
Animated Examples as Practice Content in a Java
Programming Course

Roya Hosseini
University of Pittsburgh

roh38@pitt.edu

Teemu Sirkiä
Aalto University

teemu.sirkia@aalto.fi

Julio Guerra
University of Pittsburgh

jdg60@pitt.edu
Peter Brusilovsky

University of Pittsburgh
peterb@pitt.edu

Lauri Malmi
Aalto University

lauri.malmi@aalto.fi

ABSTRACT
Code examples are commonly used learning resources that
help students grasp various programming structures and con-
cepts. However, example code usually requires explanations
about what each line or part of the code does. Otherwise,
students may find it difficult to follow an example. In this
paper, we compare two types of code examples that use dif-
ferent techniques to describe important concepts in the code:
annotated and animated examples. The former displays an
explanation for a subset of lines in plain text, whereas the
latter visualizes code execution. We studied the use and im-
pact of these enhanced examples, provided as non-mandatory
practice content, in three introductory Java courses. Our
results suggest that animated examples are more engaging
and have a positive impact on students’ learning. As com-
pared to annotated examples, students spent more time with
animated examples and more likely completed them. Also,
a positive relationship was found between the number of
explored animated examples and the overall course grade.

Keywords
code examples; learning; Java programming; annotated ex-
amples; animated examples; program visualization

1. INTRODUCTION
Understanding program dynamics (i.e., how program ex-

ecution is carried out in computer memory) is one of the
central challenges of learning computer programming. Du
Boulay [7] wrote “...there are difficulties associated with un-
derstanding the general properties of the machine that one
is learning to control, the notional machine, and realizing
how the behavior of the physical machine relates to this
notional machine.” These difficulties are generally related to
the abstract nature of program execution.

CS teachers and researchers have developed numerous
methods and tools to support students in learning program

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE ’16, March 02-05, 2016, Memphis, TN, USA
c© 2016 ACM. ISBN 978-1-4503-3685-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2839509.2844639

dynamics. One basic method is annotating program code to
explain what happens when each line is executed. A more
advanced method is program visualization, a whole research
direction [15] that focuses on building specialized software
tools and interactive techniques to support following and
exploring program execution in a graphical form.

Even though sophisticated tools have been developed and
evaluated, they frequently fail to meet their goals, because
teachers and students simply do not use them [12]. Packag-
ing interactive learning content into online practice systems
such as Codingbat1 has recently emerged as a way to de-
crease the teacher engagement threshold: teachers can now
point students to these systems, rather than master these
tools to integrate individual content items into their teach-
ing. However, practice systems still face the problem of
student engagement. Since practice content is usually of-
fered for students’ own benefit while awarding no additional
credit, students tend to skip practice materials to focus on
tasks that give them credits. Turning examples from prac-
tice to mandatory content is not an optimal solution either,
because it can lead to mindless clicking through the con-
tent to gain points without any understanding. A relevant
overall research question in this area remains: what kind of
non-compulsory learning resources are both beneficial and
engaging for students in programming education?

In this paper, we examine the value of animated program
examples as practice content for both educational impact and
prospects for engagement. To examine the added value of
animated examples, we compare them to annotated examples,
which are a more traditional way to support students in
learning to understand programs. Both types of resources in
our study were provided as voluntary practice materials.

2. RELATED WORK
A printed textbook, which could be considered as a tra-

ditional medium to present program examples to learners,
provides little help in delivering the essence of an example or
helping students to locate more relevant examples. At most,
a textbook author could provide line-by-line example code
explanations. This approach has been used in a number of
textbooks, and in some cases, has defined the nature of a
textbook [9]. To overcome these limitations and to provide
better support for learning from examples, instructors and
researchers have suggested a range of interactive computer
tools. Roughly, the work on these tools could be classified

1http://codingbat.com/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/33563644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in three directions. One direction has focused on provid-
ing better access to the right example at the right time -
although the examples could still be traditional, plain-code
examples [6, 16]. The other two directions have focused on
augmenting the examples themselves. One has focused on
adding richer expert explanations to the example code by
using interactive linking [4]. The other has attempted to
promote deeper knowledge of language semantics by offering
visual animations of example code [15]. Below, we briefly
review some work along the latter two directions that are
most relevant to the paper.

The concept behind interactive explained examples is to
add expert comments on the role of different constructs in
achieving the goal of the provided code, as well as other
related comments. These kinds of worked-out examples are
known in many other science and engineering domains; how-
ever, programming was one of the first areas where interactive
systems were developed to support these kinds of examples.
Starting from the pioneering work of Linn and Boyle [2, 10],
a number of researchers explored systems that offer access to
explained examples [4, 6]. In providing access to explanations
without breaking the example code, these systems typically
used interactive hypermedia features.

Animated examples, which fall in the area of program visu-
alization, are a more advanced and complicated technology.
The idea of animated examples is to make the dynamic execu-
tion or program examples visible. Without such visualization,
novice students are not able to see how the given code is
really executed, because the execution process is normally
invisible. This may lead to different kinds of misconceptions
that prevent learning new concepts, as the code does not
behave as expected. Animated examples make the execution
process visible so that novice students can easily see and
follow all the important steps.

A recent review of the existing program visualization
tools [15] indicates that many different tools have been de-
veloped for novice programmers to create animated exam-
ples. The earliest tools appeared in the 1980s; however,
it is only over the past 10 years that this technology has
become broadly available for instructors. One well-known
program visualization system is Jeliot 3 [1] and its ancestors.
They have been used for almost two decades in introductory
programming. Jeliot 3 is a Java-based application for Java
programs that can even visualize students’ own code. Many
research papers have presented positive learning results when
Jeliot 3 is used in CS1 courses (eg. [5]). One newer tool for
creating animated examples is the Online Python Tutor [8],
which can create embeddable animated examples that run
in a browser.

3. TOOLS USED IN THE STUDY

3.1 Mastery Grids Portal for Practice Content
All practice content in our study was accessed through the

Mastery Grids portal [11], which integrates three kinds of
content: code execution problems, annotated examples, and
animated examples [4, 13]. In integrating external content,
Mastery Grids portal follows the suggestions of the recent
ITiCSE working group report [3]. Instead of directly embed-
ding each kind of examples into the portal, all interactive
examples are technically external resources that are hosted
by separate content servers. This design allows for reuse of
content in multiple portals or course management systems.

To engage students to work with the content, the Mastery
Grids portal provides visual personal progress tracking, as
well as social comparison visualizations, which allow a student
to compare her progress to the progress of the rest of the class
or with the most advanced students. Mastery Grids organizes
the content in topics that are represented as a series of colored
cells, which get darker as the student completes the content
within a topic. A part of the topic cells of the programming
course can be seen in Figure 1, where an animated example
from the topic “Strings” is shown overlaying Mastery Grids.
For a detailed explanation of the Mastery Grids interface,
see previous work [11]. In line with its practice nature, the
use of the system and any of its content was not mandatory.

3.2 Exploring Examples with Jsvee
Jsvee [13] is a JavaScript library to create animated ex-

amples. The library is language-independent, but can be
extended to have language-specific features: for example,
there is limited support for built-in Java libraries that are
needed in the animations. The main idea of the Jsvee library
is that the original code is transformed into an intermedi-
ate language that the library can visually execute. Jsvee
is able to produce smooth expression-level visualizations,
which means that all the intermediate steps to evaluate the
current line are shown. For example, the order of evaluating
arithmetic operations or nested function calls are visible.
With textual descriptions or line-based visualization tools,
such as Online Python Tutor [8], it is difficult to explain or
demonstrate these important evaluation steps.

These interactive visualizations (see Figure 1) can be em-
bedded into online course materials or used as individual
small exercises. They are pure HTML, CSS, and JavaScript,
which allows them to be also used with mobile devices, be-
cause plugins (such as Flash) are not required. Jsvee also
automatically generates short explanation texts for the ani-
mation of each step.

To get information how the students use animated exam-
ples, Jsvee collects log traces. Every time when a student
uses the controls, such as “step forward” or “undo,” a log
entry with the timestamp and current step number is created.
Entries are sent to the server every 20 seconds, as well as
after the example is completed. With this data it is possible
to measure, for example, how much time students have spent
on each step.

3.3 Exploring Examples with WebEx
WebEx is a web-based system for the interactive explo-

ration of programming examples. The key idea behind the
Webex system is to generate self-sufficient interactive exam-
ples by adding explanations to example code. With WebEx,
the code of the example is shown as an easy-to-grasp sin-
gle chunk, while line-by-line explanation are accessible by
clicking on lines of interest. As a result, from being a pas-
sive reading activity, the work on examples changes to an
interactive exploration.

Starting in 2001 with several dozen annotated program-
ming examples in C, this technology has been used to produce
a large volume of annotated examples for several program-
ming languages (C, Java, SQL) with explanations that ad-
dress both the semantics and pragmatics of the examples
[4]. Figure 2 shows a typical WebEx example in Java for
teaching students the concept of pre/post-increment. A green
bullet to the left of a code line indicates the availability of

Figure 1: An illustration of an animated example in Mastery Grids. When a student clicks on an animated
example, the activity is shown in an iframe that overlays Mastery Grids, and the student can click on the
forward button to see the animations. For example, in the current line (line 6), the value of the variable s1

will be concatenated with the literal value "= 3". Jsvee demonstrates how the local variables are updated by
showing all the intermediate steps of fetching values and evaluating the operator - not simply the final result.

explanations for this line. Explanations are shown as the
student clicks on each bullet. The WebEx system logs all
user interactions with the tool, which enables seeing how
students work with examples in the context of real courses.

4. THE STUDY
To investigate the impact of different example types, we

analyzed the data of classroom studies that were carried out
at the University of Pittsburgh (PITT) and Winston-Salem
State University (WSSU) during the fall 2014 and spring 2015
semesters. The subjects were undergraduate students taking
an introductory course in Java programming. All students
were informed by course instructors to access supplementary
materials for the course through the Mastery Grids portal.
A pretest and post-test was administered at the beginning
and end of the course to measure students’ learning at the
end of the course. Both tests had the same questions.

The practice content offered by the course through the Mas-
tery Grids portal included three types of interactive content,
organized under 19 topics: annotated examples, animated
examples, and parameterized code execution problem. A
code execution problem provides a fragment of code to a
student and asks about the value of a specific variable or the
content printed on a console after the code is executed. The
system evaluates the student’s answer and reports whether
the answer was correct or incorrect. Students can try the
same problem many times. Each time, the code is generated
with randomly selected values for the problem parameters,
and as a result, the correct answer will be different each time.
Table 1 provides more details for the number of students and
practice content items in the studied groups.

5. THE RESULTS
We evaluated the impact of annotated and animated exam-

ples on students’ engagement and learning from the following

Table 1: Classroom studies: participants and course
materials

PITT
2014

PITT
2015

WSSU
2014

Students registered in the course 65 61 28
Students logged into the portal 56 33 20
Problems 101 111 111
Annotated examples 79 104 104
Animated examples 31 52 52

four aspects: engagement level, problem solving performance,
amount of learning, and course grade. In the following sub-
sections, we describe the analyses we performed to discover
the importance of examples to these aspects of learning.

5.1 Engagement Level
Here, we evaluated the level of user engagement by defining

a set of usage measures that summarize students’ attempts
on example activities. The measures that we used are as
follows: (1) the number of distinct examples viewed; (2)
the percentage of viewed examples (that is the number of
distinct examples viewed divided by the number of available
examples); (3) the total time spent on examples (seconds);
(4) the average percentage of example completion; and (5) the
average time spent per example. The average completion was
calculated by dividing the average clicks actually made by
the total number of clicks needed to view the whole example.
Only started examples were taken into account. For WebEx
examples, a click means an action to view an explanation, and
for animated examples, a click means a step to move forward.
Since the work with the system was non-mandatory, the
amount of work with practice content done by the students
offers a good approximation of engagement.

Figure 2: A WebEx example for demonstrating a
pre/post-increment concept in the Arithmetic Oper-
ations topic. When a student clicks on the green
bullets, an explanation appears below the line.

Table 2 provides summary statistics for the above mea-
sures. As the table shows, students viewed significantly more
annotated examples than animated examples (Kruskal-Wallis
test: χ2(1) = 10.177, p = .001). Also, the average total time
spent on annotated examples was significantly higher than
animated examples (χ2(1) = 15.048, p < .001). However,
these numbers should be considered with care, since the
number of more easy-to-author annotated examples in the
system was considerably larger.

Looking at the percentage of example completion, we found
that students completed an average of 95.0% of each animated
example that they viewed. This was significantly larger
(23.6% more) than the percentage of completed annotated ex-
amples (χ2(1) = 29.424, p < .001). Moreover, students spent
twice as much time interacting with an animated example
than with an annotated example (χ2(1) = 78.667, p = .001).
It indicates that both kinds of examples were engaging; how-
ever, individual animated examples were more engaging, and
motivated students to stay longer and follow more lines.
Whether this longer work was beneficial for learning will be
addressed in the rest of this section.

Note that annotated and animated examples differ consid-
erably in their interactivity and freedom of navigation. Their
usage should be compared with understanding this nature.
In particular, it is easy to navigate through annotations in
any order skipping less important lines, while the sequential
nature of animations allows for comparatively little freedom,
with no skipping or random access.

5.2 Problem Solving Performance
As mentioned earlier, the practice content offered by the

course in the Mastery Grids portal included parameter-
ized code execution problems for self-assessment of students’
knowledge. We assumed that problem solving performance

Table 2: Comparison of engagement level between
annotated & animated examples

Usage summary
Annotated ex.

Mean (SE)
Animated ex.

Mean (SE)

Distinct examples 29.7 (2.4) 8.7 (1.0)
Distinct examples (%) 33.0% (3.0%) 24.0% (3.0%)
Total time (sec) 2196.5 (285.6) 1585.7 (426.5)
Avg. completion (%) 71.4% (3.5%) 95.0% (1.5%)
Avg. time per example 61.1 (6.3) 128.2 (22.1)

(correctness of problem answers) could be used to evaluate
student knowledge and attempted to explore the impact of
annotated and animated examples on student knowledge by
looking into the relationship between success rate in answer-
ing problems and the usage of different example types.

Success rate is defined as the number of correct attempts
on problems divided by the total problem attempts. Us-
ing data from all students (n = 109), a significant negative
correlation was found between the number of distinct an-
notated examples that students viewed and their success
rate. A higher number of annotated example views was
associated with a lower success rate (ρ = −0.22, p = .029).
This result looks counter-intuitive, but it is important to
remember that the content to practice is freely selected by
students. As we observed, those failing to answer problems
turned to examples in a hope to bridge the knowledge gap.
Moreover, annotated examples were much more frequently
accessed after a failure. Following 19.71% of failures to solve
a problem, students seek help in easy-to-parse annotated ex-
amples, while in 3.91% of failures, they turned to animated
examples. Considering all attempts to access each type of
example, 20.01% of all annotated examples and 13.61% of
animated examples were accessed immediately after failure,
which largely makes failures a remediation tool, rather than
just a learning tool. As a result, two opposite processes
connecting the work with examples and performance took
place. It is likely that examples do help students to increase
knowledge (positive connection between student work with
examples and performance), but on the other hand, due
to free content choice, lower knowledge and failures led to
the increased use of examples (negative connection between
examples and performance). As we see, in case of annotated
examples, the latter process overcame the effect of learning
from examples.

We further investigated the parameters that influence prob-
lem solving performance by fitting stepwise regression models
to predict the number of correct problem attempts in terms
of activities on topics, examples, and problems; time spent
on examples; pretest scores; and the group that a student
belongs to. Table 3 shows the result of the model with the
highest goodness-of-fit (Adjusted R2 = 0.95, F (7, 89) =
253.6, p < .001) that uses the data of all students who used
the system (n = 109). We found that the number of viewed
topics, attempted problems, viewed animated examples, to-
tal time spent on annotated examples, and students’ groups
were reliable predictors for the number of correct attempts
on problems, while annotated examples and time spent on
animated examples were not.

More specifically, as expected, students with a higher
pretest score had more correct attempts on problems; one

Table 3: Summary of the regression model for num-
ber of correct problem attempts (n = 109)

Predictor Estimate Std. error p-value

Topics covered 3.47 0.24 <.001
Problem att. 0.08 0.02 <.001
Distinct animated ex. 0.48 0.09 <.001
Time on annotated ex. -7.6e-4 2.7e-4 .006
Pretest 7.28 3.23 .027

unit increase in the normalized pretest score increased the
number of correct attempts on problems by 7.28 (SE = 3.23).
Also, every additional topic that was covered increased the
number of correct problem attempts by 3.47 (SE = 0.24).
Attempting a problem and an animated example increased
the number of correct problem attempts by 0.08 (SE = 0.02),
and 0.48 (SE = 0.09), respectively. On the other hand,
each second of time that is spent on annotated examples
decreased the correct problem attempts by -7.6e-4 (SE =2.7e-
4). This data hints that students are likely learning more
from animated examples. As a result, the positive impact
of examples overcame the negative process of associating
examples with poor knowledge, and their joint impact is still
positive. In contrast, annotated examples appeared to be less
useful for learning, allowing the reverse process to overcome
the positive impact on knowledge. These findings reveal a
stronger impact of animated examples on problem solving
performance; however, more data and more careful analysis
should be made to determine a reliable conclusion.

5.3 Amount of Learning
We measured learning by predicting students’ post-test

scores at the end of the semester. We considered various
predictors, including system usage factors (covered topics,
total attempts on code execution problems, correct attempts
on problems, distinct annotated/animated examples viewed,
and time spent on annotated/animated examples), prior
knowledge of students as measured by pretests, and the
group that indicates the course and semester that study
was performed. Pretest and post-test scores were normal-
ized in the 0–1 range. Also, out of 83 students who had
taken both the pretest and the post-test, there were 8 stu-
dents whose post-test score were less than their pretest.
We discarded data from those students, as we assumed
that no unlearning occurs. Table 4 summarizes the final
results of the stepwise regressions for the model, which ex-
plains 61% of the variance for the remaining 75 students
(Adjusted R2 = 0.61, F (7, 67) = 17.43, p < .001).

As expected, student prior knowledge measured by pretest
was among the reliable post-test predictors. One unit in-
crease in the pretest score increased the normalized post-test
by 0.615 (SE = 0.099) units. Among measures related to stu-
dent work with practice content, the following four achieved
at least a marginal impact on the scores of the post-test:
correct attempts on problems, distinct views on annotated
examples, and animated examples were all marginally signifi-
cant (p <.10), and the total time spent on animated examples
was significant at the 0.035 level. In particular, similar to the
previous analysis, we observed that a switch from annotated
to animated examples turns the connection between amount
of work and performance from negative to positive: each ex-
plored annotated example decreased the normalized post-test

Table 4: Summary of the regression model for post-
test scores (n = 75)

Predictor Estimate Std. error p-value

Correct problem att. 1.4e-3 7.2e-4 .050
Distinct annotated ex. -0.003 0.002 .077
Distinct animated ex. 0.007 0.004 .088
Time on animated ex. -8.9e-6 4.1e-6 .035
Pretest 0.615 0.099 <.001

Table 5: Summary of the regression model for course
grade (n = 75)

Predictor Estimate Std. error p-value

Correct problem att. 8.2e-4 3.1e-4 .010
Distinct annotated ex. -0.003 0.001 .003
Distinct animated ex. 0.006 0.002 .015
Pretest 0.173 0.050 .001

by 0.003 (SE = 0.002) while each explored animated exam-
ple increased the post-test by 0.007 (SE = 0.004). While
spending too much time with animated examples doesn’t
add enough extra knowledge to overcome the negative pro-
cess, the overall connection is still negative: every additional
second that students spent on animated examples decreased
the normalized post-test by -8.9e-6 (SE=4.1e-6).

5.4 Course Grade
To explore the relationships between the example usage and

course grade, we used the data of students for whom we had
access to their course grades (n = 82). Spearman correlation
showed marginally significant positive correlation between the
number of distinct animated examples that students viewed
and their course grade. More views of animated examples was
associated with a higher course grade (ρ = 0.19, p = .085).

Regression analysis was performed to predict the final
course grade of students in terms of the same predictors,
as mentioned in 5.2. Among 82 students for whom we had
access to their grades, 7 had missing pretest and were ex-
cluded from the analysis. So, data of 75 students were used
in the regression model and Table 5 shows the effect of
each predictor on students’ grade in the best fitted model
(Adjusted R2 = 0.27, F (5, 69) = 6.353, p < .001). As the
table shows, the number of correct problem attempts, ani-
mated example views, and pretest score positively influenced
the course grade. Every additional problem attempt or view
of distinct animated examples increased the course grade by
8.2e-4 (SE =3.1e-4) and 0.006 (SE = 0.002), respectively.
For every unit increase in the normalized pretest score, there
was a corresponding predicted increase of 0.173 (SE = 0.050)
in the course grade. But, the number of views on annotated
examples had a negative effect on the course grade: every sin-
gle view of a distinct annotated example decreased the course
grade by 0.003 (SE = 0.001). This is another case where a
switch to animated examples turns the balance positive.

5.5 Student Feedback
Students from the PITT group were surveyed at the end

of the term about the usefulness of the system. One of
the questions was about animated examples (“Animated
examples helped me to learn Java”) and was answered in a

5-point Likert scale, from Strongly disagree = 1 to Strongly
agree = 5. A total of 48 students who used the system
and saw animated examples at least once completed the
questionnaire. The results show a mildly positive opinion
(Mean = 3.44, Median = 4 (Agree), and Mode = 4). Certain
differences in the response patterns among low and high
pretest groups exist, as well. Students in the low pretest
group have a strong tendency to Agree: 58% (14) of them give
value 4. By contrast, students in the high pretest group are
more heterogeneous: 29% (6) give no opinion (value 3), 29%
agreed and 24% (5) strongly agreed (value 5). No significant
correlation was found between the answer to this question
and the usage of the system (number of animated examples
viewed), but a marginal significant negative correlation was
found between question responses and the pretest score for
high pretest group B= -.345, p=.05, N=21. Very high pretest
students found animated examples to be less useful.

6. CONCLUSION AND FUTURE WORK
This paper compared the impact of traditional annotated

examples with more advanced animated examples as practice
content for learning Java programming. Our results indicated
that animated examples better engaged students increasing
their interest in completing examples. Animated examples
also provided better impact on several performance measures
such as problem solving success, post-test scores, and course
grade turning the relationship between the amount of work
with examples and performance from negative to positive.

The present work confirms previous findings about the
usage of animated examples. A recent research by Sirkiä and
Sorva [14] studied usage of animated examples as a part
of an electronic textbook. Similar to what we observed in
this work, students viewed almost all animated examples
that they started, and viewing animated examples in the
textbook was associated with higher course grades. An
interesting difference between these two studies is in the
treatment of examples. While in our study examples were
offered as additional non-mandatory practice content, in the
Sirkiä and Sorva [14] study, animated examples were the
core part of the course, and were embedded into the course
materials together with text. As expected, core content got
more attention than practice content: in that study, students
viewed on average 65.3% of embedded animated examples,
63.2% higher than in the case of practice content offered by
the Mastery Grids portal.

In the future, we plan to combine the ideas of annotated
and animated examples by adding annotation support for
animated examples. This means that a teacher can add
custom texts to animations in order to emphasize and ex-
plain the most important steps in more detail. The current
automatically-generated explanations frequently fail to ex-
plain what is actually happening. Teachers can create better
explanations, just as they can now in WebEx, but instead
of explaining the whole line, the explanation can refer to a
single animation step, which is only a part of the line. In
this way, students are able to follow the animated examples
with deeper understanding.

7. ACKNOWLEDGEMENTS
This work is supported by the Advanced Distributed Learn-

ing (ADL) Initiative. The views and conclusions contained
in this document are those of the authors and should not

be interpreted as representing the official policies, either
expressed or implied, of the Department of Defense or the
Joint Staff. The U.S. Government is authorized to reproduce
and distribute reprints for government purposes. Also, the
authors want to thank Rebecca Caldwell, Darina Dicheva,
and Dmitry Babichenko for their help with data collection.

8. REFERENCES
[1] M. Ben-Ari, R. Bednarik, R. B.-B. Levy, G. Ebel,

A. Moreno, N. Myller, and E. Sutinen. A decade of research
and development on program animation: The Jeliot
experience. Journal of Visual Languages & Computing,
22(5):375 – 384, 2011.

[2] T. Boyle, J. Gray, B. Wendl, and M. Davies. Taking the
plunge with CLEM: the design and evaluation of a large
scale CAL system. Computers & Education, 22(1):19–26,
1994.

[3] P. Brusilovsky, S. Edwards, A. Kumar, L. Malmi, L. Benotti,
D. Buck, P. Ihantola, R. Prince, T. Sirkiä, S. Sosnovsky,
et al. Increasing adoption of smart learning content for
computer science education. In Proceedings of the Working
Group Reports of the 2014 on Innovation & Technology in
Computer Science Education Conference, pages 31–57, 2014.

[4] P. Brusilovsky and M. Yudelson. From WebEx to NavEx:
Interactive Access to Annotated Program Examples. Proc.
of the IEEE, 96(6):990–999, 2008.

[5] S. M. Čisar, R. Pinter, D. Radosav, and P. Čisar.
Effectiveness of program visualization in learning Java: a
case study with Jeliot 3. International Journal of
Computers, Communications & Control, 6(4), 2011.

[6] A. Davidovic, J. Warren, and E. Trichina. Learning benefits
of structural example-based adaptive tutoring systems.
IEEE Transactions on Education, 46(2):241–251, 2003.

[7] B. du Boulay. Some difficulties of learning to program.
Studying the Novice Programmer, page 283, 2013.

[8] P. J. Guo. Online python tutor: embeddable web-based
program visualization for cs education. In Proceeding of the
44th ACM technical symposium on Computer science
education, pages 579–584. ACM, 2013.

[9] A. Kelley and I. Pohl. C by dissection : The essentials of C
programming. Addison-Wesley, New York, 1995.

[10] M. Linn. Can experts’ explanations help students develop
program design skills. International Journal on the
Man-Machine Studies, 36:511–551, 1992.

[11] T. Loboda, J. Guerra, R. Hosseini, and P. Brusilovsky.
Mastery Grids: An open source social educational progress
visualization. In 9th European Conference on Technology
Enhanced Learning (EC-TEL 2014), pages 235–248.

[12] T. Naps, G. Rossling, J. Anderson, S. Cooper, W. Dann,
R. Fleischer, B. Koldehofe, A. Korhonen, M. Kuittinen,
C. Leska, M. McNally, L. Malmi, J. Rantakokko, and R. J.
Ross. Evaluating the educational impact of visualization.
ACM SIGCSE bulletin, 35(4):124–136, 2003.

[13] T. Sirkiä. A JavaScript library for visualizing program
execution. In Proceedings of the 13th Koli Calling
International Conference on Computing Education Research,
Koli Calling ’13, pages 189–190. ACM, 2013.

[14] T. Sirkiä and J. Sorva. How do students use program
visualizations within an interactive ebook? In Proceedings of
the eleventh annual International Conference on
International Computing Education Research, pages
179–188. ACM, 2015.

[15] J. Sorva, V. Karavirta, and L. Malmi. A review of generic
program visualization systems for introductory programming
education. ACM Transactions on Computing Education,
13(4):1–64, 2013.

[16] G. Weber. Individual selection of examples in an intelligent
learning environment. Journal of Artificial Intelligence in
Education, 7(1):3–31, 1996.

