
Soubeiga, Eric (2003) Development and application of
hyperheuristics to personnel scheduling. PhD thesis,
University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/10048/1/EricsPhDthesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33563704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

DEVELOPMENT AND APPLICATION

OF HYPERHEURISTICS TO

PERSONNEL SCHEDULING

A thesis submitted to the University of Nottingham for

the degree of Doctor of Philosophy

by

Eric Soubeiga: Ingénieur d’Etat, DEA in Operational Research

School of Computer Science and Information Technology

The University of Nottingham

June 10, 2003

2

Abstract

This thesis is concerned with the investigation of hyperheuristic techniques. Hyper-

heuristics are heuristics which choose heuristics in order to solve a given optimisation

problem. In this thesis we investigate and develop a number of hyperheuristic tech-

niques including a hyperheuristic which uses a choice function in order to select which

low-level heuristic to apply at each decision point. We demonstrate the effective-

ness of our hyperheuristics by means of three personnel scheduling problems taken

from the real world. For each application problem, we apply our hyperheuristics

to several instances and compare our results with those of other heuristic methods.

For all problems, the choice function hyperheuristic appears to be superior to other

hyperheuristics considered. It also produces results competitive with those obtained

using other sophisticated means. It is hoped that

• hyperheuristics can produce solutions of good quality, often competitive with

those of modern heuristic techniques, within a short amount of implementa-

tion and development time, using only simple and easy-to-implement low-level

heuristics.

• hyperheuristics are easily re-usable methods as opposed to some metaheuristic

methods which tend to use extensive problem-specific information in order to

arrive at good solutions.

2

These two latter points constitute the main contributions of this thesis.

Key words: Hyperheuristic, Heuristic, Local Search, Optimisation, Personnel Schedul-

ing.

Acknowledgements

In my opinion, undertaking a PhD is the second biggest commitment after marriage

in a young man’s life. In my case this would not have been possible without the

help of many people. I wish to thank them all for their valuable support.

I would like to thank the University of Nottingham for funding my PhD research.

I started my PhD with Peter Cowling who helped me get funding for it. Graham

Kendall joined Peter soon after in the supervision of my PhD research. I would

like to thank both Doctor Graham Kendall (my principal supervisor) and Professor

Peter Cowling (my external supervisor). I have enjoyed working with both of them

and would like to thank them both for training me to do scientific research. Your

support, help and advice have been very valuable to me.

I would like to thank Professor Edmund Burke for his help, support and profes-

sionalism.

I would also like to thank both administrative and academic members of the

Automated Scheduling, optimisAtion and Planning (ASAP) research group. You

have all contributed to making my PhD work within ASAP an enjoyable experience.

To Professor Gerd Finke for acquainting me with research in the field of combi-

i

ii

natorial optimisation.

To my parents, my two brothers and my sister over in Burkina Faso.

To Dr Helen Ashman for providing me with data for the problem of chapter 7.

To both Dr Kath Dowsland and Dr Uwe Aickelin for providing me with data for

the problem of chapter 8.

Many thanks to you all and may God bless us.

Contents

1 Introduction 1

1.1 Structure of thesis . 6

1.2 Academic papers produced . 7

2 Related work: hyperheuristics 10

2.1 Introduction . 10

2.2 Single-heuristic techniques . 11

2.3 Multiple heuristic or neighbourhood search techniques 15

2.3.1 Without learning . 15

2.3.2 With learning . 18

2.3.3 Adaptive problem solving in AI systems 24

2.4 Conclusion . 27

3 Related work: exact & metaheuristic methods 30

3.1 Introduction . 30

iii

CONTENTS iv

3.2 Exact methods . 31

3.3 Heuristic methods . 33

3.3.1 Point-based methods . 34

3.3.2 Population-based methods . 39

3.4 Conclusion . 45

4 Related work: personnel scheduling 47

4.1 Introduction . 47

4.2 The general personnel scheduling problem 51

4.2.1 Recent surveys . 52

4.2.2 Modelling flexibility in personnel scheduling 55

4.2.3 Additional flexibility using heuristics 60

4.2.4 When theory leads to the development of new algorithms . . . 72

4.2.5 Other exact methods . 75

4.3 Specific applications . 77

4.4 Summary . 80

5 Hyperheuristics for personnel scheduling 84

5.1 Introduction . 84

5.2 Designing hyperheuristics . 86

5.2.1 Level 0: Problem representation 86

CONTENTS v

5.2.2 Level 1: Low-level heuristics 99

5.2.3 Level 2: hyperheuristic (high-level heuristic) 101

5.2.4 Guidelines for designing hyperheuristics 106

5.2.5 Summary . 109

5.3 Hyperheuristics developed . 109

5.3.1 Simple hyperheuristics . 112

5.3.2 A choice function hyperheuristic 114

5.3.3 A simulated annealing hyperheuristic 131

5.4 Summary . 134

6 Application to sales summit scheduling 137

6.1 Introduction . 137

6.2 The sales summit scheduling problem 138

6.2.1 Problem description . 138

6.2.2 Problem formulation . 139

6.3 Experimental study . 142

6.3.1 Problem instances . 142

6.3.2 The low-level heuristics . 146

6.3.3 Simple, simulated-annealing and choice function hyperheuristics147

CONTENTS vi

6.3.4 Effectiveness and learning ability of the choice function hyper-

heuristic . 153

6.3.5 Experiments with a smaller set of low-level heuristics 160

6.3.6 Experiments with a larger set of low-level heuristics 162

6.4 Conclusions . 165

7 Application to Presentation scheduling 169

7.1 Introduction . 169

7.2 Scheduling of project presentations 170

7.2.1 Problem description . 170

7.2.2 Problem formulation . 172

7.3 Experiments . 175

7.4 Conclusions . 183

8 Application to nurse scheduling 186

8.1 Introduction . 186

8.2 The nurse scheduling problem . 187

8.2.1 Problem description . 187

8.2.2 Problem formulation . 188

8.3 Experiments . 194

8.4 Conclusions . 203

CONTENTS vii

9 Conclusions 205

List of Figures

1.1 General hyperheuristic framework . 4

5.1 Design issues for the development of a hyperheuristic 87

5.2 General hyperheuristic framework when dealing with partial solutions 89

5.3 General hyperheuristic framework when dealing with complete solutions 92

5.4 The general framework of hyperheuristics developed 110

5.5 Choice function hyperheuristic framework 127

5.6 Simulated annealing hyperheuristic framework 133

6.1 Interplay between the choice function parameters, for DR 156

8.1 Evolution of Feasibility and Cost (Upper chart) and Feasibility only

(Lower chart) over the number of heuristic calls during the choice

function hyperheuristic search, when applied to instance 49. The

Upper chart goes from heuristic call 2550 to 4500. 201

viii

List of Tables

4.1 Shift Scheduling environments: The scheduling environment in the

second column is given in the following format: (operating hours [hr =

hour] , planning period [min = minute], number of breaks [b = break],

existence of Full Time [FT] and/or Part Time [PT] employees). IP

= Integer Programme, IPS = IP Solver, H = heuristic, imp = implicit. 78

4.2 Days-off Scheduling environments: The scheduling environment in

the second column is given in the following format: (operating hours

[hr = hour, d = day] , planning period [min = minute], number of

breaks [b = break], existence of Full Time [FT] and/or Part Time

[PT] employees). IP = Integer Programme, IPS = IP Solver. 78

4.3 Tour Scheduling environments: The scheduling environment in the

second column is given in the following format: (operating hours [hr =

hour] , planning period [min = minute], number of breaks [b = break],

existence of Full Time [FT] and/or Part Time [PT] employees). IP =

Integer Programme, IPS = IP Solver, H = heuristic, imp = implicit,

SGP = Stochastic Goal Programme. 79

ix

LIST OF TABLES x

5.1 Conceptual differences between hyperheuristics which deal with com-

plete solutions and those which deal with partial solutions. 96

5.2 A summary of key issues when designing a hyperheuristic 109

6.1 The different problem instances. Problem parameters are given in

the format (|S|, |D|, |T |,MinPrMeet,MinMeet,MaxMeet) repre-

senting respectively the numbers of suppliers, delegates, timeslots,

the minimum number per supplier of priority-meetings, the minimum

number per supplier of meetings and the maximum number of meet-

ings per delegate. D is the average number of requested delegates

per supplier. Γ50 is the number of delegates being requested by at

least 50% of the suppliers. Dif = Γ50

D
is the relative difficulty of the

problem. The larger the value of Dif the more difficult the problem.

The suffix ‘p’ in each case is the corresponding measure when only

priority meetings are considered. 145

6.2 Experiments with 10 low-level heuristics, real-world data- instances

are ordered in increasing difficulty (from left to right) 152

6.3 Experiments with 10 low-level heuristics, random data- instances are

ordered in increasing difficulty (from left to right) 152

6.4 freq(Nj)/freqB(Nj, ρ) and κ(Nj, ρ) for RP-OI, ρ = 10 157

6.5 freq(Nj)/freqB(Nj, ρ) and κ(Nj, ρ) for CFb-AM, ρ = 10 157

LIST OF TABLES xi

6.6 Proportion of time used on Idle and Nasty low-level heuristics. EIdle,

ENasty and EIdle/Nasty denote E when Idle and Nasty are introduced

alone and when both heuristics are introduced simultaneously. In

each case CFb − AM is applied to instance DR, and results are av-

eraged over 10 runs of 600 second CPU. 158

6.7 Different Choice Function expressions, real-world data 159

6.8 Different Choice Function expressions, random data 159

6.9 Experiments with 4 low-level heuristics (1, 2, 3 and 5), real-world

data- instances are ordered in increasing difficulty (from left to right) 161

6.10 Experiments with 4 low-level heuristics (1, 2, 3 and 5), random data-

instances are ordered in increasing difficulty (from left to right) . . . 162

6.11 Experiments with 16 low-level heuristics, real-world data- instances

are ordered in increasing difficulty (from left to right) 166

6.12 Experiments with 16 low-level heuristics, random data- instances are

ordered in increasing difficulty (from left to right) 166

7.1 Initial solution is ch. ml is a manual solution produced by the prob-

lem owner. All algorithms in the upper part start with ch as initial

solution. HH(x) denotes algorithm HH starting with initial solution

x. RD1 is a hand-made RD which was tailored for this problem.

csit0 results marked with * are taken from [73] which used a 1Ghz

PC with 128Mb RAM. 176

7.2 heuristic calls by CFa−AM . Format: # calls during 1st 100 calls/last

100 calls to best solution, overall rank/overall proportion of call . . . 181

LIST OF TABLES xii

7.3 Comparison between CFa and RD1 with different initial solutions . . 184

8.1 Hyperheuristic and metaheuristic performance on the nurse schedul-

ing problem. For each problem instance the format is: proportion of

feasible solutions in 20 runs/ average cost for feasible solutions. . . . 192

8.2 Hyperheuristic and metaheuristic performance on the nurse schedul-

ing problem (continued). For each problem instance the format is:

proportion of feasible solutions in 20 runs/ average cost for feasible

solutions. Note that the average is given over the 52 problem instances.193

8.3 Choice function vs simple hyperheuristics applied to the nurse schedul-

ing problem. For each problem instance the format is: proportion of

feasible solutions in 20 runs/ average cost. 198

8.4 Choice function vs simple hyperheuristics applied to the nurse schedul-

ing problem (continued). For each problem instance the format is:

proportion of feasible solutions in 20 runs/ average cost. Note that

the average is given over the 52 problem instances. 199

Chapter 1

Introduction

Hyperheuristic = Heuristics+ Learning

Many combinatorial optimisation problems of practical interest are computa-

tionally intractable and, consequently, are solved using heuristic and metaheuristic

techniques [124, 215, 218, 227, 229, 271]. This essentially means that the search

spaces are so large that it is not possible to exhaustively search them. Over the

past couple of decades or so, there have been significant advances in the investiga-

tion of metaheuristics both from a theoretical and practical stand point. Examples

of some metaheuristic applications can be seen in [7, 19, 261, 94, 37]. Very often,

metaheuristic methods make use of detailed knowledge of the problem domain in

order to arrive at good solutions (e.g. [9, 89, 46, 47]). While such approaches

can result in high-quality solutions, the resulting metaheuristic techniques are often

1

CHAPTER 1. INTRODUCTION 2

not re-usable for different problems or even different instances of the same problem

[48]. In effect, in order to apply the same metaheuristic technique to a different

problem or problem instance, we often need to carry out (sometimes extensive) re-

development and implementation of the method. This may involve the adjustment

of relevant parameters of the technique for the new problem. It may also involve the

incorporation of different problem-specific heuristics. For example, it was noted in

[8, 9] that a tabu search metaheuristic used in [89] for a nurse scheduling problem,

relied heavily on some of the problem-specific information such as the coefficients

of the objective function. As a result the tabu search of [89] was no longer effec-

tive when perturbations of the problem data were made [8]. Metaheuristics can

appear to be brittle, precisely because of their bespoke, tailor-made nature. Hence

problem-specific metaheuristics are often not readily applicable to a new problem

[48, 69]. Another illustrative example can be found in [46, 47] where a metaheuristic

approach is used for a nurse rostering system. The system produces excellent results

for nurse rostering and is in use in over 40 Belgian hospitals. The methods would

need significant programming effort though to use them for nurse rostering in differ-

ent countries because the system is tailor-made for the rules, regulations and working

practices that apply in Belgium. If those rules, regulations and working practices

change then the system will need altering. It would need even more alteration if

we wanted to address rostering problems for staff other than nurses. This situation

is highly appropriate in circumstances where high quality schedules that satisfy a

wide range of constraints are crucial (such as the nurse rostering problem described

above). The difficulty is that such bespoke systems are expensive to implement and

often more expensive to adapt to new problems or problem instances. There will

always be a place for expensive problem-specific systems which can produce very

high quality solutions to specific critical problems. However, there is also a place for

CHAPTER 1. INTRODUCTION 3

much more general systems which can deal with a wide range of problems. In many

optimisation scenarios we are not looking for very high quality solutions. Instead,

solutions which are ‘good enough - soon enough - cheap enough’ (e.g. dynamic

scheduling for factory flows [74], stock cutting problems [49, 50], etc.). There is a

current school of thought in the metaheuristic and search technology community

which asserts that one of the main goals of the field over the nex few years is to

raise the level of generality at which metaheuristics can operate [48].

The work reported in this thesis is concerned with the investigation and develop-

ment of the heuristic infrastructure which will allow us to operate efficiently and ef-

fectively within this more general framework. We investigate hyperheuristics, a term

which we have coined1 to describe heuristics (or metaheuristics) which choose heuris-

tics (or metaheuristics). A hyperheuristic can be a (high-level) heuristic which, when

given a particular problem instance and a number of low-level heuristics, selects and

applies an appropriate low-level heuristic at each decision point. While a meta-

heuristic usually (but not exclusively) deals directly with solutions, a hyperheuristic

deals with solution methods (e.g. heuristics). A metaheuristic can and usually does

modify solutions directly. A hyperheuristic can only modify solutions indirectly, by

way of an operator (a low-level heuristic). This places a hyperheuristic at a higher

level of abstraction and generality than most current studies of metaheuristics. Of

course, hyperheuristics can be metaheuristics. Indeed they usually are [48]. For

example, a genetic algorithm has been employed successfully as a hyperheuristic

in [140]. The point of using the term hyperheuristics (rather than metaheuristics)

is that it tells us that we are attempting to find the right method or heuristic in

a particular situation rather than trying to solve a problem directly. The overall

1The term ‘hyperheuristic’ or ‘hyper-heuristic’ was first used by the author’s PhD supervisors
and subsequently by the author himself in early 2000.

CHAPTER 1. INTRODUCTION 4

Output solution (s) to the problem

Select and apply appropriate
heuristics at each decision point

Input low-level heuristics
HYPERHEURISTIC BLACK BOX

Input problem (e.g. objective function (s)
solution / problem representation, stopping condition)

Figure 1.1: General hyperheuristic framework

CHAPTER 1. INTRODUCTION 5

goal of such research is to develop systems that can operate at a higher level of ab-

straction and generality than today’s systems, but which can also produce solutions

which are competitive with problem-specific systems. The aim is not (necessarily)

to develop a method which would ‘beat’ existing algorithms for a given optimisation

problem, but instead a method which is capable of performing well-enough, soon-

enough, cheap-enough across a wide-range of problems and domains. Such a method

could ultimately underpin cheaper optimisation systems which would be available

to a wider range of users than is the situation today. A hyperheuristic can choose

which low-level heuristic to apply at each decision point, until a stopping condition

has been fulfilled. We are therefore not concerned with solving the problem directly,

but simply recommending a solution method (e.g. heuristic) for the problem at

hand. This is illustrated in Figure 1.1. A hyperheuristic can be thought of as being

a black box which receives as input

• a problem to be solved : This includes a description of the problem / solution,

the objective function(s), the stopping condition(s), etc.

• a set of low-level heuristics for the problem: A number of low-level heuristics

are plugged into the black box, for the hyperheuristic to use (or choose from)

at each decision point.

Then, when the stopping condition has been met, the hyperheuristic black box

returns as output one or several solution(s) to the problem. Details as to how this

process can be carried out constitute the core of this thesis (chapter 5).

The main achievements of this thesis is that it provides evidence that

• hyperheuristics can produce solutions of good quality, often competitive with

those of modern heuristic techniques, within a short amount of implementa-

CHAPTER 1. INTRODUCTION 6

tion and development time, using only simple and easy-to-implement low-level

heuristics.

• hyperheuristics are easily re-usable methods as opposed to some metaheuristic

methods which tend to use extensive problem-specific information in order to

arrive at good solutions.

1.1 Structure of thesis

The remainder of this thesis is structured around three parts.

In the first part, we review the literature for work related to hyperheuristics

(chapter 2). We shall then give an overview of both exact and metaheuristic methods

used for solving optimisation methods (chapter 3). Because all problems tackled

during the work reported in this thesis involve the allocation of timeslots to resources

(in this case people), we shall survey the literature of personnel scheduling for some

of the most recent advances in this field (chapter 4).

In the second part of the thesis we start by discussing general design strategy is-

sues when developing hyperheuristics. We present a description of the hyperheuristic

methods developed and used in the thesis (chapter 5). We then illustrate the per-

formance of our hyperheuristics through three different application problems taken

from the real world. The first application problem (chapter 6) concerns schedul-

ing business meetings organised by a commercial company at a sales summit. A

meeting takes place between two types of individuals who are representatives of

different companies, suppliers and delegates, who want to attend the summit. The

problem is to allocate a number of meetings to each supplier subject to a number

of constraints and with the aim of achieving a number of objectives. The second

CHAPTER 1. INTRODUCTION 7

application problem (chapter 7) is about scheduling a number of students’ project

presentations at the University of Nottingham. A student’s presentation involves

not only the presenter (i.e. student), but also three members of academic staff who

have to attend to assess the presentation. The problem is to allocate a timeslot to

each student’s project presentation. The problem has a number of constraints and

objectives. The third application problem (chapter 8) is that of scheduling nurses

at a UK hospital. Nurses must be assigned a work shift-pattern for their weekly

duties. Again, a number of constraints and objectives must be achieved.

Finally, the third part of the thesis (chapter 9) will evaluate the overall perfor-

mance of the hyperheuristics and make recommendations for future work.

1.2 Academic papers produced

As a result of the PhD research reported in this thesis the following papers have

been produced:

Journal papers

1. P.Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics. The Journal of

Heuristics 2002. Submitted.

2. G. Kendall, E. Soubeiga, and P.Cowling. Hyperheuristics: a robust optimi-

sation method for real-world scheduling. European Journal of Operational

Research 2003. In preparation.

3. G. Kendall, E. Soubeiga, and P.Cowling. The principles of hyperheuristics

and their applications in the real world. The Journal of Scheduling 2002.

CHAPTER 1. INTRODUCTION 8

Submitted.

Selected Refereed Volumes

1. P.Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach for schedul-

ing a sales summit. Selected Papers of the Third International Conference on

the Practice And Theory of Automated Timetabling, PATAT 2000, Lecture

Notes in Computer Science, pages 176–190, Konstanz, Germany, August 2000.

Springer.

Fully refereed conference papers

1. P.Cowling, G. Kendall, and E. Soubeiga. A parameter-free hyperheuristic for

scheduling a sales summit. Metaheuristic International Conference MIC’2001,

pages, 127–131, Porto, Portugal, July, 16-20 2001.

2. P.Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics: A tool for rapid

prototyping in scheduling and optimisation. Second European Conference on

Evolutionary Computing for Combinatorial Optimisation, EvoCop 2002, Lec-

ture Notes in Computer Science, pages 1–10, Kinsale, Ireland, April, 3-51 2001.

Springer.

3. P.Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics: A robust opti-

misation method applied to nurse scheduling. Parallel Problem Solving from

Nature VII, PPSN 2002, Lecture Notes in Computer Science, pages 851–860,

Granada, Spain, September, 7-11 2002. Springer-Verlag.

4. G. Kendall, E. Soubeiga, and P.Cowling. Choice function and random hyper-

heuristics. 4th Asia-Pacific Conference on Simulated Evolution And Learning,

CHAPTER 1. INTRODUCTION 9

SEAL 2002, Singapore, November, 18-22 2002. NTU Press. 667-671.

Chapter 2

Related work: hyperheuristics

When in doubt, generalise.

2.1 Introduction

In this chapter we survey the literature for work related to hyperheuristics. A hyper-

heuristic is a high-level heuristic which chooses between several low-level heuristics,

using some learning mechanism. We survey the literature from the point of view

of ideas using the concept of hyperheuristics. As well as reviewing the literature,

this chapter serves as a unifying framework for past and future efforts in the field of

hyperheuristics. Of course there may be methods which overlap between classes in

our proposed framework.

The way the hyperheuristic method that is investigated in this thesis conducts

the search is by combining different (low-level) heuristics. We distinguish between

hyperheuristic approaches based on one low-level heuristic (special case) and those

10

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 11

that use several low-level heuristics or neighbourhood structures. Note that the

former category does not really correspond to hyperheuristics since it only uses one

low-level heuristic1. Nonetheless we shall discuss some methods in this category

which, in the author’s opinion, use ideas related to hyperheuristics in many respects

(e.g. use of a high-level strategy, exploration of heuristic space - as opposed to solu-

tion space). Of those methods which use several low-level heuristics we distinguish

between those that contain an element of learning and those without. In general we

shall describe how the choice of the low-level heuristics (or parameter settings for

the base heuristic) is made.

2.2 Single-heuristic techniques

In this category, a base (low-level) heuristic is employed to develop a solution to the

problem at hand. The use of the base heuristic, however, requires the specification

of one or more parameters. Thus the problem is to find good settings for the

parameter(s). This becomes a (heuristic) parameter optimisation problem. Hence

a high-level local search method may be needed to (heuristically) search for good

settings of the base heuristic parameters.

Smith [244] presented a paper in 1985 which used such an approach. The problem

is that of bin-packing, that is the packing of different items of various sizes in a

minimum number of bins. A base heuristic exists which tries to fill in an empty

box with unpacked items taken in a certain order. The base heuristic’s parameter

set in this case is the order in which items are put into the boxes. The high-level

local search used to optimise that parameter is a genetic algorithm (GA), whose

1This is analogous to saying that tabu search or simulated annealing, is a special case of
population-based methods, even though the population size is 1.

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 12

chromosomes represent an ordered list of items to be placed into the boxes. Such

an approach is often referred to as an indirect GA (as the GA encoding does not

represent a solution but instead rules for producing a solution).

Syswerda [255] also used a similar idea to solve a problem of scheduling various

resources for the U.S. Navy. The base heuristic parameter is also an ordered list of

tasks to be placed into the schedule. A GA is used to search for a good ordering of

the tasks. Note that when the parameter optimiser is a GA the resulting approach

is sometimes referred to as a hybrid GA [103, 212](a GA is hybridised with another

heuristic, in this case a base heuristic).

Kelly and Davis [156] used such a hybrid GA approach to classify new data

records based on their weighted distance from the rotated members of the train-

ing set. The base heuristic is the K nearest neighbours, a statistical classification

algorithm. Ling [180], too, used a hybrid GA to solve a timetabling problem.

In [243] a hybrid GA approach is also used in which the GA optimises parame-

ters for several base heuristics as opposed to just one base heuristic. Other hybrid

GA approaches include [102] for job-shop scheduling, [172, 173] for the scheduling of

maintenance of electrical power transmission networks, [109] for the graph colouring

problem, [228] for the bin-packing problem, [237, 238] for the line balancing prob-

lem (note that the approach is referred to as parameter optimisation), and [67] for

the Methodist preaching timetabling problem (the heuristic parameters in this case

represent the timeslots to be filled in).

Another paper which uses a high-level strategy to control a base heuristic is

that by Burke and Newall [54]. The application problem is that of scheduling exams

(also known as examination timetabling). In their adaptive framework [54], the base

heuristic is a constructive heuristic which repeatedly chooses one examination and

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 13

schedules it in one given timeslot if this does not result in the violation of any hard

constraints. To do this, the base heuristic needs as input an ordering of the exams

to be scheduled. The ordering of the examination is adaptively changed using a set

of heuristic rules based on the penalty function. The method builds on the squeaky

wheel optimisation method that was introduced by Joslin and Clements [153]. In

squeaky wheel optimisation, a priority ordering of problem elements is given to a

greedy constructive heuristic which builds a solution according to that given priority.

The solution is then analysed to find areas that need improving. These trouble spots

are then given higher priority and, with this new priority ordering, the constructive

heuristic is re-invoked to produce a new (improved) solution. The principle of the

method is that the squeaky wheel is the one that ‘gets the grease’ [153]. The idea

of using a heuristically-driven priority ordering for a constructive heuristic can also

be found in Smith [244] and Corne and Ogden [67]. The ordering in both [244] and

[67] is produced by a genetic algorithm.

While the approaches described above all used a GA as a high-level parameter

optimiser, Storer et al [250] developed another strand which includes other high-level

local search techniques (i.e. other than a GA). The problem is still that of parame-

ter optimisation but the inspiration came from the work by Panwalkar and Iskander

[217] in which they surveyed machine scheduling rules. Panwalkar and Iskander[217]

observed ‘... that a combination of simple priority rules, or a combination of heuris-

tics with a simple priority rule, works better than individual priority rules...’. This

was based on promising results published in earlier work such as that in [4] and [97].

In [4] the job-shop scheduling problem is solved using a priority rule based on various

costs. In [97] the job-shop scheduling is solved using a rule based on the time avail-

able until due date. An interesting combination of priority dispatching rules in [217]

is the weighted linear combination of individual rules/heuristics. The weight associ-

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 14

ated with each heuristic/rule can be regarded as a parameter. Parameterising these

weights over a specific range describes an entire parameter space over which a local

search method can be applied [251]. Such a parameter space was termed heuristic

space by Storer et. al. in [250]. In the same paper the authors also proposed another

search space termed problem space as opposed to solution space. Both heuristic and

problem spaces require the use of some fast, base heuristic H at each iteration of

the local search. In order to use the heuristic space the base heuristic H must be

defined in terms of a parameter (or a set of parameters) which is (are) subject to

some perturbation. The application of the base heuristic with different settings of

the parameter(s) generates different solutions to the problem. Instead, the prob-

lem space method is based on some perturbation of the problem data to which the

base heuristic is applied. Solutions of the perturbed problem are evaluated using

the original data. In [250] different local search techniques based on hill-climbing

were applied to both the heuristic and the problem space for the job-shop schedul-

ing problem. The authors obtained good solutions competitive with the shifting

bottleneck procedure [3]. The performance of the problem space method appeared

higher than that of the heuristic space method. In [251] the job shop scheduling

problem was solved using simulated annealing, genetic algorithms and tabu search

applied to both the problem and heuristic space. Both the problem space and the

heuristic space methods gave promising results, though the application of genetic

algorithms to the problem space gave the best results of all. The heuristic space

method appeared inferior to the problem space method. Both methods require pa-

rameter tuning. It is interesting to note that, within the problem and heuristic space

strand, the problem space approach has enjoyed greater attention than the heuristic

space, probably due to the findings in [250] and [251]. Thus we see that problem

space is used in [81] for the synthesis of heterogeneous multiprocessor systems, [249]

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 15

for the number partitioning problem, in [82] for datapath synthesis, in [5] for the

synthesis of self-recoverable ASICs (application-specific integrated circuits), and in

[175] for resource-constrained scheduling. To the author’s knowledge the only pa-

per using heuristic space, as borrowed from [250], is that by Ahmadi et al. [6] for

the examination timetabling problem. It should be noted that the idea of problem

space was also independently proposed by Charon and Hudry [58] under the notion

of noising method. The idea is to add some ‘noise’ to the problem data, hence the

term of perturbation. Other examples include [63, 248, 134].

2.3 Multiple heuristic or neighbourhood search

techniques

While the previous category only discussed approaches that delat with a single

heuristic, there have been methods which have dealt with two or more heuristics.

These methods are discussed here. We distinguish between approaches equipped

with some learning mechanism and those without.

2.3.1 Without learning

In this group of approaches several heuristics or neighbourhood structures are avail-

able which may be used at each decision point. Methods in this category are also

special cases in that they do not provide any learning mechanism.

In some approaches, the choice of the heuristic is limited to one possibility.

This means that the available heuristics are applied in a certain pre-determined

order. For example one such approach is due to Mladenović and Hansen [194]

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 16

who introduced the concept of Variable Neighbourhood Search (VNS). The idea in

VNS is to use an ordered sequence of solution neighbourhoods. The search starts

from the first neighbourhood and moves to the next in the sequence. The search

is intensified by applying a local search to a solution generated at random in the

nearest neighbourhood, and diversified by moving to the next neighbourhood in

the sequence. Different local search methods can be used within VNS including

Variable Neighbourhood Descent (VND). In VND a descent method is applied to

the current neighbourhood. If this does not yield a better solution, descent is applied

to the next neighbourhood in the sequence. VNS highlights crucial issues including,

which neighbourhoods to use, in which order should they be applied, and which

strategy should be used in changing neighbourhoods. The answer to these questions

is problem-specific. VNS has been applied to many combinatorial optimisation

problems. A recent survey of the method and its applications can be found in [137].

A similar approach to VNS is that employed by Dowsland [89] in which a three-

phase tabu search is used to solve a problem of nurse scheduling. In the first two

phases, several neighbourhoods and heuristics are employed in a certain order. When

it is not possible to find a feasible (non-tabu) move within a given neighbourhood,

the next neighbourhood is considered. We shall come back to this work [89] later

(chapter 8).

In other approaches the choice of the heuristic is more flexible than the ones

above and depends on the qualities of the current solution. These characteristics

dictate the range of heuristics that may be applied to the solution in order to ‘repair’

some undesirable features. Such approaches are often referred to as ‘iterative repair’.

From this point of view one could say that these approaches involve some sort of

semi learning in order to decide which (type of) heuristic to choose. For example

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 17

Zweben et al [279] used an iterative repair method in the context of scheduling.

Iterative repair methods usually start from a complete but possibly flawed solution

which is iteratively repaired in this case due to real-time events. This is in contrast

to a constructive approach which incrementally constructs a complete solution using

a partial one. Perhaps the oldest iterative repair method is the famous Kernighan-

Lin [160] which is mentioned in the next paragraph. Iterative repair methods have

also been used in [193, 247, 80, 225, 224, 60].

In [267], Vaessens et al. proposed a local search template in an attempt to help

classify local search methods. Using their local search classification a hyperheuristic

can be regarded as a multi-level local search method. In effect, a hyperheuristic

makes use of several neighbourhoods and heuristics, which correspond to several

levels of search. The hyperheuristics presented in this thesis use a single solution,

as opposed to a population of solutions, and are therefore point-based local search

methods. Vaessens et al. noted that local search methods ‘...which use more levels

in the local search template seem to be powerful and deserve wider attention...’. This

further provides some motivation for the work of this thesis. The work of Martin

et al [186] is an example of multi-level local search method in which the TSP is

solved using two neighbourhoods: At level 1, simulated annealing is used with 4-opt

(disconnecting and reconnecting 4 vertices). At level 2, 3-opt is used to determine

a local minimum which is then compared (in a simulated-annealing fashion) to the

level 1 solution. The same method is reported in [187] and in [185] where it is

applied to both the TSP and the Graph Partitioning Problem (GPP). It should be

noted that Lin-Kernighan’s TSP method [179] is a multi-level approach in which

a restricted range of k-opt moves is used with a variable k. The idea of varying

k was initially proposed by Kernighan and Lin in [160] for the GPP. The idea has

been used in its original form or modified versions to solve various TSP problems.

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 18

Lin-Kernighan [179] is regarded as one of the most efficient heuristics for TSP.

2.3.2 With learning

In this category we include methods which learn to choose between several low-level

heuristics. The main components in such approaches are the existence of several

low-level heuristics, the existence of a high-level heuristic which uses some learning

mechanism in order to choose between the various existing low-level heuristics. Hy-

perheuristics could be classified on the basis of the learning mechanism employed.

We shall distinguish between hyperheuristics which use a GA during the learning

process from those which use other mechanisms. This is because a great deal of

work on hyperheuristics has been done using genetic algorithms.

Genetic Algorithm based hyperheuristics

In GA-based hyperheuristics the idea is to use the GA to evolve the solution meth-

ods, not the solutions themselves. Typically the chromosome represents a list of

heuristics or rules that may be applied to the current solution. Such GA-based

hyperheuristics are often called an indirect GA. Kitano [162] was an early paper

(1990) which used a GA-based hyperheuristic. The problem is that of neural net-

work design. Traditionally, in GA-based neural network designs, the chromosome

directly encodes network configurations. Instead, Kitano used an indirect encod-

ing, called grammar encoding method, which encodes a set of rules that generate

networks. Thus instead of directly evolving networks (the traditional approach),

Kitano evolved rules which generate networks. Kitano’s approach proved much su-

perior to the traditional approach.

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 19

Four years later, Fang et al. [103] and Norenkov [213] independently used such

an approach. In [103] the GA-based hyperheuristic is applied to the open-shop

scheduling problem. The chromosome represents a set of heuristics associated with

the jobs to be scheduled. Thus the GA evolves heuristic choice instead of evolving

actual schedules. The approach proved superior to the direct representation. In

[213] the GA-based hyperheuristic is applied to a problem of design of computer

systems. As above the chromosome encodes different heuristic methods to solve the

problem, instead of the encoding the schedule.

Dorndorf and Pesch [87] also used a GA-based hyperheuristic to solve the job-

shop scheduling problem. Though their approach did not produce solutions better

than those of other approaches, it was observed that the GA-based hyperheuristic

was more robust to problem changes as well as easy to implement.

GA-based hyperheuristics are also used in [258] in the context of printed circuit

board assembly and in [212] in the context of scheduling. More recently, Terashima-

Marin et al. [259] used such an approach to solve the examination timetabling

problem. The GA chromosome of [259] represents a combination of various strate-

gies, heuristics and conditions for switching between strategies for the examination

timetabling problem. Results obtained by the hyperheuristic were overall better

than those obtained using a graph-colouring based method.

Cowling et al. used a similar approach in [68] to solve a trainer scheduling prob-

lem 2. The GA chromosome represents an ordered sequence of low-level heuristics to

be applied to the problem. Results obtained by their hyperheuristic (Hyper-GA) are

superior to those obtained by both a GA using a direct representation of the problem

and a memetic algorithm which invokes a local search improvement procedure after

2Note that their paper refers to one of the papers published in this thesis.

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 20

the application of crossover and mutation operators. The superiority of the hyper-

heuristic approach of [68] was attributed to the ability of the hyperheuristic to find

ways of combining those low-level heuristics which are effective across all instances

considered. In [135] the trainer scheduling problem is solved using an enhanced

version of the hyper-GA of [68] which uses an adaptive length chromosome.

Hart and Ross [138] used a GA-based hyperheuristic to solve the job-shop schedul-

ing problem. The GA chromosome represents which method to use to identify con-

flicts among schedulable operations and which heuristic to use to select an operation

from the conflicting set. Computational results showed that evolving solution meth-

ods was beneficial. Results obtained were promising when compared to those most

recently published.

Hart et al. [139, 140] also used a GA-based hyperheuristic to solve a problem

of chicken catching. The problem is decomposed into two sub-problems with each

sub-problem solved using a GA. The GA chromosome in the first phase represents

various heuristic rules used to split an order (for chickens) and to assign a load (of

chickens) to a chicken catching squad. The result was a robust scheduling system

which was capable of producing practical schedules for the factory.

Smith [245] also used a hyperheuristic approach in a memetic algorithm (MA)

framework. As will be mentioned in chapter 3, memetic algorithms are genetic

algorithms within which some sort of local search is applied to further improve on

the solution (i.e. individual) after crossover and / or mutation have been applied.

In his paper, Smith addressed the issue as to which local search method to apply, in

how many iterations and in which fashion (i.e. whether single call or descent). To do

this, the chromosome representation of the solution includes an encoding of which

local search method to choose. Hence in Smith’s approach, solutions and solution

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 21

methods co-evolve simultaneously. The resulting MA-hyperheuristic approach was

able to outperform both a conventional GA (i.e. no local search) and a static MA

(i.e. the memetic algorithm in which the learning of which heuristic to apply has

been disabled) when applied to a classic 64-bit problem in which 16 fully deceptive

4-bit sub-problems were considered (fully deceptive 4-bit problems - in which the

aim is to set all 4 bit positions to ‘1’ - are often used to analyse the performance

of genetic algorithms; these problems are designed in such a way as to keep local

optima far away from the global optimum [17]).

It should be noted that GA-based hyperheuristics need tuning of the genetic

algorithm parameters (population size, selection scheme, crossover and mutation

probability etc).

Non-GA based hyperheuristics

In 1961 Fisher and Thompson [107] published a paper on hyperheuristic methods.

Fisher and Thompson [108] also published their work in 1963 at the same time as

Crowston et al. [75]. In all three papers [107, 108, 75] the problem was that of job-

shop scheduling. The learning method was based on some probabilistic weighting

of the low-level heuristics, which represented various scheduling rules. In [108] the

hyperheuristic combined two scheduling heuristics (rules) in a probabilistic learning

algorithm. The hyperheuristic learning mechanism was in line with reinforcement

learning ideas of reward-punishment [254, 154] in which the probability of choosing

a heuristic was increased when the heuristic yielded an improvement and decreased

otherwise. The hyperheuristic is compared to an unbiased random process which

chooses either heuristic at random. The hyperheuristic proved to be superior to the

unbiased random process.

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 22

The work by O’Grady and Harrison [214] is an extension of the previous idea

in which a similar approach is applied to the job shop scheduling problem. The

authors proposed a general framework which includes a large number of job-shop

scheduling heuristics (rules).

Ross et al. [234] used a hyperheuristic approach to solve the bin-packing prob-

lem. The hyperheuristic’s learning process used the learning classifier system XCS

[276]. XCS is an extension to the learning classifier system ZCS [275]. A classifier

represents a heuristic or rule for packing a bin. Here the idea is to use a classifier

system in order to produce a good combination of several bin-packing heuristics and

rules. The resulting system produced good solutions, better than those produced

by individual heuristics. The system was also able to generalise well (when making

modifications to the original problem). Naturally a series of parameters inherent

to classifier systems needs tuning (rate of exploration/exploitation, GA parameters,

percentage of training data, etc.).

Nareyek [211, 210] proposed a hyperheuristic approach which uses ideas based

on reinforcement learning [154] in order to choose which heuristic to apply next.

Each heuristic has an associated weight which can increase or decrease according

to its performance. Various reward and punishment schemes (weight adaptation)

are used when selecting a low-level heuristic. The hyperheuristic was applied to two

optimisation problems (Orc Quest problem and the Logistics Domain) in order to

compare the various weight adaptation schemes and good results were obtained in

each case.

Allen and Minton [12] proposed a hyperheuristic method in the context of Con-

straint Satisfaction Problems. The learning mechanism was based on runtime perfor-

mance predictors such as the estimated number of constraint checks. The rationale

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 23

was that the heuristic with the fewest constraint checks is faster. The hyperheuristic

chose the heuristic with the lowest estimated average number of constraint checks.

The method proved to be better than interleaving the low-level heuristic. A similar

work, developed by Lagoudakis and Littman in [170], used reinforcement learning.

The learning mechanism was based on a Markov decision process. The hyperheuris-

tic used two low-level heuristics.

Another strand of hyperheuristics was developed by Mockus et al. [195] in 1989.

Their approach, named Bayesian heuristic approach, used the Bayesian approach

[198]3 in an attempt to improve on a given (set of) heuristic(s) by randomising and

optimising their parameters. We describe the Bayesian heuristic approach for a set

of heuristics (note that in the case of a single heuristic, the problem becomes a pa-

rameter optimisation problem as described in section 2.2). Given a set of heuristics,

each with a certain (unknown) probability of being chosen (by the hyperheuris-

tic), the Bayesian heuristic approach determines the probability distribution of the

heuristics, that is, the probability with which each heuristic should be called based

on some historical performance of the heuristics. The probability distribution is

chosen in such a way as to minimise the expected deviation from a global optimum

(average-case analysis). The method has been applied to a variety of discrete op-

timisation problems. See [198, 203, 199, 195, 196, 197, 200, 202, 201] for further

details. Throughout chapters 6, 7 and 8, we shall carry out different analyses of

heuristic call frequencies, which is closely related to the probability distribution of

the heuristics in the Bayesian heuristic approach.

A hyperheuristic approach using case-based reasoning (CBR) techniques as a

learning mechanism is proposed in [52]. The case-based reasoning hyperheuristic

3In the Bayesian approach one is interested in the average-case analysis of an algorithm, as
opposed to an exact method where the worst-case analysis is considered.

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 24

is applied to the examination timetabling problem. In the case-based reasoning

paradigm, a set of previously solved problem instances are stored in the case base

along with partial solutions obtained at different steps of the search. In order to

use the CBR system as a hyperheuristic, corresponding solution methods are also

included in the case base alongside these partial solutions. When a new problem

instance is to be solved the most similar case in the case base is retrieved and

the corresponding heuristic which gave the corresponding partial solution is chosen.

Hence, at each decision step, a low-level heuristic is chosen based on the similarity

between the current (partial) solution and the partial solutions stored as cases in

the case base. The case-based reasoning approach was able to outperform individual

heuristics used in the case base. Note that [52] references one of our own papers.

Finally some of the hyperheuristics developed in this thesis use a choice function

to learn which heuristic to choose. We call these hyperheuristics choice function

hyperheuristics (see chapter 1) [69, 70, 73, 72, 157, 71, 159, 158]. We will discuss

these later in Chapters 5 to 9.

It should be noted that all hyperheuristic methods presented in subsection (2.3.2)

allow for switching between heuristics during the solution process. The choice of the

low-level heuristics is dynamic and adaptive.

2.3.3 Adaptive problem solving in AI systems

Some methods used in AI (planning and scheduling) systems are similar to hy-

perheuristics that learn to choose between several low-level heuristics. Here we give

two examples of such approaches before elaborating on the differences between these

methods and hyperheuristics.

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 25

Gratch and Chien [132] proposed a technique for adaptively modifying a given

method for solving a given problem (problem solver). The problem is as follows.

Given a parameterised base problem solver for solving a given problem, learn to

adapt (optimise) the parameters of the problem solver over a certain number of

training problem instances, so that the thus-optimised (or adapted) problem-solver

will perform well enough on other problem instances. The base problem solver is

a broad general procedure for solving the problem. Its parameters can be viewed

as corresponding to a range of strategies or heuristics that can be used. Therefore

optimising the values of the parameters corresponds to choosing between several

strategies. Each strategy has an associated utility value which reflects the expected

worth of the corresponding strategy or heuristic. The goal of their search problem,

called adaptive problem solving is: given a distribution of problem instances find

some values of the parameters (which corresponds to finding a combination of dif-

ferent strategies or heuristics) that maximises the overall predicted performance of

the problem solver (in terms of solution time) over the distribution of the problem

instances. This approach is similar to the heuristic space approach except that here,

parameter settings are only allowed to change from one problem instance to another.

They are kept constant during the search for a solution to the problem instance.

Fink [106] also proposed a technique for choosing among problem-solving meth-

ods. The problem (for which he proposed his technique) is as follows. Given the

past performance of a particular method for solving a particular problem (problem-

solver) expressed in terms of number of problem instances solved with success, with

failure and unsolved within a given time bound, how well will the same method solve

a new instance of the problem within a certain time bound? Fink used a statistical

approach to solve this problem. His technique is aimed at selecting between several

problem solvers and a time bound to apply the selected method before solving a

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 26

new problem. In his technique a database of problem solver performance is main-

tained. Each time a new instance is to be solved we must choose which problem

solver to apply to the new problem and for how long (time bound). The way a

problem solver is selected is similar to roulette wheel [126] with the probability of

choosing a (statistically) good problem solver being higher than that of choosing a

poor problem solver. This approach is similar to the multiple-heuristic hyperheuris-

tics described above except that here, again the switch from one low-level problem

solver to another is only allowed from one problem instance to another. Once chosen

the selected problem solver remains constant during the search for a solution to the

problem instance being solved. The following passage in Fink’s paper [106] reads ‘...

We do not provide a means for switching a method or revising the selected bound

during the search for a solution. Developing such a means is an important open

problem...‘. This provides a further motivation for the work of this thesis.

Based on the above two papers a clear distinction must be made between problem-

oriented hyperheuristics, the ones described in [132] and [106] for example, and

solution-oriented hyperheuristics (any other hyperheuristic in this thesis). Problem-

oriented hyperheuristics choose between problem solvers. When selected, the chosen

problem solver is applied to the entire problem instance and its performance will

not be assessed until (at the earliest) the problem instance has been solved. In-

stead, solution-oriented hyperheuristics choose between heuristics or neighbourhood

structures. Solution-oriented hyperheuristics choose and may apply several different

low-level heuristics for a single problem instance. While problem-oriented hyper-

heuristics are concerned with the selection of an appropriate problem-solver in order

to solve an entire instance of the problem at hand, solution-oriented hyperheuristics

are concerned with the selection of an appropriate operator (e.g. heuristic) which can

modify the current solution of a given instance of the problem. The main difference

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 27

between the two hyperheuristics is that in the former hyperheuristic, once selected

the problem-solver is applied to the problem instance throughout the hyperheuristic

execution. Whereas the latter allows for switching between different operators dur-

ing the execution of the hyperheuristic. The passage in Fink’s paper [106] presented

in the previous paragraph further illustrates the difference between these two types

of hyperheuristics. Problem-oriented hyperheuristics require training on a number of

problem instances in order to be tuned to the class of problem instances to be solved.

On the contrary, solution-oriented hyperheuristics may or may not require training

as will be explained in chapter 5 which addresses design issues for hyperheuristics.

This thesis is concerned with solution-oriented hyperheuristics. From this point on

we shall use the term hyperheuristic to refer to solution-oriented hyperheuristics.

While problem-oriented hyperheuristics work at the macro level (i.e. choosing a

problem solver in order to solve one entire problem instance), solution-oriented hy-

perheuristics work at both the macro and the micro levels (i.e. choosing between

different heuristics during the solution process for a given problem instance). Of

course, both types of hyperheuristics operate in the space of heuristics. Whereas

most applications of metaheuristics, which have control over the way the low-level

heuristic modifies the solution, operate in the space of solutions.

2.4 Conclusion

In this chapter, we have surveyed the literature on hyperheuristics and other related

efforts. As well as being a survey, this chapter provided a unifying framework

for past and future work in the field. Our classification is based on whether the

high-level heuristic uses one or more low-level heuristics, and, in the latter case

whether it is equipped with some learning mechanism which helps choose the low-

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 28

level heuristics. In this case we have a hyperheuristic, that is a high-level heuristic

which chooses between several low-level heuristics using some learning mechanism

which is responsible for its adaptiveness, which results in its robustness.

Since the first hyperheuristic publication that we know of in 1961 [107], there has

been an increased interest in the development of generic or semi-generic methods

aiming at adaptively choosing between several heuristics or possibilities. We note

that little work was done during the following three decades (from the 1960’s till

the 1990’s). The work by Kitano [162] in 1990 was the beginning of modern hyper-

heuristic research. Thus, in the last decade there has been an increased interest in

this area of research. We think that is due to the increasing complexity of prob-

lems tackled by operations research and artificial intelligence researchers along with

the frequency with which these problems occurred and re-occurred, especially the

class of scheduling problems. Hence the need for re-usable software programs has

become apparent, especially in industrial applications [48]. On the other hand the

proliferation of local search methods [216] meant that more and more heuristics or

possibilities were available when solving a given problem. This resulted in a twofold

situation: develop a generic (as in re-usable) method which is able to appropriately4

choose between several alternatives for a given problem (or class of problems).

One of the main goals of using hyperheuristics is the aim of achieving robustness

in terms of good-enough, cheap-enough, soon-enough solutions across a wide range

of problems and domains. This would help overcome the difficulty posed by the use

of bespoke tailor-made metaheuristics which often are not readily re-usable for other

applications. However it would be difficult to achieve this quality without a certain

level of learning ability, which might be needed in order for the hyperheuristic to

4note that an appropriate choice implies one which is adaptive to the change of some features
of the problem

CHAPTER 2. RELATED WORK: HYPERHEURISTICS 29

solve different problems in an effective manner. Learning is a crucial element in the

ability of the hyperheuristic to cope with various regions of the search space, various

problem instances and various problem domains. Ideas from machine learning in

general and reinforcement learning in particular may be borrowed [246, 57, 154,

254, 61]. Conversely, hyperheuristics can be used in the field of machine learning.

Collaboration between researchers from both communities should be welcomed.

It is already contended that hyperheuristic development is going to play a major

role in search technology over the next few years [48]. It seems that the poten-

tial for scientific progress in the development of more general optimisation systems

such as hyperheuristics, for a wide range of application areas, is significant [48].

Hyperheuristics appear worthy of further investigations.

Chapter 3

Related work: exact &

metaheuristic methods

3.1 Introduction

In the previous chapter, we gave an overview of hyperheuristics and other related

methods. Here we give an overview of alternative methods for solving optimisation

problems. It is not intended to be an exhaustive survey of the field. For more

detailed treatments, see [124, 215, 218, 227, 229, 271]. We distinguish between exact

methods, aimed at finding optimal solutions, and heuristic methods aimed at finding

reasonable (but not necessarily optimal) solutions. Some of the methods discussed

in this chapter are investigated in research papers described in the next chapter

on personnel scheduling. Although in this thesis we are concerned with heuristic

optimisation methods, we shall briefly discuss exact optimisation methods. We shall

then address some of the most widely used heuristic approaches to optimisation

problems. We conclude by highlighting how metaheuristics can be employed in a

30

CHAPTER 3. RELATED WORK: EXACT & METAHEURISTIC METHODS31

hyperheuristic framework.

3.2 Exact methods

Many optimisation methods use mathematical programming techniques. Here we

give a short description of some of the most frequently used. See [242, 278] for a

more detailed treatment.

Lagrange multipliers This approach is used for optimisation problems involving

possibly non-linear constraints and objectives. The basic idea is to transform such

a constrained optimisation problem into an unconstrained one using the so-called

Lagrange function and then solve the resulting unconstrained optimisation problem

using classical optimisation methods (e.g. employing derivatives). In this method

one generally relaxes some, but not all, constraints. The method is often used in

conjunction with linear programming (next paragraph). [242, 278, 30] give further

details.

Linear programming This is perhaps the most popular technique used in math-

ematical programming, due to the fact that many important applications can be

modelled as linear programming problems. Also, concepts and insights derived from

linear programming constitute the basis for much of the general theory of mathemat-

ical programming. Both the constraints and the objectives are linear. The simplex

method is the first method developed to solve linear programming problems. The

simplex method is an exact local search which works by repeatedly moving from

one (basic) feasible solution to an adjacent until the optimal solution is found. The

method was introduced by Dantzig in 1947 [76, 78].

CHAPTER 3. RELATED WORK: EXACT & METAHEURISTIC METHODS32

Cutting plane The simplex (and other linear programming method) becomes

inefficient when variables of the linear programming problem are required to be

integer. One of the most well-known methods for mixed integer programming is the

cutting plane method. The relaxation of the integer linear programming problem

is solved to optimality and further constraints are added to the simplex tableau in

order to ‘cut off’ the non-integer parts of the solution. The method was developed

by Gomory [127, 128, 129, 130].

Explicit enumeration For pure integer 0-1 problems an alternative method is to

enumerate all possibilities of 0-1 values assigned to the variables. However, because

of the large number of such possibilities, it is useful to apply suitable exclusion rules

in order to keep the number of possibilities as small as possible (smart enumeration).

This method can also handle non-linear constraints. See [242, 278] for further details.

Branch and bound A good practical approach when dealing with a mixed integer

linear programme (that is, not all variables must be integer) is branch and bound

[59]. Like the explicit enumeration method, branch and bound starts with a solution

to the relaxed linear programme and, for each integer variable of the mixed linear

programme which is not integer in the optimal solution of the relaxed problem,

each of the two options (branches) of rounding that value up or down is added

as a constraint to a further linear programme and the resulting solution evaluated

(bound). This helps reduce the number of options to pursue, hence the term branch

and bound. Branch and bound methods are also applicable to pure integer linear

programmes. Although branch-and-bound is used with linear programmes, there are

other examples such as the assignment problems or the travelling salesman problem

where branch-and-bound is used to obtain bounds.

CHAPTER 3. RELATED WORK: EXACT & METAHEURISTIC METHODS33

Dynamic programming The mathematical programming techniques described

above are usually applied to static problems where the passage of time is ignored.

Some problems, however, involve sequences of decisions to be made dynamically

over time and dynamic programming techniques can be efficient for such problems.

A number of important discrete dynamic programming models can be described

using networks (vertices and edges) for which various graph-theoretic algorithms

have been developed (e.g shortest route problems). In dynamic programming it

is assumed that if all decisions to date are optimal, and we look over all possible

decisions for the current state, then the best one will also be optimal. Note that

dynamic programming need not refer to time (e.g. knapsack problems). [28, 29] are

recent books on dynamic programming.

3.3 Heuristic methods

Exact methods become impractical when applied to NP-hard problems (these prob-

lems are characterised by the fact that the computing time required to solve such

problems to optimality increases exponentially with the size of the data). In such a

context one resorts to the use of heuristics. A heuristic uses domain knowledge to

solve a given problem. Unlike exact methods, heuristics do not guarantee optimality

of the solution. However, heuristics are fast methods which could deliver good so-

lutions. The last 20 years or so have seen the development of a number of heuristic

methods for combinatorial optimisation known as metaheuristics or modern heuris-

tics. Here, we give an overview of some of the most widely known metaheuristic

methods often applied to combinatorial optimisation problems. One of the most

basic local search methods is hill climbing or iterative improvement which repeat-

edly moves to a solution better than the current one until it finds a local optimum

CHAPTER 3. RELATED WORK: EXACT & METAHEURISTIC METHODS34

(i.e. a solution which is better than all others in its neighbourhood). Because only

improving moves are accepted, hill climbing tends to get stuck fairly quickly in a

local optimum, which may be much worse than the global optimum. To overcome

this, modern heuristics (or metaheuristics) are equipped with some way of escaping

local optima. The idea is to accept a solution even if it is worse than the current one

in order to find better solutions later on in the search process. The main features of

metaheuristics are intensification (thorough investigation of promising regions of the

search space, which might lead to a short term improvement of the current solution)

and diversification (exploration of parts of the search search not yet covered, which

might require a short term worsening of the current solution). These features are

complementary and are therefore required for an effective metaheuristic search. The

effectiveness of a metaheuristic will depend on how these two features are balanced.

We distinguish between point-based (or trajectory) metaheuristics and population-

based ones. Whereas in the former category only one solution is maintained at a

time in the latter a population of solutions are maintained. We present below an

overview of some of the most popular metaheuristic methods. A special emphasis on

Tabu Search, Simulated Annealing and Genetic algorithms is given as, in practice,

these are the three most widely utilised approaches for combinatorial optimisation.

3.3.1 Point-based methods

Tabu Search Tabu search is an adaptive memory based technique originally pro-

posed in 1977 by Glover [118] though it took over a decade for the method to

become popular. In order to implement a tabu search algorithm for a given prob-

lem, one must define both a search space and a neighbourhood structure. Tabu

search works by controlling the way solutions are iteratively changed within the lo-

CHAPTER 3. RELATED WORK: EXACT & METAHEURISTIC METHODS35

cal search framework. When performing local search (i.e. iterative improvement)

there is the possibility of getting stuck in local optima. Tabu search tries to prevent

this by accepting even non-improving moves. However this may lead to cycling back

to previously visited solutions. To avoid this, a distinctive feature of the method

is to maintain a short-term memory structure which disallows those most recently

applied moves (hence the term ‘tabu’). Such moves are made ‘tabu’ for a number

of iterations. There is a variety of methods as to how restrictive the tabu list can

be. Another parameter defines the length of the tabu list. That is, how many move

attributes should be ‘remembered’ at a time. It is also possible to use several tabu

lists, for example one for each type of neighbourhood move [89]. Although tabu list

are important in tabu search, they may prohibit attractive moves, even if there is no

risk of cycling. It is therefore often essential to overrule the tabu status of certain

promising moves. These are known as the ‘aspiration criteria’. The most common

aspiration criterion is to accept a move, even if it is tabu, provided that that move

results in a better solution than the best found so far. Tabu search has enjoyed a

great deal of research attention over the past 15 years or so. Many people believe the

Lin-Kernighan heuristic for the TSP [179] (1971) is a tabu search approach, which

predates Glover’s 1977 paper [118]. The seminal papers for tabu search are often

considered to be [119], [120], [121] and [136]. Also an important book by Glover and

Laguna [125] is often cited as the key reference for tabu search users. Further issues

can be considered in an implementation of a tabu search algorithm. For example

in addition to short-term memory issues, there are issues related to recency mem-

ory (intensification) and frequency memory (diversification). In sophisticated tabu

search implementations it is also possible to allow for infeasible solutions and sur-

rogate objectives. Indeed tabu search is often hybridised with other metaheuristics

[109, 219].

CHAPTER 3. RELATED WORK: EXACT & METAHEURISTIC METHODS36

Simulated Annealing Simulated annealing was first introduced as a search strat-

egy by Kirkpatrick et al. in 1983 [161]. The idea originated from the physical an-

nealing process of metals published by Metropolis in 1953 [189]. As in tabu search,

in order to implement a simulated annealing algorithm for a given problem, one

must define both a search space and a neighbourhood structure. The idea of sim-

ulated annealing search is to always accept the solution under consideration if it is

better than the current solution (intensification), otherwise a worse solution may be

accepted with a certain probability (diversification). Over the course of the search

the probability of accepting a worse solution gradually decreases. This ensures that

as the search progresses, the algorithm focuses on areas of the search space which

are likely to contain good (local or global) optima. The nice thing about simulated

annealing is that it is easy to implement. An even more important advantage of

the method is that there are known theoretical convergence results. Indeed, if the

algorithm is allowed to run for sufficiently long iterations, it is guaranteed to find the

(a) global optimum. The key in a simulated annealing implementation is how the

temperature is decreased during the search (the ‘cooling schedule’). There are two

types of cooling schedules. Static schedules which must be predefined (i.e. before

the algorithm is run), and dynamic cooling schedules, which are essentially adaptive

(based on information obtained while the algorithm is being run). A criticism of

simulated annealing is that it is completely memoryless (the algorithm disregards

historical information gathered during the search). For this reason, simulated an-

nealing is often discarded in favour of tabu search. However, there are no proofs

of convergence in the literature for tabu search. A number of algorithms similar to

simulated annealing have been reported in the literature. This includes Threshold

Accepting which deterministically accept solutions only if they are better than a

given threshold [92, 206]. The Noising method of Charon and Hudry [58] can also

CHAPTER 3. RELATED WORK: EXACT & METAHEURISTIC METHODS37

be regarded as a simulated annealing related algorithm where an objective function,

to which some ‘noise’ is added, plays the same role as the simulated annealing’s

temperature. Like the temperature in simulated annealing, the noise is gradually

reduced so as to end up with the problem’s original objective function. Simulated

annealing has been applied to a wide variety of problems in operations research.

[163] contains a review of such applications. [2] contains excellent chapters dis-

cussing theoretical issues surrounding simulated annealing. See [93, 101] for some

of the most recent issues related to simulated annealing.

Greedy Randomised Adaptive Search Procedures a Greedy Randomised

Adaptive Search Procedure (GRASP) is a multi-start metaheuristic technique for

combinatorial optimisation problems, in which each iteration consists of a construc-

tive phase followed by an improvement phase. In the constructive phase, a construc-

tive algorithm is used to create a solution from scratch. The constructive heuristic

can be applied with different random seeds to create different starting solutions. The

constructive heuristic is a greedy approach which tends to select the best candidate

elements taken from a restricted candidate list in order to build a complete solution.

It is also adaptive in that it updates the evaluation of remaining candidate elements

each time a candidate element has been selected. The solutions thus obtained by the

constructive heuristic are not necessarily optimal, even with respect to simple neigh-

bourhoods. The second phase of GRASP is therefore invoked in order to improve on

the starting solution produced at the end of the first phase. This second phase uses

a local search approach. It is therefore necessary to define a neighbourhood struc-

ture and a search space. Usually the second phase utilises simple neighbourhood

structures. Overall the GRASP algorithm will repeatedly apply Phase 1 and Phase

2 using different seeds at phase 1 (so as to produce different starting solutions). The

CHAPTER 3. RELATED WORK: EXACT & METAHEURISTIC METHODS38

best solutions found are reported at the end of the algorithm. A major advantage

of GRASP algorithms is their ease of implementation. Indeed the method requires

few parameters and the neighbourhood structures used are quite simple. GRASP

is often hybridised with path relinking techniques which were initially developed

for intensification purposes in tabu search. Recent accounts of the methods can be

found in [104, 222]. [105] contains a recent survey of GRASP.

Iterated Local Search Iterated Local Search is another point-based search method

in which a local search method is repeatedly applied to different solutions (similar

to GRASP). Unlike GRASP, the essential idea in Iterated Local Search lies in fo-

cusing the search not on the whole solution space but on a smaller subset of the

solution space which contains solutions that are locally optimal with regards to the

local search method. The key in Iterated Local Search is in the sampling of the

reduced set of local optima. Iterated Local Search starts with an initial solution

to which the local search method is applied. Then, from that local optimum, Iter-

ated Local Search will repeatedly perform a perturbation of the local optimum and

apply local search to that perturbed local optimum and so forth. The local search

method may be viewed as a black box which is repeatedly applied to perturbed

local optima. When a local optimum to the perturbed local optimum is obtained,

an acceptance criterion is applied to decide which of the new and previous local

optimum is accepted. How effective Iterated Local search is will depend on the lo-

cal search method, the perturbations carried out and the acceptance criteria. Like

GRASP, Iterated Local Search is fairly easy to implement. Of course the method is

memoryless (but memory can be incorporated (e.g. [252]). [182] gives a thorough

investigation of Iterated Local Search methods.

CHAPTER 3. RELATED WORK: EXACT & METAHEURISTIC METHODS39

Guided Local Search Guided Local Search was developed by Tsang and Voudouris

[272, 266]. The basic principle in GLS is to change the objective function value when

a local optimum has been reached so that other areas of the search space can be

explored. GLS has been used in [266, 272, 273].

Variable Neighbourhood Search Variable neighbourhood search has already

been discussed in the previous chapter (section 2.3.1).

Other perturbation methods This category includes metaheuristics which uses

perturbation in order to escape local optima. The perturbation can be implemented

at various levels: problem data perturbation, heuristic perturbation, all of which

have been discussed in the previous chapter (section 2.2). Note that GLS can be

regarded as a perturbation method in that the objective function is perturbed when

one reaches a local optimum.

3.3.2 Population-based methods

Unlike point-based methods, the methods described in this subsection maintain a

population of solutions.

Genetic Algorithms Genetic algorithms were first introduced in the late 1950’s

[115, 116, 35] though John Holland is often mentioned for carrying out much of the

seminal work on GA’s [144] (later re-edited in [145]). Genetic algorithms mimic

the evolution of biological species in nature. A population of strings is used, which

is often referred to as chromosomes. Strings can be recombined by way of genetic

crossover and mutation operators. The genetic algorithm search is guided using

CHAPTER 3. RELATED WORK: EXACT & METAHEURISTIC METHODS40

the objective function for each individual (string) in the population. Individuals

with higher fitness (i.e. strings which represent better solutions) are given more

opportunity to breed. Individuals are thus interbred according to the principle of

survival of the fittest. This principle encourages the creation of better individuals

as the algorithm progresses from one generation to the next. In a general genetic

algorithm framework, an initial population of solutions is chosen. The algorithm

then repeatedly applies crossover and mutation to selected individuals and evaluates

the fitness of the offspring(s). The algorithm then selects a new population based

on the old population and the offsprings obtained. In order to implement a genetic

algorithm one must define a number of parameters. This includes how the initial

population is obtained (usually at random) and how many solutions are considered

(population size). When should crossover operations be performed? Also what types

of crossover should be considered (e.g. 1-point, 2-point, crossover, etc.)? When

should mutation operator be applied? What types of mutation operators should

be applied? How are individuals selected for crossover and mutation? How is the

new population selected (strict selection based on ranking or tournament selection)?

There are various stopping conditions including a preset number of generations, CPU

time, stop after the population diversity falls below a certain threshold. Even the

way solutions are represented needs to be clearly defined. One of the most popular

representations is binary (0-1 alphabet) but there are other possibilities. Two of the

most recent books on GA’s often encountered in the literature are those by Davis

[79] and Goldberg [126]. A more recent account of genetic algorithms can be found

in [230].

Scatter Search and Path Relinking Scatter search is a search method which

also maintains a population of solutions at a time. The key in scatter search is to

CHAPTER 3. RELATED WORK: EXACT & METAHEURISTIC METHODS41

construct solutions by combining others. Scatter search starts with a set of points,

called reference points, which are good solutions previously obtained using some

other search method (e.g. tabu search, iterative search). Here, ‘good’ solution does

not just mean with respect to the objective function, but it might also refer to

the diversity of the population of solutions considered (solutions are ‘scattered’ all

over the search space in order to ensure maximum diversity). The scatter search

algorithm systematically produces combinations of the reference points in order to

create new points. Scatter search consists of five steps also known as methods.

In the first step, a set of solutions is produced which contains solutions as diverse

as possible. This step is known as ‘Diversification generation method’. Then a

second phase, the ‘Improvement method’, is applied which tries to improve on the

quality of the solutions taken from the previous phase. A ‘Reference Set Update

method’ is invoked next. This consists of selecting the b best solutions following the

Improvement phase. It is these solutions that are used to generate smaller subsets

of solution for recombination. This is known as the ‘Subset Generation Method’.

Once the subsets have been formed, a ‘Solution Combination method’ is applied to

solutions in each subset in order to produce new combinations of these solutions. The

solution combination method in scatter search is similar to the crossover operator

in genetic algorithms. A similar approach to scatter search is ‘path relinking’. In

path relinking, one tries to link up two or more solutions. For example if solution

B was obtained from solution A after a number of moves, it might be possible to

observe the moves which led to B when starting from A. This path of moves from

A to B, once identified can help observe certain features in the involved moves.

These features can be recombined in order to help discover new moves which might

lead to even better solutions or to solutions that are not better, but from which it

might be possible to explore new areas of the search space. Both scatter search and

CHAPTER 3. RELATED WORK: EXACT & METAHEURISTIC METHODS42

path relinking are used in conjunction with an existing search method. Application

examples can be found in [171, 232, 122, 123].

Ant Colony Optimisation (ACO) Ant Colony Optimisation is another population-

based technique for optimisation problems. The method was developed in analogy

to the biological organisation of real ants searching for food in nature. Thus, Ant

Colony Optimisation is based on the indirect communication of a colony of artificial

agents (the ants) mediated by artificial pheromone trails. Pheromone trails in ACO

are expressed as numerical values which the ants use to probabilistically construct

solutions to the problem at hand. Pheromone trails are adapted during the search

to reflect search experience gained by the ants. By design, Ant Colony Optimisation

techniques are constructive heuristics. An Ant Colony Optimisation starts with a

population of empty initial solutions. The algorithm proceeds by iteratively adding

elements to the existing partial solutions in order to form complete feasible solu-

tions for the problem being solved. The problem is usually represented by a graph

with vertices and edges, where the vertices represent states of the problem and the

edges the possible connections between states. A colony of ants concurrently and

asynchronously build solutions by moving through adjacent vertices of the problem

on the construction graph thus building paths. At each state of the problem (rep-

resented by a vertex in the construction graph) the ant must decide which vertex

to visit next, which corresponds to which element to add to the current partial so-

lution. Once an ant has built a complete solution or while the ant is building the

solution, the ant evaluates the current solution (which may or may not be partial)

and deposits a certain amount of pheromone on the connections (or edges) it has

used. This pheromone will direct the search of future ants. To prevent early conver-

gence, Ant Colony Optimisation algorithms maintain a certain level of pheromone

CHAPTER 3. RELATED WORK: EXACT & METAHEURISTIC METHODS43

evaporation, that is, the pheromone deposited by previous ants decreases over time.

It is also possible for Ant Colony Optimisation algorithms to perform what is known

as ‘daemon’ actions, which are actions that cannot be carried out by individual ants

but are instead centralised decisions. The key in a successful implementation of an

ant Colony Optimisation algorithm is how pheromone is updated, which has a di-

rect impact on the balance between intensification and diversification of the search.

Ant systems, which are the early form of Ant Colony Optimisation algorithms, were

introduced by Dorigo et al [85, 86]. Further publications can be found on

http://iridia.ulb.ac.be/ mdorigo/ACO/ACO.htm maintained by Marco Dorigo.

Genetic Programming Genetic programming is another population-based search

method. In genetic programming one breeds a population of computer programs

over a series of generations. The starting point is a set of (possibly thousands)

randomly created computer programs, which represent the initials solutions. The

genetic progamming approach uses Darwinian principles of natural selection, mu-

tation, crossover (or recombination in general), gene duplication, gene deletion and

other biological mechanisms. A genetic program first generates an initial popula-

tion of computer programs (e.g. composition of the functions and terminals of the

problem). It then repeatedly executes and evaluates the fitness of each program in

the population. Then a new population is created by applying a certain number

of operations to certain programs. The programs are selected based on their fit-

ness. The operations applied are mainly reproduction (copy the selected programs

to the new population), crossover, mutation and architecture-altering operations.

The algorithm then returns the best solution (computer program) created over the

generations. Genetic programming is described in detail in [164, 165, 166, 167, 168]

CHAPTER 3. RELATED WORK: EXACT & METAHEURISTIC METHODS44

Asynchronous Teams (A-Teams) Asynchronous Team (A-Team) is also a pop-

ulation based approach. In an A-team, artificial agents, each with different skills,

operate on different individuals of different populations. A-team is a multi-agent and

multi-population approach. Individuals in the different populations are solutions to

the optimisation problem to be solved. Agents here are autonomous. Agents have

the same work cycle which consists of three phases: select a solution from a popula-

tion, alter the selected solution (hence the skills needed by the agent to perform this

alteration), insert the altered solution in a population (not necessarily the same pop-

ulation). In an A-team approach, agents must work asynchronously, thus the agents

work in parallel all the time, each at its own speed. Agents can compete or cooperate

with one another though it is conjectured that cooperation should perform better

than competition. Agents can be classified in three types according to the type of

alteration they perform on a solution; construction, improvement and destruction

agents, which respectively construct, improve and destroy solutions. The main idea

underpinning the convergence of the A-team approach is that good solutions can be

reached provided that improvement agents select solutions randomly with a bias for

solutions of higher quality, the destruction agents select solutions randomly with a

bias in favour of solutions of lower quality. [235] and [256] provide a good overview

of A-teams.

Evolutionary Strategies (ES) ES are closely related to GA’s. Originally [114]

ES used only mutation, a single individual in the population and were mainly used to

optimise real-valued variables. More recently ES have used a population containing

more than one individual. They have also used crossover and have been applied

to discrete variables [143]. However their main use remains that of real-valued

function optimisation using mutation rather than crossover. Mutation is carried out

CHAPTER 3. RELATED WORK: EXACT & METAHEURISTIC METHODS45

by applying a random number with a Gaussian distribution to the current value.

See [18] for a survey of ES methods. Some of the key references include [17] and

[112]. It is in his PhD thesis that Schwefel [241] described what is regarded as the

seminal work in evolutionary strategies. More recent papers include [111], [110] and

[113].

Memetic Algorithms (MA) MA’s are basically a combination of an evolution-

ary strategy with some local search technique. In an MA framework, some local

search technique is applied to individuals in the population in the hope to further

improve their fitness. A good introduction to MA’s can be found in [66]. The

term memetic algorithm was first used in [205] which is regarded as the seminal pa-

per in the field of memetic algorithm. There is a web site dedicated to memetic

algorithms, http://www.ing.unlp.edu.ar/cetad/mos/memetic home.html, which is

maintained by Pablo Moscato.

3.4 Conclusion

Heuristics are the only option for large real world problems. Over the past two

decades or so, metaheuristics have enjoyed an increasing popularity. Recent evidence

of this includes [216] which contains a recent bibliography of metaheuristics. [32]

reviews metaheuristic methods for combinatorial optimisation. Other recent work

in this topic includes [221, 267]. Recent books on metaheuristics include [229], [215],

[227], [271] and [124].

A key in the implementation of a search method is the balance between intensifi-

cation and diversification. Different metaheuristics have different trade-offs between

CHAPTER 3. RELATED WORK: EXACT & METAHEURISTIC METHODS46

these two essential components of approximate search methods. Thus, different

heuristics will have different strengths and weaknesses [48]. It is therefore not sur-

prising that efforts have been made to develop hybrid methods which draw on the

advantages of different techniques while leaving out their respective disadvantages.

Memetic algorithms are a good example of such efforts, in which evolutionary tech-

niques are combined with local search. There are also hybridisation efforts between

different local search approaches (e.g. scatter search with Iterated Restart proce-

dures such as GRASP [231], tabu search combined with scatter search and path

relinking [133], ACO with local search [84, 253]).

Another way to exploit the strengths and weaknesses of different heuristics is to

combine them in a hyperheuristic framework, which does not aim at solving directly

the problem, but, rather, at recommending an appropriate heuristic at each decision

point.

Chapter 4

Related work: personnel

scheduling

4.1 Introduction

Personnel scheduling is concerned with the determination of appropriate workforce

requirements, workforce allocation and workforce duty assignments for an organisa-

tion in order to meet internal and external requirements. This involves allocating

people (personnel) to timeslots and possibly locations. This problem is often ex-

tremely difficult to solve [268, 99]. Providing the right people at the right time

at the right cost whilst achieving a high level of employee satisfaction is a criti-

cal problem for organisations [99]. Not surprisingly, personnel scheduling has been

the subject of much investigation in the literature over the past 30 years with a

survey in every decade [21, 265, 26, 24, 99]. Different applications of this prob-

lem have been presented in the literature. We can distinguish between general and

specific applications. The terms workforce (or manpower, labour, staff or person-

47

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 48

nel) scheduling (or rostering, timetabling) are often used interchangeably to refer

to the general problem. In this paper, we propose to review the literature on the

general problem of personnel scheduling, though we shall make mention of specific

applications as well. In this review, we focus on various issues covering modelling,

scheduling environments, solution techniques, and theoretical studies. The general

personnel scheduling problem is typically encountered in service organisations (e.g.

call centres, airport ground personnel, etc.). Several frameworks have been proposed

to help classify various approaches used to tackle the general problem of personnel

scheduling including [21], [265], [34] and [99].

In this chapter, we are concerned (essentially) with the choice of solution tech-

nique which addresses the constraints (work regulations) and achieves the objectives

(costs, employee preferences, etc.). We first define some of the generic terms used

in personnel scheduling jargon [268, 99].

A shift is a period of work with a known beginning and ending time within a

period of 24 hours. Hence generally an employee works at most one shift per day.

For example a typical shift in administration (in the UK) is 9:00 am to 5:00 pm.

Split shifts morning/evenings are common in transport and the hotel industry.

A line of work or workstretch or tour is a block of shifts (or a block of consecutive

days-off and days-on) spanning over a longer-term period (week, fortnight, month).

For example a typical workstretch in administration (in the UK) is Monday to

Friday. A tour generally follows a certain shift pattern.

The general problem of personnel scheduling can be classified into the following

three groups [21, 24].

1. Days off scheduling: the determination of days on and off work for each em-

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 49

ployee (usually over a 7-day period).

2. Shift scheduling: selecting, from a potentially large set of candidates, which

shifts are to be worked, together with the number of employees needed for

each shift in order to meet demand (usually across a daily planning horizon).

3. Tour Scheduling: the creation, for each employee, of a line of work defined as

a sequence of days-on and days-off and, for each day-on, which shifts to work

(usually across a weekly planning horizon).

The latter problem is the most general as it deals with both days-off and shift

scheduling problems simultaneously. An integer programme (IP) was first proposed

by Dantzig [77] to formulate the general personnel scheduling problem as follows.

Minimise Z =
n

∑

k=1

xk (4.1)

Subject to

n
∑

k=1

aqkxk ≥ rq, q = 1, 2, ..., m (4.2)

xk ∈ N, k = 1, 2, ..., n (4.3)

where

xk = number of employees assigned to schedule (or workstretch) k;

rq = demand in terms of number of employees required to work in the qth planning

interval (also known as time period);

n = number of schedules considered;

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 50

m = number of planning intervals scheduled over the the planning horizon;

aqk = 1 if time period q is a work period in schedule k, 0 otherwise.

Equation (4.1) represents the objective of minimising workforce size. Equation

(4.2) expresses the idea that demand (in terms of number of people needed) must

be satisfied (this is also known as the coverage constraint). Equation (4.3) ensures

the integrality of variable xk.

Here the term schedule should be considered in the broad sense as, depending

on the context, it may mean shift or tour or days-off pattern, which corresponds

to a problem of shift or tour or days-off scheduling respectively. Although the

objective is to minimise workforce size, other objectives include minimising total

labour hours, labour costs, unscheduled labour costs, over-staffing, understaffing,

number of schedules with consecutive days-off, number of different work schedules

used, maximising customer service, or some combination of those [24].

Remark: The above mathematical model, which was first introduced by Dantzig’s

[77], is also known as the Set Covering Formulation (SCF) or the Generalised Set

Covering Formulation (GSCF). Dantzig’s model [77] - which dates back to 1954 - is

of great importance in personnel scheduling. As will be seen throughout the survey,

most mathematical models for the labour scheduling problem are based on Dantzig’s

set covering formulation, or an extension of it.

Often, a given problem of personnel scheduling is defined within a certain context,

known as the scheduling environment. The scheduling environment is generally

described in terms of the following:

• operating hours: This corresponds to the maximum length of a day of work

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 51

for the organisation (also known as the opening hours of the organisation)

• planning period: This gives the length of the planning period (also known

as the planning interval). The planning interval is dictated by the workforce

requirements, which is given in terms of number of employees needed for each

single period (hence planning period) - for example 15 minutes, 60 minutes.

• number of breaks: This gives the number of planned work interruptions per

employee - for example a meal break or a relief break.

• Work contract: This indicates whether the organisation employs, full-time

(FT) and / or part-time (PT) workers. In the case where both FT and PT

workers are considered, there usually is a maximum ratio of PT over FT (to

ensure a certain minimum presence of FT workers).

The remainder of this chapter is structured as follows. In section 4.2 we shall

focus on the general personnel scheduling problem. This is followed by a brief

overview of specific applications in section 4.3. We summarise our work in section

4.4.

4.2 The general personnel scheduling problem

This is also known as the labour scheduling problem. In this section we present

articles dealing with the general personnel scheduling problem. We start with some

of the most widely cited surveys on personnel scheduling (subsection 4.2.1). This

is followed by a review of the literature on flexibility modelling (subsection 4.2.2).

We show that flexibility can also be achieved and / or enhanced when incorporating

simple heuristic procedures (subsection 4.2.3). In subsection 4.2.4, we highlight

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 52

how theoretical studies have led to the development of new algorithms. Finally,

subsection 4.2.5 reviews other exact methods.

4.2.1 Recent surveys

Baker [21] presented an early survey on personnel scheduling in a cyclical environ-

ment in 1976. The whole problem of planning the workforce consisted of three steps:

The determination of staff requirements, the determination of the number of employ-

ees for each shift or shift pattern (as suggested by the author, shift patterns might

be differentiated by the placement of the meal breaks and/or relief breaks), the de-

termination of the number of employees for each work pattern. The two latter steps

are often referred to as shift scheduling and days-off scheduling problems respec-

tively and are modelled as set covering problems. While some researchers solved the

days-off scheduling problem before solving the shift scheduling problem (top-down

approach), Baker noticed that it is possible to solve both problems the other way

around (bottom-up approach). This clearly shows the existence of a strong inter-

relationship between the two problems as mentioned by the author, although the

problems were typically dealt with separately.

Tien and Kamiyama [265] presented a survey on manpower scheduling algorithms

in 1982. The manpower scheduling problem was decomposed into 5 separate but

related stages, namely, the determination of temporal manpower requirements, total

manpower requirement, recreation blocks, recreation/work schedule and shift sched-

ule. They also developed models at each stage to categorise problem formulation

suggested by the various algorithms. Several applications of manpower scheduling

are covered. This includes specific applications in sanitation, transportation, law

enforcement, nursing and other areas. Most of the articles reviewed used a math-

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 53

ematical programming model for some of the stages. Also some solution methods

were used to solve many stages simultaneously. In comparison with Baker’s classi-

fication in [21], we see that Tien and Kamiyama identified 2 more stages. As Baker

suggested in [21], the problems occurring at each stage (whether 3 or 5 stages) of

the general manpower scheduling problem should be solved in an integrated fashion

to find the best global solution, rather than separately as was the case at the time

of publication of his paper. This approach was widely adopted by the time Tien

and Kamiyama published their survey. Tien and Kamiyama suggested that future

research should focus on the mathematical programming aspects of the general per-

sonnel scheduling problem, as this is the most popular formulation to the problem

(typically the set covering problem).

A decade later Bradley and Martin [34] presented another survey on personnel

scheduling algorithms with an emphasis on applications in hospitals. Rather than

adopting the 5-stage decomposition suggested by Tien and Kamiyama [265] they

suggested a decomposition of the problem into 3 stages: staffing (the problem of de-

termining how many personnel must be employed to provide a predetermined level

of service), personnel scheduling (the problem of determining who works what shift

and who has which days off) and allocation (the problem of assigning scheduled

personnel to work sites). The entire model of the problem was called the staff plan-

ning and utilisation model. This decomposition makes it easier to classify solution

methods which are now specific for each stage (this was not the case in Tien and

Kamiyama’s decomposition). Bradley and Martin also suggested that schedules be

classified by the type of schedule developed (cyclical or non cyclical) as well as by

technique (heuristic, mathematical programming, self-scheduling). We note that the

authors’ approach is very similar to that of Baker, 14 years earlier, thus confirming

the relevance of Baker’s work.

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 54

Bechtold et al. [24] compared the performance of nine heuristic solution methods

for personnel tour scheduling. Because the problem environment differs from one

case to another, the authors compared the solution methods for a given environment

where the main criterion is to minimise the total labour hours scheduled subject to

the satisfaction of labour requirements. They considered full time employees work-

ing either five consecutive or non-consecutive days per week. All daily shifts are nine

hours with a meal break during the fifth hour. This occurs in an operating environ-

ment of sixteen hours a day, seven days a week. The authors distinguished between

Linear Programming (LP) based methods and constructive methods. The LP-based

methods solve the personnel scheduling problem by obtaining an LP solution which

is then modified to eliminate non-integer variables. Constructive methods start with

no employees and iteratively allocate employees to work schedules until all schedule

requirements are satisfied. Two LP-based methods and one constructive method

gave better results than all other methods when applied to a broad range of labour

requirements, distributions with different amplitude levels for each labour require-

ment distribution. The authors recommended the integration of all three methods

in a Decision Support System that service organisations can use.

The latest survey of personnel scheduling was carried out by Ernst et al. [99].

The authors decomposed the general personnel scheduling problem into 6 stages

namely, demand modelling (determination of staff requirements), days-off schedul-

ing, shift scheduling, tour scheduling, task assignment, and staff assignment. Various

application areas are also given.

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 55

4.2.2 Modelling flexibility in personnel scheduling

By the 1990’s the literature for personnel scheduling had demonstrated that the

use of flexibility in designing employee schedules can result in substantial improve-

ments in manpower utilisation. That flexibility resides mainly in the placement

of breaks during the shift. The first attempt came from Gaballa and Pearce [117]

who considered break-placement flexibility by including a separate break variable

for every period for which a break is allowed for each shift in their IP formula-

tion. However their formulation involved more variables than the usual set-covering

formulation, thus creating further problems of size. In light of this, Bechtold and

Jacobs [25] proposed an IP formulation in which break-placement flexibility is not

expressed in an explicit manner (as was the case with the previous authors [117]

who defined explicit break-variables) but rather implicitly through the inclusion of

extra-constraints whose role is to link the shift variables with the break-placement

flexibility. Once both the optimal number of employees for each shift and the optimal

number of (meal) breaks for each planning period is determined, a procedure is used

to allocate breaks to employees. Their formulation has more constraints than the

set-covering formulation but substantially fewer variables. The implicit formulation

required less CPU time when applied to different data sets with different demand

patterns and shift lengths using an IP solver (MPOS).

Another attempt to improve on the modelling of the labour scheduling problem

came from Thompson [260] who proposed a new formulation for the tour (shift)

scheduling problem. Thompson’s formulation aimed at overcoming two limitations

contained in two previous formulations (Dantzig [77] and Keith [155]): the difficulty

of setting the desired workforce sizes in each planning interval so as to maximise

profits and the assumption that a surplus employee is of equal value for all planning

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 56

intervals. In Thompson’s formulation the objective function is to maximise marginal

benefit due to additional labour capacity and minimise usual labour costs. In ad-

dition to the decision variables on the number of employees for each tour (shift),

Thompson’s IP formulation includes a decision variable on the excess of employ-

ees over a certain minimum workforce size for each planning interval. The author

applied a simulated annealing heuristic to all 3 formulations on a large set of prob-

lem data involving different combinations of customer arrival and customer service

configurations. Particularly, Thompson’s formulation generated more profit than

the two others and allowed for a certain scheduling flexibility in terms of workforce

size. During the same year (1995), based on the work of Moondra [204] and that of

Bechtold and Jacob [25], Thompson [263] developed a mathematical programming

model for the shift scheduling problem. The model was constructed on the princi-

ple of using variables for shift types rather than individual shifts. Then variables

representing starting and finishing periods for all shift types as well as meal-breaks

were linked by different types of constraints that ensured consistency of meal-break

periods with the shift types. Thompson used his model to schedule cashiers in a

grocery store, employing an IP solver (SAS-OR). His approach turned out to be

superior to that of Bechtold and Jacobs [25] in terms of computing time, problem

size and flexibility (regarding the placement of breaks).

Aykin too [15] proposed an implicit IP model similar to that of Bechtold and

Jacobs [25] for the shift scheduling problem. As in the latter model, Aykin’s model

involves break variables (number of employee having a break during a given planning

period). These break variables are also linked to shift-type variables by a set of con-

straints. Aykin’s model however is more flexible and robust as it can easily cope with

more than one break within a shift span as well as overlapping break windows [25]

(when the break window of one shift is contained in the break window of another).

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 57

Both models have fewer variables than that of the set-covering model. During the

same year Jacobs and Brusco [150] independently proposed an implicit model for the

tour scheduling problem that allows daily shifts starting-time flexibility. The idea

is similar to that for the implicit shift scheduling problem proposed in [25] in that

tour-type variables (a tour-type is defined by specifying the shift start-time band

associated with it), rather than explicit tour variables, are introduced and linked to

shift-type variables (characterised by start-time band) through a set of constraints.

As expected, the resulting integer programming formulation has fewer variables than

the initial set-covering model. The authors applied their approach to a problem of

scheduling toll collectors in an Illinois tollway company and were able to solve larger

size problems to optimality than with the set-covering formulation (problems with

several million variables using the set-covering formulation were reduced to a couple

of thousands variables using the implicit model).

A further effort on the modelling of labour scheduling came from Aykin [16] in

2000, who compared different modelling approaches for the labour shift scheduling

problem. The labour shift scheduling problem has traditionally been modelled using

the set covering approach proposed by Dantzig [77]. The size of the resulting model

is very large for many real-world problems and some researchers have proposed new

models of significantly reduced size. This is the case of Bechtold and Jacobs in [25]

and Aykin in [15]. Both approaches are based on the original set covering model but

with significantly less variables and less non-zero elements in the constraint matrix

than the set covering model. Also both models have more constraints than the orig-

inal one. The author compared the two new approaches on 220 problem instances

presenting different demand patterns, different relief and lunch break window sizes

and shift start-time patterns. He also considered both a cyclical (24 hours operating

time) and an acyclical environment. Aykin’s approach has more variables but signif-

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 58

icantly less constraints and less nonzero elements in the constraint matrix than the

approach of Bechtold and Jacobs. Aykin’s approach turned out to be more reliable

(in terms of the number of problems solved to optimality) and faster (computation

time) than the latter. Coincidentally, Brusco and Jacobs [44] published a study

during the same year 2000 concerned with the same issue of developing a model of

reduced size for the tour/shift scheduling problem. In the set covering model, ev-

ery feasible tour is explicitly represented as a variable and the possible meal-breaks

are known in advance and represented in the constraint matrix. Instead, Brusco

and Jacob represented shifts and meal-breaks implicitly as variables and a series of

backward and forward constraints which links the meal-break variables with the shift

variables and the shift variables with the number of days-on of the week, which thus

creates a tour. This is known as an implicit integer-programming formulation (imp.

IP). Overall the model size is much smaller than that of the set covering problem.

This makes it possible to aim for optimal solutions even for very large scale prob-

lems. The authors also proved the usefulness of the model on real-world problems

when post-optimisation comparisons of different managerial scenarios (policies) are

considered.

Another labour scheduling solution method was presented by Alfares [10] who

proposed a two-phase algorithm for solving the cyclical days-off scheduling problem.

The cyclical days-off scheduling problem is that of determining the number of work-

ers who will work the different weekly work-patterns considered containing a period

of two consecutive days off. Once the problem is modelled as an IP (set covering

problem), the minimum workforce size is calculated using Vohra’s [270] formula. In

a second phase a constraint binding the variables representing the number of work-

ers for each work-pattern to the minimum workforce size is added to the relaxation

of the IP and the resulting augmented programme is solved. The author compared

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 59

his two-phase method to that of integer programming and that of Bartholdi et al.

[22] linear programming. The author’s methods proved to be more efficient (faster)

than both that of an IP solver and Batholdi et al. [22] when applied to 1250 problem

instances (with different demand patterns).

Berman et al. [27] tackled a problem of scheduling workforce and workflow in

mail processing centres of the US Postal Service. Workers had to be assigned to

work stations and each station had its own amount of work (mail) arriving at the

stations in different amounts over time. The arrival of work was modelled as a

Markov chain. The amount of work at each station could be inventoried and the

resulting workflow could be controlled (scheduled) to be processed during a certain

period of the day. Workers were allowed to switch from one station to another at

different levels of performance (qualifications) during the same shift (one station

during the first half of the shift and the other station during the other half, with

a meal-break in the middle of the shift). Further flexibility constraints (capacity

constraints, time window constraints for work completion etc.) were considered.

The authors adopted an IP formulation whose decision variables were represented

by the number of workers of each type, working the first half of their shift at one

station and the second half at another station, to be scheduled for each operating

day of the week. Computational results showed that adding flexibility to the flow

of work and to the use of the workforce resulted in substantial reductions of labour

costs.

Brusco [36] proposed a dual all-integer cutting plane approach for solving per-

sonnel tour scheduling problems. Personnel tour scheduling is very often formulated

as an IP (GSCF [77]). When the size of the model is not too large, an IP solver

is used to find an optimal solution. Most commercial IP solvers use a branch-and-

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 60

bound technique. Brusco proposed the use of Gomory’s dual, all-integer cutting

plane [129] technique to solve the IP. Brusco made three modifications to Gomory’s

initial technique. These modifications concerned the rule used to select the source

row, the incorporation of an additional constraint (the objective cut) and a proce-

dure to overcome the potential problem of oversized elements (a large integer value)

in the tableau. The author also considered a second version of the all-integer cut-

ting plane technique which incorporated an advanced start based on the solution

to the relaxation of the IP. Both versions were tested against a branch-and-bound

technique used in a commercial IP solver. All three techniques were applied to 144

different personnel tour scheduling test problems with different labour demand pat-

terns, 12-hour or 16-hour operating days divided into hourly planning intervals, and

5 consecutive work days per week with a meal-break or a meal-break and a relief

break flexibility for full-time workers (part-time shifts did not contain any break).

Both cutting plane techniques were superior to the branch-and-bound technique in

terms of number of test problems solved to optimality and computing time.

4.2.3 Additional flexibility using heuristics

It should be clear from section 4.2.2 that exact approaches play an important role in

the solution to the general personnel scheduling problem, perhaps due to historical

reasons connected to Dantzig’s set covering formulation [77]. This explains why

much effort has been put in the development of efficient mathematical formulations

to the problem. The main goal in developing such models is to achieve flexibil-

ity: placement of meal and relief breaks during the shift, workforce size, types of

shifts used, shift start times, work location, work completion time-windows etc. The

advantage of using ‘modern’ formulations is twofold. Not only this results in sub-

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 61

stantial savings or reduction in labour costs, but also such models can solve problems

of larger size than when using the original set covering formulation (or its gener-

alisation). However the resulting ‘flexible’ models still involve either more decision

variables or more constraints than Dantzig’s set covering formulation [77]. Where

exact algorithms fail to solve large-size problems, there is room for heuristic meth-

ods. Different heuristic and metaheuristic approaches have been developed in order

to solve personnel scheduling problems. One of the main advantages of heuristic

approaches is that they can help achieve that very flexibility mentioned above.

Simulated annealing

Brusco and Jacobs [37] used a simulated annealing heuristic to solve a cyclic staff

scheduling problem. The problem was modelled using the original integer linear

programme proposed by Dantzig [77]. The simulated annealing heuristic used two

types of neighbourhood move: ‘add one employee to’ and ‘drop one employee from’

the schedule. Simulated annealing was compared with several methods including

a linear programming-based heuristic, a construction/improvement heuristic and a

pairwise interchange heuristic. Experiments were run on different sets of problem

instances with different demand patterns. The simulated annealing heuristic was

found to be superior to all the other heuristics in terms of solution quality (conver-

gence to near-optimal solutions), robustness, and speed.

Brusco et al. [45] solved a weekly tour scheduling problem at United Airline

stations. They formulated the problem using the generalised set covering formula-

tion [77]. Because of the company requirement to produce solutions within a few

minutes, the authors considered a three-stage approach based on an existing person-

nel scheduling software used by the company. Thus a first problem of (daily) shift

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 62

scheduling was modelled using GSCF. The relaxation of the problem was solved

using a shift generation heuristic which produces a set of shifts, based on column

generation, with the corresponding number of employees. The company software

used those shifts to construct an initial tour schedule. A second module improved

on the initial tour schedule. This was a simulated annealing heuristic which used

two types of neighbourhood moves (‘add’ and ‘remove’ employees). A final stage

was to pass the best simulated-annealing tour schedule to the company software for

conversion into an actual schedule (assignment of break, days-off etc.). Application

of their methods to United Airline stations generated enormous savings in terms of

Full-Time Equivalent employees and the authors suggested the use of such a method

for similar problems in other service organisations.

Brusco and Jacobs [38] carried out a cost analysis of a continuous and discon-

tinuous formulations for the tour scheduling problem in a continuously operating

system. The tour scheduling problem was modelled using the generalised set cov-

ering formulation with an additional constraint on the ratio between PT and FT

employees, and the objective was to minimise labour cost. In the continuous formu-

lation shifts may overlap between 2 consecutive days; This is not permitted in the

discontinuous formulation. The LP-relaxation for both formulations were computed

and the resulting lower bound compared in the case of a low PT/FT ratio and a high

PT/FT ratio. It appeared that the discontinuous formulation potentially results in

an excess of labour cost over the continuous formulation. This was confirmed when

using a simulated annealing heuristic applied to both formulations.

Thompson [261] used a simulated annealing heuristic to produce shift schedules

in the context of non-continuously available employees, that is, employees who are

not permanently available to be scheduled. The problem was modelled using math-

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 63

ematical programming and the simulated annealing heuristic comprised 5 different

routines which were applied successively over and over again until a stopping crite-

rion is met. The routines involved the use of neighbourhood moves based on adding

or dropping shifts and combinations of these two basic moves. Different shift selec-

tion rules were used to apply the neighbourhood moves and these different variants

of the routines were experimented with in order to find the best combinations of

the variants. Further improvements were made when the heuristic generated multi-

ple schedules instead of a single one. The heuristic was then capable of generating

near-optimal schedules in a small proportion (9%) of the time required to generate

optimal solutions using an IP solver.

Easton and Rossin [96] also analysed the effect of overtime scheduling policies

for service organisations. Using a base case situation in which employees worked

40 hours a week (8hours per day, 5 days a week) the authors considered different

overtime shifts/tour lengths (shifts longer than 8hours, tours longer than 40 hours).

The tour scheduling problem was formulated using GSCF [77]. Using a heuristic

solution method based on column generation and simulated annealing, the authors

conducted experiments involving general demand patterns, in different operating

environments with various policies. It turned out that overtime can help achieve

significant savings in terms of workforce size, schedule efficiency and total cost.

Brusco and Jacobs [39] tackled a problem of personnel tour scheduling with

restrictions on shift starting times for an American airline company. The problem

was modelled using the classical set covering problem with additional constraints

reflecting the restriction on the maximum number of both full-time and part-time

shift starting-times as well as the ratio between part-time and full-time workers.

Due to the large size of the problem, the authors proposed a two-stage method

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 64

to solve the problem. In the first stage the tour scheduling problem was reduced

into a (daily) shift scheduling problem and, using the dual simplex algorithm a

constructive heuristic was employed to select (add) a shift to the daily work schedule.

In the second stage an initial tour schedule was first constructed using a constructive

heuristic which added workers until all demand was satisfied. A simulated annealing

procedure was used to improve on the initial solution. The procedure used two types

of neighbourhood move: ‘add one worker’ and ‘drop one worker’. Different rules for

selecting the shifts and their starting times (in stage one) and for adding/dropping

a worker (in stage two) were considered. Application of the authors’ methods to

the company’s problem instances produced savings (in terms of full-time workers

equivalent and hence in dollars) over the method currently used by the company.

Lesaint et al. [176] addressed a problem of workforce scheduling for British

Telecommunications plc (BT). BT engineers had to be allocated to a certain number

of tasks (maintenance) to be performed in different locations and different periods

of time. Several problem-specific constraints were considered including constraints

on off-hours and other predefined breaks for engineers, and constraints on matching

tasks to skill levels. Some precedence constraints existed between certain tasks. The

objectives were the maximisation of the productivity of the workforce, maximisa-

tion of service quality, best utilisation of skills, minimisation of operational costs,

maximisation of workers’ preferences. The authors employed a two-phase solution

method. The first stage was a constructive heuristic which gradually allocated tasks

to the workers. This was done based on a tree search and involved some backtrack-

ing in case of infeasibilities. The second stage was a simulated annealing heuristic

which used a ‘relocate’ neighbourhood move. Relocate alters the current solution

by randomly selecting an engineer’s tour and attempting to change the position of

a randomly chosen task for the engineer. The feasibility of a schedule was mod-

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 65

elled as a Constraint Satisfaction Problem (CSP) and verified using a constraint

programming solver. Implementation of the authors methods yielded solutions of

better quality than those obtained by BT’s current workforce scheduling system.

This also generated important annual savings estimated in millions of US dollars.

Tabu search

Easton and Rossin [95] tackled a tour scheduling problem formulated as a stochastic

goal programme when labour requirements for each planning period was a random

process (due to random demand). The authors proposed that the deterministic goal

programme formulation be replaced with a stochastic goal programme. In the deter-

ministic goal programme approach ideal labour requirements for each period were

estimated (using for example marginal analysis techniques) and input to the deter-

ministic goal programme. If the estimates are erroneous, the resulting scheduled

workforce (i.e. after solving the deterministic goal programme) may be costly and

oversized. Unlike deterministic goal programmes, stochastic goal programme simul-

taneously optimise the service level, minimise workforce size by incorporating the

different possible required workforce sizes associated with their respective probabil-

ity in the deterministic goal programme. Using tabu search, the authors compared

both deterministic goal programme and stochastic goal programme formulations on

a large set of problem instances and the latter outperformed the former in terms of

labour cost and workforce size.

Genetic algorithms

Cai and Li [56] tackled a tour scheduling problem where employees had different

skills. More precisely there were 2 types of job, each with a certain type of workers

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 66

(skills) and there was a third type of worker who can work either type of job. The

number of workers of this latter type was bounded. The tour scheduling problem

was modelled as an IP with 3 objectives (first minimise labour costs, then maximise

labour surplus, and then balance staff distribution). The problem was solved using

a genetic algorithm with crossover and mutation operators. Infeasibilities due to

the application of the GA crossover were heuristically repaired. The algorithm gave

good results when applied to various real-world problem instances.

Easton and Mansour [94] employed a unified mathematical programming model

for a family of deterministic and stochastic labour scheduling problems modelled

as Generalised Set Covering Problem, Deterministic Goal Programme or Stochas-

tic Goal Programme. A distributed genetic algorithm which consisted of evolving

different populations simultaneously in a network was used to solve these labour

scheduling problems. The distributed genetic algorithm was applied to three differ-

ent sets of published test suites. The authors compared their methods with tabu

search, branch-and-bound and simulated annealing. They found that the distributed

genetic algorithm outperformed the latter methods in terms of mean error maximum

error and percentage of least cost solution.

Other heuristic methods

Many solution methods in this category are multi-stage approaches. The idea is to

solve the personnel scheduling problem in different phases. The output of one phase

being fed into the input of another. In each phase the solution technique used may or

may not be an exact algorithm. The main problem in such multi-stage approaches

is that the quality of the final solution(s) is very much dependent on the quality

of those solutions obtained during the intermediate stages. There is therefore no

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 67

guarantee of optimality at the end of the overall solution process.

An example of multi-stage approach is that used by Love and Hoey [183] who

tackled a problem of labour scheduling for a chain of fast-food restaurants. They

represented their problem using linear programming and decomposed the linear

programme into two subproblems which are both solved as minimum cost network

flow problems. No computational results were provided.

Schindler and Semmel [239] tackled a problem of labour shift scheduling at Pan

American World Airways. Baggage handlers had to be assigned to daily part-

time/full-time shifts. The problem formulation was based on the classical set cover-

ing problem with additional constraints reflecting the maximum ratio of part-time

workers over full-time workers. Another constraint was not to allow the existence

of butting part-time shifts (that is when one shift starts within a minimum number

of 15-minutes period after another shift ends). Shifts can start at different (but

given fixed) 15-minute intervals. Two types of part-time shifts (4-hour and 5-hour)

were considered. Full-time shifts contained three breaks (one meal-break and one

relief-break before and after the meal break). The author used a two-step method

to solve the integer programme. The first step scheduled shifts without considera-

tion of the different breaks. Then in a second step a second IP, similar to the first,

was solved in order to determine the different breaks within the shifts. Implemen-

tation of the authors’ approach reduced the deployment of staff, used the existing

staff more efficiently thus reducing costs (the shift scheduling problem was solved

manually before). No computational results were presented.

Rafaeli et al. [226] presented a ‘weight’ and ‘improve’ algorithm for the general

problem of resource allocation where the resources can be people. The problem was

formulated using a mathematical programming model with linear constraints and

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 68

was represented as a graph where the nodes represent the tasks to be allocated to the

resources and an arc exists between any pair of conflicting tasks (a task is allocated

to one resource and only one task can be processed by each resource at a time).

A greedy algorithm based on weights determined for each task-resource assignment

was used to generate an initial solution. The solution was further improved by

a second heuristic which switched some assignments of tasks to other resources.

Computational experiments showed that the algorithm performed better than other

greedy algorithms reported in the literature.

Jarrah et al. [151] proposed an integrated approach for solving large-scale tour

scheduling problems. In their approach, the first problem was that of scheduling

daily shifts. Their shift scheduling model was a combination of Dantzig’s set-covering

formulation [77], the implicit formulation of Bechtold and Jacobs [25] and the lower

bound procedure of Burns and Carter [55]. Because of the large size of the resulting

formulation, aggregate variables were introduced as well as surrogate constraints,

which resulted in a new (augmented) formulation. In the augmented formulation all

integer variables (except for the aggregate ones) were relaxed and the mixed integer

programme thus obtained (master problem) was solved using an IP solver. Given

the fixed optimal values of the aggregate variables, the augmented formulation was

decomposed into seven independent shift scheduling problems, each of which were

solved to optimality. A heuristic procedure was invoked in case the solution obtained

were not integral. Once shifts are determined, two procedures are used to assign

breaks to shifts and shifts to tours respectively. The authors applied their approach

to a problem of staffing at General Mail Facilities where workers sort mail on a daily

basis. Twenty-eight different problem instances of large sizes were used and for all

of them their method found optimal solutions, without using the repair heuristic, in

a reasonable amount of time.

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 69

Bailey et al. [19] suggested an integrated approach for project task and manpower

scheduling problems. The problem was formulated using an IP which relates the

staffing level requirements with the start times and duration of the project tasks

as constraints. A dynamic-programming based heuristic was then used to solve the

problem. This resulted in labour cost and total cost savings over the traditional

two-step heuristic procedure which first determines the start times and duration of

the project tasks before calculating the number of employees per period.

Ashley [14] tackled a problem of personnel scheduling at a university library. The

problem was to determine weekly schedules for library staff. Each member of staff

must be assigned to desks at certain times throughout the week. Staff members had

different periods of availability and there were constraints on the workload of each

staff. The problem was modelled as an IP and the objective was to minimise the

total number of uncovered (unfilled) slots. The author used a spreadsheet system to

solve the problem. Not only did this generate savings in the time used to compute

a schedule manually but it also produced higher quality solutions.

Tsang and Voudouris [266] introduced a Fast Local Search (FLS) combined with

a Guided Local Search (GLS) and applied it to a workforce scheduling problem.

FLS is a hill climbing method which heuristically ignores moves used in the past

without any improvement and GLS is a method which diversifies the search to other

regions each time a local optimum is reached. The authors applied FLS+GLS to

British Telecom’s workforce scheduling problem. They compared FLS with a simple

hill climbing and noted that the activation bits used in FLS to ignore certain moves

helped to speed up the method with no convincing evidence that solution quality

was sacrificed.

Brusco and Johns [42] proposed a heuristic method for the discontinuous tour

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 70

scheduling problem (i.e. shifts are not allowed to overlap between 2 consecutive

days). The tour scheduling problem was first modelled as a GSCF [77] and, instead

of solving the LP-relaxation of the GSCF and counting on rounding and improve-

ment procedures to determine good integer solutions, the authors’ heuristic imposed

integer restrictions on subsets of tour variables. More precisely the tours that begin

(end) in a given hour may be constrained to be integer while others are continuous

thus allowing information concerning demand in all time period to influence the val-

ues of the integer tour variables. Experiments were carried out in the case where all

employees are FT and in the case where some employees are PT. In both cases the

authors’ heuristic compared favourably with some of the best LP-based heuristics

reported in the literature.

Thompson [262] tackled a problem of scheduling telephone operators for a tele-

phone company. Each worker chose a certain number of daily shifts that s/he would

like to work. The problem was to assign daily shifts to workers. Thompson mod-

elled the problem as a mathematical programme and the objective function was to

minimise the number of unassigned shifts as well as to satisfy personnel in order

of seniority (priority was given to senior workers first). The author used a heuris-

tic method to generate solutions on a PC. Both management and workers saw the

resulting decision support system as an improvement over the previous manual pro-

cedure. No computational results were provided.

DuCote and Malstrom [91] described a Decision Support System (DSS) to model

personnel scheduling in a manufacturing environment. The problem was to schedule

workers to a certain number of tasks and to a certain number of timeslots during

which these tasks would be performed depending on the location of the work (work

centre). The cost of a schedule depends on the worker qualification, the work cen-

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 71

tre and the time period of the work. The DSS consisted of four modules, the last

of which heuristically assigned workers to work centres by both worker category

and time period. The heuristic took account of different factors including worker

interchangeability, new hires, extra shifts, layoffs, overtime, weekend work and un-

expected absences.

Brusco and Jacobs [40] conducted an experimental analysis and a case study as

to which set of shift starting-times to choose for scheduling labour tours. The labour

tour scheduling was formulated as an IP based on GSCF [77] with two additional

sets of constraints on the restriction of the number of (daily) shift starting-times.

The objective was to minimise the workforce size. Experiments were conducted

on real-world sets of labour requirements for a one-week planning horizon divided

into hourly planning intervals. Only full-time workers without meal/relief breaks

were considered. Two workweek alternatives (5 days-8 hours per day and 4 days-10

hours per day) and 3, 4 or 5 starting-times were considered. It turned out that

restricting the number of starting-times to 4 or 5 did not result in a substantial

increase of workforce. The authors also solved all IP’s where all 24 starting-times

were considered. This was possible using the cutting plane technique proposed

by Brusco [36]. However a bad selection of the set of starting-times resulted in

high workforce volumes. The authors then considered a case study of analysing

different starting-times policies for customer representatives at Motorola’s LMPS

Radio Network Solutions Group call centre. The case study demonstrated that

starting-time decisions must be examined in relation to other scheduling policies

and, due to the resulting large size of the problem, a constructive heuristic approach

was employed to solve the tour scheduling problems.

Lin [178] tackled a problem of personnel scheduling at a telephone call centre.

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 72

The problem was to determine daily schedules for telephone call operators for a

monthly horizon. There were 3 types of shifts (day, night and evening) and various

types of constraints were considered (shift type precedence constraints, staffing re-

quirements, staff day-off requests, functional constraints). Lin developed a 3-phase

solution method which first calculated hourly call forecasts and staff requirements.

It then determined daily workforce sizes and assigned meal breaks. The 3rd phase

used the Burns and Carter algorithm [55] to calculate the monthly roster (days-off

scheduling, and shift assignment). Implementation of the resulting workforce sys-

tem not only helped save a lot of time but also satisfied more constraints than the

manual scheduling method.

4.2.4 When theory leads to the development of new algo-

rithms

Van den Berg and Panton [268] investigated the theoretical existence conditions of

a case of personnel scheduling where both continuous and forward rotating shift

assignments are considered. The authors used Tien and Kamiyama’s [265] 5-stage

decomposition of manpower algorithms. The fifth stage of this decomposition is

concerned with the problem of shift assignment. The shift assignment is continuous

if the same shift is worked every day of the workstretch (a period of consecutive

days of work). A forward rotating shift assignment is one where different shifts are

worked within the same workstretch such that later shifts in the workstretch have

a later starting time than earlier ones. The two cases of continuous and forward

rotating shift assignments were regarded as a very common requirement in work-

force scheduling. The authors used a network model upon which an algorithm was

developed to search for a continuous and forward rotating shift assignment. The

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 73

algorithm was capable of finding such continuous and forward shift assignments in

a high proportion of cases solved. Note that this is the first paper presenting a the-

oretical study on the existence conditions of continuous and forward rotating shift

assignments.

A related study was conducted by Lau [174] who also investigated the complexity

of the shift assignment problem (SAP). The author tackled the problem of manpower

shift scheduling from a theoretical point of view. Using the decomposition frame-

work of Tien and Kamiyama [265] for manpower scheduling algorithms, the author

proved that SAP is NP-hard when shift change constraints are considered. Lau also

developed a greedy algorithm for the monotonic Changing SAP (CSAP). In CSAP a

worker is not allowed to work on an earlier shift than that of the previous day (which

corresponds to the forward rotating shift assignment in [268]). The algorithm was

extended to solve more complex SAP’s including cyclic schedules, consecutive same

shift constraints, spare demands and non-monotonic shift changes.

Brusco and Johns [41] proposed a pre-emptive goal programming (PGP) method

for solving a tour scheduling problem. The problem was usually solved with the pri-

mary criterion of minimising labour cost. Brusco and Johns’ work aimed at obtain-

ing solutions with an even distribution of labour surplus at the same optimal labour

cost. In the first instance the GSCF was used with the objective of minimising

labour cost. Then a second formulation was utilised with the objective of minimis-

ing the maximum of the ratio of labour surplus over labour requirement (demand)

while constraining solutions to keep the same cost as that of the generalised set

covering formulation (GSCF) optimal solution. Experimental results showed that

the authors’ approach provided solutions not significantly worse than those of the

GSCF but also generated solutions with a significantly lower variance than those of

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 74

GSCF.

Narasimhan [208] tackled a problem of days-off scheduling involving different

categories of workers (qualification levels) whereby a high-level worker can do the

work of a low-level worker. In his problem, employees worked up to 5 days a week and

had at least 2 days off. There was a constant weekday demand (required number of

workers) and a different constant weekend demand. The problem was to assign days-

off to each worker in such a way as to minimise the workforce size while respecting

the work demand required per category as well as cumulatively. The author used

a multi-step algorithm which first calculated a lower bound for the workforce size

for each (worker) category as well as cumulatively. The algorithm then determined

weekends off as well as other days off for each category. It then assigned shifts to

workers. An example was given to illustrate the resulting algorithm.

In [209], Narasimhan extended his methodology to multiple shift scheduling on

4-day and 3-day workweeks. A related approach is that of Hung and Emmons [149]

where a 3-4 compressed workweek was considered. In a 3-4 compressed workweek,

employees cyclically work 3 days and have 4 days off the first week and then work

4 days with 3 days off the second week and so forth.

Hung [148] studied a problem of workforce scheduling under annualised hours.

The idea of annualised hours involves hiring workers to work for a given number

of hours per year. This avoids varying workforce size for frequent hiring, firing,

training, especially when the demand is seasonal. In this annualised hours context,

Hung proposed a workforce scheduling algorithm similar to that used in [149], [208]

and [209]. It first calculates the minimum workforce size and then iteratively assigns

workers to work more (less) days during busy (slow) weeks. Several application

examples were given to illustrate the scheduling algorithm.

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 75

4.2.5 Other exact methods

Beaumont [23] solved a real-world staff scheduling problem similar to the problem of

determining working time as well as days-off for repair-people travelling between and

servicing faulty lifts whilst attempting to maintain a certain service level (number of

staff needed at any time to meet demand). The problem is formulated as a mixed IP.

The problem size was reduced by omitting some redundant variables and constraints

and the problem was solved using an IP solver. The obtained solution was used to

compare with the operating cost of the company’s approach.

Hueter and Swart [147] tackled a problem of labour scheduling for a fast-food

chain of restaurants. In their personnel scheduling problem, labour requirements

were determined for each 15-minute interval of the day using simulation and fore-

casting techniques. The problem was then modelled as an IP and solved using an

Lagrangean multipliers. Their labour management system had been used in many

stores (restaurants) and resulted in important savings as well as improvement of

quality of customer service. No computational results were provided.

Brusco and Johns [43] analysed the effect of different policies for scheduling a

multi-skilled maintenance staff at a paper mill factory. Each type of work could be

performed by workers with varying levels of productivity. This is known as cross-

training. Given a cross-training policy (represented by a matrix of levels of produc-

tivity for each worker class and for each work category) the problem of scheduling

daily shifts was formulated as an integer linear programme with a 30-minute break

for each worker. 36 cross-training policies were considered based on the possibility

of cross-training in one or two secondary skill class(es) (the primary skill class is the

one for which the worker was initially employed) at 100% or 50% productivity with

a symmetric or asymmetric matrix (in a symmetric matrix the productivity level of

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 76

employee skill class x working job of skill class y is the same as that of employee

skill class y working a job of skill class x). Different demand patterns were also

considered. Experimental results revealed that policies assuming a 100% productiv-

ity for secondary skill class produced the minimum cost of labour utilisation. The

authors recommended the use of policies with asymmetric configurations assuming

a 100% productivity for secondary skill classes. It also appeared that partially cross

training employees in work categories can result in significant cost savings.

Billionnet [31] tackled a hierarchical workforce scheduling problem in which a

higher qualified worker could be assigned to lower-qualification work but not vice

versa. The problem was to determine the days off for each worker. It was modelled

using MPL (Mathematical Programming Language) and solved using an IP solver.

Results obtained showed that integer programming was an effective approach as it

produced good results on various instances in a short amount of time. The model

was extended to take account of further constraints or objectives in particular max-

imising the number of consecutive off-days for each worker. In this latter objective

the choice of formulation turned out to be of crucial importance for obtaining good

results in reasonable computing time. Although integer programming seemed to

be suitable for their workforce scheduling problem, it would be interesting to apply

their approach to large-size problems in order to test the robustness of the method.

Alfares et al. [11] proposed an integrated approach for solving project operations

and personnel scheduling simultaneously. Project operations scheduling determines

a schedule (calendar) of the different operations of a project to be performed within

a certain period of time subject to temporal and precedence constraints on each

operation (task). A problem of scheduling personnel occurred since the different

tasks of the project had to be performed by workers. Both problems were usually

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 77

solved using a two-phase approach that first solves the project scheduling problem

and then the personnel scheduling problem based on the results of the first problem.

The authors modelled both problems as a unique IP and solved the resulting pro-

gramme using an IP solver. Computational results showed that their approach was

superior to the two-phase one in terms of total project cost, labour cost and labour

utilisation.

Kumar and Arora [169] addressed a workforce scheduling problem at a US news-

paper company. The authors decomposed the complex heterogeneous system of the

newspaper into homogeneous classes based on the type of activity and the type of

section in the newspaper (i.e. news, display, advertisements). This in turn deter-

mined the different equipment sizes required. Based on these requirement sizes, the

workforce size was calculated for each shift. The implementation of the workforce

planning model, along with some equipment innovations, was expected to generate

significant savings to the company.

4.3 Specific applications

In addition to the general labour scheduling problem detailed above, there have been

a number of specific applications. Within each application, personnel scheduling

problems have been solved using various techniques, often developed especially for

that specific application. Thus each specific application domain has developed in its

own right. Specific personnel scheduling applications together with some example

references include:

1. Transportation: This deals with the scheduling of crew members for buses,

airplanes and trains. A comprehensive survey can be found in [33]. More

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 78

Authors/year Scheduling environment Model Method

Bechtold and Jacobs’90 [25] (24-hr, 0-60min, 1b, FT) imp. IP IPS
Schindler and Semmel’93 [239] (≥ 8.5hr, 15min, 3b, FT/PT) IP IPS
Thompson’95 [263] (12/15/16/20hr, 15/30min, 1/2b, FT/PT) imp. IP IPS
Aykin’96 [15] (24-hr, 15-min, 3b, FT) imp. IP IPS
Thompson’96 [261] (15-hr, 15/30-min, 0b, FT/PT) IP H
Thompson’97 [262] upon employee’s preferences IP H
Hueter and Swart’98 [147] (-, 15-min, -, -) IP IPS
Brusco and Johns’98 [43] (24-hr, 30-min, 1b, FT) IP IPS
Aykin’00 [16] (24-hr, 15-min, 3b, FT) imp. IP IPS

Table 4.1: Shift Scheduling environments: The scheduling environment in the second
column is given in the following format: (operating hours [hr = hour] , planning
period [min = minute], number of breaks [b = break], existence of Full Time [FT]
and/or Part Time [PT] employees). IP = Integer Programme, IPS = IP Solver, H
= heuristic, imp = implicit.

Authors/year Scheduling environment Model Method

Alfares’98 [10] (-, 1-d,-, -) IP IPS
Billionnet’99 [31] (3/4/5-d, 1-d, - , FT) IP IPS

Alfares et al.9́9 [11] (5/6/7-d, 1-d, -, FT) IP IPS

Table 4.2: Days-off Scheduling environments: The scheduling environment in the
second column is given in the following format: (operating hours [hr = hour, d =
day] , planning period [min = minute], number of breaks [b = break], existence of
Full Time [FT] and/or Part Time [PT] employees). IP = Integer Programme, IPS
= IP Solver.

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 79

Authors/year Scheduling environment Model Method

Love and Hoey’90 [183] (18hr, 30min,-, -) IP IPS
Bechtold et al.’91[24] (16hr, 1hr, 1b, FT) IP IPS + H
Brusco and Jacobs’93 [37] (24hr, 1hr,1b, FT) IP H
Jarrah et al.’94 [151] (20hr, 30min, 1b , FT/PT) IP+ lower bound IPS + H
Brusco et al.’95 [45] (24hr, 15min, 2b, FT/PT) IP H
Brusco and Jacobs’95 [38] (24hr, 1hr,1b, FT/PT) IP IPS + H
Brusco and Johns’95 [41] (12-16hr, 1hr,1b, FT/PT) IP H
Thompson’95 [260] (18hr, 1hr, 1b, FT) IP H
Bailey et al.’95 [19] (-, 1d, -, -) IP H
Brusco and Johns’96 [42] (16hr, 1hr,1b, FT/PT) IP H
Jacobs and Brusco’96 [150] (24hr, 1hr, -, -) IP IPS
Easton and Rossin’96 [95] (16hr, 1hr, 1b, FT/PT) SGP H
Beaumont’97 [23] (24-hr, 20min, 1b, FT/PT) IP IPS
Berman et al.’97 [27] (24hr, 30min, 1b, FT/PT) IP IPS
Easton and Rossin’97 [96] (12, 16, 20hr, 1hr, 1b, FT) IP H
Brusco and Jacobs’98 [39] (24hr, 15min, 0b, FT/PT) IP H
Brusco’98 [36] (12/16hr, 1hr, 2b, FT/PT) IP IPS
Easton and Mansour’99 [94] (16hr, 1hr, -, FT/PT) IP H
Brusco and Jacobs’00 [44] (7d-24hr, 1hr, 1b, -) IP IPS
Cai and Li’00 [56] (24hr, 1hr, 1b, FT) Multi-criteria IP H
Brusco and Jacobs’01 [40] (24hr, 1hr, 0b, FT) IP IPS + H

Table 4.3: Tour Scheduling environments: The scheduling environment in the second
column is given in the following format: (operating hours [hr = hour] , planning
period [min = minute], number of breaks [b = break], existence of Full Time [FT]
and/or Part Time [PT] employees). IP = Integer Programme, IPS = IP Solver, H
= heuristic, imp = implicit, SGP = Stochastic Goal Programme.

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 80

recent articles include [13, 62].

2. Health care: The most frequent problem is that of scheduling hospital nurses.

A problem of scheduling nurses is also studied in this thesis. A survey can be

found in [34]. More recent papers include [89, 152, 191, 9].

3. Protection and emergency services: This includes the scheduling of police

officers, ambulance drivers, etc. Papers in this application include [257, 98].

4. Government: [177, 207].

5. Venue management: [88, 188].

6. Financial services: for example bank and accounting firm personnel [184, 83].

7. Hospitality and tourism: for example hotel personnel[223, 181].

8. Retail: for instance [146, 141].

9. Manufacturing: for example [1, 100].

10. Educational institutions: though this is often classified as timetabling; for

example [236, 73].

11. Miscellaneous applications: Religious institutions [67], judicial institutions

[240], fast food personnel [183], security personnel [192], media personnel [131],

and other kinds of commercial companies [69].

4.4 Summary

Personnel scheduling is a very wide field with hundreds of articles reporting different

modelling and solution techniques used in various applications, some of which have

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 81

developed into fields in their own right (e.g. crew scheduling, nurse scheduling). In

this survey we have focussed on the general personnel scheduling problem also known

as the labour scheduling problem. Labour scheduling comprises shift, days-off and

tour scheduling problems. One important element in solving these problems is the

environmental conditions (operating hours, planning periods, existence of breaks for

employees, existence of part-time employees in addition to full-time ones). In Table

4.1, Table 4.2 and Table 4.3 we report some of the environmental conditions encoun-

tered in the literature for shift, days-off and tour scheduling problems respectively.

We also mention the type of solution method utilised (exact or heuristic). We note

that both exact and heuristic based methods have been used.

As in other real-world applications, models developed for personnel scheduling

are sometimes a simplification of the reality, though in most cases they remain

realistic enough to produce practical solutions. Hence most personnel scheduling

application solutions were actually implemented. In most cases the implementation

of the solution resulted in significant savings. Not surprisingly, many major organ-

isations now have a team or department specialised in just workforce scheduling

(e.g United Airlines, Lufthansa, British Telecom, etc.). When heuristic methods are

used, ‘add’ and ‘drop’ an employee are among the most widely used moves. For

large organisations both modelling and implementation of the solution require a

considerable amount of time due to several complex considerations inherent to the

real world.

Research efforts on labour scheduling can be grouped into three categories which

lay the foundations for current and future trends in the field:

The need for powerful mathematical models which allows flexibility: This is

due to the peculiarity of this field. Due to the fact that in personnel scheduling

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 82

one deals with people (rather than machines as in machine scheduling) one has to

accommodate, employee preferences, work regulations (which are often the result of

workers’ unions and / or government regulations) and high-quality customer service.

Efforts in this direction include [25, 260, 150, 15, 44, 16].

The need for improvement on existing exact solution methods: This is only

possible when dealing with fairly small problem sizes. Examples include the work

by Brusco [36].

Finally the use of heuristic method appears to be very promising as it allows

for better handling of large problem sizes. Furthermore it is sometimes possible to

obtain good-quality solutions quickly. Examples include [261, 45, 95, 266]. Simu-

lated annealing seems to be the most widely used metaheuristic method perhaps due

its ease of implementation [142]. As the survey shows (see section 4.2.3), the use

of heuristic methods in personnel scheduling can help enhance flexibility in terms

of placement of meal and relief breaks during shifts, workforce size, types of shifts

used, shift start times, work location, work completion time-windows etc. A typical

problem in many service organisations is the fact that demand is often highly vari-

able (see section 4.1). In this situation, exact algorithms can only produce solutions

that are optimal for the original problem data. Because heuristic methods produce

approximate solutions they are less dependent on the accuracy of the problem data

than exact methods. An additional advantage of heuristic methods is that they

require shorter implementation times.

A number of personnel scheduling heuristic methods have been developed and it

is not always clear which heuristic(s) to use. A step towards answering this question

is the investigation of hyperheuristic methods, that is, heuristics which recommend

an appropriate heuristic chosen amongst other heuristics in order to solve a given

CHAPTER 4. RELATED WORK: PERSONNEL SCHEDULING 83

personnel scheduling problem. By using hyperheuristics, not only are we able to

address the issue of choosing an appropriate heuristic amongst a given number of

them, but also we are able to preserve all qualities associated with heuristic methods

as discussed above (i.e. flexibility enhancement). As we shall see in later chapters,

there is room here for hyperheuristics to be employed. Indeed, one of the aims

of this thesis is to raise the level of generality of (meta)heuristics by developing

hyperheuristics which can manage several low-level heuristics and cope with different

constraints in different domains. Chapters 6, 7 and 8 will demonstrate this.

Chapter 5

Hyperheuristics for personnel

scheduling

5.1 Introduction

In chapter 1, we gave an introduction to the concept of hyperheuristics including a

general hyperheuristic framework as illustrated in Figure 1.1. For a given problem

and a given number of low-level heuristics for that problem, the hyperheuristic

approach that we discuss in this thesis selects and applies an appropriate low-level

heuristic at each decision point. This process continues until a stopping condition

has been met. The hyperheuristic then outputs the best solution(s) found during

the process.

The key question is how the process is actually carried out, or, in other words,

how should we design and develop a hyperheuristic?

In order to generate an automated method for a given NP-hard optimisation

84

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 85

problem, a software developer must produce a solution technique which takes into

account the context within which the technique will be used. For example:

• Will the resulting software program be used for other types of problems?

• Does the problem owner place much emphasis on solution quality?

• What are the problem owner’s criteria for acceptable solution quality?

• Is the problem owner prepared to invest a lot of time in the development of the

technique?

• Is computational time an issue?

These issues are often discussed in the scientific community and are also known

to be part of soft operational research (Soft OR) / system dynamics; in which the

nature of concept definition and comparison is highly qualitative, as opposed to

quantitative [233, 269].

In this thesis, we are looking into developing a technique which can be easily

applied to different problems; i.e. we require a method which was not designed with

one particular problem (or problem instance) in mind but is, instead, applicable

to a wide range of problems and domains. This is not to say that we intend to

develop a panacea. The aim is not to solve all problems with one method, but

is to raise the level of generality from its current low-levels. The No Free Lunch

Theorem [277] implies that the former objective cannot be achieved anyway. The

more general method should require as little customisation as possible when applied

to a new problem, perhaps at the expense of reduced but still acceptable solution

quality (when compared with made-to-measure bespoke metaheuristic techniques).

It should therefore be a quick-to-implement method.

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 86

5.2 Designing hyperheuristics

In this section we discuss design issues related to the development of hyperheuristics.

The number of design choices possible is so large that it is difficult to consider every

possibility. As will be seen throughout this section there is a wide range of choices

possible for each topic discussed, and one has to limit these choices to a small number

in order to allow for a thorough investigation of the chosen hyperheuristic design and

thus gain valuable insights. To discuss these design issues, and to define directions

for hyperheuristic research, it is useful to imagine the hyperheuristic paradigm as

having three levels of abstraction. We depict this in Figure 5.1.

5.2.1 Level 0: Problem representation

Partial and complete solutions

At the lowest level (level 0), we must first determine whether one deals with partial

solutions or complete solutions. These notions are best explained by way of example.

An example of a hyperheuristic which deals with partial solutions is presented in

[234]. The problem is that of bin packing. A given number of items must be packed

in bins. Bins are of different sizes and the aim is to pack all items in the minimum

number of bins. A complete solution to the problem is one in which all items

have been placed in bins, (an optimal solution being one in which the number of

bins used to pack all items is minimum). A partial solution to the problem is one

in which not all items have been packed. We should be clear about whether the

hyperheuristic will be dealing with partial or complete solutions during its execution.

It should be noted however that the focus of our attention is less on the actual nature

of the solution (whether partial or complete) than on the hyperheuristic process.

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 87

- Acceptance criteria?

- Learning mechanism, heuristic ranking?

- Definition of decision point?
- Actual selection of heuristics?

- Single solution or population of solutions?
- Single or multiple objective(s)?

- Complete or partial solution(s)?

- Are they metaheuristics?
- How long are they applied for?
- How are they applied?
- How many?

BLACK BOX

Level 2

Level 1

Level 0

PROBLEM / SOLUTION

LOW-LEVEL HEURISTICS

HYPERHEURISTIC

Figure 5.1: Design issues for the development of a hyperheuristic

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 88

Consequently, by partial solutions we mean the intermediate incomplete solutions

formed during an incremental and constructive process. This is explained in the

next two subsections.

Hyperheuristics dealing with partial solutions

In the hyperheuristic approach of [234], the hyperheuristic starts with an empty

partial solution, that is, no items are packed yet. Then during the process, the

hyperheuristic deals with partial solutions. It selects and applies an appropriate

bin-packing heuristic to a given partial solution, then, if the resulting solution is

not complete, the hyperheuristic must select and apply another (possibly the same)

heuristic to the resulting partial solution, and so on until a complete solution has

been obtained.

The question of whether we are dealing with a partial or complete solution is

crucial when developing a hyperheuristic. Effectively, depending on whether the

hyperheuristic will be manipulating (by way of the low-level heuristics) partial or

complete solutions, the sort of information collated in order to select a low-level

heuristic will be different. Thus in [234], what really matters is information about

the state of the problem, e.g. what percentage of small, medium and large items

have been packed. Figure 5.2 illustrates a general framework for this type of hyper-

heuristic.

A general hyperheuristic procedure in this case (i.e. when dealing with partial

solutions) can be illustrated in the following pseudocode:

Do

Select a low-level heuristic and apply it to the current problem state

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 89

Select and apply most appropriate
heuristic for the current problem state

Stop when final state is reached

HYPERHEURISTIC BLACK BOX
PARTIAL SOLUTION in problem state space

Input low-level heuristics which can operate

Input description of problem states considered

Output solution (s) to the problem

Figure 5.2: General hyperheuristic framework when dealing with partial solutions

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 90

(partial solution).

Until Final problem state.

Here, the hyperheuristic process starts from an initial problem state, which could

be, for example, an empty solution. The final state corresponds to a complete

solution to the problem. Therefore the hyperheuristic repeatedly selects and applies

a low-level level heuristic to the current problem state. This process continues until

the final state has been reached. Of course, the key here is to select the low-level

heuristic that is in some sense the most suitable for the current problem state [48].

In order to identify which heuristics are most suitable for which problem states it is

necessary to train the hyperheuristic using a training set of problem instances. Then

a test set of problems can be used to assess the performance of the hyperheuristic

on new problem instances. This type of hyperheuristic approach is therefore useful

when dealing with a large number of problem instances. For example in [234], the

authors had over 900 bin-packing problem instances available. Training and test

sets of problem instances are also frequently used in AI planning systems [106, 132].

Hyperheuristics dealing with complete solutions

If there are not enough problem instances available for training and testing of the

method, it might be more useful to consider hyperheuristics which deal with com-

plete solutions - It should be mentioned that dealing with complete solutions will

often mean dealing with ‘almost’ complete solutions. Note that this is the case in

most metaheuristic implementations. Indeed, at the beginning of the search pro-

cess, a complete solution is constructed. Then, through a series of improvements

(local search) a final solution is obtained, which is (hopefully) of better quality than

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 91

the initial solution. In this thesis we develop hyperheuristics which deal with (al-

most) complete solutions. A general hyperheuristic procedure in this case (i.e. when

dealing with complete solutions) can be illustrated in the following pseudocode:

Do

Select a low-level heuristic and apply it to the current (complete) solution.

Until Stopping condition is met.

Here, the hyperheuristic starts with an initial complete solution, which, for exam-

ple, could be obtained using a constructive procedure. The constructive procedure

starts with an empty solution and returns a complete solution which may or may not

meet the problem’s constraints (i.e. feasibility). The hyperheuristic can try to im-

prove on the current solution using different local search operators (e.g. heuristics)

and neighbourhood structures. The hyperheuristic repeatedly selects and applies

a low-level level heuristic to the current complete solution. This process continues

until a stopping condition has been met. The stopping condition must be input by

the user. It can be given in terms of the number of iterations, the maximum amount

of CPU time allowed, the maximum number of iterations or maximum amount of

CPU time without consecutive improvement, when a solution has an objective value

below (above) a certain threshold for a minimisation (maximisation) problem, etc.

When the stopping condition has been met, the hyperheuristic process stops and

returns the best solution(s) found during the search. Of course the output solution

is, like the initial solution, complete. Note therefore that an initial solution must be

input to the hyperheuristic black box. Figure 5.3 illustrates the framework of this

type of hyperheuristic.

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 92

heuristic to the current solution
Select and apply an appropriate

initial solution(s), stopping condition

in solution space

Stop when stopping condition holds

COMPLETE SOLUTION

Input description of problem: objective function(s),

HYPERHEURISTIC BLACK BOX

Input low-level heuristics which can operate

Output solution (s) to the problem

Figure 5.3: General hyperheuristic framework when dealing with complete solutions

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 93

Remarks

1. It should be noted that while hyperheuristics which deal with partial solutions

need to go through a training phase before being applied to new problems,

hyperheuristics which deal with complete solution do not require such a train-

ing phase but they do require a constructive phase. Once an initial solution

has been produced, the (complete solution) hyperheuristic is directly applied

to whatever problem(s) is(are) at hand. The training in the case of a hyper-

heuristic which deals with (almost) complete solutions is online or implicit as

opposed to the offline or explicit training required by a hyperheuristic which

deals with partial solutions. When the hyperheuristic deals with complete so-

lutions, the low-level heuristics used operate in the solution space. Whereas

when the hyperheuristic deals with partial solutions, the low-level heuristics

used operate in the space of problem states.

2. When considering hyperheuristics which deal with complete solutions, the hy-

perheuristic can switch from one low-level heuristic to another during the search

process. Whereas when dealing with partial solutions, the time it takes to

switch between heuristics can be longer. For example in [234], the hyperheuris-

tic which deals with partial solutions considers the possibility of switching be-

tween heuristics not after an item has been placed in a bin, but after a bin has

been filled (in their problem, this takes several items). In AI planning systems,

the time it takes to consider a possible switch can be even longer. For example

in [106, 132], the switch is only considered after an entire problem instance has

been solved. This issue of decision point is further discussed in level 2 below.

3. Note that when dealing with partial solutions, it is not always appropriate

to use the objective function during the hyperheuristic solution process. In

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 94

effect the objective function, which is used to assess the quality of complete

solutions is not suitable for evaluating partial solutions. Since, essentially, the

hyperheuristic is constructing a solution from scratch (using different low-level

heuristics), there is no need to evaluate partial solutions obtained during the

process using the objective function of a complete solution. Of course differ-

ent ways of evaluating partial solutions can be used. For example, in Greedy

Randomised Adaptive Search Procedures (GRASP), a cost is used which eval-

uates the state of partial solutions obtained when adding constructive elements

in order to form a complete solution [231]. The objective function (which is

for a complete solution) in this case is only needed at the end of the solution

process in order to assess solution quality. The cost function used in GRASP

evaluates partial solutions which do not have all the elements that make up

a complete solution. Such solutions cannot be evaluated using the objective

function for complete solutions because the objective function assumes that all

the elements that make up a complete solutions are present. For example, in

the sales summit scheduling problem of chapter 6 (which was briefly described

in chapter 1), one of the objectives of the problem is to minimise the number

of delegates scheduled to attend the summit. It is clear that if this objective

of minimising the number of delegates was used to evaluate partial solutions

during the execution of a hyperheuristic which deals with partial solutions (and

in fact during any constructive solution process), the empty solution (which is

a partial solution in which no delegate has been scheduled for meetings) would

be optimal, whereas complete solutions would be far from optimality as they

involve a certain number of delegates. This again highlights another difference

with a complete solution hyperheuristic which does not construct a solution,

but instead, iteratively improves on an initial solution (by using different low-

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 95

level heuristics). Consequently, it is necessary to have some sort of (complete)

evaluation function throughout the search process. A hyperheuristic which

deals with partial solutions is a constructive hyperheuristic. The hyperheuris-

tic methodology discussed in this thesis (which deals with complete solutions)

is a local search hyperheuristic.

4. Whether the low-level heuristics operate in the solution space (complete so-

lutions) or the space of problem states (partial solutions), the hyperheuristic

operates in the space of heuristics as is the case in [250, 251]. In other words,

whether the hyperheuristic is a constructive or a local search hyperheuristic,

it operates in the heuristic space, not the solution space. Of course, most

metaheuristic studies operate in the solution space.

5. Table 5.1 highlights the main conceptual differences between hyperheuristics

which deal with partial solutions and those which deal with complete solutions.

One of the important points made in the table is about the re-usability or gen-

erality of both types of hyperheuristic. Because partial solution hyperheuristics

require training for each class of problem, they are less easily (readily) re-usable

than complete solution hyperheuristics which can be self-adaptive. In effect,

the nature of incremental solution construction gives rise to a large number

of different problem states (as explained above). Heuristics that are adaptive

to such problems would be difficult to design, and training techniques might

therefore be useful.

6. It is possible to combine both types of hyperheuristics so that in a first phase

a hyperheuristic which deals with partial solutions can be invoked in order

to construct a solution from scratch. The solution thus obtained using the

constructive hyperheuristic can then be used as the starting point of a second

phase during which a hyperheuristic which deals with (almost) complete solu-

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 96

Complete solutions Partial solutions

Initial solution constructed usually empty
Training phase No (implicit) Yes (explicit)
Objective function Yes Other measures
Frequency of decision points High Low
Low-level heuristics operate in solution space operate in state space
Stopping condition user-defined (automatic) final state
Re-usability Easy Less (training required for each problem)

Table 5.1: Conceptual differences between hyperheuristics which deal with complete
solutions and those which deal with partial solutions.

tions is employed to improve on the initial solution using different local search

operators (e.g. low-level heuristics).

7. As already mentioned, the remainder of this thesis is concerned with complete

solution hyperheuristics. We discuss below further design issues related to such

hyperheuristics.

Solution acceptance criteria

Another issue which needs discussing concerns the criteria for accepting a solution.

We distinguish two types of acceptance criteria.

• A solution may be accepted regardless of whether it is better or worse than the

previous one (all moves, AM).

• A solution may be accepted only if it is better than the previous one (only

improving, OI).

Note that OI can easily get stuck in local optima, due to the fact that it does not

accept a solution that is worse than the current. We might therefore expect AM to

discover promising areas more often than OI if given enough time. The resulting AM

hyperheuristic should therefore produce better results than its OI variant, although

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 97

this is not always guaranteed. In effect, accepting all moves (AM) may also hinder

intensification of the search, if the moves it allows are too destructive. In such

situations, OI, which maintains focus on restricted portions of the search space, will

encourage moves which can produce better solutions. Of course, it is possible to use

a mixture of AM and OI during the search. For example simulated annealing always

accepts better moves (OI) and sometimes accepts worse moves (AM), though the

AM moves which worsen the solution are accepted with a certain probability [142].

We also present a simulated annealing hyperheuristic at the end of this chapter

which uses both OI and AM during its search.

Objective function(s)

It is also important to be aware of the number of objectives of the problem. If

the problem has multiple objectives, is it possible to exploit this in order to pro-

duce even better hyperheuristic results? For example it is conceivable to imagine a

hyperheuristic which selects an appropriate low-level heuristic in order to improve

on one particular objective, rather than the overall objective function (possibly so

as to generate more varied Pareto local optima). Or should all individual objec-

tives simply be aggregated in one objective function? Indeed there is considerable

scope for research here. There are already attempts to hybridise hyperheuristics

and multi-objective Pareto optimisation techniques [53] based on results produced

in Chapters 6, 7 and 8. Although this thesis is not concerned with the investigation

of multi-objective techniques in hyperheuristics, we discuss how a particular type of

hyperheuristic which we have developed can cater for multi-objective optimisation

problems (section 5.3).

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 98

Point-based or population-based solution(s)

One option which might be worth considering is whether the hyperheuristic main-

tains a population of solutions to the application problem or not. It should be

pointed out that point-based methods (i.e. one solution) are usually less time-

consuming than population-based approaches. On the other hand, population-based

methods can produce good quality solutions by combining good features taken from

different individuals. In this thesis, we consider point-based local-search hyper-

heuristics for the following reasons.

• Population-based methods usually require a number of parameters which need

tuning. These parameters include the size of the population (i.e. the number

of individual solutions maintained at a time), crossover and mutation rates (if

using these operators), solution representation1 (including length of chromo-

some), reproduction scheme, selection of individuals for the next generation,

etc. The definition of these parameters often involves extensive tuning with

the resulting parameter settings being problem-specific [124]. This, of course,

hinders the goal of raising the level of generality sought in this thesis.

• A number of population-based hyperheuristics have already been developed

(e.g. [68, 87, 103, 135, 213, 259]). The research programme presented in this

thesis is motivated (partly) by the desire to explore novel and untried research

directions.

• Ideally a hyperheuristic method should be parameter-free, that is, all param-

eters are self-tuned and do not therefore require user specification. This goal

motivated the choice of point-based methods.

1though this is needed for point-based methods as well

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 99

5.2.2 Level 1: Low-level heuristics

Which heuristics and how many?

The first question here is with regard to the size of the set of low-level heuristics

used. How many heuristics should the hyperheuristic employ? If there are too few

heuristics, it might be difficult to ascertain the benefit of using a hyperheuristic.

Indeed the choice of heuristics in this case should not be too difficult, and it might

be worth considering much simpler ways of selecting between a small number of

heuristics. On the other hand, if there are too many low-level heuristics, the hyper-

heuristic may require too much time in order to learn how to select an appropriate

heuristic. Experiments on different sizes of the set of low-level heuristics are car-

ried out in chapter 6. Another important question is which heuristics to implement

or to input to the hyperheuristic balck box (if already implemented). Of course

the user can implement his / her own low-level heuristics and plug them into the

hyperheuristic black box. Simple low-level heuristics (e.g. ‘add’, ‘drop’, ‘swap’ ob-

jects) can be easily implemented and input to the black box. The idea is that some

heuristics come from existing (manual) solution approaches, together with a small

number of ‘add’, ‘drop’, ‘swap’ etc. operators until there is enough richness so that

good solutions can be reached from ‘okay’ solutions in only a small number of steps.

Of course, low-level heuristics are problem-specific. It is also possible to develop

systems which link to a maintained database of low-level heuristics, which could

be dragged-and-dropped into the hyperheuristic black-box. Each heuristic in the

database could be described in simple English terms so that the user can under-

stand what they do. The idea of storing previously built heuristics in a database

is not new. The machine learning paradigm of case-based reasoning has recently

been used to select heuristics for course timetabling problems [51, 220]. In [51, 220],

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 100

the case-based reasoning system maintains a case base of information regarding the

performance of different heuristics on timetabling problems previously solved.

How to apply the chosen heuristics?

It is important to know how the chosen low-level heuristics are going to be applied.

For example the chosen heuristic can be applied once. The heuristic could also be

repetitively applied as long as it yields a better solution, that is, until it reaches a

local optimum with regard to the corresponding neighbourhood (steepest descent).

One way of controlling this is to apply a selected heuristic in a steepest descent

fashion when exploiting the heuristic (high-level intensification) and in a single call

fashion when exploring the space of heuristics (high-level diversification).

Low-level (meta)heuristics

Finally it should be pointed out that the low-level heuristics plugged ino the black

box can be, themselves, metaheuristics. For example we could have a hyperheuristic

which chooses between several variants of the same metaheuristics, e.g. different

variants of a simulated annealing algorithm each with different parameters. The

key for the hyperheuristic here would be parameter selection for each variant of the

low-level simulated annealing algorithms. It is also perfectly conceivable to imagine

a hyperheuristic system which decides to run, say a tabu-search approach for a

certain duration and which then switches to a simulated annealing algorithm or

a genetic algorithm and so on. However, it is not clear at all how we assess the

contribution of each metaheuristic towards solution quality. The resulting system

may be so complex that it is difficult to clearly identify which metaheuristic was

most useful. In this thesis we consider the use of simple heuristics. The use of

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 101

sophisticated metaheuristics at the low level counters the idea of developing cheap

and easy-to-implement systems. The point here is that simple low-level heuristics

pave the way to cheap and easy-to-implement systems.

It should be acknowledged however that this view is taken from an application

standpoint. From a research point of view, hyperheuristics could be employed in

order to compare different sophisticated metaheuristics. In fact, when significant

progress is made in this area, it may be appropriate to investigate the intelligent

selection of metaheuristics (or even low-level hyperheuristics!).

5.2.3 Level 2: hyperheuristic (high-level heuristic)

Learning mechanism

A key ingredient in implementing certain hyperheuristic approaches is the learning

mechanism, which guides the hyperheuristic in the way in which low-level heuris-

tics are selected. The survey of hyperheuristics (chapter 2) discussed the use of

learning mechanisms. Different types of hyperheuristics will have different ways of

selecting the low-level heuristics, e.g. genetic-algorithm hyperheuristics [68, 138],

learning classifier systems [234], etc. In this thesis, we use a choice function as a

learning mechanism for the hyperheuristic. Note that a number of hyperheuristics in

which the low-level heuristics are chosen at random (i.e. such hyperheuristics have

no learning) can be implemented. The point in using non-learning hyperheuris-

tics is to compare them against hyperheuristics which are equipped with a learning

mechanism. A comparison between simple hyperheuristics (without learning) and

sophisticated hyperheuristics would help determine whether the incorporation of a

learning mechanism in a hyperheuristic is beneficial. Both our simple and sophisti-

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 102

cated choice function hyperheuristics will be presented in the next two sections.

An effective hyperheuristic learning mechanism must achieve an appropriate bal-

ance between the exploitation of the search experience gathered so far and the ex-

ploration of unvisited or relatively unexplored parts of the search space. There are

several ways in which such a balance can be achieved, which comes down to when

should different types of heuristics be applied? For example when dealing with local

search hyperheuristics, it is clear that always selecting the best performing low-level

heuristics (the ones that improve on the solution) will lead to local optima with

respect to the corresponding neighbourhoods which may be of low quality2. It is

therefore important to allow for a learning mechanism which selects ‘bad’ low-level

heuristics at certain points during the hyperheuristic search in order to escape from

the local optima and explore other areas of the search space. As will be explained

below, the choice function hyperheuristic provides a way of addressing the balance

between exploitation and exploration. Of course, randomisation is another means

of exploration of different parts of the search space. This is also taken into account

in our hyperheuristic methods which are presented in the next section.

There should be a clear distinction between the control over the execution of

the low-level heuristics and the control over the way solutions are chosen (or neigh-

bourhood moves). While in the former situation, the search is taking place in the

space of heuristics, in the latter situation the search is taking place in the space of

solutions to the problem. The hyperheuristic has no direct control over the solution

space, within which low-level heuristics operate. The hyperheuristic only has direct

control over the low-level heuristics. Consequently, the hyperheuristic has no direct

intensification and diversification components as such. Instead, the hyperheuristic

has exploitation and exploration components. Exploitation and exploration can be

2Getting quickly to good local optimum is often desirable.

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 103

viewed as being analogous to intensification and diversification respectively. How-

ever intensification and diversification do not take place in the solution space (as is

the case with most metaheuristic approaches) but instead in the heuristic space.

Decision points

Another issue concerning the design of hyperheuristics is the determination of de-

cision points. A decision point is a point at which a heuristic must be chosen, or

in other words a point at which a heuristic trial takes place. This can be done in

a number of ways. To remain general, a single trial of a low level heuristic can be

defined as v trials where v is a positive integer. The discussion regarding decision

points becomes therefore a discussion regarding the value of v. v can be constant

throughout the hyperheuristic search. For example if v = 1 for the entire duration

of the hyperheuristic solution process we are in presence of a hyperheuristic which

repeatedly chooses a low-level heuristic and applies it once. Another possibility is

to maintain a variable v. The value of v can be for example the number of steps it

takes to apply a chosen low-level heuristic until no further improvement is possible

(steepest descent). v can be chosen to be a large number, (e.g. 20000). This would

be useful for example in situations where the chosen low-level heuristic operates in a

very large neighbourhood of solutions. In such large neighbourhoods it is not easy to

assess the performance of the chosen low-level heuristic in just a few trials. v can also

be determined to be specific for each low-level heuristic and even in this case, each

heuristic-specific v can be constant or variable. The value of v can be a function of a

number of factors such as the amount of CPU time given to a particular heuristic or

group of heuristics, if the solution produced has reached a certain threshold, if the

change in the objective function value is within or outside a predefined interval, etc.

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 104

Again the number of possibilities is enormous. In this thesis we choose v = k when

exploiting the search and v = 1 when exploring the space of heuristics; where k is

the number of steps (trials) necessary to reach a local optimum with respect to the

neighbourhood of the chosen heuristic. This means that v is heuristic-specific. Also,

it seems likely that the hyperheuristic prediction is more accurate with a smaller v

as there will be more decision points, and therefore more statistical data points to

consider.

Remark In the case where v is large there may be further issues to consider. For

example the notion of change in the objective function value must be cleary defined.

In effect, the change in the objective function value can be calculated as being the

difference between

• best solution found by current trial and best solution to date

• best solution found by current trial and best solution found by previous trial

• mean solution value over current trial and mean solution value over previous

trial

• mean value of solutions sampled in current trial and mean value of solutions

sampled in previous trial

• mean solution value of accepted solutions in current trial and mean solution

value of accepted solutions in previous trial.

Note that the third option differs from the fifth option in that the former is

averaged over all v solutions whether or not they have been updated whereas the

latter is based on trials resulting in an update.

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 105

Heuristic selection

Once the decision point has been determined, we must focus on the actual selection

of the heuristics. Of course this is related to the learning mechanism. The ques-

tion here is whether the hyperheuristic should systematically use the top low-level

heuristic as suggested by the learning mechanism or not. Indeed the hyperheuris-

tic may decide to choose another heuristic in the top d heuristics suggested by the

learning mechanism. In this thesis we shall choose the top heuristic suggested by

the choice function learning mechanism. This was suggested by Nareyek [211, 210].

The other reason for this choice is that it is difficult to ascertain the role played by

the learning mechanism if its recommendations are not always followed by the hy-

perheuristic (this does not mean that a hyperheuristic which does not always follow

the recommendations of the learning mechanism cannot perform well).

Remark

The problem of designing a hyperheuristic framework in which a high level heuristic

controls a number of low-level heuristics, has a very large solution space, namely

the set of all possible design choices at all three levels. Indeed, the number of pos-

sible ways in which to combine various choices of the design of a hyperheuristic

as presented in Figure 5.1 is very large. Of course there are other problems, such

as designing of aircrafts, computers and other complex civil engineering structures,

that also have large design spaces. However for many of these other problems, it

is possible to quickly evaluate candidate solutions (i.e. design choices) by means

of extensive simulations and verification facilities. For example, it is possible to

use strategies which ‘generate and test’ different candidate solutions proposed by

humans or artificial expert systems. Unfortunately, such simulation and verification

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 106

facilities are not available when designing hyperheuristic frameworks. It is therefore

necessary to prune the space of design solutions, leaving a smaller and more easily

searched sub-space [256]. The hyperheuristics presented in the next section consti-

tute one such sub-space. The design issues discussed in this section highlight the

large number of design choices possible.

5.2.4 Guidelines for designing hyperheuristics

We present below general guidelines for how to build a hyperheuristic.

1. The first thing to do when one is considering the development of a hyperheuris-

tic is to carry out some sort of qualitative analysis of the issues at stake. Do

we really need a hyperheuristic? What sort of problems will the hyperheuristic

be applied to? How often do we have problems that need solving? What sort

of solution quality do we need? How many problem instances are they? This

is known as Soft OR or system dynamics and should take place before any

quantitative study [233, 269]. At this stage there are no definite answers.

2. If the number of problem instances to be solved at one time (here, time should

be taken in the broad sense - e.g. a day) is relatively little, (e.g. 1 to 100) it

might not be worth developing a hyperheuristic which requires initial training.

This is because the number of problem instances to be solved may not be

large enough to allow for an effective learning during the training phase (i.e.

not enough statistical data points). Also there may not be enough problem

instances in the training set to justify the need for such training. If there is

relatively a small number of problem instances to be solved it might be a good

idea to consider local search hyperheuristics. For each of the few problems

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 107

to be solved, the hyperheuristic will iteratively attempt to solve the problem

without an initial training phase. Because local search hyperheuristics such as

the ones developed in this thesis do not require an initial training phase, they

can be applied not only to different instances of the same problem but also to

different problems.

3. If there is a large number of problem instances to be solved at one time (e.g hun-

dreds or even thousands of problem instances) it might be very time consum-

ing to apply a local search hyperheuristic to each of these problem instances.

The problem with local search hyperheuristics which do not require an initial

training phase is that the learning achieved during the solution process of one

problem instance is not passed on to other problem instances, which results in

the hyperheuristic having to learn again every time it is applied to a different

problem instance (the hyperheuristic ‘forgets’ what it has learned at the end

of the solution process for each given instance). This is not desirable when

dealing with a very large number of problem instances. If there is a very large

number of instances of the same problem it might be beneficial to consider

a hyperheuristic which learns how to apply good heuristics during a training

phase. The advantage here is that the learning takes place across all instances

of the training set and what was learnt in one instance can be used in another.

At the end of the training phase the hyperheuristic can be applied to a test

set in order to assess its performance. When the hyperheuristic requires initial

training, it might be useful to consider partial solutions as the key here is to

match a given problem state with the most suitable low-level heuristic [48].

Since most real-world problems have a large (if not infinite) solution space,

it is (often) impractical to consider describing all problem states in terms of

complete solutions. The benefit of using partial solutions is that a point in

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 108

the problem state space corresponds to several points in the space of partial

solutions. The disadvantage for hyperheuristics here is that an initial training

phase is required for each problem.

4. Consider a modular description of your hyperheuristic (Divide and Conquer

strategy). For example we can view the hyperheuristic system as being made

of two modules. The first module contains the learning mechanism as well

as information as to whether a single solution or a population of solutions is

maintained. The learning mechanism tells the hyperheuristic which heuristic

to choose at each decision point. The second module contains the low-level

heuristics and the evaluation function, which tells us how solutions (whether

partial or complete) are evaluated during the solution process. The first mod-

ule is generic whereas the second module is problem-specific. This modular

description allows us to see that once the learning mechanism is developed (i.e.

the first module), one only needs to input low-level heuristics and an evaluation

function. This would be all that is needed in order to apply a hyperheuristic

to a given problem. The low-level heuristics are simple and easy-to-implement.

This paves the way for a cheap hyperheuristic system which is easily re-usable

across a wide range of problems.

5. Keep it simple where possible.

Of course these are guidelines, not rules. They can therefore be modified to

suit specific needs and thus create different flavours of hyperheuristics (e.g. combin-

ing a constructive hyperheuristic with a local search hyperheuristic, incorporating

problem-specific considerations in the learning mechanism module, using sophisti-

cated metaheuristics as low-level heuristics, evolving a population of hyperheuristics,

etc.). As can be seen the hyperheuristic designer can be as imaginative as they wish.

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 109

Solution(s) complete or partial
single or population

Heuristics simple or sophisticated (metaheuristics)
applied once or several times
constructive or local search

Learning mechanism search in heuristic space is single point or population based
initial training phase or not

Table 5.2: A summary of key issues when designing a hyperheuristic

5.2.5 Summary

To conclude this section, we give in Table 5.2 below a summary of the key issues that

need to be considered when designing a hyperheuristic. These issues have already

been discussed above.

In the next section we present our own hyperheuristics. We choose a single-

point approach as opposed to a population based approach because of the large

number of parameters involved when one is dealing with a population of solution.

We consider local search hyperheuristics which deal with complete solutions, as

our hyperheuristics are designed to be applicable not just to one problem but to

different problems. Hyperheuristics developed in this thesis will be applied to several

instances of three different problems. The novelty of our hyperheuristics resides in

a learning mechanism never developed before.

5.3 Hyperheuristics developed

With reference to issues summarised in Table 5.2, the hyperheuristics developed in

this section are local search hyperheuristics which deal with complete solutions. The

low-level heuristics are simple local search operators which operate in the solution

space. Each low-level heuristic can be applied to the current solution either once or

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 110

- Time allowed

- Time taken

- Low-level heuristic to use

 PROBLEM DOMAIN BARRIER

- Objective function value

 Hyperheuristic Domain
Hyperheuristic maintains a picture

of the region of the solution space and the performance of each
heuristic based upon historical data

- Descent or single-call or number of iterations

Problem domain
Low-level heuristics interact with the problem

producing feasible solutions and evaluating objectives

Figure 5.4: The general framework of hyperheuristics developed

several times. Each low-level heuristic can modify the current solution and return

a new one, whose objective function value can be better, worse, or of the same

value as that of the previous solution. The decision point is taken to be the point

immediately after a low-level heuristic has been applied. Our hyperheuristics are

single-point methods (as opposed to population-based methods) which maintain one

solution at a time both in the solution space and the heuristic space. We depict in

Figure 5.4 the main features of the type of hyperheuristics which are developed.

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 111

Because the hyperheuristic does not have control over the way the solution is

altered by the different low-level heuristics, it operates at a higher level of abstrac-

tion and generality than most current metaheuristic approaches. The process of

choosing a low-level heuristic takes place dynamically so that at each decision point

the hyperheuristic must choose which low-level heuristic to apply next. The hy-

perheuristic interacts with the low-level heuristics but only non problem-specific

information such as CPU time and the change in the evaluation function passes be-

tween the two. Problem-specific information is prohibited from passing through the

hyperheuristic/low-level heuristic interface as illustrated in Figure 5.4. This again

is in view of developing a non-problem-specific hyperheuristic.

This is where the fundamental difference between the terms hyperheuristic and

metaheuristic lies. A metaheuristic can (and usually does) use domain-specific

knowledge in order to control the way a low-level heuristic modifies the solution.

This limits the range of applicability of that particular metaheuristic but can result

in excellent solution quality and possibly low computational times (e.g. [89, 9]).

Since a hyperheuristic prohibits almost all problem-specific information from pass-

ing through the hyperheuristic/low-level heuristic interface, it is readily re-usable

for other problems and domains if new low-level heuristics and objectives are sup-

plied. The hyperheuristic is therefore a generic and easy / fast-to-implement method,

which should produce solutions of acceptable or good quality, based on a set of sim-

ple low-level heuristics. Because relatively little problem-specific knowledge is used

(which is contained in the low-level heuristics), the hyperheuristic may also be used

in cases where little domain-knowledge is available (for instance when dealing with

a new or poorly understood problem) or when a solution must be developed quickly

(for example when prototyping). The hyperheuristic may manage a set of simple,

knowledge-poor, low-level heuristics (such as ‘swap’, ‘add’ and ‘drop’ moves). In

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 112

order for a hyperheuristic to be applicable to a given problem, all that is needed is

a set of low-level heuristics and a formal means for evaluating solution quality (one

or more objective functions). The hyperheuristic works by iteratively choosing a

low-level heuristic to apply until some stopping criterion is met.

As mentioned in the previous section, the learning mechanism can be enabled or

disabled. We first describe simple hyperheuristics in which the learning mechanism

is disabled.

5.3.1 Simple hyperheuristics

General overview

Because there is no element of learning in this type of hyperheuristic, the only way

one can choose a low-level heuristic is either at random or in a certain predefined

sequence (e.g. in Variable Neighbourhood Search [137, 194]. VNS considers problem

domain information.). Thus the hyperheuristic conducts a random search in the

space of heuristics. The other issue discussed here is whether the chosen heuristic is

applied once (single call) or repeatedly until it reaches a local optimum (with respect

to the neighbourhood of solutions reachable using that heuristic). We consider below

four variants of hyperheuristics which carry out a random search in the space of

heuristics.

Variants considered

SimpleRandom (SR): This algorithm repeatedly chooses one low-level heuristic uni-

formly at random and applies it once. This process goes on until a stopping condition

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 113

has been met. This is described in the following pseudocode.

Do

Select a low-level heuristic uniformly at random and apply it once.

Until Stopping condition is met.

RandomDescent (RD): This algorithm repeatedly chooses one low-level heuristic

uniformly at random, then continues to apply it until no further improvement is

possible. This process continues until a stopping condition has been met. This is

described in the following pseudocode.

Do

Select a low-level heuristic uniformly at random and apply it in a steepest

descent fashion.

Until Stopping condition is met.

RandomPerm (RP): This algorithm chooses a random permutation of all the

low-level heuristics and applies each low-level heuristic once in the chosen order. It

cycles round from the last low-level heuristic in the permutation to the first one.

This process goes on until a stopping condition has been fulfilled. This is described

in the following pseudocode.

Create a random permutation of all low-level heuristics available.

Do

Select the next low-level heuristic in the sequence and apply it once.

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 114

Until Stopping condition is met.

RandomPermDescent (RPD): This algorithm does the same thing as RP but

each low-level heuristic is applied repeatedly until we reach a local optimum for that

low-level heuristic. This is similar to variable neighbourhood descent [137, 194].

RandomPermDescent is described in the following pseudocode.

Create a random permutation of all low-level heuristics available

Do

Select the next low-level heuristic in the sequence and apply it in a steepest

descent fashion.

Until Stopping condition is met.

As mentioned in the previous section, these simple hyperheuristics serve as a

means of comparison against sophisticated hyperheuristics which are equipped with

some form of learning mechanism. In order for a sophisticated hyperheuristic to be

effective, it should be able to produce solutions that are at least as good as those

obtained using a simple hyperheuristic.

5.3.2 A choice function hyperheuristic

Having discussed and developed simple hyperheuristics, we now consider a hyper-

heuristic in which the learning mechanism is enabled. Different heuristics have dif-

ferent performances on different solutions and different parts of the solution space.

Indeed, since different heuristics have different strengths and weaknesses, it makes

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 115

sense to see whether they can be combined in some way so that the strengths of

one heuristic compensates for the weaknesses of another [48]. The hyperheuristic

tries to co-ordinate this combination of heuristic based on the guidance of a choice

function. The choice function will be used to rank low-level heuristics.

We are looking for an effective way in which to choose an appropriate heuristic

at each decision point. There may be difficulties connected with both the nature

of the solution space and the individual characteristics of the available low-level

heuristics. However, we do not want to employ problem-specific information. The

hyperheuristic is not designed with any particular problem in mind. The aim is to

raise the level of generality at which current optimisation systems operate. If we

somehow knew that a given heuristic will perform well, we should exploit this. That

heuristic should be selected and applied. Sometimes, however, it might be useful

to explore the space of heuristics by selecting a heuristic which will not necessarily

perform well but will help explore other regions of the search space. In the absence of

knowledge about future heuristic performance, we make use of statistical prediction.

Of course, if we knew which heuristic(s) performs well, hyperheuristics would no

longer be relevant. The sort of information which we can use in order to predict

the performance of the low-level heuristics can include historical (statistical) data,

regarding the quality of solutions obtained, the amount of CPU time used, the time

elapsed since a given heuristic was last called etc, none of these are specific to any

problem.

Thus the choice function ranks the low-level heuristics on the basis of forecast of

future performance. The choice function attempts to capture the correspondence be-

tween the region of the solution space currently being investigated and the historical

performance of each low-level heuristic. As in machine learning, the choice function

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 116

exercises two major roles in the guidance which it provides to the hyperheuristic:

exploitation (level 2 intensification) and exploration (level 2 diversification).

Exploitation (level 2 intensification)

Exploitation is maintained by collating information regarding both individual and

collective performance of the low-level heuristics. The intuitive idea here is that

at each decision point, the choice of a given low-level heuristic, say Nj , may be

motivated by the following observations:

• Nj may yield an improvement when applied alone (individual performance),

• Nj might not yield an improvement, but it may help another low-level heuristic

(or a collection of low-level heuristics) to yield an improvement (joint perfor-

mance),

Individual performance for heuristic Nj is expressed in the following function:

f1(Nj) =
∑

n

αn−1
(

In(Nj)

Tn(Nj)

)

(5.1)

where In(Nj) (respectively Tn(Nj)) is the change in the evaluation function (respec-

tively the amount of CPU time taken) the nth last time heuristic Nj was called, and

α is a parameter between 0 and 1, which reflects the importance attached to recent

performance. After calling heuristic Nj , the new value fnew1 (Nj) can be quickly

calculated from the previous value f old1 (Nj) using the following iterative formula

fnew1 (Nj) =
I1(Nj)

T1(Nj)
+ αf old1 (Nj). (5.2)

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 117

Collective performance for heuristic Nj is expressed in the following series of

functions.

For a pair of heuristics

f2(Nk, Nj) =
∑

n

βn−1
(

In(Nk, Nj)

Tn(Nk, Nj)

)

(5.3)

where In(Nk, Nj) (respectively Tn(Nk, Nj)) is the change in the evaluation function

(respectively amount of CPU time taken) the nth last time heuristic Nj was called

immediately after heuristic Nk and β is a parameter between 0 and 1, which again

reflects the greater importance attached to recent performance. If Nj has just been

called after Nk, then the new value fnew2 (Nk, Nj) can be quickly calculated from the

previous value f old2 (Nk, Nj) using the iterative formula

fnew2 (Nk, Nj) =
I1(Nk, Nj)

T1(Nk, Nj)
+ βf old2 (Nk, Nj). (5.4)

These ideas may be generalised to larger tuples and may take into account the

time elapsed between calls to particular low-level heuristics. Both f1 and f2 aim to

exploit the search experience gathered so far. The idea behind the expressions of

f1 and f2 is analogous to the exponential smoothing forecast of their performance

[274]. If a given low-level heuristic has been performing well, it might perform well

if called again.

Exploration (level 2 diversification)

Exploration can be maintained by monitoring the amount of time elapsed since each

low-level heuristic was last called. The intuitive idea here is that if we always select

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 118

the heuristics which have been performing well, we might get stuck in a poor local

optimum. In order to escape from a local optimum we can select a heuristic that

has not been called recently. Of course, we do not expect that heuristic to improve

on the current solution (if it does, so much the better - indeed there is a way to

adjust the learning in order to reflect this - this will be discussed below). The idea

of exploration can be expressed in a function, f3, which provides an element of (level

2) diversification, by favouring those low-level heuristics that have not recently been

used. Then we have

f3(Nj) = τ(Nj) (5.5)

where τ(Nj) is the number of seconds of CPU time which have elapsed since heuristic

Nj was last called.

The resulting choice function

The resulting choice function can be obtained by simply putting together the ex-

ploitation and the exploration functions. If the low-level heuristic just called was

Nk then for any low-level heuristic Nj , the choice function f of Nj can be defined as

f(Nj) = αf1(Nj) + βf2(Nk, Nj) + δf3(Nj). (5.6)

Which means:

CHOICE FUNCTION = EXPLOITATION + EXPLORATION

We rank low-level heuristics using the choice function.

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 119

Catering for multiple objectives In the above expression, the choice function

attempts to predict the overall performance of each low-level heuristic, that is, the

effect of each low-level heuristic on the objective function. When the problem has

several objectives, we may consider a variant of choice function f which separately

predicts the performance of each low-level heuristic with respect to each objective.

Often the objective function (or any other formal means of evaluating solution qual-

ity) of an optimisation problem, particularly one of personnel scheduling, is made of

several factors [19, 20, 23, 83] such as individual preferences, labour costs, etc. The

choice function can be redefined with respect to each of these criteria (objectives).

Thus, for each individual objective l, the choice function with respect to l is

∀l, fl(Nj) = αlf1l(Nj) + βlf2l(Nk, Nj) +
δ

c
f3(Nj) (5.7)

Which means:

CHOICE FUNCTIONl = EXPLOITATIONl + EXPLORATION ,

with c the number of individual objectives. f1l(Nj) is calculated by replacing

In(Nj) with Inl(Nj) in the expression of f1(Nj) in equation (5.1) where Inl(Nj) is

the first order improvement with respect to criterion l ∈ L. Similarly f2l(Nk, Nj) is

calculated by replacing In(Nk, Nj) with Inl(Nk, Nj) in the expression of f2(Nk, Nj)

in equation (5.3) where Inl(Nk, Nj) is the second order improvement with respect to

criterion l ∈ L.

Of course, for a problem with multiple objectives, the individual choice functions

with respect to each individual objective can be regrouped (aggregated) into one

single choice function such as that in equation (5.6). The relationship between

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 120

choice function f and individual choice functions fl’s is illustrated as follows:

f(Nj) =
∑

l∈L

fl(Nj) =
∑

l∈L

[

αlf1l(Nj) + βlf2l(Nk, Nj) +
δ

c
f3(Nj)

]

(5.8)

where L is the set of the evaluation function criteria, c the cardinality of set L.

Consequently, when the problem has several objectives, it is possible to guide

the hyperheuristic search to reflect this. The search is no longer conducted as if

there was only one objective, but instead with respect to each individual objective.

The search for a good solution can then be viewed as a search for a solution that

is good with respect to each single objective in L. Thus when searching for a good

solution regarding a criterion l ∈ L, we shall use the corresponding choice function

fl and the low-level heuristic for which fl is maximum will be selected and applied.

Of course, even when the problem has multiple objectives, it is still possible to

apply the choice function hyperheuristic as if we were dealing with a single objec-

tive problem. In this case, equation (5.8) is used, which aggregates all individual

objectives into one single choice function. This is known as the a priori approach

in multi-objective optimisation [190], in which the weight of each individual objec-

tive is assigned before solving the multi-objective optimisation problem. The other

alternative is the use of a posteriori approaches which include Pareto optimisation

techniques [64, 190]. It should be noted that equation (5.7) of the choice function al-

lows for the use of Pareto optimisation techniques. The main goal of multi-objective

optimisation is to find solutions that represent a good compromise between the

various criteria or objectives (some of them conflicting) used to evaluate solution

quality. A solution x is said to be non-dominated with respect to a set of solutions

S if there is no other solution in set S that is as good as x in all objectives and

better than x in at least one of the objectives [65]. The Pareto optimal front is the

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 121

set of non-dominated solutions with respect to the whole solution space. The choice

function in equation (5.7) provides a means to search for non-dominated solutions

because in (5.7), the search is conducted with respect to individual objectives. For

example [53] uses this result to implement a hyperheuristic which employs choice

function (5.7) in a Pareto optimisation framework. This would not be possible with

the choice function of equation (5.6) or (5.8) in which the hyperheuristic search is

conducted as though there is only one objective. Again this thesis is not specifically

concerned with the use of hyperheuristics for Pareto optimisation.

Exploitation and exploration: a self-adaptive procedure

The issue of self-adaptive hyperheuristics was discussed in section 5.2.1. It is de-

sirable to have a self-adaptive hyperheuristic. In effect, if the hyperheuristic is

self-adaptive, it would be able to adjust itself to the conditions of the environment

it is operating in (e.g. heuristic space, solution space). This would enhance the

generality and robustness of the hyperheuristic. In addition, the hyperheuristic

would no longer require parameter specification from the user. One way to achieve

self-adaptiveness in the choice function hyperheuristic is to maintain an adaptive

ranking of the heuristics. Rather than having a constant expression of the choice

function whose parameters remain constant during the search as was the case in [69]

(the choice function parameters had to be manually tuned at the beginning of the

search), we developed a procedure in [70] that adaptively adjusts the choice function

parameters αl, βl and δ for each criterion l.

Let low-level heuristic Nj be the selected heuristic, for which fl is maximum.

Before applying heuristic Nj , we check, for criterion l, which of its choice function

factors αlf1l(Nj), βlf2l(Nk, Nj) and
δ
c
f3(Nj) is maximum. We call that element the

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 122

biggest contributor, Gl, in choice function fl. We shall use Il to refer to both Il(Nj)

and Il(Nk, Nj) and T to refer to both T1l(Nj) and T1l(Nk, Nj) as appropriate. The

procedure works as follows.

1. If Gl = αlf1l then apply low-level heuristic Nj, note the resulting change, Il,

and change parameter αl so that αl = αl(1 + ǫ), where ǫ is a small number

having the same sign as Il

2. If Gl = βlf2l then apply low-level heuristic Nj, note the resulting change, Il,

and change parameter βl so that βl = βl(1 + ǫ), where ǫ is a small number

having the same sign as Il

3. If Gl =
δ
c
f3 then apply the low-level heuristic, say Ni, that maximises αlf1l +

βlf2l. If this produced a solution better than the previous then decrease δ by a

certain positive quantity q so that δ = δ − q. Otherwise return to the previous

solution (i.e. undo the application of heuristic Ni), keep δ unchanged and apply

heuristic Nk;

4. In case of tie we apply heuristic Nj.

5. If there has been no improvement after a certain number of iterations augment

δ by a certain positive quantity p so that δ = δ + p.

We may also use the procedure for a single objective function, where l = 1.

The procedure described above allows interplay between all factors of the choice

function. Although we know that each factor is important for choosing the right

low-level heuristic, we have no idea as to how important each factor is relative to the

others. The procedure adaptively adjusts the values of the different parameters so

that, in light of the observed performance of each low-level heuristic, the weighting

assigned to each factor is modified in an appropriate manner.

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 123

More precisely, in cases 1 and 2, the idea is to increase the corresponding param-

eter when the improvement is positive and to decrease it when the improvement is

negative or null. These ideas are borrowed from reinforcement learning [154, 254]

and have been applied by other OR and AI researchers [211, 210]. By increas-

ing/decreasing αl (βl) in case 1 (2) we increase/decrease the degree of confidence

that we place in the choice of those low-level heuristics that have shown a first-order

(second-order) improvement/non-improvement. When Il is positive the reward is

there to encourage the emergence of ‘good’ low-level heuristics from the group.

When Il is negative or null the penalty is there to ensure that ‘bad’ low-level heuris-

tics are not chosen often, thus really reinforcing the predictions. If f1 (f2) is the

strongest predictor and it is a good choice of low-level heuristics, reinforce f1 (f2);

else reduce its significance. However when there is a zero improvement we do not

want to give a large penalty (as a null improvement is still better than a negative

one). We choose ǫ = T
n2

hfreq
if Il = 0, where freq is the number of times heuristic

Nj has been called and nh is the total number of low-level heuristics, so that the

penalty is proportional to the time ‘wasted’ in calling the heuristic and is smaller

if freq is larger - if freq is larger it is presumably because the heuristic concerned

has been performing well. if Il �= 0 we choose ǫ = Il
nhE0

, where E0 = evaluation of

initial solution. This allows the α and β parameters to increase as we grow more

confident in our forecast, and decrease when we cannot find an improved solution.

In case 3, the choice function suggests that an exploration move be made and

proposes a low-level heuristic for this purpose. As this may not be the case, we

‘question’ the choice function’s suggestion by applying a test low-level heuristic, the

one for which αlf1l + βlf2l is maximum. If applying the test heuristic yielded an

improvement, we decrease the value of δ which turned out to have been too large

(exploration was suggested too soon). Otherwise we apply an exploration move

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 124

(as suggested by the choice function) and the value of δ was appropriate, and is

not changed. In case 4, we simply apply heuristic Nj as the appropriateness of

exploitation or exploration is not clear. In order to change parameter δ to a value

that provides an appropriate level of exploration, we need an effective expression

for p and q. For example we can choose q as follows. Denote by N1 the (test)

heuristic that maximises αlf1l+βlf2l and N2 the heuristic Nj that is due (for which

both fl and f3 are maximum). What we wanted is N1 to be the due heuristic in

place of N2, so we would wish that fl(N1) > fl(N2). We are then looking for a q

such that αlf1l(N1) + βlf2l(N1) +
δ−q
c
f3(N1) > αlf1l(N2) + βlf2l(N2) +

δ−q
c
f3(N2),

which gives q > c fl(N2)−fl(N1)
f3(N2)−f3(N1)

. In practice we choose q = c fl(N2)−fl(N1)
f3(N2)−f3(N1)

+ ν, where

ν is a small positive number. Similarly we can choose p as follows. Denote by

N1 the heuristic applied without improvement and N2 the heuristic for which f3 is

maximum at that time. What we wanted is that N2 should have been called in place

of N1, so we would wish that fl(N2) > fl(N1). We are then looking for a p such that

αlf1l(N2) + βlf2l(N2) +
δ+p
c
f3(N2) > αlf1l(N1) + βlf2l(N1) +

δ+p
c
f3(N1), which gives

p > c fl(N1)−fl(N2)
f3(N2)−f3(N1)

. In practice we choose p = c fl(N1)−fl(N2)
f3(N2)−f3(N1)

+ ν, where ν is a small

positive number.

Remarks

1. There are various ways in which run statistics could be used when evaluating

the performance of the low-level heuristics. For example instead of cumula-

tively calculating the improvement on the objective function value in an ex-

ponential smoothing fashion [274], one could simply calculate the sum of all

improvements, the average improvement, the maximum improvement, the best

improvement, etc. over the past v trials for each low-level heuristic. Even

with this, one needs to define parameter v. For example v can be set to 1 if

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 125

we are only interested in the most recently obtained statistics. At the other

extreme, v can also be set to be equal to freq if we are interested in collect-

ing statistics from the beginning of the run to date. v can also be chosen to

be heuristic-specific, so as to collect, for example, recent statistics for well-

performing heuristics and less recent statistics for badly-performing ones; or

vice versa. In addition it might be possible to use other statistical regression

methods such as the moving average technique (here we regard the choice func-

tion values produced by each low-level heuristic over time as a time series)[274].

2. The choice function, which evaluates the performance of each low-level heuris-

tics, takes into account the change I in the objective function value from the

previous solution to the new solution. The magnitude of I may vary greatly

during the execution of the hyperheuristic on one given problem. The mag-

nitude of I may vary even more greatly across different application domains.

The choice function, which is expressed as a function of I, should be able to

cope with changing magnitudes if it is to be effective. This is taken care of by

the way in which parameters α, β and δ of the choice function are calculated.

Both α and β are normalised and are only allowed to vary within interval [0,

1] (e.g. if the values of α or β becomes negative, it is set to 0.001). The ini-

tial values for each of α, β and δ is also randomly chosen within]0, 1[. Then,

during the solution process, δ is changed so as to reflect how urgent the desire

to explore the search is. In effect, from the expression f = αf1 + βf2 + δf3 of

the choice function f it can be deducted that δ = f−αf1−βf2
f3

; which highlights

the fact that the value of δ depends on those of α and β. This implies that

the magnitude of α and β is reflected in the way in which δ is computed. No

matter what the magnitude of α and β is, δ is increased and decreased by a

certain quantity p and q respectively whose values incorporate that magnitude

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 126

of α and β, thus keeping parameter values in proportion. It can thus be seen in

the next three chapters that our choice function is indeed able to cope well with

different magnitudes, both during the solution process within each application

problem and across different application domains. Of course, the initial values

of parameters α, β and δ - which are randomly chosen - are not necessarily

appropriate. As will be shown in chapter 6, the adaptive procedure takes care

of adjusting the values of α, β and δ in an appropriate manner throughout the

hyperheuristic search.

3. In light of early discussions in section 5.2.1, it would seem likely that construc-

tive heuristics would not be suitable for our choice function hyperheuristic

framework, which is a local search hyperheuristic. In effect, our hyperheuristic

deals with complete solutions, whereas constructive heuristics deal with par-

tial solutions. If the low-level heuristics are local search based heuristics, they

would be suitable for the current hyperheuristic framework. For example, in

chapters 6 and 8, different sets of local search low-level heuristics are used in

the hyperheuristic framework.

Schematic view of the choice function hyperheuristic

In Figure 5.5, we give a schematic flow chart of the choice function hyperheuristic.

The hyperheuristic is described for any objective l, for a minimisation problem.

We therefore adopt the following notations which drops index l. We also use C++

conventions.

• I is the relative improvement, that is, the change in the evaluation function

value from the previous solution to the new solution obtained by applying

the selected heuristic (whether in a single-call or a steepest descent fashion).

C
H

A
P

T
E

R
5
.

H
Y

P
E

R
H

E
U

R
IS

T
IC

S
F
O

R
P

E
R

S
O

N
N

E
L

S
C

H
E

D
U

L
IN

G
127

Reward F3

I > 0I <= 0

DOES NOT HOLD

Check stopping condition
HOLDS

Ia <= 0Ia > 0

cnt = cnt + 1set cnt = 0set cnt = 0

Calculate Absolute improvement Ia

Undo steepest descent and apply Nj once

Apply Nj in steepest descent

Apply Nj in steepest descent

Reward G

STOP & output best solution(s)

Undo steepest descent and apply N2 once

Current solution = Sol

Punish G

Compute F for each heuristics

Select heuristic Nj for which F is maximum

Apply Nj in steepest descent

Store current solution in Sol

G = F3
Identify biggest contributor G in F

Apply N2 in steepest descent

set cnt = 0

CHOICE FUNCTION HYPERHEURISTIC BLACK BOX

I <= 0I > 0 & Ni != Nj
I > 0 I <= 0

G = F1 or F2

G != F1, F2 or F3

cnt = n

cnt < n

cnt >= n + 1

Select heuristic Ni for which F-F3 is maximum

Apply Ni in steepest descent

Select heuristic N2 for which F3 is maximum & N2 != Nj

F
igu

re
5.5:

C
h
oice

fu
n
ction

h
y
p
erh

eu
ristic

fram
ew

ork

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 128

Therefore a positive I means that the new solution is better than the previous

(minimisation problem).

• Ia is the absolute improvement, that is, the change in the evaluation function

value from the best solution so far to the new solution obtained by applying

the selected heuristic (whether in a single-call or a steepest descent fashion).

Therefore a positive Ia means that the new solution is better than the best

solution found so far (minimisation problem).

• G is the biggest contributor in the choice function.

• We denote F1 = αf1, F2 = βf2, F2 = δf3 and f = F = F1 + F2 + F3.

• cnt is an integer variable which counts the number of consecutive absolute

non-improvements.

• n is the number of low-level heuristics that are made available to the hyper-

heuristic.

At the beginning of the search, cnt is initialised to 0. We then compute the

choice function value for each heuristic, so as to select the one with the highest

F value. In order to decide whether we are at an exploitation or an exploration

stage, we determine G. This dictates the way we apply the chosen heuristic. More

precisely the chosen heuristic is applied in a steepest descent fashion if we are in

an exploitation phase (i.e. G = F1 or G = F2). We apply the chosen heuristic

once (single call) if G = F3. If there are ties we apply the chosen heuristic in a

steepest descent fashion. During an exploitation phase we reward G if the resulting

solution is better than the previous solution (i.e. I > 0) and punish G otherwise.

We know that the chosen heuristic should be applied once if G = F3. However,

before doing so, we apply it in a steepest descent fashion. If this yields a positive

improvement, then we punish G. Otherwise, we return to the previous solution

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 129

and apply the chosen heuristic once. Rewarding F3 takes places only if there has

been more than n consecutive absolute non-improvements. We therefore need to

remember the solution (Sol) obtained at the end of the nth consecutive absolute

non-improvement.

Of course, there are several ways in which ‘Reward’ and ‘Punishment’ for F1,

F2 and F3 in Figure 5.5 can be implemented. The way in which this is done above

is just a possibility. The user can be as imaginative as they please. For example

rather than having a reward system which is linearly proportional to I, we could

consider non-linear schemes (e.g. instead of αl = αl(1+ǫ), we could have αl = α
(1+ǫ)
l

and instead of βl = βl(1 + ǫ), we could have βl = β
(1+ǫ)
l ; where ǫ can be a negative

or positive constant, a function of I, etc.) [210, 211]. We could also consider a

simple scheme in which the reward / punishment is increased by a constant value,

regardless of the magnitude of I.

It should be noted that the sort of information utilised by the choice function

hyperheuristic is not specific to any particular problem. The hyperheuristic has no

knowledge of the application domain. It has no knowledge as to the purpose or

function of each low-level heuristic. It has no knowledge of the application problem.

The motivation behind this is that once the hyperheuristic has been developed, then

new problem domains can be tackled by only having to replace the set of low-level

heuristics and the evaluation function. This is exactly what is being done in chapters

6, 7 and 8, where the choice function hyperheuristic is being applied to three very

different problems.

Using its internal state, the hyperheuristic has to decide which low-level heuris-

tic should be applied next. Should it call the heuristic which produced the largest

relative improvement? Should it call the heuristic which produced the largest abso-

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 130

lute improvement? Should it call the heuristic that runs fastest? Should it call the

heuristic that has not been called for the longest amount of time? The choice func-

tion expression proposed above attempts to maintain a balance between all these

factors.

To make this process of changing the set of heuristics easy, we have developed an

interface between the hyperheuristic and the low-level heuristics. There are further

benefits in having this interface.

1. The interface allows the hyperheuristic to communicate with all low-level heuris-

tics in the same way. Otherwise it would need a separate interface for each

low-level heuristic.

2. The interface prevents domain-specific information from reaching the hyper-

heuristic. For example in the above implementation of the choice function (see

Figure 5.4) only non problem-specific information such as CPU seconds, ob-

jective function value are allowed to pass through the interface. For example

we have added a component in the interface which allows the user to ‘tell’ a

low-level heuristic how long it can run. Thus the hyperheuristic can call each

heuristic in turn giving it a specified amount of CPU time and the heuristic

that produced the best result within the allowed CPU time is the one that

is applied to the current solution. The hyperheuristic can perform a series of

tests, by applying each heuristic in order to find out how well they would each

perform. Then the hyperheuristic can decide to select a subset of those heuris-

tics which performed well for example. So there is scope for further variations

of the current hyperheuristic implementation.

3. The interface allows for rapid prototyping for other domains [73]. When solving

a new problem, the user has to supply (plug into the black box) a set of low-

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 131

level heuristics and a suitable evaluation function to assess solution quality.

If the low-level heuristics follow a standard interface the hyperheuristic need

not be altered whatsoever. The hyperheuristic is readily applicable to the new

problem. Again the aim is to raise the hyperheuristic to a higher level of

abstraction than current metaheuristic approaches.

4. If the user is questioning whether a heuristic is any good or not, they can

simply throw it into the mix (the set of already existing low-level heuristics)

and let the black box do its job. The hyperheuristic will choose an appropriate

heuristic at each decision point.

5. The hyperheuristic framework offers a great deal of flexibility and there is a

wide range of possible modifications.

5.3.3 A simulated annealing hyperheuristic

In addition to the simple and choice function hyperheuristics, we have also imple-

mented a simulated annealing hyperheuristic which will be used in the next chapter

for further means of comparison [71].

The idea behind simulated annealing was explained in chapter 3. Our simulated

annealing hyperheuristic chooses the low-level heuristics uniformly at random and

applies them once. The simulated-annealing hyperheuristic differs from the simple

hyperheuristics in the decision as to whether to accept a new candidate solution or

not. The new candidate solution is accepted if it is better than the current solu-

tion. If not, then it may be accepted (with a certain probability). The acceptance

probability is high in the beginning of the search to allow for a wider exploration of

the search space and gradually decreases as the search progresses to allow for inten-

sification. The acceptance probability is controlled using a temperature parameter

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 132

(cooling schedule) [2]. We use a geometric cooling schedule for our simulated an-

nealing hyperheuristic. This cooling schedule is used quite often in practice [2]. The

initial value of the temperature is often set to a value that represents the maximum

difference (in the evaluation function) between two consecutive solutions (the previ-

ous and the one obtained from the previous by making a heuristic move) [2]. In our

case an initial temperature of 50% of the evaluation function value of the starting

solution (that produced by our greedy algorithm of Section 2) produced consistently

good results (this was obtained after experimenting with different initial tempera-

tures). In the geometric cooling schedule, the temperature is typically decreased

by a factor k where 0.8 ≤ k < 1 [2]. For our simulated-annealing hyperheuristic,

the value of the temperature was decreased by a factor of 0.85 at each iteration (af-

ter experimental trials). The resulting hyperheuristic is described in the following

pseudocode.

Do

Choose a low-level heuristic uniformly at random and apply it to obtain

NewSolution

Calculate I = ECurrentSolution − ENewSolution

Accept NewSolution with probability p = Min{1, e
I

Temperature}

Temperature ← Temperature× TemperatureMultiplier

Until stopping condition is met

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 133

HOLDS

I >= 0 I < 0

SIMULATED ANNEALING HYPERHEURISTIC BLACK BOX

Update Temperature

Accept new solution with

probability Exp(I/Temperature)

Set initial Temperature

Check stopping condition

DOES NOT HOLD

Apply heuristic Nj once

Accept new solution

Select heuristic Nj uniformly at random

STOP & output best solution(s)

Figure 5.6: Simulated annealing hyperheuristic framework

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 134

Schematic view of the simulated annealing hyperheuristic

We also present the flow chart of the simulated annealing hyperheuristic in Figure

5.6. Again, I is the relative improvement, that is, the change in the evaluation func-

tion value from the previous solution to the new solution obtained by applying the

selected heuristic (whether in a single-call or a steepest descent fashion). Therefore

a positive I means that the new solution is better than the previous (minimisation

problem). The ‘Update Temperature’ phase in Figure 5.6 is the cooling schedule. It

can be carried out in various ways [2]. In the implemented version of our simulated

annealing above, we use a geometric cooling schedule [2].

5.4 Summary

We have presented simple random hyperheuristics, a choice function hyperheuristic,

and a simulated-annealing hyperheuristic. The choice function hyperheuristic exists

in two variants: a single-objective version, which uses the choice function expression

in equation (5.6) or (5.8), and a multiple-objective version, which uses individual

choice functions with respect to each individual objective l in equation (5.7). While

the former is used when dealing with single-objective optimisation problems, the

latter may be used when there are multiple objectives (in this case, each individual

objective is considered separately). Of course, if several objectives are aggregated

into one objective function, both variants of the choice function can be used. Our

simple hyperheuristics will serve primarily as a basis for comparison against the

choice function hyperheuristic. Overall, the choice function hyperheuristic when

considering individual objectives separately (i.e. equation 5.7) works as follows.

Do

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 135

Choose a search criterion l.

Select the low-level heuristic that maximises fl and apply it.

Update the choice function fl’s parameters using the adaptive procedure above.

Until Stopping condition is met.

where a number of different ways are possible for choosing criterion l at each step. To

avoid cycling problems, we may choose l stochastically rather than deterministically.

More precisely we choose a given criterion l with a certain probability pl proportional

to the relative importance of that particular criterion l ∈ L in the objective function.

Also we apply low-level heuristics in a descent fashion when exploiting the search

experience, as guided by f1 and f2 and in a single-call fashion when exploring the

search space, as guided by f3.

Overall, the choice function hyperheuristic for a single objective problem or when

(in the case of a multi-objective problem) all individual objectives are aggregated

into a single objective, works as follows.

Do

Select the low-level heuristic that maximises f and apply it.

Update the choice function f ’s parameters using the adaptive procedure.

Until Stopping condition is met.

Note that if |L| = 1, the choice function hyperheuristic (5.6) or (5.7) and (5.8)

are the same.

Remarks / Notation

CHAPTER 5. HYPERHEURISTICS FOR PERSONNEL SCHEDULING 136

• The next three chapters will each be devoted to the application of our hyper-

heuristic methods to three different problems. In all our experimental results

we shall refer to our simple hyperheuristics as SR,RD,RP and RPD, meaning

SimpleRandom, RandomDescent, RandomPermutation and

RandomPermutationDescent respectively (see section 5.2). The choice func-

tion hyperheuristic of equation (5.6) will be denoted as CFa, and the choice

function hyperheuristic of equation (5.7) as CFb. The simulated annealing

hyperheuristic will be denoted as SAHH.

• For all three types of hyperheuristics (simple, choice function and simulated

annealing), we consider both acceptance criteria for the solutions produced by

the low-level heuristics, that is, All Moves (AM) and Only Improving (OI).

Chapter 6

Application to sales summit

scheduling

6.1 Introduction

Our first application problem is that of scheduling a sales summit. This is a real-

world problem encountered by a UK commercial company. The aim of this chapter

is to show that our choice function hyperheuristic is an effective method which uses

little domain knowledge (contained in the low-level heuristics). Thus, in addition to

the hyperheuristic methods described in chapter 5, two more methods which were

developed by us are also presented in this chapter. They serve as an additional

means of comparison against the choice function hyperheuristic. The structure of

this chapter is as follows. In section 6.2 we give a description and mathematical

formulation of the problem. Section 6.3 is devoted to experiments including the

description of additional solution methods and section 6.4 concludes the chapter.

137

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 138

6.2 The sales summit scheduling problem

6.2.1 Problem description

The sales summit scheduling problem is that of a commercial company organising

sales summits which involve two groups of company representatives: on the one hand

suppliers, who want to sell products or services, and on the other hand delegates who

are representatives of companies that are potentially interested in purchasing those

products and services. Suppliers pay a registration fee to have a stand at the sales

summit and provide a list of the delegates that they would like to meet. A meeting

(between one delegate and one supplier) is classified as Priority or Non-Priority de-

pending on how strongly the supplier would like to meet the corresponding delegate.

Delegates pay no fee but instead are a cost to the commercial company who pay

for their travel and hotel expenses. In addition to meetings, seminars are organ-

ised where delegates may meet other delegates. Each delegate provides a list of the

seminars that he/she would like to attend and (if he/she is invited to the summit)

is guaranteed attendance at all requested seminars. There are t meeting timeslots

available for both seminars and meetings, and each seminar lasts for a whole number

(3 or 4) of consecutive supplier/delegate meeting timeslots. There are s suppliers, d

potential delegates and sem seminars. First, delegates are assigned to all seminars

that they have requested. Then the aim is to schedule meetings, that is, determine

(supplier, delegate, timeslot) triples under the constraints: (a) Each delegate may

be scheduled for at most Maxmeet meetings; (b) Each delegate must be scheduled

for at most one activity (meeting or seminar) within a given timeslot; (c) Each

supplier must be scheduled for at most one meeting within a given timeslot; (d)

Each supplier should ideally have at least MinPrmeet priority meetings; (e) Each

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 139

supplier should ideally have at least Minmeet (priority and non-priority) meetings.

These two latter constraints are soft constraints that can be modelled as penalties

in the objective function. Hence the overall objective is to minimise the number of

delegates who will actually attend the sales summit out of the d possible delegate

attendees and thus minimise cost as well as ensuring that suppliers have sufficient

delegate meetings (Priority and Non-Priority).

6.2.2 Problem formulation

We denote by S (respectively D,T) the set of suppliers (respectively delegates,

timeslots). Let Pij be 1 if (supplier i, delegate j) is a Priority meeting and 0 oth-

erwise (i ∈ S, j ∈ D). Let Tj be the set of timeslots when delegate j is available

for supplier meetings (and is not attending a seminar). Our decision variables are

denoted by matrix x = (xijk) of S ×D× T dimension, (i ∈ S, j ∈ D, k ∈ T), where

xijk is 1 if supplier i is to meet delegate j in timeslot k, otherwise xijk is 0. The

formulation is given as follows:

Minimise E(x) = B(x) + 0.05C(x) + 8V (x)

Subject to
∑

i∈S

∑

k∈Tj

xijk ≤ Maxmeet, (j ∈ D) (6.1)

∑

i∈S

xijk ≤ 1, (j ∈ D, k ∈ Tj) (6.2)

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 140

∑

{j:k∈Tj}

xijk ≤ 1, (i ∈ S, k ∈ T) (6.3)

xijk ∈ {0, 1}, (i ∈ S, j ∈ D, k ∈ T) (6.4)

where B(x) =
∑

i∈S

[

max
(

0,MinPrmeet−
∑

j∈D

∑

k∈Tj
Pijxijk

)]2

,

C(x) =
∑

i∈S

[

max
(

0,Minmeet−
∑

j∈D

∑

k∈Tj
xijk

)]2

,

and V (x) =
∑

j∈D
min

[

1,
∑

i∈S

∑

k∈Tj
xijk

]

.

Constraint (1) expresses the fact that no delegate must be scheduled for more

than Maxmeet meetings. Constraints (2) (and (3)) express the fact that no delegate

(supplier) must be scheduled for more than one activity within the same timeslot.

Both B(x) and C(x) of the objective function are the relaxation of the constraints

on suppliers’ meeting-satisfaction. More precisely B(x) represents the penalty as-

sociated with suppliers who have less than MinPrmeet priority meetings, where

constraint (d) is not satisfied, C(x) represents the penalty associated with suppliers

with less than Minmeet meetings in total, where constraints (e) is not satisfied.

V (x) is the number of delegates who attend the sales summit in the meeting sched-

ule. The different coefficients in E(x) represent the subjective assessment of the

relative importance of each criterion. They were obtained after discussion with the

user. To simplify the notation we shall assume x and refer to the above quantities

as E,B,C and V . Note that this problem has 3 objectives aggregated in one single

objective function E.

The company uses a computerised greedy algorithm that produces a solution

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 141

which (it was felt) used too many delegates. We developed another greedy algorithm,

described in [69] and presented in the pseudocode below, which yields a better

solution. This latter solution is used as starting solution in all our hyperheuristic

algorithms in the next section.

Do

1- Let S0 be a list of suppliers ordered by increasing number of scheduled

priority meetings (and increasing number of total meetings where two suppliers have

the same number of priority meetings in the current schedule).

2- Let DO be a list of delegates who currently have less than Maxmeet meet-

ings scheduled, ordered by decreasing number of meetings scheduled.

3- Find the first supplier s ∈ SO such that there is a delegate d ∈ DO where

both s and d have a common free timeslot t, and (s, d, t) is a priority meeting.

4- If no meeting triple was found in 3, then find the first supplier s ∈ SO such

that there is a delegate d ∈ DO where both s and d have a common free timeslot t,

and (s, d, t) is a non-priority meeting.

Until no meeting is found in either step 3 or step 4.

By considering the most priority-meeting dissatisfied supplier first at each itera-

tion, we attempt to treat suppliers equitably. By attempting to choose the busiest

possible delegate at each iteration, we try to minimise the number of delegates in

the solution.

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 142

6.3 Experimental study

6.3.1 Problem instances

We used twelve instances of the sales summit scheduling problem. We obtained two

real-world data sets and considered several different sets of values for parameters

t,MinPrmeet and MinMeet for each data set. Hence instances DR, DR1, DR2 and

DR3 are based on one data set, and instances DR4 and DR5 are based on the other.

The other six instances were created randomly based on the characteristics of the

real-world data. To analyse the relative complexity of each instance we considered

the following two criteria:

Distribution of the suppliers’ demand (Γp): This is the most important crite-

rion. If there is a large number of ‘popular’ delegates, who have been requested by a

large number of suppliers, then it is difficult to schedule meetings satisfactorily. To

estimate the degree of popularity of the delegate, we can ask the question as to what

proportion of delegates have been requested for a priority meeting by at least a given

percentage x of the suppliers. We denote by Γpx the value representing the answer

to that question. The larger Γpx is the more difficult it is to find a free (available)

delegate and arrange meetings involving him/her. In particular, the larger Γp50 is the

more difficult it is to find a free (available) delegate and arrange meetings involving

him/her. Γy represents the proportion of delegates who have been requested for a

meeting (priority or not) by at least y% of the suppliers. The suffix ‘p’ is used to

indicate that only priority meetings are considered.

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 143

Average suppliers’ demand (Dp): This is given by the average number Dp,

of priority meeting request per supplier. It reflects the degree of flexibility of the

suppliers. The larger Dp the more flexible the suppliers are and therefore the easier

it is to satisfy them. D represents the average number of meeting (priority or not)

requests per supplier. Again, the suffix ‘p’ is used to indicate that only priority

meetings are considered.

We use the above criteria to evaluate the relative difficulty of any instance of

the sales summit scheduling problem, especially with respect to scheduling priority

meetings. More precisely, for any instance of the problem, we define Dif p =
Γp

50

Dp

as the relative difficulty of solving that instance. Large values of Dif p correspond

to large values of Γp50 and small values of Dp which makes the problem relatively

difficult. Conversely small values of Dif p correspond to small values of Γp50 and large

values of Dp which makes it a relatively easy problem.

Table 6.1 presents the different problem instances considered. The random in-

stances (DS1-DS6) are generated according to the following pseudo-code:

Choose a value for each of the parameters (|S|, |D|, |T |, sem)

Seminar generation: For each delegate Do:

Choose a number p ≤ sem of seminars uniformly at random

Repeat:

Choose a seminar uniformly at random and assign it to the delegate

sem times

Priority-Meeting generation: For each supplier i select a number dpi of delegates

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 144

that supplier i wants to meet with priority.

Non-Priority-Meeting generation: For each supplier i select a number di of

delegates that supplier i wants to meet without priority.

The random selection of the dpi and di delegates out of |D| may or may not

be based on a uniform distribution. It should be noted that if the distribution is

uniform there will be fewer popular delegates (first criterion) as all delegates have

an equal chance of being picked up by the suppliers. Consequently this creates the

easiest problem possible regarding the first criterion.

In Table 6.1 we give, for each problem instance, the problem parameters, the

average demand/priority-demand per supplier (D/Dp), the number of delegates that

have been requested for a meeting/priority-meeting by at least 50% of the suppliers

(Γ50/Γ
p
50) and the resulting relative difficulty (Dif/Dif p). DS1, DS2 and DS4 are

among the easiest instances as their meetings were generated uniformly at random.

Although they have many popular delegates, their suppliers have requested to meet

many delegates and are thus relatively flexible. The fact that many delegates are so

popular is a corollary of the fact that many suppliers have requested many meetings.

DR4 is difficult because of its large proportion of popular delegates. Its seminars are

run in parallel sessions over two days and all seminars are repeated on the second

day to allow delegates to attend those seminars that they could not attend on the

first day due to parallel sessions. In DR4 delegates are assigned to either session

(Day 1 or Day 2 session) of the seminars with the same probability whereas in DR5

delegates are assigned to the first day session of seminars whenever possible. This

further complicates the problem of scheduling meetings of this instance as most of the

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 145

Instance Parameters D/Dp Γ50/Γ
p
50 Dif/Dif p

DR (43, 99, 24, 17, 20, 12) 40.30/26.32 26/8 0.65/0.30
DR1 (43, 99, 23, 17, 20, 12) 40.30/26.32 26/8 0.65/0.30
DR2 (43, 99, 25, 17, 20, 12) 40.30/26.32 26/8 0.65/0.30
DR3 (43, 99, 23, 19, 21, 12) 40.30/26.32 26/8 0.65/0.30
DS1 (43, 99, 24, 15, 19, 12) 59.62/39.65 94/6 (Uniform) 1.57/0.15
DS2 (50, 100, 20, 16, 19, 10) 55.72/38.80 78/4 (Uniform) 1.39/0.17
DS3 (43, 99, 24, 15, 17, 12) 38.88/23.41 4/0 0.17/0.00
DS4 (50, 100, 24, 17, 20, 12) 45.42/27.44 27/0 (Uniform) 0.98/0.00
DS5 (43, 99, 24, 15, 17, 12) 38.27/18.86 8/0 0.42/0.00
DS6 (43, 99, 24, 15, 17, 12) 39.02/19.46 6/0 0.24/0.00
DR4 (21, 62, 23, 16, 20, 11) 29.85/24.14 28/17 0.93/0.70
DR5 (21, 62, 23, 16, 20, 11) 29.85/24.14 28/17 0.93/0.70

Table 6.1: The different problem instances. Problem parameters are given in the
format (|S|, |D|, |T |,MinPrMeet,MinMeet,MaxMeet) representing respectively
the numbers of suppliers, delegates, timeslots, the minimum number per supplier of
priority-meetings, the minimum number per supplier of meetings and the maximum
number of meetings per delegate. D is the average number of requested delegates
per supplier. Γ50 is the number of delegates being requested by at least 50% of the
suppliers. Dif = Γ50

D
is the relative difficulty of the problem. The larger the value of

Dif the more difficult the problem. The suffix ‘p’ in each case is the corresponding
measure when only priority meetings are considered.

delegates will be unavailable for meetings on the first day, thus considerably reducing

the possibility of scheduling sufficient meetings for each suppliers. Thus DR5 is more

difficult than DR4 and is in fact the most difficult of all instances considered. Using

Γ50 for example, we see that DS5 and DS6 are instances of comparable difficulty.

However, if we use the demand criterion we are able to say that DS5 is more difficult

than DS6. DR through to DR3 are of comparable difficulty as well (based on Dif)

but the larger value of t in DR2 for example makes it an easier problem than DR

and DR1. Ordering the different instances by increasing relative difficulty gives the

following, approximate order: DS1, DS2, DS4, DS3, DS6, DS5, DR2, DR, DR1,

DR3, DR4, DR5.

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 146

6.3.2 The low-level heuristics

We used nh = 10 low-level heuristics.

1. Remove one delegate(N1): This heuristic removes one delegate who has at least

one meeting. It chooses the delegate with the least number of priority meetings,

and the least number of meetings in total where there is a tie (further ties are

broken randomly).

2. Move one meeting for a delegate(N2): This heuristic takes one delegate (the

next one in the list of delegates), removes one of his meetings (next meeting

on the data list, in increasing order of priority) and adds one different meeting

to him (next meeting on the list, in decreasing order of priority).

3. Add one delegate(N3): This heuristic chooses one unscheduled delegate (the

next one on the list) with the largest number of potential priority meetings and

greedily adds as many meetings as possible to him (next meeting on the list,

in decreasing order of priority).

4. Move one meeting for a saturated delegate(N4): Same as heuristic N2 but

considers saturated delegates only (i.e. a delegate who has Maxmeet scheduled

meetings already).

5. Add one meeting to dissatisfied supplier(N5): This heuristic adds one meet-

ing to a supplier who has insufficient meetings in total in decreasing order of

priority.

6. Add one meeting to priority-dissatisfied supplier(N6): This heuristic adds one

meeting to a supplier who has insufficient priority meetings in total in decreas-

ing order of priority.

7. Cut surplus supplier meetings(N7): This heuristic takes each supplier who has

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 147

more than MinMeet meetings scheduled and removes all the extra meetings

(in increasing order of priority).

8. Move one meeting for a supplier(N8): This heuristic takes one supplier (the next

one on the list), removes one of his meetings in increasing order of priority, and

adds one different meeting to him, in decreasing order of priority.

9. Move one meeting for a priority-dissatisfied supplier(N9): Same as heuristic 8

but considers suppliers who have insufficient scheduled priority meetings only.

10. Move one meeting for a priority-dissatisfied supplier Version 2(N10): Same as

heuristic 9 but here we allow the addition of a new delegate (delegate who

currently has no meeting).

These heuristic moves reflect the methods used to manually improve solutions.

All low-level heuristics were easy to implement as they are all based on adding/removing

objects (a delegate or a meeting). Each low-level heuristic exists in a single call and

a descent form. It was quite easy to code these heuristics (a couple of days at the

early stage of my PhD research).

6.3.3 Simple, simulated-annealing and choice function hy-

perheuristics

All algorithms were coded in Microsoft Visual C++ version 6 and all experiments

were run on a PC Pentium III 1000MHz with 128MB RAM running under Microsoft

Windows 2000 version 5. In all experiments the stopping condition was 600 seconds

of CPU time. Unless otherwise specified all experimental results were averaged

over 10 runs (results were not significantly different) [71]. For each algorithm we

distinguished the case where all moves (AM) are accepted and the case where only

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 148

improving moves (OI) are accepted.

In Table 6.2 (page 152) we present results for the real-world instances and in

Table 6.3 (page 152) those for the random instances. In both tables we report re-

sults produced by all three types of hyperheuristics (simple, simulated annealing,

and choice function). The choice function results are those produced by CFb. Pre-

liminary experiments using CFa were very unsuccessful with results often worse

than those of the simple hyperheuristics. Previously, the company used a greedy

heuristic to solve instance DR. The company’s greedy heuristic produced a solution

of evaluation E = 1020.43 (B = 226, C = 48.65, V = 99). Our greedy algorithm

produced a better solution of 784.40 (B = 0.00, C = 8.00, V = 98). All of our hy-

perheuristics produced results dramatically better than those used by the problem

owner and are worthy of further investigation. Moreover, the problem owner’s sub-

jective assessment was that these solutions represented a significant improvement

and an implementable solution.

We can see that for the real-world instances in Table 6.2 the best results produced

by CFb and SAHH are better than those produced by the simple hyperheuristics.

This is also true of most of random instances in Table 6.3. We note that this

superiority slightly decreases when solving easy instances such as our easy random

instances. This suggests that for easy problems our simple hyperheuristics may be

able to produce acceptable solutions quite quickly. Apart from the difficult instance

DR5, SAHH gave better results than CFb for the real-world instances. Similarly

for the random instances, SAHH produces better results than CFb except for the

difficult instance DS5 of this category. This may suggest that CFb is better equipped

for difficult instances than SAHH . We shall investigate the behaviour of CFb in

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 149

the next 3 sections from different perspectives. For the easier random instances both

hyperheuristics have comparable performance. The fact that SAHH finds better

solutions than CFb appears to be explained by the fact that the latter does not

diversify by accepting non-improving solutions as often as the former, especially

in the early stage of the search. Thus SAHH escapes from local optima more

effectively than CFb.

Simulated annealing metaheuristic: To provide a further comparison, we also

solved the sales summit scheduling using a 3-phase simulated annealing metaheuris-

tic. Our simulated annealing algorithm was designed by hand. Each phase used

a simulated annealing associated with different neighbourhood structures. More

precisely, in phase 1 the simulated annealing metaheuristic is associated with three

types of neighbourhood structures (remove one delegate, add one delegate, cut sur-

plus meetings for suppliers), which are heuristics 1, 3 and 7 above. The second

phase uses a simulated annealing associated with a different set of three neighbour-

hood structures. The first neighbourhood structure changes or moves the delegate

meeting supplier s in timeslot t. It chooses one scheduled meeting uniformly at

random, removes it, and schedules the first meeting encountered which involves

the same supplier as that of the removed meeting. The other two neighbourhood

moves are ‘swap two meetings in two different timeslots’ and ‘add one meeting to

a priority-dissatisfied supplier’. The former of them chooses one scheduled meet-

ing uniformly at random and searches for the first scheduled meeting involving a

different pair of supplier-delegate in order to make the swap. An other variant of

this neighbourhood move was also considered where the swap does not decrease the

number of priority meetings of the suppliers involved in the swap. The latter type of

neighbourhood move is heuristic 6 above. Finally a third phase uses a simulated an-

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 150

nealing associated with a more complex type of neighbourhood move often referred

to as compound move or chain move [89, 264]. For example, given three meetings

(s1, d1, t1), (s2, d2, t2) and (s3, d3, t3) where (s, d, t) means that a meeting between

supplier s and delegate d is scheduled in timeslot t, the chain of 3 moves will move

supplier s1 to meet delegate d2 in timeslot t2 and move supplier s2 to meet delegate

d3 in timeslot t3 and move supplier s3 to meet delegate d1 in timeslot t1. So that the

resulting solution now includes newly arranged meetings (s3, d1, t1), (s1, d2, t2) and

(s2, d3, t3). Chains of moves are robust neighbourhood moves that allow for further

improvements in cases where simple neighbourhood moves cannot [89, 264]. In all

chain moves, the choice of the first (s, d, t) in the chain is made uniformly at random

while the subsequent (s, d, t) of the chain are chosen on a first-encountered basis.

As in the second phase, an advanced variant of these chain moves was considered

where no decrease of the number of priority meetings of the suppliers involved is

allowed. In addition to the three phases, we allowed for re-heating of the initial

temperature of the simulated annealing by cycling round the three phases in the

order phase1, phase2, phase3, phase1 and so forth. The transition from the current

phase to the next one takes place when, within the current phase, there have been

NonImprov consecutive iterations without improvement. The next phase is then

invoked starting from the best solution found so far.

We used a geometric cooling schedule and, in addition to fine-tuning the temper-

ature parameter, TemperatureMultiplier, we had to fine-tune TemperatureLength

parameter which represents the number of iterations before we decrease the tem-

perature by TemperatureMultiplier, and NonImprov. After experimentation we

retained TemperatureMultiplier = 0.85 as for the simulated annealing hyperheuris-

tic, NonImprov = 10 and TemperatureLength = 2. The initial temperature was

set to 50% of the evaluation function value of the starting solution (that produced by

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 151

our greedy algorithm of Section 2) [2]. It should be noted that the implementation

of the final version of the simulated annealing metaheuristic was arrived at after a

good deal of fine tuning and experimentation. In both Table 6.2 and Table 6.3 we

give the results obtained by the simulated annealing metaheuristic (SAMH).

We first note that the metaheuristic produced results which were better than

those obtained from the greedy algorithm used by the company. To our surprise,

hyperheuristics produced better results than those produced by the simulated an-

nealing metaheuristic in most instances. The only instances where the simulated

annealing metaheuristic beat the hyperheuristics are DS2 and DS4, which are among

the easiest ones. This suggests that overall, SAHH and CFb are quite robust when

compared to the simulated annealing metaheuristic and as such, can cope with dif-

ficult instances better than SAMH , which used much richer heuristic moves. It

seems that combining simple heuristics in an intelligent manner (as in CFb and

SAHH) may not only yield a better overall improvement than using these low-level

heuristics individually, but also this improvement is greater than that made by a

special-purpose metaheuristic such as SAMH which makes use of higher-quality

neighbourhood moves. It should be noted that while SAHH was designed for the

problem, it was not extremely tuned so that it performed well on the instances

considered.

In the next 3 sections we investigate the behaviour of the choice function hyper-

heuristic from different perspectives. We aim to understand its effectiveness.

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 152

Algorithm DR2 DR DR1 DR3 DR4 DR5

Greedy Heuristic 784.10 784.40 786.35 830.45 496.45 706.75
RP-AM 768.62 775.46 775.19 825.76 444.60 640.08
RP-OI 593.68 635.81 661.26 795.72 352.20 691.00
RPD-AM 595.91 639.58 659.07 794.56 358.65 691.00
RPD-OI 595.63 633.05 658.81 794.74 363.84 691.00
SR-AM 685.44 712.71 729.20 816.78 360.62 622.20
SR-OI 609.44 640.53 661.44 799.70 362.84 691.00
RD-AM 596.54 639.03 658.33 795.99 350.26 691.00
RD-OI 594.46 638.04 659.33 798.09 359.40 691.00
CFb-AM 600.28 619.46 665.17 798.35 324.06 610.31
CFb-OI 590.21 641.12 658.52 794.80 356.23 691.00
SAHH-AM 566.86 582.44 635.03 784.79 319.19 627.79
SAHH-OI 598.05 635.53 661.30 798.24 349.39 691.00
SAMH 603.57 642.86 674.22 802.77 358.30 696.07

Table 6.2: Experiments with 10 low-level heuristics, real-world data- instances are
ordered in increasing difficulty (from left to right)

Algorithm DS1 DS2 DS4 DS3 DS6 DS5

Greedy Heuristic 792.00 800.40 800.00 792.00 792.00 792.00
RP-AM 721.86 791.89 771.30 701.79 778.41 764.83
RP-OI 541.90 711.08 637.68 569.18 615.25 628.05
RPD-AM 551.43 716.57 654.40 577.28 613.50 639.43
RPD-OI 550.26 717.29 648.20 580.89 612.70 639.43
SR-AM 669.49 740.29 699.20 674.93 666.85 695.16
SR-OI 551.51 707.30 645.33 569.77 614.06 632.62
RD-AM 549.56 715.15 649.56 577.49 614.48 636.43
RD-OI 551.26 715.32 647.76 576.90 613.09 639.92
CFb-AM 546.30 699.81 641.43 566.11 610.43 627.86
CFb-OI 555.15 720.35 639.06 572.05 614.26 632.35
SAHH-AM 552.28 710.38 638.91 561.68 610.22 631.70
SAHH-OI 547.85 707.84 646.11 569.77 614.14 637.51
SAMH 570.34 694.15 637.78 569.20 613.41 634.53

Table 6.3: Experiments with 10 low-level heuristics, random data- instances are
ordered in increasing difficulty (from left to right)

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 153

6.3.4 Effectiveness and learning ability of the choice func-

tion hyperheuristic

In this section we report experiments conducted to determine how effective each

hyperheuristic approach is. We first focused on the question as to how often the

application of the low-level heuristic chosen by the hyperheuristic leads to a bet-

ter global solution. To do this we defined function κ(Nj , ρ) = 10 ×
freqB(Nj ,ρ)

freq(Nj)
for

each low-level heuristic Nj , where freqB(Nj, ρ) is the number of times that the

application of Nj has produced an absolute improvement (a solution better than

the best solution so far) within the next ρ low-level heuristic calls. For a given

low-level heuristic Nj , we can evaluate how effectively different hyperheuristics have

been able to use it by comparing the value of κ(Nj , ρ) with respect to each of these

hyperheuristics at the end of a given run. The hyperheuristic in which the value of

κ(Nj , ρ) is high would indicate that that hyperheuristic ‘makes the most’ of heuristic

Nj . Here we chose ρ = nh = 10, the number of low-level heuristics used. The idea

here is that the ρ heuristics which prepare the solution for an absolute improvement

should all be equally rewarded. In Table 6.4 and Table 6.5 (page 157) respectively we

present values of κ for each of the 10 low-level heuristics when RP-OI and CFb-AM

respectively are applied to the real-world problem instance DR (in a single run of 600

seconds of CPU time). A comparison of κ for both algorithms shows that the choice

function hyperheuristic makes a more effective choice of the low-level heuristics than

does a simple hyperheuristic for 9 low-level heuristics out of 10. This means that

for most heuristics (9 out of 10), the choice function hyperheuristics was capable of

learning to combine and use them more effectively than a simple hyperheuristic in

which the learning is disabled. During a run, the value of κ typically increases in the

early part of the search (as it is easier then to produce better absolute solutions) and

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 154

then gradually decreases as it becomes more and more difficult to produce better

absolute solutions. Although the general trend is downward, there are sudden peaks

when an absolute improvement has just been achieved.

We now focus on the adaptive procedure used in our more sophisticated parameter-

free hyperheuristic to adjust the choice function parameters and reflect the inter-

play of the different low-level heuristics. Our intention is to see if there really is

an interplay between the low-level heuristics, the region of the search space being

explored and the different factors f1l, f2l and f3 of the choice function. We con-

sidered a number of ‘extreme’ initial values assigned to the different parameters

(αb, αc, αv, βb, βc, βv and δ). We noticed that the value of parameters α and β does

not vary much throughout the hyperheuristic search (applied to average instance

DR) whereas that of parameter δ varies considerably during the entire search. Note

that there are only 2 degrees of freedom in the formula αf1+βf2+ δf3, so we would

expect at most 2 of parameters α, β, δ to change usefully, i.e. we could fix δ = 1 and

vary α, β. In a preliminary experiment we assigned values close to 0 and values close

to 1 to each parameter in order to see if such values would converge to a specific

range of values during the search. This did not happen. More precisely we noticed

that very often both parameters α and β keep their initial values (whether extreme

or not) within a very narrow range while parameter δ varies across a large range of

values during the search without any clear evidence of convergence towards a narrow

range of values.

To measure the relation between the choice function’s parameters, we define

λ = αb+αc+αv+βb+βc+βv

6δ
. Bearing in mind the fact that parameters α and β are

associated with the exploitation of the search and that parameter δ is associated

with the exploration of the search space, λ reflects how the choice function balances

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 155

the desire to exploit the search experience and the desire to explore other heuristics,

dependent on the performance of the low-level heuristics and of the region of the

search space in which the search finds itself. Figure 6.1 presents the evolution of λ

and E for CFb-AM over the number of low-level heuristic calls when exploitation

parameters α and β and exploration parameter δ are given initial extreme values of

0.01 and 0.99.

λ is kept almost constant in cases illustrated by both Figure 6.1 (a) and (b),

thus showing that a certain narrow range of values of the proportion of exploita-

tion/exploration has been arrived at and has been retained for the entire duration

of the search. More precisely, in Figure 6.1 (a), λ started off with a value of 99 and

suddenly dropped from 98.99 to 4.7× 10−4 at heuristic call 42. λ then varies within

the narrow range of 4.7×10−4 to 9.8×10−6 (with a peak of 1.3×10−3 from heuristic

call 60 to 75). In Figure 6.1 (b), λ started off with a value of 1 then at heuristic

call 45 it suddenly increased from 0.99 to 4.66. It then drops down to 6.8× 10−3 at

heuristic call 56 and varies in the narrow range of 6.8× 10−3 and 4.6× 10−5. In the

case of Figure 6.1 (a) the search led to a solution of evaluation 609.10. Figure 6.1 (b)

yielded a solution of 628.05. In both Figure 6.1 (c) and Figure 6.1 (d) our adaptive

parameter tuning allows for wide variation in λ, and thus in the relative importance

of exploitation and exploration. Figure 6.1 (c) led to a solution of evaluation 621.75

and Figure 6.1 (d) to a solution of evaluation 624.15. So it would appear that this

variability in λ is less effective than a small value of λ as in Figure 6.1 (a) and Figure

6.1 (b) Also, it seems that small (α, β) gives lots of ‘noise’ although λ still remains

small. Overall we can say that the procedure for varying parameters α, β, δ might

produce solutions better than fixing those parameters or assigning random values

to them. In Figure 6.1 (e) we present the individual evolution of parameter δ corre-

sponding to the case of Figure 6.1 (b). The values of δ are changed in a consistent

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 156

(a): α=β= 0.99, δ=0.01 (λ = 99)

-20

0

20

40

60

80

100

120

1 3001 6001 9001

Heuristic calls

λ

605

655

705

755

E

λ

E

(c): α=β= 0.01, δ=0.99 (λ = 0.01)

-100

-80

-60

-40

-20

0

20

40

60

80

1 2301

Heuristic calls

λ

605

655

705

755

E

λ

E

(b): α=β= 0.99, δ=0.99 (λ = 1)

-1

0

1

2

3

4

5

1 2001 4001

Heuristic calls

λ

605

655

705

755

E

λ

E

(d): α=β= 0.01, δ=0.01 (λ = 1)

-80

-60

-40

-20

0

20

40

60

1 901 1801

Heuristic calls

λ

605

655

705

755

E

λ

E

(e): δ and E for α=β=δ=0.99

-5000

0

5000

10000

15000

20000

25000

1 2001 4001

Heuristic calls

δ

605

655

705

755

E

δ

E

Figure 6.1: Interplay between the choice function parameters, for DR

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 157

Heuristic N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

freq/freqB 329/15 359/7 336/1 366/7 297/10 353/11 349/12 352/7 344/11 369/9
κ 0.45 0.19 0.02 0.19 0.33 0.31 0.34 0.19 0.31 0.24

Table 6.4: freq(Nj)/freqB(Nj, ρ) and κ(Nj , ρ) for RP-OI, ρ = 10

Heuristic N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

freq/freqB 713/40 137/6 65/3 136/3 87/4 132/5 144/6 144/6 205/3 75/3
κ 0.56 0.43 0.46 0.22 0.45 0.37 0.41 0.41 0.14 0.40

Table 6.5: freq(Nj)/freqB(Nj, ρ) and κ(Nj , ρ) for CFb-AM, ρ = 10

manner with those of E. Thus its value drops as we get a better solution and its

value increases (suddenly) in order to escape from local optima. This again results

from the way our procedure for parameter settings works. There seems to be an

interplay between the performance of the low-level heuristics and the region of the

search space currently under exploration. By modifying parameters α, β, δ, hence

by modifying the proportion of exploitation/exploration appropriately, the adaptive

procedure attempts to reflect this interplay.

We then introduced two other heuristics called Idle and Nasty. The Idle heuristic

is a heuristic that does nothing whatsoever. It simply consumes CPU time. The

Nasty heuristic removes all meetings. We wanted to see how the choice function

hyperheuristic would react to the presence of such poor heuristics. To do this we

compare solution quality. We also give the total amount of time used by CFb−AM

on each of these two heuristics. Table 6.6 presents results (time spent on Idle and/or

Nasty, value of the objective function) when Idle alone is added to the ten other

heuristics, when Nasty alone is added to the ten other heuristics and when both Idle

and Nasty are added to the ten heuristics. Results are averaged over 10 runs of 600

seconds CPU.

We see that CFb−AM performs poorly in presence of Idle or Nasty used alone

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 158

Idle (sec) EIdle (B,C, V)Idle E B, C, V
Idle 0.013 636.68 27.5/103.60/75.50 619.46 37.70/163.20/71.70

Nasty (sec) ENasty (B,C, V)Nasty E B, C, V
Nasty 28.66 647.47 15.00/89.40/78.50 619.46 37.70/163.20/71.70

Idle/Nasty (sec) EIdle/Nasty (B,C, V)Idle/Nasty E B, C, V
Idle+Nasty 0.006/39.21 647.35 24.30/109.00/77.20 619.46 37.70/163.20/71.70

Table 6.6: Proportion of time used on Idle and Nasty low-level heuristics. EIdle,
ENasty and EIdle/Nasty denote E when Idle and Nasty are introduced alone and when
both heuristics are introduced simultaneously. In each case CFb − AM is applied
to instance DR, and results are averaged over 10 runs of 600 second CPU.

as well as when both heuristics are simultaneously available. Solution quality is

better when using Idle than when using Nasty which causes more damage to the

solution. It is interesting to note that when both heuristics are available, it seems

that CFb − AM has a stronger preference for Nasty than for Idle. This reflects

the idea that the hyperheuristic ‘hopes’ to find out more about the dynamics of the

search using Nasty than using Idle1. Using Idle will not tell us anything simply

because Idle does not do anything. Overall it would appear that the choice function

hyperheuristic may deliver poorer results when in presence of extremely negative

heuristics. We observed that the choice function hyperheuristic was still able to

produce results better than those obtained by SR and RD when in presence of

Nasty and Idle. Solutions obtained by SR were even much worse than the starting

solution produced by our greedy heuristic. It should be noted, however, that this is

an extreme situation that is not likely to occur in practice as the negativity of such

heuristics as Idle (which consumes time uselessly) and Nasty (which actually coun-

ters every effort of building a solution) is evident. Therefore no one would actually

want to use them as a way of constructing solutions.

In order to analyse which parts of our expression for the choice function were

1at least Nasty does something.

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 159

Choice Function DR2 DR DR1 DR3 DR4 DR5

fl = αlf1l +
δ

c
f3 -AM 606.14 643.90 680.72 803.30 354.31 692.01

fl = αlf1l +
δ

c
f3 -OI 610.88 646.46 677.22 800.43 367.11 687.71

fl = βlf2l +
δ

c
f3 -AM 609.10 648.72 679.27 807.17 349.33 689.84

fl = βlf2l +
δ

c
f3 -OI 612.05 642.54 679.68 802.20 367.87 689.94

fl = αlf1l + βlf2l -AM 624.60 654.32 688.99 814.34 383.76 690.72
fl = αlf1l + βlf2l -OI 610.39 656.39 694.03 808.37 371.72 689.86

fl = αlf1l + βlf2l +
δ

c
f3 -AM 600.28 619.46 665.17 798.35 324.06 610.31

fl = αlf1l + βlf2l +
δ

c
f3 -OI 590.21 641.12 658.52 794.80 356.23 691.00

Table 6.7: Different Choice Function expressions, real-world data

Choice Function DS1 DS2 DS4 DS3 DS6 DS5

fl = αlf1l +
δ

c
f3 -AM 574.21 708.69 652.11 593.26 614.46 633.92

fl = αlf1l +
δ

c
f3 -OI 569.47 712.05 652.41 605.92 625.23 642.01

fl = βlf2l +
δ

c
f3 -AM 570.29 708.15 653.62 580.27 613.05 635.72

fl = βlf2l +
δ

c
f3 -OI 570.49 710.69 650.89 602.31 619.94 647.42

fl = αlf1l + βlf2l -AM 580.54 719.02 656.96 623.11 626.92 654.42
fl = αlf1l + βlf2l -OI 593.90 715.04 655.79 607.62 621.86 652.91

fl = αlf1l + βlf2l +
δ

c
f3 -AM 546.30 699.81 641.43 566.11 610.43 627.86

fl = αlf1l + βlf2l +
δ

c
f3 -OI 555.15 720.35 639.06 572.05 614.26 632.35

Table 6.8: Different Choice Function expressions, random data

the most important, we analysed a range of alternative choice functions, which use

the same basic elements. For each criterion l ∈ L, the choice function fl consists of

three factors: f1l representing the first order performance of the low-level heuristic,

f2l the joint performance of a pair of heuristics and f3 the time since a heuristic was

last called. To see which of these three factors is of most importance we considered

the following choice function expressions: fl = αlf1l, fl = βlf2l, fl = αlf1l + βlf2l,

fl = αlf1l +
δ
c
f3 and fl = βlf2l +

δ
c
f3. In both Table 6.7 and Table 6.8, we present

the results of the three latter ones.

In 50% of the problems fl = αlf1l +
δ
c
f3 gave better results than fl = βlf2l +

δ
c
f3

showing that both factors f1l and f2l are about equally important for the search

while f3’s presence is more than vital as results without it are significantly poorer.

Further, if we compare with the results of Table 6.2 and Table 6.3 (page 152) we

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 160

see that CFb, which uses all three factors gives the best results. This suggests that

it may be worth considering another factor representing the joint performance of a

triple or m-tuple of heuristics.

6.3.5 Experiments with a smaller set of low-level heuristics

In the previous sub-section we saw the superiority of both the choice function and

the simulated-annealing based hyperheuristic over simple multiple neighbourhood

search techniques for difficult problem instances. In this section we show that hyper-

heuristics can still perform well even in the presence of not-so-rich sets of low-level

heuristics. We experimented with a few subsets of four low-level heuristics among

the 10 considered above and retained low-level heuristics 1, 2, 3 and 5. Results are

given in Table 6.9 (real-world instances) and Table 6.10 (random instances).

We compared results obtained from all three types of our hyperheuristics with

those of the simulated annealing metaheuristic described earlier. In all real-world

instances, both hyperheuristics CFb and SAHH produced results better than those

produced by the simulated annealing metaheuristic. We also noticed that for all

real-world instances there was at least one simple hyperheuristic that outperformed

the metaheuristic. CFb and SAMH showed comparable performance. Similarly,

there was at least one simple hyperheuristic that produced results better than those

of SAMH. Even in presence of a not-so-rich set of low-level heuristics, it seems that

hyperheuristics can still produce good quality solutions.

In half of the instances the best result is from a simple hyperheuristic (DR1,

DR3, DR, DS1-2,6), but for the difficult instances of DR4 and DR5 both the choice

function and the simulated annealing hyperheuristics gave better results than the

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 161

Algorithm DR2 DR DR1 DR3 DR4 DR5

Greedy Heuristic 784.10 784.40 786.35 830.45 496.45 706.75
RP-AM 776.10 776.30 778.35 826.49 478.63 692.55
RP-OI 608.05 631.58 655.35 788.35 334.48 691.00
RPD-AM 603.60 645.55 661.70 788.10 352.20 691.00
RPD-OI 602.64 645.55 661.70 788.10 352.01 691.00
SR-AM 648.03 690.37 709.01 820.37 355.48 693.79
SR-OI 602.47 635.79 658.58 792.22 352.57 691.00
RD-AM 604.38 644.97 664.83 789.45 349.21 691.00
RD-OI 601.26 646.05 664.70 790.19 352.01 691.00
CFb-AM 602.76 633.62 670.29 811.53 330.81 684.34
CFb-OI 601.12 642.23 661.07 794.17 349.54 691.00
SAHH-AM 601.69 633.80 660.26 798.88 340.62 681.42
SAHH-OI 601.31 640.33 658.61 791.53 348.62 691.00
SAMH 603.57 642.86 674.22 802.77 358.30 696.07

Table 6.9: Experiments with 4 low-level heuristics (1, 2, 3 and 5), real-world data-
instances are ordered in increasing difficulty (from left to right)

simple ones. A similar situation happens with the random instances where SAHH

and CFb produce better results for the difficult instances DS3 and DS5 of this

category. For most instances, the performance of the choice function hyperheuristic

decreases with a small number of low-level heuristics (when compared to experiments

with 10 low-level heuristics in Table 6.2 and Table 6.3 of page 152), whilst that of the

simple hyperheuristic does not change significantly overall, thus reducing the gap

between the two categories of algorithms. This can be explained by the fact that

the chance of choosing the ‘right’ low-level heuristic increases when the number of

those low-level heuristics is small. Thus for example, in the extreme case of choosing

between two heuristics, it would be pointless to use a sophisticated hyperheuristic.

A simple greedy (try both heuristic and select the best) or random (choose either

heuristic at random) approach might probably yield a result at least as good as that

of a choice function hyperheuristic in this case.

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 162

Algorithm DS1 DS2 DS4 DS3 DS6 DS5

Greedy Heuristic 792.00 800.40 800.00 792.00 792.00 792.00
RP-AM 777.60 786.94 792.00 784.00 783.10 784.00
RP-OI 539.96 702.61 645.36 614.00 614.05 646.00
RPD-AM 550.40 692.20 642.32 584.10 611.10 646.00
RPD-OI 550.40 692.60 640.40 584.10 611.10 646.00
SR-AM 619.97 736.20 686.58 622.93 642.39 665.18
SR-OI 543.36 697.25 643.70 595.78 614.24 646.00
RD-AM 552.45 692.01 641.32 584.08 611.10 646.00
RD-OI 550.39 692.15 643.99 584.89 611.10 646.00
CFb-AM 550.84 704.53 655.93 580.27 613.37 638.54
CFb-OI 550.35 693.40 639.88 584.05 612.58 646.00
SAHH-AM 550.34 698.56 640.94 597.64 617.41 634.61
SAHH-OI 545.95 695.04 642.08 594.75 614.33 646.00
SAMH 570.34 694.15 637.78 569.20 613.41 634.53

Table 6.10: Experiments with 4 low-level heuristics (1, 2, 3 and 5), random data-
instances are ordered in increasing difficulty (from left to right)

6.3.6 Experiments with a larger set of low-level heuristics

In the two previous sub-sections we saw that hyperheuristics can still produce good

solutions even in the presence of a not-so-rich, small set of low-level heuristics. We

now consider a larger set of low-level heuristics by including six low-level heuristics

which were used in [69]. The low-level heuristics considered in [69] are also based

on the same intuitive ideas of manually repairing/improving on a solution (i.e. re-

move or add events). However, instead of adding one single meeting, they would

add as many meetings as possible. The disadvantage of these heuristics is that they

perform ‘macro’ moves and this tended to create plateaux in the search landscape.

For example, when adding, say, 6 meetings at a time to all dissatisfied suppliers, it

is difficult to reach a solution where one supplier has one or two meetings less. The

search jumps over intermediate solutions (e.g a solution with one or two meetings

less) which could lead to a globally better solution. In all, the hyperheuristic now

manages a set of 16 low-level heuristics including six extra low-level heuristics pre-

sented below. However, these ‘macro’ moves might be expected to perform well in

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 163

conjunction with ‘micro’ moves.

1. h11: Add meetings to dissatisfied supplier - version 1: This heuristic adds

as many meetings as possible to one dissatisfied supplier until the supplier is

satisfied (if possible), without adding new delegates. This may only involve the

deletion and rearrangement of meetings already arranged between delegates and

other suppliers, but only for ‘saturated’ delegates who already have Maxmeet

meetings.

2. h12: Add meetings to dissatisfied or priority-dissatisfied supplier: Same as the

previous heuristic except that here the heuristic considers priority-dissatisfied

suppliers (who may already have enough meetings, but not of sufficient priority)

as well as dissatisfied ones.

3. h13: Add meetings to dissatisfied supplier - version 2: Same as in heuristic h11,

except that here the heuristic may move meetings of nonsaturated delegates

who have less than Maxmeet meetings as well as saturated ones.

4. h14: Add meetings to priority-dissatisfied supplier: This heuristic takes a sup-

plier who has too few priority meetings and adds as many priority-meetings

as possible to him, without adding delegates or violating the limitation on the

maximum number of meetings per delegate .

5. h15: Add meetings to dissatisfied supplier: Same as h14 but considers only

suppliers who have enough priority meetings but too few meetings in total, and

adds non-priority meetings, without adding delegates or violating the limitation

on the maximum number of meetings per delegate.

6. h16: Add delegates and meetings to priority-dissatisfied supplier: Same as h14

except we allow the addition of new delegates (those who do not currently have

any meetings).

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 164

Results are given in Table 6.11 (real-world instances) and Table 6.12 (random

instances).

In more than half of the instances (4 real-world instances and 3 random in-

stances) CFb beat SAMH. SAMH was also outperformed by SAHH in 8 instances

out of 12 (5 real-world instances and 3 random instances). This suggests that both

hyperheuristics can produce results competitive with those of our sophisticated sim-

ulated annealing metaheuristic. In fact, the simulated annealing metaheuristic was

only able to produce results better than the best results produced by the simple

hyperheuristics in only a third of the instances considered (2 real-world instances

and 2 random instances). It should be mentioned however that this is an unfair

comparison as SAMH is being compared against the best result amongst 8 simple

hyperheuristics. At least it can be said that the sophisticated hyperheuristics (CF

and SAHH) can each compete with SAMH. We also note that in 6 instances (3

real-world and 3 random) CF produced results better than or equal to the best

result amongst the 8 simple hyperheuristics. SAHH did slightly worse. It produced

results better than or equal to the best simple hyperheuristic result in 5 instances

(4 real-world instances and 1 random instance).

It can be seen that overall, results produced by all three types of hyperheuristics

(simple, choice function and simulated annealing) are better with both a set of 10

low-level heuristics and a set of 4 low-level heuristics than with a larger set of 16 low-

level heuristics. For all three sets of low-level heuristics, the best results produced

by the simple hyperheuristics were generally produced by RP-OI and RPD.

In half of the instances there was at least one simple hyperheuristic that pro-

duced results better than those produced by both CFb and SAHH . We ran all

experiments for double the CPU time (that is another 600 seconds of CPU time)

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 165

on those instances where the simple hyperheuristic produced better results. The

sophisticated hyperheuristics (SAHH and CFb) then produced better results on

two more problems (results obtained by the choice function hyperheuristic) and the

gap between the results of the simple hyperheuristic and the sophisticated ones was

reduced in two other instances (one by the choice function hyperheuristic and one

by the simulated-annealing one). We have evidence here that the choice function

hyperheuristic is more robust than the simulated annealing one which in turn is

more robust than the simple hyperheuristics for difficult instances but that robust-

ness decreases when the number of low-level heuristic increases (when compared

to experiments with 10 low-level heuristics). Also, the simulated annealing hyper-

heuristic produced better results than the choice function one in 8 instances. This

is likely to be due to the fact that with a large number of low-level heuristics to

manage, it becomes more and more difficult to find the ‘right’ heuristic and the

amount of knowledge (hence the amount of time) needed to make a ‘good’ choice

increases. With a very large number of low-level heuristics, it may even be best

to choose a low-level heuristic at random rather than spending lots of time trying

to learn which low-level heuristic to apply next. It might also be interesting to

‘pre-screen’ and select a subset of around ten low-level heuristics. The power of the

statistical methods will fall as the number of data points decreases.

6.4 Conclusions

We have presented several hyperheuristic approaches applied to a special kind of

personnel scheduling problem. Hyperheuristics are approaches that can be devel-

oped quickly using limited domain knowledge and expertise by implementing only

knowledge-poor low-level heuristics. We have presented three types of hyperheuris-

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 166

Algorithm DR2 DR DR1 DR3 DR4 DR5

Greedy Heuristic 784.10 784.40 786.35 830.45 496.45 706.75
RP-AM 757.53 760.96 773.06 828.96 465.93 692.55
RP-OI 619.50 645.43 668.20 797.09 355.76 691.00
RPD-AM 630.68 646.60 676.09 797.32 379.53 691.00
RPD-OI 630.32 646.50 675.68 797.76 374.19 691.00
SR-AM 710.52 723.52 738.80 827.27 412.80 690.66
SR-OI 616.59 645.77 669.53 801.25 355.47 691.00
RD-AM 630.45 645.96 673.54 797.28 373.63 691.21
RD-OI 630.78 645.27 674.08 799.17 376.54 691.21
CFb-AM 601.46 643.50 686.95 819.66 360.53 690.09
CFb-OI 618.06 643.97 673.13 798.81 383.80 692.05
SAHH-AM 607.93 642.52 676.58 803.13 338.17 688.97
SAHH-OI 615.85 645.21 670.37 797.97 358.91 691.21
SAMH 603.57 642.86 674.22 802.77 358.30 696.07

Table 6.11: Experiments with 16 low-level heuristics, real-world data- instances are
ordered in increasing difficulty (from left to right)

Algorithm DS1 DS2 DS4 DS3 DS6 DS5

Greedy Heuristic 792.00 800.40 800.00 792.00 792.00 792.00
RP-AM 728.81 792.65 772.02 700.02 772.01 763.20
RP-OI 574.43 692.11 639.57 572.05 610.54 637.20
RPD-AM 552.48 693.94 657.53 586.77 609.61 639.43
RPD-OI 550.79 694.29 657.55 588.85 608.59 639.44
SR-AM 683.73 732.37 724.52 677.38 691.18 709.88
SR-OI 571.62 693.07 651.45 572.95 613.14 633.40
RD-AM 555.16 695.78 654.50 581.14 609.94 639.13
RD-OI 553.63 695.13 649.34 580.79 609.60 643.81
CFb-AM 547.16 708.24 649.64 571.63 611.33 638.42
CFb-OI 551.83 694.65 645.18 572.05 611.69 634.17
SAHH-AM 565.11 695.72 641.09 572.49 613.83 637.66
SAHH-OI 568.02 693.73 646.31 571.12 611.58 635.30
SAMH 570.34 694.15 637.78 569.20 613.41 634.53

Table 6.12: Experiments with 16 low-level heuristics, random data- instances are
ordered in increasing difficulty (from left to right)

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 167

tics: simple hyperheuristics, a simulated annealing hyperheuristic and a choice func-

tion hyperheuristic. All three types of hyperheuristic were applied to a real-world

case study problem of scheduling a sales summit and produced results dramati-

cally better than those produced by a greedy heuristic used by the problem owner.

In general we have observed, over a range of problems, that multiple neighbour-

hood approaches greatly outperform single neighbourhood ones. All three types

of hyperheuristic considered in this paper are worthy of further investigation. We

experimented with different sets of low-level heuristics and it can be said that hyper-

heuristics can still produce results as good as those produced by a metaheuristic even

if the sets of low-level heuristics managed by the hyperheuristic are poorly chosen

so long as there are enough heuristics (i.e. at least ‘add’, ‘delete’, ‘move’). It would

appear that the set of low-level heuristics should be complete, ideally rich, but not

necessarily too rich. Findings in chapter 8 will further confirm this point. Indeed

even when we have pathologically bad low-level heuristics (such as Idle and Nasty),

the hyperheuristic approaches are still capable of producing reasonable solutions,

much better than those obtained using the simple hyperheuristics (SR and RD).

In fact, in several instances of the sales summit problem considered in this chap-

ter, the hyperheuristic outperformed a simulated annealing metaheuristic equipped

with sophisticated neighbourhood structures. Of all types of hyperheuristics consid-

ered here, the choice function hyperheuristic was the most robust and outperformed

all other hyperheuristics for the difficult instances of the sales summit scheduling

problem. The simulated annealing hyperheuristic also outperformed the simple hy-

perheuristics in difficult instances. The choice function hyperheuristic is equipped

with an adaptive procedure which modifies the different parameters of the choice

function in an effective manner. The choice function thus attempts to capture the

interplay between the different low-level heuristics and the region of the search space

CHAPTER 6. APPLICATION TO SALES SUMMIT SCHEDULING 168

currently under exploration, and makes adjustments of the value of its parameters

in order to exploit or explore the search. We experimented with different expres-

sions of the choice function and it turned out that each factor - first and second

order improvement and exploration function - of the choice function that we con-

sidered, contributed to an effective search. Thus, in particular, the second order

improvement factor, which represents the joint performance of a pair of heuristics,

proved to be useful and if sufficient iterations are possible we might consider triples

or m-tuples of heuristics as well. This point will be further discussed in chapter 9.

Chapter 7

Application to Presentation

scheduling

7.1 Introduction

In the previous chapter we showed that hyperheuristics, in general, and our choice

function hyperheuristics in particular, can be effective for solving a variety of in-

stances of a real-world problem. In this chapter we shall further investigate the

power of the choice function hyperheuristic. First we show that it is possible to de-

velop good-quality solutions in a very short amount of time using our hyperheuristic

framework. Then we carry out a detailed investigation of the choice function hyper-

heuristic when compared to a purely random hyperheuristic approach. To do this

we apply our hyperheuristics to a different problem, that of scheduling final-year

project presentations. This is a real-world problem encountered at the University

of Nottingham. This chapter is structured as follows. Section 7.2 describes the

problem and gives a mathematical formulation. This is followed in section 7.3 by

169

CHAPTER 7. APPLICATION TO PRESENTATION SCHEDULING 170

computational experiments. Section 7.4 concludes the chapter.

7.2 Scheduling of project presentations

7.2.1 Problem description

Every academic year the School of Computer Science and Information Technology of

the University of Nottingham is faced with the problem of scheduling final year BSc

students’ project presentations during a period of up to 4 weeks. As part of their

course requirements, final year BSc students have to give a 15-minute presentation of

their project. Each student works on a chosen project topic and is assigned a member

of academic staff to supervise the project. Project presentations are then organised

and each student must present his/her project before a panel of three members of

academic staff who will mark the student’s presentation: The chair or first marker,

the second marker and the observer. Ideally, the project’s supervisor should be

involved in the presentation (either as chair or observer) but this is often not the

case in practice. Once every student has been assigned a supervisor for his/her

project, the problem is to schedule all individual presentations, that is, determine

a first marker, a second marker and an observer for each individual presentation,

and allocate both a room and a timeslot to the resulting quadruple (student, 1st

marker, 2nd marker, observer). The presentations are organised in sessions, each

containing up to six presentations. Typically the same markers and observers will

see all of the presentations in a particular session. So the problem can be seen as

that of determining (student, 1st marker, 2nd marker, observer, room, timeslot)

tuples, that respect the following constraints:

(1) Each presentation must be scheduled exactly once;

CHAPTER 7. APPLICATION TO PRESENTATION SCHEDULING 171

(2) No more than six presentations for each room and for each session;

(3) No member of staff (whether as 1st marker or as 2nd marker or as observer) can

be scheduled to 2 different rooms within the same session. In addition presentations

can only be scheduled in a given session when both the academic members of staff

and the room assigned to those presentations are available during that session. There

are four objectives to be achieved:

(A) Fair distribution of the total number of presentations per staff member;

(B) Fair distribution of the total number of sessions per staff member;

(C) Fair distribution of the number of ‘inconvenient’ sessions per staff member, i.e.

sessions at bad times (before 10:00 am, after 4:00 pm);

(D) Optimise the match between staff research interest and project themes, and try

to ensure that a supervisor attends presentations for projects which they supervise.

Previously, the problem was solved manually, and objective (D) was largely ig-

nored in this solution process, resulting in a lowered level of marker interest and

satisfaction, and student presentations where the level of questions asked felt short

of the ideal. All problem requirements were obtained through the School’s timetable

officer. Also an early model was obtained, which was refined in order to take into

account further points including objective (D). It should be mentioned that the no-

tion of ‘fairness’ here is subjective but has been quantified so that every member of

staff should have the same number of presentations/sessions/‘inconvenient’ sessions.

The actual enterprise of developing an automated system for scheduling final year

project presentations was for us an exercise of consultancy. This required a number

of consultative meetings involving the School’s timetabling officer, members of aca-

demic staff, and ourselves. From a practical point of view, analysis, development

and testing of solutions were carried out within a fairly short amount of time (two

weeks) as this project was indeed the rapid prototyping of a real-world solution for

CHAPTER 7. APPLICATION TO PRESENTATION SCHEDULING 172

the School’s final year project presentation scheduling problem.

7.2.2 Problem formulation

To formulate the problem, we denote by I the set of students, S the set of academic

staff members, Q the set of sessions and R the set of seminar rooms. Our decision

variables are denoted by matrix x = (xijklqr) of I × S × S × S ×Q× R dimension,

(i ∈ I, j, k, l ∈ S, j �= k, j �= l, k �= l, q ∈ Q, r ∈ R), where xijklqr is 1 if presentation

of student i is assigned to 1st marker j, 2nd marker k, observer l and allocated to

session q in seminar room r, and where all four persons are available for a meeting,

otherwise xijklqr is 0; and yjqr (j ∈ S, q ∈ Q, r ∈ R) where yjqr is 1 if staff j is in

room r during session q, otherwise yjqr is 0. We may then formulate the problem as

follows:

Minimise E(x) = 0.5A+B + 0.3C −D

s.t.
∑

j,k,l∈S

∑

q∈Q

∑

r∈R

xijklqr = 1, (i ∈ I) (7.1)

∑

i∈I

∑

j,k,l∈S

xijklqr ≤ 6, (q ∈ Q, r ∈ R) (7.2)

∑

r∈R

yjqr ≤ 1, (j ∈ S, q ∈ Q) (7.3)

∑

i∈I

∑

k,l∈S

(xijklqr + xikjlqr + xikljqr) ≤ Myjqr, (j ∈ S, q ∈ Q, r ∈ R) (7.4)

CHAPTER 7. APPLICATION TO PRESENTATION SCHEDULING 173

xijklqr, yjqr ∈ {0, 1}, i ∈ I, j, k, l ∈ S, j �= k �= l, q ∈ Q, r ∈ R (7.5)

where A =
∑

j∈S

(

∑

q∈Q

∑

r∈R

∑

i∈I

∑

k,l∈S(xijklqr + xikjlqr + xikljqr)−K
)2

,

B =
∑

j∈S

(

∑

q∈Q

∑

r∈R yjqr −K1

)2

,

C =
∑

j∈S

(

∑

q∈Qbad

∑

r∈R yjqr −K2

)2

, and

D =
∑

j∈S

(

∑

q∈Q

∑

r∈R

∑

i∈I

∑

k,l∈S(pij + 10Supij)(xijklqr + xikjlqr + xikljqr)
)

.

Equations (1), (2), (3) express constraints (1), (2), (3) respectively. Equation (4)

links variables xijklqr with yjqr, where M is a large number. K = 3|I|
|S|

, K1 =
6P1

|S|
and

K2 =
6P2

|S|
where K, (K1/K2) is the average number of presentations (sessions/‘bad’

sessions) per member of staff, with P1 (P2) the total number of (bad) sessions used in

the solution and Qbad a subset of Q containing early sessions (before 10:00 am) and

late sessions (after 4:00pm). In objective D, pij is an integer value associated with

the level of matching between the topic of presentation i and the research interest

of staff member j if he/she is involved in presentation i. The higher the value of

pij , the better the matching. Supij is an indicator of whether staff member j is

the supervisor of the project for presentation i. If this is the case, then Supij = 1.

Otherwise Supij = 0. The different coefficients in the objective function were set so

as to reflect the relative but subjective importance of each objective from the point

of view of the problem owner. The problem admits a feasible solution if there is

enough room-time to allocate each presentation to, hence if 6|R||Q| > |I|. We used

three instances for this problem. The first instance is csit0 taken from [73] and has

the following problem characteristics |I| = 151, |Q| = 80, |R| = 2, and |S| = 26.

The last two instances are csit1 and csit2 taken from [157] with |I| = 240, |Q| = 36,

CHAPTER 7. APPLICATION TO PRESENTATION SCHEDULING 174

|R| = 2, and |S| = 24 for csit1. csit2 is the same as csit1 except in |S| = 22.

Thus csit2 is more difficult (tighter constraints) than csit1. Note that csit0 is much

easier (slack constraints) than both csit1 and csit2 as from the former to the latter

instances there is a 58% increase in |I| and a 45% decrease in |Q|, hence many more

projects to schedule in fewer timeslots. In increasing order of difficulty we have

csit0, csit1, csit2. Note that all instances have thousands of constraints and several

millions of variables in our integer programming model.

We developed a constructive heuristic in [73] that produces an initial solution

which is better than the manually constructed one. The constructive heuristic iter-

atively chooses a triple of staff members and assigns them to as many as 6 presen-

tations in the first available session and room. Priority is given to non-bad sessions

(to optimise objective C), to presentations whose supervisor is among the three staff

and whose project topic is most related to the concerned staff research interest (to

optimise objective D) , and the staff members are chosen on a cyclic basis (to op-

timise objectives A and B). The solution of the constructive heuristic, presented

below, is used as starting solution for all our algorithms presented in this chapter.

In the next section we report experiments carried out on all hyperheuristics when

applied to the CSIT third year problem of scheduling project presentations.

Repeat:

Step1: -Choose one staff, say j (the next staff on the list - the first one is

chosen at random)

-Find a free PP session for staff j and a room available during that

PP session.

-Choose another staff, say k (chosen at random) who is available

CHAPTER 7. APPLICATION TO PRESENTATION SCHEDULING 175

during the PP session above.

Step2: -Store all projects whose supervisor is either staff j or k

-While number of selected Projects < 6 OR all such projects have been

considered

– Select the project with the highest research interest (increment

number of selected projects)

-For each selected project, schedule it in the room-PPsession, keeping

the supervisor as the first marker.

Until all room-PPsessions are utilised OR all PP’s are scheduled.

By choosing the next staff in the round (in Step 1) and by assigning up to 6 PP’s

to him/her (in step 2), we aim to minimise objective B (even number of PPsessions

per staff). Also, priority is given to those non-early PPsessions, which minimises

objective C (minimise the number of early PP sessions). In step2, the aim is to

maximise objective D.

7.3 Experiments

The first set of experiments1 aimed at making a direct comparison between the

purely random hyperheuristic approach (RD), and the choice function hyperheuris-

tic (CFa) (though we also give results for other simple hyperheuristics). The choice

function results are those produced by CFa. Unlike our experience with the sales

summit in the previous chapter, here initial experiments using CFb were very un-

1Unless otherwise stated, all algorithms reported in this chapter were coded in Microsoft Visual
C++ version 6 and all experiments were run on a PC Pentium III 1500MHz with 228MB RAM
running under Microsoft Windows 2000 version 5.

CHAPTER 7. APPLICATION TO PRESENTATION SCHEDULING 176

csit0 csit1 csit2

ch -908.5 -2557.6 -946.6
RP-am -1063.97* -2633.61 -1116.94
RP-oi -1197.59* -2878.41 -1625.74
RPD-am -1287.25* -2888.58 -1714.37
RPD-oi -1284.75* -2880.09 -1688.56
SR-am -1121.11* -2620.18 -1100.09
SR-oi -1193.19* -2880.93 -1614.11
RD-AM -1274.55* -2884.49 -1668.76
RD-OI -1303.38* -2892.81 -1675.48
CFa-AM -1444.99* -2960.3 -1650.67
CFa-OI -1316.56* -2963.37 -1720.23
RD1-AM -1406.64* -2892.02 -1724.15
RD1-OI -1398.74* -2887.90 -1720.29

ml -90.1 - -
CFa-AM(ml) -644.43 - -
s1 71.1 4304.5 6051.5
CFa-AM(s1) -1326.37 -323.23 717.96
s2 516.8 98.9 986.4
CFa-AM(s2) -991.96 -1342.3 -114.5

Table 7.1: Initial solution is ch. ml is a manual solution produced by the problem
owner. All algorithms in the upper part start with ch as initial solution. HH(x)
denotes algorithm HH starting with initial solution x. RD1 is a hand-made RD
which was tailored for this problem. csit0 results marked with * are taken from [73]
which used a 1Ghz PC with 128Mb RAM.

CHAPTER 7. APPLICATION TO PRESENTATION SCHEDULING 177

successful with results often worse than those of the simple hyperheuristics. For

both algorithms we distinguished the case where all moves (AM) are accepted and

the case where only improving moves (OI) are accepted. Results (averaged over 10

runs) are given in the upper part of Table 7.1 for the three instances csit0, csit1

and csit2 (results were not significantly different).

We used three types of low-level heuristics based on ‘Replacing’ one staff member

in a session with a different one, ‘Moving’ a presentation from one session to another,

and ‘Swapping’ two staff members, one from each presentation. The ‘Replace’ and

‘Move’ type have three variants, and the ‘Swap’ type two variants. Overall we used

the following nh = 8 low-level heuristics.

1. Replace one staff member in a session (N1): This heuristic chooses a random

staff member, say j1, chooses a random session, say q during which staff j1 is

scheduled for presentations and replaces j1 with another random staff member,

say j2, in all presentations involving staff j1 during session q. Staff j2 must not

be involved in any presentations during session q prior to the substitution.

2. Replace one staff member in a session (N2) Version 2 : Same as previous heuris-

tic but staff j1 has the largest number of scheduled sessions.

3. Replace one staff member in a session (N3) Version 3 : Same as N2 but session

q is the one where staff j1 has the smallest number of presentations. Also staff

j2 may be involved in presentations during session q prior to the substitution.

4. Move a presentation from one session to another (N4): This heuristic chooses

a random presentation, removes it from its current session and reschedules it in

another random session and a random room.

5. Move a presentation from one session to another (N5)Version 2 : Same as pre-

vious heuristic but the chosen presentation is that for which the sum of pre-

CHAPTER 7. APPLICATION TO PRESENTATION SCHEDULING 178

sentations involving all three staff (i.e. 1st marker, 2nd marker, observer) is

smallest of all sessions.

6. Move a presentation from one session to another (N6): Same as N5 but the

new session is one where at least one of the staff members (i.e. 1st marker, 2nd

marker, observer) is already scheduled for presentations.

7. Swap 2nd marker of one presentation with observer of another (N7): This

heuristic chooses two random presentations and swaps the 2nd marker of the

first presentation with the observer of the second presentation. The swap cannot

involve the removal of a supervisor.

8. Swap 1st marker of one presentation with 2nd marker of another (N8): This

heuristic chooses two random presentations and swaps the 1st marker of the

first presentation with the 2nd marker of the second presentation. The swap

cannot involved the removal of a supervisor.

For each of ‘Replace’ and ‘Move’ types of low-level heuristic the third version

generally yields solutions of better quality than the two others. We shall see, later

on, that the choice function hyperheuristic is capable of detecting this behaviour.

Both RD and CFa start with a solution produced by the constructive heuristic

solution, ch, used in [73] and described earlier. The stopping condition was 600

seconds CPU. The results (averaged over 10 runs) correspond to the best value of E

found during the search of each algorithm. We see that both algorithms produced

results much better than ch. Also CFa gave better results than RD. We note

that the gap in terms of objective E between CFa and RD is greatest with csit0

and smallest with csit2. It seems that CFa outperforms RD though the difference

appears to decrease as the difficulty of the instances to solve increases. Furthermore,

it was observed in [73] that finding a better solution becomes increasingly difficult

CHAPTER 7. APPLICATION TO PRESENTATION SCHEDULING 179

as the search goes on. This suggests that there is an advantage in using CFa over

RD. In [73] CFa also achieved results superior to those of RD when both methods

started from a very poor-quality solution constructed manually for csit0 (called ml

in Table 7.1). The hyperheuristic results were however inferior to those of ch. We

decided to run CFa from two initial solutions of very poor quality. Both initial

solutions (s1 and s2) were obtained randomly. In the lower part of Table 7.1 the

objective is given for CFa after 2 hours of CPU time in order to see if CFa will

get any closer to ch. The results (averaged over 3 runs) suggest that the area of the

search space the initial solutions are at are so poor that it is difficult to quickly move

to a good area. It should be noted however that CFa made a huge improvement on

the initial solutions and is able to catch up and even overtake ch on instance csit0.

Therefore it is still possible for CFa to reach good areas of the solution space that

were quite remote.

The second set of experiments aimed at investigating the low-level behaviour of

the choice function hyperheuristic. In Table 7.2, we give the proportion of call, by

CFa−AM , of each low-level heuristic during the first 100 heuristic calls and during

the last 100 heuristic calls to the best solution. We also rank the low-level heuristics

according to their overall proportion of call so that the top (bottom) heuristic is the

one that has been called most (least) often. Results are obtained after 30 minutes

CPU of run in order to allow for a realistic sampling. From the proportion of

calls during the 1st 100 calls it is clear that in the early stage of the search calls

are spread fairly evenly over the low-level heuristics, as the hyperheuristic has not

‘learned’ which ones are best. Because CFa−AM seems to be continually improving

on the search, the last 100 heuristic calls to the best solution correspond to the last

100 heuristic calls of the search. It is interesting to note that not all low-level

heuristics need be called at this later stage. Thus only low-level heuristics h2, h3,

CHAPTER 7. APPLICATION TO PRESENTATION SCHEDULING 180

h5 and h6 are needed for instances csit1 and csit2 whereas h3 alone, which works

towards improving on objective B2, suffices for problem instance csit0. It seems that

the choice function hyperheuristic shows different behaviours for different problem

instances. This provides some evidence that the hyperheuristic is capable of learning

about the interplay existing between the low-level heuristics dependent on both the

problem being solved and the part of the search space currently being explored.

From the overall proportion of calls we see that overall (across the 3 instances),

heuristics h2, h3 and h6 figure among the top 3 heuristics whereas heuristic h1 is at

the bottom. This can be regarded as a feature common to the 3 problem instances.

As noted in [73] it seems that h3 and h6 which are the most sophisticated version

of their category (‘replace’ type h1, h2, h3 and ‘move’ type h4, h5, h6) are likely to

be called more often than the others. There was no plateau landscape during the

hyperheuristic search on instances csit1 and csit2. For csit0 however a plateau of

solutions evaluated at -1390.6 was identified. The 100 heuristic calls covering the

plateau landscape were distributed as 0, 28, 35, 0, 5, 18, 2, 12 for heuristics h1,

h2, .., h7 and h8 respectively. Comparing this to csit0 results in Table 7.2 we see

a totally different low-level behaviour, which helped the hyperheuristic escape from

the plateau by first accepting worse solutions (up to -1292.6) in order to reach out

for good ones, ending up at -1414.6 (at the 100th heuristic call).

As mentioned earlier, a comparison of the overall proportion of calls of the low-

level heuristics in Table 7.2 within each of ‘Replace’ and ‘Move’ types shows that

the third version for each type is called more often than each of the other two

versions of that type, for all three instances. Thus N3 is called by the choice function

hyperheuristic more often than N1 and N2. Similarly, N6 is called by the choice

function hyperheuristic more often than N4 and N5. Overall the choice function

2Note that objective B has the largest coefficient in the objective function E.

CHAPTER 7. APPLICATION TO PRESENTATION SCHEDULING 181

csit0 csit1 csit2

h1 2/0, 7/0.006 4/0, 8/0.009 2/0, 8/0.005
h2 25/0, 2/0.134 16/4, 3/0.118 31/6, 2/0.129
h3 43/100, 1/0.691 16/76, 1/0.552 32/88, 1/0.672
h4 5/0, 6/0.001 5/0, 7/0.013 10/0, 5/0.016
h5 8/0, 5/0.041 7/2, 4/0.078 6/1, 4/0.038
h6 10/0, 3/0.077 9/18, 2/0.126 10/5, 3/0.121
h7 3/0, 6/0.001 28/0, 6/0.046 3/0, 7/0.009
h8 4/0, 4/0.049 15/0, 5/0.058 6/0, 6/0.010

E -1462.6 -2946.6 -1730.0

Table 7.2: heuristic calls by CFa− AM . Format: # calls during 1st 100 calls/last
100 calls to best solution, overall rank/overall proportion of call

hyperheuristic appears capable of detecting good low-level heuristics [70]. Findings

from experiments in Table 7.2 suggest that there is a certain probability distribution

of the low-level heuristics which a hyperheuristic should be able to find out if it

is to be effective as in the Bayesian heuristic approach developed by Mockus et

al. [198, 203] (see section 2.3.2). Experiments in the next paragraph investigate

whether the choice function hyperheuristic is able to work out appropriate heuristic

call frequencies.

Using the results in Table 7.2 we implemented an ‘intelligent’ random hyper-

heuristic, RD1, based on RD. Instead of selecting each low-level heuristic uniformly

at random (i.e. equal probability of choice) RD1 chooses each low-level heuristic

with a certain probability which corresponds to its overall proportion of call by the

choice function hyperheuristic CFa3. The aim of the experiment was to see if the

choice function hyperheuristic is able to choose appropriate heuristic call frequen-

cies, and if so whether the choice function gives additional power by providing a

better-than-random ordering of the low-level heuristics. RD1 10-run average results

3For example when applying RD1 to instance csit1, heuristics h1, h2, h3, h4, h5, h6, h7 and h8

are chosen with probability 0.009, 0.118, 0.552, 0.013, 0.078, 0.126, 0.046 and 0.058 respectively.

CHAPTER 7. APPLICATION TO PRESENTATION SCHEDULING 182

can be found in the upper part of Table 7.1 (page 176). Both RD and RD1 give

similar results on instance csit1. On instances csit2 and csit0 however, RD1, which

uses heuristic call frequencies obtained from the choice function hyperheuristic out-

performs RD, which simply chooses the low-level heuristics with equal probability

distribution. It would appear that the choice function hyperheuristic is able to work

out appropriate heuristic call frequencies. This is in line with the rationale behind

the Bayesian heuristic approach [198, 203] which, too, aimed at finding out a good

probability distribution of the low-level heuristics. Furthermore, while CFa and

RD1 gave comparable results on instance csit2, CFa outperformed RD1 on csit1

and csit0. It seems that, in some cases, an approach which maintains an adaptive

combination of the low-level heuristics (CFa), in which heuristic call frequencies

vary, may appear to be more robust than one which keeps the same combination of

the low-level heuristics (RD1), due to the ability of the former to adapt to changes

in the search landscape (valleys, plateaux, ...). Therefore we think that the similar-

ity of results between CFa and RD1 on instance csit2 is due to the fact that the

area of the landscape we are at is somewhat smooth and so the current heuristic

combination used in RD1 is good enough to cope with that. To further confirm

this, and to see if CFa is nothing more than just a good random hyperheuristic

(like RD1) we ran both RD1 and CFa using initial solutions s1 and s2. This has

the effect of starting the search from a rather different area (different to that of ch).

RD1 still uses the same probabilities, which were obtained by CFa with ch as ini-

tial solution. Results (averaged over 10 runs) are given in Table 7.3. When starting

from s1, CFa beats RD1 by 150 (in difference) on csit1 and by 934.12 on csit2.

Both algorithms have comparable results on csit0 (small difference of only 18.51).

When starting from s2, RD1 and CFa have similar results (small difference of only

12.86) on csit1. RD1 beats CFa by 66.94 on csit2 and by 116.82 on csit0. Although

CHAPTER 7. APPLICATION TO PRESENTATION SCHEDULING 183

we have mixed results, it should be recalled that RD1 was manually tuned using

the weights obtained from CFa. At least it can be said that adaptively changing

the probability of choice of the low-level heuristic during the search allows us to

deal robustly with different problem instances and starting solutions in some cases.

In other words in some cases, just having a ‘magic’ combination of the low-level

heuristic is not enough (RD1). We must maintain an adaptive control on the way

we combine the low-level heuristics in order to carry out an effective search. The

choice function hyperheuristic appears capable of achieving this intelligently. This

also means that the way the hyperheuristic works is quite different from a random

search, however effective that random search is. It is interesting to note that the

superiority of CFa over RD1 is greater on initial solution s1 which is worse than s2.

The sort of solutions produced by CFa appeared to be practical. As a result,

the choice function hyperheuristic solution has been implemented by the school for

this academic year 2001-2002. The school’s timetabling officer described the results

as ‘excellent’. The school would now like to extend our project to pen-ultimate year

students who also have to give presentations at the end of every academic year. The

number of pen-ultimate year students is twice as large as that of final year students).

Solving the current problem saved the timetable officer the equivalent of one-week

of man hours, during the school’s busiest period of the academic year.

7.4 Conclusions

We have investigated the low-level behaviour of a choice function hyperheuristic

using an ‘intelligent’ tailor-made random hyperheuristic. It appears that the choice

function hyperheuristic not only makes an effective and realistic combination of the

CHAPTER 7. APPLICATION TO PRESENTATION SCHEDULING 184

csit0 csit1 csit2

RD1-AM(s1) -500.93 1665.77 4164.21
RD1-OI(s1) -481.84 1545.55 4273.03
CFa-AM(s1) -394.77 1450.55 3230.09
CFa-OI(s1) -482.42 1395.91 3350.64

RD1-AM(s2) -463.01 -1059.73 27.70
RD1-OI(s2) -427.38 -1028.04 -3.27
CFa-AM(s2) -346.19 -976.95 63.67
CFa-OI(s2) -345.60 -1040.09 76.06

Table 7.3: Comparison between CFa and RD1 with different initial solutions

low-level heuristics at hand but also shows some evidence of an ability to adapt this

heuristic combination to both the problem being solved and the region of the search

space currently under exploration. While much of the power of the hyperheuristic

appears to come from selecting appropriate probabilities for calling low-level heuris-

tics as in the Bayesian heuristic approach developed by Mockus et al. [198, 203],

additional benefits are sometimes obtained by adaptively varying those probabilities

so that they are tailored to the solution space and low-level heuristics.

Whilst the aggregated choice function hyperheuristic, CFa, produced better re-

sults than the decomposed one, CFb, for the project presentation scheduling prob-

lem, the opposite happened with the sales summit scheduling problem of the previous

chapter. Indeed, CFa’s results for the sales summit problem were even worse than

those of the simple hyperheuristics. The reason why CFb did not outperform CFa

here is probably due to the fact that CFb for the project scheduling problem would

have to deal with more individual objectives than for the sales summit. The more

individual objectives there are (i.e. the larger |L| is), the more parameters αl, βl

(l ∈ L) would need to be managed. Thus convergence to a good solution for the

choice function hyperheuristic search could slow down when in presence of a sub-

stantial number of individual objectives in E. It would appear that when there are

CHAPTER 7. APPLICATION TO PRESENTATION SCHEDULING 185

too many single objectives (in our experience more than 3), CFb becomes rapidly

intractable. In which case we would recommend CFa. This point will be confirmed

in the next chapter where, in presence of only 2 objectives, CFb will greatly out-

perform CFa which often produced solutions even worse than those of the simple

hyperheuristics.

We would like to emphasize the fact that the implementation of the hyperheuris-

tic techniques for this problem was quite fast. In effect, all hyperheuristics presented

here are ‘standard’ approaches which worked well for the sales summit scheduling

problem in the previous chapter [69, 70, 72]. Indeed all that was needed was a set

H of low-level heuristics to be input to the hyperheuristic black box. The way the

hyperheuristic works is independent of both the nature of the low-level heuristics

and the problem to be solved except for the objective function’s value and CPU time

which are passed from the low-level heuristics to the hyperheuristic. Whilst produc-

ing the hyperheuristic framework has taken over 18 months, using this framework

took us only the equivalent of 101 hours of work (or two and a half weeks at 40 hours

work per week) from understanding the problem to obtaining good hyperheuristic

solutions.

Our model appeared to be quite realistic and was able to represent all practical

requirements made known to us. The design of the low-level heuristics was quite

natural and reflected some of the repair moves which the problem owner used before

(‘swap’, ‘replace’, ‘move’). The implementation of the solution was quite fast and

results were presented in Microsoft Excel tables which were then posted on the

school’s internal website, so that both students and members of academic staff could

easily make note of their own timetable. Having seen the project presentations

happening we can confirm that the schedule operated smoothly throughout.

Chapter 8

Application to nurse scheduling

8.1 Introduction

In the two previous chapters we showed that our choice function hyperheuristics

performed well when applied to two different real-world problems. In this chapter we

compare our choice function hyperheuristic with two other methods independently

developed by other authors. The application problem is that of scheduling nurses.

We consider real-world instances of the nurse scheduling problem encountered at a

major UK hospital. Nurse scheduling has been previously tackled using tabu search

[89] and genetic algorithms [9]. We aim to demonstrate that hyperheuristics are

not only readily applicable to a wide range of scheduling and other combinatorial

optimisation problems, but that they can also provide very good quality solutions

which are comparable to those of knowledge-rich sophisticated metaheuristics, while

using less development time and simple, easy-to-implement low-level heuristics. We

shall also investigate the sensitivity of our choice function hyperheuristic, using a

variety of different sets of low-level heuristics of various quality levels. The remainder

186

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 187

of this chapter is structured as follows. In section 8.2 we describe the application

problem, that of scheduling nurses. This is followed in section 8.3 by computational

experiments and section 8.4 presents our conclusions.

8.2 The nurse scheduling problem

8.2.1 Problem description

The problem is that of creating weekly schedules for wards containing up to 30

nurses at a major UK hospital. These schedules must respect working contracts

and meet the demand in terms of number of nurses of different grades required for

each day-shift and night-shift of the week, whilst being perceived to be fair by the

nurses themselves. In any given week, nurses work either days or nights. The day is

partitioned into two types of shift: ‘earlies’ and ‘lates’. A full week’s work typically

includes more days than nights. For example, a full-time nurse works 5 days or 4

nights, whereas a part-time nurse works 4 days or 3 nights, 3 days or 3 nights, or 3

days or 2 nights. The problem can be decomposed into 3 independent stages [90].

Stage 1 uses a knapsack model to check if there are enough nurses to meet demand.

Additional nurses are needed for stage 2 otherwise (thus stage 2 will always admit

a feasible solution). Stage 2 is the most difficult and is concerned with the actual

allocation of the weekly shift-patterns to each nurse. Then stage 3 uses a network

flow model to assign those on day-shifts to ‘earlies’ and ‘lates’ (see [90] for further

details). As in [89] and [9] we limit ourselves to the most difficult sub-problem in

stage 2. The stage 2 problem is described as follows. Each possible weekly shift-

pattern for a given nurse can be represented as a 0-1 vector of 14 elements, where

the first 7 elements represent the seven days of the week (7 day-shifts) and the last

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 188

7 elements the corresponding 7 nights of the week (7 night-shifts). A ‘1’/‘0’ in the

vector represents a day or night ‘on’/‘off’. For each nurse there is a limited number

of shift-patterns corresponding to the number of combinations of the number of days

s/he is contracted to work in a week. For example a full-time nurse contracted to

work either 5 days or 4 nights has a total of C57 = 21 feasible day shift-patterns and

C47 = 35 feasible night shift-patterns. There are typically between 20 and 30 nurses

per ward, 3 grade-bands, and 411 different (full-time and part-time) shift-patterns.

Based upon the nurses’ preferences for the various shift-patterns, the recent history

of shift-patterns worked, and the overall attractiveness of the shift-pattern, a penalty

cost is associated to each assignment nurse-shift pattern, values of which were set

after discussions with the hospital, ranging from 0 (ideal) to 100 (undesirable) -see

[89] for further details.

8.2.2 Problem formulation

The stage 2 problem can then be formulated as follows. Our decision variables are

denoted by xij which assume 1 if nurse i works shift-pattern j and 0 otherwise.

Let parameters g, n, s be the number of grades, nurses and possible shift-patterns

respectively. Parameter ajk is 1 if shift-pattern j covers shift k, 0 otherwise. bir is 1 if

nurse i is of grade r or higher, 0 otherwise. pij is the penalty cost of nurse i working

shift-pattern j. Skr is the demand of nurses of grade r or above on day/night (i.e

shift) k. Finally F (i) is the set of feasible shift-patterns for nurse i. We may then

use the following mathematical formulation from [89, 9]:

Min PC =

n
∑

i=1

s
∑

j=1

pijxij (8.1)

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 189

s.t.
∑

j∈F(i)

xij = 1, ∀i (8.2)

s
∑

j=1

n
∑

i=1

birajkxij ≥ Skr, ∀k, r (8.3)

xij ∈ {0, 1}, ∀i, j (8.4)

The objective is expressed in Equation (1) as that of minimising the overall

penalty cost associated with the nurses’ desirability for the shift-patterns. Con-

straints (2) express the idea that each nurse must work exactly one shift-pattern.

Constraints (3) reflects the demand for nurses. Note that bir is defined in such a

way that higher-grade nurses can substitute for those at lower grades if needed.

The problem is NP-hard [9] and instances typically involve between 1000 and 2000

variables and up to 70 constraints. It was noted in [9] that the difficulty of a given

instance depends upon the shape of the solution space, which in turn depends on

the distribution of the penalty costs (pij) and their relationship with the set of

feasible solutions. In this chapter, we consider 52 instances of the problem, based

on three wards and corresponding to each week of the year. These 52 instances,

as a whole, feature a wide variety of solution space landscapes ranging from easy

problems with many low-cost global optima scattered all over the space, to very

hard ones with few global optima and in some cases with relatively sparse feasi-

ble solutions [9]. Optimal solutions are known for each instance as the problem

was solved in [8] using a standard IP package. However some instances required

more than 15 hours of (Pentium II 200 Mhz PC) run-time. Further experiments

with a number of descent methods using different neighbourhoods, and a standard

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 190

simulated annealing metaheuristic were conducted unsuccessfully, failing to obtain

feasibility [9]. The most successful method to date which works within the low CPU

time available in practice is a tabu search metaheuristic [89] which uses chain-moves

whose design and implementation were highly problem and instance specific. These

moves relied on the way the different factors affecting the quality of a schedule were

combined in the pij values [9]. In [9] a genetic algorithm which did not use the

chain-moves was also used to solve the problem. Failure to obtain good solutions

led to the use of a co-evolutionary strategy which decomposed the main population

into several co-operative sub-populations. Knowledge on the problem structure was

incorporated in both the way the sub-populations were built, and the way partial

solutions were recombined to form complete ones. The co-evolutionary strategy is

highly problem-specific, and, both tabu search of [89] and genetic algorithm of [9]

are only applicable to problems with a similar structure.

The evaluation function (also known as the fitness function in the GA literature)

used by our hyperheuristic distinguishes between ‘balanced’ and ‘unbalanced’ solu-

tions [89, 9]. In effect, since nurses work either days or nights it appears that in

order for a given solution to be feasible, (i.e enough nurses covering all 14 shifts at

each grade-brand), the solution must have sufficient nurses in both days and nights

independently of one another1. Formally, a solution is balanced in days (or nights)

at a given grade-band r if there are both under-covered and over-covered shifts in the

set of days (or nights) at grade r such that the nurse surplus in the over-covered day

(or night) shifts suffices to compensate for the nurse shortage of the under-covered

day (or night) shifts. Clearly, a solution cannot be made feasible until it is balanced

[89, 9]. We define [72]

Infeas =
∑g

r=1(ρ× Balr + 1)
∑14

k=1max
([

Skr −
∑n

i=1

∑s
j=1 birajkxij

]

, 0
)

,

1Recall that nurses work either days or nights, but not both, in a given week.

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 191

where Balr is 2 if both day and night are unbalanced at grade r, 1 if either day

or night is unbalanced at grade r, and 0 otherwise; ρ is a severity parameter for

unbalanced solutions, whose value is chosen so that a balanced solution with more

nurse-shortages is preferred to an unbalanced one with fewer nurse-shortages, as the

latter is more difficult to make feasible than the former. We chose ρ = 5 as given in

[72]. Based on this, we define the evaluation function

E = PC + CdemandInFeas

with Cdemand a weight associated to InFeas as in [9]. The definition of Cdemand is

based on the number, q, of nurse-shortages in the best least-infeasible solution so

far, i.e.

q =
∑14

k=1

∑g
r=1max

([

Skr −
∑n

i=1

∑s
j=1 birajkxij

]

, 0
)

.

Coefficient Cdemand of InFeas in E is then given by Cdemand = γ × q if q > 0, and

Cdemand = v otherwise; where γ is a preset severity parameter, and v is a suitably

small value. The idea is that the weight Cdemand depends on the degree of infeasi-

bility in the best least-infeasible solution encountered so far, after which it remains

at v. We use γ = 8 and v = 5 as given in [9]. [9] contains a further interesting

discussion on the choice of evaluation functions. Note that while in [9] unbalanced

solutions are avoided during the search through the use of incentives/disincentives

to reward/penalise balanced/unbalanced individuals in the population, they are

instead repaired in [89]. Here we opt for the latter approach and use the same

‘balance-restoring’ low-level heuristic used in tabu search of [89]. While this low-

level heuristic is specific to this problem, it only uses a ‘change’ and a ‘swap’ type

of move as described in section 4. We next describe our experimental findings.

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 192

Instances CFb Direct GA [9] Indirect GA [9] Tabu search [89] Optimal cost[8]

Week 1 1/8 1/0 1/0 1/0 1/0
Week 2 1/52.8 1/12 1/12 1/11 1/11
Week 3 1/50 1/18 1/18 1/18 1/18
Week 4 1/17 1/0 1/0 1/0 1/0
Week 5 1/11 1/0 1/0 1/0 1/0
Week 6 1/ 2 1/1 1/1 1/1 1/1
Week 7 1/13.55 0.5/13 1/11 1/11 1/11
Week 8 1/14.95 1/11 1/11 1/11 1/11
Week 9 1/3.6 0.95/3 1/3 1/3 1/3
Week 10 1/5.05 1/1 1/2 1/1 1/1
Week 11 1/2 1/1 1/1 1/1 1/1
Week 12 1/2 1/0 1/0 1/0 1/0
Week 13 1/2 1/1 1/1 1/1 1/1
Week 14 1/3.15 1/3 1/3 1/3 1/3
Week 15 1/3.05 1/0 1/0 1/0 1/0
Week 16 1/40.1 0.95/25 1/25 1/24 1/24
Week 17 1/17.6 1/4 1/4 1/4 1/4
Week 18 1/20.85 1/7 1/6 1/7 1/6
Week 19 1/1.6 1/1 1/1 1/1 1/1
Week 20 1/15.45 0.95/5 1/4 1/4 1/4
Week 21 1/0 1/0 1/0 1/0 1/0
Week 22 1/25.5 1/1 1/1 1/1 1/1
Week 23 1/0 0.95/0 1/0 1/0 1/0
Week 24 1/1 0.75/1 1/1 1/1 1/1
Week 25 1/0.4 1/0 1/0 1/0 1/0
Week 26 1/48 0.1/0 1/0 1/0 1/0

Table 8.1: Hyperheuristic and metaheuristic performance on the nurse scheduling
problem. For each problem instance the format is: proportion of feasible solutions
in 20 runs/ average cost for feasible solutions.

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 193

Instances CFb Direct GA [9] Indirect GA [9] Tabu search [89] Optimal cost[8]

Week 27 1/3.65 1/2 1/3 1/2 1/2
Week 28 1/65.8 1/1 0.95/1 1/1 1/1
Week 29 1/15 0.35/3 1/1 1/2 1/1
Week 30 1/39.4 1/33 1/33 1/33 1/33
Week 31 1/66.9 0.8/66 1/36 1/33 1/33
Week 32 1/41.6 1/21 1/21 1/20 1/20
Week 33 1/10.6 1/12 1/10 1/10 1/10
Week 34 1/42.9 1/17 1/16 1/15 1/15
Week 35 1/38.8 1/9 1/11 1/9 1/9
Week 36 1/34.85 1/7 1/6 1/6 1/6
Week 37 1/8.05 1/3 1/3 1/3 1/3
Week 38 1/13.3 1/3 1/0 1/0 1/0
Week 39 1/5.1 1/1 1/1 1/1 1/1
Week 40 1/9.35 1/5 1/4 1/4 1/4
Week 41 1/61.3 0.95/27 1/27 1/27 1/27
Week 42 1/47.55 1/5 1/8 1/5 1/5
Week 43 1/27.35 0.9/8 1/6 1/6 1/6
Week 44 1/31.75 0.9/45 1/17 1/16 1/16
Week 45 1/5.35 1/0 1/0 1/0 1/0
Week 46 1/9.4 0.7/6 1/4 1/3 1/3
Week 47 1/3.3 1/3 1/3 1/3 1/3
Week 48 1/6.05 1/4 1/4 1/4 1/4
Week 49 1/30.4 1/26 0.7/25 1/24 1/24
Week 50 1/109.25 0.35/38 0.8/36 1/35 1/35
Week 51 1/74.3 0.45/46 1/45 1/45 1/45
Week 52 1/62.2 0.75/63 1/46 1/46 1/46
Average 1/23.5 0.91/10.8 0.99/9.0 1/8.8 1/8.7
Run time < 60 sec 15 sec 10 sec 30 sec up to hours

Table 8.2: Hyperheuristic and metaheuristic performance on the nurse scheduling
problem (continued). For each problem instance the format is: proportion of feasible
solutions in 20 runs/ average cost for feasible solutions. Note that the average is
given over the 52 problem instances.

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 194

8.3 Experiments

Both our hyperheuristics and low-level heuristics were coded in Microsoft Visual

C++ version 6 and all experiments were run on a PC Pentium III 1000MHz with

128MB RAM running under Microsoft Windows 2000 version 5. In order to compare

our results with those of TS and GA, all our hyperheuristics start with a solution

generated randomly by assigning a random feasible shift-pattern to each nurse as in

[89] and [9]. This is given by the following pseudocode.

Do

Choose a random nurse, i, who has not been assigned a shift-pattern

Choose a random feasible shift-pattern, j, and assign to nurse i

Until all nurses have been assigned a shift-pattern

This generates a very bad solution which is rarely feasible.

All results were averaged over 20 runs (results were not significantly different,

often results were identical in more than 15 runs). We first give the 11 low-level

heuristics used in the TS algorithm of [89].

h1 : Change the shift-pattern of a random nurse.

h2 : Same as [h1] but 1st improving InFeas.

h3 : Same as [h1] but 1st improving InFeas and no worsening of PC.

h4 : Same as [h1] but 1st improving PC.

h5 : Same as [h1] but 1st improving PC and no worsening of InFeas.

h6 : Change the shift-pattern type (i.e from day to night or vice versa) of a random

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 195

nurse, if solution unbalanced.

h7 : Same as [h6] but the aim is to restore balance. That is from day to night

if night is unbalanced and vice-versa. If both days and nights are unbalanced

a swap of shift-pattern type for a pair of nurses, one working days and the

other working night is considered. The nurse working day is assigned a night

shift-pattern and the nurse working night is assigned a day shift-pattern.

h8 (shift-chain1): This heuristic considers chains of moves aiming at decreasing

both the nurse-shortage in one (under-covered) shift and the nurse-surplus in

one (over-covered shift), and leaving the remaining shift unchanged. The chain-

moves are defined as paths in a graph. The move is only attempted if the

solution is already balanced but not yet feasible.

h9 (nurse-chain1): This heuristic considers chains of moves which move the first

nurse in the chain to cover an under-covered shift and move the subsequent

nurses to the shift-pattern just vacated by their predecessor in the chain. [h9]

chain-moves are also defined as paths in a graph. The move is only attempted

if the solution is already balanced but not yet feasible.

h10 (shift-chain2): This heuristic considers a shift-chain of moves aiming at decreas-

ing the penalty cost when the solution is already feasible. Chains are represented

as cycles in a graph.

h11 (nurse-chain2): This heuristic considers nurse-chains of moves aiming at decreas-

ing the penalty cost when the solution is already feasible. Here, too, chains are

represented as cycles in a graph.

Instead, our choice function hyperheuristic used 9 low-level heuristics including

the first 7 low-level heuristics above, all of which are relatively simple, and the

following:

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 196

H8 (Change-and-keep1): This heuristic finds the first move which improves PC by

changing the shift-pattern of a nurse and assigning the removed shift-pattern

to another nurse.

H9 (Change-and-keep2): Same as [H8], but only considers moves which do not

worsen InFeas 2

Heuristics [h8], [h9], [h10] and [h11] from [89] are highly effective problem-specific

moves which were responsible for both feasibility (using shift-chain1 and nurse-

chain1) and optimality (using shift-chain2 and nurse-chain2) of the solution in most

cases in [89]. TS can only yield good solutions when equipped with such moves [8, 9].

Indeed TS was able to produce optimal solutions for many instances of the problem.

However, as noted in both [8] and [9] these moves are highly problem-specific and, in

fact, instance-type specific. Unlike in TS, the low-level heuristics used by the choice

function hyperheuristic are fewer and much simpler than the chain-moves. They are

all based around changing, or swapping one or two shift-patterns, thus reflecting

what users usually do when manually solving the problem [69]. In Table 8.1 and

Table 8.2, we give results of our choice function hyperheuristic, along with those of

both the direct and indirect GA [8, 9] as well as TS [89] and the IP optimal solution

[8] for each of the 52 weeks (data sets) of the year. The choice function results are

those produced by CFb. Preliminary experiments using CFa were very unsuccessful

with results often worse than those of the simple hyperheuristics (both in terms of

feasibility and cost). All our hyperheuristic results used the AM version (though

feasibility was achieved in most cases, the OI version produced a cost between 10

and 40 times worse than the AM one - OI gets stuck quickly in local optima). The

stopping condition of CFb is 6000 iterations, which corresponds to a CPU time

2At this point, the reader might wonder what results are obtained without [H8] and [H9]. This
is discussed in the last paragraph of this section.

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 197

between 44 and 60 seconds on a Pentium II 1000Mhz. Stopping condition for TS

was 1000 moves without overall improvement. The stopping condition for the GA

was 30 generations without improvement (in each generation, the population size

was 100). Also the GA was coded in Turbo Pascal under MS-DOS, which resulted in

low CPU times (Some instances were solved within 5 seconds CPU using the GA [8]).

We see that for all instances CFb is able to find feasible solutions in each of 20 runs.

It appears that the choice function hyperheuristic is more reliable than both the

direct and the indirect GA in terms of producing practical solutions for the hospital

(although it could be argued that CF is given more CPU time than the GA, the

amount of CPU time used by CF - 60 seconds CPU - is not considerably large). To

confirm this, we ran CFb on instance 50 (which is a difficult instance for both GA’s

and appeared to be the most difficult for CFb) 100 times and feasibility was again

achieved for every single run, within 6000 iterations (less than a minute of CPU

time). From this point of view, the hyperheuristic appears to be as robust as TS

which, too, always produced feasible solutions. CFb however has the highest average

cost of 23.5, though more than half of the instances (27 instances) were solved

to within 10% of the optimal solution, including 3 instances where optimality is

achieved on each of 20 runs. These hyperheuristic solutions are of acceptable quality

according to the standard of [89, 9]. Moreover, in 9 instances the optimal solution

is hit up to 19 times out of 20 runs, corresponding to a probability (frequency) of

optimality of 0.95. This shows that optimal solutions are indeed, within the reach

of CFb despite its simplicity and that of the low-level heuristics that CFb used,

when compared with the problem and instance-specific information used by both TS

(chain-moves) and GA (population decomposition and recombination using problem

structure) implementations. In terms of cost, we noted that the hyperheuristic

performed well for instances with slack demand-constraints and poorly for those

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 198

Instances SR RD RP RPD CFb-Low CFb CFb-High

Week 1 1/9.45 1/20.55 1/14.3 1/20.7 1/8 1/8 1/8
Week 2 1/63.35 0.95/68.57 1/69.6 0.95/67.42 1/53.85 1/52.8 1/54.3
Week 3 1/58.45 0.95/72 1/66.85 1/66.85 1/50.1 1/50 1/50
Week 4 1/17 1/24.25 1/17.4 1/23 1/17 1/17 1/17
Week 5 1/19.85 0.95/24.21 1/28.35 1/23 1/11 1/11 1/11
Week 6 1/3 1/10.5 1/4 1/12.15 1/2.05 1/2 1/2.55
Week 7 1/38.3 0.95/32.10 1/50.8 0.85/36.7 1/18 1/13.55 1/16.95
Week 8 1/27 1/32.65 1/31.7 1/33.45 1/15.8 1/14.95 1/16.65
Week 9 1/26.75 1/13.55 1/37.65 0.95/17.57 1/7.95 1/3.6 1/6.8
Week 10 1/12.75 0.65/30.92 1/16.2 0.65/25.23 0.95/5.78 1/5.05 1/5.75
Week 11 1/5.6 1/25.65 1/11.25 1/23.8 1/2.8 1/2 1/2.7
Week 12 1/3.55 1/17.6 1/5.4 1/15.2 1/2.5 1/2 1/2.65
Week 13 1/ 2.3 0.95/19.21 1/3.2 1/14.55 1/2.2 1/2 1/2.4
Week 14 1/10.05 0.8/31.68 1/17.7 0.65/32.69 1/5.35 1/3.15 1/7.1
Week 15 1/8.85 0.9/43.72 1/9.55 0.75/36 1/4.05 1/3.05 1/5.6
Week 16 1/61.9 0.95/146.31 1/70.5 0.9/155.83 1/51.1 1/40.1 1/50.7
Week 17 1/54.35 0.3/80.33 0.95/72.52 0.7/68.21 1/29 1/17.6 1/29.75
Week 18 1/41 0.05/40 1/49.2 0.15/7 1/33.2 1/20.85 1/46.6
Week 19 1/14.25 1/57.75 1/20.15 0.95/75.84 1/3.6 1/1.6 1/5.15
Week 20 1/33.8 0.85/42.94 1/44.15 1/41.8 1/16.5 1/15.45 1/15.7
Week 21 1/1.35 0.75/12.66 1/4 0.8/16.56 1/0.55 1/0 1/0.95
Week 22 1/29.9 0.8/51.18 1/35.35 0.75/45.4 1/29.9 1/25.5 1/29.15
Week 23 1/1.4 0.35/19.71 0.85/2.52 0.35/12.28 1/1.85 1/0 1/1.9
Week 24 1/4.85 0.4/44.25 0.9/9.16 0.45/38.11 1/5.2 1/1 1/8.65
Week 25 1/0.6 0.95/22.36 1/1.5 0.75/15.26 1/0.25 1/0.4 1/1.1
Week 26 1/60.1 0.45/171 0.85/66.41 0.15/174.33 1/55.3 1/48 1/53.2

Table 8.3: Choice function vs simple hyperheuristics applied to the nurse scheduling
problem. For each problem instance the format is: proportion of feasible solutions
in 20 runs/ average cost.

with tight constraints. It should be noted that from the hospital’s point of view,

feasibility is more important than cost as demand must be satisfied. The issue of

cost is only considered after we have ensured that there is a sufficient number of

nurses for each of the 14 shifts and for each grade-band.

Analysing the frequency of call of the low-level heuristics showed that [h2] is

called most often (e.g 37% on average for Week 49), followed by [h6] (e.g 10% on

Week 49) and all other heuristics are called between 5% and 9%. It appears that each

low-level heuristic has a part to play in the search [89]. Observations of the variation

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 199

Instances SR RD RP RPD CFb-Low CFb CFb-High

Week 27 1/26 0.65/38 1/36.35 0.6/45.16 1/23.45 1/3.65 1/10.25
Week 28 1/76.3 0.45/84.11 1/82.25 0.3/82 1/66.9 1/65.8 1/69.05
Week 29 1/23.7 0.3/35.83 0.85/24.41 0.4/36.5 1/17.1 1/15 1/16.95
Week 30 1/56 0.95/71.73 1/61.1 0.95/76.21 1/42 1/39.4 1/42.3
Week 31 1/91.8 0.95/82.84 1/102.3 1/87.05 1/74.5 1/66.9 1/72.4
Week 32 1/52.5 1/60.3 1/56 1/56.85 1/44.2 1/41.6 1/44.15
Week 33 1/13.15 0.95/25.84 1/13.7 1/23.55 1/13.3 1/10.6 1/13.2
Week 34 1/77.45 1/77.6 1/93.05 1/63.8 1/47.75 1/42.9 1/45.85
Week 35 1/58.35 1/63 1/60.95 1/67 1/39.15 1/38.8 1/42.15
Week 36 1/60.7 1/45.05 1/69.3 1/46.05 1/42.15 1/34.85 1/39
Week 37 1/17.1 1/34.4 1/22.05 0.95/30.10 1/10.2 1/8.05 1/8.9
Week 38 1/21.9 1/34.95 1/25.7 1/40.1 1/20.8 1/13.3 1/16.8
Week 39 1/8.7 1/18.05 1/13.35 1/21.8 1/6.55 1/5.1 1/7.25
Week 40 1/22.5 0.95/48.21 1/30.8 0.95/34.73 1/12.55 1/9.35 1/17.95
Week 41 1/91.2 0.8/160.56 1/99.9 0.95/168.94 1/70.8 1/61.3 1/73.9
Week 42 1/97.2 0.6/109.58 1/106.9 0.55/127.72 1/60.1 1/47.55 1/65
Week 43 1/53.4 0.15/101.33 1/63.85 0.1/42 1/37.95 1/27.35 1/36.05
Week 44 1/59.25 1/53.7 1/63.85 1/64.15 1/35.85 1/31.75 1/36.4
Week 45 1/9.15 0.9/27.61 1/11.7 0.9/48.77 1/9.8 1/5.35 1/6.95
Week 46 1/32.25 0.35/33.42 0.75/32.53 0.3/36.5 1/17.6 1/9.4 1/21.6
Week 47 1/15.35 0.25/38.4 0.7/26.35 0.55/79.72 1/8.3 1/3.3 1/10.5
Week 48 1/14.9 0.9/18.88 1/19.15 0.85/23.58 1/10.3 1/6.05 1/10.45
Week 49 1/48.75 0.45/64.33 1/54.45 0.55/71.45 1/36.5 1/30.4 1/39.55
Week 50 1/120.55 0.25/126 1/120.4 0.2/159.75 1/113.35 1/109.25 1/115.25
Week 51 1/84.65 0.4/94.62 0.9/90.22 0.45/85 1/76.65 1/74.3 1/75.35
Week 52 1/77.35 0.5/88.5 1/83.75 0.45/92.22 1/72.55 1/62.2 1/72.1
Average 1/36.92 0.76/53.70 0.97/42.76 0.76/54.03 0.99/27.75 1/23.54 1/28.10

Table 8.4: Choice function vs simple hyperheuristics applied to the nurse scheduling
problem (continued). For each problem instance the format is: proportion of feasible
solutions in 20 runs/ average cost. Note that the average is given over the 52 problem
instances.

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 200

of Infeas and PC during the hyperheuristic search showed (Upper chart of Figure

8.1) that, immediately upon finding a feasible solution (i.e when InFeas = 0) there

was a sudden increase in PC. Similar remarks mere made in [89]. This behaviour

reflects the tight relation between Cost and Feasibility for this highly-constrained

problem. In terms of choice function parameters, the hyperheuristic search used a

very high δ and a low α and β, thus confirming the need to diversify the search quite

frequently, due to the sparse spread of good solutions in the landscape [9]. This was

in total agreement with the graph of the variation of InFeas over time (Lower chart

of Figure 8.1) which featured sudden low peaks of Infeas = 0, similar to the ‘comb’

shape graph of the same function in [89]. Typically values of InFeas = 0 never

lasted more than 41 heuristic calls (compared to a total of 10000 heuristic calls

overall) after they were obtained. Values for αInFeas and βInFeas were relatively

higher than those of αPC and βPC clearly showing the greater importance attached

to feasibility over lowering PC.

Having demonstrated the robustness of the choice function hyperheuristic in

terms of solution quality, we now investigate its robustness when compared to the

simple hyperheuristics described in section 5.2. The aim is to see if CFb does

anything better than a simple random choice of the low-level heuristics. To do this

we ran all 4 simple hyperheuristics on the same 52 problem instances (all moves are

accepted). To allow for a fair comparison the stopping condition was 7000 iterations

for RD and RPD and 11000 iterations for SR and RP , which again correspond to

an average run time of 60 seconds CPU. Results, averaged over 20 runs, are given

in Table 8.3 and Table 8.4. We see that RD and RPD perform poorly in terms of

both feasibility and cost when compared to SR and RP . While in both SR and RP

the low-level heuristics are applied once, in both RD and RPD they are applied

in a steepest descent fashion. Because of the complexity of the problem, it seems

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 201

Evolution of Infeas and PC over the heuristic calls

0

20

40

60

80

100

120

140

160

1 301 601 901 1201 1501 1801

heuristic calls

P
C

0
10

20
30

40
50

60
70

80
90

In
fe

as PC

Infeas

Evolution of Infeas over the heuristic calls

0
10
20
30
40
50
60
70
80
90

1 1001 2001 3001 4001 5001

heuristic calls

In
fe

as

Infeas

Figure 8.1: Evolution of Feasibility and Cost (Upper chart) and Feasibility only
(Lower chart) over the number of heuristic calls during the choice function hyper-
heuristic search, when applied to instance 49. The Upper chart goes from heuristic
call 2550 to 4500.

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 202

that attempting moves in a descent fashion is a ‘waste’ of time (unless if done in

an appropriate manner as in CFb). The level of improvement of the solution when

applying a heuristic in a descent fashion is not worth the amount of time needed

as we get stuck in poor local optima. Of all four simple hyperheuristics, SR gave

the best results. Note that SR always found a feasible solution, which is thus even

better than both the direct and the indirect GA. However, SR produced solutions of

higher cost than those of CFb. We conclude that the choice function hyperheuristic

conducts a more effective search than the simple hyperheuristics. Our experience

with this problem suggests that high diversity is useful in order to get good solutions.

This was built in SR and is well maintained in CFb.

We also carried out further experiments with CFb when in presence of various

levels of quality of the sets of low-level heuristics. The aim of these experiments is

to see how sensitive the choice function hyperheuristic, CFb, is with regards to the

quality of the low-level heuristics under its management. The low-level heuristics

given above can be classified into three groups of quality:

1. Low : h1, h2, h3, h4, h5, h6, h7.

2. Medium: h1, h2, h3, h4, h5, h6, h7, H8, H9

3. High: h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11

We applied our choice function hyperheuristic to each of these 3 sets of low-level

heuristics. Note that this results in CFb when using set Medium. Also note that

set High corresponds to the TS low-level heuristics in [89]. Results (60 seconds

CPU time, average over 20 runs) are given in Table 8.3 and Table 8.4. We note

that CFb-Low, which uses the poorest set of low-level heuristics does not perform

too badly when compared to CFb, which uses Medium. To our great surprise,

CFb-Low performed better than the simple hyperheuristics, which did employ the

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 203

same low-level heuristics as CFb-Medium. Also perhaps surprising is the fact that

CFb-High, which used the highest quality set, did not perform better than CFb.

This might be due to the fact that CFb-High uses a larger number of low-level

heuristics as experiments with large sets of low-level heuristics suggest in chapter 6.

In addition, it seems that the use of Medium, combined with the power of the choice

function hyperheuristic, is good enough to reach solutions of quality similar to those

of the sophisticated problem-specific chain-moves used in TS [89]. This suggests a

certain robustness of the choice function hyperheuristic as far as solution quality is

concerned. This also suggests that the choice function hyperheuristic is very robust

in terms of quality of the low-level heuristics used. Hence, from a paradigmatic

point of view, it is not necessary to have very sophisticated low-level heuristics in

order to produce good solutions using a hyperheuristic. It also should be noted that

CFb cannot use sophisticated low-level heuristics, which is bad, but we would not

generally use them in a hyperheuristic framework.

8.4 Conclusions

We have applied a choice function hyperheuristic to an NP-hard problem of schedul-

ing nurses at a major UK hospital, for which even finding a feasible solution is dif-

ficult. The problem was previously solved using tabu search [89] and two genetic

algorithms [8, 9]. In terms of solution feasibility, our choice function hyperheuristic

proved to be more reliable than both the direct and indirect genetic algorithms and

appeared to be as robust as tabu search. In terms of cost, more than 50% of the

problem instances were solved within 10% of optimality, despite the simplicity of the

hyperheuristic and that of the low-level heuristics employed, when compared to the

highly problem-specific information utilised in both tabu search and the genetic algo-

CHAPTER 8. APPLICATION TO NURSE SCHEDULING 204

rithms. Also the choice function hyperheuristic appeared much stronger than simple

hyperheuristic methods which choose the low-level heuristics at random. Unfortu-

nately our hyperheuristic was not able to use the sophisticated low-level heuristics

of the tabu search approach of [89], which were included in a large set of low-level

heuristics.

Because of their problem-specific considerations, both tabu search and the ge-

netic algorithm implementations for this problem can only be re-used for problems

with a similar structure. However, our hyperheuristics are generic methods that are

easily re-usable for other problems and other domains as demonstrated in the two

previous chapters. A sensitivity analysis of the choice function hyperheuristic was

carried out and revealed a high level of robustness of the method over various levels

of quality of the low-level heuristics used. This means that from a pragmatic point

of view, it is not necessary to have very sophisticated low-level heuristics in order

to produce good solutions using a hyperheuristic.

Moreover, the hyperheuristic needs no parameter tuning [70]. Hyperheuristics

are easy-to-implement and require less domain knowledge than most other heuristic

approaches, yet still are capable of producing good-quality solutions even for very

difficult problems within a reasonable amount of CPU and implementation time

(approximately 6 weeks for problem analysis and evaluation function, coding of

low-level heuristics, especially the sophisticated ones, and the handling of large

data sets), much lower than that needed for tabu search and genetic algorithms

(approximately 11 weeks according to the author of [89]).

Chapter 9

Conclusions

We have developed a number of hyperheuristic methods and applied them to various

instances of three very different personnel scheduling problems taken from the real

world. Hyperheuristic approaches were applied as early as the 1960’s (see chapter 2).

However, relatively little work has been carried out in this area in the intervening

years. The last few years have seen an increasing interest in this re-emerging field

of heuristic / search development (e.g. [48, 52, 69, 73, 72, 103, 139, 198, 195, 213,

211, 210, 234, 245, 259]). In this thesis, we have evaluated the performance of our

hyperheuristics over the range of problems and problem instances considered.

As mentioned in chapters 1 and 2, in order to apply a hyperheuristic to a given

problem we only need a set of low-level heuristics and a formal means for evaluating

solution quality. The basic idea of hyperheuristics is easy to grasp. Such approaches

are easy to implement because of the higher level of abstraction than current meta-

heuristic applications and implementations. Thus we were able to apply the same

standard hyperheuristics to three different problems. All we needed for each of these

applications was to code some low-level heuristics and an evaluation function [158].

205

CHAPTER 9. CONCLUSIONS 206

All hyperheuristics presented in this thesis produced excellent results. This was

the case particularly for both the sales summit scheduling problem (chapter 6) and

the project presentation scheduling problem (chapter 7). One class of hyperheuristic

of particular interest is that which makes use of a choice function. The choice

function provides an adaptive ranking of the low-level heuristics based upon which

the hyperheuristic makes an appropriate heuristic selection. For all three problems

the choice function hyperheuristic produced results better than those obtained from

simple and random hyperheuristics such as VND [194, 137] which used multiple-

neighbourhood search techniques.

An extensive investigation of the choice function hyperheuristic in chapter 6

(sales summit) suggests that the method is effective in terms of solution quality.

Particularly the choice function compared favourably with both a simulated an-

nealing hyperheuristic and a simulated annealing metaheuristic which used complex

neighbourhood structures. The choice function proved to be robust for different sizes

of the set of low-level heuristics managed. Since this was the first problem studied,

development time was high and it is hard to separate the design/development time

for the hyperheuristic from that which was problem specific (modelling, low-level

heuristics for the sales summit scheduling problem).

Using the project presentation scheduling problem, we showed that solution de-

velopment time using a hyperheuristic can be dramatically reduced while producing

solutions of acceptable quality. In effect, our choice function hyperheuristics are

‘standard’ approaches which were successfully applied to all three problems. A

further investigation of the choice function hyperheuristic showed that this type

of hyperheuristic does a search different to a pure random choice of the low-level

heuristics. We observed that the choice function hyperheuristic showed a behaviour

CHAPTER 9. CONCLUSIONS 207

superior to that of a specially-tailored random hyperheuristic. Some of the power

of the choice function hyperheuristic seems to come from its adaptive nature which

takes into consideration both the part of the search space currently under exploration

and the performance of the low-level heuristics under its management. Our choice

function hyperheuristic is also capable of finding the right frequency of heuristic

calls.

Tackling a difficult real-world problem of scheduling nurses we showed that the

hyperheuristic approach is capable of producing good solutions in a shorter develop-

ment time (despite using simple low-level heuristics) when compared to two sophisti-

cated metaheuristic methods developed by other researchers. In terms of feasibility

of the solution, the choice function hyperheuristic appeared to be superior to two

genetic algorithms and as robust as tabu search. In terms of cost of the solution,

the hyperheuristic performed poorly when compared to both methods though over

half of the instances were solved by the hyperheuristic to within 10% of optimality.

A further investigation of the choice function hyperheuristic using various levels of

quality of the low-level heuristics showed that our method is also qualitatively ro-

bust. This is a finding of significant importance as it follows that it is not necessary

to use high-quality low-level heuristics in order to obtain good results using a hyper-

heuristics. Simple low-level heuristics, which is quicker to implement should suffice.

Our choice function hyperheuristic could not use sophisticated low-level heuristics,

but can generate good results anyway without them. It would usually be preferable

to not have to design/develop these complex heuristics.

All three problems considered in this thesis are quite different from one another.

The project presentation scheduling problem in chapter 7 features a large search

space. This is due to the combinatorial number of possible combinations of students

CHAPTER 9. CONCLUSIONS 208

with three members of academic staff for each project presentation, to which a large

number of room-timeslot allocations is possible. This results in a smooth solution

landscape which makes the search for a good solution easy but time-consuming. On

the other hand, the nurse scheduling problem in chapter 8 is of a fairly small size.

There are fewer solutions to search, but the solution landscape is very ragged [89, 9].

Even finding a feasible solution is difficult and required the use of sophisticated

chain-moves in a tabu search framework [89]. In between these two problems, we

have the sales summit scheduling problem of chapter 6. For this problem, the search

space is smaller than that of the project scheduling but larger than that of the nurse

scheduling problem. This means that there are fewer solutions to search than for

the project scheduling problem but more than for the nurse scheduling problem.

Having achieved good results across the range of these three problems we have

gathered evidence that hyperheuristics are generally applicable to a wide range of

problems (at least problems of the same domain).

We noted in chapter 8 that our choice function hyperheuristic performed poorly

for instances of the nurse scheduling problem with tight constraints. This can be

fixed using better-than-basic low-level heuristics which cover wider parts of the

search space and thus can reach places which are beyond reach otherwise.

We suspect that hyperheuristics (at least in the way that they are developed and

presented in this thesis) might not be suitable for dynamic problems. This is due

to the fact that in our choice function of chapter 5, we assumed that if a low-level

heuristic has been performing well ‘recently’, it might perform well if applied again.

If the problem is not static, there is a good chance that this assumption may no

longer hold. Based on our experience, we would recommend the use of a relatively

low number of low-level heuristics (between 5 and 10). We would also recommend

CHAPTER 9. CONCLUSIONS 209

the use of individual choice functions CFb (i.e. equation 5.7) for problems with less

than 4 individual objectives and the use of the aggregated choice function CFa (i.e

equation 5.6 or 5.8) in other circumstances.

Overall, our choice function hyperheuristic produced good results for all three

real-world problems. The way the hyperheuristic chooses the low-level heuristic is

problem-independent. This results in a method which is easily re-usable for other

problems and domains. Thus, by using hyperheuristics we are able to raise the

level of generality at which most current metaheuristic studies operate. This has

significant benefits especially for industrial applications. In effect, most industrial

optimisation problems need to be solved quickly enough. Problem instances come in

different varieties and bespoke solution methods are often difficult to re-use for other

problems which they (the solution methods) were not developed for [48]. This thesis

provides evidence that hyperheuristics can produce solutions to a variety of problems

soon-enough, good-enough, cheap-enough. The potential for scientific progress in the

development of hyperheuristics, for a wide variety of application areas, is significant

[48].

We recommend three directions for future work:

1. We experimented with different expressions of the choice function and it turned

out that each factor - first and second order improvement and exploration func-

tion - of the choice function that we considered contributed to an effective search.

Thus, in particular, the second order improvement factor, which represents the

joint performance of a pair of heuristics, proved to be useful and, if sufficient

iterations are possible, we might consider triples or m-tuples of heuristics as

well. The issue here is how could enough data points be gathered as we would

need more heuristic calls? This would be resolved with increasing processor

CHAPTER 9. CONCLUSIONS 210

power and memory capacity (in order to store the resulting m-matrix).

2. In this thesis we have investigated a choice function hyperheuristic. It would be

useful to experiment with other types of choice functions and other types of hy-

perheuristics using other learning mechanisms. Design issues for hyperheuristics

were extensively discussed in chapter 5. There is a great deal of design choices

possible and therefore great scope for research. Recent investigations by other

scholars produced encouraging results. This is the case in [234] using learning

classifier systems, in [68, 135] using genetic algorithms, in [211, 210] using rein-

forcement learning techniques, and in [51, 220, 52] using case-based reasoning

techniques.

3. In order to develop hyperheuristic research, we need to apply hyperheuristics to

other problems and other domains. This will help identify classes of problems

for which hyperheuristics seem to work well (e.g. scheduling problems) and

classes for which they do not.

Will this emerging hyperheuristic direction change the way in which decision

support technology is developed and applied? And will it enable a wider uptake of

decision support technology?

Appendix: C++ code for a simple

hyperheuristic

To illustrate how simple a hyperheuristic can be, we give the C++ code for SR

described in chapter 5 (page 112).

CHyperheuristic::SimpleRandomAM()

{

clock t goal, clockinit, clockfin;

goal = timeClockAllowed + clock();

clockinit = clock();

int i = 0, j = 0, NbIteration = 0, LLHeuristicIndex = 0;

double EV = 0;

srand((unsigned)time(NULL));

while((goal > clock()) && (CurrentSolution−>EvaluationFunction() > 0))

{

NbIteration += 1;

LLHeuristicIndex = RandomInteger(NbAvailableLLHeuristics);

EV = CurrentSolution−>getEvaluationFunction();

211

CHAPTER 9. CONCLUSIONS 212

ApplyHeuristic(LLHeuristicIndex, PreviousLLHeuristicIndex, EV);

PreviousLLHeuristicIndex = LLHeuristicIndex;

if(CurrentSolution−>getEvaluationFunction() <

BestSolution−>getEvaluationFunction())

{

(*UpdateBestSolutionPtr) ();

}

}

clockfin = clock();

}

Bibliography

[1] K. Aardal and A. Ari. Decomposition principles applied to the dynamic pro-

duction and workforce scheduling problem. Engineering Costs and Production

Economics, 12:39–49, 1987.

[2] E. Aarts and J. K. Lenstra, editors. Local search in combinatorial optimisation.

John Wiley & Sons Ltd, 1997.

[3] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for job

shop scheduling. Management Science, 34(3), 1988.

[4] S. C. Aggarwal, F. P. Wyman, and B. A. McCarl. An investigation of a

cost-based rule for job shop scheduling. International Journal of Production

Research, 11(3):247–261, 1973.

[5] I. Ahmad, M. K. Dhodhi, K. Saleh, and R. H. Storer. High-level synthesis of

self-recoverable asics using micro rollback. International Journal of Electron-

ics, 75(5):919–932, 1993.

[6] S. Ahmadi, P. Cowling, P. Cheng, and R. Barone. Constructive heuristics

and a heuristic space search hyperheuristics for the examination timetabling

problem. Technical report, School of Computer Science & IT, The University

of Nottingham, 2002.

[7] R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very

large-scale neighbourhood search techniques. Discrete Applied Mathematics,

213

BIBLIOGRAPHY 214

123:75–102, 2002.

[8] U. Aickelin. Genetic algorithms for multiple-choice optimisation problems.

PhD thesis, European Business Management School, University of Wales

Swansea, September 1999.

[9] U. Aickelin and K. A. Dowsland. Exploiting problem structure in a genetic

algorithm approach to a nurse rostering problem. Journal of Scheduling, 3:139–

153, 2000.

[10] H. K. Alfares. An efficient two-phase algorithm for cyclic days-off scheduling.

Computers and Operations Research, 25(11):913–923, 1998.

[11] H. K. Alfares, J. E. Bailey, and W. Y. Lin. Integrated project operations and

personnel scheduling with multiple labour classes. Production Planning and

Control, 10(6):570–578, 1999.

[12] J. Allen and S. Minton. Selecting the right heuristic algorithm: runtime per-

formance predictors. In Canadian Artificial Intelligence Conference, 1996.

[13] R. Anbil, E. Gelman, B. Patty, and R. Tanga. Recent advances in crew pairing

optimisation at american airlines. Interfaces, 21(1):62–74, 1991.

[14] D. W. Ashley. A spreadsheet optimisation system for library staff scheduling.

Computers and Operations Research, 22(6):615–624, 1995.

[15] T. Aykin. Optimal shift scheduling with multiple break windows. Management

Science, 42:591–603, 1996.

[16] T. Aykin. A comparative evaluation of modelling approaches to the labor shift

scheduling problem. European Journal of Operational Research, 125:381–397,

2000.

[17] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of evolutionary

computation. Oxford University Press, 1997.

BIBLIOGRAPHY 215

[18] T. Bäck, F. Hoffmeister, and H. P. Schwefel. A survey of evolution strategies.

In Proceedings of the Fourth Conference on Genetic Algorithms, pages 2–9.

Morgan Kauffman, 1991.

[19] J. Bailey, H. Alfares, and W. Y. Lin. Optimisation and heuristic models to

integrate project task and manpower scheduling. Computers and Industrial

Engineering, 29(1-4):473–476, 1995.

[20] R. N. Bailey, K. M. Garner, and M. F. Hobbs. Using simulated annealing and

genetic algorithms to solve staff scheduling problems. Asia-Pacific Journal of

Operational Research, 119:27–43, 1997.

[21] K. Baker. Workforce allocation in cyclical scheduling problems: A survey.

Operational Research Quarterly, 27(1):155–167, 1976.

[22] J. J. III. Bartholdi, J. B. Orlin, and H. D. Ratliff. Cyclic scheduling via integer

programs with circular ones. Operations Research, 28:1074–1085, 1980.

[23] N. Beaumont. Scheduling staff using mixed integer programming. European

Journal of Operational Research, 98:473–484, 1997.

[24] S.E. Bechtold, M.J. Brusco, and M.J. Showalter. A comparative evaluation of

labor tour scheduling methods. Decision Sciences, 22:683–699, 1991.

[25] S.E. Bechtold and L.W.Jacobs. Implicit modeling of flexible break assignments

in optimal shift scheduling. Management Science, 36(11):1339–1351, 1990.

[26] D. D. Bedworth and J. E. Bailey. Personnel scheduling. In D. D. Bedworth

and J. E. Bailey, editors, Integrated production control systems: Management,

Analysis and Design, 2nd Edition, pages 387–420. Wiley - New York, 1987.

[27] O. Berman, R. C. Larson, and E. Pinker. Scheduling workforce and workflow

in a high volume factory. Management Science, 43:158–172, 1997.

[28] D. P. Bertsekas, editor. Dynamic Programming and Optimal Control: 2nd

BIBLIOGRAPHY 216

Edition, volume 1. Athena Scientific, 2000.

[29] D. P. Bertsekas, editor. Dynamic Programming and Optimal Control: 2nd

Edition, volume 2. Athena Scientific, 2001.

[30] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, editors. Convex Analysis and

Optimization. Athena Scientific, 2003.

[31] A. Billionnet. Integer programming to schedule a hierarchical workforce with

variable demands. European Journal of Operational Research, 114:105–114,

1999.

[32] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: overview

and conceptual comparison. Technical Report TR/IRIDIA/2001-13, Institut

de Recherches Interdisciplinaires et de Developpements en Intelligence Artifi-

cielle, IRIDIA, Brussels, Belgium, 2001.

[33] L. Bodin, B. Golden, A. Assad, and M. Ball. Routing and scheduling of

vehicles and crews - the state of the art. Computers and Operations Research,

10(2):63–211, 1983.

[34] D. J. Bradley and J. B. Martin. Continuous personnel scheduling algorithms:

a literature review. Journal Of The Society For Health Systems, 2(2):8–23,

1990.

[35] H. J. Bremermann. The evolution of intelligence. the nervous system as a

model of its environment. Technical Report 1, Contract 477(17), Department

of Mathematics, University of Washington, Seattle, 1958.

[36] M. J. Brusco. Solving personnel tour scheduling problems using the dual all-

integer cutting plane. IIE Transactions, 30:835–844, 1998.

[37] M. J. Brusco and L. W. Jacobs. A simulated annealing approach to the cyclic

staff-scheduling problem. Naval Research Logistics, 40:69–84, 1993.

BIBLIOGRAPHY 217

[38] M. J. Brusco and L. W. Jacobs. Cost analysis of alternative formulations

for personnel scheduling in continuously operating organizations. European

Journal of Operational Research, 86:249–261, 1995.

[39] M. J. Brusco and L. W. Jacobs. Personnel tour scheduling when starting-time

restrictions are present. Management Science, 44(4):534–547, April 1998.

[40] M. J. Brusco and L. W. Jacobs. Starting-time decisions in labor tour schedul-

ing: An experimental analysis and case study. European Journal of Operational

Research, 131:459–475, 2001.

[41] M. J. Brusco and T. R. Johns. Improving the dispersion of surplus labor in per-

sonnel scheduling solutions. Computers and Industrial Engineering, 28(4):745–

754, 1995.

[42] M. J. Brusco and T. R. Johns. A sequential integer programming method

for discontinuous labor tour scheduling. European Journal of Operational Re-

search, 95:537–548, 1996.

[43] M. J. Brusco and T. R. Johns. Staffing a multiskilled workforce with varying

levels of productivity: an analysis of cross-training policies. Decision Sciences,

29(2):499–515, 1998.

[44] M.J. Brusco and L.W.Jacobs. Optimal models for meal-break and start-time

flexibility in continuous tour scheduling. Management Science, 46(12):1630–

1641, 2000.

[45] M.J. Brusco, L.W.Jacobs, R.J. Bongiorno, D.V. Lyons, and B. Tang. Improv-

ing personnel scheduling at airline stations. Operations Research, 43(5):741–

751, 1995.

[46] E. Burke, P. De Causmaecker, and G. Vanden Berghe. A hybrid tabu search

algorithm for the nurse rostering problem. In Selected Papers of the 2nd Asia-

Pacific Conference on Simulated Evolution and Learning (SEAL’98), Lecture

BIBLIOGRAPHY 218

Notes in Artificial Intelligence, pages 186–194. Springer, Berlin Heidelberg

New York, 1998.

[47] E. Burke, P. Cowling, P. De Causmaecker, and G. Vanden Berghe. A memetic

approach to the nurse rostering problem. International Journal of Applied

Intelligence, 15(3):199–214, November/December 2001.

[48] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg. Hyper-

heuristics: an emerging direction in modern search technology. In F. Glover

and G. A. Kochenberger, editors, Handbook of metaheuristics, pages 457–474.

Kluwer Academic Publishers, 2003.

[49] E. K. Burke and G. Kendall. Comparison of meta-heuristic algorithms for

clustering rectangles. Computers and Industrial Engineering, 37(1-2):383–386,

1998. Proceedings of the 24th International Conference on Computers and

Industrial Engineering.

[50] E. K. Burke, G. Kendall, and G. Whitwell. A new placement heuristic for the

orthogonal stock cutting problem. The Journal of Operations Research, 2003.

To Appear.

[51] E. K. Burke, B. MacCarthy, S. Petrovic, and R. Qu. Knowledge discovery in

hyper-heuristics using case-based reasoning on course timetabling. In Full Pro-

ceedings of the Fourth International Conference on the Practice And Theory

of Automated Timetabling, PATAT 2002, pages 90–103, August 2002.

[52] E. K. Burke, S. Petrovic, and R. Qu. Case-based heuristic selection for exam-

ination timetabling. In 4th Asia-Pacific Conference on Simulated Evolution

And Learning, SEAL 2002. Nanyang Technology University, NTU Press, 2002.

CD-ROM.

[53] E. K. Burke, J. D. Landa Silva, and E. Soubeiga. A hyperheuristic approach

for multi-objective optimisation: an extended abstract. In Metaheuristic In-

BIBLIOGRAPHY 219

ternational Conference MIC’2003, August 2003. Submitted.

[54] E.K. Burke and J. P. Newall. Solving examination timetabling problems

through adaption of heuristic orderings. Annals of Operations Research, 2003.

To appear.

[55] R.N. Burns and M.W. Carter. Work force size and single shift schedules with

variable demands. Management Science, 31(5):599–607, 1985.

[56] X. Cai and K. N. Li. A genetic algorithm for scheduling staff of mixed skills

under multi-criteria. European Journal of Operational Research, 125:359–369,

2000.

[57] M. J. Cavaretta and R. G. Reynolds. Discovering search heuristics for con-

cept learning using version-space guided genetic algorithms. In Proceedings of

the Seventh Florida Artificial Intelligence Research Symposium, pages 71–75,

Florida, 1994.

[58] I. Charon and O. Hudry. The noising method: a new method for combinatorial

optimisation. Operations Research Letters, 14:133–137, 1993.

[59] X. Chen and M. L. Bushnell, editors. Efficient Branch and Bound Search with

Application to Computer-Aided Design. Kluwer Academic Publisher, 1995.

[60] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau. Using itera-

tive repair to improve the responsiveness of planning and scheduling. In Fifth

International Conference on Artificial Intelligence Planning and Scheduling,

Brechenridge, CO, April 2000.

[61] S. Chien, A. Stechert, and D. Mutz. Efficient heuristic hypothesis ranking.

Journal of Artificial Intelligence Research, 10:375–397, 1999.

[62] S. C. K Chu and E. C. H. Chan. Crew scheduling of light rail transit in hong

kong: from modeling to implementation. Computers and Operations Research,

25(11):887–894, 1998.

BIBLIOGRAPHY 220

[63] B. Codenotti, G. Manzini, L. Margara, and G. Resta. Perturbation: An

efficient technique for the solution of very large instances of the euclidean tsp.

INFORMS Journal on Computing, 8(2):125–133, 1996.

[64] C. A. Coello Coello. A short tutorial on evolutionary multiobjective opti-

mization. In Proceedings of the 1st International Conference on Evolutionary

Multi-Criterion Optimization EMO 2001, Lecture Notes in Computer Science,

Vol 1993, pages 21–40. Springer, 2001.

[65] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary

Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publish-

ers, 2002.

[66] D. Corne, M. Dorigo, and F. Glover, editors. New Ideas in Optimization.

McGraw-Hill Publishing Company, 1999.

[67] D. Corne and J. Ogden. Evolutionary optimisation of methodist preaching

timetables. In Second International Conference on the Practice And Theory

of Automated Timetabling, PATAT’97, volume 1408 of Lecture Notes in Com-

puter Science, pages 142–155. Springer-Verlag, 1997.

[68] P. Cowling, G. Kendall, and L. Han. An investigation of a hyperheuristic

genetic algorithm applied to a trainer scheduling problem. In Congress on

Evolutionary Computation, CEC’02, pages 1185–1190, 2002.

[69] P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach for

scheduling a sales summit. In Selected Papers of the Third International Con-

ference on the Practice And Theory of Automated Timetabling, PATAT 2000,

Lecture Notes in Computer Science, pages 176–190, Konstanz, Germany, Au-

gust 2000. Springer.

[70] P. Cowling, G. Kendall, and E. Soubeiga. A parameter-free hyperheuristic

for scheduling a sales summit. In Metaheuristic International Conference

BIBLIOGRAPHY 221

MIC’2001, pages 127–131, Porto, Portugal, July, 16-20 2001.

[71] P. Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics. The Journal of

Heuristics, 2002. Submitted.

[72] P. Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics: A robust optimi-

sation method applied to nurse scheduling. In Parallel Problem Solving from

Nature VII, PPSN 2002, Lecture Notes in Computer Science, pages 851–860,

Granada, Spain, September, 7-11 2002. Springer-Verlag.

[73] P. Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics: A tool for rapid

prototyping in scheduling and optimisation. In Second European Conference

on Evolutionary Computing for Combinatorial Optimisation, EvoCop 2002,

Lecture Notes in Computer Science, pages 1–10, Kinsale, Ireland, April, 3-5

2002. Springer.

[74] P. Cowling, D. Ouelhadj, and S. Petrovic. Multi-agent systems for dynamic

scheduling. In PLANSIG Workshop 2000, Open University, Milton Keynes,

England, 2000.

[75] W. B. Crowston, F. Glover, G. L. Thompson, and J. D. Trawick. Probabilis-

tic and parametric learning combinations of local job shop scheduling rules.

ONR Research memorandum, GSIA, Carnegie Mellon University, Pittsburgh,

-(117), 1963.

[76] G. B. Dantzig. Maximization of a linear function of variables subject to linear

inequalities. In T. C. Koopmans, editor, Activity analysis of production and

allocation, pages 339–347. Wiley, New York, 1951.

[77] G. B. Dantzig. A comment on edie’s traffic delays at toll booths. Operations

Research, 2:339–341, 1954.

[78] G. B. Dantzig. Linear programming and extensions. Princeton University

Press, 1963.

BIBLIOGRAPHY 222

[79] L. D. Davis, editor. Handbook of genetic algorithms. Van Nostrand Reinhold,

1991.

[80] M. Deale, M. Yvanovich, D. Schnitzius, D. Kautz, M. Carpenter, M. Zweben,

G. Davis, and B. Daun. The space shuttle ground processing scheduling sys-

tem. In M. Zweben and M. S. Fox, editors, Intelligent Scheduling, pages

423–449, San Francisco, 199. Morgan Kaufmann.

[81] M. K. Dhodhi, I. Ahmad, and R. Storer. Shemus: synthesis of heteroge-

neous multiprocessor system. Microprocessors and Microsystems, 19(6):311–

319, 1995.

[82] M. K. Dhodhi, F. H. Hielscher, R. H. Storer, and J. Bhasker. Datapath

synthesis using a problem-space genetic algorithm. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 14(8):934–944,

1995.

[83] B. Dodin, A. A. Elimam, and E. Rolland. Tabu search in audit scheduling.

European Journal of Operational Research, 106:373–392, 1998.

[84] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning

approach to the traveling salesman problem. IEEE Transactions on Evolution-

ary Computaion, 1(1):53–66, 1997.

[85] M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strategy.

Technical report, Politecnico di Milano, Italy, 1991.

[86] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: optimization by

a colony of cooperating agents. IEEE Transactions on Systems, Man and

Cybernetics - Part B, 26(1):29–41, 1996.

[87] U. Dorndorf and E. Pesch. Evolution based learning in a job shop scheduling

environment. Computers and Operations Research, 22(1):25–40, 1995.

BIBLIOGRAPHY 223

[88] D. Dowling, M. H. M. Krishnamoorthy, and D. Sier. Staff rostering at a large

international airport. Annals of Operations Research, 72:125–147, 1997.

[89] K. Dowsland. Nurse scheduling with tabu search and strategic oscillation.

European Journal of Operational Research, 106:393–407, 1998.

[90] K. A. Dowsland and J. M. Thompson. Solving a nurse scheduling problem

with knapsacks, networks and tabu search. Journal of the Operational Research

Society, 51:825–833, 2000.

[91] G. Ducote and E. M. Malstrom. A design of personnel scheduling software for

manufacturing. Computers and Industrial Engineering, 37:473–476, 1999.

[92] G. Dueck and T. Scheuer. Threshold accepting - a general-purpose optimisa-

tion algorithm appearing superior to simulated annealing. Journal of Compu-

tational Physics, 90:161–175, 1990.

[93] M. Duque-Antón. Constructing efficient simulated annealing algorithms. Dis-

crete Applied Mathematics, 77:139–159, 1997.

[94] F. F. Easton and N. Mansour. A distributed genetic algorithm for determinis-

tic and stochastic labor scheduling problems. European Journal of Operational

Research, 118:505–523, 1999.

[95] F. F. Easton and D. F. Rossin. A stochastic goal program for employee schedul-

ing. Decision Sciences, 27(3):541–568, 1996.

[96] F. F. Easton and D. F. Rossin. Overtime schedules for full-time service work-

ers. Omega International Journal of Management Science, 25(3):285–299,

1997.

[97] S. Eilon and D. J. Cotterill. A modified si rule in job shop scheduling. Inter-

national Journal of Production Research, 7(2):135–145, 1968.

[98] A. Ernst, P. Hourigan, M. Krishnamoorthy, G. H. N. Mills, and D. Sier. Ros-

BIBLIOGRAPHY 224

tering ambulance officers. In Proceedings of the 15th National Conference of

the Australian Society for Operations Research, Gold Coast, pages 470–481,

1999.

[99] A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and

rostering: a review of applications, methods and models. European Journal of

Operational Research, 2001.

[100] B. Faaland and T. Schmitt. Cost-based scheduling of workers and equipment

in a fabrication and assembly shop. Operations Research, 41(2):253–268, 1993.

[101] V. Fabian. Simulated annealing simulated. Computers Math. Applic.,

33(1/2):81–94, 1997.

[102] H.L Fang, P. Ross, and D. Corne. A promising genetic algorithm approach

to job shop scheduling, rescheduling, and open-shop scheduling problems. In

S. Forrest, editor, Fifth International Conference on Genetic Algorithms, pages

375–382, San Mateo, 1993. Morgan Kaufmann.

[103] H.L Fang, P. Ross, and D. Corne. A promising hybrid ga/ heuristic approach

for open-shop scheduling problems. In A. Cohn, editor, Eleventh European

Conference on Artificial Intelligence. John Wiley & Sons, 1994.

[104] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search proce-

dures. Journal of Global Optimization, 6:109–133, 1995.

[105] P. Festa and M. G. C. Resende. Grasp: an annoted bibliography. In P. Hansen

C. C. Ribeiro, editor, Essays and Surveys in Metaheuristics, pages 325–367.

Kluwer Academic Publishers, 2002.

[106] E. Fink. How to solve it automatically: selection among problem-solving

methods. In Fourth International Conference of AI Planning Systems, pages

128–136, 1998.

BIBLIOGRAPHY 225

[107] H. Fisher and G. L. Thompson. Probabilistic learning combinations of local

job-shop scheduling rules. In Factory Scheduling Conference, Carnegie Institue

of Technology, May 10-12 1961.

[108] H. Fisher and G. L. Thompson. Probabilistic learning combinations of lo-

cal job-shop scheduling rules. In J. F. Muth and G. L. Thompson, editors,

Industrial Scheduling, pages 225–251, New Jersey, 1963. Prentice-Hall, Inc.

[109] C. Fleurent and J. A. Ferland. Genetic and hybrid algorithms for graph col-

oring. Annals of Operations Research, 63:437–461, 1996.

[110] D. B. Fogel. Asymptotic convergence properties of genetic algorithms and evo-

lutionary programming. analysis and experiments. Cybernetics and Systems,

25:389, 1994.

[111] D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE

Transactions on Neural Networks, 5:3, 1994.

[112] D. B. Fogel, editor. Evolutionary computation: The Fossil Record. IEEE Press,

1998.

[113] G. B. Fogel and D. B. Fogel. Continuous evolutionary programming. analysis

and experiments. Cybernetics and Systems, 26:79, 1995.

[114] L. J. Fogel, A. J. Owens, and M. J. Walsh, editors. Artificial intelligence

through simulated evolution. Wiley, New York, 1966.

[115] A. S. Fraser. Simulation of genetic systems by automatic digital computers.

ii. effects of linkage on rates under selection. Australian Journal of Biological

Sciences, 10:492–499, 1957.

[116] A. S. Fraser. Simulation of genetic systems by automatic digital computers.

iv. epistasis. Australian Journal of Biological Sciences, 13:329–346, 1960.

[117] A. Gaballa and W. Pearce. Telephone sales manpower planning at quantas.

BIBLIOGRAPHY 226

Interfaces, 9(3):1–9, 1979.

[118] F. Glover. Heuristics for integer programming using surrogate constraints.

Decision Science, 8:156–166, 1977.

[119] F. Glover. Future paths for integer programming and links to artificial intel-

ligence. Computers and Operations Research, 13(5):533–549, 1986.

[120] F. Glover. Tabu search - part i. ORSA Journal of Computing, 1(2):190–206,

1989.

[121] F. Glover. Tabu search - part ii. ORSA Journal of Computing, 2(1):4–32,

1990.

[122] F. Glover. Scatter search and star paths: beyond the genetic metaphor. OR

Spektrum, 17:125–137, 1995.

[123] F. Glover. A template for scatter search and path relinking. In J. K. Hao,

E. Lutton, E. M. A. Ronald, M. Schoenauer, and D. Snyers, editors, Artificial

Evolution, Lecture Notes in Computer Science 1363, pages 3–51. Springer,

1998.

[124] F. Glover and G. A. Kochenberger, editors. Handbook of Metaheuristics.

Kluwer Academic Publishers, 2003.

[125] F. Glover and M. Laguna, editors. Tabu search. Kluwer Academic Publishers,

1997.

[126] David E. Goldberg. Genetic algorithms in search, optimization & machine

learning. Addison Wesley, 1989.

[127] R. E. Gomory. Outline of an algorithm for integer solutions to linear programs.

Bull American Mathematical Society, 64:275–278, 1958.

[128] R. E. Gomory. Solving linear programming problems in integers. In R. Bell-

man and M. Hall, editors, Combinatorial Analysis, Proceedings of the tenth

BIBLIOGRAPHY 227

Symposium in applied mathematics of the American Mathematical Society,

1960.

[129] R. E. Gomory. An algorithm for integer solutions to linear programs. In R. L.

Graves and P. Wolfe, editors, Recent advances in mathematical programming.

McGraw-Hill. New York, 1963.

[130] R. E. Gomory. All-integer integer programming algorithm. In J.F. Muth and

E.L. Thompson, editors, Industrial Scheduling, pages 193–206. Prentice Hall,

Englewood Cliffs, N. J., 1963.

[131] M. Gopalakrishnan, S. Gopalakrishnan, and D. M. Miller. A decision sup-

port system for scheduling personnel in a newspaper publishing environment.

Interfaces, 23(4):104–115, 1993.

[132] J. Gratch and S. Chien. Adaptive problem-solving for large-scale scheduling

problems: a case study. Journal of Artificial Intelligence Research, 4:365–396,

1996.

[133] P. Greistorfer. A tabu scatter search metaheuristic for the arc routing problem.

Computers and Industrial Engineering, 2001. To appear.

[134] J. Gu. Efficient local search with search space smoothing: a case study of the

traveling salesman problem (tsp). IEEE Transactions on Systems, Man and

Cybernetics, 24(5):728–735, 1994.

[135] L. Han, G. Kendall, and P. Cowling. An adaptive length chromosome

hyperheuristic genetic algorithm for a trainer scheduling problem. In 4th

Asia-Pacific Conference on Simulated Evolution And Learning, SEAL 2002.

Nanyang Technology University, NTU Press, 2002. CD ROM.

[136] P. Hansen. The steepest ascent mildest descent heuristic for combinatorial pro-

gramming. In Congress on Numerical methods in Combinatorial Optimization,

Captri, Italy, 1986.

BIBLIOGRAPHY 228

[137] P. Hansen and N. Mladenović. Variable neighbourhood search: Principles and

applications. European Journal of Operational Research, 130:449–467, 2001.

[138] E. Hart and P. Ross. A heuristic combination method for solving job-shop

scheduling problems. In A. E. Eiben, T. Back, M. Schoenauer, and H. P.

Schwefel, editors, Parallel Problem Solving from Nature V, volume 1498 of

Lecture Notes in Computer Science, pages 845–854. Springer-Verlag, 1998.

[139] E. Hart, P. Ross, and J. A. D. Nelson. Solving a real-world problem using

an evolving heuristically driven schedule builder. Evolutionary Computing,

6(1):61–80, 1998.

[140] E. Hart, P. Ross, and J. A. D. Nelson. Scheduling chicken catching- an in-

vestigation into the success of a genetic algorithm on a real world scheduling

problem. Annals of Operations Research, 92:363–380, 1999.

[141] K. Hasse. Advanced column generation techniques with applications to mar-

keting, retail and logistics management. PhD thesis, University of Kiel, 1999.

Habilitation Thesis.

[142] D. Henderson, S. H. Jacobson, and W. Johnson. The theory and practice of

simulated annealing. In F. Glover and G. A. Kochenberger, editors, Handbook

of Metaheuristics, pages 287–319. Kluwer Academic Publishers, 2003.

[143] M. Herdy. Application of the evolution strategy to discrete optimization prob-

lems. In First International Conference on Parallel Problem Solving from

Nature (PPSN), volume 496 of Lecture Notes in Computer Science, pages

188–192. Springer-Verlag, 1991.

[144] J. H. Holland, editor. Adaptation in natural and artificial systems. University

of Michigan Press, 1975.

[145] J. H. Holland, editor. Adaptation in natural and artificial systems. University

of Michigan Press, 1992. Second edition, MIT Press 1992.

BIBLIOGRAPHY 229

[146] R. Howick and M. Pidd. Sales force deployment models. European Journal of

Operational Research, 48(3):295–310, 1990.

[147] J. Hueter and W. Swart. An integrated labor-management system for taco

bell. Interfaces, 28(1):75–91, 1998.

[148] R. Hung. Scheduling a workforce under annualized hours. International Jour-

nal of Production Research, 37(11):2419–2427, 1999.

[149] R. Hung and H. Emmons. Multiple-shift workforce scheduling under the

3-4 compressed workweek with a hierarchical workforce. IIE Transactions,

25(5):82–89, September 1993.

[150] L.W. Jacobs and M.J. Brusco. Overlapping start-time bands in implicit tour

scheduling. Management Science, 42(9):1247–1259, 2000.

[151] A.I.Z. Jarrah, J.F. Bard, and A.H. deSilva. Solving large-scale tour scheduling

problems. Management Science, 40(9):1124–1144, 1994.

[152] B. Jaumard, F. Semet, and T. Vovor. A generalised linear programming model

for nurse scheduling. European Journal of Operational Research, 107(1):1–18,

1998.

[153] D. E. Joslin and D. P. Clements. Squeaky wheel optimisation. Journal of

Artificial Intelligence, 10:353–373, 1999.

[154] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: a

survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[155] E. G. Keith. Operator scheduling. AIIE Transactions, 11(1):37–41, 1979.

[156] J. D. Kelly and L. Davis. Hybridizing the genetic algorithm and the k near-

est neighbors classification algorithm. In Fourth International Conference on

Genetic Algorithms, pages 377–383, 1991.

[157] G. Kendall, E. Soubeiga, and P. Cowling. Choice function and random hy-

BIBLIOGRAPHY 230

perheuristics. In 4th Asia-Pacific Conference on Simulated Evolution And

Learning, SEAL 2002, pages 667–671. Nanyang Technology University, NTU

Press, 2002. CD ROM.

[158] G. Kendall, E. Soubeiga, and P. Cowling. The principles of hyperheuristics

and their applications in the real world. The Journal of Scheduling, 2002.

Submitted.

[159] G. Kendall, E. Soubeiga, and P. Cowling. Hyperheuristics: a robust opti-

misation method for real-world scheduling. European Journal of Operational

Research, 2003. In preparation.

[160] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning

graphs. Bell Systen Technical Journal, 49:291–308, 1970.

[161] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220:671–680, 1983.

[162] H. Kitano. Designing neural networks using genetic algorithms with graph

generation system. Complex Systems, 4:461–476, 1990.

[163] C. Koulamas, S. R. Antony, and R. Jaen. A survey of simulated annealing

applications to operations research problems. Omega International journal of

Management Science, 22(1):41–56, 1994.

[164] Koza, Benett, Andre, and Keane. Genetic Programming III: Darwinian In-

vention and Problem Solving. Morgan Kaufmann, San Francisco, CA, 1999.

[165] Koza, Benett, Andre, Keane, and Brave. Genetic Programming III Videotape:

Human-Competitive Machine Intelligence. Morgan Kaufmann, San Francisco,

CA, 1999.

[166] J. R. Koza. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, Cambridge, MA, 1992.

BIBLIOGRAPHY 231

[167] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-

grams. MIT Press, Cambridge, MA, 1994.

[168] J. R. Koza. Genetic Programming II Videotape: The Next Generation. MIT

Press, Cambridge, MA, 1994.

[169] S. Kumar and S. Arora. Efficient workforce scheduling for a serial processing

environment: a case study at minneapolis star tribune. Omega International

Journal of Management Science, 27:115–127, 1999.

[170] M. G. Lagoudakis and M. L. Littman. Algorithm selection using reinforcement

learning. In Seventh International Conference on Machine Learning, pages

511–518, 2000.

[171] M. Laguna and R. Mart’i. Grasp and path relinking for 2-layer straight line

crossing minimization. INFORMS Journal of Computing, 11(1):44–52, 1999.

[172] W. B. Langdon. Scheduling planned maintenance of the national grid. In

T. C. Fogarty, editor, Evolutionary Computing, number 993 in Lecture Notes

in Computer Science, pages 132–153. Springer-Verlag, 1995.

[173] W. B. Langdon. Scheduling maintenance of electrical power transmission net-

works using genetic programming. In J. R. Koza, editor, Late-breaking papers,

Genetic Programming Conference, 1996.

[174] H. C. Lau. On the complexity of manpower shift scheduling. Computers and

Operations Research, 23(1):93–102, 1996.

[175] V. J. Leon and R. Balakrishnan. Strength and adaptability of problem-space

neighborhoods for resource-constrained scheduling. OR Spektrum, 17(2/3),

1995.

[176] D. Lesaint, C. Voudouris, and N. Azarmi. Dynamic workforce scheduling for

british telecommunications plc. Interfaces, 30(1):45–56, 2000.

BIBLIOGRAPHY 232

[177] T. Liang and B. Buclatin. Improving the utilization of training resources

through optimal assignment in the u.s. navy. European Journal of Operational

Research, 33:183–190, 1988.

[178] C. K. Y. Lin. The development of a workforce management system for a

hotline service. Computers and Industrial Engineering, 37:465–468, 1999.

[179] S. Lin and B. W. Kernighan. An efficient heuristic algorithm for the traveling

salesman problem. Operations Research, 21:498–516, 1971.

[180] S. E. Ling. Integrating genetic algorithms with a prolog assignment program as

a hybrid solution for a polytechnique timetable problem. In Parallel Problem

Solving from Nature, 2, pages 321–329, 1992.

[181] J. Loucks and F. Jacobs. Tour scheduling and task assignment of a heteroge-

neous workforce: a heuristic approach. Decision Science, 22(4), 1991.

[182] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. In

F. Glover and G. A. Kochenberger, editors, Handbook of Metaheuristics, pages

321–353. Kluwer Academic Publishers, 2003.

[183] R. Love and J. Hoey. Management science improves fast food operations.

Interfaces, 20(2):21–29, 1990.

[184] V. Mabert. A case study of encoder shift scheduling under uncertainty. Man-

agement Science, 25(7):623–631, 1979.

[185] O. C. Martin and S. W. Otto. Combining simulated annealing with local

search heuristics. Annals of Operations Research, 63:57–75, 1996.

[186] O. C. Martin, S. W. Otto, and E. W. Felten. Large-step markov chains for

the traveling salesman problem. Complex Systems, 5(3):299–326, 1991.

[187] O. C. Martin, S. W. Otto, and E. W. Felten. Large-step markov chains for

the tsp incorporating local search heuristics. Operations Research Letters,

BIBLIOGRAPHY 233

11:219–224, 1992.

[188] A. J. Mason, D. M. Ryan, and D. M. Panton. Integrated simulation, heuris-

tic and optimisation approaches to staff scheduling. Operations Research,

46/1:161–175, 1998.

[189] N. Metropolis, A. W. Rosenbluth, A. H. Teller, and E. Teller. Equation of

state calculation by fast computing machines. Journal of Chemical Physics,

21:1087–1091, 1953.

[190] K. Miettinen. Some methods for nonlinear multi-objective optimization.

In Proceedings of the 1st International Conference on Evolutionary Multi-

Criterion Optimization EMO 2001, Lecture Notes in Computer Science, Vol

1993, pages 1–20. Springer, 2001.

[191] H. Millar and M. Kiragu. Cyclic and non-cyclic scheduling of 12 h shift

nurses by network programming. European Journal of Operational Research,

104(3):582–592, 1998.

[192] R. G. J. Mills and D. M. Panton. Scheduling of casino security officers.

OMEGA International Journal of Management Science, 20(2):183–191, 1992.

[193] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing conflicts:

a heuristic repair method for constraint-satisfaction and scheduling problems.

Artificial Intelligence, 58(1):161–205, 1988.

[194] N. Mladenović and P. Hansen. Variable neighbourhood search. Computers

and Operations Research, 24(11):1097–1100, 1997.

[195] A. Mockus, J. Mockus, and L. Mockus. Adapting stochastic and heuristic

methods for discrete optimization problems. Informatica, 5(1):123–166, 1994.

[196] A. Mockus, J. Mockus, and L. Mockus. Bayesian approach adapting stochastic

and heuristic methods for discrete optimization. In Abstracts, Second world

BIBLIOGRAPHY 234

Meeting, pages 10–11, Alicante, Spain, 19-22 August 1995. International So-

ciety for Bayesian Analysis.

[197] A. Mockus, J. Mockus, and L. Mockus. Discrete optimization, information

based complexity and bayesian heuristics approach. In International Sysm-

posium on Operations Research with Applications in Engineering Technology

and Management, ISORA’95, Beijing, China, 19-22 August 1995.

[198] J. Mockus. Bayesian approach to global optimization. Kluwer Academic Pub-

lishers, Dordrecht-Boston-London, 1989.

[199] J. Mockus. Application of bayesian approach to numerical methods of global

and stochastic optimization. Journal of Global Optimization, 4(4):347–366,

1994.

[200] J. Mockus. A set of examples of global and discrete optimization, part i.

Informatica, 8:237–264, 1997.

[201] J. Mockus. A set of examples of global and discrete optimization: application of

Bayesian heuristic approach. Kluwer Academic Publishers, Dordrecht-Boston-

London, 2000.

[202] J. Mockus, W. Eddy, A. Mockus, L. Mockus, and G. Reklaitis. Bayesian

heuristic approach to discrete and global optimization. Kluwer Academic Pub-

lishers, 1997.

[203] J. Mockus and L. Mockus. Bayesian approach to global optimization and

applications to multi-objective constrained problems. Journal of Optimization

Theory and Applications, 70(1):155–171, July 1991.

[204] S.L. Moondra. An l.p. model for work force scheduling for banks. J. Bank

Res., 7(4):299–301, 1976.

[205] P. Moscato. On evolution, search, optimisation, genetic algorithms and martial

arts: Towards memetic algorithms. Technical Report 826, California Institute

BIBLIOGRAPHY 235

of Technology, Caltech Concurrent Computation Program, 1989.

[206] P. Moscato and J. F. Fontanari. Convergence and finite-time behavior of

simulated annealing. Advances in Applied Probability, 18:747–771, 1990.

[207] G. Mould. Case study of manpower planning for clerical operations. Journal

of the Operational Research Society, 47(3):358–368, 1996.

[208] R. Narasimhan. An algorithm for single shift scheduling of hierarchical work-

force. European Journal of Operational Research, 96:113–121, 1996.

[209] R. Narasimhan. An algorithm for multiple shift scheduling of hierarchical

workforce on four-day or three-day workweeks. INFOR, 38(1):14–32, February

2000.

[210] A. Nareyek. Choosing search heuristics by non-stationary reinforcement learn-

ing. In Metaheuristic International Conference MIC’2001, Porto, Portugal,

July 16-20 2001. Kluwer. Submitted.

[211] A. Nareyek. An empirical analysis of weight-adaptation strategies for neigh-

borhoods of heuristics. In Metaheuristic International Conference MIC’2001,

pages 211–215, Porto, Portugal, July 16-20 2001.

[212] I. Norenkov and E. Goodman. Solving scheduling problems via evolu-

tionary methods for rule sequence optimization. 2nd World Conference

on soft Computing, WSC2, June 1997. Online paper downloadable at

http://garage.cps.msu.edu/projects/scheduling.html (paper GARAGe97-05-

01).

[213] I. P. Norenkov. Scheduling and allocation for simulation and synthesis of

cad system hardware. In Proceedings EWITD 94, East-West International

Conference, ICSTI, pages 20–24, Moscow, 1994.

[214] P. J. O’Grady and C. Harrison. A general search sequencing rule for job shop

sequencing. International Journal of Production Research, 5:961–973, 1985.

BIBLIOGRAPHY 236

[215] I. H. Osman and J. P. Kelly, editors. Meta-heuristics: Theory & Applications.

Best papers of the 1995 Metaheuristic International Conference. Kluwer Aca-

demic Publishers, 1996.

[216] I. H. Osman and G. Laporte. Metaheuristics: a bibliography. Annals of

Operations Research, pages 513–623, 1996.

[217] S. S. Panwalkar and W. Iskander. A survey of scheduling rules. Operations

Research, 25(1):45–61, 1977.

[218] P. M. Pardalos and M. G. C. Resende, editors. Handbook of Applied Optimi-

sation. Oxford University Press, 2002.

[219] G. Pesant and M. Gendreau. A constraint programming framework for local

search methods. Journal of Heuristics, 5:255–280, 1999.

[220] S. Petrovic and R. Qu. Case-based reasoning as a heuristic selector in a hyper-

heuristic for course timetabling problems. In Sixth International Conference

on Knowledge-based Intelligent Information and Engineering Systems, KES

2002, September 2002. To appear.

[221] M. Pirlot. General local search methods. European Journal of Operational

Research, 92:493–511, 1996.

[222] L. S. Pitsoulis and M. G. C. Greedy randomized adaptive search procedures.

Technical report, AT&T Labs Research, 2001.

[223] M. Poliac, E. Lee, J. Slagle, and M. Wick. A crew scheduling problem. In

IEEE 1st International Conference on Neural Networks, pages 779–786, 1987.

[224] G. Rabideau, S. Chien, J. Willis, and T. Mann. Using iterative repair to

automate planning and scheduling of shuttle payload operations. In Innovative

Applications of Artificial Intelligence, IAAI 99, July 1999.

[225] G. Rabideau, R. Knight, S. Chien, A. Fukunaga, and A. Govindjee. Iterative

BIBLIOGRAPHY 237

repair planning for spacecraft operations using the aspen system. In Interna-

tional Symposium on Artificial Intelligence Robotics and Automation in Space,

iSAIRAS 99, 1999.

[226] D. Rafaeli, D. Mahalel, and J. N. Prashker. Heuristic approach to task schedul-

ing: ‘weight‘ and ‘improve‘ algorithms. International Journal of Production

Economics, 29:175–186, 1993.

[227] V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, and G. D. Smith, editors.

Modern heuristic search methods. Wiley, Chichester, 1996.

[228] C. Reeves. Hybrid genetic algorithms for bin-packing and related problems.

Annals of Operations Research, 63:371–396, 1996.

[229] C. R. Reeves, editor. Modern heuristic techniques for combinatorial problems.

Blackwell, Oxford, 1993.

[230] C. R. Reeves and J. E. Rowe, editors. Genetic Algorithms: Principles and

perspectives. Kluwer, Norwell, MA, 2001.

[231] M. G. C. Resende and C. C. Ribeiro. Greedy randomized adaptive search

procedures. In F. Glover and G. A. Kochenberger, editors, Handbook of Meta-

heuristics, pages 219–249. Kluwer Academic Publishers, 2003.

[232] C. C. Ribeiro, E. Uchoa, and R. F. Werneck. A hybrid grasp with perturbations

for the steiner problem in graphs. INFORMS Journal of Computing, 2002.

[233] J. Rosenhead, editor. Rational Analysis for a Problematic World - Problem

Structuring Methods for Complexity, Uncertainty and Conflict. Wiley, London,

1989.

[234] P. Ross, S. Schulenburg, J. G. Marin-Blázquez, and E. Hart. Hyper-heuristics:

learning to combine simple heuristics in bin-packing problem. In Proceedings of

the Genetic and Evolutionary Computation COnference, GECCO’02. Morgan-

Kauffman, 2002.

BIBLIOGRAPHY 238

[235] S. Sachdev. An exploration of A-teams. PhD thesis, Carnegie Mellon Univer-

sity, 1998.

[236] A. Schaerf. Local search techniques for large high school timetabling problems.

IEEE Transactions on Systems, Man and Cybernetics Part A:systems and

Human, 29/4:368–377, 1999.

[237] J. D. Schaffer and L. J. Eshelman. Combinatorial optimisation by genetic

algorithms: The value of the genotype/phenotype distinction. In First In-

ternational Conference on Evolutionary Computation and its Applications

EvCA’96, pages 110–120, Moscow, RUSSIA, June 24-27 1996. Presidium of

the Russian Academy of Sciences, Springer-Verlag.

[238] J. D. Schaffer and L. J. Eshelman. Combinatorial optimisation by genetic al-

gorithms: the value of the genotype/phenotype distinction. In V. J. Rayward-

Smith, I. H. Osman, C. R. Reeves, and G. D. Smith, editors, Modern Heuristic

Search, pages 85–97. John Wiley and Sons, 1996.

[239] S. Schindler and T. Semmel. Station staffing at pan american world airways.

Interfaces, 23(3):91–98, 1993.

[240] J. A. M. Schreuder. Assigning magistrates to sessions of the amsterdam crim-

inal court. In E. Burke and W. Erben, editors, Proceedings of the third in-

ternational conference on the Practice and Theory of Automated Timetabling,

page 333, 2000.

[241] H. P. Schwefel. Evolutionsstrategie und numerische optimierung. PhD thesis,

Technische Universität Berlin, 1975.

[242] J. F. Shapiro. Mathematical programming: structures and algorithms. John

Wiley & Sons, 1979.

[243] M. T. Shing and G. B. Parker. Genetic algorithms for the development of real-

time multi-heuristic search. In S. Forrest, editor, Fifth International Confer-

BIBLIOGRAPHY 239

ence on Genetic Algorithms, pages 575–572, San Mateo, 1993. Morgan Kauf-

mann.

[244] D. Smith. Bin packing with adaptive search. In J. J. Grefenstette, editor,

Proceedings of the First International Conference on Genetic Algorithms and

their Applications, pages 202–207. Lawrence Erlbaum Associates, Publishers,

1985.

[245] J. Smith. Co-evolving memetic algorithms: inital investigations. In Parallel

Problem Solving from Nature VII, PPSN 2002, Lecture Notes in Computer Sci-

ence, pages 537–546, Granada, Spain, September, 7-11 2002. Springer-Verlag.

[246] S. F. Smith. Flexible learning of problem solving heuristics through adaptive

search. In Proceedings of the Eigth International Joint Conference on Artificial

Intelligence, pages 422–425, Karlsruhe, West Germany, August 1983.

[247] S. F. Smith. Opis: A methodology and architecture for reactive scheduling.

In M. Zweben and M. S. Fox, editors, Intelligent Scheduling, pages 423–449,

San Francisco, 1994. Morgan Kaufmann.

[248] M. V. Solodov and B. F. Svaiter. Descent methods with line search in the pres-

ence of perturbations. Journal of Computational and Applied Mathematics,

80:265–275, 1997.

[249] R. H. Storer, S. W. Flanders, and S. D. Wu. Problem space local search for

number partitioning. Annals of Operations Research, 63:465–487, 1996.

[250] R. H. Storer, S. D. Wu, and R. Vaccari. New search spaces for sequenc-

ing problems with application to job shop scheduling. Management Science,

38(10):1495–1509, 1992.

[251] R. H. Storer, S. D. Wu, and R. Vaccari. Problem and heuristic space search

strategies for job shop scheduling. ORSA Journal of Computing, 7(4):453–467,

1995.

BIBLIOGRAPHY 240

[252] T. Stützle. Local Search Algorithms for Combinatorial Problems - Analysis,

Improvements, and New Applications. PhD thesis, Darmstadt University of

Technology, Department of Computer Science, 1998.

[253] T. Stützle and H. H. Hoos. The max-min ant system and local search for

the traveling salesman problem. In T. Bäck, Z. Michalewicz, and X. Yao, edi-

tors, Proceedings of the 19997 IEEE International Conference on Evolutionary

Computaion (ICEC’97), pages 309–314. IEEE Press, Piscataway, NJ, 1997.

[254] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT

Press, Cambridge, MA, 1998. A Bradford Book.

[255] G. Syswerda. Schedule optimization using genetic algorithms. In L. Davis,

editor, Handbook of Genetic Algorithms, pages 333–349, New York, 1991. Van

Nostrand Reinhold.

[256] S. Talukdar, S. Murthy, and R. Akkiraju. Asynchronous teams. In F. Glover

and G. A. Kochenberger, editors, Handbook of Metaheuristics, pages 537–556.

Kluwer Academic Publishers, 2003.

[257] P. E. Taylor and S. J. Huxley. A break from tradition for the san francisco

police: patrol officer scheduling using an optimization-based decision support

system. Interfaces, 19(1):4–24, 1989.

[258] V. Tcheprasov, E. Goodman, W. Punch, G. Ragatz, and I. Norenkov. A

genetic algorithm to generate a pro-active scheduler for a printed circuit board

assembly. In First International Conference on Evolutionary Computation and

its Applications EvCA’96, pages 232–244, Moscow, RUSSIA, June 24-27 1996.

Presidium of the Russian Academy of Sciences, Springer-Verlag.

[259] H. Terashima-Marin, P. Ross, and M. Valenzuela-Rendón. Evolution of con-

straint satisfaction strategies in examination timetabling. In Genetic and Evo-

lutionary Computation COnference, GECCO’99, pages 635–642, 1999.

BIBLIOGRAPHY 241

[260] G. M. Thompson. Labor scheduling using npv estimates of the marginal benefit

of additional labor capacity. Journal of Operations Management, 13:67–86,

1995.

[261] G. M. Thompson. A simulated-annealing heuristic for shift scheduling using

non-continuously available employees. Computers and Operations Research,

23(3):275–288, 1996.

[262] G. M. Thompson. Assigning telephone operators to shifts at new brunswick

telephone company. Interfaces, 27(4):1–11, 1997.

[263] G.M. Thompson. Improved implicit optimal modeling of the labor shift

scheduling problem. Management Science, 41(4):595–607, 1995.

[264] J. M. Thompson and K. A. Dowsland. A robust simulated annealing based

examination timetabling system. Computers and Operations Research, 25(7-

8):637–648, July 1998.

[265] J. M. Tien and A. Kamiyama. On manpower scheduling algorithms. SIAM

Review, 24(3):275–287, July 1982.

[266] E. Tsang and C. Voudouris. Fast local search and guided local search and

their application to british telecom’s workforce scheduling problem. Operations

Research Letters, 20:119–127, 1997.

[267] R. J. M. Vaessens, E. H. L. Aarts, and J. K. Lenstra. A local search template.

Computers and Operations Research, 25(11):969–979, 1998.

[268] Y. van den Berg and D. Panton. Personnel shift assignment: existence condi-

tions and network models. Networks, 24:385–394, 1994.

[269] V. Vidal and L. Sorensen. Soft methods in primary schools: Focusing on it

strategies. International Transactions in OR, 2001.

[270] R. V. Vohra. The cost of consecutivity in the (5, 7) cyclic staffing problem.

BIBLIOGRAPHY 242

IIE Transactions, 29:942–950, 1987.

[271] S. Voss, S. Martello, I. H. Osman, and C. Roucairol, editors. Meta-heuristics:

advances and trends in local search paradigms for optimisation. Best papers of

the Metaheuristic International Conference 1997. Kluwer Academic Publish-

ers, 1999.

[272] C. Voudouris and E. Tsang. Guided local search. Technical Report CSM-247,

Department of Computer Science, University of Essex, 1997.

[273] C. Voudouris and E. Tsang. Guided local search and its application to

the traveling salesman problem. European Journal of Operational Research,

113(2):469–499, 1999.

[274] S. C. Wheelwright and S. Makridakis. Forecasting methods for management.

John Wiley & Sons Inc, 1973.

[275] S. W. Wilson. Zcs: a zeroth order classifier system. Evolutionary Computation,

2:1–18, 1994.

[276] S. W. Wilson. Classifier fitness based on accuracy. Evolutionary Computation,

3(2):149–175, 1995.

[277] D. Wolpert and W. G. MacReady. No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[278] G. Zoutendijk. Mathematical programming methods. North-Holland Publish-

ing Company, 1976.

[279] M. Zweben, B. Daun, E. Davis, and M. Deale. Scheduling and reschedul-

ing with iterative repair. In M. Zweben and M. S. Fox, editors, Intelligent

Scheduling, pages 423–449, San Francisco, 1994. Morgan Kaufmann.

