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Abstract

The research in this thesis investigates Case-Based Reasoning (CBR), a
Knowledge-Based Reasoning technique that proved to be capable of
providing good solutions in educational course timetabling problems.
Following the basic idea behind CBR, experiences in solving previous
similar timetabling problems are employed to find the solutions for new

problems.

A basic CBR system that is hierarchically organized with structured
knowledge representatis by attribute graphs is proposed in Chapter Four.
The system is then further improved to solve a wider range of problems,
which is described in Chapter Five. Evaluations on a large number of
experiments indicate that this approach could provide a significant step

forward in timetabling and scheduling research.

This basic system works well on relatively small problems. To deal with
this drawback a multiple-retrieval approach that partitions large timetabling
problems into small solvable subgimems is presented in Chapter Six.

Good results are obtained from a wide range of experiments.
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In Chapter Seven, a new idea is introduced in CBR for solving timetabling
problems by investigating the amarch to select the most appropriate
heuristic method rather than to employ it directly on the problem, in the
attempt to raise the level of generality at which we can operate. All the
evidence obtained from the first stage experiments indicates that there is a

range of promising future directions.

Finally in Chapter Eight the results of the work are evaluated and some

directions for future work are present.
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Chapter 1 Introduction

1.1 Background and M otivation
1.1.1 Background

In real-world problem solving, peoplusually use experience that was
successful in solving previous, similar problems. Knowledge-Based
techniques in Artificial Intelligence (Al) mimic the reasoning process
people use by modelling the experiences, storing them in a knowledge base
and reusing those experiences when solving new problems. In Expert
Systems, the experiences are usually modelled as rules, which will be used
to construct the solutions for newroblems. In Case-Based Reasoning
(CBR) (Kolodner, 1993), experiences are modelled into a different form as
concrete problems with their solutionsaée$. New problems are solved
based on solutions of retrieved cases in previous similar situations from the

knowledge basecése basg

The mechanism behind CBR is supported by the study of cognitive

computer science and psychojoghat human reasoning based on

10
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experiences collected from previous problem solving in similar situations
(Leake, 1996). In many real-world problem solving situations, people
recall experiences in solving prexis similar problems and reuse them
with small modifications according to the different requirements from
those of the previous ones. Reasmniis based on the assumption that
‘similar problems may have similar solutions’ and ‘the types of problems
an agent encounters tend to rec(iceake, 1996). In problem domains
where that assumption holds, previous solutions may be reused as good
starting points in solving new similar problems. CBR’s problem solving by
reusing the solutions of similar problems mimics the behaviour of experts

and avoids reasoning from scratch.

1.1.2 Motivation

CBR is a knowledge-based paradtigthat attempts to reuse previous
knowledge for current, similar problesnThis research investigates how
CBR, a quite different methodologyom many other Al and Operational
Research (OR) techniques in timetabling, can be employed to solve the
problem effectively. In schools andniversities, altering “last year’s
timetable” to create a solution for the problem in hand is an approach
favoured by many timetabling officers. iBhis because the requirements in
the new problem usually do not change significantly from previous
instances. Thus parts of the previous timetable could be reused and a

significant amount of effort and time could be saved.

11
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1.1.3 Why CBR for Timetabling

One of the important contributions &howledge-Based techniques is their
application in problems where chi experiences and knowledge are
available. However, in practice, formalising experiences as a set of rules in
complex domains such as timetabling may lead to the well-known
bottleneck problem of knowledge acqitien. For example, in rule-based
Expert Systems, collecting expemnzes and knowledge, modelling them in
the form of rules and building up a complete rule base may take a
considerable amount of work. Missing out just one rule may lead to a
complete failure in reasoning. In someplem domains, it is impossible to
ensure completeness. Also,omsetimes the knowledge in some
ill-structured domains (such as timetabling), with too many possible

details, is difficult, or impossible, to be modelled explicitly as rules.

CBR is potentially a very good technique for addressing the bottleneck
problems mentioned above (MacCarthy and Jou, 1996; Schmidt, 1998).
Collecting cases, which can implicitly capture the knowledge, rather than
modelling it as rules in timetabling may be relatively easy. When no exact
match can be found from the case base, which is usually the case in
complex problems, a similar case may be retrieved and the solution of this
related problem might also be apgable to provide a good starting point
for the new problem after a smallmount of adaptation. By employing
matching, selection and searchireghniques, CBR is potentially good at
solving complex timetabling problems, avoiding a large amount of

computation.

12
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Other problems that may exist in Knowledge-Based Systems rise from the
evolved new experiences over time in real-world problem solving. In this
case the whole rule-based system may need to be re-developed to build in
the rules of these new experiences. In CBR, however, the system can be
updated (to reflect new experienceg)ritaining the newly solved problem
(learning ability in CBR). Thus system performance can be improved by
learning and embedding new knowledgqutomatically, saving a lot of

human effort and solving meproblems efficiently.

Timetabling problems are usually very large and have complicated
constraints, which can be easily mappsdanstraint satisfaction problems
(CSP) (Carter and Laporte, 1993897). CBR may also be a valuable
technique for such problems as it puts emphasis indirectly on

constraint-directed search.

The observations presented above pilevihe motivations for our research
on CBR for timetabling. To our knowledge, no other research has been
reported applying CBR specifically to educational timetabling problems.
However, recent work has been undéen to investigate using CBR for
nurse rostering problems, which is a special type of timetabling problem
determining the shifts of staff in hospital over a fixed period of time (Scott

and Simpson, 1998; Petrovic, Beddoe and Berghe, 2002).

13
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1.2 Aimsand Issues

There are many issues in CBR that have been investigated in research and

practice. They can be mainly classifi into the following five groups:

* Representation — How the problem should be represented to

properly describe its situation?

* Indexing — How the indices shalibe selected so that cases can be

organised in the case base andiestd in certain situations?

+ Retrieval — The most similar and reusable cases need to be retrieved

efficiently and effectively from the case base?

e Adaptation — Retrieved cases need to be adapted using domain
knowledge, according to the different requirements of the new

problem;

* Retention — Newly solved cases need to be selected and stored into
the case base. How should this be done so that the new knowledge

in either success or failure can be learned?

Some surveys are available presenting the research on these issues (Marir
and Watson, 1994; Mantaras and Plaza, 1997). Each of them may form a
significant research topic in its own. To build an effective system in
complex problem domains, these issuneed to be addressed dependently
and co-operatively. This thesis will investigate mainly the first four issues

on CBR in timetabling problems. The most important issues addressed are:

14
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* Representation — With the significant complexity in real world
situations, timetabling problems are difficult to formalise. How to
represent them to explore the deeper knowledge forms one of the

most important objectives;

» Case base management — How should cases be indexed in the case

base so that relevant cases can be retrieved effectively?

* Retrieval — How can the retrieval be carried out so that we can find

reusable timetables efficiently from the case base?

» Adaptation — Retrieved cases are usually different from the new case.
Research issues include how to adapt the retrieved timetables into the

new situation concerning the domain knowledge.

Timetabling problems are a speciapgyof scheduling problems, for which

a wide range of techniques and approaches in both Al and OR have been
studied (Burke and Ross, 1995; Barddadym 1995; Carter and Laporte,
1995&1997; Burke and Carter, 1997; Schaerf 1999; Burke and Erben,
2000; Burke, and Causmaecker, 2002). This thesis presents a major
investigation of CBR for course timetabling, aiming at establishing a

general framework of CBR for aange of scheduling problems.

15
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1.3 Organisation of the Thesis

In this chapter we presented the background and motivation of applying
CBR for timetabling problems. The remaining chapters of this thesis are

organised in the following way:

Chapter Two reviews the research classified into different categories and
applications in CBR. In particularucrent research on CBR in scheduling

is discussed.

Chapter Three introduces educational timetabling problems and presents

different methods in research and practice for seuimetabling.

Chapter Four presents a basic structure of our proposed CBR system
employing a structured representatiby attribute graphs. The mechanism
is illustrated theoretically and a simple example is given to explain the

retrieval, re-use and adaptation of structured cases.

Chapter Five investigates the issues of retrieval of a wider range of
reusable cases. Evaluations on the system performance are given by
experiments on a number of systematically constructed case bases.
Showing the promising results on relatively small problems, the system

will be used as the basis for developing a multiple-retrieval approach.

Chapter Six describes a multiple-retrieval approach based on the basic
CBR system already developed, aiming at solving large course timetabling
problems. Partitioning and composition techniques are used to decompose
the problem into solvable sub-problems and to combine the sub-solutions

into a final solution.

16
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Chapter Seven presents a new approach using CBR as the selector of good
problem-solving heuristics/strategies in solving previous similar problems.
Problem-solving heuristics, not th@mcrete solutions, are reused to help

constructing new timetables.

Chapter 8 presents concluding cormteeand some directions for future

research work on CBR on timetabling problems.

17
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Chapter 2 Case-Based Reasoning (CBR)

2.1 What isCBR?

Case-Based Reasoning (Kolodner, 1993) is a Knowledge-Based Reasoning
technique that solves problems by retrieving the most similar previous
problems ¢ase$ from a store called thease baseand by reusing the
knowledge and experiences from these cases. If necessary, the retrieved
solutions or problem solving strategies are adapted (using domain
knowledge) so that they are applicable for the new problem. The solved
new problems may be retained by updating the case base. Leake (1996)

described CBR as:

“In CBR, new solutions are generated not by chaining, but by
retrieving the most relevant cases from memory and adapting

them to fit the new situations.”

In CBR, all the problems are representedcases which were defined by

Kolodner and Leake (1996) as:

18
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“A case is a contextualized piece of knowledge representing an
experience that teaches a lesson fundamental to achieving the

goals of the reasoner.”

A case usually has two major parts: the problem itself with the context
describing the environments it should be retrieved; and the solution of the
problem or the lesson it will teach. Throughout this thesmsjrce casavill

be used to denote the cases in the case liasget casewill be used to

denote the new problem to be solved.

211 CBR Framework

CBR can be seen as a 4 RES’ cyclic process: REtrieve, REuse, REvise and

REtain (Aamodt and Plaza, 1994). This cycle is cited in Figure 2-1 below:

Soalwed
Caze

Lanifirmec Suggested
Saitian Safiation

FRe paired
Caze

Figure 2-1 The CBR cycle (Aamodt and Plaza, 1994)

19



CBR for Course Timetabling Case-Based Reasoning

From Figure 2-1 we can see that when a target case is input into the CBR

cycle, the following steps will be taken to solve it.
1. Retrieve —the most similar source cases efficiently;
2. Reuse — the retrieved solutions to solve the target case (new case);
3. Revise — the solution concerning the new requirements;

4. Retain — certain solved target cases into the case base.

2.1.2 Methodology and Issuesin CBR

CBR methodology usually concerns the following issues so that different
components can work co-operativelpntributing to efficient and effective

system performance.

2.1.2.1 Case Representations

CBR'’s problem solving depends heavily upon the case representation that
gives the important information foreasoning. Especially in complex
problem domains, the cases need to be represented in a way that describes
the sensible features of the prebi that affect the solutions. Thus
comparisons between cases can be carried out between source cases and

target cases to find really reusable source cases.

20
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2.1.2.2 Indexing

Indexing in CBR includes choosinggper indexing vocabulary that can
distinguish between particular cases in certain situation within the case
base. In different problem domains, indices could be abstract or specific
details of the case, surface features eep descriptions of the problem, etc.
A good index should cover the correct and complete dimensions of the

problem thus allowing an efficient matching between cases.

2.1.2.3 Case Base Maintamae and Management

It is usually easy to construct the initial case base with just a few cases as
the starting point. Gradually users capdate it interactively, or the system
may retain some solved target cases automatically. Thus CBR inherently
has a learning ability and the knowledgered may evolve, increasing the

system performance during the problem solving.

2.1.2.4 Adaptation

Adaptation, as one of the most difficult tasks (especially in a complex
problem domain) in CBR, relies on bothe retrieval of proper cases that
need less adaptations and the uttiisia of appropriate domain knowledge.
Traditional methods include substitution method that replaces some part of
the retrieved case, and transformation method that transfer some part of the

retrieved case to fit the constraint to a new situation (see more details in

21
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Kolodner, 1993). Recent research emjohgyheuristic methods provides
many promising prospects. This whle presented in the section under the

heading “Hybridisation with CBR”.

2.1.2.5 Similarity Measure

Similarity assesses the right cases to be retrieved. In most of the CBR
system, it considers the proper feasirand usually their importance for

comparison between cases. Some researchers judge the similarity by
concerning the adaptation that needs to be carried out (Smyth and Keane,

1998).

2.2 CBRin Research and Applications

CBR has been very successful in a wide range of problems over the last
decade (Kolodner, 1993). A vast amount of work has been carried out
concerning a wide range of issuesd different techniques in CBR
(Mantaras and Plaza, 1997). Concerning the interests of this thesis, in the
following sections a review will be gen mainly on case representation,
decomposition techniques and hybridisation in CBR, from both the
research and application points of view. Some open issues on CBR in

scheduling are discussed.

22
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2.2.1 Research Topicsin CBR

2.2.1.1 Structurally Represented Cases

Case representation forms one ok timost important issues in CBR,
especially in problem domains concerning more complicated applications
(e.g. scheduling, design and plannin@raditional case representation
typically used a flat form of feature-value pairs (Kolodner, 1993). A value

is given to describe different scales of these features in the problem. The
nearest-neighbour method is extime$y used to measure the similarity
between two cases that gives every feature a weight and results in a
weighted sum. Figure 2-2 presents an example of the similarity measure
between New case and Case0O and Casuaploying the nearest-neighbour
approach shown in the formula. New case, Case0O and Casel are general

timetabling problems represented in the form of feature-value pairs.

S(ee, &) =[ 3 sim(s ~t) x w1/ Tw

i=0 i=0
- sm(s-t)
Feature Case0 | Casel | Weight | New case Case0 | Coasel
Name TTPO | TTP1 0 TTP
No. of events 20 40 5 30 0.33 0.33
No. of timeslots 7 20 .8 12 0.42 0.67
No. of students 600 1500 2 1200 0.50 0.2b
No. of rooms 5 12 .5 4 0.25 2.00
No. of clashes 10 23 .9 11 0.09 1.04
No. of consecutive events 3 10 5 10 0.70 0.04
No. of non-consecutive events 2 12 .5 7 0.71 0.71
No. of before/after events 3 8 .3 4 0.25 1.00Q
No. of eventswith >5 clashes 8 23 .9 12 0.33 0.92
Similarity with new case 0.37 0.83

Figure 2-2 An example of nearest neighbour method with feature-value pair representation
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However, in complex domains where problem features are complicated and
heavily interrelated, such as timetabling problems that are seen as
constraint satisfaction problems, this flat representation is not adequate to
represent the important situations evh the problems occur, which in turn
raises the problem of recognisiniget correspondence between the features
in cases and qualities of the solutions. The traditional representation may
lead to the retrieving of cases that are not strongly reusable and the
adaptation may take as much effort as scheduling from scratch. A recent
overview (Mantaras and Plaza, 1997)inted out that the feature-value
representation is the most severe limitations of existing CBR systems. This
representation is not adequate for kiesge-rich applications that have
higher-order relations between features. Smyth and Keane (1998)
questioned the similay assumption in CBR and introduced a concept
called “adaptation-guided retrieval”. It is unwarranted to assume that the
most similar case is also the most appropriate from the re-use perspective.
Similarity must be augmented by a deeper knowledge about how easy it is
to modify a case to fit a target problem. Timetabling problems require

much more complex case representations.

As the development of CBR has progressed, research has been conducted
on more complex applications using more sophisticated methods that
structurally represent the cases gsgraphs, semantic networks or trees,

etc (Gebhardt, 1997), but no general theory or methodology has been

identified.
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Jantke (1993) defined the similarity agtihapping into a highly structured
partially ordered space. The approach was studied further (Matuschek and
Jantke, 1997) to formalise the strudl similarity, with the aim of making

it more flexible and expressive.sBer et al. (1996) proposed a CBR system

to find the common structures between the target problem and a set of
candidate cases that were transformed into a structural representation.
Structural similarity is defined using maximum common sub-graphs that
are employed as prototypes thus reducing much of the memory retrieval
effort. Two systems, CHIRON and CAPER, were developed (Sanders,
Kettler and Hendler, 1997) to show how the cases in graph-structured
representation organised as setimametworks can support Case-Based
Planning. The benefits and cost associated with graph-structured
representation were discussed. Riand Sender (1998) used labelled trees
associated with concepts to represent structured cases and the similarity
measure takes into account both te&uctures and labels. A set of
algorithms was explored to solvesub-tree-isomorphism problems.
Praehofer and Kerschbaummayr (1998)posed an approach that applied
CBR in system design. Cases were structurally modelled and the retrieval
was based on a graph matching alfon (Messmer, 1995), which is also
studied in this thesis. Similarity was assessed by computing the degree of

fulfilment of requirements in the design.

The FABEL project (Gebhardt, 1995) and a survey (Gebhardt, 1997)
provided more details of some existing systems that employed structured

cases, which were classified intlve groups: restricted geometric
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relationships; graphs; semantic nets; model-based similarities and

hierarchically structured similarities.

2.2.1.2 Hybridisation with CBR

CBR is inherently suitable to be integed with other AI/OR techniques
especially in complex applicatns (Hunt and Miles, 1994). Some work
combining CBR with other AlI/OR techniques in some domains has shown
the merits of this integration. For example rule-based techniques were used
to solve problems where domain kniedge was understood reasonably
well and CBR can be used when ruladed techniques failed (Leake, 1995;
Surma and Vanhoof, 1998; and Golding and Rosenbloom, 1997).
Constraint satisfaction techniques were also widely employed in
integration with CBR (Sqalli, Pursi and Freuder, 1999). This may also
indicate the possible benefits from integrating AI/OR techniques with CBR
in solving complex scheduling problems. One example in Case-Based
Scheduling is CABINS (Miyashita and Sycara, 1994&1995) that utilised
constraint satisfactionethniques to carry out the raip actions retrieved

by CBR in solving dynamic job shop scheduling problems.

From the Cased-Based Reasoning Perspective

In CBR, the matching problems in retrieval could be solved by employing

meta-heuristic methods such as Genalgorithms (GAs) (Shin and Han,
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1999). Recently, adaptation in a widengee of CBR applications employed
GAs other than traditional adapian methods and showed promising
results (Purvis and Athalye, 1997; @a and Maher, 1999). Adaptation is
one of the most difficult steps in CBR as it needs to integrate domain
knowledge. Different Al techniques cdre particularly suitable for using

this knowledge to search for better solutions. Some work on constraint
satisfaction techniques (Purvis and Pu, 1995) in adaptation has also been

carried out to formalise this procesn ill-structured domains.

From the Atrtificial Intelligerte Search Methods Perspective

In Tabu Search, operator selection can be helped by employing CBR to
improve the performance (Grolimund and Ganascia, 1997). GAs may
benefit in solving optimisation problems from proper injection of cases into

populations during the search (Louis and Li, 2000).

Initialisation plays an important role in Evolutionary Algorithms (Burke
and Newall, 1998). With the assumptidhat similar problems may have
similar solutions, retrieved good solutions of similar cases may be near to
the good/optimal solution of the target case. Solutions of the source cases
as initial starting points of differg heuristic methods can help the search
move toward the high quality/optimal solutions in the search space. This
may indicate a high level of potential in investigating initialisation in Al
search methods by CBR. Research on using CBR to seed GAs has shown

different behaviour in solving optimisation problems (Oman and
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Cunningham, 2001). Investigations on many potential issues such as how

to select cases for seeding, etc need to be carried out.

2.2.1.3 Decomposition Techniques in CBR

In CBR, decomposition techniques have been mostly employed in design
and planning domains where the casesre decomposed by sub-goals or
abstractions, and the case bases wesaally organised iararchically.

Marir and Watson (1995) proposed an approach that broke down the plans
into small adaptable sub-problems by organising the refurbishment cases as
a hierarchical structure composed of cases and sub-cases. Watson and
Perera (1998) studied a case represto that decomposed problems of
estimating construction costs into sub-problems, which were stored into a
set of small case bases rather than a single large case base. This
representation provided higher accuracy of retrieval than that of simple flat
representations. Smyth, Cunningham and Keane (2001) presented an
approach that decomposed cases by abstraction and solved the problem by

reusing multiple cases at various levels of abstraction.

2.2.2 CBR Applicationsand Systems

CBR has been studied in many probleoiving applications. Successful
areas include planning, design, explanation and diagnosis, legal advice,
health and education (MantarasdaRlaza, 1997). A tim@bling problem

can be thought of as a special case ofestthing problems. The review in
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this section will be concentrate on CBR in scheduling and optimisation
problems. Related problems suck planning and design problems will

also be discussed.

2.2.2.1 CBR in Scheduling and Optimisation Problems

There are relatively few publications specifically on Case-Based Reasoning
in scheduling problems. A brief survey of CBR in scheduling was given by
MacCarthy and Jou (1996). Three sgabased scheduling systems in
scheduling, SMARTplan, CBR-1na CABINS, were reviewed in the
survey and a general framework for applying CBR on a wide range of
scheduling environments concernitige dynamic nature of the real-world
problems was proposed. The authors claimed that CBR is a very good
approach in expert scheduling systems and emphasised potential research
areas in dynamic scheduling eramiments. A review of the current
research in Case-based scheduling is given in the following two
sub-sections: case-based reaetischeduling and other studies in

case-based scheduling.
Case-Based Reactive Scheduling

One of the critical problems in scheduling is its dynamic nature (which is
also referred to as ‘Reactive Scheduling’ in some research, see Smith,
1994; Szelke and Kerr, 1994), which debes situations where unexpected
events (e.g. new user requirements, real-time changing environments) often

occur. In some knowledge based techniques that solve problems from
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scratch, small changes in schedulingyntead to a re-construction and thus

may not provide a high quality new schedule in time.

CBR is inherently a good technique to handle the uncertainty in real-time
dynamic scheduling problems (Maafhy and Ye, 1997; Schmidt, 1998).
With the ability to “remember” the most appropriate repairing strategies in
previous similar environments, CBR is capable of providing
good/sub-optimal complete solutions in a bounded time, which is one of
the key requirements in real-worldcheduling problems to repair a
schedule to satisfy the new requireme quickly. Current case-based

scheduling approaches are focused ppliaations of reactive scheduling.

The CBR-1 project (Bezirgan, 1993) used CBR in a toy car job-shop
scheduling problem to provide rules dynamic environment as early as
possible. However, the processing time of the system was not guaranteed
because of the repeated retrieval and adaptation. The demand on memory

may also lead to an efficiency problem.

Miyashita and Sycara (1994&1995) presented the CABINS system that
selected heuristic repair actions job shop scheduling problems, thus
dynamically guiding the search medure. Constraint satisfaction
technigues were used incrementally to carry out these retrieved repair

actions on a complete (but sub-optimal) seed schedule.

MacCarthy and Jou (1995) proposed a CBR system to solve scheduling
problems involving sequence depentlset up times. They also reviewed

different research issues and cardgd that using CBR techniques might
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potentially improve problem solving in scheduling problems that are

inherently dynamic, urertain and complex.

Dorn (1995) proposed a CBR approach integrated with an iterative
improvement method in the steel inditys The schedules retrieved by CBR
were optimised by an iterative impravent method. Retad work and the

possible problems in implemengrihe approach were discussed.

Szelke and Markus (1997) developed a reactive scheduler, CBRI/L, for
complex dynamic manufacturing shop floor problems. Cases modelling the
supervisory behaviours in industry veeorganised hierarchically to handle

complex schedule repairs in fast changing environments and store the

long-term valuable real-world knowledge.

Schmidt (1998) proposed a problem-solving CBR framework with the
theory of scheduling to interactiwemake decisions in production planning
problems. Well-known scheduling ategies/tactics associated with
problems, which were representdny “transformation graphs”, were
retrieved to solve target problems. The author claimed that the approach
was applicable in reactive scheduling and pointed out work that needed to

be done to model the schedulingpplems mathematically.
Other Studies in Case-Based Scheduling

Research on case-based scheduling in a variety of scheduling and
optimisation problems exist, employing a number of approaches
representing cases in different waged different techniques including

Constraint Satisfaction technigaiand Graph Heuristic methods.
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Koton (1989) proposed the SMARTplan CBR system for a large-scale
airlift management problem. The case base was organised into a two-tiered
structure with the abstract features and the actual cases to reduce the
retrieval cost significantly. Abstréon techniques were used in this system

to deal with large problems with many features. However, the information
of the later work in developing the system is not available from the

literature and has not been reported eloquently.

Hennessy and Hinkle (1992) presente@BR system, Clavier, for solving

the autoclave management and loading problem. The system worked
successfully in easily retrieving the agtave loads that the experts would
have chosen. The advantages of knalgke acquisition and representation
and the difficulties of validating the CBR system for commercialisation in

industrial scheduling were discussed.

Cunningham and Smyth (1997) illustrated two successful CBR approaches
in scheduling using skeletons and fions of retrieved schedules. The
approaches showed efficient performances in providing good quality
solutions in less-complex scheduling problems. However the successful
reusing of the retrieved cases wdulepend on proper adaptation methods

and the retrieval time may increase linearly with the size of the case base.

Scott et al. (1998) proposed a CBR approach integrating Constraint Logic
Programming in a nurse rostering problem. Cases of generalised high-level
patterns of workforce allocation eve used. However, the cases were

relatively simple and more sophistieat details such as particular nurse
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preferences could be added into the cases to make the problem instances

more realistic.

In this thesis we propose a CBR approach to solve educational course
timetabling problem, which are modelled as attribute graphs. The cases in
the case base with similar constraints are retrieved for reuse and a graph
heuristic method is used for adaptation. When dealing with larger
real-world problems, a multiple-retrieval process partitions the attribute
graphs of the target case and a set of retrieved cases is reused by a

combination technique.
Open Issues in Case-Based Scheduling
» Representation Issues in Case-Based Scheduling

As one of the most important issues in CBR, representation needs to
describe the complex schedulingoplems concerning indexing and
retrieval. From the work reviewed above on case-based scheduling,
we observed that representats in all the existing systems or

approaches fall into three types:

1) Well-known repair strategies/tiécs or optimisation heuristics in
scheduling problems are either modelled as cases or associated
with cases of actual problems. These strategies would be retrieved
to guide the incremental repairs of a seed schedule. (See
references cited in sub-section “Case-Based Reactive Scheduling”
except Dorn, 1995). Application areas of all the reported work of

this type are dynamic/reactive scheduling problems.
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2) Whole scheduling problems are represented as cases including all
the necessary details. Partaftponents of a set of retrieved
schedules are combined to cpose the new schedule. (See
Hennessy and Hinkle, 1992; Cunningham and Smyth, 1997;
Burke et al. 2001b in the sub-section “Other Studies in
Case-Based Scheduling”). Thalaptation in these approaches
usually needs to be carefully conducted to retain the highly
optimised structures in componentstbe retrieved schedules. As
the whole problems with all details are stored in the case base, this
approach may suffer from the efficiency problem of retrieval on

the case base that might be large.

3) Problems are abstracted in the form of high-level knowledge
structures or generalised patterns. (See Koton, 1989; Dorn, 1995;
Scott and Simpson, 1998). Appragte abstract features or
generalised schedule patterns, and the level of related and
representative details of the cases need to be carefully dealt with
to ensure an efficient retrieval that classifies the target cases to

reusable cases.

Some of the research on case-based scheduling pointed out that it
was impractical to represent thvehole problem as a case to solve
target problems (Miyashita and Sycara 1995; Dorn, 1995;
Cunningham and Smyth 1997, Burke et al. 2001b). Real-world
scheduling problems are usuallyery large and complex, so in

practice it is rare that a whole scheduling problem can be seen as
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similar to another previous scheduling problem. Thus all the current
research reported here either reuses repair strategies on a seed
schedule, abstracted structurespatterns of previous schedules. In

the situation where cases represent the whole problem, the
sub-schedules of multiple cases corresponding to small matching
parts of target case were reused to compose the new schedule, aiming
at reusing the knowledge embedded in parts of the retrieved

schedules to build a high quality schedule.
» General Methodology of Case-Based Scheduling

Due to the specific requirements and complicated characteristics in
scheduling problems, so far no general mechanism for CBR in
scheduling can be identified as being applicable in solving a wide
range of scheduling problems. Some work has proposed general
frameworks of CBR in scheduling (MacCarthy and Jou,

1995&1996). However, a deep study on standardisation of CBR in
scheduling needs further investigation to develop an effective and
flexible methodology that can be adopted to scheduling problems

with specific requirements.
« Case Base Maintenance im€§e-Based Scheduling

Due to their complexity, scheduling problems have been seen as ill
structured and poor-understood.dase-based scheduling, good case
base management is needed to obtain a high quality performance on

efficient and effective retrieval. The issues include:
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1) Selecting appropriate indices pooperly organise the source cases

so that retrieval can find reusable cases efficiently;

2) Selecting representative and necessary source cases so that the

memory required does not le&althe efficiency problems;

3) Retaining carefully selected new learned cases for a case base

without redundancy.

Although many researchers claichéhat knowledge acquisition is

easier in CBR, some problems do exist because of the complicated
and sometimes interrelated constraints in scheduling problems. In
this poorly understood area, it is difficult to detect the features that
affect the retrieval and reuse of similar source cases. Current
methodology on research in case-based scheduling is still far from

being a mature research mechanism.

2.2.2.2 Case-Based Planning

Scheduling problems can be classified as a specific type of planning
problem, which was one of the most important areas in CBR and has been
heavily studied (Veloso, Munoz-Avila and Bergmann, 1996). It has been
defined to be “constructma course of actions to achieve a specified set of
goals when starting from an initissituation” (Bergmann et al, 1998).
Scheduling “deals with the allocation of scarce resources to tasks over

time. It is a decision-making process with the goal of optimising one or
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more objectives” (Pinedo, 1995). In sonesearch it is also claimed that in
practice there is no distinct differences between them (Smith, Frank and

Jonsson, 2000).

CBR is a suitable methodology for both planning and scheduling
(MacCarthy and Ye, 1997). Case-Bddelanning “is the idea of planning

as remembering” (Hammond, 1990) thahalates the real-world planning
problem solving of experts who modify previous plans according to the
new requirements. One of the difficulties in Case-Based Planning is that
there are too many features in the problem and thus representations become
one of the most important issues (Arnold and Janke, 1994; Bergmann and
Wilke, 1995; Marefat, 1997; Tah, Carr and Howes, 1999). Most of the
work employs abstraction techniques (Bergmann and Wilke, 1995&1996)
where different levels of information of source cases are represented and
usually organised hierehically in the case bases (Arnold and Janke, 1994;
Prasad, 1995; Macedo et al., 1996). In other research, multiple cases are
retrieved and sub-plans are combined for the target case (Tah, Carr and
Howes, 1999). An in-deep study is requiren the abstraction that ignores
unnecessary details and also keeps ehaamcrete information so that the

system can work effectively.

2.3 Knowledge Discovery

CBR works on previous knowledge/experience that are collected in the

system. As mentioned above, represéionhs that models the knowledge
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into cases is a key issue especially in complicated problems. In knowledge
engineering, techniques in knowlexldiscovery and machine learning have
been employed with success in a number of ill-structured domains (which
many timetabling problems belong to). Knowledge discovery is the process
of studying and investigating a collection of implicitly potential useful
dataset to discover information such as rules, regularities, or structures in
the problem domain. It was defined asrh-trivial process of identifying
valid, novel, potentially useful, andlitimately understandde patterns in
data” (Fayyad, Piatetsky-Shapirand Smyth, 1996). A key step in the
knowledge discovery process is data mining that may employ a wide range
of techniques in Al, machine learningnowledge acquisition and statistics,
etc. Knowledge discovery is udbacarried out on databases and the
application areas include medicine, finance, law and engineering, etc
(Piatetsky-Shapiro, 1991). This #®is also investigates some issues in
knowledge discovery to model spéci heuristics within timetabling

problems (see Burke, MacQhy, Petrovic and Qu, 2002).

2.4 Chapter Summary

CBR has emerged as a mature research methodology and is extremely
successful in a wide range of application domains over the last decade or
so. Some CBR research in complex problem domains (e.g. planning,
design) has shown promising results. However, its application in

scheduling has just attracted the attention of research community and no
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general methodology has formed. In the case of timetabling, this thesis

seeks to address this issue.

Course timetabling may be considered as a proper domain where CBR can
be employed to make contributions in problem solving. Existing research
in a variety of timetabling problems employing different techniques
provides a foundation from blotheoretical and application perspectives. It
reveals the potential benefits of utilising CBR in course timetabling

problems.

39



CBR for Course Timetabling Timetabling Problems

Chapter 3 Timetabling Problems

3.1 Timetabling Problems

Timetabling problems arise in many contexts including transportation
timetabling (Wren and Rousseau,995), sports events timetabling
(Schreuder, 1997), employee timdia (Meisels and Lusternik, 1997)
and university timetabling (Bddadym, 1995; Carter and Laporte,
1995&1997). These problems have been the subject of active research over
the last 40 years (Wren, 1995; Burke et al, 1997; Schaef, 1999). However,
this important research field continues to attract the attention of the
scientific community as problems become more complex and as new
breakthroughs provide better ways of solving these problems (Burke and
Erben, 2000; Smith, 2001; Burke and Petrovic, 2002; Burke and
Causmaecker, 2002). Economics andtese utilisation are also important

drivers for improved timetable generation.
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3.1.1 What isthe Timetabling Problem?

Timetabling problems are a specifigpe of scheduling problems that may
be highly constrained and difficult to solve. It was defined by Wren (1995)

as:

“the allocation, subject to constraints, of given resources to
objects being placed in space-time, in such a way as to

satisfy as nearly as possible a set of desirable objectives.”

A general timetabling problem consists of assigning a humber of events
(exams, courses, meetings, etc) into a limited number of timeslots (periods
of time) and venues, while minimising the violations of a set of constraints.
Different timetabling problems have different constraints. Constraints
associated with each individual problem are usually classified into two
particular types:hard constraintsand soft constraints Hard constraints
should under no circumstances be violated. A common hard constraint is
‘no person is assigned to two or neoicourses simultaneously’. Other
constraints known asoft constraintsare desirable but it is not essential to
satisfy them. Indeed, it would usually be impossible to satisfy all of them in
a given problem. Examples are when two events with common persons
should or should not be consecutive, or when one event should be before

another.

41



CBR for Course Timetabling Timetabling Problems

3.1.2 CourseTimetabling Problems

This thesis addresses educational course timetabling problems. Course

timetabling problem was defined by Carter and Laporte (1997) as:

“a multi-dimensional assignment problem in which students,
teachers (or faculty menebs) are assigned to courses,
course section or classes; events (individual meetings
between students and teackleare assigned to classrooms

and times”

In a course timetabling problem, a number of courses are assigned into
classrooms and a limited number of timeslots within a week. Students and
teachers are assigned to coursesc@irse, course timetabling also comes
along with a set of constraints that can also been classified as hard and soft
constraints. Individual institutions usually have a variety of specific
constraints and most of research in course timetabling investigated
particular real world problems in their own institutions. The course
timetabling is also referred as the stdecture/school timetabling problem.

In literature, research on course tiaeling are grouped as class-teacher
timetabling, student schedulingteacher assignment and classroom
assignment. This thesis deals with mainly the student scheduling

concerning room capacities.
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3.2 Al Techniquesfor Educational Timetabling Problems
3.21 Traditional Approachesin Educational Timetabling

Various methods have been investaghto solve educational timetabling
problems (Carter and Laporte, 1995&1997). In the early days of
educational timetabling research, ghatheoretic methods represented the
state of the art (Brelaz, 1979; Werra, 1985). Techniques such as graph
colouring were widely used to solvtie problems. For example, Burke,
Elliman and Weare (1994) developed aihstic based on graph colouring
approach that split the exams into groups and schedule them together. The
number of timeslots correspond the noen of colours needed. Sequential
assignment approach was also investigated in some recent work, where the
events were ordered by heuristics to be scheduled one by one and
backtracking was usually carried out to obtain a feasible solution (Carter
and Laporte, 1996). Other researtéchniques that were also widely
employed in the early days of timetabling research included integer linear
programming (ILP), where constraints were modelled into formulas in
which 0-1 variables represented thesignments (Tripathy, 1984; Carter,
1989). However this approach tended to be more impractical for real-world

large timetabling problems.

3.2.2 Meta-Heuristic Methodsin Educational Timetabling

More recently, meta-heuristic techniques have been very successful in a

wide range of timetabling problems. A series of international conferences
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on the Practice and Theory of Automated Timetabling (PATAT) provides a
forum for a wide variety of research work on timetabling and many
relevant publications can be found in the proceedings of PATAT (Burke
and Ross, 1995; Burke and Carter, 1997; Burke and Erben, 2001; Burke
and Causmaecker, 2002). It is impossible to give an exhaustive review on
all of the timetabling research. This thesis investigates course timetabling,
and this section will present the work in meta-heuristics mainly for

educational timetabling problems.

3.2.2.1 Tabu Search

In course timetabling, Tabu Sear¢hS) (Glover and Laguna, 1993) was
mainly investigated on real-world course and general problems in different
institutions with various specific requirements. The results reported were
very well with variant of TS with properly selected parameters such as the
tabu list, initial solutions and objége functions, etc (Hertz, 1991; Costa,

1994; Schaerf, 1996).

Nonobe and Ibaraki (1998) develapea Tabu-Based general problem
solver for a range of constraint sdéistion problems including a high
school timetabling problem. The rd&ishown that this approach was
competitive compare with other specially developed approaches for the
respective problem domains. Alvar&aldes, Crespo and Tamarit (2002)
developed a system with friendly usmterface based on a Tabu Search

with a set of heuristics. The package was tested and satisfactory results
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were obtained. Approaches that igtated TS with other techniques in
timetabling were also investigateBor example, White and Zhang (1997)
studied an approach that used thepmitof constraint logic technique as
the starting solutions for TS on general timetabling problems. The results

obtained were better thasing either method alone.

Research on examination timetabling problems was also carried out
(Cangalovic, et al., 1998; White and Xie, 2000; Gaspero and Schaerf,
2000), which studied different aspectsn@gh of tabu lists, representations

and initialisation methods of soletis) of utilising TS on timetabling.

3.2.2.2 Simulated Annealing

Simulated Annealing (SA) (Kirkpatk, Gellat and Vecci, 1983; Reeves,
1996) was also a widely studied rhetd on course/$wol timetabling
problems. Abramson (1991) studied SA that were implemented on a
multiprocessor and presented further research issues arise from this
approach. Some work concluded thae timplementation of SA is highly
dependent on various settings and paetars (e.g. solution space, cooling
schedule, neighbourhood generationstctunction) on both examination
(Bulinheimer, 1997; Thompson and Dowsland, 1998) and course/school
timetabling problems (Elmohame@oddington and Fox, 1997; Melicio,
Caldeira and Rosa, 1998; Abramson, Dang and Krisnamoorthy, 1999) thus

careful selection on parameters and settings on this algorithm are needed.
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3.2.2.3 Evolutionary Algorithms

Genetic Algorithms (GAs) () and Evolutionary Algorithms (EASs) () have
been widely studied by researchers in timetabling, concerning different
aspects of timetabling problems (Corne, Ross and Fang, 1994). In course
timetabling, Abramson and Abela (199R)vestigated a parallel GA that
greatly reduced the execution time to solve the problem. Rich (1995)
studied a GA with greedy algorithm that used domain knowledge for room
and timeslot scheduling. Deris, et al. (1999) proposed an approach that
embedded constraint-based technguéth GAs, where potential solutions

for a real course timetabling problem were generated by GAs and then
repaired and improved by using corsitit-based techniques. By using the
constraint-based reasoning, the search space for GAs can be significantly
reduced and thus the convergence was much faster to produce nearly
optimal solutions. Erben (2000) investigated a grouping GA in which the
representation was based on the gragpecharacter of the graph colouring
problem. The author tested the GA on real-world examination timetabling
problem and suggested that the fitness function should convey as much
information about the quality of the solution as possible. Approaches that
hybridise GAs with local search teclopuies during the evolution, which are
known as Memetic Algorithms (Radcliffe and Surrey, 1994), have been
investigated and the results obtained were promising on examination
timetabling (Burke, Newall and are, 1995) and course timetabling

(Rankin, 1995; Paechter, Rankin and Cumming, 1997).
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Initialisation is also one of the important issues in GAs and EAs. Corne and
Ross (1995) studied an approach using peckish initialisation and the results
were better than both the greedydamandom initialisation. Burke and
Newall (1998) investigated different hgstic initialisation strategies and
the results were very good. The authors suggested that good initial
solutions are generated using heuristics with the condition of having a

sufficient degree of diversity.

Of particular interests is that recently the encoding in GA/EA has attracted
some research on timetabling prebyis. Paechter, Cumming and Luchian
(1994) investigate an EA on generdimetabling where chromosomes
encode the suggestion lists for events to be scheduled to build the solutions.
Ross, Hart and Corne (1997) carried out an extensive study on a GA with a
direct encoding. Based on the obseiwas that the direct encoding tended

to lead the failure of solving parts of the problems, the authors suggested
GA to be used for searching good hetids rather than specific solutions

in specific problems. Terashimadvin, Ross and Valenzuela-Rendon
(1999) also investigated an EA with un-direct representation in exam
timetabling to evolve among the Constraint Satisfaction strategies,
heuristics and conditions of changirfiggm one strategy to another. The
name “hyper-heuristic” is ternde to name the heuristic that choose
heuristics in later research using this method (see the sub-section

“Hyper-heuristic methods”).
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3.2.2.4 Comparisons of Different Approaches

Comparisons concerning a range s$ues in heuristic and meta-heuristic
methods for timetabling have been also carried out. Ross and Corne (1995)
compared GA, SA and stochastic hillclimbing with certain representation
on a collection of real timetabling problems, concerning the solution
quality and number of distinct useful solutions. The conclusions were that
the stochastic algorithms perform generally well with respect of the
solution quality. However different conclusions may be obtained if
different representations and opera were employed. Dowsland (1997)
investigated SA and TS on various timetabling problems and suggested
that there is plenty of potential work to make it possible to develop general
algorithms based on SA and TS, which work generally well on families of
problems. Colorni, Dorigo and Maniezzo (1998) compared SA, TS, GA
and GA with local search (known as Memetic Algorithm) on a high school
timetabling problem. The authors claimed that TS obtained the best result
and GA with local search was capable of giving a set of good quality
solutions thus was much flexibleo tusers who may have a variety of

objectives.

Different algorithms within specific circumstances may perform differently
on particular timetabling problems. In general, GA/EA is able of giving a
number of useful distinct solutions thus in real-world problem solving may
be more flexible on providing the users solutions that satisfy different
aspects of requirements. There is myootential work on studying the real

mechanism behind the reason why particular algorithms outperform others
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for a particular family of timetabling problems. The discoveries and
knowledge/experiences on particular hstics/meta-heuristics in specific
circumstances on specific timetabling problem may lead to more effective
knowledge-based techniques on véof) a wide range of timetabling

problems, which is the subject of this thesis.

3.2.3 Constraint Logic Techniques

Timetabling problems is a type oEsignment problems with large amount

of complex constraints thus usualtan be easily modelled as Constraint
Satisfaction Problems (CSP) r@lsford, Potts and Smith, 1999).
Constraint Logic programming (CLP) are suitable methods and have also

been widely employed in course timetabling problems.

Most of research has been carried out to develop techniques that can be
easily adapted into different problems. Two of the declarative languages:
CHIP and ECIPS developed for modelling and solving CSP problems
were widely used for course timetabling problems (Kambi and Gilber,
1996; Stamatopoulos, Viglas and Karaboyas, 1998; Goltz, 2000;
Abdennadher and Marte, 2000). Other @eative languages developed for
different specific timetabling problems included WPROLOG (Kang and
White, 1992), COASTOOL (Yoshikawa, 1994), Oz (Henz and Wurtz,
1995) and EaCL (Tsang, Mills and Williams, 1999). Zervoudakis and
Stamatopoulos (2000) also dewpéd a constraint programming

object-oriented C++ library that can model the possible common
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constraints within every problemas can be easily extended to instantiate
different timetabling problems. Deris, Omatu and Ohta (2000) proposed an
object-oriented approach in which course timetabling problems were
formulated as constraint satisfaction model with forward checking and
constraint propagation proceduresielauthor claimed that the approach
would be potentially applicable in various environments by specifying

different parameters.

Other work concerned different aspects in CLP for timetabling problems.
Fahrion and Dollansky (1992) develapa Prolog rule system with simple
heuristic priority scheme for a faculty (teacher) assignment problem.
Boizumault, Delon and Peridy (1996) proposed an efficient CLP approach
with finite domains for a real-world examination timetabling problem and
presented potential future work. Bles, Beek and Meisles (1998) employed
an approach in which constraintsere iteratively added to the CSP
representation before backtraciirfor high school course timetabling.
Blanco and Khatib (1998) split a reabarse timetabling problem into two
phases, each was modelled as a C3# aolved using optimisation
techniques. Weekly leates were grouped into timeslots and thus the
domains of variables were greatly reduced. Also a variety of research on
CLP for timetabling problems (Cheng et al, 1995; Gueret, et al. 1995;
Lajos, 1995; David, 1997; Zervoudakis and Stamatopoulos, 2000) can be
found in proceedings of PATAT conferences (Burke and Ross, 1995;

Burke and Carter, 1997; Burke and Erben, 2000).
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In timetabling research usually constraint-based techniques are used to
model the problem into a CSP. The assignment of variables significantly
affect the efficiency thus different special-purposed search heuristics were
used to solve specific constraints. Most of CLP approaches produced
feasible rather than optimal solutions, which were then improved by
employing different techniques. F@xample, using CLP to produce the
starting points for TS not only producetber quality results but also saved

a lot amount of computation time (White and Zhang, 1997). Yoshikawa et
al. (1994) proposed a constraint relaxatjgroblem (the same as constraint
satisfaction problem except constraints are associated with penalties) solver
to produce good initial assignment,high was then improved using

hill-climbing for a real course timetabling problem.

3.2.4 Knowledge-Based Techniques

The overall objective of using knowledébased techniqgeor timetabling

is to model the human knowledge for timetabling. Due to the complexity of
constraints and implicit knowledgemiedded in problem solving of
timetabling, representations come to be one of the critical issues in using

knowledge-based techques for the problem.

A mixed approach was presented eoyihg knowledge-based techniques
and constraint networks on real-world employee timetabling (Meisels,
Gudes and Solotoresky, 1995). Theolplems were explicitly represented

on some constraints in the consiiabased processing and rules were

51



CBR for Course Timetabling Timetabling Problems

incorporated into the scheduling process. The preliminary results shown
that the explicit representation and the ordering heuristic are efficient for

solving employ timetabling problems.

Gunadhi, Anand and Yong (1996) deségha timetable scheduler that used

the knowledge modelled as rules, incorporated with heuristics, within
course timetabling process to schedule data that was stored in separate
bases. The results obtained were promising for real world timetabling
problems and the authors claimed tthhe scheduler was flexible and
general and thus was applicable to other university timetabling with the use

of an object-oriented methodology.

Kong and Kwok (1999) proposed a conceptual model within a
knowledge-based approach. The knadge was modelled into heuristics
that applied the rules to guide the scheduling process for course timetabling

problems.

Foulds and Johnson (2000) developeda@abase decision support system
for a real world course timetabling problem and emphasised that human
judgement was crucial in timetabling processing. The system was designed
to assist experienced timetabling officers in evolving a timetable from one
year to the next by necessary modifications rather than automatically

creating timetables from scratch.

All the existing knowledge-based techniques on timetabling use expert
system, which models the knowledge of timetabling as rules, to generate

course timetables. One possible problem with this is that usually the
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knowledge within the scheduling is i@t thus difficult to be modelled.
This may be resolved by either the el design of specific problems, or

by employing techniques that can use the knowledge and avoid large
amounts of work in modelling it. This thesis investigates an approach using

case-based reasoning, which could be @inde solutions for this problem.

3.25 Hyper-Heuristic Methods

As mentioned before, hyper-hestics are “heuristics that choose
heuristics” (Cowling, Kendalland Soubeiga, 2000&2001, Cowling,
Kendall and Han, 2002). The main diffeiee between hyper-heuristics and
the widely used meta-heuristics in timetabling is that hyper-heuristics is a
method of using heuristics to select iinoa variety of different heuristics
that may include meta-heuristics. So hyper-heuristics are potentially more

general-purpose methods.

Some research in scheduling has inigeged this approach although it may

not have used the term “hyper-heuristics”. Some approaches used Genetic
Algorithms (GAs) to select from a set of heuristics encoded in the search
space and quite good results were algdi. An approach was presented in
(Fang, Ross and Corne, 1994) on open shop scheduling problems using
GAs to search a space of abstractions of solutions to “evolve the heuristic
choice”. In a real-world scheduling problem for catching and transportation
of large amount of chickens, GAs aread to construct a schedule builder

that chooses the optimal combirats of heuristics (Hart, Ross and

53



CBR for Course Timetabling Timetabling Problems

Nelson, 1998). Another approach in (Terashima-Marin, Rossa and
Valenzuela-Rendon, 1999) used a GA tdest the heuristic to order the

exam in a sequential approach for exam timetabling problems. A hybrid
GA investigated on vehicle routing problems has also obtained promising

results (Shaw, 1998; Berger, Sassi, and Salois, 1999).

Some research on hyper-heuristics has also been carried out on solving a
variety of scheduling problems. Guided local search was used to select
from a set of heuristics and also diffateparameters in these heuristics in

the traveling salesman problemgoudouris and Tsang, 1999). Cowling,
Kendall and Soubeiga (2000&2001) used a hyper-heuristic approach to
select from a set of lower level heuristics according to the characteristics of

the current search space in a sales summit scheduling problem.

3.2.6 Decomposition in Timetabling

Real-world timetabling problems are usually very large and complex. To
address this problem, decomposition and partition techniques have been
studied with some success. The basic idea is to decompose the problem
into a set of sub-problems that are small enough to be solved by using
simple approaches. Then these (Hapg high quality) sub-solutions will

be combined for the original problems. Robert and Hertz (1995) presented
an algorithm decomposing the course timetabling problems into a series of
easier assignment type sub-problems. An approach of decomposing the

timetabling data to prodecshorter flexible length timetables was studied
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by Weare (1995). Burke and Newall (1999) employed a multi-stage
algorithm in an evolutionary approach to solve examination timetabling
problems that were decomposed usimgpip colouring heuristics, and the
sub-problems were solved by usingetimemetic approach presented in
(Burke, Newall and Weare, 1995). Cangalovic, et al. (1998) used an
approach that modelled a real exam timetabling problem into specially
structured weighted graph and decomposed it into maximal cliques. Special
purposed heuristic was used to geatera feasible good solution, which
was then improved using TS. Cart€2000) presented an algorithm in
course timetabling which decomposed the problem into relatively
independent clusters that can be solved more easily using relatively simple

approaches.

3.3 Chapter Summary

A large number of promising methodologies and algorithms have been
investigated for university timetabling problems. Both problem specific
and global techniques have beemdséd on a wide range of problems

concerning variety of aspects.

Traditional techniques such as graph theoretical and integer programming
can easily encode relatively simple timetabling problems and perform
generally well. However, they are usually incapable of dealing with
problems with large size and compleartstraints. Global techniques in Al

(e.g. GAs, TS, SA) have been reporteddbtain generally good results on
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various problems. They are capable of performing well on a wide range of
problems of different sizes but careful refinement concerning certain issues
is usually needed for them to be fitted into different environments.

Examples of these issues include initialisations and different parameters

within different algorithms.

Research has shown that hybridised methods often perform better than
individual approaches as they are béted from the advantages of both
techniques with careful design. For example, CLP can be easily applied on
timetabling problems and solve problems quickly. It might be good
initialisation techniques for GAs, TS or SA, whose starting points in the
search space sometimes affect the quality of the evolved solutions

significantly.

Timetabling as an example of a scheduling problem has become an
application area with rich knowleggand experience. Comparisons have
been carried out between differergchniques and experiences on the
problem solving have been accumulated. These provide the premises and
foundation for utilising knowledge-lsad techniques like CBR in this area.

All of the current knowledge-basegstems on timetabling used the rule
base to incorporate knowledge ofoptem solving. Due to the difficulties

in modelling the knowledge that is implicit with complex constraints, most

of these systems aim at assisting rather than reusing the deep knowledge
within the timetabling process. This thesis investigates the benefits that

CBR may offer on course timetabling problems.
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Chapter 4 Structured Casesin CBR for

Course Timetabling Problems

The work presented in this chapter was published in journal of
Knowledge-Based Systems (Burke, MacCarthy, Petrovic, and Qu, 2000) as
it was selected as one of the best six technical papers in the
ES’99conference. The aim of this work is to present the possibilities and
advantages of using attribute graptes structurally model the course
timetabling problems as cases in a CBR system. The attribute graphs are
capable of describing the relatioiisonstraints) between the events in a
timetabling problem more concisely and explicitly, thus deeper knowledge
such as the correspondence betweerctires of events and characteristics

of the solutions can be expressed in cases. The retrieval aims at adaptability
and reusability of the solutions of the retrieved cases, which are easy to be

reused for the target case that has similar constraints.
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4.1 Attribute Graphsfor Course Timetabling Problems

In attribute graphs that model theourse timetablig problems, nodes
indicate courses and edges show the relation between any pair of courses.
Nodes and edges have attributes thatesent the problem more precisely.
Each attribute corresponds to a label assigned to nodes and edges. Table
4-1 and Table 4-2 present the labalsd attributes of nodes and edges that

are used in our problems.

L abel Attribute Value(s) Notes

0 Ordinary course N/A Takes place once a week

1 Multiple course N (No. of times)]  Takes place N times a week

2 Pre-fixed course S (Slot No.) Assigned to timeslot S

3 Exclusive course S (Slot No.) Not assigned to timeslot|S

Table 4-1 Node attributes of course timetabling problem
L abel Attribute Values(s) Notes

4 Before/after 1 or O (direction One before/after another course
5 Consecutive N/A Be consecutive with each other
6 Non-consecutive N/A Not consecutive with each other
7 Conflict N/A Conflict with each other

Table 4-2 Edge attributes of course timetabling problem

A simple example is shown in Figure 4-1 to illustrate a course timetabling
problem represented by an attributegh. Nodes represecourses. Solid
edges indicate hard constraints (labelled 7) which means that the adjacent
courses cannot be helgimultaneously. Dotted lines indicate soft

constraints labelled 4, 5 or 6. Thebkels on the edges and inside the nodes
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correspond to the attributes shown in Table 4-1 and Table 4-2. For
example, Maths, Physics and Chemistry are labelled with a 1 (to indicate
that they are multiple courses) and with values 2, 3 and 2 that denote that
they should be held 2, 3 and 2 times a week respectively. Other courses are
labelled O (ordinary coges), which denote that they should be held just
once a week. SpanishA should not be consecutive to Physics (because the
edge between them is labelled by aa)d Chemistry should be consecutive

to SpanishB (labelled by a 5). The directed line between SpanishA and
SpanishB has the label 4 (with value 1) which denotes that SpanishA

should be held before SpanishB.

Figure 4-1 Attribute graph of a course timetabling problem

Using this approach, the course timetabling problems can be represented
structurally. It enables us to dedwei the relations between events in the
problem that is not possible by using feat-value pairs. Also the different

cases of the problems can have differetructures, unlike in traditional
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case representation using the list of feature-values pairs where all the cases

have the same form of feature slots.

4.2 Implementation of the CBR System
4.2.1 TheGraph Isomorphism Problem

Using attribute graphs to represent cases has many advantages. However,
the matching problem between the structured cases is equivalent to that of
the graph isomorphism or sub-graph isomorphism problem that is known to
be NP-Complete (Garey and Johnstf79). A graph, G, is isomorphic to
graph G' if there exists a one to one correspondence between nodes and
edges of the two graphs. A graph G is sub-graph isomorphic to graph G’ if
G is isomorphic to a sub-graph of G'. Some methods have been attempted
to solve this problem in CBR by detecting cliques of the graph (Borner,
1993). The system being proposed herdased on Messmer’s algorithm

(Messmer, 1995) where graphs are organised in a decision tree.

The attribute graph is represented by its adjacency matrix M j=winere

m;; € Le indicates the attribute of the edge between node i and node j and
m;; € L, indicates the attribute of node i.land L, are the sets of labels
defined in Table 4-2 and Table 4-1. There are n! different adjacency
matrices for an n-node attributeragpph when the nodes are in different
permutations. The idea of Messmerddgorithm is to pre-store all the
adjacency matrices of some known graphs with their permutation matrices

P = p; to the corresponding nodes in a decision tree. If graph G is
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isomorphic to graph G’, then ifijp= 1, node i in graph G corresponds to
node j in graph G'. If a target graph can be classified to a node in the
decision tree at level k, then the permtibn matrix(matrices) stored in this
node indicate the matching between the k nodes of the target graph and that
of previously stored graph(s). If the time spent on building up the decision
tree is ignored, this algorithm guarantees that all the graph isomorphism(s)
or sub-graph isomorphism(s) stored in the tree can be found in polynomial

time (quadratic to the numbef nodes of the target graph).

For example, in Figure 4-2, attwite graph G represents a 3-course
timetabling problem. Maths is labelled 1 with value 2 (multiple course,
held twice a week). Physics and Spanish are labelled 0 (ordinary course,
held once a week). Physics should be held before Maths. Spanish should
not be scheduled simultaneouslithv Physics as Maths. There are 6
adjacency matrices MO~M5 representing graph G, X denotes that there is
no edge between two nodes and the labels in the matrices are described in

Table 4-1 and Table 4-2.

abc ach b ac b ca cab cba

alof7l77 9717 DO ¥ blol4l7 |cll|7|x [c[ix7

b(7]0]4 c|7]1]1X al7]0|7 c|x|1|7 a|l710|7 b(4[0]|7

c|7ix{1| bl71410| cxI7[2] al7l7l0| bl4[7][0|] al7l7]l0

MO M1 M2 M3 M4 M5
Graph G

Figure 4-2 Matrices of attribute graph G of a course timetabling problem
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These matrices are used to build the decision tree (see Figure 4-3). If a
matrix M can be seen as consisting of an array of so-called row-column
elements &= (M, My, ... Mi, M1y, ..., M), then a 3X 3 matrix consists

of 3 elements: a= &1, & = &i1&&2 and @ = a31832833%333. The first
element of each of the matrices MO~M5 can be 1 or 0, and therefore there
are two branches from the root node with label 0 and 1 on the first level.
The second level under branch 1 can be 707 and 40x in M4 and M5, thus
two branches below branch 1 are built. Then the following levels of the
decision tree can be built by the same process, each branch om leads

to a successor node that is associated with a specific value foithithe
element of MO~M5. Each permutation matrix is stored in the
corresponding node in the decision. Then all the other known attribute

graphs can be added into the tree in the same way.

|—t\l|-l>|

[4]7

M4 M5 M3 M1 MO X M2

Figure 4-3 A decision tree storing matrices of attribute graph G

Let us suppose that we are presented with a target problem represented by

matrix M for attribute graph G' (see Figure 4-4). The matrix M is inserted
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into the tree and can be classified to node X according to the values of each
branch. The permutation stored to node X gives the isomorphism that tells
us that Maths(c), Physics(b) and Sisna) in attribute graph G correspond

to English(b), Chemistry(a) and Maths(c) in attribute graph G' respectively.

~|~|o|o

T o

x|o|~N|
<
Pla|N|T

Figure 4-4 Matrices of attribute graph G’ for a target course timetabling problem

4.2.2 Retrieving Structurally Similar Cases

Some course timetabling problemseagenerated randomly and their
attribute graphs are used to build upexi$ion tree in the proposed system.
The solutions to these problems are obtained by using a heuristic graph

colouring method described in (Burke, Newall and Weare, 1998).

Penalties are associated (see Appendix A) with pairs of labels described in
Table 4-1 and Table 4-2 and are usadhe retrieval process. A threshold

is also set to judge whether two labels are similar or not. When the system
tries to match each pair of events in the target problem with source cases,
the events can be seen as similar if the penalty between their labels is
below the threshold. They are identified as similar and returned to be

matched with each other. The penalties set so that the constraints of the
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target problem are never released. For example, soft constraints in source
cases cannot be mapped to hard constraints in target cases so the solutions
of the retrieved source cases will guaranteed to be feasible for the target

problem.

If an event in the target problem has the same label and the same value as
the source case, then they match with no penalty. Two events that are
labelled the same are further analysed to see if they have the same values.
Penalties are given for the differences between the values and are taken

into account in the similarity measure.

Every label is also given a weight using domain knowledge for the

similarity measure. The similarity measure is thus given by formula (1):

S=1-> p;xw, /P )

i,j=0

where symbols are defined as following:
n: the total number of the labels

pi;: the penalty between label i of node or edge in the target problem and

label j of node or edge of source cases
w;: the weight of label i in the target problem

P: the sum of the penalty for every pair of labels times the weight of

every label.
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Figure 4-5 presents an example of how the similarities are calculated
between two pairs of cases, New Case and Case0O, and New Case and
Casel. By employing the similarity measure shown in formula (1) with
penalties and weights presented in Appendix A, similarities are calculated
as 0.86 and 0.78 for New Case betwdgase0 and Casel, indicating New

Case is more similar with Case0O than with Casel.

New Case

. e
labels | labels | labels | w; " "
Pij Pij” Wi Pij Pij” Wi
7 7 7 Q9| O 0 0 0
6 6 4 0.6 0.7 0.42 0.7 0.42
7 7 5 0.6] 0.8 0.48 0.§ 0.48
4 5 4 04| O 0 0.7 0.28
0 1 0 05[] O 0 0.4 0.2
3 3 1 0.6[ 0.5 0.3 0.5 0.3
7 7 6 0.4] 0.7 0.28 0.9 0.28
1 2 1 0.6] O 0 0.7 0.42
P=10.6| > =1.48 2. =2.38
S=1-Yps*w;/P | S=0.86 S=0.78

Figure 4-5 An example of similarity measure between cases

Using the penalties assigned to each péiabels in the ourse timetabling
problems, the retrieval is targeted at matching between every pair of

events, not just a single judgement between the whole cases. The system
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can retrieve the case(s) suitable for adaptation for the target problem from

the case base.

When a target problem is entered in the system, it is classified to a node in
the decision tree and the system retrieves all the cases stored in and below
that node as candidates. As the tree st@ases hierarchically, all the cases
that have more events and/or more relations are stored below those having
less events and/or relations. It iobserved that solutions of more
constrained cases can be adapted eé&silless constrained problems. Thus

all the cases in and below the node are retrieved.

Using the penalties for every paif the labels of nodes and edges, the
system calculates the similarity between the target problem and the
candidate cases in and below the node. The most similar case(s) are

selected for adaptation.

4.2.3 Reuseand Adaptation of the Solutions

After the system finds the most similar case(s), the solutions or part of the
solutions of the retrieved case(s) can be reused. The system substitutes the
events in the solution(s) of the retrieved case(s) with the matching events in
the target problem according to the isomorphism(s) found. After the
substitution, a partial solution for the target problem can be obtained
although there may be some violations of constraints. If there is no
violation of hard constraint in the retrieved solutions, there is also no

violation of hard constraint in the solutions after substitution.
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The graph heuristic method which tries to minimise the violations of
constraints is used in the adaptation process. Events that violate the
constraints are collected from the pal solution, and all the unscheduled
events are ordered first by their degrees (number of conflicts of an event
with other events) decreasingly and then are assigned one by one to the
first available timeslot. If some ewés cannot be assigned to a timeslot
without violation of constraints, thewill be kept until all the other events
have been scheduled. Then they are scheduled to the timeslots that lead to

the fewest number of violations of constraints.

4.3 A Simplelllustrative Example

Let us suppose that the problem shown in Figure 4-1 is the target problem.
All the cases and their isomorphisate retrieved from the node that the
target problem is classified to in the case base. Not only the case(s) that are
graph isomorphic to the target problem can be adapted, but also the case(s)
which the target problem is sub-graph isomorphic can be adapted, although
they may not be “good” solutions for the target problem. Two cases whose
similarities pass a given threshold (a score set) are considered to be the
most similar to the target problem and are retrieved from the case base. The
structures of these two cases are shown in Figure 4-6. It is possible to find
more than one isomorphism between two graphs. Two isomorphism were

found for each of the retried cases in this example.
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Figure 4-6 Two retrieved cases from case base

After substituting the events of the retrieved cases shown in Figure 4-4 by
matching events indicated by the isomorphism, four solutions can be

obtained for the target problem (see Table 4-3).

Timeslotl Timeslot2 | Timeslot3 | Timedot4 | Timedot5

Solutionl Physics, English, SpanishA SpanishB,| Chemistry,
Maths, Geography Physics, Maths
Chemistry Maths

Solution2 Maths, English, SpanishA SpanishB,| SpanishB,
Physics, Geography Maths, Physics
Chemistry Physics

Solution3 Physics, English, SpanishA SpanishB,| Chemistry,
Maths, Geography Physics, Maths
Chemistry Maths

Solution4 Maths, English, SpanishA SpanishB,| Chemistry,
Physics, Geography Maths, Physics
Chemistry Physics

Table 4-3 Solutions after substitution by using isomorphism

It can be seen that there are 3 violations of soft constraints in solution 1:

SpanishA is consecutive to Physics, Physics is held only 2 times and Maths
is scheduled one more time. Using the graph heuristic method takes 2
adaptation steps: It deletes Maths from timeslotl and adds another Physics

to timeslot 5. It can also be seen that there are 1, 3 and 1 violation(s) of soft
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constraints in solution 2, 3 and 4 respectively. Using the graph heuristic
method takes 1 and 2 adaptation step(s) respectively for solution 2 and 3.
There is no adaptation for solution 4. After adaptation, there is only one

violation of a soft constraint in each solution.

The simple example has demonstdhtthat only a few adaptations are
needed to get solutions for the target problem on the basis of the solutions
of the retrieved similar cases. @ascan explore deeper knowledge in
course timetabling problems by the structural representation. Retrieval that
targets the adaptability of every pair of events between the target problem
and the retrieved case(s) finds the most adaptable cases for the target
problem, thus a corresponding relatioetWeen the events and adaptation
requirements is built up. Employindhé adaptation requirements in the
definition of the similarity between every event pair gives a more elaborate
description for the similarity measeiwrThus the knowledge and experiences
previously stored in the retrieved cases’ solutions can be exploited for
re-use for target similar problems. It is noted that the CBR can re-use the
sub-solutions of previously solvedgiiems within the case-base, a manner

similar to that of experts in timetabling.

4.4 Chapter Summary

In this chapter, a CBR approach isoposed in which attribute graphs are
used to represent cases for course tahkng problems. To our knowledge,

the CBR approach proposed in this chapter is new in solving the
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timetabling problemsRetrieval targets every pair of nodes and edges
between the cases so that the reted case(s) are the most adaptable for
the target problem The retrieved cases’ solutions store optimised or
sub-optimised schedules for the previously solved problems. These
schedules can be exploited and re-used for the new similar cases, after only
limited adaptations for solutions that are then applicable for the target
problem. The graph data structugtves a detailed description of the
timetabling problem. The relations between any events can be described
clearly, and therefore the application afis method to timetabling
problems is likely to find the similar cases that are adaptable for the target
problem In the next chapter, this method is improved and systematically

analysed to solve a wider range of course timetabling problems.
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Chapter 5 Improved CBR Attribute

Graph Approach

In the CBR system presented in the last chapter, it is assumed that some
pre-compiled cases exist so that they& problems can find isomorphic or
sub-graph isomorphic source cases. The overriding motivation is that
previous timetables with similar constnés will provide a sensible starting
point for solving a target problem. divever, attribute graphs of source
cases that have common or partially similar (sub-)structures could also be
reusable for the target case. The work, which is published in the Fourth
International Conference on CaBased Reasoning (ICCBR’01) and
presented in this chapter (Burk&lacCarthy, Petrovic, and Qu, 2001a)
improves the previous CBR system to deal with a wider range of problems

than those dealt with in the last chapter.
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5.1 Improved Retrieval of Structurally Similar Cases
511 Partially Similar Caseswith Differences

In the improved approach, not only the source cases that are graph or
sub-graph isomorphic to the targeaise are retrieved, but also (partial)
matches with some differences are examined. Source cases do not need to
contain all the corresponding similar edges to be reused for the target cases.
For example in Figure 5-1, graph B is neither graph nor sub-graph
iIsomorphic to graph A shown in Figure 5-2. However, graph B can be
graph isomorphic to graph A if some vertices and edges are inserted. When
dealing with difficult real world timetabling problems our approach has to
be more flexible than just considering cases in the case base that are graph
iIsomorphic to the target case. Note that graph B is partially similar to graph
A. In graph A, not all of its vertices and edges can match those of graph C
in Figure 5-1 Physics ComputerAand ComputerBcannot find a matching
course in graph C). Also, not all of the vertices and edges in graph C can
find a match with those in graph A (the course labelled with 1:2 with
adjacent edges illustrated by light lines does not have a matching course
with matching edges in graph A). These two cases have common parts that

are partially similar with each other in either vertices or edges.
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Graph C

Figure 5-1 Cases partially similar with some differences with case in Figure 5-2

‘ Geography l

4l ComputerB
0

Figure 5-2 A course timetabling problem represented by an attribute graph

Graph A

In the approach developed here, target cases like graphs B and C can all be

seen as partially similar (but clearly have some significant differences) to

graph A. The timetable associated with graph A could be reusable for the

cases of graph B and C. This approach retrieves a large number of useful

cases thus allowing an investigation of a much wider range of timetabling

problems.
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5.1.2 Similarity Measure

The similarity measure takes into account the costs assigned to the
substitutions, deletions and insertions of vertices and edges labelled with
particular attributes from or into the target case. Deleting vertices and
edges with different attributes from the cases in the case base are assigned
lower costs than those of inserting vertices and edges into them. Also
inserting and deleting the edges of hard constraints is assigned a higher
cost than for the soft constraints. Costs are assigned so that the operations
of deletion, insertion and substitution on the attribute graphs simulate the
adaptation steps (explained in the later subsection) on the timetables
retrieved. Deleting, inserting and substituting the less important vertices
and edges have less of an effect on adapting the timetables. Thus such
cases have lower costs assigned because of the need for less adaptation.
The similarity measure between target case ad source case ;ds

presented in formula (2).

n m k
X Pt Xagt Xdg
S(CLC2) :1_|,]—0 a=0 d=0 2)
P+A+D

The notations in formula (2) represent the following:

n: number of matched vertices

m, k: numbers of the vertices or edges needed to be inserted into and

deleted from Grespectively
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pij: cost assigned for substituting vertex or edge i inwith vertex or

edge jof G

a,, Og: costs assigned for inserting and deleting a vertex or edge labelled

with attribute into and from €

P: the sum of the costs of substitution of every possible pair of vertices

or edges in gto those of @

A, D: the sum of the costs of inserting and deleting all of the vertices or

edges into and from £espectively

We can see that the closer the value S(@) is to 1, the more similar C

and Gare.

5.1.3 Branch and Bound in Retrieval

The retrieval needs to search through the decision tree to find all the cases
in the case base that are similar to the target case. The size of the decision
tree storing all the possible permutations of the previous cases may be
large, resulting in extensive searching. Thus the retrieval process may be
difficult and time consuming. Branch and bound (Williams, 1999) is
employed to reduce the size of the search tree in the retrieval phase. When
the permutation of the courses of the target case is input into the case base,
the retrieval starts from the root node and first searches down along the
branches as far as possible in the tree that stores the most similar
(sub-)structures. All of the possiétandidate branches under one node that

have a similar sub-structure and attributes with the target case are sorted by
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their summed costs. The branches storing the (sub-)structures whose costs
exceed the given threshold are considered not to be similar to the

(sub-)structures of the target cases and are all discarded. Thus the size of
the search tree for retrieval can be greatly reduced because the retrieval

does not need to search all the branches in the decision tree.

Backtracking is used when the retwr& cannot find a complete match. The
retrieval backtracks to the parent noaed the branch that has the lowest
cost among the remaining brancheil Wwe chosen. This process continues
until a complete match is found. All the complete and partial matches

identified during the retrieval will be collected for potential adaptation.

Usually in timetabling problems, the more conflicts a course has with the
other courses, the more difficult it t& schedule it. All the courses of the
target case are sorted by their difficulties (here the degrees of the vertices
in the attribute graph) in decreasing order and input into the decision tree
for retrieval. Thus the retrieval process can first try to find a match for the

more important courses.

5.1.4 Reuseand Adaptation of the Solutions

Adaptation of the timetables of all the retrieved cases is performed
according to the (partial) matches found. The adaptation steps for each

retrieved case are:

1. According to the match found, matched courses are substituted and

all the un-matched courses in tredrieved case are deleted.
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2. All the courses that violate ¢hconstraints in the newly formed
timetable are removed and inserted into an unscheduled list sorted by
their difficulties in decreasing order. The courses in the target case
that are not yet scheduled are also inserted into the sorted

unscheduled list.

3. All the courses in the unscheddl list are rescheduled by the graph

heuristic method dseribed below.

Different constructive methods can hesed to generate the timetables
based on the partial solutions. The RRpproach presented here employs a
simple graph heuristic method in the adaptation that is the same as that
employed in (Burke, Elliman and ®are, 1994) to construct a timetable

based on the retrieved casdsslbriefly described below.

1. From the first one that is the mosnportant, the courses in the
unscheduled list are scheduled to the first timeslot with no violations

(penalty-free);

2. The courses that cannot be assijto a penalty-free timeslot will be
scheduled to the timeslots that lead to the lowest penalty after all the

others have been scheduled;

3. In the case of a tie, randomly assign the course to the first timeslot

available.

The best timetable with the lowest penalty is selected as the solution of the

target case.
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5.1.5 Penalty Function

Every timetable generated for the target case is evaluated by the following

formula (3):

Penalty = HX 100 + SX 5 S

H is the number of violations of hardonstraints (the clashes between
courses). It is assigned a cost of 100 to ensure that an infeasible timetable
has a high cost. S is the total number of the violations of the soft
constraints. They are assigned lower costs (at 5) because it is desirable to
avoid them but not essential wihea penalty-free timetable cannot be

found.

To test our system and carry out the comparisons, the cost of violations of
soft constraints is set as 5. In the experiments we found this value is not
critical but should be limited within 20 when the cost of violations of hard
constraints is set as 100. In differeetat-world timetabling problems, soft

constraints could have different weights.

5.2 Experimentswith Different Case Bases

To test the computational performan of the system on different case
bases, different groups of random caseth different features have been

defined systematically and stored in the case base. The determination of a
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number of cases needed to build a case base is not an easy task. In order to
have different case bases, cases wittange of properties that real-world
problems may have are generated. Thus an investigation of the system on a
range of possible case bases can be carried out. Also different target cases
are randomly generated so that thengel performance of the system can

be tested on a set of different target cases that the system may meet.

| 15-simple caself 15-complex casel§ 20-simple casel

I
| 5,10, 15 or 20 cases |

5-course

new caseg

10-course new case ada[r)]tﬁtlon. bt) timetable fo
new cases selection gra?netﬁ(;’(;'s [~ | target casep
15-course

new casesg

Figure 5-3 Schematic diagram of the CBR system used for evaluation

A schematic diagram of the system is given in Figure 5-3. Case bases with
three different types of random @&@swere produced to solve a group of
small target cases. These are 15-course simple, 15-course complex and
20-course simple cases. The complex cases have vertices whose degrees
are at the lowest 1 and at the highest 4. The degrees of vertices in simple
cases are at the lowest 1 and at the highest 3. The complex cases have more
constraints than those simple cases and are usually more difficult to solve.

The attributes are randomly selected from Table 4-1 and Table 4-2. The
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timetables of these cases are generated by using the graph heuristic method
and stored in the case base. Small target cases with 5, 10 and 15 courses,
also randomly generated, are tested to give an easy evaluation on the CBR
approach developed. The system &veloped in C++ and the experiments
are run on Pentium 450Mhz PC with 128MB of RAM under the Windows

environment.

5.2.1 Algorithm Complexity Evaluation

5.2.1.1 Time and Memory Needed to Build the Decision Tree

In every case base 5, 10, 15 or 20 of the three types of cases are stored.
Figure 5-4 gives the time spent and space needed to build these 12 different
case bases. In the notation x/y in the table, x gives the time in seconds and

y is the number of nodes in the decision tree.

We can see that from the table that because the number of permutations
grows rapidly (but not exponentially) with the number of vertices in the
graph, adding 20-course cases into the case base takes much more time and
space than for both simple and complex 15-course cases. We can also
observe from the charts shown that the time and number of nodes grows
rapidly but not explosively with theumber of cases in the case base. This

is because many of the (partial) permutations of the cases may be stored
under the node that is built for previous cases if they have the same

(sub-)structures.
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Figure 5-4 Time of building case bases of 15-simple, 15-complex and 20-simple cases
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5.2.1.2 Time Spent in Retrieval

Figure 5-5 gives the retrieval time for different target cases of 5-course,
10-course and 15-course, respectively. We can see that the retrieval time
changes in the same way as that for building the same case bases. With the
number of source cases increase, the retrieval time grows rapidly but not
exponentially as many of the permtitas of source cases added into the
decision tree are stored under teame nodes previously built for the

similar sub-graphs.
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Figure 5-5 Retrieval time in different case bases for target cases (upper: 5-course; middle:

10-course; lower: 15-course target cases)
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5.2.2 Performance Evaluation
5.2.2.1 The Number of Target Cases That Find Matches

With too few matched vertices, thetrnieved cases cannot provide enough
information for adaptation. Only nbehes that have enough courses (here
more than half) in the retrieved cases are seen as helpful and retrieved for
adaptation. From all the retrieved cases, a set of the most similar cases is

selected as a set of candidates for the adaptation.

To test how many target cases can retrieve cases from the case base with
different complexity, two groups oéxperiments were conducted on the
case bases storing simple or complex 15-course cases. The results are given
in Tables 5 and 6 respectively. The values before and after /' give the
percentages of target cases that could retrieve partial and complete matches
from the case base respectively. Theues in parentheses give the overall

percentage, as either partial or complete matches found.

No. of 15-simple 5-course 10-course 15-course Average
casesin casebase | target case target cases | target case | percentages
5 100/100 (100)| 100/0 (100) 30/0 (30) 76.67
10 100/100 (100)| 100/0 (100) 70/0 (70) 90
15 100/100 (100)[ 100/0 (100) 70/0 (70) 90
20 100/100 (100)| 100/45 (100) 70/0 (70) 90

Table 5-1 Percentages of target cases that find case(s) from the 15-course simple case base
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No. of 15-complex 5-cour se 10-course 15-course Average

casesin casebase | target case | target cases | target case | percentages
5 100/100(100)| 100/0(100) 35/5(35) 78.3
10 100/100(100)| 100/0(100) 70/5(70) 90
15 100/100(100)| 100/70(100)| 85/75(85) 98.33
20 100/100(100)| 100/70(100)| 85/80(85) 98.33

Table 5-2 Percentages of target cases that find cases from the 15-course complex case base

It can be seen from Table 5-1 that all of the 5-course and 10-course target
cases can find (partial) match(es) from a case base with simple 15-course
cases. No complete match can be found for target cases with 10 or more
courses when the case base consists of less than 20 cases. Table 5-2 shows
that storing complex cases in the case base enables more target cases to
find matches. Higher percentages of larger target cases (10-course and
15-course target cases) retrieve ca@msnplete or partial matches) from

the case base.

We can also see that when 10, 15 or 20 simple cases are stored in the case
base, the same number of target cases (90 percent) can retrieve matches.
Also, the same number of target eas(98.3 percent) can find matched
cases in the case bases with 15 or 20 complex cases. This is because the
attribute graphs of a certain number of cases in the case base provide a
certain number of different (sub-)sttuces in the decision tree. Additional
cases do not provide new (sub-)structures in the decision tree. Attribute
graphs of complex cases can provide more (sub-)structures, thus more
target cases can retrieve cases from the case base with more than 10 or

15-course complex cases.
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The effect of storing larger cases with 20 courses in the case base is tested
in a further experiment and the results are given in Table 5-3. The overall
percentages of successful retrievals are higher than those with smaller

simple cases but lower than those with smaller complex cases.

No. of 20-simple 5-course 10-course 15-course Average

casesin case base target case target cases | target case | percentages
5 100/100(100)| 100/0(100) 85/0(85) 95
10 100/100(100)] 100/0(100) 85/0(85) 95
15 100/100(100)] 100/0(100) 85/0(85) 95
20 100/100(100)| 100/45(100) 85/0(85) 95

Table 5-3 The percentages of target cases that find cases from the 20-course case base

Figure 5-6 gives a chart of average percentages of target cases that can
retrieve case(s) from the case base with different numbers of three types of
cases. We can observe that storingrenthan 15 complex 15-course cases
provides a higher percentage of success in retrieval than storing both
simple 15-course and simple 20-course cases. By storing a sufficient
number of complex cases, sufficient s)structures can be stored in the
decision tree for reuse. It is actuallyetmumber of (sub-)structures, not the
number and size of the cases, th#fieeis the percentage of successful

retrievals. Thus it is not nessary to store more cases.
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Figure 5-6 Percentage of target cases that retrieve case(s) from different case bases

5.2.2.2 Adaptation of Retrieved Cases

20 different cases with 5, 10 or 15 courses are tested on the case bases with
5, 10 15 or 20 of the three types of cases respectively. So altogether 720
(=20x3x4x3) experiments were carried out. The graph heuristic method
described in Section 3 is used in theapthtion to adapt all the retrieved
cases and the timetable that has the lowest penalty is used as the solution
for the target cases. For comparison, the same graph heuristic method is
also used to generate a timetablenfrgcratch for each target case that can
retrieve cases from the case base. All the timetables generated by these
methods are evaluated by using the penalty function given in (2). The
number of schedule steps needed during adaptation is also taken into
account in the comparison. The average penalties and schedule steps for

these two methods are presented in Table 5-4, Table 5-5 and Table 5-6.
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The y in ‘x/y’ gives the number of schedule steps needed to obtain a
timetable that has a penalty x. Values in parentheses give the penalty and

schedule steps of the timetables generated by adapting complete matches

for the target cases.

No. of | 5-coursetarget case 10-coursetarget cases | 15-coursetarget case
cases CBR GH CBR GH CBR GH
5 6/7(6/8) 11/15 22.8/35.8 30.5/45.6  39.2/68 39.2/76
10 6/6(5/6) 11/15 16.5/30.2 30.5/45/6  33.2/39 36.1/%9
15 6/6(5/6) 11/15 16.5/30.3 30.5/45|6  33/598 36.1/69
20 6/5(5/6) 11/15| 17/28(23/40) 30.5/45[6  30/54|3 34/66.1

Table 5-4 Penalties and schedule steps by graph heuristic (GH) and CBR approach with

different 15-course simple case bases

No. of | 5-coursetarget case | 10-coursetarget cases 15-cour se tar get case
cases CBR GH CBR GH CBR GH
5 7/7(6/5) 11/15 19.3/30.5 30.5/45.6 30/49 15/5(
10 6/6(6/5) 11/15 18.5/31.2 30.5/45\6 30/49 15/50
15 6/6(5/5) 11/15| 17/31(28/39) 30.5/45(6 30/60(39/65) 39.7/69
20 6/6(5/5) 11/15| 16/27(28/39) 30.5/45(6 27/61(39/68) 39.7/69

Table 5-5 Penalties and schedule steps by graph heuristic (GH) and CBR approach with

different 15-course complex case bases

No. of | 5-coursetarget case | 10-coursetarget cases | 15-coursetarget case
cases CBR GH CBR GH CBR GH
5 6/6.7(5/6) | 11/15 16.5/28.7 30.5/45|6  37.9/85 40/66|4
10 6/6(5/5.5) | 11/15 15.8/28.3| 30.5/45.6 36.8/55.1 39.4/67
15 6/6.5(5/5.3)| 11/15 16.4/2%. | 30.5/45.6] 61.7/79.] 53.4/81
20 6/6(5.3/5.4)| 11/194 18/29(10/4) 30.5/49.6 62.2/76.5 46/73.4

Table 5-6 Penalties and schedule steps by graph heuristic (GH) and CBR approach with

different 20-course case bases
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From the results shown in Table 5-4, Table 5-5 and Table 5-6 we can see
that in all of the experiments solvingrcourse and 10-course target cases,
the timetables constructed by the graph heuristic method based on the
partial solutions from the proposed CBR approach need much fewer
scheduling steps and have less penalties than those constructed from
scratch using the graph heurist{(GH) approach. The knowledge and
experiences stored in the previoushivea problems that are structurally
similar to the target problems are re-used and not too much effort needs to

be taken to get high quality results.

In solving the larger 15-course target cases by the case base with 5 or 10
15-course complex cases, the CBR approach finds timetables with higher
penalties than those from the graph heuristic approach and takes almost the
same number of schedule steps in adaptation. This is because only storing a
small number of (less than 10) complex cases cannot provide enough good
cases (sub-structures) and the complexity of the retrieved cases makes the
adaptation difficult. Storing moreomplex cases provides much better
results. Also, larger retrieved cases may cause more adaptation because
more courses in the timetables of these cases may need more adaptation.
This is why in Table 5-6 some of the retrieved larger cases provide high

penalty timetables for the target cases.

It can also be seen that not all of the timetables adapted from the complete
matching cases are better than those from the partial matching cases
(although most of them are much better than those generated by the graph

heuristic approach). This might be because the larger good structures of the
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complete matches in the timetables are more likely to be destroyed in the

adaptations for the target cases.

5.3 Chapter Summary

The improved CBR approach presed in this chapter shows that the
retrieved cases that have similar (sub-)structures can provide high quality
partial solutions for the target cases. This is because by retrieving
structurally similar cases from the case base, solutions generated on similar
constraints may be easily reused ftvettarget case without significant
adaptations. Timetables constructed by using the graph heuristic method on
the basis of these partial solutions take less scheduling effort to get lower
penalty solutions than those constted by only using the same graph

heuristic method from scratch.

The CBR system also shows that storing a certain number of cases in the
case base can provide the same numbk (sub-)structures as those
obtained by storing more cases. Also storing a certain number of complex
cases works better than storing larger or more simple cases for providing
the sub-structures for re-use. It is the number of (sub-)structures, not the
number of cases in the case base thatrdmutes to the successful retrieval

of partial solutions for adaptatioft. is important to build a case base with

just a certain number of cases because the size of the decision tree grows
rapidly when the size and the number of the cases in the case base

increases. The work presented in the next chapter is to tackle this issue.
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Chapter 6 Multiple-Retrieval CBR for

Course Timetabling

In previous chapters we have shovirat a basic structured CBR approach
worked well in solving course timetabling problems but was incapable of
providing good solutions for large problems. This is mainly because the
case base storing the cases represented as attribute graphs grows
significantly when the size of the cases increases. Also a large timetabling
problem with complicated constraints and attributes will rarely match a
case of the same size in the case base. With the limited help from a single
retrieved case of small, the larger new case may not obtain good solutions

based on the small matched part.

Based on the CBR system presented in the last chapters, this chapter will
present an approach that partitions large timetabling problems into smaller
solvable sub-problems, whose dibms can be obtained by retrieving

multiple cases from the case base. The work (Burke, MacCarthy, Petrovic,

and Qu, 2001b) presented in this chapter has been resubmitted to the
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Journal of Operational Research Sxyi It draws upon the structured CBR

approach presented in previous chapters.

6.1 Multiple-Retrieval Approach on a Decision Tree

The patrtition is made by carrying out the retrieval process recursively. In
each retrieval, cases that are similar to part of the un-matched new case are
retrieved and the matched part of the new case is partitioned from it as a
sub-problem. The recursive retrievals partition the problem into smaller
solvable sub-problems based on the retrieval process employed in the
previous CBR system. A schematic diagram illustrating the process is

presented in Figure 6-1.
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Figure 6-1 Schematic Diagram of the Multiple-Retrieval CBR System

A new graph is produced to represent the remaining part of the new case in

each retrieval based on that of the last retrieval cycle. The matched part in

92



CBR for Course Timetabling  Multiple-Retrieval CBR for Timetabling

the attribute graph of the new case in the last cycle is combined into one
vertex, which we call auper vertexEdges that are originally adjacent to
the matched vertices are combined and adjacent to the super vertex. The

attributes of the newly combined edges are decided by the following:

» If one of the original edges is laled 7 (conflict), the new attribute

will be set asconflict

* In other cases, the new attribute will be set as one of the original

ones.

By never releasing the constrain@tt(ibutes) using above rules, we can
guarantee that the combined final wibns (combining process shown in

the next section) will always be feasible with hard constraints.

Old attribute grapli-1 New attribute graph New attribute grapf

Figure 6-2 New attribute graph generated after each retrieval

Figure 6-2 illustrates in some of the cases how the new attribute graphs are
generated. The vertices 1, 2 and 5 that match a case iflthgetrieval are

combined into a super vertex f8r theith retrieval. All the edges adjacent
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to these matched vertices are now adjacent jtarSeach retrieval, the
matched part of the problem is partitioned as a sub-problem that may be
solved by adapting the retrieved easfor it. The same process is carried
out for thei+1th retrieval. This process stops when no more matched cases

can be retrieved for a newly produced graph.

This multiple-retrieval approach is carried out on the same decision tree
and partitions the problem upon the case base rather than by employing
fixed rules. It generates sub-problsmutomatically depending on the cases

in the case base. Usually more than one possible match can be found for
each sub-problem partitioned. The most similar cases are used to generate a
number of candidate timetables. The one with the lowest penalty
(calculated by formula (3)) is selected as the best solution for the new

timetabling problem.

The new multiple-retrieval approach requires some changes on the
similarity measure that was used in the single retrieval process. In the new
similarity measure, the individualrailarity between each sub-problem and

the retrieved cases for it is calculated in the same way as when using single
retrieval, considering the costs of the substitutions, deletions and insertions
of the vertices and edges. In our approach we assign costs by their effect on
adaptation: substitution costs are lower than deletion and insertion costs;
deletion costs are lower than insertion costs. The costs are set based on
experience. The sum of all the individual similarities is divided by the sum
of the overall costs in all retrieva(® + A + D) and subtracted from 1. This

new similarity measure is shown in formula (4):
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Y n+Ya+dd)

S=1--1 (4)

r(P+A+D)

The notation used in formula (4) is described as follows:

r is the number of retrievals that need to be carried out on the new case

until no more sub-problems can be partitioned from the new case;

Py is the cost of substituting a vertex or edge of the new case with the
corresponding vertex or edge ithe retrieved case in every

retrieval;

d; and aare the costs of deleting and inserting a vertex or edge into or

from the new case;
n is the number of the matched vertices and edges in every retrieval,

m and k are the numbers of vertices and edges needed to be inserted into

or deleted from the new case, respectively;

P is the sum of the substitution cost of every possible pair of vertices or

edges;

D and A are the sums of costs of inserting and deleting all of the

vertices or edges into or from the new case, respectively.
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6.2 Adaptation on Multiple Cases Retrieved

Before generating the whole solution we need to identify the sub-solutions
based on each retrieved case. The sub-solution for each sub-problem is
firstly obtained by substituting every matched course in the retrieved
solution and deleting all the courses that are not matched. Then we will

have a set of sub-solutions for all the sub-problems.

6.2.1 Combining Sub-Solutions

Starting from the sub-solution of the last sub-problem, we combine all
these sub-solutions into a final solution for the original new case by
substituting the corresponding super vertices with their sub-solutions
repeatedly. The combined solution is guaranteed to be feasible as we never

release the constraints and &létsub-problems are feasible.

Figure 6-3 illustrates the combining process. Suppose we havi¢hted

jth sub-solutions obtained based on the retrieved cases fothtlaandjth
sub-problems partitioned in Figure 6-2. We present the sub-solutions as
lists of courses in timeslots, represented as boxes in Figure 6-3. These sub-
solutions are combined by substituting the corresponding super vertices S
by theith sub-solutior] 2 5|1 and; 8y thejth sub-solutior] 3 6 [7 ] etc.

Then S again by[ 2 % [l After substituting all the super vertices, a partial
solution combining all the sub-solutions is generated for the original new

case.
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Figure 6-3 Combining the solutions of the sub-problems

The combined partial solution is adapted by the following steps to generate
the final solution. The adaptation process uses a basic timetabling method
to allocate rooms and improve the CBR generated solution with soft

constraints.

1. All the courses in the combined solution are assigned to the

smallest feasible rooms available;

2. All the courses that cannot be ag®d to rooms or violate the soft
constraints are unscheduled amgarted into an unscheduled list.

The courses that are not yet scheduled are also collected;

3. The courses in the unscheduled list are then rescheduled by a graph
heuristic method with tournament selection considering the room

constraints, which we explain below.
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6.2.2 Graph Heuristic Method with Tournament Selection

The graph heuristic withournament selection (GHT) presented by Burke,
Newall and Weare (1998) is used to schedule the courses in the
unscheduled list one by one to the first timeslot and room with no
violations (penalty-free). Tournament selection is used to select the first
course every time from a subset of courses of the unscheduled list sorted
decreasingly by their importanceaymber of constraints with the other
courses). Those coursdsat cannot be assigned to a penalty-free timeslot
will be scheduled to the timeslots that lead to the lowest penalty after all
the others have been scheduled. When a tie is met, the course is randomly
assigned to an available timeslot. A course will be left as unscheduled if it
cannot be scheduled without vititkg hard constraint or no room is

available.

6.2.3 Penalty Function

The penalty function given in formula (3) is used to evaluate every
timetable generated in the experiments carried out in the next session. The
violations of unscheduled courses are assigned a high cost of 100.
Violations of soft constraints, indated by S, are assigned a relatively low

cost of 5.
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6.3 Experimentsand Results

In this section we carry out an extensive series of experiments on specially
constructed data sets. At this stage, we need to analyse the behaviour of the
multiple-retrieval approach on data that has been constructed in a
systematic way. We are specifically not working with real data at this stage
because we do not understand the structure of arbitrary large real world
data sets and it is very important for the analysis of the CBR approach that

we understand exactly the structure of the sets that we are working with.

A large number of experiments have been carried out to solve timetabling
problems of different size on case baswith different types and sizes of
cases. We use two types of cases indase bases: simple and complex (of
small or large size). In complex cases, every course has at most 4 and at
least 1 constraints. Courses in simple cases have at most 3 and at least 1
constraints. Small cases have 6 to 10 courses and larger cases have 10 to 15
courses. Attributes of the courses amadomly generated. The solutions of
these cases in the case bases are obtained by using GHT (Burke, Newall

and Weare, 1998).

Nine sets of new cases are considered each with 20 different new cases of
the same size. The first of these sets has 10 courses; the second has 15
courses and so on up to 50 coursBse GHT is used to solve these cases
from scratch. These solutions are then compared with those from the
multiple-retrieval CBR approach on different case bases. Also, we

investigated the employment of the multiple-retrieval CBR as the
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initialisation approach for Tabu Search in order to determine whether CBR
might provide solutions which are a gosthrting point for meta-heuristic

methods.

6.3.1 CaseBaseswith Simple Cases

The first group of experiments is carried out on a set of case bases
containing 5, 10 or 15 simple cases of small or large siz¥ 3= 6 case

bases in all). All the new cases are then input to these 6 case bases to be
solved by using multiple-retrieval approach with adaptation employing the
GHT. These solutions are compared with those generated from scratch by
the same GHT. Figure 6-4 presents two charts and a table displaying the
average penalties of the timetables of 20 different new cases in each of the
nine sets on the 6 case bases, and those generated by GHT alone. The best

average result for each new case type is highlighted in the table.
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n-course
new case | GHT | 5small | 10small | 15small | 5large | 10large | 15large
10 28.5 19 20 215 22 21 20.5
15 61.4 37 46.5 50.5 48.5 54.5 56.5
20 80.5 56.5 61.5 67 60 65.5 74
25 104 81 78.5 99 90.5 94.5 94
30 95.5 775 82.5 79 78 82 91
35 128.5 121 113 108.5 117.5 112.5 124
40 158.5 140 132.5 142.5 137.5 139.5 148
45 136.5 129 126.5 127 130 128.4 1195
50 200.5 200 193.9 199.5( 176 182.5 193
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Figure 6-4 Penalties of timetables by using graph heuristic (GH) and CBR with case bases

of simple cases (upper: small cases; lower: large cases)
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We can see that the multiple-retrieval CBR approach with GHT as the
adaptation method produces lower penalty timetables than those obtained
by using the GHT alone to generate the timetables from scratch. The
penalties of the timetables obtained by using the CBR approach with
different case bases are close to each other but, in general (7 out of 9), case
bases with larger cases provide timetables with slightly higher penalties,

although we have not tested this statistically.

6.3.2 CaseBaseswith Complex Cases

Another group of experiments havedn conducted on the nine sets of new
cases to investigate the use of cassds with complex cases. Figure 6-5
shows the average penalties of the timetables obtained from case bases
with 5, 10 or 15 large and small complex cases. Again, in general, case
bases with small cases provide better results than those with large cases (7
out of 9). In all of these cases, GHT on its own obtained solutions with a
higher penalty value than the CBR approach that uses GHT as the

adaptation method.
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n-cour se
new case | GHT | 5small | 10small | 15small | 5large | 10large | 15large
10 28.5 12.5 12.5 15 15 10 12
15 61.4 20 30 40 30 34.4 36.9
20 80.5 35 47.5 52.5 37.5 55 60
25 104 57.5 45 57.5 70 57.5 70
30 95.5 70 110 75 70 95 102.5
35 128.5] 975 112.5 97.5 110 100 125
40 158.5| 90 108.8 100 122.5 97.5 123.5
45 136.5| 117.5 140 130 110 120 143.5
50 200.5 125 150 112.5 130 140 167.5
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Figure 6-5 Penalties of timetables by using graph heuristic (GH) and CBR with case bases

of complex cases (upper: small cases; lower: large case)

103



CBR for Course Timetabling  Multiple-Retrieval CBR for Timetabling

6.3.3 Evaluation on Case Bases with Small Cases

From all the experiments carried out on different case bases, we can
observe that case bases with both large and small cases provide better
results than those obtained by the GHT without employing the CBR
approach. CBR with case bases of #aracases has better performance in
terms of lower penalty timetables for the new cases of different size than
CBR with large cases. Smaller sub-graphs in the retrieved multiple
sub-solutions seem to provide a betbasis for the adaptation to produce
timetables of higher quality. Timetables combined from larger
sub-solutions also have lower penalties than those obtained by the GHT
method alone. However, the sub-solutions provided by retrieving larger
cases are much more likely to be destroyed in the adaptation to fulfil the
new constraints of the new cases and thus reusing smaller sub-solutions
performs better than reusing larger sub-solutions on solving the same

problems.

The results of experiments on case bases of small simple and complex
cases are illustrated in Figure 6-6. We can see that CBR with case bases of
complex cases provides better results than those produced by case bases of
simple cases. Also our previous tests showed that complex cases in the case
base provide more scheduling struetsiand lead to a higher proportion of
successful retrievals than those from simple cases. So by building a case
base of small complex cases, the multiple-retrieval CBR approach will
perform the best in reusing previous airscheduling structures to provide

a good basis for generating high quality timetables.
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Figure 6-6 Penalties of timetables by using graph heuristic (GH) and CBR with case bases

of small cases (upper: complex cases; lower: simple cases)

6.3.4 Comparison on Retrieval Timein Different Case Bases

The retrieval time of the multiple-retrieval CBR approach varies on

different case bases for different new cases. The overall retrieval times for
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new problems on the case bases with simple and complex cases are
presented in Figure 6-7, showing that retrieval in case bases with small
cases takes longer than with large emsRetrieval in the case base with 5
small cases requires the longeishe because the case base will provide
small sub-solutions in every retrieval. Thus more retrievals for the case
base are needed for the new case. With the limited number of scheduling
structures that 5 simple cases can provide, a longer time is needed to find a
match from the case base. Large cases provide larger sub-solutions for the
new cases and thus less retrievals are needed, so retrievals in case bases of

large simple course cases need less time.

The retrieval time for case bases of complex cases shows a similar pattern
to that of simple cases. The longest retrieval time is needed for the case
base with 5 small complex cases. The case bases storing complex cases are
much larger than those of simple cases, so the retrieval time is longer than

that for the simple cases addressing the same new case.
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Figure 6-7 Retrieve time on case bases of simple cases (upper: simple cases; lower:

complex cases)
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6.3.5 Multiple-Retrieval CBR asthelnitialisation Method for Tabu

Search

The results of our experiments led to a natural question: would the
suggested CBR approach provide good starting point for local search
meta-heuristics such as Tabu Search. The motivation here is that the CBR
approach might be able to generate good solutions which Tabu Search
could “fine tune”. With this question in mind, we carried out another set of
experiments to investigate the possibilty of employing the
multiple-retrieval CBR with small cases as an initialisation method for
Tabu Search. We compare this with the results of Tabu Search with
initialisation from GHT alone. The table in Figure 6-8 presents the
penalties of timetables generated by Tabu Search with the
multiple-retrieval CBR and with GHT ahe as the initialisation methods.
We can observe that Tabu Search with multiple-retrieval CBR as
initialisation outperforms that of Tabu Search with GHT as initialisation.
The significant improvement on the penalties of the timetables generated
from the multiple-retrieval CBR over GHT as initialisation is drawn in the
charts in Figure 6-8. The multiple-retrieval CBR does indeed provide a
good starting point for the Tabu Searalgorithm for these problems. By
reusing good schedule structures in timetables of previous similar
problems, the multiple-retrieval CBR approach may also decrease the

possibility of becoming stuck in a local optimum.
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Figure 6-8 GHT and multiple-retrieval CBR with small cases as the initialisation method

for Tabu Search
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6.4 Chapter Summary

Real-world timetabling problems are usually very large and complex with a
number of complicated constraints. The multiple-retrieval CBR approach
provides promising results quickly on solving timetabling problems of
different sizes. Large timetabling problems are tackled by a partitioning
process that is carried out recursively on the same case base to
automatically decompose the problems into small solvable sub-problems.
The solutions of the partitioned sub-problem can be obtained by adapting
high quality timetables of the retrieved problems that have common similar
constraints. High quality schedulingrgctures in the sub-solutions found

by multiple retrievals are retained after the combination in the adaptation
phase and provide good scheduling blocks for the final solution of the new
problem. By employing this approach, cases in the case base that are much
smaller than the new problem to be solved can be reused repeatedly for
solving parts of the new problem, thus the case base does not have to
contain a large amount of large eas This avoids the memory problem

that plagues many structured CBR systems.

For every sub-problem partitioned, there are always some retrieved cases
(though with different similarities) forause. The differences between the
retrieved cases and parts of the new problem are recorded and provide the
adaptation information, leading to an efficient adaptation-guided retrieval.
Thus the retrieved cases are guaranteed to be adaptable. A similarity

measure takes into consideration how difficult it is to adapt these blocks in
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the retrieved cases according to thdfadtences recorded to fulfil the

constraints of the original problem.

111



CBR for Course TimetablindKnowledge Discovery in Course Timetabling

Chapter 7 Knowledge Discovery in
Hyper-Heuristicusing CBR on Course

Timetabling

The work presented in the previous ctexg investigated the contributions
that CBR can make to solve course timetabling problems by reusing
previous good quality timetables. In real-world problem solving, people
also reason by reusing the heuristar procedures that were successful in
solving previous similar problems. In timetabling (and also other
scheduling problems), sometimes a small change in the constraints may
lead to a quite different solution, thus research issues in representation and
similarity need to be carefully conductén CBR to detect the differences

in solutions that result from the differences in problems. Modelling and
reusing the knowledge of methods people use rather than the actual

timetables in solving similar problems would also be useful.

This chapter presents a new hyper4igic method using CBR for solving
course timetabling problems (BurkilacCarthy, Petrovic, and Qu, 2002).

One of the overriding motivations of hyper-heuristic methods is the attempt
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to develop techniques that can operate with greater generality than is
currently possible. The basic idea behind this is that we maintain a case
base of the information about the mostceessful heuristics for a range of
previous timetabling problems to predict the best heuristic for the new
problem in hand using the previousiowledge. Knowledge discovery
techniques are used to carry out the training on the CBR system to improve

the system performance on the prediction.

7.1 CBR asaHeuristic Selector

The overall goal of our approach is to investigate CBR as a selector to
choose (predict) the best (or a readagaood) heuristic for the problem in
hand according to the knowledge in solving previous similar problems,
thus to avoid a large amount of computation time and effort on the
comparison and choosing of differe heuristics. A large number of
approaches and techniques in Al and OR have been studied to solve a wide
range of timetabling problems sussfully over the years. Comparisons
have been carried out in some papers using different approaches in
solving a specific range of problems. Thus the development of heuristics
for timetabling is very well established and a reasonable amount of
knowledge does exist on which specific heuristic works well on what
specific range of timetabling problems. This provides a large number of
cases that can be collected, studied and stored in the case base, providing a

good starting point in solving new course timetabling problems.
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7.1.1 Knowledge Discovery on Heuristic Selection

In our CBR system the previous most similar cases provide information
that facilitates the prediction of the best heuristic for the target case. The
retrieval in CBR is a similarity-driven process that is carried out on cases
described in specific forms. Thus the key issues are the case representation
that should be in a proper form to deiber the relevant context within the
timetabling problem, and how it influences the similarity between cases

that drives the retrieval to provide an accurate prediction on heuristic

selection.
—Stage One - Caze Representation Training—————— [~ Stage Two- Case Baze Training
gzl @ OneSet  © TwoSet Load Case Base |
Features !F'eriods.-"Events-'Vi |2D |
Add the Feature I Remowe the Featurei
Leave One Out I 'I Test Syz. I
Mo: of Cases left ’30 Retain |
Accuracy |52 4 Fetrieve | Acocuracy ig1 % Eetieve |
Please wait while the system is retrieving ... Please wait whils the system is retrieving ..
MENNREENERENERENNENNRERNEENEN

Figure 7-1 Screenshot of the 2-stage knowledge discovery process for course timetabling

Knowledge discovery techniques are employed to extract the knowledge of
meaningful relationships within the case-based heuristic selector via

iterative training processes on cases of course timetabling problems. There
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are two iterative training stages used in the process. Figure 7-1 presents the
screenshot of this 2-stage proce3e first stage tries to discover the
representation of cases with a proper set of features and weights. The
second stage trains the case base soittikantains the proper collection of
source cases. Both of the processes are carried out iteratively. The overall
objective is to obtain the highest accuracy on retrievals for predictions of

heuristics for target cases.

7.1.2 Getting Started

Our approach starts from the system and data preparation. Cases in the
system are represented by a list of feature-value pairs where a set of
features is used to describe the relevant characteristics of the problems, and
a value is given for each of these features. In the first stage of the system
development, systematic analysis needs to be carried out. The current CBR
system examines the source cases and target cases that are produced
artificially with specific characteristics as thgroblem part These include
problems with different size, different timeslots, different rooms, etc. Some
heuristics will work well on some probins and less well on others. This
means that the system has many types of problems that are studied and
collected. Appendix B presents a description of the problem specifications.
For every source case and target ¢a&sbeuristics (described in Appendix

C) are used to solve the problem beforehand. By checking the penalties of
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the timetables produced, these hstics are stored with each case in an

ascending order as it®lution part

The retrieval is a similarity-driven process that searches through the case
base to find the most similar source cases. The similarity measure employs
a nearest-neighbor method that calculates a weighted sum of the
similarities between each pair of dividual features between cases.
Formula (6) presents the similarity measure between the source gard C

the target case@ the system:

1

W (fs = ;)2 +1 ©

i=0

S(Cs,Ct)=\/ j

the notation is described as follows:
j: the number of features in the case representation
w;: the weight of theth feature reflecting the relevance on the prediction

fs, fti: the values of theth feature in source case; @nd target case:C

respectively

The possible values of the features describing timetabling problems are all
integers (see Appendix D). So the higher the value of;SQJ, the more

similar the two cases are.

The performance of the system is tested on different sets of target cases.
The training on the system is targeted at a reasonably high accuracy on all

of the retrievals for the target cases quickly. Within each retrieval, the best
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two heuristics of the retrieved case are compared with the best heuristic of
the target case. If the best heuristic of the target case maps onto any of the
best two heuristics of the retrieved case, the retrieval is concluded as
successful. Actually, in the trainingrocesses, we found that sometimes
penalties of the timetables produced 8iferent heuristics are close or

equal to each other.

7.1.3 Training on the Case Representation

An initial case base is built up containing a set of different source cases
with artificially selected specific constraints and requirements from
Appendix B. An initial list of features is firstly randomly selected to
represent cases. Each of the features is initially assigned with the same
normalized weights. There are 11 features (details of the which are given in

Appendix D) in the initial case representation.

Our knowledge discovery on the casspresentation to train the features
and their weights in the system adopts the iterative methodology

(Cunningham and Bonzano, 1999) every iteration, we:
a) Analyse the retrieval failures.
b) Propose new features to address retrieval failures.

c) Select a discriminating set of features for the new case

representation.

d) Evaluate the competemof this representation.
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In the CBR system, the training for case representation is a recursive
failure-driven process carried out to refine the initial features and their
weights. A schematic diagramf ahe knowledge discovery on case

representation is given in Figure 7-2. The knowledge discovery process in

the system includes the following steps:

Adjusting feature weightd'he best two heuristics of the retrieved case
are compared with the best one of the target case to see if the
retrieval is successful (the bestumistic of the target case mapped
onto one of the best two of the retrieved case). Adjustments on
feature weights are iterative error-driven processes: the weights of
the features that result in the failures of the retrieval are penalized
(decreased) and those that can dbote successful retrievals are
rewarded (increased) to discrinaite the source cases that should be

retrieved from the others &b should not be retrieved.

Removing irrelevant featuresAfter certain rounds of iterative
adjustments, the weights of some of the features may be small
enough to be removed from the feature list. This means that these
features are either irrelevant oskeimportant, thus are not needed in
the case representation. Retainihg trrelevant features may confuse
the retrieval process, as the similarities between cases maybe too
close to each other, thus reduce the number of the successful
retrievals and decrease the system performance (John, G.H. Kohavi,

R. and Pfleger, K., 1994).
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Introducing new featuresaVhen the adjustment of feature weights does
not result in a successful retrieval for a target case, new relevant
features are added. New features are proposed by studying if they can
distinguish the correct source eaBom the others, if they can give
the prediction of the success, or if they can express the specific

characteristics in a particular case.

no
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Featured | Discovery | | Retrieval Satisfied?
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irrelevant
features

______________________________

Figure 7-2 Schematic Diagram of Knowledge Discovery on Featrues and Their Weights

Due to the complexity of the problem, at the beginning we do not know
what features are relevant to the similarity-driven retrieval and which
should be used to represent cases. Also we do not know their weights as we
do not know how important they are tagperly calculate the similarity

that influences the heuristic selection. By using the recursive knowledge

discovery process presented above,lewant and less important features
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are removed from the initial feature list. The feature vector that gives the
highest accuracy on retrievals for all of the target cases will be employed as
the basis for the second stage of the knowledge discovery. The trained case
representation (with 6 features left) after the first stage of training is given

in Appendix E.

7.1.4 Trainingon the Case Base

Case selection is a particularly important issue in building up a case base.
Sometimes, keeping irrelevant source cases can decrease the system
performance and increase the space and time requirements of the system.
The objective of the second stage training is to select a collection of

relevant cases without redundancy for the case base.

Firstly we build up two initial case bases with source cases of 9 different

sizes with 10, 15, ... to 50 courses in them:

“OneSet” — For each size, 5 source cases are produced, each has one of
the 5 heuristics in Appendix B as its best heuristic. We name this
case base “OneSet” as it contains one set of the 5 heuristics for cases
with different sizes (thus in OneSet there are 9 * 5 = 45 source

cases).

“TwoSet” — The case base consists of two sets of the 5 heuristics for
each source case with 9 different sizes (in t8tal5 * 2 = 90 source

cases).
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A database is built up containing these two case bases and the target case

set. Figure 7-3 presents a screenshot of the database.

The target cases are produced with the size of 10, 20, 30, ... to 100 courses,
for each size with 10 instances. Thus there are 10 * 10 = 100 target cases to
be tested on the two initial case bases. The best heuristics for each of them

is obtained beforehand tov&uate the retrieval.

Microsoft Access
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Figure 7-3 Screenshot of the Case BasekTarget Cases for Course Timetabling

Problems

The training process on these two initial case bases is carried out
recursively using the “Leave-One-Out” strategy: Each time when a source
case is removed from the case base we test to see if the number of
successful retrievals on the case bases for all of the target cases are

increased. If removing a source case decreases the number of successful
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retrievals, it will be restored back to the case base as it may contribute to
successful retrievals for certain types of cases. Otherwise if the number of
successful retrievals increases or slo®t change, it will be removed from

the case base as a redundant case, or because it may not be a representative
case for a specific type of cases. The process stops when the highest
number of retrievals is obtained on all the target cases. The process is

presented at the right part of the screenshot in Figure 7-1.

After the second stage of training, finally there are 14 and 15 source cases
left in the original two case bases, respectively. To test the system
performance, an experiment is carried out on both the initial and trained
case bases for another set of target cases that are, of course, not the same as
those of the training set. The accuracies of the system performance on these

case bases are shown in Table 7-1.

Case Base Retrieval Accuracy
OneSet (45 cases) 42%
TwoSet (90 cases) 60%

Trained OneSet (15 cases) 70%
Trained TwoSet (14 cases) 71%

Table 7-1 Accuracies of system performance on initial and trained case bases

We can see that the second training process removes quite a lot of source
cases that are redundant or that are harmful for the performance of the CBR
system. With a smaller number of relevant source cases retained in the case
bases, the system performance is improved to provide higher accuracies of

predictions on heuristics.
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7.2 Chapter Summary

This chapter presents the first step of our work on a hyper-heuristic method
using CBR for heuristic selection on course timetabling problems.
Knowledge discovery thniques employ relatively simple methods and
just a few training processes are carried out to obtain the good results. This
approach is applicable of using the CBR as the heuristic selector for
guiding the problem solving using previous experience. It may provide
potential benefits in course timetabling when a good solution is needed
within a limited time. Further work may to be carried out to fulfil the
possible advantages of employing kriedge discovery techniques in the

course timetabling domain.
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Chapter 8 Conclusionsand Future Work

This thesis investigates the CBR for solving course timetabling problems.
The overall objective is to study how CBR can help to solve this type of
scheduling problem by reusing previous knowledge collected and stored in
a case base. Mainly in two ways, by reusing good quality solutions, and by
reusing good heuristics, CBR will help solving the course timetabling
problem. We will conclude these in the following sections, which are

followed by future work on using CBR for timetabling problems.

8.1 Summary of the Structured CBR
8.1.1 Structured Representation in CBR

Structured representation has attracted more attention along with the wider
and more complicated applicatioreas being conducted in CBR research.

The approach investigated in this thesis showed some potential benefits
that can be obtained through the structured representation in course

timetabling by attribute graphs.
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The similarity measure considers the actions need to be taken in the
adaptation thus is adaptation targeted. Different costs are associated with
necessary actions in adaptation and recorded in similarity measure
according to their difficulties. Adaptations are associated with the matching
information on constraints of the retrieved cases and the new case, which is
provided by (sub-)graph isomorphism. Based on the retrieval and similarity
measure used in the structured CBjtdod scheduling structures within
previous problem solutions with similar constraints can be retrieved and
reused as the components of the starting point, contributing high quality

schedules in solving similar new course timetabling problems quickly.

The work presented in this thesis in course timetabling is trying to provide
a CBR mechanism that can be easily adopted to solve a range of course
timetabling problems. We also believe that, because of the general
modelling method used, the basic mechanism of our structured
multiple-retrieval CBR approach will be applicable in a range of problems
(where the problems can be modellesiatribute graphs) like educational

exam timetabling, and other type of constraint satisfaction problems.

8.1.2 Multiple-Retrieval Approach

In Case-based Scheduling, complex problems usually need to borrow
several previous schedules, each ofchihcontributes different parts of the
problem. The multiple-retrieval CBRpproach conducted here partitions

the large timetabling problems on a small case base pre-built. One of the

125



CBR for Course Timetabling Conclusions and Future Work

differences between many of the apacbes investigated and the approach
here is that the sub-problems are not partitioned by the rules but according
to the source cases in the case base. This provides more flexibility when
dealing with the complicated timetabling problems. Also once a
sub-problem is partitioned, it is guaranteed that a sub-solution will always

be obtained based on the copeading source cases retrieved.

8.2 Summary on CBR asaHeuristic Selector

This thesis also presents the first step of the work on using CBR for
heuristic selection on course timetabling problems. The results are good
and indicate more potential on employing CBR within the hyper-heuristic
approach in the course timetabling domain. Knowledge on what specific
heuristics are good for solving whidypes of problems can be discovered
and stored in the system. This on a higher level improves the generality of
the problem solving, providing geraly good heuristics quickly and

avoiding the comparisons tveeen different heuristics.

8.3 FutureWork

8.3.1 Improvingthe Current Structured CBR Approach
8.3.1.1 Similarity Measure

When consider the similarity between the target problem and a set of cases,

one of the problems in the current multiple-retrieval similarity measure is
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that sometimes it cannot precisetliefine the similarity due to some
unexpected possibilities on characteristics in multiple cases. For example,
during the multiple-retrieval process, the previously matched parts of the
target case are combined into one super vertex and the adjacent edges
between the matched and un-matched parts are combined with certain new
attributes accordingly. This may in some way affect the accuracy of the
similarity measure and thus the existing similarity measure needs to be

refined in a more precise way.

8.3.1.2 Issues on Real World Course Timetabling Problems

A large number of experiments have been carried out on the current system
concerning issues of time and space complexities. In real-world
educational timetablop it is well known that dferent institutions have

their own specific requirements for course timetabling. Much of the
research work carried out in the literature is aimed at problems in the
authors’ own institution. It is known that so far there is no exclusive set of
real-world benchmarkaurse timetabling problems available upon which

to test our multiple-retrieval CBR system and compare it with other
research results. We are currently putting together these benchmark course
timetabling problems. They will be available at

http://www.asap.cs.nott.ac.uk/themesdtid the authors welcome further

contribution from other timetabling researchers.

127



CBR for Course Timetabling Conclusions and Future Work

Much of the current work on course timetabling employs meta-heuristics
methods and constraint logic programming, in which the problems are
represented in quite different ways. Reformatting the real data will also

form part of our future work.

8.3.2 Hybridisation within the Structured CBR Approach

Recent research in timetabling has reported many promising results by
employing a variety of heuristic andeta-heuristic techniques, which are
much flexible in solving a wide range of complex problems and thus is also

adoptable to be hybridised to the CBR approach studied here.

This thesis presents some results in which the CBR approach works as the
initialisation method for tabu search. Initialisation as one of the important
factors on searching in meta-hetigsmethods has foned an important
research subject. Good initial solutions usually provide good starting points
and save a significant amount of computing time. From the heuristic
perspective, the multiple-retrieval CBR approach here fit well to provide
good initial solutions embed good scheduling blocks. The future work will
study more potential contributions of the hybridisation in solving more

general complex timetabling problems.

The retrieval phase that finds the ks)graph isomorphism can be seen as a
searching process, which the meta-heuristic methods are good at and may
potentially be beneficial. Some state-search approaches such as

Meta-heuristic methods (Williams, Wilson and Hancock, 1999) and
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Memetic Algorithms (Cross, Myer and Hancock, 2000) are recently
studied for graph matching in research. Investigation may be carried out on
using meta-heuristic method to search for matching parts between the
attribute graphs. The case base thenlwaorganised into a flat structure to
store a list of attribute graphs and the size of it will grow linearly thus
reducing the storage complexity. However, the required searching time of
the meta-heuristic for (sub-) graph isomorphism might be increased and it
is not guaranteed the meta-heuristic will find all of the good matched

(sub-)structures.

8.3.3 CBR astheHeuristic Selector

The approach that uses CBR as the heuristics selector presented in the
thesis employed relatively simpleedhniques in knowledge discovery.
There are many more complex and elaborate techniques that can be
investigated and integrated into the CBR system to improve its
performance. For example, for the case representation we currently use a
simple technique that is manuallyrcad out to choose the features and
adjust their weights. This can be seen as a feature selection task, which is
the problem of selecting a set of features to be used as the data format in
the system to achieve high accuracy of prediction. Feature selection is an
important issue in machine learning (Hall and Smith, 1996) for which a
variety of traditional techniquesxsst (e.g. wrappers Kohavi and John,

1997; relief Kononenko, 1994 models). Some recent work employing Al
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methods such as hill climbing (Caruana and Freitag, 1994) and
evolutionary algorithms (Freita002) to optimise the feature selection
also provide a wider range of possible research. For complex timetabling
problems, these more efficient algbms can be employed to carry out the
searching on features more effectively when dealing with larger data sets.
Our future work will study and compa these different techniques to
optimise the case representation and improve the system performance on
wider range of larger timetabling problems. New features are being studied
and introduced into the system. For example, some refined features such as
the number of rooms with a range of capacities, the number of courses with
more than a certain number of constraints, etc can be introduced to give a
more specific description of problems. Other issues of knowledge
discovery in the CBR system may incle how to deal with the incomplete
data in case bases and how to involve the domain knowledge in the system.
User interaction in knowledge diseery is also important on tasks like
judgment and decision-making, for which human usually do better than a

machine.

The current system uses 5 simple heuristic to implement the analysis and
testing on the case-based heuristic selection. Future work will study more
heuristics in the system. Also the testing cases are atrtificially produced to
give a systematic analysis on as many possible types of problem as
possible. After the initial study of using CBR as a heuristic selector we
have increased our understanding ot threa. Real-world benchmark

timetabling data (such as that presshin Carter and Laporte, 1996) will
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be collected and stored in the case base for solving real-world problems.
Adaptation may also need to be conducted to utilize domain knowledge on

some of the heuristics retrieved for the new problem.

The knowledge discovery techniqueg studied in choosing heuristics may
also be employed to discover knowledge in the search space that may guide
the search towards a more promising region in problem solving using a
variety of Al methods. In the Case-Based heuristic selection presented in
this thesis, knowledge of what specific heuristic work well on what types
of problems is modelled as cases. It is also possible that the knowledge of
heuristics worked well during th@roblem solving within a particular
periods of problem solving can be modelled and memorized in a case base
and suggests heuristics during the problem solving process by employing
heuristics which worked well on previous similar situations. Our future
work will also investigate more corfipated hyper-heuristic methods using

CBR for general timetabling problems.
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Appendices

Appendix A: Penalties Between Mapped Attributes

The values in Table A 1 the give thmenalties of mapping the nodes or the
edges of labels on rows in source attribute graph with those in the target

attribute graphs. Threshold is set as 1 to define if the nodes or edges are

similar (values below 1) or not similar (values above 1).

Labels | Weights | O 112134 ]|5]|6]|7
0 0.5 0|07]09|08]| / / / /
1 0.6 04| 0 | 12|12 / / / /
2 0.7 01|{07] O |08 / / / /
3 0.4 01[{05]08| O / / / /
4 0.4 / / / / 0 |07[05] 12
5 0.6 / / / / 107] 0 |12] 12
6 0.4 / / / / 107]12| 0 | 12
7 0.9 / / / / 107]08|07]| O

Table A 1 Penalties of Mapping Attributes of Nodes and Edges

Appendix B: Course Timetabling Problems Specification

Hard constraints:
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* A course is in conflict with andter thus they can not be scheduled

into the same timeslot
* A course should be carried out n times a week
» Each course has a specific roonguaement with type and capacity
» Certain number of periods is given for each problem
Soft constraints:
* One course should be scheduled before or after another

* Inclusive/exclusive - a courséasuld/should not be scheduled into a

fixed timeslot

« Consecutive - a course should/should not be scheduled into a

timeslot consecutive to that of another

Appendix C: Heuristics Used in the System

* LD - Largest degree first

All the courses not yet scheduled are inserted into an “unscheduled
list” in descending order according to the number of constraints the
course has with the other courses. This heuristic tries to schedule the

most difficult courses first.

e LDT - Largest degree first with tournament selection
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It is similar with the LD except every time the most difficult course is
selected from a subset of the “unscheduled list” by a percentage
given. Here 30 percent is used to get a subset from the list. This
heuristic tries to schedule the masfficult courses first but also give

some randomness.

e HC —Hill climbing

An initial timetable is constructed randomly then is improved by hill

climbing.
e« CD - Colour degree

Courses in the “unscheduled list” are ordered by the number of
constraints it has with those coussthat are already scheduled in the
timetable. Usually these courses left are more difficult to be
scheduled than those with less number of constraints with already

scheduled ones.

» SD - Saturation degree

Courses in the “unscheduled list” are ordered by the number of
periods left in the timetable for it to be scheduled validly. This
heuristic gives higher priority to courses with fewer periods available

thus usually more difficult to be scheduled.
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Appendix D: Initial Featuresand Their Weightsfor Cases

fo: number of hard constraints / number of events

f1: number of soft constraints / number of events

fo: number of constraints / number of events

f3: number of periods / number of events

f4: number of rooms / number of events

fs: number of not consecutive courses / number of constraints
fe: number of consecutive courses / number of constraints

fz: number of hard constraints / number of constraints

fg: number of soft constraints / number of constraints

fo: number of hard constraints / number of periods

f10: number of soft constraints / number of periods

normalized weight w= factor * 1 / sum of weights of all the features

initial factor, ={1,1,1,1,1,1,1,1,1,1, 1}

Appendix E: Trained Featuresand Their Weights

fo: number of exclusiveaurses / number of events
f1: number of inclusive aurses / number of events
fo: number of constraints / number of events

fa: number of rooms / number of events
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f4: number of hard constraints / number of periods
fs: number of not consecutive courses / number of constraints
normalized weight w= factor * 1 / sum of weights of all the features

factor = {45, 10, 10, 15, 30, 6}
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