well calibrated independence sampler can outperform most

M-H algorithms. We will now describe the most common choice for q(· | θ),

the symmetric random walk proposal.

Random Walk Metropolis The natural idea behind the random walk pro-

posal is to perturb the current value of the chain at random and then check

whether the proposed value is likely for the distribution of interest. In this
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case the proposal has the form q(θ′ | θ) = f (‖θ′ − θ‖) where ‖ · ‖ denotes the

absolute value. Thus, the proposed value in the M-H algorithm is of the form

ξ = θn + ǫ,

where ǫ is distributed according to a symmetric random variable. For this

random walk proposal the acceptance ratio becomes

α = min

{

π(ξ)

π(θn)
, 1

}

.

Hence, the chain will remain longer in points with high posterior value while

points with low posterior probability will be visited less often. The most popu-

lar choices for the proposal q(· | θ) are the normal, the uniform and the Cauchy

distributions. In fact, the Gaussian random walk has been, along with the

Gibbs sampler described in the next paragraph, among the most commonly

used MCMC schemes to date. The algorithm is widely applicable and the only

requirement is the scaling of the variance of the proposal. For the Gaussian

case Roberts et al. (1997) proved that the optimal scaling of the proposal

should result to an acceptance rate of approximately 0.234, at least for high-

dimensional situations. We will now turn our attention to the Gibbs sampler,

the most popular MCMC method, particularly in the years following the paper

of Gelfand and Smith (1990).

The Gibbs Sampler The Gibbs sampling approach is a special case of the

M-H algorithm directly connected to the target distribution π. The method

derives its name from Gibbs random fields, where it was used for the first time

by Geman and Geman (1984). The idea is to sample from the joint posterior

distribution π(θ1, θ2, . . . , θℓ) using the one-dimensional full conditional distri-

butions π1, π2, . . . , πℓ. Thus, given the current state of the chain θ1
n, θ2

n, . . . , θℓ
n

we simulate the next state of the chain by sampling

θi
n+1 ∼ πi(θ

i | θ1
n+1, θ

2
n+1, . . . , θ

i−1
n+1, θ

i+1
n , . . . , θℓ

n), i = 1, . . . , ℓ.
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The Gibbs sampler has acceptance probability one. Hence, each sample is a

successive realisation from the chain. The θi’s and the full conditional distribu-

tions need not be one-dimensional. In fact, for correlated parameters, blocking

can improve the convergence of the chain considerably. Moreover, when sim-

ulation from a given conditional distribution πi(θ
i | θj, j 6= i) is complicated,

possibly due to the absence of a closed-form distributional formula, this simu-

lation can be replaced with a Metropolis-Hastings step having πi(θ
i | θj, j 6= i)

as the target distribution. Also sampling from the full conditional distribu-

tions is not necessarily done in a systematic way. The random scan Gibbs

sampler, choosing which full conditional distribution to update at random, can

have superior convergence properties in certain cases. These are only the most

basic variants of the Metropolis-Hastings algorithm. A vast number of modifi-

cations and combinations, leading to hybrid samplers, appear in the literature.

However, these methods go beyond the scope of this chapter and we shall not

pursue these issues further.

Implementation

MCMC methods have generated unlimited applicability of the Bayesian paradigm

in nearly every branch of statistics. However, the user should always be cau-

tious since the method is based on asymptotic arguments. Hence, there are

two practical issues that need investigation to establish the reliability of the

chain outcome. The first of these is the burn in, i.e. the number of iterations

that need to be discarded from the output.

Burn In The Markov chains produced with the proposal distributions that

we described thus far are ergodic. This means that the distribution of (θn)

converges, as n goes to infinity, to π(· | x) for every starting value (θ0). However,
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the speed of this event i.e., the rate of convergence varies depending, among

others, on the posterior state-space and the sampler used, see Roberts (1996)

for a discussion of these issues. Thus, for k large enough, the resulting (θk) is

an approximate sample from π(θ | x). The problem in practice is to determine

what a “large” k means. There is a number of diagnostic tests proposed in the

literature that provide us with different indicators on the stationarity of the

chain. However, none of these tests can actually guarantee convergence. Hence,

throughout this thesis we investigate the “trace”, a plot of the history, of the

chain for very long (typically a few million iterations) runs and all the results

reported in this thesis are based on chains that appear to have converged. The

second practical concern is that after the burn-in some thinning of the chain

may be required.

Thinning The sample we obtain, after the initial observations are discarded,

does not necessarily consist of independent observations. In theory this is not

crucial if we are interested in functionals of π(θ | x) since the Ergodic Theo-

rem implies that the average 1
L

∑L
ℓ=1 f(θℓ) converges, as L goes to infinity, to

Eπ(f(θ)). In practice however, some sort of batching may be required. Hence,

keeping one sample of the chain out of t iterations, with t = 20 or t = 50 say,

we can achieve approximate independent sampling from π(θ | x). Moreover,

from the practical point of view, we avoid the creation of unmanageable sample

sizes that could potentially hamper the statistical analysis of the output.
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1.4 Statistical Inference from Outbreak Data

1.4.1 The Nature of Infectious Disease Data

The Reasons for Modelling

The statistical analysis of infectious disease data is typically not a straight-

forward problem and as such it requires the development of problem specific

methodology. Infectious disease data are usually complicated to analyse and

there are a number of reasons that makes their analysis awkward. We shall

describe the features of infectious disease data in the following section.

The analysis of outbreak data can be more effective when based on a model

for the actual mechanism that generates the data. Moreover, epidemic models

provide us with a better understanding of the infection process and also with the

epidemiologically important quantities of interest. Finally, there are a number

of reasons for the analysis, using epidemic models, of historical incidence data.

Analyses of this kind can be very useful for diseases occurring due to both novel

and re-emerging pathogens as described in the recent review of Ferguson et al.

(2003). This is of particular relevance at the moment, not only because of the

emergence of the SARS outbreak, e.g., Riley et al. (2003) and Lipsitch et al.

(2003), but also due to the threat of deliberately released pathogens such as

smallpox, e.g. Kaplan et al. (2002) and Halloran et al. (2002). Ferguson et al.

(2003) argue that there does not exist an epidemic model that can be “truly

predictive” in the context of smallpox outbreak planning and consequently that

no control method can be a priori identified as absolutely optimal. However,

they suggest that it is vital that a range of models and a set of control options

can be identified. Hence, in the event of an outbreak, the models can be

adjusted in order to identify the current optimal control method. We shall

now describe in detail the difficulties arising during the statistical analysis of
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infectious disease data.

The Features of Infectious Disease Data

One of the complications when analysing infectious disease data is that there

are often various levels of inherent dependence that one needs to take into ac-

count, particularly in the event of a “major” epidemic. Specifically, despite the

fact that stochastic epidemics are typically easy to define, there is often a very

large number of ways that can result to the same outcome. The complexity

of the models increases enormously as they become more realistic. Hence, as-

suming biologically plausible distributions for the infectious periods, such as

Gamma and Weibull instead of the mathematically convenient constant and ex-

ponentially distributed ones, induces an additional level of dependence. These

facts come in contrast with the usual independence assumption that under-

lies many of the standard statistical methods. Moreover, the actual disease

incidence data are incomplete in different ways. In particular, a relatively in-

formative dataset consists of the times at which the infectious individuals are

detected. Even this level of information however is far from being complete.

From the inference viewpoint it would be desirable to observe the times that

the individuals did contract the disease, as well as the time that the individuals

ended their (potential) latent period and could infect others. Additionally, a

significant number of data sets only consist of the numbers of individuals who

contracted the disease in question. These data can be important data, verified

by clinical measurements, or routinely collected surveillance data. However,

when realistically complex models are to be fitted to data of this kind, the

likelihood can be analytically and numerically intractable. We shall explore

in this thesis a number of imputation methods, i.e., different ways of adding

information about the epidemic process, that can aid towards overcoming these
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difficulties.

It is this nature of epidemic data that makes the statistical analysis of in-

fectious disease data particularly challenging. In the remainder of this section

we shall review the work conducted thus far on statistical inference, Bayesian

and classical, from outbreak data and we will complete the section with infer-

ence about the epidemic models related to the stochastic epidemic model with

two levels of mixing that will be the subject of statistical inference in chapters

3 and 4.

1.4.2 Previous Work on Epidemic Modelling

Monographs on Epidemic Models

There is a vast literature on deterministic and stochastic epidemic modelling.

We shall mention here the main books on epidemic modelling. Most of the

work on modelling disease transmission prior to 1975 is contained in Bailey

(1975). The author presents a comprehensive account of both stochastic and

deterministic models, illustrates the use of a variety of the models using real

outbreak data and provides us with a complete bibliography of the area.

Becker (1989) presents statistical analysis of infectious disease data. The

author uses a number of different models and analyses a large variety of real

life outbreak data. The single book that has received most attention recently

is Anderson and May (1991). However, the authors only focus on deterministic

models, as does the recent monograph by Diekmann and Heesterbeek (2000). A

six-month epidemics workshop took place in 1993 in the Isaac Newton Institute

in Cambridge. A large part of the outcome of the work conducted in this meet-

ing is summarised in the three volumes edited by Grenfell and Dobson (1996),

Isham and Medley (1996) and Mollison (1996) respectively. A recent addition
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to the literature of stochastic epidemic modelling is Andersson and Britton

(2000) which provides an excellent introduction to stochastic modelling and

the authors also mention some basic statistical analysis for stochastic epidemic

models. Since the seminal paper of Mollison (1977) on spatial epidemics there

has been increasing interest in the applied probability literature for models of

this kind. Also, a number of spatial epidemic models based on bond-percolation

has been developed since the paper of Kulasmaa (1982), see for example the

book by Liggett (1999) and the references therein.

Reviews of Epidemic Models and their Analysis

There does not exist a monograph concerned with the recent progress on the

statistical analysis of infectious disease data. Becker and Britton (1999) present

a critical review of statistical methodology for the analysis of outbreak data.

The authors make an attempt to place emphasis on the important objectives

that analyses of this kind should address, as well as suggesting issues where

further work is required. Recently, Ferguson et al. (2003) conducted a review

of epidemic models with reference to planning for smallpox outbreaks. The

authors emphasize the importance of epidemic modelling as a useful tool for

assessing the threat posed by deliberate release of a known pathogen, as well

as dealing with the emergence of a novel virus. We shall now present the

statistical analysis of epidemics that are relevant to the models that this thesis

will attempt to explore.

Statistical Analysis of Epidemic Models

This section will review methods of parametric inference about the infection

rate(s) and the epidemiologically important parameters. See Becker (1989)

for a comprehensive account of nonparametric inference methodology based on
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martingale methods.

Epidemics in homogeneous populations The first statistical analysis of

removal data, based on a continuous-time model, for the purpose of estimating

the infection and the removal rate is described in Bailey and Thomas (1971).

The authors analysed the general stochastic epidemic using maximum likeli-

hood methods. Rida (1991) derives asymptotic normality results for some esti-

mators of the infection rate and the corresponding basic reproduction number.

However, the largest amount of information for inference based on epidemic

models defined on a homogeneous population is in Becker (1989). A large

number of different approaches are presented including the author’s work for

parametric as well as non-parametric methods of statistical inference.

As with many application areas of statistics, inference for stochastic epi-

demic models has benefited considerably from the use of Markov chain Monte

Carlo methods. In particular, Gibson and Renshaw (1998) and O’Neill and

Roberts (1999) first presented a statistical analysis of S-I-R models based on

MCMC methods. O’Neill and Becker (2001) have presented inference proce-

dures for a non-Markovian epidemic model where the infectious period follows

a Gamma distribution. Streftaris and Gibson (2003) use MCMC methods in a

different extension of the general stochastic epidemic model where the infectious

period is distributed according to a Weibull random variable, with particular

reference to plant epidemiology. Finally, Hawakaya et al. (2003) extend the

basic model in two key directions. They allow for a multitype (e.g. different

age, sex) model, where the infection rates vary between different types, as well

as the actual number of susceptibles being unobserved. The authors derive

statistical inference for both the infection rates and the size of the population.

We shall briefly mention three papers that focus more on the statistical
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context of inference for epidemics, as opposed to inference for a wider class

of epidemic models than those analysed before. A group of parameterisations

that can improve the convergence of MCMC algorithms used in the epidemics

context is the subject of Neal et al. (2003). Specifically, the authors describe

algorithms that can be more robust with respect to the mixing of the Markov

chain. A method that eliminated the need for assessing convergence of the

Markov chain is the perfect simulation algorithm originated by Propp and

Wilson (1996). O’Neill (2003) proposes methods of perfect simulation when

the infection process is of the Reed-Frost type. Finally, a different statistical

method, based on the forward-backward algorithm, that can be used for esti-

mation of the infection and removal rate in the general stochastic epidemic is

presented in Fearnhead and Meligkotsidou (2003). Statistical inference is less

obvious when the population in question admits a particular structure, e.g.

households, and these methods will be described in the next paragraph.

Epidemics in structured populations

Epidemics on independent households Longini and Koopman (1982)

consider models in which individuals reside in households and may be poten-

tially infected both from infectives within their household or from individuals

outside their household. Their model assumes that the disease within the

household progresses independently of the dynamics of the community. This

approach is generalised in a model with a general infectious period in Addy

et al. (1991). The authors extend the work of Ball (1986) on the generalised

stochastic epidemic so that individuals can also be infected from the community

at large. We will comment further on the approach of Addy et al. (1991) and

the limitations of their model in chapters 3 and 4. Britton and Becker (2000)

use the Longini-Koopman model in order to estimate the critical vaccination
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coverage required to prevent epidemics in a population that is partitioned into

households. O’Neill et al. (2000) use MCMC method to analyse both tem-

poral and final size data from household outbreaks. Finally, a different perfect

simulation method is applied in Clancy and O’Neill (2002) where the authors

analyse a model related to the Longini-Koopman model where some variation

in the probability of individuals from different households being infected from

outside is included.

Probably the most important application of epidemic models is in epidemics

control, typically using vaccination. A large body of literature exists and we

shall only mention a few key references. Becker and Dietz (1995) study the

control of diseases among households assuming that once there is an infective

in a household everybody contracts the disease. Ball and Lyne (2002) derive

the effect of different vaccination policies in a population that is partitioned

into households while Becker et al. (2003) use an independent households

model to estimate vaccine efficacy from household outbreak data, see Halloran

et al. (1999) for a review of other methods for estimating vaccine efficacy. We

shall now mention briefly statistical inference for epidemics with two levels of

mixing.

Inference for Epidemics with two levels of mixing Ball et al.

(1997) briefly consider statistical inference for their model. They mention that,

for estimation purposes, their model can asymptotically be approximated by

the model of Addy et al. (1991). The authors use the basic idea and the

results from Addy et al. (1991) to examine different vaccination strategies

among households. Britton and Becker (2000) also formulate their work in

order to estimate the immunity coverage required for preventing an outbreak

when the population is partitioned into households, in terms of the two-level-

mixing model. However, as mentioned in the previous paragraph, they perform
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their statistical inference with respect to an independent households model. A

more detailed approach that utilises (pseudo)likelihood inference is presented

in Ball and Lyne (2003). The authors describe inference procedures for the

multitype version of the model described in Ball and Lyne (2001). The method

used is related to the method we describe in chapter 3 and we will comment

on specific results in the appropriate sections of chapter 3.

Epidemics with different population structure In real life popula-

tions individuals interact with a number of different environments additionally

to their household, such as schools and workplaces. However, it would be im-

possible to capture every aspect of the population structure. In the recent years

there has been intense activity in describing the population structure through

a random network structure. Probably the simplest model of this kind is a

Bernoulli random graph where each individuals has social contacts with other

individuals in the populations according to a fixed probability. Britton and

O’Neill (2002) use MCMC methods to conduct Bayesian Inference for a model

where individuals have social contacts according to a Bernoulli random graph

and the disease spreads as a general stochastic epidemic. Neal et al. (2003)

extend their reparameterisations in this case to offer robust MCMC algorithms

for the infection and removal rate as well as the probability of social contact.

These methods can, in principle, be extended to more complicated social

structures. It would be particularly interesting to consider statistical inference

when the population is assumed to have social contacts according to a complex

random graph. There has been intense recent interest in sociology and sta-

tistical mechanics since the pioneering work of Watts and Strogatz (1998) on

“small-world” networks, see for example the review by Strogatz (2001). Albert

and Barabàsi (2002) present an extensive review of the different models for the

structure of the community and other networks such as the internet and vari-

32



ous biological networks, including the so-called scale free networks. A number

of algorithms have been developed for the detection of these structures and it

would be interesting to combine our approach with an approach of the kind de-

scribed in Newman (2003). Finally, there has been some interest in statistical

inference for spatio-temporal epidemic models, see for example Gibson (1997)

and Marion et al. (2003).
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Chapter 2

Exact Results for the

Generalised Stochastic Epidemic

2.1 Introduction

This chapter contains methods for the numerical solution of the set of the

triangular equations describing the final size probabilities of the generalised

stochastic epidemic. This simple stochastic process was described in the previ-

ous chapter, although no attempt was made to describe statistical analysis of

the model. The probabilities of the final size can be derived from a well known

set of recursive equations, see Ball (1986). However, practical implementation

of attempts to solve these equations is frequently hampered by numerical prob-

lems, see for example Andersson and Britton (2000). These problems arise even

for moderate population sizes, and the accuracy of the solution also depends on

the parameter values. We shall explain the reason for these numerical problems

in the next section but essentially the problem stems from the nature of the

distribution of the final size probabilities and the recursive method by which

they are obtained. The recursive nature of the triangular equations means that
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in order to evaluate the “interesting” probabilities that are typically the object

of inference, we first need to calculate probabilities that are very close to zero.

The problem gets worse as the population size increases since the number of

the probabilities that are numerically negligible becomes large.

Potential solutions to this problem can, in principle, arise from the numer-

ical analysis literature since the final size distribution is essentially obtained

by solving a linear system of equations. Previously derived numerical methods

offer a number of approximate solutions for similar problems. However, our

problem is of a different nature. In particular, the space of the solution in our

case is constrained to the positive real vectors that sum to unity. Hence, the

assumptions that typically underly the approximate methods break down.

In this chapter we shall utilise a different approach to the solution of this

linear system of equations. Our method involves using multiple precision arith-

metic. In particular, each number is stored in the computer as a long vector. In

fact, the amount of memory that is allocated to each multiple precision number

can be set by the user. Hence, by increasing the length of the vector we can

achieve arbitrarily high accuracy. In practice, the price we pay is the rapid

increase in the computation time when we compare it to the usual double pre-

cision that most computers use in order to perform real number calculations.

To offer a quantitative idea of the extended precision arithmetic it is worth

recalling that modern computers allocate 8 bytes of memory for a double pre-

cision number and 16 bytes of memory for quadruple precision real numbers.

In the algorithms we have used in this chapter we have allocated up to 580

bytes of memory for each multiple precision variable used for the computation.

An immediate advantage due to the use of multiple precision arithmetic is

the exact evaluation of the final size probabilities for any different population

size, initial number of infectives, final size of the epidemic and distribution of
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the infectious period. This solution can be used to assess the different limit

theorems that appear in the epidemics literature. We have already seen in

the previous chapter a branching process approximation for the initial stages

of an epidemic as well as a normal approximation for the distribution of the

final size in the event of a major epidemic. Additionally, we can perform both

Bayesian and likelihood inference since solving the triangular equations imme-

diately provides us with the likelihood function. The remainder of the chapter

is organised as follows. Relevant results for the generalised stochastic epidemic

are summarised in the next section while section 3 contains the solution, us-

ing multiple precision arithmetic, of the triangular equations that determine

the final size distribution. Using this distribution we assess two widely used

limit theorems for the generalised stochastic epidemic in section 4. In section 5

we describe the MCMC algorithm used for statistical inference while section 6

contains the corresponding results and the chapter ends with some concluding

remarks.

2.2 The Generalised Stochastic Epidemic

2.2.1 The Basic Model

In this section we shall briefly recall the notation and the key features of the

epidemic process. The epidemic propagates through a population of n+m indi-

viduals out of which m are initially infected and the n remaining individuals are

susceptible to the disease in question. The infectious periods of different indi-

viduals are assumed to be independent and identically distributed according to

a random variable I, having an arbitrary but specified distribution. While in-

fectious, an individual makes infectious person-to-person contacts at the points

of a time homogeneous Poisson process with intensity λ
n
. The Poisson processes
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of different individuals are assumed to be mutually independent.

2.2.2 Final Size Probabilities

Let φ(θ) = E[exp(−θI)] be the moment generating function of the infectious

period I and pn
k be the probability that the final size of the epidemic is equal

to k, 0 ≤ k ≤ n. Then

l
∑

k=0

(

n−k
l−k

)

pn
k

[

φ
(

λ(n−l)
n

)]k+m
=

(

n

l

)

, 0 ≤ l ≤ n. (2.1)

The system of equations in (2.1) is triangular. Linear systems of this kind are

typically considered to be straightforward to solve, e.g. Higham(1989). Hence

it appears easy to calculate the final size probabilities recursively.

For illustration, in figure 2.1 we present the final size probabilities for an

epidemic in a population of 800 individuals. The epidemic was initiated with

1 initial infective, the infectious period I follows a Gamma distribution with

mean E(I) = 4.1 and variance V ar(I) = 8.405 being the sum of two exponential

random variables with mean 2.05. The infection rate parameter is set to λ = 1.

Hence, in this particular case R0 = E(I) = 4.1. Then we solved equations

(2.1) using multiple precision arithmetic, as described later, and the outcome

is presented in figure 2.1.

The bimodal shape of the final size distribution is obvious. In particular,

the probability mass is split between the initial part, corresponding to the case

that the epidemic goes extinct, and the “normal” part around the number of

individuals that ultimately get infected once an epidemic has taken off. Hence,

even for R0 = 4.1 the probability that the the epidemic will die out quickly

is not negligible. We can approximate this probability by the probability that

the corresponding branching process dies out and we shall assess this approxi-

mation in the fourth section of this chapter. In the case of non-extinction, the
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Figure 2.1: The final size distribution of an epidemic among a population of

800 individuals.

largest part of the probability mass is concentrated around the normal part

with the most likely final size being approximately 785. We would expect a

severe epidemic of this kind since the basic reproduction number is relatively

large. Note that the “normality” of most likely sizes in the event of a major

epidemic would be even more clear for an epidemic among a smaller population.

Numerical Problems

When using standard (double) precision arithmetic, numerical problems appear

due to rounding errors even for moderate population sizes of order 50-100. The

exact final size where negative probabilities arise depends on the actual final
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size as well as λ and φ. In particular, when the population size is, say, 100 the

solution, for a given λ and φ, appears to be stable when the final size varies

between 40 and 60. Therefore, the equations are more stable in the case where

the epidemic has taken off. However, when the population size is greater than

100, negative probabilities will appear for any final size calculations.

The Cause of the Instability

The actual reason for numerical problems is the final size probabilities in the

range between final sizes that correspond to epidemic extinction and final sizes

that comprise of a large proportion of the population. These probabilities

represent final sizes that appear to be very unlikely for this particular value of

R0. It is unfortunate that we need to calculate all the intermediate probabilities

in order to evaluate the probabilities of the typically most useful phase of the

epidemic, close to the “normally distributed” part of the final size distribution.

We shall now briefly explain how multiple precision arithmetic operates and

how it can be used for solving the triangular equations of the kind presented

in (2.1).

2.3 Exact Final Size Probabilities

2.3.1 Multiple Precision Arithmetic

There has been increasing demand in scientific computation for augmented

precision arithmetic. The applications vary from simply evaluating mathemat-

ical constants (Shanks and Wrench (1962)) with very high accuracy, to solving

problems with great financial implications, such as using finite element meth-

ods for the design of aeroplanes and cars. The most widely used package of
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this kind has been Brent’s MP package (Brent (1978)), implemented in Fortran

with great functionality and efficiency.

We used Smith’s FMLIB package (Smith (1991)) which is a more modern

set of multiple precision routines, implemented in Fortran. FMLIB gives com-

parable speed to Brent’s MP routines at low precision and greater speed when

higher precision is required. This increase in speed comes mainly from the

use of improved algorithms for computing the elementary functions in multiple

precision, see Smith (1989). The solution of the triangular equations in (2.1)

requires only elementary calculations. Hence, we would expect improved per-

formance using the FMLIB package. We shall not give here details of the design

of the multiple precision arithmetic or how the required accuracy and efficiency

are obtained as these details go beyond the scope of this thesis. The interested

reader is referred to Smith (1991) for the technical details of the implementa-

tion of the FMLIB package. We shall now describe briefly the evaluation, using

multiple precision arithmetic, of the final size probabilities.

2.3.2 Multiple Precision Final Size Probabilities

For the purposes of solving a triangular system of the kind described in (2.1)

it is convenient to rewrite the equations as

l
∑

k=0

(

n−k
l−k

)

pn
k

(

n
l

)

[

φ
(

λ(n−l)
n

)]k+m
= 1, 0 ≤ l ≤ n. (2.2)

Then (2.2) can be written as AP = 1 where A is the (n + 1) × (n + 1)

lower triangular matrix with elements akl =
(n−k

l−k)

(n
l)[φ(λ(n−l)

n )]
k+m , l = 0, . . . , n k =

0, . . . , l, P = {p0, p1, . . . , pn}T and 1 is the vector with all its elements being

equal to 1. Then it is straightforward to obtain P by

pk =
1 − sk

akk

, sk =
k−1
∑

i=0

akipi, k = 0, . . . , n. (2.3)
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Therefore, we only need to define A, P and 1 as multiple precision and

after solving (2.3) we can convert P to double precision and proceed as usual.

The price we pay is that this solution is far more computer intensive and time

consuming compared to one that could be obtained using double precision

arithmetic. It does work with very high accuracy for virtually any population

size but it can be rather infeasible for real life applications with a very large

population size when it is part of another computer intensive algorithm such

as Markov chain Monte Carlo. However, this does not have to be the case. In

fact, it is straightforward and relatively quick to reconstruct, for a given final

size, the likelihood function over a grid of λ values and this can be the basis of

a worthwhile alternative to Bayesian inference procedures.

2.4 Evaluation of limit theorems

In this section we shall use the final size distribution, as obtained by solving the

triangular equations in (2.3), to assess some aspects of the two most widely used

limit theorems in epidemic theory namely, evaluating the probability that the

epidemic goes extinct, based on coupling the initial stages of the epidemic with

a suitable branching process and, in the case of non-extinction, approximating

the distribution of the final size with a Gaussian distribution.

2.4.1 Probability of Epidemic Extinction

The evaluation of the extinction probability for a stochastic epidemic model

can be achieved using the branching process approximation for the initial stages

of the epidemic process as described in page 9. We recall from Andersson and

Britton (2000) theorem 3.1, that, when R0 > 1, an epidemic becomes extinct

with probability qm where m is the number of initial infectives and q is the
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smallest root of the equation

φ(λ(1 − θ)) = θ. (2.4)

In (2.4) φ is the moment generating function of the infectious period I. We

evaluated the final size distribution for an epidemic among 1000 individuals,

starting with one initial infective, where the infectious period follows an expo-

nential infectious period with rate 1 and the contact rate was set to λ = 1.5.

The solution can be seen in figure 2.2 and will be referred to as the “exact” one.

Since the probabilities of final sizes that correspond to epidemic extinction ac-

count for a relatively large proportion of unity, the probabilities of the “likely”

final sizes, conditionaly upon non-extionction are relatively small. Note that

for this model we have R0 = 1.5.

It is straightforward to solve (2.4) for both epidemics and compare with

the exact number as obtained by solving the triangular equations since the

solution given by (2.4) becomes exact when the epidemic propagates in an

infinite population. In the first epidemic when N = 800 and R0 = 4.1 solving

(2.4) yields q = 0.1289. The corresponding number based on the final size

distribution was
∑i

j=1 pN
j = 0.12904. In this case we used the probabilities of

final sizes up to i = 50. However, the results do not change much (up to the

fourth decimal point) for any i in the interval (30, 700). Hence, we see that the

coupling of the initial stages of an epidemic with a branching process yields

a reasonable approximation for the extinction probability of a supercritical

epidemic in a population of 800, at least for the parameter values considered.

For the second epidemic when N = 1000 and R0 = 1.5 solving (2.4) yields

q = 0.667. The corresponding number based on the final size probabilities was
∑200

j=1 pN
j = 0.67205. Again, varying the upper bound of the sum between 100

and 300 has little influence on the actual extinction probability. Thus, even

when there is a large probability that the epidemic goes extinct, the coupling
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Figure 2.2: The final size distribution of an epidemic among a population of

1000 individuals and the corresponding Gaussian approximation.

of the epidemic process with a suitable branching process provides a reasonable

estimate of the extinction probability. In the following section we attempt to

assess how well a Gaussian approximation can describe the probabilities of the

“likely” final sizes in the event of a major epidemic i.e., when R0 > 1.

2.4.2 Gaussian Approximation

We shall use the final size probabilities, as obtained by solving (2.3) to assess

the Normal approximation for the distribution of the final size described in

Andersson and Britton (2000) theorem 4.2, which holds conditional on the

occurrence of a major epidemic. Let us denote by TN the final size of the

epidemic under consideration and by τ the proportion of the individuals that

get ultimately infected i.e., τ = limN→∞
TN

N
. When R0 > 1, τ is the largest
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solution (note that 0 is always a solution) of the non-linear equation:

τ = 1 − exp(−λE(I)τ).

Here we assume that proportion of initial infectives is negligible. Then for

ρ = 1 − τ we have

TN ∼ N

(

τN,
N [ρ(1 − ρ) + λ2σ2τρ2]

(1 − λE(I)ρ)2

)

, (2.5)

where N(a, b) denotes the density of a normal random variable with mean a

and variance b. The theorem holds for the important practical case when there

is (in an infinite population) a finite number of initial infectives. We shall

describe the validity of the Gaussian approximation graphically since evaluating

distance measures (such as the total variation distance) when comparing exact

with approximate results is of limited practical use. We have created three

figures that summarise the validity of the normal approximation. The first is

figure 2.2 where we plot the distribution of the final size when R0 = 1.5 with the

corresponding Gaussian density described in (2.5). Note that in this case we

have τ ≈ 0.583. This is a very interesting case because a large number of papers

concerned with statistical inference for epidemics, including the approach that

we adopt in chapter 3, implicitly or explicitly use a Gaussian approximation

of the kind described in (2.5) simply by conditioning on the occurrence of a

major epidemic and without any rescaling to take into account for this, and

this figure is meant to clarify exactly this. However, since there is a large

extinction probability the exact probabilities are quite small when compared

to the normal approximation and thus, difficult to assess from figure 2.2.

A perhaps more fair and complete comparison is presented in figure 2.3

where we set the probabilities of the “small” final sizes to 0 (since the normal

approximation is not valid in this case) and we scale the remaining probabili-

ties accordingly. Hence, for this particular case, we have chosen to work with
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Figure 2.3: The scaled final size distribution of an epidemic among a population

of 1000 individuals and the corresponding Gaussian approximation.

final sizes above 200 and we divided the remaining final size probabilities with

0.32672 = 1 - Pr(epidemic extinction). In this comparison the Gaussian ap-

proximation performs reasonably well, the main drawback being that a slight

left tail (inherently present in many final size distributions) cannot be captured

by a normal distribution. This is a feasible approach, since the rescaling factor

can be evaluated by the branching process approximation. In the following, we

present a comparison that is not feasible in many cases, since we shall rescale

with a quantity that is typically unknown, unless one can solve the triangular

equations exactly.

Additionally to the previous cases, we have created a third figure where

we set the initial probabilities to 0 (again due to the fact that the Gaussian

part does not refer to these final sizes) and we standardise the probability

distributions so that they have the same likelihood value at the mode. The
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outcome can be seen in figure 2.4 where the agreement is very good. These

findings remain very similar for population sizes as low as (approximately) 100.

Below these population sizes there is a “conflict” between the left tail of the

normal approximation and the (not negligible) probabilities that correspond

to epidemic extinction. In particular, for N = 100 the mean and standard

deviation in (2.4) are 58.3 and 18.34 respectively. Hence, the “µ − 3σ” 0.005

percentile of the normal distribution is already in the area of final sizes as

small as 3 or 4 while the mode is relatively close to the exact probabilities,

similarly to figure 2.2. We recall that these findings are for λ = R0 = 1.5. For

smaller population size the normal approximation breaks down. For N = 50

for example we get µ = 29.15 and σ = 12.97 and the left tail of the Gaussian

approximation is obviously insufficient to describe the probabilities of final sizes

that correspond to epidemic extinction.

The above assessment is not only interesting from the probabilistic point of

view. As we shall see in the next chapter, limit theorems of this kind can be used

to perform approximate statistical inference. Thus, the two key observations

for the validity of the Gaussian approximation are (i) the Gaussian distribution

performs reasonably well with respect to the location of the “likely” final sizes

as long as the population is above 100 and (ii) it can be a feasible option

with respect to variability measures under appropriate rescaling. If it could be

rescaled with the (typically unknown) exact probability of the most likely final

size then the approximation, for a large number of realistic examples would be

very satisfactory. Thus, care is required when using the original (not rescaled)

normal approximation if it is believed that there is a considerable probability

for the event R0 ≤ 1. In the following section we shall explore the use of the

exactly evaluated final size probabilities for conducting statistical inference for

the basic reproduction number R0.
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Figure 2.4: The standardised final size probabilities of an epidemic among a

population of 1000 individuals and the corresponding Gaussian approximation.

2.5 Statistical Inference for the GSE

2.5.1 Bayesian Inference

Based on the exact solution of the triangular equations, it is straightforward to

obtain the posterior distribution of the infection rate λ and the basic reproduc-

tion number R0. We recall from the first chapter Bayes’ Theorem which states

that for a given final size data point x the posterior distribution is given by

π(λ | x) ∝ π(x | λ)π(λ)

where π(λ) is the prior density of λ. We classify this problem as non-standard

since we essentially attempt to estimate the rate of a stochastic process from

a single data point. The main tool in this effort is the structure we impose in

this process, but the problem remains ambitious from the statistical point of
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view. We now describe the Markov chain Monte Carlo algorithm we shall use

as our inferential tool.

2.5.2 MCMC algorithm

Updating λ: A simple Gaussian Random-Walk type Metropolis algorithm, as

described in the first chapter, was found to be sufficient. Hence, we used a

normal proposal density q(· | λ), centred to the current value, where each

proposed infection rate parameter λ∗ < 0 is rejected with probability 1 since

the assumptions of the model reduce the state-space of the Markov chain to the

positive real line. In the case of a positive proposed infection rate, we accept

the proposed value with probability

π(x | λ∗)π(λ∗)

π(x | λ)π(λ)
∧ 1,

where A∧B is defined as min{A,B}, since the ratio of the proposals is cancelled

due to symmetry: q(λ∗ | λ) = q(λ | λ∗).

Prior specification: The rate of the Poisson contact process λ was assumed

a priori to follow a Gamma distribution with mean 1 and variance 10000. It is

generally recommended in the MCMC literature to use prior densities with large

variance and some sensitivity analysis with respect to the prior assumption is

presented in the following subsection.

Note that it is straightforward to use the distribution of the final size to

perform likelihood inference for the infection rate parameter. A simple, al-

though numerically intensive, method to perform such inference would be the

evaluation of the likelihood of the final size over a fine grid of λ values. How-

ever, we would expect that the use of the locally flat prior would eliminate the

influence of the prior. Further sensitivity analysis with respect to the choice

of the prior will be presented at the end of the following section. We will now
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present the results from the MCMC algorithm.

2.6 Results

In this section we will explore the effect of different infectious periods by exam-

ining the various posterior distributions of the threshold parameter R0 for three

different choices for the infectious period distribution. We have chosen three

distributions that we would expect to cover a large spectrum of the behaviour

of the R0 estimates as the distribution of the infectious period varies namely, a

constant(≡ 4.1) infectious period that has the smallest possible amount of vari-

ability, an exponential infectious period with mean 4.1, with a large variability

for the infectious period distribution, and a gamma distributed infectious pe-

riod, being the sum of two exponentials with mean 2.05. With a constant

infectious period the generalised stochastic epidemic corresponds to a continu-

ous time version of the Reed-Frost epidemic model (see Bailey 1975) while the

exponential infectious period converts the model to its Markovian version, the

widely studied general stochastic epidemic. Note that the exponential infec-

tious period is rather extreme in the sense that the standard deviation equals

the mean. Hence, the gamma distribution we have chosen appears to be an

intermediate choice with respect to the variability of the infectious period and

we shall explore the effect of these choices from the output of the MCMC

algorithm.

These results can be compared with the estimated R0 derived by Rida

(1991). It should be noted that our method is exact while the results in Rida

(1991) are only valid as the population size gets infinite. Moreover, the esti-

mators derived in (3.8) and (5.3), (5.4) of Rida (1991) regarding the MLE of

R0 and the standard error of the estimator are consistent in the case that the
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Posterior estimates Infectious Period

for R0 when x = 30 Constant Gamma Exponential

Mean 1.1773 1.2188 1.2565

Median 1.1649 1.1929 1.2103

S. dev. 0.211 0.273 0.336

Equal-tailed 95% C. I. (0.799,1.624) (0.760,1.825) (0.729,2.047)

Table 2.1: Posterior summary statistics for the three different infectious periods

when 30 out of 120 individuals are ultimately infected.

epidemic is above threshold, that is, R0 > 1. This is a common assumption

in classical inference for epidemics. In contrast, the methods we describe do

not rely on conditioning upon non extinction of the epidemic. Additionally,

it would be interesting to compare our results with the martingale estimators

described in chapter 7 of Becker (1989).

We should mention that it is not straightforward in the epidemics con-

text to verify the regularity conditions under which the posterior mode (and

mean and median for symmetric posteriors) should agree with the maximum

likelihood estimator. Typically, these conditions hold true when the relative

contribution of the prior is “small” in some sense and since we have no closed

form for the likelihood, a theoretical proof appears very difficult. However, for

examples where the epidemic has a significant proportion of ultimately infected

individuals i.e., R0 > 1, and the population size is large, we would expect good

agreement between the two location estimates as well as approximate equality

between the posterior standard deviation and the standard error of the MLE,

despite the fact that the two quantities describe completely different measures.

For comparison purposes we apply our algorithm to a dataset from a small-

pox outbreak in the closed community of Abakaliki in south-eastern Nigeria,
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Figure 2.5: Posterior density of R0 for the three different infectious periods

when x = 30.

Posterior estimates Infectious Period

for R0 when x = 60 Constant Gamma Exponential

Mean 1.4236 1.4396 1.4673

Median 1.4128 1.4255 1.4433

S. dev. 0.182 0.228 0.274

Equal-tailed 95% C. I. (1.092,1.812) (1.037,1.918) (0.999,2.077)

Table 2.2: Posterior summary statistics for the three different infectious periods

when 60 out of 120 individuals are ultimately infected.
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see section 6.4 of Becker (1989). The results are summarised in Table 2.1. The

first important observation arises with respect to estimation of the location

measures for R0. In fact it is straightforward to see it when considering figure

2.5. In particular, the mode appears to be very close in all the three cases.

This observation is in harmony with the asymptotic results from equation (6)

in Becker and Britton (2001) since, in the limit as the population size tends to

infinity, the maximum likelihood estimate (that should agree with the posterior

mode under weak prior assumptions) does depend on the mean of the infectious

period but not the variance.

With respect to comparison with previously derived estimates of R0, the

results in Rida (1991) report an MLE of 1.108 while the posterior mode for the

general stochastic epidemic (exponential infectious period) is approximately

1.15. Similar (slight) underestimation occurs when considering martingale

methods. In particular, Becker (1989) p.153 estimates the threshold param-

eter as R0 = 1.10. An interesting remark here though is that the results of

both authors are approximately correct despite the fact that there is clearly a

significant amount of the posterior density in the area where R0 is below unity,

see figure 2.5.

The second important observation from the output of the MCMC algorithm

arises with respect to the estimates of the variability of R0. In particular,

the posterior distribution of R0 becomes less peaked as the variance of the

infectious period reduces. The effect of the variance of the infectious period

is more obvious when considering the location measures that are affected by

the shape of the posterior distribution, particularly the mean. Hence, the

exponentially distributed infectious period displays the most skew distribution.

The posterior when using a constant infectious period is almost symmetric

while the posterior distribution of R0 for the Gamma infectious period has
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Figure 2.6: Posterior density of R0 for the three different infectious periods

when x = 60.

an intermediate behaviour. This is an effect that cannot be reproduced with

classical inference procedures.

With respect to the actual estimates of the variance, both standard errors

that are reported in Rida (1991) p.278 are slightly smaller than the posterior

standard deviation of the general stochastic epidemic. The most interesting ob-

servation however, is that both confidence intervals that she evaluates namely,

(0.531,1.685) and (0.542,1.674) have a lower bound below unity, despite the

R0 > 1 assumption underlying the theory developed in that paper.

We have also applied our algorithm to the case where 60 out of 120 individ-

uals are getting infected when an epidemic is initiated from one initial infective.

The results are presented in Table 2.2. The actual estimates of R0 are (natu-

rally) larger but the findings reported in the case x = 30 remain similar. This
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Figure 2.8: Plot of the autocorrelation function based on the posterior output

of R0.
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Figure 2.9: Trace plot of the posterior output of R0.

is particularly obvious from figure 2.6 where again the larger is the (assumed)

variance of the infectious period, the larger is the posterior variance of R0.

The sensitivity of the algorithm to the prior specification was examined

using a number of different priors and the results remained virtually unchanged.

For illustration we present the output using the Gamma prior that we have

used throughout this thesis, and the output based on a Uniform prior over the

(0.0001, 10000) interval for the infection rate parameter. Note that this prior

restricts the posterior space of R0 to values below 40000 but this is not an

important restriction in practical terms. As can be seen from figure (2.7) the

output does not change much and thus, we shall consider the resulting inference

as “objective”, in the sense that the posterior output is largely determined by

the data.

Additionally, we have been exploring the convergence properties of the
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Markov chains used through a series of plots of the “trace” and the autocorre-

lation function of the parameters involved. Two plots of this kind are presented

in figures (2.8) and (2.9) for the autocorrelation and the trace respectively, and

they are quite satisfactory, particularly the ACF plot that displays negligible

autocorrelation for any lag from 1 upwards. Thus, the algorithms we have

employed in this chapter appear to have desirable convergence properties.

2.7 Conclusion

We have presented a method for solving the triangular equations that describe

the final size distribution of the generalised stochastic epidemic. We therefore

have presented methodology that overcomes a well-known problem in the anal-

ysis of epidemics. The methods rely on computer intensive algorithms that

utilise multiple precision arithmetic. We have presented two applications of

the methodology, the evaluation of the precision of limit theorems that appear

to be interesting for inference purposes, and statistical inference for the thresh-

old parameter of the epidemic. These methods explore, using exact results, a

number of previously obtained probabilistic and statistical results that could

only be evaluated in the past using simulation methods. However, the focus of

this thesis is towards statistical methodology for realistic (and hence complex)

stochastic epidemic models and a method of this kind is considered in the fol-

lowing chapter for the epidemic with two levels of mixing described in the first

chapter.
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Chapter 3

Approximate Bayesian Inference

for Epidemics with two levels of

mixing

3.1 Introduction

This chapter describes approximate Bayesian inference for the epidemic model

with two levels of mixing presented in chapter two. Given final size data, a

set of (vector) triangular equations would have a very large dimension, for all

but very small populations. Hence, it is necessary to evaluate probabilities

that are often smaller than the machine precision. Hence, the likelihood, the

conditional density of the data given a particular set of parameter values, is

numerically intractable for most realistic populations. Thus, in order to fa-

cilitate inference procedures for the two-level-mixing model, an approximation

method is introduced that makes the evaluation of the approximate likelihood

possible. The underlying idea of this approximate method of inference is to

introduce an appropriate latent random variable for which we have asymptotic
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distributional information.

The rest of the chapter is organized as follows. The model and known

results that are relevant for inference purposes are presented in section 2 while

in section 3 we describe the types of data that we shall consider, the potential

difficulties with the associated likelihood and we introduce an approach for

approximating the likelihood by augmenting the parameter space. In section 4

we describe the MCMC algorithm used as the inferential tool and in section 5

we apply our methodology to a dataset from an influenza outbreak as well as

various illustrative final outcome datasets. In section 6 the inference method

is evaluated for the special case where the households have size one, when the

model reduces to the generalised stochastic epidemic, and we complete the

chapter with some concluding remarks.

3.2 Epidemic models with two levels of mixing

3.2.1 Stochastic Epidemic model

In this section we briefly recall the salient features of the two-level-mixing model

and we mention the relevant results that are required for inference purposes

from the first chapter where a more detailed description of the model is given.

We consider a closed population that is partitioned into groups. Suppose that

the population contains mj groups of size j and let m =
∑∞

j=1 mj be the total

number of groups. Then the total number of individuals is N =
∑∞

j=1 jmj.

Since we have an S-I-R model, a susceptible individual j becomes infectious as

soon as he is contacted by an infective and remains so for a time Ij distributed

according to the distribution of a specified non-negative random variable I.

The epidemic is initiated at time t = 0 by a (typically small) number of
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infectives while the rest of the population is initially susceptible. Infective indi-

viduals mix at two levels. Thus, while infective, an individual makes infectious

population wide contacts at the points of a Poisson process with rate λG. Each

such contact is with an individual chosen uniformly at random from the N ini-

tially susceptibles. Hence, the individual to individual rate is λG

N
. Additionally,

each infective individual makes person to person contacts with susceptibles in

its own household according to a Poisson process with rate λL. All the Poisson

processes (including the two processes associated with the same individual)

and the random variables Ij, j = 1, . . . , N , describing the infectious periods of

different individuals, are assumed to be mutually independent.

In what follows we describe some results regarding the final size distribution

of a single population stochastic epidemic model where infection from outside

is permitted. In this model the global infections are taken into consideration

through a fixed probability of avoiding non-local infection, instead of being

modelled explicitly. This model is simpler than the two level mixing model from

a mathematical point of view. However, it can be used as an approximating

model as we shall see in the sequel.

3.2.2 Final outcome of a homogeneous SIR epidemic

with outside infection

The Epidemic Model

The model described in Addy et al. (1991) is defined for a population that

is partitioned into groups. The within group epidemics are modelled using

the generalised stochastic epidemic while interactions between groups are not

modelled explicitly. However, it is assumed that each individual avoids infection

from outside its group independently with probability π. Thus, conditionally

59



on π, the final outcomes of epidemics in different groups are independent.

The limiting two-level-mixing model

In the two level mixing model the fates of different groups are not independent,

the reason being that while infectious, an individual has both local and global

contacts. As noted in Ball et al. (1997) though, as the number of groups

goes to infinity and conditional on the occurence of a major epidemic, a given

individual avoids infection from the population at large with probability π =

exp(−λGzE(I)), where z = z(λL, λG) is the (unique for each (λL, λG) pair)

deterministic proportion of susceptibles who ultimately become infected. This

limit can be derived by the solution of a non-linear equation that we describe

in 3.7. This limiting behaviour means that we can surmount the complication

of the explicit global infections and conduct approximate (in the sense that the

number of groups becomes large) inference using the Addy et al. (1991) model.

The use of the final severity

We make a refinement by replacing zE(I) with the actual (scaled) final severity

A
N

. The final severity is an important final state random variable which we

denote by A and equals the total number of time-person units of infection.

A is defined as the (random) sum of the infectious periods of the ultimately

infected individuals, A =
∑T

k=1 Ik and is sometimes referred to as the total area

under the trajectory of infectives. Note that T denotes the (random) final size

of the epidemic. The joint distribution of the final size and the final severity

was derived for a wide class of epidemic models known as the collective Reed-

Frost epidemic, in a series of papers by Lefèvre and Picard (e.g. Lefèvre and

Picard (1990)). They have used a non-standard family of polynomials known

as Gontcharoff polynomials to assist their algebraic computations, and we now
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recall their definition.

Let U = u0, u1, . . . be a given sequence of real numbers. Then the Gontcharoff

polynomials attached to U, G0(x | U), G1(x | U), . . . , are defined recursively

by the triangular system of equations:

i
∑

j=0

ui−j
j

(i − j)!
Gj(x | U) =

xi

i!
, i = 0, 1, . . . . (3.1)

A useful property of Gontcharoff polynomials that we shall require (see for

example (3.3) in Ball et al. (1997)) is

G
(j)
i (x | U) = Gi−j(x | EjU), 0 ≤ j ≤ i, (3.2)

where EjU is the sequence U = uj, uj+1, . . . and G
(j)
i (x | U) is the jth derivative

of Gi(x | U). Note that G
(j)
i (x | U) = 0 if j > i.

We now focus on the two level mixing model with a large number of groups.

Suppose that each of the initial susceptibles in a single group has probability

π of avoiding infection from outside the group, independently of the dynamics

of the within-group epidemic. Consequently, we cease taking into account the

global infection dynamics and the effect of global infections will be instead

modelled using π. Then the dynamics of the within-household epidemics can

be considered as independent. Assume that a group initially consists of n

susceptibles and a infectives. Let φn,a(s, θ) = E(sn−T exp(−θA)), θ ≥ 0 be the

joint generating function of the group final size and severity, (T,A). Then it

follows from Ball et al. (1997) that

φn,a(s, θ) =
n
∑

i=0

n!

(n − i)!
φ(θ + λLi)n+a−iπiGi(s | U), (3.3)

where the sequence U is given by ui = φ(θ + λLi), i = 0, 1, . . . , where φ(·)
denotes the moment generating function of the infectious period. Let µn,a =

E(Tn) be the mean final size of an epidemic initiated by a infectives in a group
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with n susceptibles. Then by differentiating equation (3.3) with respect to s

and setting s = 1 and θ = 0 it follows that

µn,a(π) = n −
n
∑

i=1

n!

(n − i)!
qn+a−i
i πiαi, (3.4)

where qi = φ(λLi) and αi = Gi−1(1 | V ). Here the sequence V is given by

υi = φ(λL(i + 1)) = qi+1 (for i = 0, 1, . . . ).

It is also straightforward to obtain the distribution of the final size Tn.

Let pkn = Pr{Tn = k}, k = 0, 1, . . . , n. Then setting θ = 0 in (3.3) and

differentiating n − k times with respect to s yields

pkn =
1

(n − k)

n
∑

i=n−k

n!

(n − i)!
qn+a−i
i πiGi−n+k(0 | En−kU), k = 0, 1, . . . , n,

(3.5)

where En−kU is the sequence qn−k, qn−k+1, . . . .

In the following we shall use the above within-group exact results to de-

scribe asymptotic approximations related to the epidemic over the whole pop-

ulation.

3.2.3 Asymptotic approximations

The threshold parameter

Approximating the initial stages of the epidemic with a branching process yields

a threshold parameter that dictates whether or not a major epidemic can occur.

Here we summarise the results mentioned in chapter 2. For n = 1, 2, . . . , let

the proportion mn

m
of groups of size n converge to θn as the number of groups

m → ∞. Let also ĝ =
∑∞

n=1 nθn be the asymptotic mean group size and

assume that ĝ < ∞. Then the threshold parameter associated with the two-

level-mixing model is defined as

R∗ = λGE(I)ν, (3.6)
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where ν = ν(λL) = 1
ĝ

∑∞
n=1(1+µn−1,1(1))nθn is the mean size of an outbreak in

a group, started by a randomly chosen individual, in which only local infections

are permitted. The initial infective is also included in ν. Note that µn−1,1(1)

can be evaluated from (3.4) with π = 1.

We will now describe results related to a normal approximation for the final

state of an outbreak in the case where R∗ > 1.

Gaussian approximation

The asymptotic distribution of the final size and severity of the two level mixing

model was derived by Ball et al. (1997) using the embedding representation

of Scalia-Tomba (1985). We recall the relevant features of this normal approx-

imation from Ball et al. (1997) where additional details can be found.

The representation employed is based on a process describing the infections

through “generations”. These generations are not necessarily representative

of the real time dynamics of the epidemic. However, they provide us with

an adequate description of the epidemic that is particularly beneficial for the

derivation of the asymptotic distribution of quantities related to the final state

of the epidemic.

It is convenient for this construction to think of the infection process by

assigning a pair of exponential random variables to each individual, say ZL(k)

and ZG(k) for individual k, that correspond to the individual’s “threshold” to

local and global infections. Then, the (exponential with rate λL) random vari-

able ZL represents the total time-units of local infections necessary to locally

infect a given individual, while the (exponential with rate λG/N) random vari-

able ZG determines the global infections. Consider a group of size n with no

initial infectives. For t ≥ 0, let R(t) and A(t) denote respectively the final size

and severity of the epidemic within that group when each individual is exposed
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to t units of infectious pressure. Let (R,A) = {(R(t), A(t)), t ≥ 0}. In this

construction it is assumed that the infections are instantaneous. Hence, R and

A have a simultaneous jump when a susceptible individual gets infected from

outside (with probability 1 − exp(−λGt/N)) and they remain constant other-

wise. In order to obtain a realisation of (R,A) let us mark the n ZG values

on the t-axis. The first infection (and thus the first jump of (R,A)) occurs at

the smallest ZG. This first infective of the group starts an epidemic among

the remaining n − 1 susceptibles of the group with final size T , say. Next, we

delete the T − 1 marks of the new infectives from the t-axis. The next jump of

the process occurs at the smallest remaining mark where one of the individuals

that was not infected by the epidemic started in the first mark was globally

infected. This individual initiates a new epidemic among the other remaining

susceptibles, that results in the second jump of the (R,A) process and so forth.

Let us now define with (Ri(t), Ai(t)), i = 1, . . . ,m, the (R,A) process of

each group, and let R•(t) =
∑

Ri(t) and A•(t) =
∑

Ai(t). Assume that we

apply to the initially susceptible population an amount T0 of infectious time.

Then the epidemic is described in terms of generations as follows: The first

generation is completed at the (stochastic) time T1 after the occurrence of

the within-group epidemics initiated by the T0 infectious time-units. The T1

amount of infection might generated new global infections that may create

additional within-group infections. At the end of these new infections there

will be in the population T2 = T0 + A•(T1) infectious time-units. The process

stops when the additional infectious time cannot give rise to further global

infections, i.e. at the time T∞ ≡ min{t ≥ 0 : t = T0 + A•(t)}. Thus R•(T∞)

and T∞ = A•(T∞) + T0 represent the final size and severity of the epidemic,

respectively.

Then the asymptotic, as the population size goes to infinity, final size of the
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epidemic is either small, as obtained from the branching process approximation

or, in the case of non-extinction, is normally distributed around an appropriate

deterministic limit. The stopping time of the epidemic serves as a means for

the formulation of a law of large numbers. Subsequently, the authors derive a

Gaussian law around this deterministic limit. We now present these results in

detail. Let as define

a(t) =
E(I)

∑∞
n=1 θnµn,0(exp(−λGt/N))

ĝ
, t ≥ 0.

Then, as the population size goes to infinity, the limit of the mean final severity

E(A)
N

is defined as the stopping time

τ := min{t : t = a(t)},

see Ball et al. (1997) section 4.2. This limit can also be derived by solving the

non-linear equation 3.35 in Ball et al. (1997), namely

z = 1 −
∞
∑

n=1

ĝ−1θn

n
∑

i=1

n!

(n − i)!
qn−i
i πiαi, (3.7)

where the αi’s are the sequence given in (3.4) and π = exp(−zE(I)λG). Hence,

(3.7) is an implicit equation for z. Note that zero is always a solution of (3.7).

Additionally, there is a unique second solution of the above equation in which

case τ = zE(I), the latter being a Wald’s identity for epidemics, see Ball

(1986). Finally define

µ = µ(λL, λG) = a(τ), (3.8)

σ2 = σ2(λL, λG) =

∑∞
n=1 θnV ar(An(τ))

[ĝ(1 − a′(τ))]2
,

where An(τ) is the final severity of an epidemic in a group of n initial suscep-

tibles which started with no initial infectives and the probability of infection

from outside is π = exp(−λGτ). Note that V ar(An(τ)) can easily be obtained
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by differentiating φn,a(s, θ) given in (3.3) with respect to θ and setting s = 1

and θ = 0. In particular, V ar(An(τ)) = E(A2
n(τ)) − (E(An(τ)))2 which using

(3.2) can be evaluated as

E(An(τ)) =
n
∑

i=1

n!

(n − i − 1)!
qn−i−1
i πiGi(1 | U) +

n
∑

i=1

n!

(n − i)!
qn−i
i πiGi−1(1 | V ),

and

E(A2
n(τ)) =

n
∑

i=2

n!

(n − i − 2)!
qn−i−2
i πiGi(1 | U) +

n
∑

i=2

n!

(n − i)!
qn−i
i πiGi−2(1 | W )

+ 2
n
∑

i=1

n!

(n − i − 1)!
qn−i−1
i πiGi−1(1 | V ).

The sequence U is given by ui = qi = φ(λLi), while the sequences V and

W are given by vi = φ(λL(i + 1)) = qi+1 and wi = φ(λL(i + 2)) = qi+1

respectively. Also a′(τ) =
E(I)

∑∞
n=1 θnµ′

n,0(exp(−λGτ))

ĝ
with µ′

n,0(exp(−λGτ)) =
(

n −
∑n

i=1
n!

(n−i)!
qn−i
i πiai

)′

= λG

∑n
i=1

n!
(n−i)!

iqn−i
i πiai.

Then, as stated in section 4.2.2 of Ball et al. (1997) it follows that the quantity
√

m
(

A
N
− µ(λL, λG)

)

converges in distribution to a normal random variable

with mean 0 and variance σ2(λL, λG) as the number of groups m → ∞. Thus,

we can approximate the distribution of the final severity with

A ∼ N

(

Nµ(λL, λG),
N2

m
σ2(λL, λG)

)

. (3.9)

In the following section we will employ the central limit theorem in (3.9) to

approximate the likelihood of the two level mixing model given final size data.
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3.3 Data and Augmented Likelihood

3.3.1 Final outcome data

We consider data of the form ñ = {nij} where nij is the number of households

in which i out of j susceptibles ultimately become infected. We initially assume

that the whole population is observed. However, our analysis also applies to

the important practical case where the data are recorded only on a fraction of

the population. Specifically, a “representative” random sample would have the

same proportions for the different group sizes.

In the sequel, we consider the problem of statistical inference for the two

infection rates λL and λG given the final size data ñ. Hence, in a Bayesian

framework, we wish to explore the posterior distribution π(λL, λG | ñ) of the

two infection rates that are the basic model parameters given the observed data

ñ. The Bayesian paradigm is particularly suitable for inference in epidemics,

notably because the quantities of interest, e.g. R∗, are functions of the basic

model parameters. Hence, in a sampling based approach it is straightforward

to sample from these, possibly non Gaussian, important quantities. A classi-

cal inference approach typically relies on normality assumptions that are not

required in the Bayesian framework. Hence, when sampling functions of the

basic model parameters, the procedure adopted here has a natural advantage.

In Bayesian statistics inference concentrates on the posterior distribution of

the model parameters. In order to study the posterior distribution of interest

we need to be able to evaluate the likelihood π(ñ | λL, λG) since, by Bayes’

theorem,

π(λL, λG | ñ) ∝ π(ñ | λL, λG)π(λL, λG).

For realistic data sets, the distribution of the final size is numerically intractable

as we have seen in chapter two. Moreover, in the two level mixing model
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taking into account the between household infections increases enormously the

dimension of the problem compared to the models that assume homogeneous

mixing. For this reason we need to resort to an alternative method of inference.

3.3.2 Augmented Likelihood

The difficulties described above suggest considering some form of imputation

that would make the evaluation of the (augmented) likelihood feasible. Here we

augment the parameter space using the final severity A, as defined in section

two. Since A is the sum of the infectious periods of all the ultimately infected

individuals, it turns out that, asymptotically, an individual avoids infection

from outside his group during the course of the epidemic with approximate

probability exp(−λGA/N). Note that in this section the final severity it taken

over the whole population, which does not necessarily correspond to the final

severity of the individuals that the data refer to.

When the number of households is large we can assume that, conditional

on the final severity A, the households can be thought of as independent since

they are exposed to (approximately) the same force of infection from outside.

Thus, we do not need to model the global contacts explicitly. Instead, we

replace the infection dynamics outside the group with a single probability.

Hence, we approximate the two-level-mixing model with the model described

in Addy et al. (1991) where the probability of avoiding infection from outside

is π = exp(−AλG/N). Then pkl, the probability that k out of the l individuals

of a group ultimately become infected, can be calculated from the following

system of triangular equations described by Addy et al. (1991):

i
∑

k=0

(

l−k
i−k

)

pkl

qk
l−iπ

l−i
=

(

l

i

)

, i = 0, 1, . . . , l. (3.10)

where nkl is the number of households of size l with k infected individuals. A
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little algebra can show that this definition of pkl agrees with the one given in

(3.5). Then the likelihood can be approximated by

π̃(ñ | λL, λG, A) = L(λG, λL, A) =
∞
∏

l=1

l
∏

k=1

(pkl)
nkl . (3.11)

It is worth reemphasizing that the formula in (3.11) is approximate. However,

the underlying assumptions appear to be reasonable in the supercritical case

that is, when a significant proportion of the population is ultimately infected.

Then the final size and severity are approximately normally distributed accord-

ing to the central limit theorem in section 4 of Ball et al. (1997). Unfortunately,

the authors do not provide a more detailed central limit theorem regarding for

instance the within household outbreaks, although a related result is proved in

Ball and Lyne (2001). Nevertheless, the formula in (3.9) is attractive because

it provides us with an accurate result concerning the exposure of individuals to

infection from outside their household. Hence, the pseudolikelihood approxima-

tion in (3.11) should be a reasonable inferential tool whenever the assumptions

of the CLT hold. In practice, we would expect this approach to be a good

approximation in the case where the probability that the epidemic dies out

quickly is small. In that case, provided that we have a large number of house-

holds, the probabilities of within-household epidemics should be approximated

reasonably well by the pkl’s in (3.10).

Inference procedures proceed by utilising the pseudolikelihood defined in

(3.11) to approximate the true, numerically intractable, likelihood. Let π(λL)

and π(λG) be the priors for λL and λG respectively. Then we can approximate

the augmented posterior by considering

π̃(λL, λG, A | ñ) ∝ π̃(ñ | λL, λG, A)π(A | λL, λG)π(λL)π(λG), (3.12)

where the density π(A | λL, λG) for this model is naturally approximated using

the Gaussian approximation of (3.9), since there is not a closed form available
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for the exact conditional distribution of π(A | λL, λG). With respect to the case

where the dataset consists of a random α× 100% sample of the population let

us denote by As the total severity of the ultimately infected individuals in the

sample and by Ns the total number of individuals in the dataset. Then it is easy

to see from (3.9) that E
(

A
N

)

= E
(

As

Ns

)

and V ar
(

A
N

)

= αV ar
(

As

Ns

)

. Hence,

in the case where the data are a sample from a larger population, we would

expect a less diffuse posterior for A/N , with the estimate becoming “exact”

as α → 1. Note however that as α → 0 the assumption that the data are a

representative sample of the population becomes stronger, particularly because

we assume that the form of the disease spread in the population is the same as

in our dataset.

Since we only consider final outcome data, no temporal information is avail-

able regarding the disease propagation throughout the population. Hence, we

need to make specific assumptions about the distribution of the infectious pe-

riod. This is not a serious restriction in practice, since for most of the commonly

occurring diseases we do have some information about the infectious period and

we can use it prior to any data analysis. However, the length of the infectious

period implicitly sets a time scale and every interpretation of the results should

be presented with respect to this scale, an exception being R∗ where the length

of the infectious period is taken into account.

3.4 Markov chain Monte Carlo algorithm

We used a single-component Metropolis - Hastings algorithm as described in

the first chapter. Thus, the model parameters A, λL and λG were updated in

one block. Since all the three parameters are positively defined the state-space

of the Markov chain is constrained in the positive quadrant of R
3. Hence, the
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proposal distributions used for the Markov chain updates need to take this

constraint into account. Note that we cannot use the Gibbs sampler for the

parameter updates because the full conditional distributions π̃(λL | ñ, λG, A)

and π̃(λG | ñ, λL, A) appear to be analytically intractable.

Updating (λL, λG, A): A simple Gaussian random walk proposal for the two

infection rates was found to be sufficient. Hence, the proposed sample (λ∗
L, λ∗

G)

was generated from a bivariate, negatively correlated normal density centered

around the current value (λL, λG). This is intuitively reasonable since we would

expect the two infection rates to be negatively correlated, the rationale being

that a within-group infection could always arise as a result of a “global” close

contact. Thus, it is possible that two different infection rates (λ1
L, λ1

G) and

(λ2
L, λ2

G) can produce identical final outcome data. So we use a negatively

correlated proposal to improve algorithmic efficiency (in terms of acceptance

rates) since we spend less time proposing low-likelihood values. Consequently,

it is natural to consider block-updating of (λL, λG) since it well known in the

MCMC literature that blocking can improve mixing of the resulting Markov

chain. For each proposed sample (λ∗
L, λ∗

G) we calculate the proposed threshold

parameter R∗
∗ using (3.6) and if R∗

∗ ≤ 1, the corresponding (λ∗
G, λ∗

G) is rejected

because our methodology is only valid in the event of a major epidemic. Else,

for R∗
∗ > 1 we sample the proposed A, A∗, using the normal proposal density

that is naturally implied by the model (see 3.9) with µ = µ(λ∗
L, λ∗

G) and σ2 =

σ2(λ∗
L, λ∗

G). The proposed sample (λ∗
G, λ∗

G, A∗) is then accepted with probability

π̃(ñ | λ∗
L, λ∗

G, A∗)π(λ∗
L)π(λ∗

G)

π̃(ñ | λL, λG, A)π(λL)π(λG)
∧ 1,

where A ∧ B is defined as min{A,B}, π̃(ñ | λL, λG, A) is the pseudolikelihood

defined in (3.11) and π(·) denotes the prior density.

Prior specification: The two parameters (λL, λG) were assumed a priori to

follow independent Gamma distributions with mean 1 and variance 10000. A
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large prior variance appears to be a reasonable choice and sensitivity analysis

with respect to the prior distribution of λL and λG will be presented in the

following subsection.

3.5 Application to data

3.5.1 Influenza outbreak data

The data The above methodology was applied to the influenza dataset de-

scribed below. This is an important dataset because the diagnoses were ver-

ified by laboratory tests. We consider the observed distribution of influenza

A(H3N2) infections in 1977-1978 and 1980-1981 combined epidemics in Tecum-

seh, Michigan, see Addy et al. (1991). The actual numbers of the ultimately

infected individuals are presented in a form that is convenient for analysis in

Table 3.1. The actual dataset was, approximately, a 10% sample of the entire

population under study. Thus, in the notation used above we have α = 0.1.

The results presented in this section are mainly for the purpose of illustrating

our methodology. Hence, we do not analyse the two datasets from the separate

epidemics, nor do we attempt to analyse the full dataset, that includes different

types of individuals classified by age. We do however compare our results with

those from previous analyses that used simpler models and we comment on the

effect of using such models.

Implementation details The algorithm was implemented using Fortran 90

on a mainframe computer. We used a burn-in of 104 cycles (sweeps), a sampling

gap of 50, and all the results presented are from a sample size of 106. The actual

run time was of the order of 5000 cycles/sec. All the algorithms were also tested

with three more Gamma priors with identical variance and means equal to 10,
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Susceptibles per household

No. infected 1 2 3 4 5

0 110 149 72 60 13

1 23 27 23 20 9

2 13 6 16 5

3 7 8 2

4 2 1

5 1

Total 133 189 108 106 31

Table 3.1: The Tecumseh influenza data
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Figure 3.1: Posterior density of R∗ for two different priors.
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100 and 1000 respectively. Additionally, we used a Uniform prior over the

(0.001, 10000) interval for both λL and λG. The results were virtually identical

to the numbers presented here in all cases. For illustration we present the

output of the posterior density of the threshold parameter R∗ for the Gamma

with mean unity and the uniform priors in figure (3.1). This particular output

stems from the case where the data available are assumed to represent the whole

population. Note that despite the minimum value of R∗ lies just above unity,

an unconstrained (to be above 1) figure in S-Plus can create the artifact that

some of the posterior density appears below 1, due to the way S-Plus draws

the kernel density estimators. In conclusion, the results were largely unaffected

by the choice of the prior distribution, at least when one uses a large prior

variance. Note that our Uniform prior constrains the posterior density of λL

and λG below 10000 but this is not a particularly restrictive assumption in

practice.

The convergence of the Markov chains was tested informally with plots

of the “trace” of the chain and all the results reported are from chains that

appear to have converge to stationarity, like the trace plot of λL presented

in figure (3.2). Moreover, the plots of the autocorrelation functions from the

“thinned” chains show a negligible autocorrelation for lags larger than 1, see

for example figure (3.3) for an example of this kind. Thus, the Markov chains

for the collection of the algorithms presented in this chapter appear to mix

well. It should be noted that it is rather straightforward to (informally) check

the convergence of these algorithms since we only have a small number of

parameters. Generally MCMC diagnostics are not straightforward and the

problem increases when there is a large number of parameters involved.

As was mentioned earlier, since we have final outcome data, we have to

make specific distributional assumptions about the infectious period. It is
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Figure 3.2: Posterior trace plot of λL.

0 10 20 30 40

Lag

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AC
F

 Series : Severity lambdaG

Figure 3.3: Plot of the autocorrelation function for λL.
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Figure 3.4: Posterior density of λG as α varies.

well-known (e.g. Addy et al. (1991)) that final size data are typically not

sufficient to easily distinguish between different distributions with respect to

the infectious period since if the length of I, E(I), is the same, the resulting

inferences are similar. Thus, we used the same distribution as in Addy et al.

(1991) for the infectious period, namely Gamma with mean 4.1 resulting as the

sum of two exponential random variables. Moreover, we assumed that we have

a “representative” dataset i.e., that the proportions of the different household

sizes in our sample are the same with the corresponding proportions in the

population. This is not a necessary constraint in our methodology, in practice

any choice can be used for θn, such as data from the census bureau or data

from previous studies, possibly for a larger fraction of the population.

Results We consider the cases α = 1, α = 0.1 and α = 10−5 that correspond

to observing the whole population, observing a 10% sample and observing a
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Figure 3.5: Posterior density of λL as α varies.

tiny fraction of the population, respectively. The latter case is not very useful

in practice but it does serve as a means of comparison with previous analyses

where the models used are a special case of the present model for α → 0.

Moreover, the results do not change for values of α smaller than 10−5. We

will therefore consider this case as α ≈ 0. Note that in some of the figure

annotation a and α are used interchangeably.

The posterior density plot for the global infection rate λG of the epidemic

for the three different values of α is shown in Figure 3.4 while the corresponding

plots for λL and R∗ are presented in Figures 3.5 and 3.6, respectively.

The two infection rates are clearly negatively correlated and this effect

is confirmed by the scatterplot in Figure 3.7. The posterior density plot for

R∗ appears to be truncated at unity. This occurs because the method we

have adopted for inference assumes that a major outbreak has taken place.
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Figure 3.6: Posterior density of R∗ as α varies.

Specifically, the algorithm will reject proposed (λL, λG) values that result in

a threshold parameter below unity. It does however look like the case α = 1

should have some mass below threshold. Thus, the resulting shape of the

posterior density of R∗ is in accordance with the methodology we use. In

contrast, the (pseudo)likelihood methods used in Ball and Lyne (2003) can

result in 95% confidence intervals with the lower limit being below unity, despite

the same assumption of R∗ > 1 being used. This is a well-known advantage of

a sampling-based approach to inference for problems of this kind as described

in Gelfand et al. (1992). We find the posterior correlation of the two basic

parameters to be ρ(λL, λG) = −0.5544. This is intuitively reasonable since for

a given dataset one would expect that a decrease in e.g. the local rate would

give rise to an increase in the global rate in order to ensure the same number

of infections.
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Figure 3.7: Scatterplot of λL and λG as α varies.

Parameter

λL λG A R∗

Mean 0.045 0.197 1032.33 1.148

Median 0.045 0.197 1026.36 1.148

S. dev. 0.007 0.014 102.64 0.071

Equal-tailed 95% C. I. (0.03,0.06) (0.17,0.26) (848,1247.9) (1.02,1.28)

Table 3.2: Posterior parameter summaries from MCMC algorithm using the

Tecumseh dataset in the case that α = 1.
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Parameter

λL λG A R∗

Mean 0.045 0.193 1053.03 1.114

Median 0.045 0.193 1049.24 1.125

S. dev. 0.007 0.010 87.55 0.044

Equal-tailed 95% C. I. (0.03,0.06) (0.17,0.21) (892,1236.2) (1.02,1.19)

Table 3.3: Posterior parameter summaries from MCMC algorithm using the

Tecumseh dataset in the case that α = 0.1.

Posterior density summaries for the parameters of the model associated

with the influenza data of Tecumseh for the case α = 1 are presented in Table

3.2. It would be rather inappropriate to expect that our results with match

previous (classical) analyses, namely Addy et al. (1991) and Britton and Becker

(2000), since the models they analyse correspond in our framework to the case

α = 0. However, inference for λL is almost identical since our approach also

utilises the same pseudolikelihood which can be regarded as a function of π

and λL alone, independently of α. The results with respect to λG and R∗ are

not similar. In particular, point estimation is in agreement with the previous

methods used but the variability associated with these parameters is smaller

in the classical approaches. This is essentially the result of using a model

that corresponds to a two level mixing model with α = 0. We shall comment

further on this in the analysis of the two cases with α < 1. Furthermore, using

an infectious period with mean 4.1 and analysing a dataset with 250 ultimately

infected individuals, we would expect the mean of the total severity to result

in a value close to 1025. Indeed, the posterior location estimates, particularly

the median and the mode, are reassuringly close.

For the case α = 0.1 the posterior summaries are given in Table 3.3. The
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extent to which the resulting inferences are affected by the assumption R∗ > 1

reduces as α decreases. The main observation here is that as α reduces, the

assumption that we have a “representative” sample becomes stronger. In par-

ticular, since the variance of the mean severity A
N

in the central limit theorem

described in (3.9) reduces with α, so does the posterior variance of A
N

and, con-

sequently the variance of λG and R∗. Of course the dataset that we use does

not change with α. However, it is easy to see from the formula of the pseudo-

likelihood (3.11) that the posterior estimation for λL and π = exp(−λGA/N)

should not change with α. Indeed, the posterior mean and standard deviation

of π for all three cases of α was 0.8677 and 0.0097 respectively. Also note that in

all the above tables the posterior summaries for λL remain unchanged. Hence,

the uncertainty about λG (and R∗) as α changes is accommodated through the

central limit theorem for the severity. The posterior correlation in this case

has naturally increased to ρ(λL, λG) = −0.722. This was expected since the

marginal posterior distribution of λG is more peaked. Hence, when we reduce

α we effectively assume that we have stronger information about the infec-

tious pressure exerted from outside the group. Consequently, the number of

ways that a final outcome data could have arisen decreases, resulting in larger

posterior correlation of λL and λG.

Finally, the case α = 10−5 is summarised in Table 3.4. The results in

this case will agree with the analyses in Addy et al. (1991) and Britton and

Becker (2000) since their model, which assumes independent groups, arises in

our framework as the special case α = 0. In particular, both papers reported

in their analysis λL = 0.446 (with a standard error of 0.007) and π = 0.867

(with a standard error of 0.097) and our results agree with these numbers up

to the third decimal point. Hence, the present analysis could potentially be

used to “correct” for the variability in the estimation of the global rate and
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Parameter

λL λG A R∗

Mean 0.045 0.194 1039.21 1.160

Median 0.045 0.194 1037.43 1.158

S. dev. 0.007 0.008 76.02 0.024

Equal-tailed 95% C. I. (0.03,0.06) (0.18,0.21) (895,1192) (1.11,1.16)

Table 3.4: Posterior parameter summaries from MCMC algorithm using the

Tecumseh dataset in the case that α = 10−5.

consequently the variability of the vaccination coverage required to prevent

epidemics in a population partitioned into groups which, as described in Britton

and Becker (2000), is a function of the basic model parameters. The posterior

correlation for this rather extreme case was ρ(λL, λG) = −0.972.

3.5.2 Artificial final outcome data

Artificial data can be potentially useful since they allow us to explore the

behaviour of the MCMC algorithm in different settings. Here we shall explore

the robustness of the proposed methodology by considering two rather extreme

artificial datasets.

Example 1

The first artificial dataset can be found in Table 3.5. It has the same number of

groups as the influenza dataset from Tecumseh although in this case, despite a

rather large number of groups acquiring infection, there are only a few groups

where the disease propagates locally. Hence, the dataset consists of a significant

number of groups with a single ultimately infected individual. Therefore, we
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Susceptibles per household

No. infected 1 2 3 4 5

0 40 49 22 20 3

1 93 137 83 80 23

2 3 2 4 2

3 1 1 1

4 1 1

5 1

Total 133 189 108 106 31

Table 3.5: The dataset of the first example

Parameter

λL λG A R∗

Mean 0.0004 0.40 1346.94 1.66

Median 0.0003 0.39 1358.23 1.64

S. dev. 0.0004 0.04 145.70 0.17

Equal-tailed 95% C. I. (0.0001,0.0018) (0.34,0.50) (1041,1593) (1.39,2.06)

Table 3.6: Posterior parameter summaries for the data in Example 1.
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Susceptibles per household

No. infected 1 2 3 4 5

0 1 0 0 0 100

1 249 0 0 0 0

2 0 0 0 0

3 0 0 1

4 0 1

5 48

Total 250 0 0 0 150

Table 3.7: The dataset of the second example

would expect a rather small local infection rate λL and a relatively large global

rate λG.

The output of the MCMC algorithm verifies this, since the global infection

rate mainly drives the epidemic. In fact the posterior summaries, presented in

Table 3.6, show clearly that the local infection rate is rather negligible. Conse-

quently, the threshold parameter essentially corresponds to the standard basic

reproduction ratio. Hence, in household outbreak data where the vast major-

ity of households have only one ultimately infected individual, the generalised

stochastic epidemic can be used as a crude approximation of the two level

mixing model for inference purposes.

Example 2

In contrast to the previous example, we next created a rather extreme dataset

representing a highly infectious disease. Thus, almost no member of the “in-

fected” groups escapes infection. This is a more realistic senario than the first
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Parameter

λL λG A R∗

Mean 0.449 0.298 1344.52 4.65

Median 0.428 0.292 1342.17 4.55

S. dev. 0.117 0.054 230.30 0.85

Equal-tailed 95% C. I. (0.24,0.81) (0.21,0.43) (906.1,1798.9) (3.11,7.19)

Table 3.8: Posterior parameter summaries for the data in Example 2 using the

a Normal random walk proposal.

artificial dataset and it can be thought of as a highly infectious disease such

as the 2001 foot and mouth epidemic in the UK. It is also a common situation

from many well known diseases of different severity, ranging from the common

cold to measles. The actual dataset can be found in Table 3.7. For final out-

come data of this kind it is likely that the posterior density of λL can have a

heavy right tail since the local basic reproduction number is large and there

is no temporal information to prevent λL from getting very large. Hence, we

tuned the component of the (normal) bivariate proposal corresponding to λL

in order to accommodate for this effect.

The posterior summaries for this analysis are presented in Table 3.8. The

main observation here is that the large local infection rate affects the estima-

tion of the threshold parameter drastically. In particular, reporting in this case

threshold parameter, R0 = λGE(I) ≈ 1.21 should be regarded as a mislead-

ing indicator of the propagation of the epidemic since the actual parameter is

amplified by a factor of almost 3. Hence, in highly infectious diseases where

the within-group spread of infection is greatly facilitated, it is vital that the

epidemic process used to model disease propagation can take into account the

additional local spread.
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Apart from artificial datasets, simulated data can be particularly helpful

due to the fact that they provide us with the ability to test the accuracy of

the inference procedures that we use. Three simulated datasets were used for

these purposes and this analysis is presented in the following section.

3.5.3 Simulated final outcome data

The simulated data sets of this section were kindly provided by Owen Lyne.

These data sets, apart from being a useful tool for evaluating the robustness

of our algorithm, enabled us to compare our results with the analysis in Ball

and Lyne (2003) wherever it was appropriate. In the cases that we would

expect to be above threshold resulting in a symmetric posterior distribution,

there is typically approximate agreement in interval estimation, while point es-

timation remains as described in the analysis of the Tecumseh influenza data,

namely that the posterior mode is very close to the maximum pseudolikelihood

estimator. All the following examples are based on the same household struc-

ture as with the Tecumseh data but with a population that is 10 times larger.

The large number of households was utilised to enable greater accuracy of the

asymptotics used. We also set α = 1 and we use the same, Gamma-distributed,

infectious period as before.

We first apply our methodology to a “perfect” dataset that consist of the

expected values in each cell. However, since the expected values will not be

integers in general, there is a rounding error since the maximum is not exactly

at the values of parameters for which the data were calculated. This partic-

ular dataset was generated with λL = 0.06 and λG = 0.23, the corresponding

threshold parameter being R∗ = 1.46. The actual data are presented in Table

3.9. As can be seen from the table, the cell values are non-integers which, of

course, is never the case in practice. It does however serve as a means of accu-
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Susceptibles per household

No. infected 1 2 3 4 5

0 865.0089 799.4654 297.1191 189.6626 36.0750

1 464.9911 681.5445 308.6312 217.5999 43.5575

2 408.9901 275.0391 223.5430 47.1339

3 199.2106 231.6536 54.5101

4 197.5409 65.0051

5 63.7184

Total 1330 1890 1080 1060 310

Table 3.9: The ”perfect” dataset

rately exploring the precision of our inferential tool and as such it is a useful

hypothetical example.

The posterior distributions of interest are summarised in table 3.10. In-

deed, the location estimates of λL and λG are very close 0.06 and 0.23. This

is quite reassuring with respect to point estimation. The estimation of the

threshold parameter was precise as well, as expected from the posterior distri-

butions of the two infection rates. This dataset was clearly simulated with a

threshold parameter above unity. In fact, we would expect that the MCMC

algorithm will produce approximately symmetric posteriors since the high pos-

terior probability of the model parameters appears to be sufficiently far from

the two regions that result in extreme epidemic outcomes, the second being a

severe epidemic where almost all the individuals are ultimately getting infected.

In an epidemic of this kind the number of the individuals avoiding infection is

Poisson distributed (e.g. Ball and Neal (2004)). Indeed, all the resulting poste-

riors are fairly symmetric. Also our results agree with the results obtained by
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Parameter

λL λG A R∗

Mean 0.0600 0.2299 26474.8 1.459

Median 0.0600 0.2300 26452.5 1.460

S. dev. 0.0022 0.0050 658.3 0.029

Equal-tailed 95% C. I. (0.055,0.064) (0.22,0.24) (25493,27494) (1.41,1.51)

Table 3.10: Posterior parameter summaries for the ”perfect” data.

Susceptibles per household

No. infected 1 2 3 4 5

0 463 196 48 14 2

1 867 871 238 90 16

2 823 468 321 41

3 326 419 109

4 216 102

5 40

Total 1330 1890 1080 1060 310

Table 3.11: The second simulated dataset

Ball and Lyne (2003) for the same dataset. The posterior correlation of the two

infection rates was ρ(λL, λG) = −0.439781, not too close to −1, in accordance

with the results for the influenza data when α = 1.

The second dataset we considered was simulated with λL = 0.001 and

λG = 0.4 with a corresponding threshold R∗ = 1.653. The rationale here is

similar to the first artificial dataset, namely testing the MCMC algorithm in a

globally driven epidemic. The actual final outcome data are presented in Table

3.11.
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Parameter

λL λG A R∗

Mean 0.004 0.397 38629.6 1.661

Median 0.003 0.397 38618 1.661

S. dev. 0.003 0.006 647.9 0.024

Equal-tailed 95% C. I. (0.0001,0.0021) (0.38,0.41) (37780,39485) (1.62,1.70)

Table 3.12: Posterior parameter summaries for the second simulated dataset.

The posterior summaries are presented in Table (3.12). The posterior

modes for λL, λG and R∗ were 0.002, 0.4 and 1.67 respectively. This bias

with respect to the estimation of λL and, to a lesser extent, R∗ is expected

since our model implicitly assumes that the infection rates are positive. Hence,

when we attempt to estimate a positively defined parameter which in reality

can actually be zero, we would expect some bias to arise. In this particular case,

where we use a full two-level-mixing model, λL could be positive even if all the

infections were actually global. The explanation for this is similar to the one

regarding the posterior correlation of the two infection rates described in the

analysis of the Tecumseh data. The results show that the algorithm captures

the globally driven nature of this epidemic. Thus, the proposed methodology

performs well except in the case where we try to estimate a quantity that is

very close to zero with a positively defined parameter.

In contrast, the third dataset we considered was simulated with a more

locally driven outbreak representing a highly infectious disease. The actual

infection rates used where λL = 0.4 and λG = 0.15 with a corresponding

threshold parameter R∗ = 1.687. We would hope that in this case the posterior

distribution of both parameters will be symmetric since the threshold parameter

appears to be sufficiently far away from the boundary of unity. The dataset is
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Susceptibles per household

No. infected 1 2 3 4 5

0 943 929 404 269 59

1 387 235 62 38 10

2 726 68 16 2

3 546 40 2

4 697 2

5 235

Total 1330 1890 1080 1060 310

Table 3.13: The third simulated dataset

Parameter

λL λG A R∗

Mean 0.394 0.1497 33282.2 1.644

Median 0.394 0.1498 33260.9 1.645

S. dev. 0.012 0.007 838.6 0.032

Equal-tailed 95% C. I. (0.37,0.42) (0.135,0.164) (32122,34470) (1.59,1.70)

Table 3.14: Posterior parameter summaries for the third simulated dataset.

presented in Table 3.13.

The results, presented in Table 3.14, are indeed very close to the values

used for the simulation. Note that the last two datasets are the outcome of a

single realisation of a simulated epidemic and, in contrast with the ”perfect”

data we would not necessarily expect complete agreement of the output with

the values used for simulation. However, these values always fall within the

95% credible intervals of the corresponding parameters.

The conclusion from this simulation study is that the methodology appears
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to be working reasonably well, at least for point estimation purposes, provided

that the real (positively defined) parameters are not too close to the boundary

of zero where some overestimation might occur. It would clearly be desirable

to test the accuracy of estimating the dispersion of the posterior distribution

of the infection rates and this is the subject of the next section.

3.6 Evaluation for the homogeneous case

The likelihood of the two level mixing model is numerically intractable for

realistic population sizes as we described earlier in this chapter. This is not

necessarily the case for the one level mixing model, as was demonstrated in

chapter two. Hence, considering a homogeneously mixing population can allow

us to evaluate to some extent the accuracy of the underlying approximations

used in the inference method for the two level mixing model.

The two level mixing model reduces to the so-called generalised stochastic

epidemic when the households are of size one. This can also be thought of as

the general model when λL = 0 and the person to person contact rate between

individuals is the population wide rate λG

N
. In this case (3.10) becomes

l
∑

k=0

(

N−k
l−k

)

pk
[

φ
(

λG(N−l)
N

)]k+a
=

(

N

l

)

, l = 0, 1, . . . , N, (3.13)

where a denotes the number of initial infectives, pk is the probability that k out

of the N initial susceptibles ultimately become infected and φ is the moment

generating function of the infectious period i.e., φ(θ) = E(e−Iθ).

We wish to compare the final size probabilities pk(λG), as derived by (3.13),

to the approximate final size probabilities, say p̃k(λG), evaluated using the final

severity. We will attempt to explore the potential differences in a variety of

ways.
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3.6.1 Exact formula

The approximate final size probabilities can be calculated if we can integrate

out the final severity that underlies the approximation. Specifically, we would

like to evaluate the probability that x out of the N individuals of the population

become infected, as a function of λG:

IN
x (λG) =

1

Φ(µ
σ
)

∫ ∞

0

π(x | λG, A)π(A | λG)dA

where Φ denotes the cumulative distribution function of the standard normal,

π(x | λG, A) =

(

N

x

)

(

e−
λG
N

A
)N−x (

1 − e−
λG
N

A
)x

is the likelihood and

π(A | λG) =
1√

2πσ2
e−

(A−µ)2

2σ2

is the Gaussian distribution of the final severity with µ = µ(λG) and σ2 =

σ2(λG) given by (3.10) for λL = 0. The 1
Φ( µ

σ
)

term comes from constraining

the integral of a normal random variable to the positive real numbers since the

final severity is positively defined. Then it follows using the binomial theorem

that

IN
x =

(

N
x

)

Φ(µ
σ
)

∫ ∞

0

exp

(−λGA(N − x)

N

)

1√
2πσ2

exp

(−(A − µ)2

2σ2

)

(

x
∑

k=0

(

x

k

)

(−1)x−k exp

(−λGA(x − k)

N

)

)

dA

=

(

N
x

)

Φ(µ
σ
)

x
∑

k=0

(

x

k

)

(−1)x−k

∫ ∞

0

1√
2πσ2

exp

(

− 1

2σ2

)[

A2 − 2A

(

µ − λGσ2(N − k)

N

)

+ µ2

]

d

=

(

N
x

)

Φ(µ
σ
)

x
∑

k=0

(

x

k

)

(−1)x−k

∫ ∞

0

1√
2πσ2

exp

(

−A2 − 2Aµ̃ + µ̃2 − µ̃2 + µ2

2σ2

)

dA,
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where µ̃(k) = µ − λGσ2(N−k)
N

. Thus, the quantity of interest is:

IN
x =

(

N
x

)

Φ(µ
σ
)

x
∑

k=0

(

x

k

)

(−1)x−k exp

(

µ2 − µ̃2(k)

2σ2

)

Φ

(

µ̃(k)

σ

)

.

Unfortunately, the above expression is numerically unstable because the terms

exp
(

µ2−µ̃2(k)
2σ2

)

can be very large. Hence, in order to evaluate the validity of the

underlying approximation, we will have to utilise simulation methods.

3.6.2 Likelihood comparison for the GSE

Since we cannot evaluate numerically the probability of observing a final size x

for a given value of λG, we will use three methods to test the simulated likeli-

hood. The simulated (under the approximation method) values will be tested

against the exact values, as obtained by solving the triangular equations (3.13),

by calculating the total variation distance between the two sequences, perform-

ing a statistical distance test and by comparing the two sequences graphically.

In the following subsections we describe these three methods.

Simulation

The simulation of the final size probabilities for the generalized stochastic epi-

demic, when the Gaussian approximation is used for the severity, proceeds in

two steps as described below.

For a given λG > E(I)−1 (so that R∗ > 1)

(i) Sample a final severity Aj from φ (Nµ(λG), Nσ2(λG)) 1l{A>0} where N is

the number of individuals, φ(a, b) is the density of a normal distribution with

mean a and variance b, and 1lE is the indicator function of the event E.

(ii) Use Aj to evaluate a final size Tj from Bin(N, 1 − e−
λG
N

Aj ) where

Bin(N, p) is the binomial distribution and p is the probability of “success”.
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Let {T1, T2, . . . , TM} be the output of the simulation, where M is a large

integer. Then, for a given λG, the probability qx that x out of the N initial

susceptibles become infected can be approximated by qx(λG) = P [T = x] =
∑M

j=1 1l{Tj=x}

M
.

For comparison purposes we will also consider the approximation considered

in Britton and Becker (2000) where essentially A
N

is replaced with its determinis-

tic limit µ(λG), namely v(x) =
(

N
x

)

(1 − exp(λGµ(λG)))x exp((N −x)λGµ(λG)).

We will firstly evaluate the accuracy of our approximation using a distance

measure.

The Total Variation Distance

The two distributions can be compared using a distance measure. Let X and Y

be integer-valued random variables. Then the Total Variation Distance (TVD)

is defined as

dTV (X,Y ) =
∑

k

|P(X = k) − P(Y = k)| = 2 sup
A⊆Z

|P(X ∈ A) − P(Y ∈ A)|.

Since the approximation is only valid for the “gaussian part” of the final size

distribution it is probably sensible to use a truncated TVD for comparison of the

two distributions of the final size. Let px be the “exact” probability that x out

of the N initial susceptibles become infected, calculated using multiple precision

arithmetic. Since the initial probabilities correspond to minor epidemics we

have rescaled the px’s by dividing by 1−s, where s =
∑100

x=0 px. We have chosen

100 because it appears to be in the middle of the final sizes with extremely low

probability. Hence, we will consider the sequence p̃x = px

1−s
. Let also qx be the

probability that x out of the N initial susceptibles become infected, calculated

using the simulation method described above. The truncated TVD between

the “exact” sequence P = p1, p2, . . . and the simulated probability sequence
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Q = q1, q2, . . . in this particular case was

dTV (P,Q) =
500
∑

x=101

|p̃x − qx| = 0.445273

However, for this comparison it is probably more useful to make use of an

appropriate test statistic that would give us some quantitative idea about the

validity of the approximation.

Graphical comparison of the likelihood values

The results that follow are based on a well known smallpox dataset (see e.g.

Bailey, 1975, p.125) where N = 120 and x = 30. We employed the same

Gamma (being the sum of two exponentials) random variable for the infectious

period I and we set M = 106. Although this datapoint (the observed final size)

is observed in a relatively small population, the results were qualitatively similar

for different infectious periods. Furthermore, as the population size increases

the approximation becomes better in the sense that the underestimation of

the variance reduces, but the general pattern remains similar to the results

presented here.

Figure 3.8 contains plots of the three likelihoods under consideration namely

the exact likelihood, evaluated using multiple precision arithmetic and the two

approximations based on the central limit theorem for the final severity. The

two main observations are (i) the approximations perform quite well with re-

spect to the location estimation and (ii) the variances are underestimated by

both approximations, particularly by the more crude one where we impute the

deterministic limit of the severity. This is likely to arise due to the fact that

both approximations assume that the epidemic is above threshold while the

exact inference gives some mass below 1. Hence, ignoring this probability mass

results in a more peaked likelihood. Thus, the approximate likelihoods, espe-

95



lambda

St
an

da
rd

iz
ed

 p
ro

ba
bi

lit
y

0.245 0.250 0.255 0.260 0.265 0.270

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

     Mean Severity

- - -   Simulated Severity

− ⋅⋅⋅   Exact

Figure 3.8: Graphical comparison of the likelihood for the three different meth-

ods.

cially the mean-based one, are more concentrated around the mode. Naturally,

we would expect these findings to be maintained in the inference comparison.

Thus, it is likely that the inference resulting from the approximations could un-

derestimate the variance. This is the reason we did not consider inference based

on the more crude approximation since ignoring the variance of the severity is

expected to give less accurate results.

3.6.3 Inference Comparison

The findings from the likelihood comparison are strongly indicative of the ac-

curacy of the resulting inferences. In particular, for the smallpox dataset used

in the previous subsection the mean of λG based on the exact and the approxi-

mate likelihood was found to be 0.296 and 0.303 respectively. Hence, the results
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are in accordance with the likelihood comparison where the estimation of the

mean is rather accurate. The corresponding posterior variances of the resulting

estimates were 0.0043 and 0.00094. Thus, the pattern of the results remains

the same, namely, the variance is underestimated when inference is based on

the approximation method.

3.7 Discussion

This chapter presented Bayesian methodology for the approximate analysis

of a stochastic epidemic model with two levels of mixing. Real populations

are inherently complex and this statistical analysis aims towards capturing

an important source of population heterogeneity such as the “local” mixing

that facilitates faster spread of a disease. Needless to say, the picture is far

from complete. However, our methodology can, in principle, be extended to

more complex models such as the overlapping groups (household-workplace

or school-household) model described in Ball and Neal (2002), models with

additional spatial spread, or multitype household epidemic models (Ball and

Lyne (2001)). A crude description of the latter extension is based on the

multitype version of the triangular equations described in Addy et al. (1991).

Specifically, the central limit theorem proved in Ball and Lyne (2001) can

be used to derive the (vector) probability of avoiding infection from outside.

Then one can evaluate the corresponding pseudolikelihood in a similar manner

to the method described here. In practice some identifiability problems may

occur for particular datasets. These could be potentially dealt with either by

explicitly employing some prior assumptions about the range of a number of

infection rates, or by implicitly imposing structural relationships between some

infection rates. Both ways appear as possible solutions and this is a worthwhile
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extension of our methodology since individual heterogeneities combined with

group structure can describe a more realistic population.

The methods described in this chapter assume that we have a large pop-

ulation of households and that the final outcome data come from a major

epidemic. The latter is not a serious restriction in practice since outbreak data

are typically from a major epidemic. However, it would clearly be beneficial to

take into account the bimodal nature of the distribution of the final severity. A

natural way is to consider a mixture of two distributions, the first component,

in the case that R∗ > 1, being the normal density used in this chapter, and

the second component coming from the branching process described in section

three of Ball et al. (1997). This refinement should aid towards the correct

estimation of the posterior variance for λG and R∗.

Moreover, we make use of known asymptotic theory regarding the final

outcome of the epidemic model by imputing the final severity. Hence, any

generalisation of the above methodology would require the development of ap-

propriate asymptotic results. It would therefore be desirable to develop “exact”

methodology that does not rely on large sample results. This appears to be

possible if the imputation consists of more information related to the epidemic

spread. This is the subject of the following chapter.
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Chapter 4

Bayesian Inference for

Stochastic Epidemics using

Random Graphs

4.1 Introduction

This chapter describes methodology for the statistical analysis of stochastic

epidemic models defined on a population with known structure that remains

fixed during the course of the epidemic. We shall restrict our attention to

the two models described in the first chapter of this thesis, the generalised

stochastic epidemic and the epidemic with two levels of mixing. However, our

methods can be extended to more general contact structures.

When final outcome data are available the likelihood for these models is

hard to compute for all but very small population sizes. Two distinct ways

to surmount this problem are presented in chapters two, for the homogeneous

case only, and three respectively. The idea that this chapter uses is to impute
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appropriate (pseudo)temporal information about the underlying disease pro-

gression. In particular, we shall augment the parameter space to introduce a

random graph, a latent process which essentially describes whom each infective

would infect in the absence of other infectives. For every realisation of the

random graph we obtain the out degree of each individual, i.e. the number of

(potentially) “infectious” links emanating from the individual. This informa-

tion is sufficient to enable the calculation of the likelihood. Subsequently we

develop Markov chain Monte Carlo methods to facilitate Bayesian inference for

the infection rates and the random graph.

The rest of the chapter is organized as follows. The two models and known

results that are relevant for inference purposes are presented in section two as

well as the types of data that we shall consider. In section three we describe

two different ways for constructing random graphs of the required kind and we

derive the likelihood given a simulated random graph. Section four contains the

Markov chain Monte Carlo algorithm used to update the graph and the infec-

tion rates and in section five we illustrate our methodology using two datasets

from real life outbreaks, the first on a homogeneously mixing population and

the second among a community partitioned into households. Additionally we

examine our methods using various artificial final outcome datasets. In section

six the inference method is further evaluated for the generalised stochastic epi-

demic using exact results obtained with multiple precision arithmetic and we

complete the chapter with some concluding remarks.
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4.2 Epidemic models and Data

4.2.1 Stochastic Epidemic Models

Epidemic model with two levels of mixing

In this section we recall the notation for the two-level-mixing model which is

described in detail in the first chapter. We consider a closed population that

is partitioned into mj groups of size j and m =
∑∞

j=1 mj is the total number

of groups. The total number of individuals is N =
∑∞

j=1 jmj. The random

variables Ij, j = 1, . . . , N are distributed according to the distribution of a

specified non-negative random variable I. Each infectious individual makes

population-wide close contacts at the points of a Poisson process with rate λG.

Each such contact is with an individual chosen uniformly at random from the

N initially susceptibles. Hence, the individual-to-individual contact rate is λG

N
.

Additionally, each infective individual makes person to person contacts with

individuals in its own household according to a Poisson process with rate λL.

All the Poisson processes (including the two processes associated with the same

individual) and the random variables Ij, j = 1, . . . , N , describing the infectious

periods of different individuals, are assumed to be mutually independent. In

the special case where all the households are of size 1 the model reduces to

the generalised stochastic epidemic process and we shall now recall the main

features of this latter model.

Generalised Stochastic Epidemic

In this model the local contact rate becomes irrelevant. Thus, while infectious,

an individual makes contacts at the points of a time homogeneous Poisson

process with rate λG

N
. We recall results for the final size distribution from
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chapter one. Let φ(θ) = E(exp(−θI)) be the moment generating function of

the infectious period I and pN
k the probability that the final size of the epidemic

is equal to k, 0 ≤ k ≤ N . Then

l
∑

k=0

(

N−k
l−k

)

pN
k

[

φ
(

λ(N−l)
N

)]k+m
=

(

N

l

)

, 0 ≤ l ≤ N, (4.1)

where m is the number of initial infectives. As we have seen in the second

chapter, the system of equations in (4.1) is numerically unstable even for mod-

erate population sizes. One way to overcome this problem was described in

chapter two where multiple precision arithmetic was employed to solve (4.1).

However, for realistic population sizes the evaluation of the final size probabil-

ity becomes infeasible. Additionally, when the model is not homogeneous the

problem gets worse since the dimension of the system increases enormously.

The random graph we shall employ presents a unified approach to inference

from final outcome data even for complex population structures. We shall now

recall the threshold parameter for the two epidemic models of interest.

The threshold parameter

We will summarise the threshold results mentioned in the first chapter. For

n = 1, 2, . . . , let the proportion mn

m
of groups of size n converge to θn as the

population size N → ∞. Let also g =
∑∞

n=1 nθn be the asymptotic mean

group size and assume that g < ∞. Then the threshold parameter, probably

the quantity of the highest epidemiological interest, associated with the two-

level-mixing model is defined as

R∗ = λGE(I)ν, (4.2)

where ν = ν(λL) = 1
g

∑∞
n=1(1+µn−1,1(1))nθn is the mean size of an outbreak in

a group, started by a randomly chosen individual, in which only local infections

are permitted. The initial infective is also included in ν.
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For the generalised stochastic epidemic we have ν = 1. Hence, the threshold

parameter reduces to the well known basic reproduction number: R0 = λGE(I).

4.2.2 Final Outcome Data

We consider data of the form ñ = {nij} where nij is the number of households in

which i out of j susceptibles ultimately become infected. Hence, in a Bayesian

framework, we wish to explore the posterior distribution π(λL, λG | ñ) of the

two infection rates that are the basic model parameters given the observed

data ñ. For the homogeneous case the data consist of a single point, the final

size of the epidemic. From this observation it becomes apparent that we shall

attempt to impute a large amount of unobserved information given relatively

uninformative data. In order to pursue this purpose, which is a challenging sta-

tistical problem, we will use the detailed and complex nature of the stochastic

epidemic models under consideration. We shall now describe a random graph

that provides us with appropriate information regarding the infection mecha-

nism that could result to the observed final size. This graph is not necessarily

representative of the exact temporal dynamics of the epidemic. However, the

resulting posterior information is sufficient since we are only concerned with

the final outcome in the event of an outbreak.

4.3 Random Graphs and the Likelihood

It has been observed that the final outcome of stochastic epidemic models can

be considered in terms of directed random graphs, see e.g. Barbour and Mol-

lisson (1990). We describe in this section how random graphs can be simulated

and used for inference purposes. See chapter 7 of Andersson and Britton (2000)

for a nice introduction to the characterisation of epidemic models in terms of
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random graphs.

4.3.1 The Random Graph

In what follows we describe how to represent the infectious contacts during an

outbreak with a random digraph (directed graph). This graph is defined on N

labelled vertices that may be partitioned into clusters according to the group

structure in the epidemic of interest. In this representation the individuals of

the population under study correspond to the vertices of the random graph.

Each vertex i has an associated random variable Ii, which is the infectious

period of the corresponding individual. Global (population-wide) directed links

from i appear with probability 1 − exp(−λGIi/N) while local (within-cluster)

links emanate from i with probability 1 − exp(−λLIi). Conditional upon Ii,

the appearance of such links is independent of the appearance, or not, of any

other link. Thus, a close contact from individual i, while i is infectious, to

individual j corresponds in our random graph representation to a directed link

from the vertex that represents i to the vertex that corresponds to individual j.

Hence, we shall be using the terms “individual” and “vertex” interchangeably.

The same applies for contacts and directed links. Thus an individual j in the

epidemic is ultimately infected if and only if there exists a directed path (i.e.

a sequence of connected edges) from the initial infective vertex (or vertices) to

the vertex j in the graph.

In the sequel we shall be using random graphs of the kind just described

as imputed latent variables. It follows that a key challenge is to efficiently con-

struct and update graphs such that the number of vertices that are connected

to the vertices that correspond to the initial infectives agrees with the data, i.e

is equal to the number of ultimately infected individuals. Note that the ran-

dom graph essentially describes who each individual would attempt to infect
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in the event that they become infectious. If an individual so contacted has

not previously been infected, then the attempt is successful; otherwise it has

no effect. Furthermore the random graph does not contain real-time temporal

information, although it does implicitly contain a description of the outbreak

in terms of generations. Since we are only concerned with final size data, this

“pseudotemporal” information can be imputed with no loss of generality.

The method we shall employ is concerned with simulating random graphs

over the set that contains the “ultimately infected” vertices. For example, if we

observe ℓ out of N initial susceptibles infected, we need only construct the graph

on ℓ vertices. This approach facilitates the crucial requirement that the graph

should agree with the data. Subsequently, it is easy to evaluate (conditional

on the current λ’s and I’s) the probability that the vertices included in G fail

to infect the vertices outside this set. This probability is necessary for the

calculation of the likelihood.

We shall now introduce some notation. We assume that there is one ini-

tial infective labelled κ. This is for illustrative purposes but the methodology

we shall describe is straightforward to apply to any (finite) number of initial

infectives. Let us denote by ℓ the final size. For the two level mixing case we

have:

ℓ =
h
∑

j=1

j
∑

k=1

knkj,

where h is the maximum group size. Let also i, i = 1, . . . , ℓ be the label

of the vertices (including κ) linked to κ via a path of directed links. These

vertices correspond to the ℓ ultimately infected individuals. Graphs of the

required kind can be constructed in a number of ways. We shall focus on

two types of construction mechanisms. However, these two methods, including

combinations of them, are far from exhaustive and any construction that results

in valid configurations can be potentially useful.
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The first of those contains proposals that attempt to construct a completely

new random graph in each iteration. We shall refer to mechanisms of this kind

as independent proposals and we would expect this set of algorithms to work well

when the proposal distribution is well calibrated with respect to the likelihood.

The second group of construction mechanisms contains proposals that con-

centrate on perturbing the existing graph. A variety of ways to achieve this

can be used. We shall focus on the case where the proposal is based on either

adding a new edge, or deleting one of the current directed links, as long as

the remaining infection pathway is still valid. Additionally, particularly for

heavily structured populations, moving an edge between two vertices could po-

tentially improve mixing. We shall refer to this class of proposals as birth-death

proposals. In the following section we describe these two groups of proposal dis-

tributions.

4.3.2 The Graph Construction

The Independent Construction

In the first part we shall describe the construction algorithm for the generalised

stochastic epidemic model. It is then relatively straightforward to extend this

approach to the two level mixing model and this method will be described in

the second part of this subsection.

The Independence Sampler in the Homogeneous Case The construc-

tion of random graphs of the required kind can be achieved using a stepwise

method. Essentially we simulate a realisation of the potential contacts that

the ultimately infected individuals would have while infective. This process

includes the pathway of infection and a number of contacts from infectives to
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already infected or removed individuals that do not result in new infection.

The construction is completed in a random number of generations γ. Since

the probability of a close contact for individual i with infectious period Ii,

pi = 1− qi = 1− exp(−λIi/N) is typically small, at each generation, where the

total number infected remains less than the observed final size, we use a “spe-

cial” link in order to preserve the continuity of the algorithm. This special link

is drawn before the other links of each generation from a current (within gener-

ation) infective to a current susceptible. Hence, each new generation contains

at least one link to the remaining susceptibles. Recall that for this construction

we are only concerned with vertices that correspond to ultimately infected in-

dividuals. However, we shall use the terminology “infected” and “susceptible”

in the context of the construction to refer to vertices infected so far, or not yet

infected, respectively.

The use of the “special” link is motivated by the need for efficient simulation

of the random graph G and it is expected that conditioning on at least one

infective per generation should aid towards this direction. Alternatively, a naive

approach to this construction would consist of repeatedly sampling potential

links until the resulting graph consists of a set of linked vertices that agrees with

the final size data set. Such an approach would clearly be highly inefficient.

Let us assume that the epidemic initiates at generation 0, with c0 infectives

and s0 susceptibles. Without loss of generality we initiate the epidemic with

one individual labelled κ. Suppose that the construction is at generation i,

i = 0, 1, 2, . . . , and that the epidemic is not complete, i.e. that not all the ℓ

vertices have yet had their links assigned to them. If the epidemic is complete

then the algorithm terminates. At generation i we pick (among the ci currently

“infective” vertices) the vertex that corresponds to the infective from which the

special link emanates, uniformly at random with probability 1/ci. In the case
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where the infectious periods I1, . . . , Iℓ are explicitly included as latent variables,

this procedure can be easily modified. In particular, given a realisation of the

infectious periods Ij, j = 1, . . . , ℓ we can pick the “special infector” j with

probability Ij/(
∑ci

k=1 Ik).

Next, we choose the individual infected by the special link uniformly at

random among the si current “susceptible” vertices. The special link ensures

that the following generation will contain ci+1 ≥ 1 infectives.

After selecting the special link, we draw additional links from the ci cur-

rently “infective” vertices. This can be achieved by first determining the num-

ber of such links and then deciding which vertices they are linked to. The

number of additional links can follow any, appropriately truncated, discrete

distribution. We have explored two distinct senarios. In the first case, the

number of links from i, additionally to a potential special link, follows a bino-

mial distribution Bin(ℓ − 1, pi) where pi = 1 − exp
(

−λIi

N

)

. In the case that we

have not imputed the infectious periods the above probability may be replaced

by p = 1 − exp
(

−λE(I)
N

)

. In fact, it is not necessary for the random graph

construction to employ the actual infection probabilities of the epidemic model

pi. The corresponding link probabilities can be arbitrary. An approach that

appears to be worthy of exploration is the use of a modified set of probabilities

pα
i = 1 − exp

(

−αλE(I)
N

)

that is “adapted” to the infection rate parameter λ.

Note that α does not have to be fixed either. In particular, it is straightforward

to update α as an extra parameter in the MCMC algorithm that will be used

and we shall illustrate this approach in the following section. The intuition

behind the use of α can be described as follows. It is well known that inde-

pendence samplers can perform badly when the proposal distribution is badly

calibrated with respect to the posterior. Hence, the inclusion of α essentially

introduces a whole family of proposal distributions, with each α value result-
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ing in a different probability of proposing the same graph. Thus, we would

hope that α will converge towards values that offer reasonable calibration of

the proposal distribution. Note that if the original (without α) proposal is well

calibrated then it is always possible that α will oscillate around α = 1 values.

The binomial distribution seems like a natural choice implied by the model

but is not necessary. We also used a constrained Poisson distribution where

the constraint is determined by the number of potential edges. The rate of the

Poisson distribution ξ can be either fixed or “adapted” to λ. The latter case

can, in principle, aid towards faster mixing of the resulting MCMC algorithm.

Once the number of links has been obtained the actual links are assigned

uniformly at random among the possible choices. In practice an efficient way

to draw d links to e target vertices is to randomly permute the e vertices and

consequently to draw a link to the first d of them.

For each of the cj infectives in generation j let us denote with fij the

number of forward links from infective i, i.e. the number of links from i to the

vertices that are not yet “infected” at the start of the generation. Let also bij

be the number of backward links from i to the current “infective” vertices of

generation j, or to the “removed” vertices i.e., the vertices of the generations

c0, c1, . . . , cj−1. This distinction is essential for the calculation of the proposal

probability. Then fj =
∑cj

i=1 fij ≥ cj+1 ≥ 1 with the convention that fj = 0

in the last generation. Similarly bj =
∑

i bij. Note that fj + bj =
∑cj

i=1 δi is

the sum of the out-degrees, δj, of all the vertices that comprose generation cj.

In order to assist the exposition we supress α from pα
i and we denote both the

standard (implied by the model) and the adapted probability by p. In general,

the proposal probability is evaluated by summing over all possible ways that

could result in a particular configuration. Hence, the probability of proposing
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the event of generation j, conditional on λ and α is

q(Gj | λ, α) =

fj
∑

k=1

1

sj

(1 − p)fj−1(1 − p)bjpmcj−bj−fj =
fj

sj

(1 − p)fj+bj−1pmcj−bj−fj

For the last generation when fγ = 0 (and δγ = bγ) we get q(Gγ) = (1 −
p)bγpmcγ−bγ .

Thus, the probability of proposing the random graph G is

q(G | λ, α) =

γ
∏

j=1

q(Gj) =

(

γ−1
∏

j=1

fj

sj

(1 − p)fj+bj−1pmcj−bj−fj

)

(1 − p)bγpmcγ−bγ

(4.3)

The procedure described here implies that γ ≤ ℓ. The random variable γ

can be thought of as a measure of the connectivity of G. There is a number of

measures of the connectivity of random graphs (e.g. Bollobás (2001)) and here

we use γ as a convenient measure of this kind.

The Independence Sampler for the two level mixing model The con-

struction in this case is tailored towards the two-level-mixing behaviour. In

particular, the probability distribution of the directed links emanating from

a given vertex is a mixture of two components. The first component of the

mixture refers to the probability of a potential link to the local vertices, i.e.

the vertices that belong to the group of the vertex of interest. The second com-

ponent corresponds to the (typically smaller) probability of a global directed

link, i.e. an edge to any of the ℓ vertices that correspond to the final size.

This construction could aid towards faster convergence of the algorithm since

it attempts to mimic the actual infection process induced by the model.

Without loss of generality, we assume throughout the section that individ-

uals 1 up to n11 correspond to the individuals of the n11 households with the

only individual of the household being finally infected. The individuals n11 + 1
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up to n11 + n12 correspond to the infected individuals in the n12 households

with only one of the two members of the household being ultimately infected

while the individuals n11 + n12 + 1 up to n11 + n12 + n13 correspond to the

infected individuals in the n13 households with only one of the three members

of the household being ultimately infected and so forth. We recall that h is the

size of the largest household in the data. The labelling ends with individuals

ℓ − hnhh + 1, . . . , ℓ that reside in the nhh households with all their members

being infected at the end of the epidemic. Furthermore, in addition to the sG

current susceptibles in the graph population that each of the cj infectives in

generation j can infect, assume that there are sLi susceptibles in i’s group.

We can pick a special link in a similar manner to the homogeneous case

using a three-stage procedure. The first step is to pick the vertex that cor-

responds to the infective from which the special link emanates. We sample

this particular individual according to the length of his infectious period, if

known. Hence, each currently infective individual i has probability Ii
∑ci

j=1 Ij
of

being selected. In the case where there is no information about the length

of the infectious period, this step can be replaced with picking one of the ci

current infectives uniformly at random.

The second step is to choose between local or global infection and we do

so with corresponding probabilities sLipiL

sLipiL+sGpiG
and sGpiG

sLipiL+sGpiG
, where piL =

1 − qiL = 1 − exp(−λLIi) is the probability of a local infectious contact and

piG = 1 − qiG = 1 − exp(−λGIi/N) is the probability of a global infectious

contact. In the case where a realisation of the infectious periods is not available,

we can replace Ii in piL and piG with E(I). Consequently, we choose the special

link uniformly at random among the sLi (sG) local (global) susceptibles.

After selecting the special link, we draw additional local and global links

from the ci currently “infective” vertices according to their corresponding prob-

111



abilities. This method corresponds to a binomial distribution Bin(nLi, pLi)

where pLi = 1 − exp (−λLIi) and nLi is the final size in i’s group. In the case

that i denotes a vertex from which a local special link emanates, we draw ad-

ditional local links from a binomial Bin(nLi − 1, pLi) distribution. Likewise,

the number of global links from i follows a binomial distribution Bin(ℓ, pGi)

(Bin(ℓ − 1, pGi) if i had a global special link) where pGi = 1 − exp
(

−λGIi

N

)

.

We pick the d out of e vertices that denote the destinations of the directed

links using the procedure described above i.e., by permuting the e potential

link “receivers” and choosing the first d of them.

Arguing as in the homogeneous case it is straightforward to extend this

approach to more general link probabilities. Hence, the probability of a local

and global link can be replaced by pα
Li = 1 − exp (−αλLIi) and pα

Gi = 1 −
exp

(

−αλGIi

N

)

respectively, where α is a parameter that can be updated in the

MCMC algorithm.

Similarly to the homogeneous case we have used an alternative possibility

for the distribution of the additional number of links. Thus, the extra number

of links is determined by a pair of constrained Poisson distributions with rates

ξL and ξG for the local and global contacts respectively. As before, the Poisson

rates ξL and ξG can be either fixed or “adapted” to λL and λG. The procedure

is repeated until all the ℓ vertices are linked to the initial infective κ.

We now describe the procedure for obtaining probabilities of proposing

random graphs when an “independence”construction is used. The key idea is

that we should assign a unique probability to each graph configuration and the

sum of these probabilities over the large (but finite) set of graphs should equal

unity. We shall illustrate the approach in the case of the constrained Poisson

distribution.

We will now introduce some notation. Let XLf
i denote the random variable

112



the realisations of which provide us with the number of forward within-group

links from vertex i, i.e., the local links to the within generation susceptibles.

Then we denote by xLf
i the realisations of XLf

i . In a similar manner XGf
i

denotes the random variable that is concerned with the global forward links

from i, XLb
i is the random variable that describes the local backward links and

XGb
i is the random variable whose realisations give the global backward links.

Note that for the graph construction forward links refer to links to within-

graph susceptible vertices i.e., vertices that will ultimately get connected to

the initial infective. Let us also denote by sL
i and sG

i the within-generation

local and global susceptibles. Additionally, we denote the final size in i’s group

with ni since it is only the final size that matters in the graph construction,

as opposed to the actual group size that is important for the evaluation of the

likelihood. Finally, let Fi be the event that i is the special infector i.e., the

vertex from which the special link emanates. Then the probability of proposing

G is given by

q(G | ξL, ξG) =

γ
∏

j=1

q(Gj | ξL, ξG),

where

q(Gj | ξL, ξG)) =
∑

i:xLf
i ≥1 Pr(Fi)Pr(i local | Fi)Pr(Gj | i local,Fi)

+
∑

i:xGf
i ≥1 Pr(Fi)Pr(i global | Fi)Pr(Gj | i global,Fi),

(4.4)

where “i local” (global) means that the local (global) special link emanates from

i. After a little algebra the probability of proposing generation j, q(Gj | ξL, ξG)),

can be rewritten as

q(Gj | ξL, ξG) = H1H2H3H4H5
1

∑cj

k=1 Ik





∑

i:xLf
i ≥1

IiH6 +
∑

i:xGf
i ≥1

IiH7




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where the Hi’s, i = 1, . . . , 7 denote the following probabilities:

H1 =

cj
∏

k=1

PrξL
(X = xLf

k )

H2 =

cj
∏

k=1

PrξL
(X = xLb

k )

H3 =

cj
∏

k=1

PrξG
(X = xGf

k )

H4 =

cj
∏

k=1

PrξG
(X = xGb

k )

H5 =

(

sL
k

xLf
k

)−1(
nk − sL

k

xLb
k

)−1( sG
k

xGf
k

)−1(
ℓ − sG

k

xGb
k

)−1

H6 =
pLsL

i

pLsL
i + pGsG

i

(

PSξL,sL
i
− 1
)(

PSξL,sL
i

)cj−1 (

PSξL,ni−sL
i

)cj

H7 =
pGsG

i

pLsL
i + pGsG

i

(

PSξG,sG
i
− 1
)(

PSξG,sG
i

)cj−1 (

PSξG,ℓ−sG
i

)cj

.

Hence, H1 denotes the probability that the Poisson(ξL) random variable X

takes the value xLf
k . The partial sums PSξ,s arise because of the constrained

Poisson samples. Hence, the conditional (Poisson with rate ξ) probability

Prξ(X | X ≤ s) produces the partial sums

PSξ,s = Prξ(X ≤ s) = Prξ(X = 0)+Prξ(X = 1)+· · ·+Prξ(X = s) = e−ξ

s
∑

k=0

ξk

k!
.

In the following section we describe a different approach to derive the required

graph.

The Birth-Death Construction

We shall focus in this section to an approach that appears to be more promis-

ing as far as mixing of the corresponding MCMC algorithm is concerned. The

rationale behind this is that MCMC methods based on independence samplers
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can suffer from poor convergence properties. The key idea is to start with a

given configuration of the random graph and to attempt a perturbation of the

current graph at each iteration. Naturally, the way we initialise the graph is

not essential because when the Markov chain reaches equilibrium the algorithm

will not “remember” the initial configuration. Hence, we can choose any ini-

tial graph, G0 say, as long as all the ℓ vertices that correspond to the final

size are linked to the initial infective κ either directly or through a chain of

directed links. For example, for data sets where there is a significant number

of individuals that ultimately escape infection, a suitable initialisation is to

construct a graph where each individual infects one other, until all ℓ vertices

are infected. Additionally, for datasets where a large proportion of the indi-

viduals is ultimately infected, we can initialise the graph using a “complete”

graph, i.e., a graph where each individual has contacts with every “ultimately

infected” vertex both within the group and in the population.

Given a current configuration of the random graph G, we attempt to update

the graph by either adding a directed link, or deleting one of the existing edges

of the graph. In particular, we pick addition or deletion uniformly at random.

Let us denote by δj, the out-degree of individual j. Additionally, for the two

level mixing model, we denote by δGj the number of global links i.e., the directed

links to any of the ℓ vertices and δLj the number of edges to the vertices that

correspond to the individuals that reside in j’s group. Obviously the out degree

of each individual admits the decomposition δj = δGj + δLj, and posterior

information about δGj and δLj can provide us with a better understanding of

the infection process.

Adding a link We now describe a proposal mechanism for transition from

a graph G, with the total number of directed links being
∑ℓ

j=1 δj, to a graph

G′ with total number of edges equal to
∑ℓ

j=1 δj + 1. The addition of an edge
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is always possible as long as
∑ℓ

j=1 δj does not exceed the maximum number of

potential links.

Adding a link in the Homogeneous Case In the homogeneous case

the total number of potential directed links is ℓ(ℓ − 1). The actual number

implied by the model is ℓ2 since each individual has infectious contacts with

every member of the population, including the individual itself. However, in

the random graph representation we can, equivalently, restrict our attention

to the case where each individual has potential contacts with the remaining

ℓ − 1 individuals. Hence, when
∑ℓ

j=1 δj is strictly smaller than ℓ(ℓ − 1) we

pick the edge to be added uniformly at random among the ℓ(ℓ − 1) −∑ℓ
j=1 δj

potential links. In practice a simple device to achieve this is to start from 0

and sequentially add the ℓ − 1 − δj number of non-links for each individual j

until we reach the uniform random number that indicates the link to be added.

The probability of adding a specific link is simply
(

ℓ(ℓ − 1) −∑ℓ
j=1 δj

)−1

since

we add the link uniformly at random and there are ℓ(ℓ− 1)−
∑ℓ

j=1 δj possible

choices. This procedure can easily generalised to more complex senarios and

we shall describe the two level mixing case in the next paragraph.

Adding a link in the Epidemic with Two Levels of Mixing The

stochastic epidemic with two levels of mixing naturally offers two distinct op-

tions for adding a link. Hence, each individual that belongs to a group with at

least two infectives can have both local and global infectious contacts. Thus, in

addition to the ℓ(ℓ − 1) potential global links, there are
∑

j:nLj≥2 nLj(nLj − 1)

potential local links, where nLj is the final size in j’s group. Similarly to the

homogeneous case, an addition is always possible as long as
∑ℓ

j=1 δGj < ℓ(ℓ−1)

or
∑ℓ

j=1 δLj <
∑

j:nLj≥2 nLj(nLj−1), for global and local additions respectively.

If the strict inequality that refers to the global (local) links is satisfied then
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we choose to add a global (local) link. When both of these inequalities are

satisfied we need to choose the addition of a local or global link. The proba-

bility of choosing local, pL say, can be determined by the user. We have used

a number that depends on some preliminary estimation of the local and global

reproduction numbers, the rationale being that the reproduction number can

be thought of as the average number of infectious contacts per individual. How-

ever, the probability of choosing local or global can depend on other measures

such as the total number of potential local and global links. In practice, since

we use the same probability for choosing to delete a local or global links, this

choice is not critical for the behaviour of the algorithm. Finally, we choose

the edge to be added uniformly at random among the
∑

j:nLj≥2 nLj(nLj −
1) − ∑ℓ

j=1 δLj and ℓ(ℓ − 1) − ∑ℓ
j=1 δGj local and global potential links re-

spectively. Hence, the probability of adding a given local (global) link is

pL/
(

∑

j:nLj≥2 nLj(nLj − 1) −∑ℓ
j=1 δLj

) (

(1 − pL)/
(

ℓ(ℓ − 1) −∑ℓ
j=1 δGj

))

. In

the next paragraph we shall describe a mechanism for deleting an edge.

Deleting a link The object of interest is a proposal mechanism for transition

from a graph G, with the total number of edges being
∑ℓ

j=1 δj, to a graph G′

with total number of directed links equal to
∑ℓ

j=1 δj − 1. The deletion of an

edge is always possible as long as
∑ℓ

j=1 δj ≥ ℓ−1. Additionally, in the two level

mixing senario, the number of global directed links should exceed the number

of groups with ultimately infected individuals minus one, since at least one

member of such groups must be infected globally. These observations are only

useful for efficiency since in practice each potential update will be controlled

by a procedure that confirms the validity of the proposed infection pathway.

Deleting a link in the Generalised Stochastic Epidemic This step

is executed in a similar fashion to the addition step with the proposed link
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to be deleted chosen uniformly at random among the
∑ℓ

j=1 δj current directed

edges of the graph. Note that again we pick the link to be deleted, as opposed

to choosing an individual, introducing the correct bias in the sense that the

greater number of directed links an individual has, the more likely it is that

he is elected to “lose” a link. The probability of selecting a particular link is

simply
(

∑ℓ
j=1 δj

)−1

. One of the main advantages of this construction method

is that it is straightforward to generalise to more complex population structures

and in the following paragraph we shall describe the two level mixing case.

Deleting a link in the Epidemic with Two Levels of Mixing Once

we have chosen to delete a link, we delete a local directed link with the same

probability that we choose to add a local link. Consequently we pick the actual

directed link to be deleted uniformly at random among the
∑ℓ

j=1 δLj (
∑ℓ

j=1 δGj)

current local (global) edges. Hence, the corresponding probability of deleting

an edge is pL/
(

∑ℓ
j=1 δLj

)

and (1 − pL)/
(

∑ℓ
j=1 δGj

)

for local and global links

respectively.

Regardless of the way we obtain the random graph required, the informa-

tion that this imputed stochastic process contains is sufficient to evaluate the

likelihood, the function of the data for a given value of the parameters governing

the epidemic. We shall derive the necessary formulas in the next section.

4.3.3 The Likelihood

Once a particular configuration of the random graph has been obtained, we can

derive the likelihood of the data conditional upon the current infection rates.

We shall present two different versions that correspond to different levels of

information being available. The first approach does not require the actual

infectious periods since the likelihood is derived by taking expectations i.e., by
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integrating over the infectious periods space. However, in a sampling based

approach this is not necessary. Specifically, a sample of the infectious periods

can be obtained by sampling from the prior, a method that is commonly used in

multiple imputation methods. Subsequently, the space of the infectious periods

will naturally be explored by the MCMC sampler.

The methods are actually equivalent since in both cases we assume that we

know the distribution of the infectious period. In particular, in the absence of

temporal information, the mean of the infectious period sets a scale with respect

to which all the results, including the infection rates, should be interpreted.

An exception is the threshold parameter R∗ where the length of the infectious

period E(I) is already taken into account.

The likelihood is an integral part of Bayesian inference. However, the meth-

ods we describe could also be possibly useful in a simulated likelihood frame-

work. We shall now derive the formula for the likelihood in the homogeneous

case.

The Likelihood for the Generalised Stochastic Epidemic

In a Bayesian approach, the target density can be written as

π(λ | ℓ) ∝ π(ℓ | λ)π(λ).

Since the likelihood π(ℓ | λ) can be extremely difficult to calculate, we augment

the parameter space using a random graph as described above. Thus, the

augmented posterior is

π(λ,G | ℓ) ∝ π(ℓ | G, λ)π(G | λ)π(λ) (4.5)

Note that π(ℓ | G, λ) = 1l{G∈Γ}Pr(ω) where 1l{A} is the indicator function of

the event A, Γ = {G : ∀j ∈ {1, . . . , ℓ}, κ → j}, i → j means that there
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is a path from i to j and Pr(ω) denotes the probability that no links exist

from the ℓ ultimately infected individuals to the remaining N − ℓ members of

the population that ultimately escape infection. Given a realization of G, G
say, where G ∈ Γ , the essential likelihood L(G | λ) = π(G | λ)Pr(ω) can be

evaluated as follows.

L(G | λ) =

∫

[0,∞)ℓ

π(G | λ, {Ij})Pr(ω)dΠ({Ij}) = E
{Ij}

{π(G | λ, {Ij})Pr(ω)}.

However, recalling that the out-degree of individual j is denoted by δj we

have

L(G | λ, {Ij}) =
ℓ
∏

j=1

(

1 − e−λIj
)δj
(

e−λIj
)(ℓ−δj−1)

e−λIj(N−ℓ)

=
ℓ
∏

j=0

(

1 − e−λIj
)δj

e−λIj(N−δj−1) (4.6)

The formula in 4.6 enables us to evaluate the likelihood when the infectious

periods of the individuals and their out-degrees are available. Additionally,

when only the graph information is available further progress can be made using

the binomial theorem. Specifically we can rewrite
(

1 − e−λIj
)δj as follows:

(

1 − e−λIj
)δj

=

δj
∑

k=0

(

δj

k

)

(−1)(δj−k)e−λIj(δj−k).

Hence,

(

1 − e−λIj
)δj

e−λIj(N−δj−1) =

δj
∑

k=0

(

δj

k

)

(−1)(δj−k)e−λIj(N−k−1).

Since the infectious periods {Ij} are mutually independent we have that:

E (f(Ik)g(Ij)) = E (f(Ik)) E (g(Ij)) , k 6= j,

for any functions f , g such that the expectations exist. Thus, we get

E
{Ij}

{L(G | λ, {Ij})} =
l
∏

j=0

E





δj
∑

k=0

(

δj

k

)

(−1)(δj−k)e−λIj(N−k−1)



 .
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Finally the likelihood can be evaluated from

L(G | λ) =
ℓ
∏

j=0





δj
∑

k=0

(

δj

k

)

(−1)(δj−k)φ(λ(n − k))



 , (4.7)

with φ(θ) = E
(

e−θI
)

where the expectation is taken with respect to the prob-

ability distribution of I. The two formulas given in 4.6 and 4.7 are valid for

every appropriate random graph that contains the required information, in-

dependently of the method used to construct the graph. Additionally, (4.7)

illustrates the value of considering all possible links in the augmented space.

The above calculations are straightforward to extend to more complex popu-

lation structures and the corresponding results for the two level mixing model

are presented in the following section.

The Likelihood for the Two-level-mixing Model

For a given realisation of G, say G, the likelihood becomes a conditional density

that can be written as the product of three components

L = L1L2L3,

where L1 can be evaluated from G as in the homogeneous case and Pr(ω) =

L2L3 is the contribution to the likelihood of the non-links between the ℓ ulti-

mately infectives and the remaining N − ℓ individuals of the population, L2

corresponding to global and L3 to local infections.

L1 can be evaluated as the product of the appropriate binomial proba-

bilities. We recall that we denote by δGj the number of global directed links

emanating from individual j and by δLj the number of local contacts of j while

he has been infectious. Also the probability of this individual having a local

infectious contact with a specified individual in his household is pjL = 1 − qjL
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where qjL = exp(−λLIj) and the probability of a global contact with a spec-

ified individual in the population is pjG = 1 − qjG, qjG = exp
(

−λGIj

N

)

. Note

that for the evaluation of the likelihood we can ignore the pseudotemporal,

per generation, information obtained by the random graph and focus on each

individual. Let us recall that sLj is the number of not yet infected vertices in

j’s group and sG is the number of global within-graph susceptible vertices. All

these individuals will however be infected at the end of the graph construction.

Then it is easy to see that

L1 =
ℓ
∏

j=1

p
δGj

jG q
sG−δGj−1
jG p

δLj

jL q
sLj−δLj−1
jL . (4.8)

The second component is the contribution of the ℓ ultimately infected in-

dividuals which fail to globally infect the N − ℓ remaining susceptibles and is

given by

L2 =
ℓ
∏

j=1

exp (−(λG/N)Ij(N − ℓ)) = exp

(

λG

(

ℓ

N
− 1

) ℓ
∑

j=1

Ij

)

. (4.9)

The quantity
∑ℓ

j=1 Ij is a realisation of the final severity of the epidemic.

The third component is due to the individuals who avoid infection locally

from the set of the ℓ infectives and is calculated as

L3 =
h−1
∏

i=1

h−1
∏

j=i

nii+nij+1
∏

k=nii+1

exp (−λL(j − i + 1)Ik)

= exp

(

−λL

h−1
∑

i=1

h−1
∑

j=i

(j − i + 1)

nii+nij+1
∑

k=nii+1

Ik

)

, (4.10)

where h is the maximum household size and nij is the number of households of

size j of whom i individuals become infected. Combining equations (4.8), (4.9)

and (4.10) and after some elementary calculations we get

L(G | λL, λG, {Ij}) =
ℓ
∏

j=1

p
δGj

jG q
N−δGj−1
jG p

δLj

jL q
nLj−δLj−1
jL . (4.11)

122



The formula in (4.11) is the likelihood for the two level mixing model given

the vector of the infectious periods and a realisation of the random graph that

contains the local and global out-degrees of each individual. This formula could

be derived directly simply by taking the product over each individual of the

corresponding (binomial) probabilities of a particular realisation, conditional

upon his local and global out-degree. However, we do include the likelihood

decomposition to the L1, L2 and L3 components since they represent a natural

split into the three important aspects of the infection process. As with the

generalised stochastic epidemic we can attempt to integrate out the actual

realisations of the infectious periods and present the likelihood as a function

of the out-degrees of the vertices that correspond to the ultimately infected

individuals.

Using the binomial theorem we can rewrite the probability that corresponds

to the local infections as follows:

(

1 − e−λLIj
)δLj =

δLj
∑

k=0

(

δLj

k

)

(−1)(δLj−k)e−λLIj(δLj−k).

Similarly for the global infections pjG

(

1 − e−λGIj
)δGj we obtain:

(

1 − e−λGIj/N
)δGj

=

δGj
∑

k=0

(

δGj

k

)

(−1)(δGj−k)e−λGIj(δGj−k)/N .

Then,

(

1 − e−λLIj
)δLj e−λLIj(nLj−δLj−1) =

δLj
∑

k=0

(

δLj

k

)

(−1)(δLj−k)e−λLIj(nLj−k−1)

and

(

1 − e−λGIj/N
)δGj

e−λGIj(N−δGj−1)/N =

δGj
∑

k=0

(

δGj

k

)

(−1)(δGj−k)e−λGIj(N−k−1)/N .

Since the infectious periods {Ij} are mutually independent we obtain

L(G | λL, λG) = E
{Ij}

{L(G | λL, λG, {Ij})} =
ℓ
∏

j=0

E











δLj
∑

k=0

Ak













δGj
∑

k=0

Bk









 ,
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where Ak =
(

δLj

k

)

(−1)(δLj−k)e−λLIj(nLj−k) and Bk =
(

δGj

k

)

(−1)(δGj−k)e−λGIj(N−k)/N .

Using the fact that





δLj
∑

k=0

Ak









δGj
∑

k=0

Bk



 =

min{δLj ,δGj}
∑

k=0

k
∑

i=0

Cik +

δLj+δGj
∑

k=min{δLj ,δGj}+1

max{δLj ,δGj}
∑

i=k−min{δLj ,δGj}

Cik,

where Cik = AiBk−i, we obtain the likelihood:

L(G | λL, λG) =
ℓ
∏

j=0





min{δLj ,δGj}
∑

k=0

k
∑

i=0

Dik +

δLj+δGj
∑

k=min{δLj ,δGj}+1

max{δLj ,δGj}
∑

i=k−min{δLj ,δGj}

Dik



 ,

(4.12)

where Dik =
(

δLj

i

)(

δGj

k−i

)

(−1)(δGj+δLj−k)φ
(

λL(nLj − i) + λG(N−k+i)
N

)

and φ(θ) =

E
(

e−θI
)

is the moment generating function for I. Like in the homogeneous

case, the two formulas given in 4.11 and 4.12 are valid for every appropriate

random graph that contains the required local and global contact information,

independently of the method the graph is constructed. Once a graph of this

kind has been obtained we can proceed with an appropriate MCMC algorithm

in order to explore the posterior density of interest. In the following section we

describe the algorithm in detail.

4.4 Markov chain Monte Carlo algorithm

The posterior density of interest can be obtained using Bayes’ Theorem since

it is proportional to the product of the likelihood and the prior. We assume

independent prior distributions for each parameter. Let us denote by Ĩ the

ℓ-dimensional vector with the infectious periods of the ℓ ultimately infected

individuals. Then the posterior is given by

π(λL, λG,G, κ, Ĩ | {nij}) ∝ π({nij} | λL, λG,G, κ, Ĩ)π(G | λL, λG, κ, Ĩ)

π(λL)π(λG)π(κ)π(Ĩ), (4.13)
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where

π({nij} | λL, λG,G, κ, Ĩ) = 1l{E}Pr(ω),

with ω being the event that there are no links from the ℓ ultimately infec-

tived individuals to the remaining N − ℓ individuals of the population and

E denoting the event that the digraph G agrees with the data {nij}. Hence,

π(G | λL, λG, κ, Ĩ)Pr(ω) essentially represents the likelihood, since we sample

the random graph G conditional on the data. In the homogeneous case (4.13)

reduces to

π(λ,G, Ĩ | ℓ) ∝ π(ℓ | λ,G, Ĩ)π(G | λ, Ĩ)π(λ)π(Ĩ). (4.14)

Here π(ℓ | λ,G, Ĩ) = 1l{E}Pr(ω) and the likelihood can be evaluated by L(G |
λ, Ĩ) = π(G | λ, Ĩ)Pr(ω). We now proceed to the corresponding MCMC algo-

rithms that provide us with approximate samples from the posterior densities

of interest.

4.4.1 The Independence Sampler

Generalised Stochastic Epidemic

We use a single component Metropolis-Hastings algorithm in which the pa-

rameters λ, G and α are updated in one block as follows. We first sample the

proposed values for (λ, α), say (λ∗, α∗) from a Gaussian random walk proposal.

If λ∗ (or α∗) is negative then the sample is rejected since it has likelihood 0. Oth-

erwise, we proceed to sample the proposed graph G∗ according to the method

described in section 4.3.2 where the probability mass function q(G∗ | λ∗, α∗) was

derived. The proposed new parameter vector is then accepted with probability

L(G∗ | λ∗)π(λ∗)q(G | λ, α)

L(G | λ)π(λ)q(G∗ | λ∗, α∗)
∧ 1.
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Two level mixing model

In this algorithm we update the parameters in two blocks. One block consists

of the two infection rates λL and λG, while at the second block of each sweep

of the algorithm we update the random graph G, the initial infective κ and the

vector with the infectious periods Ĩ. We use a discrete uniform over {1, . . . , ℓ}
prior for κ, we assign the distribution of the infectious periods Ĩ and we denote

the prior density|mass function with π().

Sampling G, κ and Ĩ: We propose new values for κ and Ĩ sampling from

their prior distribution. Let us denote with κ∗ the proposed initial infective

and with Ĩ∗ the proposed infectious periods. Based on κ∗ and Ĩ∗ we sample

the proposed graph G∗. The new samples are then accepted with probability

L(G∗ | λL, λG, κ∗, Ĩ∗)π(λL)π(λG)π(κ∗)π(Ĩ∗)q(G)q(κ)q(Ĩ)

L(G | λL, λG, κ, Ĩ)π(λL)π(λG)π(κ)π(Ĩ)q(G∗)q(κ∗)q(Ĩ∗)
∧ 1.

Note that π(κ), π(κ∗), π(Ĩ) and π(Ĩ∗) vanish from the acceptance probability

since they only enter as the ratio π(κ∗)
π(κ)

for κ and π(Ĩ∗)

π(Ĩ)
for the infectious periods.

The acceptance probability is then:

L(G∗ | λL, λG, κ∗, Ĩ∗)q(G | λL, λG, κ, Ĩ)

L(G | λL, λG, κ, Ĩ)q(G∗ | λL, λG, κ∗, Ĩ∗)
∧ 1. (4.15)

Sampling λL and λG: We use a bivariate normal proposal based around

the current value (λL, λG). If one of the proposed values λ∗
L or λ∗

G is negative

the sample is rejected with probability one. Otherwise, we calculate the new

likelihood π(G | λ∗
L, λ∗

G, κ, Ĩ) based on the current graph G and the current κ

and Ĩ. The proposed sample (λ∗
G, λ∗

G) is then accepted with probability

L(G | λ∗
L, λ∗

G, κ, Ĩ)π(λ∗
L)π(λ∗

G)

L(G | λL, λG, κ, Ĩ)π(λL)π(λG)
∧ 1.

Note that q(λL, λG) = q(λ∗
L, λ∗

G) as the proposal is symmetric and hence it

does not appear in the ratio either. Note also that the covariance matrix of the
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bivariate normal proposal for λL and λG is the only “tuning” parameter for the

algorithm.

4.4.2 The Birth Death Sampler

The approach that appears to perform most efficiently in this algorithm is to

update the model parameters in three blocks as follows.

Updating the Infection rates

The updates of the infection rates were all based on Gaussian random walk

proposals constrained on the positive real line like in chapters 2 and 3. Hence,

a negative proposed value λ∗ is rejected with probability 1. A positive λ∗ is

accepted with probability

L(G | λ∗, Ĩ)π(λ∗)

L(G | λ, Ĩ)π(λ∗)
∧ 1, (4.16)

where Ĩ denotes the vector of the infectious periods. We update the infection

rates in the two level mixing model similarly, and the acceptance probabil-

ity is again the likelihood ratio multiplied by the ratio of the priors over the

parameters to be updated:

L(G | λ∗
L, λ∗

G, Ĩ)π(λ∗
L)π(λ∗

G)

L(G | λL, λG, Ĩ)π(λL)π(λG)
∧ 1. (4.17)

We shall now describe the updates of the infectious periods when these are

introduced as extra model parameters.

Updating the Infectious Periods

Since we have final size data we need to make specific distributional assump-

tions about the infectious periods. In a Bayesian framework where the infec-

tious periods appear as model parameters this is equivalent to strong prior
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assumptions. In this particular case, sampling from the priors is computation-

ally convenient. This is not necessary but it appears to be a plausible choice

when only final outcome data are available. Then the probability of accepting

a proposed infectious period vector Ĩ∗ reduces to the likelihood ratio:

L(G | λL, λG, Ĩ∗)

L(G | λL, λG, Ĩ)
∧ 1. (4.18)

Note that for complex stochastic systems, like the epidemic with two levels of

mixing, the likelihood is complicated and proposing the update of the whole

vector can be too ambitious in that it frequently has a very small acceptance

probability. Updating the individual infectious periods might be more efficient

in this case and this approach corresponds to a single-site update in a Gibbs

sampler. Alternatively the infectious periods could be updated in small blocks,

e.g. ten at a time.

Updating the Random Graph

Here we use the acceptance probabilities that were described in the construction

of the random graph to obtain the Metropolis-Hastings acceptance probabili-

ties. We shall describe each proposed move separately.

Generalised Stochastic Epidemic

Adding an edge It is straightforward to obtain the probability of moving

from a graph G with
∑ℓ

j=1 δj directed links to a graph G ′ with
∑ℓ

j=1 δj +1 edges.

The probability of accepting this move is α ∧ 1 where:

α =
L(G ′ | λ, Ĩ)q(G | G ′)

L(G | λ, Ĩ)q(G ′ | G)
=

(1 − exp(−λIj))
(

ℓ(ℓ − 1) −
∑ℓ

j=1 δj

)

exp(−λIj)
(

∑ℓ
j=1 δj + 1

) . (4.19)
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The likelihood ratio
1−exp(−λIj)

exp(−λIj)
can then be evaluated by exp(λIj) − 1 when a

realisation of the infectious period is available. When the infectious periods are

not available we have to evaluate the likelihood ratio using (4.7).

Deleting an edge The calculation for moving from a graph G with
∑ℓ

j=1 δj directed links to a graph G ′ with
∑ℓ

j=1 δj −1 edges is equivalent to the

deletion case and the proposed graph is accepted with probability:

∑ℓ
j=1 δj

(

ℓ(ℓ − 1) −
∑ℓ

j=1 δj + 1
)

(exp(λIj) − 1)
∧ 1. (4.20)

Again, in the case that the infectious periods are not available we have to

evaluate the likelihood ratio using (4.7). We shall now describe the graph

updates in the two level mixing model.

Two level mixing model

Adding a local edge In this case we wish to obtain the probability

of moving from a graph G with
∑ℓ

j=1 δLj directed links to a graph G ′ with
∑ℓ

j=1 δLj + 1 edges. Using the same arguments as in the generalised stochastic

epidemic it is straightforward to see that the probability of accepting this move

is α ∧ 1 where:

α =
π(G ′ | λL, λG, Ĩ)q(G | G ′)

π(G | λL, λG, Ĩ)q(G ′ | G)
=

(1 − exp(−λLIj))
(

∑

j:nLj≥2 nLj(nLj − 1) −∑ℓ
j=1 δLj

)

(exp(−λLIj))
((

∑

j:nLj≥2 nLj(nLj − 1) −∑ℓ
j=1 δLj

)

+ 1
) .

(4.21)

The evaluation of the likelihood ratio
1−exp(−λLIj)

exp(−λLIj)
proceeds as above.

Adding a global edge Here we wish to obtain the probability of moving

from a graph G with
∑ℓ

j=1 δGj directed links to a graph G ′ with
∑ℓ

j=1 δGj + 1
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edges. Similarly to the local case the probability of accepting this move is α∧1

where:

α =
(1 − exp(−λGIj/N))

(

ℓ(ℓ − 1) −
∑ℓ

j=1 δGj

)

(exp(−λGIj/N))
((

∑ℓ
j=1 δGj

)

+ 1
) . (4.22)

Deleting an edge

Deleting a local edge In this case we wish to obtain the probability

of moving from a graph G with
∑ℓ

j=1 δLj directed links to a graph G ′ with
∑ℓ

j=1 δLj − 1 edges. Then that the probability of accepting this move is α ∧ 1

where:

α =

(

(exp(−λLIj))
∑

j:nLj≥2 nLj(nLj − 1) −
∑ℓ

j=1 δLj

)

(1 − exp(−λLIj))
((

∑

j:nLj≥2 nLj(nLj − 1) −∑ℓ
j=1 δLj

)

+ 1
) . (4.23)

Deleting a global edge Here we wish to obtain the probability of mov-

ing from a graph G with
∑ℓ

j=1 δGj directed links to a graph G ′ with
∑ℓ

j=1 δGj−1

edges. The probability of accepting this move is α ∧ 1 where:

α =

(

(exp(−λGIj/N))
∑ℓ

j=1 δGj

)

(1 − exp(−λGIj/N))
((

ℓ(ℓ − 1) −∑ℓ
j=1 δGj

)

+ 1
) . (4.24)

Again, when the infectious periods are not available we have to evaluate the

likelihood ratio using (4.12).

4.5 Application to Data

The methodology described thus far was applied to a number of different

datasets in order to illustrate the methods and to evaluate the accuracy of

the algorithms where possible. We shall present the results from the birth-

death sampler. The mixing of the independence sampler appears to vary and
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it can be particularly slow. In a number of runs it has given very similar re-

sults to the birth-death algorithm, especially for the estimation of the infection

rates. However, looking at the infection rates only can be misleading. More

specifically, the convergence of the graph chain can be problematic and indeed

extremely slow. The graph appears to remain in a reasonable (and valid) con-

figuration for an exceedingly large number of iterations, see for example figure

(4.1) for the posterior of the total number of links when the algorithm was

applied to the smallpox dataset used in the second chapter. Since 30 out of 120

individuals are getting ultimately infected we have a minimum of 29 links that

can result in valid configurations. This particular algorithm had a sampling

gap of 1000 and despite the extended thinning it is clear that the output is

unsatisfactory, the main reason being that the graph does not move sufficiently

around its posterior space, despite being in the “high posterior probability re-

gion”. Hence, it is easy to obtain good results for the infection rates under the

false impression that the Markov chain mixes well and integrated out the pos-

terior space. The convergence problems seem to occur because with both the

binomial and the truncated Poisson proposals the actual proposal probabilities

appear to be badly calibrated with respect to the high posterior density region.

It is well known that a badly calibrated independence sampler can perform

very poorly and indeed not being geometrically ergodic, e.g. Roberts (1996)

p.55.

We illustrate in this section the use of the birth-death algorithm by applying

it to datasets from influenza epidemics as well as an artificial dataset, and we

describe the novel posterior information that can be obtained with our methods.

In the following section we shall assess the precision of our approach in two

distinct ways.
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Figure 4.1: The output for the total number of links for the smallpox dataset.

4.5.1 Influenza Outbreak Data

The Data

We apply the above methodology to the influenza outbreak data described

in Table 3.1. This dataset consists of the observed distribution of influenza

A(H3N2) infections in the 1977-1978 and 1980-1981 combined epidemics in

Tecumseh, Michigan as described in chapter 3, see Addy et al. (1991) and the

references therein for details. The actual household sizes go up to 7 but we use

the dataset in Table 3.1 for comparison with the analysis of chapter 3 presented

also in Demiris and O’Neill (2003). We shall analyse the two separate datasets

as well as the complete (up to size 7) dataset in the following subsection.
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Parameter

λL λG δ̂L δ̂G δ̂ R∗

Mean 0.045 0.199 0.352 0.806 1.156 1.156

Median 0.045 0.198 0.352 0.804 1.156 1.150

S. dev. 0.007 0.018 0.033 0.029 0.028 0.118

95% C. I. (0.03,0.06) (0.16,0.24) (0.28,0.41) (0.75,0.87) (1.10,1.22) (0.94,1.40)

Table 4.1: Posterior parameter summaries for the Influenza dataset with house-

holds sizes truncated to 5 and with a Gamma distributed infectious period.

0.125 0.150 0.175 0.200 0.225 0.250 0.275
0
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Uniform Prior
Gamma Prior

Figure 4.2: The posterior density of λG for the two different priors.
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Implementation

In accordance with all the algorithms in this thesis, this MCMC algorithm was

implemented using Fortran 90 in a mainframe computer. Each iteration (or

cycle) of the algorithm consists of sampling each one of the parameters once,

no repeated sampling was utilised in the algorithms presented here. The burn-

in we used for the results presented here was 2 × 105 for datasets with final

size up to 300 and 5 × 105 when the number of ultimately infected individuals

in the dataset under study was larger than 300. All the results presented here

are from a sample size of 104 with a sampling gap of 100. The actual run

time was approximately one hour for a dataset with a final size of 250. We

used the same prior as before, namely a Gamma with mean 1 and variance

10000. All the algorithms were also tested with three more Gamma priors with

identical variance and means equal to 10, 100 and 1000 respectively, as well as

a Uniform(0.001,10000) distribution. Again, this prior restricts the posterior

state-space but for realistic datasets this is never a problem. The results were

virtually identical to the numbers presented here and for illustration we show

the output of the posterior distribution of λG for the Gamma with mean 1

and the Uniform prior in figure (4.2). To summarise, the output appears to be

relatively unaffected by the choice of the prior distribution, at least when we

used a large prior variance.

The convergence of the Markov chains was tested informally with plots of

the “trace” of the chain and the burn-in we used seems to be sufficient. Ad-

ditionally, we plotted the autocorrelation functions from the all the “thinned”

chains and the autocorrelation reduces drastically for lags larger than 3 or 4.

In fact, we found that the ACF plots are more informative for the “exact”

behaviour of the algorithm, although a combination of both plots was always

used. An example of this kind is presented in figure 4.3 where we plotted
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Figure 4.3: The posterior autocorrelation function of λG.

the autocorrelation function of λG. Additionally, we provide trace plots from

the posterior densities of λL, λG and the total number of local and global out-

degrees in figures 4.4, 4.5, 4.6 and 4.7 respectively. Thus, the Markov chains for

the birth-death algorithms appear to mix reasonably well. In general conver-

gence diagnostics are an unsolved problem, unless one can find a way to perform

perfect simulation (Propp and Wilson (1996)). However, it is relatively easy

to (informally) check the convergence of these algorithms since we only have

a small number of parameters. Finally, we used the same distributional as-

sumptions, with respect to the infectious period, with Addy et al. (1991) and

Demiris and O’Neill (2004) namely, a Gamma distribution with mean 4.1 that

is the sum of two independent exponential random variables, with mean 2.05.
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Figure 4.4: Trace of the posterior density of λL from the Random Graph algo-

rithm.

Results

The results are summarised in Table 4.1. It is appropriate to compare the

outcome with the results in Table 3.2 since we also assume here that the data

we observe account for the whole population or, in the terminology of chapter

3, α = 1. We shall explore the case that the data we observe are a random

sample of the population in the sequel. The key observation here is that the

two algorithms give very similar results with respect to point estimation but

the approximate approach that utilises the final severity underestimates the

variance of λG. A possible explanation lies in the fact that the approximate

method rejects the proposed (λL,λG) samples that result in R∗ > 1. It is

actually trivial to obtain from the posterior distribution of R∗ that Pr(R∗ <

1) ≈ 0.08. However, it is reassuring that both methods agree with respect to
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Figure 4.5: Trace of the posterior density of λG from the Random Graph algo-

rithm.

the location estimates particularly because the variance underestimation is not

large.

The comparison of the two approaches can probably best be summarised

in the figures 4.8 and 4.9. In particular, it is clear from figure 4.9 that the ap-

proach based on approximating the likelihood using the final severity performs

reasonably well with respect to point estimation but it is not as satisfactory

in the estimation of dispersion measures for R∗. Note that the output from

the severity algorithm in figure (4.9) appears to give non-zero posterior sup-

port below unity but this is an S-Plus artifact since the actual minimum of the

posterior sample of R∗ was slightly above 1. Note also that in this particular

case the point estimate of R∗ is affected be the extent to which the R∗ > 1

assumption holds but in general the two approaches result in similar outcomes
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Figure 4.6: Trace of the posterior density of the total number of local out-

degrees.

with respect to the location estimates. It is also worth mentioning that the

underestimation of the variability is “transferred” to λG only since, as can be

seen from figure 4.8, the two posterior densities are very close with respect to

λL. Also the plot of the posterior density of λG is identical to the figure 4.9

but located around 0.2 instead of 1.15. The same findings were maintained

for a number of different datasets, including the “perfect” data that will be

presented later in the evaluation of our method.

Another interesting remark is that the larger posterior variance of λG (com-

pared to the final severity approach) reduces the posterior correlation of λL and

λG. This appears to be natural since as the variability of λG increases, so does

the number of (λL,λG) combinations that can result in a particular dataset.

For the Tecumseh Influenza data of households up to size 5, the posterior cor-
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Figure 4.7: Trace of the posterior density of the total number of global out-

degrees.

relation was ρ(λL, λG) = −0.0124. The joint distribution of λL,λG can be seen

from the scatterplot in figure 4.10.

A second interesting outcome is the “decomposition” of the local and

global amount of infection as obtained from the mean local and global out-

degrees. These are obtained by dividing each sample of the total number

of local and global links by the final size i.e., δ̂L =
(

∑ℓ
j=1 δL(j)

)

/ℓ and

δ̂G =
(

∑ℓ
j=1 δG(j)

)

/ℓ. The posterior distribution of the mean local and global

degree for the Tecumseh influenza data is shown in figure 4.11.

We can obtain the total mean number of links emanating from each ulti-

mately infected individual, by simply adding the separate levels: δ̂ = δ̂L + δ̂G.
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Figure 4.8: The posterior density of λL from the Random Graph and the

Severity algorithms.

Susceptibles per household

No. infected 1 2 3 4 5 6 7

0 66 87 25 22 4 0 0

1 13 14 15 9 4 0 0

2 4 4 9 2 1 0

3 4 3 1 1 1

4 1 1 0 0

5 0 0 0

6 0 0

7 0

Total 79 105 48 44 12 1

Table 4.2: The 1977-1978 Tecumseh influenza data
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Figure 4.9: The posterior density of R∗ from the Random Graph and the

Severity algorithms.

4.5.2 Separate and Combined Influenza Data

In this section we shall analyse the individual influenza data. These datasets

were kindly provided by Owen Lyne. Addy et al. (1991) truncated the com-

bined (both the 1978 and 1981 datasets added together) dataset up to house-

holds of size 5 due to numerical problems with larger household sizes. Our

approach can cope easily with large household sizes. The dataset from the

1977-1978 outbreak is presented in Table 4.2 while the 1980-1981 outbreak is

summarised in Table 4.3.

The results presented are all with the same infectious period, with E(I) =

4.1. The posterior summaries for the 1978, 1981 and the combined 1978 and

1981 datasets are presented in Tables 4.4, 4.5 and 4.6 respectively. Note that in

the analysis of the combined data set we allow global mixing between individu-
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Figure 4.10: Scatterplot of λL and λG for the Tecumseh data when the infectious

period follows a Gamma distribution.

Susceptibles per household

No. infected 1 2 3 4 5 6 7

0 44 62 47 38 9 3 2

1 10 13 8 11 5 3 0

2 9 2 7 3 0 0

3 3 5 1 0 0

4 1 0 0 0

5 1 0 0

6 0 0

7 0

Total 79 105 48 44 12 1

Table 4.3: The 1980-1981 Tecumseh influenza data
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Figure 4.11: The Posterior distribution of the mean local and global degree for

the Tecumseh data.

Parameter

λL λG δ̂L δ̂G δ̂ R∗

Mean 0.039 0.197 0.344 0.797 1.140 1.088

Median 0.039 0.196 0.346 0.797 1.135 1.085

S. dev. 0.007 0.020 0.043 0.038 0.036 0.121

95% C. I. (0.03,0.05) (0.14,0.24) (0.25,0.43) (0.73,0.88) (1.07,1.22) (0.86,1.34)

Table 4.4: Posterior parameter summaries for the full 1977-1978 Influenza

dataset.
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Parameter

λL λG δ̂L δ̂G δ̂ R∗

Mean 0.047 0.185 0.399 0.748 1.167 1.161

Median 0.046 0.184 0.398 0.742 1.168 1.156

S. dev. 0.008 0.020 0.042 0.033 0.037 0.138

95% C. I. (0.03,0.06) (0.14,0.23) (0.32,0.49) (0.68,0.82) (1.09,1.24) (0.90,1.45)

Table 4.5: Posterior parameter summaries for the full 1980-1981 Influenza

dataset.

Parameter

λL λG δ̂L δ̂G δ̂ R∗

Mean 0.043 0.189 0.370 0.772 1.143 1.114

Median 0.042 0.189 0.371 0.770 1.142 1.111

S. dev. 0.006 0.015 0.030 0.025 0.025 0.092

95% C. I. (0.03,0.06) (0.16,0.22) (0.31,0.43) (0.72,0.83) (1.09,1.20) (0.94,1.31)

Table 4.6: Posterior parameter summaries for the combined 1977-1978 and

1980-1981 Influenza datasets with household sizes up to 7.
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Figure 4.12: Posterior Density of λG for the two separate and the combined

Tecumseh outbreaks.

als in different epidemics. This is only for illustrative purposes and answers the

question posed by Addy et al. (1991). A more careful analysis would not allow

global links between individuals in different epidemics. Additional information

with respect to the infection spread and mixing patterns in the individual data

sets can also be incorporated into the algorithm.

The two key observations can be summarised with respect to the posterior

location and the posterior dispersion of the parameters. In particular, the 1978

epidemic resulted in relatively (to the 1981 outbreak) large global infection

rate and smaller local rate. However, the threshold parameter R∗ and the

mean out-degree δ̂ are relatively close as we would expect from the fact that

the actual proportions infected are close, despite the different pattern of the

disease spread. Hence, it appears reasonable to consider the combination of the
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Figure 4.13: Posterior Density of λL for the two separate and the combined

Tecumseh outbreaks.

two datasets which intuitively provides an average as can be seen from figures

4.12, 4.13 and 4.14 for λG, λL and R∗ respectively. The contributions of the

two datasets to the results of the combined dataset are approximately equal

since they have roughly the same size.

The second observation is related to the variability of the posterior distri-

bution. It is clear from figures 4.12 and 4.13 as well as the Tables 4.4, 4.5 and

4.6 that the combined dataset, which is approximately double the size of the in-

dividual sets, results in posteriors that have smaller variance. This is of course

as expected since we would expect that more data provide us with more infor-

mation and thus with greater posterior precision. However, this observation is

related to a practical problem of great interest in epidemics. In particular, it is

often difficult (and expensive) to create studies of disease spread over a popu-
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Figure 4.14: Posterior Density of R∗ for the two separate and the combined

Tecumseh outbreaks.

Susceptibles per household

No. infected 1 2 3 4

0 9 9 7 5

1 2 2 2 2

2 1 1 1

3 1 1

4 0

Total 11 12 11 9

Table 4.7: The Artificial dataset
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Figure 4.15: Posterior Density of λG for the two artificial datasets. We denote

with Data10 the dataset where all the values are multiplied by 10.

lation. In contrast, it may be feasible to study the epidemic propagation over

a random sample, say α × 100%, of the population. This issue was addressed

in chapter 3 under the assumption that the whole population behaves (with

respect to global infections) as our sample. Here we shall present an empirical

approach to the solution of a related problem. The method we describe based

on the random graph representation becomes slower as the final size gets large.

A practically useful alternative in the case of very large datasets consists of

analysing a fraction of the actual data and we shall explore the consequences

of this approach in the following subsection.
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Figure 4.16: Posterior Density of λL for the two artificial datasets. We denote

with Data10 the dataset where all the values are multiplied by 10.

4.5.3 Artificial Data

Based on the above observation we have created a number of artificial datasets.

A dataset of this kind is presented in Table 4.7. Consequently, we have analysed

this dataset, say Data1, and another dataset where we multiplied all the data

values by 10. This experiment was carried out in order to evaluate the effect on

the posterior estimates when observing a sample of the population. The effect

of observing a sample with α = 0.1 is visualised in figures 4.15 and 4.16 for λG

and λL respectively. It is clear from the figures that the location estimates are

very close while again the posterior dispersion of the larger dataset is smaller.

Quantitatively the posterior point estimates of λL and λG agree in both cases

up to the third decimal point while the posterior variances for the large data

set are approximately one tenth those of the smaller data set. This certainly is
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not surprising. In fact it seems reasonable when we consider a simple example.

In particular, we know from standard classical statistics that the variance of

the mean of an i.i.d. sample is 1
α

times larger than the standard error of the

mean of an i.i.d. sample that is 1
α

larger than the original sample. Additionally,

under regularity conditions that we cannot verify in our approach, the sample

mean and the maximum likelihood estimator (MLE) converge to the true value.

There is a Bayesian equivalent to this approach, see for example the appendix

of Gelman et al. (1995) and the references therein. The basic result of large-

sample Bayesian inference is that when the prior influence diminishes (which

is the case for “weak” priors or “strong” data) the posterior distribution of the

parameter vector converges to a multivariate normal centred (if the likelihood

model is correct) to the true parameter value θ0. The asymptotic posterior

variance can be shown to be (nJ(θ0))
−1 where J(θ0) is the Fisher information

J(θ0) = E

[

(

d log L(x | θ)

dθ

)2
∣

∣

∣

∣

∣

θ0

]

= −E

[

(

d2 log L(x | θ)

dθ2

)∣

∣

∣

∣

θ0

]

,

and L(x | θ) is the likelihood. Hence, after a number of implicit and explicit

assumptions, it does seem plausible that the posterior variance of a dataset that

consists of a random α×100% sample of the population under study is 1
α

times

larger than the variance that we would obtain if we were collecting data over the

whole population. We emphasize that all these results hold under assumptions

that we cannot verify but it is relatively easy to see why the empirical results

hold in simpler settings. These findings remain when we apply our algorithm

to different datasets. Hence, when we possess a huge dataset and we analyse

a fraction of it it is probably reasonable to rescale the results based on the

fraction we used. Additionally, if there is a good reason to believe that a larger

part of the population behaves locally and globally (as opposed to globally only

in chapter 3) like in our sample, then the posterior distribution of λG and λL

may be appropriately rescaled as well.
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Parameter

λL λG

Mean 0.0593 0.2291

Median 0.0594 0.2292

S. dev. 0.0065 0.0134

95% C. I. (0.046,0.072) (0.202,0.254)

Table 4.8: Posterior parameter summaries for the perfect data divided by 10

and rounded to the closest integer. The true values are λL = 0.06 and λG =

0.23.

4.6 Evaluation using Exact Results

We shall now attempt to assess the accuracy of our algorithm using two different

tools. Firstly we shall apply our results to the “perfect” dataset presented in

Table 3.9. Subsequently, we shall apply our algorithm to the homogeneous

case i.e., the generalised stochastic epidemic, for which we have exact inference

results based on the multiple precision solution of the triangular equations

presented in chapter 2.

4.6.1 Perfect Data

A slight restriction of the methods presented in this chapter is that the algo-

rithm is designed for data that are integers. This of course is never a problem for

real data analysis but for a computational exercise of the kind that we consider

here it does introduce a small bias. In particular, the perfect dataset from Table

3.9 was divided by 10 and was rounded to the closest integer. Hence we would

expect a small deviation from the exact λ’s. Indeed, the results summarised in

Table 4.8 show that the point estimates of λL and λG are reassuringly close to
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Threshold

Triangular Random Graph

Mean 1.218 1.221

Median 1.193 1.195

S. dev. 0.271 0.274

95% C. I. (0.767,1.825) (0.767,1.835)

Table 4.9: Posterior parameter summaries for the smallpox data.

the expected values.

4.6.2 Homogeneous Case

We applied the birth-death algorithm to the smallpox data that we have also

used in the second chapter where 30 out of 120 individuals of a Nigerian village

are getting ultimately infected. The application to a subcase of the two level

mixing model, the generalised stochastic epidemic, has the advantage that we

can compare the outcome with “exact” results that we derived in the second

chapter using multiple precision arithmetic for the solution of the final size

equations. The actual results for the basic reproduction number R0 are pre-

sented in Table 4.9 and it is obvious that there is very close agreement between

the two methods. An easier way to evaluate the accuracy of the random graph

method is the visualisation of the two outcomes and the two posteriors are

almost identical as can be seen from figure 4.17. Hence, it appears that the

results obtained using the random graph method are practically equivalent to

the exact ones.
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Figure 4.17: Posterior Density of R0 using the random graph algorithm and the

algorithm based on the multiple precision solution of the triangular equations.
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4.7 Discussion

We have proposed methods for Bayesian inference for stochastic epidemic mod-

els using random graphs. The approach adopted in this chapter overcomes a

number of previously unsolved problems in the area of statistical inference for

stochastic epidemics. Additionally, the methodology can be extended to more

complex, and realistic, models.

The methods presented in this chapter are related to methods used in sta-

tistical genetics, e.g. Stephens and Donnelly (2000). In particular, there is a

number of similarities from the inverse problem perspective. Both problems

are concerned with statistical inference for a stochastic process with complex

structure when only the final state of the process is actually observed. Thus,

using a sampling based approach, the underlying stochastic model is simulated

conditionally on the data. Inference then proceeds according to these simu-

lated realisations of the stochastic process of interest. However, the actual

processes, despite a large number of similarities have a number of distinct fea-

tures. Specifically, a coalescent looks like a tree while an epidemic can have

links “backwards”. Of course these edges will not result in infection, since these

individuals have previously been infected and are removed during the future

generations. However, the model is defined this way and the random graph

should permit behaviour of this kind for (among others) the correct derivation

of the likelihood. Additionally, the probabilistic analysis of epidemic models

can reveal multiple levels of dependence, particularly when the outbreak has

taken off. In contrast, in the coalescent there is mutation, a feature of the

process that is of main interest in genetics. In practice this fact makes the

analysis of the underlying process rather involved. In summary, the stochastic

processes used to describe the mechanism that underlies disease propagation

can be thought of as similar in nature to the coalescent that has been the ob-
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ject of intense interest in statistical genetics recently. However, there remain

a large number of distinct features that create the need for development of

methodology that is suitably tailored towards the characteristics of epidemics.

An appealing characteristic of the methods described in this chapter, com-

pared to the final severity approach of chapter 3, lies in the fact that the method

is unconditional (on R∗ > 1) and does not involve approximations. It is quite

common in statistical methods for the analysis of stochastic processes that dis-

play threshold behaviour (like epidemics and branching processes) to condition

upon non-extinction. In this chapter we have presented an alternative approach

that may be extended to the analysis of different stochastic processes. A sec-

ond feature of the random graph approach is that part of the output contains

a decomposition of the local and global infections. This information may be of

use from the applied viewpoint and further exploration of this issue is required.

The method we used can incorporate very general assumptions about the

distribution of the infectious period. However, when only final size data are

available there is very limited information from the statistical inference per-

spective (Rhodes et al. (1996)). In practice, as we have seen in both chapter 2

and chapter 4, it is only the variability of the estimates that is slightly affected.

Hence, in extensions of the methodology presented here to more complex senar-

ios it might be suitable to perform the initial analysis with a model with a

constant infectious period since it might be easier to evaluate the augmented

likelihood. Additionally, a constant infectious period results in simpler, and

typically more numerically robust algorithms since in that case the number of

links becomes a sufficient statistic.

Another attractive feature of the method presented in this chapter is its

generality. In particular, the illustration was obtained using the two-level-

mixing epidemic but extensions to three or more levels of mixing seem rel-
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atively straightforward. Additionally, it might be of theoretical and applied

interest to incorporate alternative ways of disease propagation like spread in a

population with overlapping groups (Ball and Neal (2002)), additional spatial

spread or multitype models (Ball and Lyne (2001)) that allow for the inclusion

of covariates. Hence, the effort should go to the collection (and analysis) of

more detailed data that can provide us with new quantitative insights on the

transmission mechanism.

An alternative development could be the extension of our method to in-

corporate random population structures like the network models that received

a considerable amount of attention during the last few years, see for example

the review by Albert and Barabasi (2002). This approach could be tackled in

two ways. One could obtain the (network) community structure using e.g. the

algorithm of Girwan and Newman (2002). Then, it is natural to extend our

methods to the (essentially fixed after the initial analysis) resulting population

structure. A second, more challenging, approach is the simultaneous estimation

of the population structure and the infection rates. Both approaches appear to

deserve further exploration.
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Chapter 5

Discussion and Future Work

In this thesis we presented methods of Bayesian statistical inference for stochas-

tic epidemic models. The purpose of this analysis is twofold. We analysed

stochastic models which describe the actual disease propagation. Hence these

models can be used for a variety of different diseases. Additionally, we de-

veloped general methodology that can be extended to more elaborate, and

realistic, epidemics.

In the first chapter we introduced the stochastic epidemic models of in-

terest and Bayesian statistical methods as well as the modern computational

tools that are necessary for the implementation of the Bayesian paradigm. Ad-

ditionally, we reviewed existing methods of statistical inference for epidemic

models.

In the second chapter we developed algorithms that use multiple preci-

sion arithmetic for the calculation of the final size probabilities. This novel

algorithm allows us to assess the accuracy of the two most commonly used

asymptotic results for epidemics, the branching process approximation for the

initial stages of the epidemic and the normal approximation for the distribution

of the final size in the event of a major epidemic. Our algorithm can also be
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used for the evaluation of a third asymptotic theorem, the Poisson approxi-

mation for the number of individuals who ultimately escape infection, see Ball

(1986) and Lefèvre and Utev (1995). We also used the final size distribution for

statistical inference with respect to the threshold parameter R0. Our approach

is exact and it does not, in contrast with Rida (1991), assume that the epidemic

is above threshold or that there is a large number of individuals.

The generalised stochastic epidemic that is the object of interest in the

second chapter assumes that the population is homogeneously mixing. How-

ever, real life populations display particularly complex structures. Thus, we

proceeded in the third chapter to develop methods of statistical inference for

an epidemic model with two levels of mixing where, in a population that is

partitioned into groups, an individual is allowed to have both within-group

and population-wide infectious contacts. Assuming that the epidemic is above

threshold and that we have a large number of groups, we approximated the

likelihood using a previously derived central limit theorem for the final severity

of the epidemic. We showed that previously derived inferences for epidemics

among households arise as special cases in our framework and we discuss the

limitations and the implicit assumptions of the different approaches. This ap-

proach can be extended to other variants of the basic model like the multitype

case (Ball and Lyne (2001)) and models with overlapping subgroups (Ball and

Neal (2002)). However, extensions of this kind require the development of ap-

propriate asymptotic results (like those given in Ball and Lyne (2001)) in order

to conduct approximate inference.

In the fourth chapter of this thesis we imputed detailed information about

the infection spread in the form of a random graph. This approach is appealing

for a number of reasons. The method is not approximate in the sense that we do

not require an infinite number of households since we do not utilise asymptotic
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results. Also, we do not condition upon non-extinction as is commonly assumed

in stochastic and deterministic epidemic processes. Additionally, the output

of the MCMC algorithm contains posterior information about the individual

local and global contacts. Hence, we succeeded in achieving a decomposition

that has been impossible to obtain before. This extra information can be

particularly useful for applications like the design and assessment of different

vaccination strategies. In contrast to our approximate method, the random

graph approach can be easily extended to complex population structures like

overlapping groups with any number of individuals residing in the part that

the groups overlap. Additionally it would be particularly interesting to extend

our methods to populations with random structures like the small-world and

scale-free networks that have been the subject of intense interest in statistical

mechanics recently.
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