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Uncertainty Representation of Grey Numbers and Grey Sets
Yingjie Yang, Senior Member, IEEE, Sifeng Liu, Senior Member, IEEE, and Robert John, Senior Member, IEEE

Abstract—In the literature there is a presumption that a grey set and

an interval-valued fuzzy set are equivalent. This presumption ignores

the existence of discrete components in a grey number. In this paper

new measurements of uncertainties of grey numbers and grey sets,

consisting of both absolute and relative uncertainties, are defined to give

a comprehensive representation of uncertainties in a grey number and

a grey set. Some simple examples are provided to illustrate that the

proposed uncertainty measurement can give an effective representation

of both absolute and relative uncertainties in a grey number and a grey

set. The relationships between grey sets and interval-valued fuzzy sets

are also analysed from the point of view of the proposed uncertainty

representation. The analysis demonstrates that grey sets and interval-

valued fuzzy sets provide different but overlapping models for uncertainty

representation in sets.

Index Terms—Grey sets, Fuzzy sets, Relative uncertainty

I. INTRODUCTION

G
REY systems have emerged as an effective approach for

modelling systems with partial information [13], [15], [16],

[17], [18], [28]. They provide an alternative for representing

uncertainty in systems in addition to the more mainstream models

like fuzzy sets and rough sets. Grey sets apply the basic concepts

of grey numbers in grey systems, and consider the characteristic

function values of a set as grey numbers. Grey numbers have

been successfully applied into many real world problems, such as

manufacturing [19] and hydrology [2]. However, grey numbers and

intervals have some similarity and grey sets are considered to be

equivalent to interval-valued fuzzy sets [8], [10]. With the increasing

applications of grey systems, the combination of grey sets with

fuzzy sets and rough sets have been investigated recently [22],

[23]. However, all these research works considered grey sets using

interval grey numbers only, and such a restriction does indeed

make grey sets and interval-valued fuzzy sets equivalent. In fact,

grey numbers can have discrete values in its candidate set as

well. In an interval there are infinite candidates no matter how

small the interval is, but there might be only finite candidates in

a grey number. For example, both [0.2, 0.4] and {0.2, 0.4} are

possible for a grey number defined on [0, 1], but only the first one

is possible with interval representation. In this sense, a different

number of candidates will demonstrate different uncertainty in the

value selection from the candidate set. By focusing on interval

grey numbers only, this important extra uncertainty in grey sets has

been completely neglected so far. For grey numbers represented

with discrete candidates or mixed candidates (discrete numbers

and intervals), the existing measurements may provide misleading

results for uncertainty comparisons between grey sets. Obviously, it

is necessary to investigate the suitable uncertainty representation of

grey numbers and grey sets and their differences from intervals and
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interval-valued fuzzy sets.

The paper is structured as follows. In the next Section a brief

overview of grey numbers, grey sets and interval-valued fuzzy sets

is provided. Then section III defines the concept of absolute and

relative uncertainties of grey numbers and grey sets, and discusses

the relationship between interval-valued fuzzy sets and grey sets.

Based on the proposed absolute and relative uncertainties, Section

IV presents the concept of uncertainty pairs of grey numbers and

grey sets. Some simple examples are also employed to illustrate the

effectiveness of the proposed uncertainty representation. Finally, in

Section V we draw out the conclusions.

II. PRELIMINARIES

We first define some relevant concepts.

Grey systems were proposed by Professor Julong Deng in

1982 [7]. In grey systems, the information is classified into three

categories: white with completely certain information, grey with

insufficient information, and black with totally unknown information.

Grey numbers are the basic concepts in grey systems. The concept

of generalised grey numbers [14], [24], [26] demonstrates their

difference from intervals.

Definition 1 (Generalised grey numbers): Let Ω ⊂ ℜ be the

universe, g± ∈ Ω be an unknown real number within a union set

of closed or open intervals

g± ∈

n⋃

i=1

[a−

i , a
+

i ] ⊆ Ω

i = 1, 2, . . . , n, n is an integer and 0 < n < ∞, a−

i
, a+

i
∈ Ω

and a+

i−1
< a−

i
≤ a+

i
< a−

i+1
. For any interval [a−

i
, a+

i
] ⊆⋃

n

i=1
[a−

i
, a+

i
] ⊆ Ω, pi is the probability for g± ∈ [a−

i
, a+

i
]. If the

following conditions hold

• pi > 0

•

n∑
i=1

pi = 1

then we call g± a generalised grey number. g− = inf a−

i
and

g+ = sup a+

i
are called as the lower and upper limits of g±.

If g− = g+, g± has no uncertainty at all and is called a white

number; on the contrary, if
⋃

n

i=1
[a−

i
, a+

i
] = Ω, there is nothing

known about g± and it is called a black number.

The degree of greyness of a grey number measures the

significance of uncertainty in a grey number. For example, three

different definitions for the degree of greyness of a generalised grey

number have been proposed [14], [16], [26].

Definition 2 (Degree of greyness of a generalised grey number): Let

Ω ⊂ ℜ be the universe and g± ∈
⋃

n

i=1
[a−

i
, a+

i
] ⊆ Ω, dmin, dmax ∈

Ω are the minimum and maximum values of Ω. µ is a measurement
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defined on Ω. The degree of greyness of g± is defined as

g◦1(g
±) =

µ(g±)

µ(Ω)
(1)

g◦2(g
±) =

|g+ − g−|

|dmax − dmin|
(2)

g◦3(g
±) =

1

ĝ

n∑

i=1

âi

µ(a±

i
)

µ(Ω)
(3)

where, a±

i
denotes the grey number represented by the interval

[a−

i
, a+

i
], ĝ and âi refer to the mathematical expectation of g± and

a±

i
.

Here, g◦2(g
±) focuses on the hesitation (gap between the upper

and lower limits) and g◦3(g
±) highlights the components of a

generalised grey number.

Obviously, g◦1 , g◦2 and g◦3 satisfy the following properties

• g◦i = 0 if g+
i

= g−
i

for i=1,2,3

• g◦i = 1 if n = 1 and [a−

1 , a
+

1 ] = Ω for i=1,2,3

• if g± is a continuous grey number, then g◦1 = g◦2 = g◦3

It illustrates that there is no difference between the three

representations when a grey number is in the form of a continuous

interval. However, they are different when more than one component

is involved in a grey number. The value of g◦1 and g◦3 may change

but g◦2 keeps constant as long as the upper and lower limits do not

change. This is due to their different focuses. g◦2 counts mainly on

the uncertainty caused by the hesitation gap between the two limit

values, but g◦1 and g◦3 pay more attention to the uncertainty caused

by the components. Due to the simplicity of g◦2 in comparison with

other representations, without specific explanation, we will use g◦2
as the representation of the degree of greyness hereafter.

With the concept of grey numbers, we can now express the

uncertain relationships between an element and a set.

Definition 3 (Grey sets [25], [26], [27]): For a set A ⊆ U , if the

characteristic function value of x with respect to A can be expressed

with a grey number g±
A
(x) ∈

⋃
n

i=1
[a−

i
, a+

i
] ∈ D[0, 1]±

χA : U → D[0, 1]±

then A is a grey set.

Here, D[0, 1]± refers to the set of all grey numbers within the

interval [0,1]. Similar to the expression of a fuzzy set [12], [29],

a grey set A is represented with its relevant elements and their

associated grey numbers for characteristic function:

A = g±
A
(x1)/x1 + g±

A
(x2)/x2 + . . .+ g±

A
(xn)/xn

Similar to the case for a grey number, the uncertainty caused by the

distance between upper and lower limits of the characteristic function

values of a grey set can be measured using its degree of greyness.

Considering the specific feature of grey sets, the degree of greyness

for an element and a set are defined here.

Definition 4 (Degree of greyness for an element [26]): Let U be

the finite universe of discourse, x be an element and x ∈ U . For a

grey set A ⊆ U , the characteristic function value of x with respect

to A is g±
A
(x) ∈ D[0, 1]±. The degree of greyness g◦A(x) of element

x for set A is expressed as

g◦A(x) = |g+ − g−|

Based on the degree of greyness for an element, the degree of

greyness for a set is defined as follows.

Definition 5 (Degree of greyness for a set [26]): Let U be the

finite universe of discourse, A be a grey set and A ⊆ U . xi is an

element relevant to A and xi ∈ U . i = 1, 2, 3, . . . , N and N is the

cardinality of U . The degree of greyness of set A is defined as

g◦(A) =

n∑

i=1

g◦A(xi)

N

A grey set can also be considered as an extension to a fuzzy set.

In this sense, it is closely related with interval-valued fuzzy sets.

Here we give the definition of interval-valued fuzzy sets.

Definition 6 (Interval-valued fuzzy sets [20]): Let D[0, 1] be the

set of all closed subintervals of the interval [0,1]. U is the universe

of discourse, x is an element and x ∈ U . An interval-valued fuzzy

set in U is given by set A

A = {〈x,MA(x)〉 : x ∈ U}

with MA : U → D[0, 1].

The membership of an individual element is thus reflected by an

interval instead of a single value. An intuitionistic fuzzy set [1] is

mathematically equivalent to an interval-valued fuzzy set although

some semantic differences still exist [3], [4], [5], [6], [8], [9], [21].

If we restrict the grey number in a grey set as a single continuous

interval only, then a grey set is equivalent to an interval-valued

fuzzy set in the mathematical expression. In this sense, they overlap

with each other for grey numbers represented with single continuous

intervals although there might still be semantic difference when an

interval in interval-valued fuzzy sets is interpreted differently from

a grey number. This is the reason why many people consider grey

sets identical with interval-valued fuzzy sets.

III. ABSOLUTE AND RELATIVE UNCERTAINTY

The crucial difference between an interval and a grey number, as

shown in Definition 1, is the possible existence of gaps between

component intervals in the construction of a grey number. Without

these gaps, a grey number is mathematically equivalent to an

interval in its representation. However, the involvement of these

gaps makes a grey number completely different from an interval.

For the existing degree of greyness defined in Equation (1), (2) and

(3), their measurements of the uncertainties in a grey number or a

grey set are still not ideal. It can be demonstrated with an example.

Example 1: a ∈ [0, 1], b ∈ [0.9, 1], c ∈ {[0, 0.001], 1} and d ∈
{0, 1} are four different grey numbers defined on [0, 1] representing

the opinion of four different people on their intention to support or

oppose a specific party in an election. Following Equations (1), (2)

and (3), we have

g◦1(a) = 1, g◦1(b) = 0.1, g◦1(c) = 0.001, g◦1(d) = 0

g◦2(a) = 1, g◦2(b) = 0.1, g◦2(c) = 1, g◦2(d) = 1

g◦3(a) = 1, g◦3(b) = 0.1, g◦3(c) = 0.000001, g◦3(d) = 0

In this example, a is a black number, so it is reasonable to have a

greater degree of greyness than anyone else. It shows that a has no

idea if he/she supports this party or not, and it is possible for a to

support nobody (0.5) as well. b is a clear supporter of the party, c and
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d will not adopt a middle way, which means they will either support

this party or oppose it. However, c and d can go either way which

demonstrates significant uncertainty. Therefore, from this context, we

can draw a conclusion that a has the highest value of uncertainty, c
and d are more uncertain than b.

Obviously, the three representations give an identical result for a
and b due to their single interval representation. However, they are

different for c and d where more than one component is involved.

According to g◦1(b) and g◦1(c), b has greater uncertainty than c. It

conflicts with our conclusion from the context. In this case, only g◦2
satisfies this conclusion.

When more than one component is involved, g◦1 and g◦3 focus

mainly on their relative distribution. There are two reasons for their

inappropriate results:

• No consideration to the absolute distance between the upper and

lower limits;

• The measurement for continuous intervals is not effective for

discrete numbers.

Contrary to g◦1 and g◦3 , g◦2 highlights the significance of the upper

and lower limits but cannot reflect the significance of the distribution

of components. Therefore, it is insensitive to the changed distribution

of components which is demonstrated by its result with a and c.

Obviously, the uncertainty in a grey number consists of two

different parts: the absolute uncertainty which is determined by the

upper and lower limits and the relative uncertainty which depends

on the distribution of components of a grey number. Although a

grey number is not determined within its candidate set, its absolute

and relative uncertainties are determined as long as its lower limit,

upper limit and probability distribution of its candidates are known.

Among the existing representations, g◦2 focuses mainly on the

absolute uncertainty, but g◦1 and g◦3 pay more attention to the relative

uncertainty. They converge to the same value when the specific

grey number is represented as a single interval. When more than

one component is involved, however, each of them gives a different

value and a biased measurement. g◦1 and g◦3 combine absolute and

relative uncertainty together in some way, and demonstrate absolute

uncertainty for a single interval and relative uncertainty when more

components are involved. However, its representation of relative

uncertainty fails to integrate continuous components and discrete

components together as shown in example (1).

Absolute uncertainty and relative uncertainty are two different

aspects of the uncertainty in a grey number, and they have

different significance as well. In most real world cases, the absolute

uncertainty is more important than the relative uncertainty. For

example, we would consider b in our previous example much more

certain than c. In this sense, the absolute uncertainty should always

be taken as the first priority in our comparison, and the relative

uncertainty comes in the second position and will be meaningful

only when the absolute uncertainty cannot separate one from another.

As shown in Definition 1, a grey number may contain both interval

components and discrete components (when the lower and upper

bounds of an interval are identical). The uncertainty representation

of a grey number has to be able to give consistent results for its

representation as a continuous interval, a discrete set of values and

a mix of intervals and discrete values in a continuous domain. In

this sense, the relative uncertainty representation of a grey number

is expected to satisfy the following properties.

Definition 7 (Properties for the relative uncertainty representation

of a grey number): Let Ω ⊂ ℜ be the universe and g± ∈⋃
n

i=1
[a−

i
, a+

i
] ⊆ Ω be a grey number, and i = 1, 2, . . . , n, n is an

integer and 0 < n < ∞, a−

i
, a+

i
∈ Ω and a+

i−1
< a−

i
≤ a+

i
< a−

i+1
.

For any interval [a−

i
, a+

i
] ⊆

⋃
n

i=1
[a−

i
, a+

i
] ⊆ Ω, pi is the probability

for g± ∈ [a−

i
, a+

i
]. δ(g±) is the relative uncertainty of g± and

satisfies the following properties

1) 0 ≤ δ(g±) ≤ 1;

2) δ(g±) = 0 iff g± is a white number;

3) δ(g±) = 1 iff g± is a continuous grey number;

4) δ(g±)¬max{p1, p2, . . . , pn};

Here, ¬ indicates a negative relationship between its two operands:

a reduction of the right-hand side increases the left-hand side.

The first propery is a requirement of normalisation. The

second property is required to make the uncertainty representation

meaningful and consistent. A white number has the same lower and

upper limits, and there is no uncertainty in its candidate selection,

so we have δ(g±) = 0; similarly, δ(g±) = 0 means that there is no

uncertainty on the selected candidate, then the candidate is a single

number which has the same value for its lower and upper limits,

thus the grey number is actually a white number. The third property

shows that the relative uncertainty reaches its maximum value when

the grey number is represented by a continuous interval. If it is

represented by a continuous interval, every number in that interval

is a candidate so it should have the maximum selection uncertainty.

Similarly, if it has the maximum selection uncertainty, every number

between its lower and upper limits should be a qualified candidate,

then it has to be a continuous interval. The last property indicates

that the maximum probability for one candidate interval to cover

the number represented by a grey number should have a negative

influence on the uncertainty of a grey number. This is reasonable: a

higher probability means a better chance for the grey number to be

whitenised into a narrow scope, so less uncertainty in comparison

with the one with a smaller probability.

According to Definition 2 and Example 1, although g◦1 , g◦2 and

g◦3 do not statisfy the third property in Definition 7, they give an

effective representation for absolute uncertainty of a grey number

represented as a continuous interval. g◦2 is determined only by the

lower and upper limits of a grey number and provides a simple

and effective representation for the absolute uncertainty of a grey

number. However, it does not consider the relative uncertainty at all.

If the candidate set of a grey number contains discrete numbers or

more than one interval with gaps in between, g◦1 and g◦3 highlight

the relative uncertainty, but do not consider its absolute uncertainty.

Their relative uncertainty representation is effective only when both

the candidate values and the universe are the same type. In fact, as

shown in Definition 1, a grey number could have discrete candidate

values defined in a continuous universe, and the candidate values

can even be a mix of intervals and discrete numbers. g◦1 and g◦3
defined in Definition 2 fail to represent these situations by violating

the last three properties in Definition 7. Following Equation (1), a

discrete set of candidate values defined on a continuous domain will

lead to g◦1(g
±) = 0 when the relevant grey number is not a white

number. For a continuous grey number, g◦1(g
±) < 1 if the relevant

grey number is not a black number. At the same time, for discrete

candidate values, g◦1 does not consider the candidate probability at

all. Therefore, g◦1 violates the last three properties in Definition 7.

g◦3 has similar problems. To overcome the limitation of g◦1 and g◦3
in their relative uncertainty representation, we will define a new

measurement for the relative uncertainty in a grey number.
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Definition 8 (Relative uncertainty of a grey number): Let g± ∈⋃
n

i=1
[a−

i
, a+

i
] be a grey number, and i = 1, 2, . . . , n, n is an integer

and 0 < n < ∞, a−

i
, a+

i
∈ ℜ and a+

i−1
< a−

i
≤ a+

i
< a−

i+1
.

For any interval [a−

i
, a+

i
] ⊆

⋃
n

i=1
[a−

i
, a+

i
], pi is the probability for

g± ∈ [a−

i
, a+

i
] and |di| = |a+

i
−a−

i
|. The relative uncertainty δ(g±)

of g± is defined as:

δ(g±) = 1− lim
ǫ→0

|D|+ ǫ−
∑

n

i=1
|di|

|D|+ ǫ
max{p1, p2, . . . , pn}

Here, |D| = |g+ − g−|, g− = inf a−

i
, g+ = sup a+

i
and ǫ > 0.

Different from the absolute uncertainty, the relative uncertainty

δ(g±) for a grey number g± measures its uncertainty in selecting

a candidate from its defined set of candidates only. Obviously, the

less candidates we have, the lower the relative uncertainty should

be. It is also relevant to the probability distribution of the candidate

intervals. A higher probability in one candidate will reduce the other

candidate’s chance to be selected, and hence decreases the relative

uncertainty.

As suggested by its name, a relative uncertainty is meaningful

only in the sense of relative measurement. For a grey number

with fixed domain, its absolute uncertainty is meaningful for the

whole domain, but its relative uncertainty is only meaningful for the

specific diameter (distance between its upper and lower limits) of

a grey number. The relative uncertainty of a grey number indicates

the uncertainty in selecting a value from the specific candidate set

of the grey number. Therefore, its value reflects the nature of the

candidate set of a grey number, as demonstrated by Theorem 1.

Theorem 1: The relative uncertainty δ of a grey number g± has

the following properties.

• 0 ≤ δ ≤ 1;

• δ = 0 iff g± is a white number;

• δ = 1 iff g± is a continuous grey number.

• δ¬max{p1, p2, . . . , pn};

• δ = 1−max{p1, p2, . . . , pn} iff g± is a discrete grey number;

• δ = 1 − 1

n
, if g± is a discrete grey number with n candidates

and all have the same significance;

Proof: The first item can be easily derived from definition 8.

From Definition 8, we have

δ = 1− lim
ǫ→0

|D|+ ǫ−
∑

n

i=1
|di|

|D|+ ǫ
max{p1, p2, . . . , pn}

if g± is a white number, we have

|D| =

n∑

i=1

|di| = 0

and

max{p1, p2, . . . , pn} = 1

Then, we have

δ = 1− lim
ǫ→0

ǫ

ǫ
= 0

If δ = 0, we have

lim
ǫ→0

|D|+ ǫ−
∑

n

i=1
|di|

|D|+ ǫ
max{p1, p2, . . . , pn} = 1

Thus
n∑

i=1

|di| = 0 and max{p1, p2, . . . , pn} = 1

∑
n

i=1
|di| = 0 means only discrete candidates are available, and

max{p1, p2, . . . , pn} = 1 indicates the maximum probability is

1. Therefore, only 1 discrete candidate exists, so it is a white number.

If g± is a continuous grey number, we have

n∑

i=1

|di| = |D|

Thus, we have

δ = 1− lim
ǫ→0

ǫ

|D|+ ǫ
max{p1, p2, . . . , pn} = 1

If δ = 1, we have

lim
ǫ→0

|D|+ ǫ−
∑

n

i=1
|di|

|D|+ ǫ
max{p1, p2, . . . , pn} = 0

For a grey number, we know max{p1, p2, . . . , pn} > 0, so we

have
n∑

i=1

|di| = |D|

From Definition 1, it is clear that g± is a continuous grey number.

Let max{p1, p2, . . . , pn} increase to max{p1, p2, . . . , pn} + ∆,

where 0 < ∆ ≤ 1−max{p1, p2, . . . , pn}

According to Definition 8, we have

δ1 = 1− lim
ǫ→0

|D|+ ǫ−
∑

n

i=1
|di|

|D|+ ǫ
(max{p1, p2, . . . , pn}+∆)

δ1 = δ − lim
ǫ→0

|D|+ ǫ−
∑

n

i=1
|di|

|D|+ ǫ
∆

Obviously, we have

δ1 < δ

For a discrete grey number g±, we have

|D| =

n∑

i=1

|di| = 0

Thus

δ = 1− lim
ǫ→0

|D|+ ǫ

|D|+ ǫ
max{p1, p2, . . . , pn}

= 1−max{p1, p2, . . . , pn}

From this conclusion, it is obvious that δ = 1− 1

n
if g± is a discrete

grey number with n candidates and all have the same significance.

The first four properties in Theorem 1 are the exact properties

required in Definition 7. This theorem proves that the proposed

relative uncertainty δ satisfies the required properties in Definition

7.

Example 2: a ∈ [0.2, 0.6], b ∈ {0.2, 0.6} and c ∈ {0.2, 0.4, 0.6}
are three grey numbers defined on [0, 1]. Their corresponding absolute

uncertainties are

g◦2(a) = 0.4, g◦2(b) = 0.4, g◦2(c) = 0.4

With Equation (1) and (3), we have

g◦1(a) = 0.4, g◦1(b) = 0, g◦1(c) = 0

g◦3(a) = 0.4, g◦3(b) = 0, g◦3(c) = 0
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Obviously, there is no difference in their absolute uncertainty. If

we consider g◦1 and g◦3 as their relative uncertainties, they do not

satisfy the last 3 properties required in Definition 7. b and c are

obviously not white numbers, but we have g◦1(b) = 0, g◦1(c) = 0,

g◦3(b) = 0 and g◦3(c) = 0. a is a continuous grey number, but we got

g◦1(a) = 0.4 < 1 and g◦3(a) = 0.4 < 1. The number of candidates

are completely different in a, b and c: there are infinite candidates

in a, but only two candidates in b and three candidates in c. The

probability for each candidate to be the represented number has a

significant difference between b and c, but both g◦1 and g◦3 failed to

reveal it.

For a, there is only one interval which covers all possible candi-

dates for the represented number, we have

max{p1, p2, . . . , pn} = 1 for a

For b, there are two discrete numbers as candidates, and we do not

have more information on their probability distribution. According to

the Jayness Maximum Entropy Principle [11], we can take uniform

distribution in this case. Thus, we have

max{p1, p2, . . . , pn} = 0.5 for b

max{p1, p2, . . . , pn} = 0.33 for c

Therefore, we have

δ(a) = 1, δ(b) = 0.5, δ(c) = 0.67

For the proposed measure, there is no violation to the required

properties in Definition 7. Although they share the same absolute

uncertainty, their relative uncertainty is completely different. c
and b have much better certainty than a in terms of their relative

uncertainty, and c is more uncertain than b. This example shows that

the measure can capture this type of uncertainty.

As we can see that the relative uncertainty δ of g± is different

from its absolute uncertainty g◦2 , and they are complementary to

each other. It demonstrates the difference between a grey number

and an interval. Firstly, an interval does not necessarily represent a

single value, but a grey number does; secondly, when an interval is

interpreted as a representation of a single unknown number, it is still

only a special case of a grey number where its relative uncertainty

is 1.

Similar to the degree of greyness (absolute uncertainty), we can

also define the relative uncertainty of an element of a grey set and

the relative uncertainty of a grey set.

Definition 9 (Relative uncertainty of an element in a grey set): Let

U be the finite universe of discourse, x be an element and x ∈ U .

For a grey set A ⊆ U , the characteristic function value of x with

respect to A is represented as a grey number g±
A
(x) ∈ D[0, 1]±. The

relative uncertainty δA(x) of element x for set A is expressed as

δA(x) = δ(g±
A
(x))

With the absolute uncertainty representation in Equation (2), the

degree of greyness of an element measures the difference between

its upper and lower limits of its characteristic function value, but

it does not tell how uncertain it is to get a value from such a

presentation. Although the representations in Equation (1) and (3)

do reveal some information on selection, they are not comprehensive

enough to consider both continuous and discrete components at the

same time. The relative uncertainty of an element fills this gap and

provides a measure to the uncertainty to get a value between the

upper and lower limits applicable both to continuous and discrete

components. In a similar way, we can measure the relative uncertainty

of a grey set.

Definition 10 (Relative uncertainty of a grey set): Let U be the

finite universe of discourse, A be a grey set and A ⊆ U . xi is an

element relevant to A and xi ∈ U . i = 1, 2, 3, . . . , N and N is the

cardinality of U . The relative uncertainty of set A is defined as

δ(A) =

N∑

i=1

δA(xi)

N

As a measure of the uncertainty of a grey set, the relative

uncertainty of a grey set reflects the degree of uncertainty when we

whitenise a grey set based on the grey values of their characteristic

functions. The lower the relative uncertainty is, the better chance we

have in choosing a right candidate. Therefore, the uncertainty of a

grey set does not relate only with its absolute uncertainty, but also to

its relative uncertainty as well. For the same absolute uncertainty, the

grey set with a lower relative uncertainty has less uncertainty. The

relative uncertainty reveals some uncertainty which is not captured

by the absolute uncertainty. Although two grey sets share the same

absolute uncertainty when their upper and lower limits are identical,

their relative uncertainties may not be the same.

Example 3: For a given universe U = {x, y, z}, there are two grey

sets:

A =
[0.1, 0.4]

x
+

[0.4, 0.7]

y
+

[0.7, 1]

z

B =
{0.1, 0.4}

x
+

{0.4, 0.7}

y
+

{0.7, 1}

z

Obviously, A is a grey set with continuous grey numbers (which

can also be considered as an interval-valued fuzzy set), and B is a

grey set with discrete grey numbers. We can calculate their absolute

uncertainty

g◦2(A) = 0.3, g◦2(B) = 0.3

Clearly, the two grey sets share the same absolute uncertainty in

this specific case. However, although they share similar boundaries

of their grey numbers in their characteristic functions, the number

of candidates in their grey numbers are completely different: A has

infinite candidates but B has only 2 candidates. This difference can

be revealed by their relative uncertainties. Similar to Example 2,

we take average probability distribution when we do not have more

information. According to Definition 8 and 10, we have

δA(x) = 1, δA(y) = 1, δA(z) = 1

δB(x) = 0.5, δB(y) = 0.5, δB(z) = 0.5

Following Definition 10, we have

δ(A) = 1, δ(B) = 0.5

We can also calculate g◦1 and g◦3

g◦1(A) = 0.3, g◦1(B) = 0, g◦3(A) = 0.3, g◦3(B) = 0

A is a set represented by continuous grey numbers and B is a set

using discrete grey numbers. According to Definition 7, we expect

g◦1(A) = 1 and g◦1(B) > 0. Which is clearly not the case. Therefore,

the proposed relative uncertainty provides a better solution than g◦1
and g◦3 .

Obviously, although the absolute uncertainty cannot differentiate

A from B in this case, their relative uncertainties disclose their

difference clearly. A is more uncertain than B but B is not

completely white in terms of relative uncertainty. In fact, A can be
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considered as an interval-valued fuzzy set as well, so this example

does demonstrate the difference between interval-valued fuzzy sets

and grey sets in general. The following theorem demonstrates this

crucial difference between a grey set and an interval-valued fuzzy set.

Theorem 2: The relative uncertainty of a grey set has the following

properties.

• 0 ≤ δA ≤ 1;

• δA = 0 iff A is a white set;

• δA = 1 iff A is an interval-valued fuzzy set;

The proof to this theorem is obvious from the Definition 9, 10

and Theorem 1.

Theorem 2 illustrates the relationship between grey sets, white

sets and interval-valued fuzzy sets from the point of view of relative

uncertainty. The relative uncertainty of a white set is always 0, and

the relative uncertainty of an interval-valued fuzzy set is always 1.

For a grey set, its relative uncertainty can be any value between 0
and 1. Obviously, a grey set covers more situations than an interval

valued fuzzy set. At the same time, there are also situations where

interval-valued fuzzy sets represent completely different situations

than a grey set. As a set representation, an interval can also be

interpreted as a collection of multiple values where each value is

valid and inclusive rather than exclusive. In this sense, there are

situations where a grey set does not cover an interval-valued fuzzy

set. The comparison between interval-valued fuzzy sets and grey sets

are presented in Table I.

IV. UNCERTAINTY COMPARISON BETWEEN GREY SETS

As illustrated in Definition 7, absolute uncertainty itself is not

sufficient to express the uncertainty of a grey number, and the relative

uncertainty is a useful supplement. However, the addition of an extra

measurement of uncertainty may cause confusion in their correct

usage. It is necessary to know when and where to use each of

them. Different from the absolute uncertainty of a grey number, the

relative uncertainty is closely associated with the specific diameter

of a grey number. Therefore, an uncertainty measurement of grey

numbers taking both of them into account is hugely beneficial to

their applications. To highlight the necessity to consider both absolute

and relative uncertainties together in the uncertainty comparison

between grey sets, we define the two together as a pair in uncertainty

measurement.

Definition 11 (Uncertainty pair of a grey number): Let g± be a

grey number, g◦2(g
±) be its absolute uncertainty and δ(g±) be its

relative uncertainty. The uncertainty pair of g± can be expressed as

u(g±) = (g◦2(g
±), δ(g±))

With the uncertainty pair u(g±), the absolute uncertainty

and relative uncertainty are both included in the representation.

The absolute uncertainty g◦2(g
±) gives a measure on the scale

of difference between candidate values, which is an absolute

value when the universe is fixed. A greater g◦2(g
±) indicates a

significant difference between candidate values, which implies a high

uncertainty in the result. The relative uncertainty δ(g±), reveals the

relative uncertainty for a given grey number. A greater δ(g±) means

more candidates involved which demonstrates less certainty for one

candidate to be selected. The pair (g◦2(g
±), δ(g±)) catches both

uncertainties in scale and selection and gives a better representation

of uncertainties in a grey number.

The uncertainty pair employs both the absolute uncertainty and

relative uncertainty of a grey number to represent uncertainties.

This raises the question of how to compare uncertainties between

two grey numbers. It is therefore necessary to construct a suitable

comparison between two uncertainty pairs. As aforementioned, the

absolute uncertainty of a grey number is an absolute value for a given

universe, but its relative uncertainty is always associated with the

specific grey number and it is a relative measurement. In this sense,

the absolute uncertainty is directly comparable between different grey

numbers defined on the same universe, but their relative uncertainty

can only be compared when they share the same absolute uncertainty.

We now define the comparison between two uncertainty pairs as

Definition 12.

Definition 12 (Comparison of uncertainty pairs): Let a and b
be two grey numbers defined on the same universe Ω, u(a) =
(g◦2(a), δ(a)) and u(b) = (g◦2(b), δ(b)) be their corresponding

uncertainty pairs. The comparison of u(a) and u(b) satisfies the

following items

• if g◦2(a) < g◦2(b), then u(a) < u(b);
• if g◦2(a) = g◦2(b) and δ(a) < δ(b), then u(a) < u(b);
• if g◦2(a) = g◦2(b) and δ(a) = δ(b), then u(a) = u(b);

In this way, we can compare the uncertainty pairs of different grey

numbers. We give some simple examples here.

Example 4: a ∈ [0.2, 0.6], b ∈ {0.2, 0.4, 0.6}, c ∈ {0.2, 0.6},

d ∈ {0.2, 0.8}, e ∈ {0.1, 0.7} are grey numbers defined on [0, 1].

We can calculate their absolute uncertainty, relative uncertainty and

uncertainty pairs as follows

g◦2(a) = 0.4, g◦2(b) = 0.4, g◦2(c) = 0.4, g◦2(d) = 0.6, g◦2(e) = 0.6

δ(a) = 1, δ(b) = 0.67, δ(c) = 0.5, δ(d) = 0.5, δ(e) = 0.5

Thus, we have

u(a) = (0.4, 1), u(b) = (0.4, 0.67), u(c) = (0.4, 0.5)

u(d) = (0.6, 0.5), u(e) = (0.6, 0.5)

According to Definition 12, we have

u(c) < u(b) < u(a) < u(d) = u(e)

When discrete candidates are involved, g◦1 , g◦2 and g◦3 defined in

Definition 2 can only give partial information on the uncertainty of

a grey number as aforementioned. They cannot satisfy the required

properties for relative uncertainty in Definition 7. However, the

uncertainty pair has captured both absolute uncertainty and relative

uncertainty and provides a reliable representation. Obviously, two

different grey numbers can have the same uncertainty, and they

share the same uncertainty only when they have the same absolute

uncertainty and the same relative uncertainty. It illustrates that a set

is not recoverable from its uncertainty. In uncertainty comparison,

the absolute uncertainty is the dominant factor, and the relative

uncertainty plays a role only when they share the same absolute

uncertainty. In example 4, u(a) and u(b) have greater relative

uncertainty values than u(d), but their absolute uncertainty are

less than u(d), so they are still lower than u(d) in terms of their

uncertainty pairs.

Similarly, we can define the uncertainty pairs for a grey set and

its element.

Definition 13 (Uncertainty pair of an element in a grey set): Let

U be the finite universe of discourse, x be an element and x ∈ U .

For a grey set A ⊆ U , the characteristic function value of x with
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TABLE I
COMPARISON BETWEEN INTERVAL-VALUED FUZZY SETS AND GREY SETS

Item Interval-valued fuzzy sets Grey sets

Characteristic function values Intervals within [0,1] Any sets of intervals within [0,1]

Discrete set of numbers No Yes

Interpretation Multiple or single Single

Distance between two limits Hesitation Absolute uncertainty

Relative uncertainty 1 A value between 0 and 1

respect to A is represented as a grey number g±
A
(x) ∈ D[0, 1]±. Its

absolute uncertainty is g◦A(x), and its relative uncertainty is δA(x).
The uncertainty pair of the element x for set A is expressed as

u(x) = (g◦A(x), δA(x))

We can define the uncertainty pair of a grey set as well.

Definition 14 (Uncertainty pair of a grey set): Let A be a grey set

defined in the finite universe of discourse U , g◦(A) be its absolute

uncertainty, and δ(A) be its relative uncertainty. The uncertainty pair

of set A is defined as

uA = (g◦(A), δ(A))

With the defined uncertainty pairs, we can represent both the

absolute uncertainty in scale and the relative uncertainty in selection.

This ability is necessary especially when the absolute uncertainty

itself cannot distinguish one set from another.

Example 5: Two travellers are planning their trips from city C1

to city C2. They have to arrive before midday to C2. There are

five trains for C2 from C1 in the morning, their departure time

slots are: 7:00am, 8:00am, 9:00am, 10:00am and 11:00am. Other

trains will arrive late. In addition to travelling by train, they may

also drive to C2 by car, in which case the departure time can be

any time between 8:15am and 8:45am. The travellers have three

options in their plan: trains, cars or any vehicle. The two travellers

are travelling independently. They may contact their host in C2 to

inform them of their decision. However, if they do not contact their

host in advance, we have to assume that they can take any option.

Due to the limited time slot for car departure (less than one hour),

we assume the probability for them to take a car is identical to the

probability for them to take one of the trains. We need to consider

the uncertainty of these options to make a choice.

For the three available options, we can represent it with three sets:

{7 : 00am, 8 : 00am, 9 : 00am, 10 : 00am, 11 : 00am}

[8 : 15am, 8 : 45am]

{7 : 00am, 8 : 00am, [8 : 15am, 8 : 45am], 9 : 00am,

10 : 00am, 11 : 00am}

Here, the domain is certainly the whole time slots:

[7 : 00am, 11 : 00am]

Mapping these time slots into [0, 1], we have the following grey

numbers:

a ∈ {0, 0.25, 0.5, 0.75, 1}

b ∈ [0.3125, 0.4375]

c ∈ {0, 0.25, [0.3125, 0.4375], 0.5, 0.75, 1}

and their value domain Dv:

Dv = [0, 1]

We can calculate their absolute uncertainty and relative uncertainty:

g◦2(a) = 1, g◦2(b) = 0.125, g◦2(c) = 1

δ(a) = 0.8, δ(b) = 1, δ(c) = 0.85

Let x and y be the two travellers, and the universe U = {x, y}.

We can establish the grey sets for all possible travel patterns:

A = {train for x, train for y} =
a

x
+

a

y

=
{0, 0.25, 0.5, 0.75, 1}

x
+

{0, 0.25, 0.5, 0.75, 1}

y

B = {train for x, car for y} =
a

x
+

b

y

=
{0, 0.25, 0.5, 0.75, 1}

x
+

[0.3125, 0.4375]

y

C = {train for x, any for y} =
a

x
+

c

y

=
{0, 0.25, 0.5, 0.75, 1}

x

+
{0, 0.25, [0.3125, 0.4375], 0.5, 0.75, 1}

y

D = {car for x, train for y} =
b

x
+

a

y

=
[0.3125, 0.4375]

x
+

{0, 0.25, 0.5, 0.75, 1}

y

E = {car for x, car for y} =
b

x
+

b

y

=
[0.3125, 0.4375]

x
+

[0.3125, 0.4375]

y

F = {car for x, any for y} =
b

x
+

c

y

=
[0.3125, 0.4375]

x

+
{0, 0.25, [0.3125, 0.4375], 0.5, 0.75, 1}

y

G = {any for x, train for y} =
c

x
+

a

y

=
{0, 0.25, [0.3125, 0.4375], 0.5, 0.75, 1}

x

+
{0, 0.25, 0.5, 0.75, 1}

y

H = {any for x, car for y} =
c

x
+

b

y

=
{0, 0.25, [0.3125, 0.4375], 0.5, 0.75, 1}

x
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+
[0.3125, 0.4375]

y

I = {any for x, any for y} =
c

x
+

c

y

=
{0, 0.25, [0.3125, 0.4375], 0.5, 0.75, 1}

x

+
{0, 0.25, [0.3125, 0.4375], 0.5, 0.75, 1}

y

According to Definition 4, 5, 9 and 10, we have

g◦(A) = 1, δ(A) = 0.8; g◦(B) = 0.5625, δ(B) = 0.9

g◦(C) = 1, δ(C) = 0.825; g◦(D) = 0.5625, δ(D) = 0.9

g◦(E) = 0.125, δ(E) = 1; g◦(F ) = 0.5625, δ(F ) = 0.925

g◦(G) = 1, δ(G) = 0.825; g◦(H) = 0.5625, δ(H) = 0.925

g◦(I) = 1, δ(I) = 0.85

From Definition 13 and 14, we have

u(A) = (1, 0.8);u(B) = (0.5625, 0.9)

u(C) = (1, 0.825);u(D) = (0.5625, 0.9)

u(E) = (0.125, 1);u(F ) = (0.5625, 0.925)

u(G) = (1, 0.825);u(H) = (0.5625, 0.925)

u(I) = (1, 0.85)

According to Definition 12, we have

u(E) < u(B) = u(D) < u(H) = u(F )

u(F ) < u(A) < u(C) = u(G) < u(I)

The existing degree of greyness g◦1 , g◦2 and g◦3 can also partially

reveal uncertainty.

Replace the absolute uncertainty in grey sets A, B, C, D, E, F ,

G, H and I with g◦1 , we have

g◦1(A) < g◦1(E) = g◦1(F ) = g◦1(H) = g◦1(I)

g◦1(I) < g◦1(B) = g◦1(C) = g◦1(D) = g◦1(G)

According to the values of g◦2 , we have

g◦2(E) < g◦2(F ) = g◦2(B) = g◦2(D) = g◦2(H)

g◦2(H) < g◦2(I) = g◦2(G) = g◦2(C) = g◦2(A)

Replace the absolute uncertainty in grey sets A, B, C, D, E, F ,

G, H and I with g◦3 , we have

g◦3(A) < g◦3(B) = g◦3(D) < g◦3(E) < g◦3(C)

g◦3(C) = g◦3(G) < g◦3(F ) = g◦3(H) < g◦3(I)

Due to the mix of grey numbers with discrete and continuous

candidates, g◦1 and g◦3 cannot satisfy the properties in Definition

7. g◦2 cannot differentiate those options with the same absolute

uncertainty. Both g◦1 and g◦3 conclude that train travel option A is

the most certain option, and they give very different order for other

sets. g◦1 cannot separate most sets. g◦3 suggests that the combination

of car and any vehicle in H and F is worse than the combination

of train and any vehicle in C and G. From the context, car travel

will certainly arrive in a narrow time slot and the conclusions from

g◦3 is obviously not ideal for this order. For the option with the least

uncertainty from the point of view of arrival time, car travel will

certainly give less uncertainty in arrival time, so the conclusion on

the best option A from both g◦1 and g◦3 is also not acceptable in this

case. Based on the result from the proposed uncertainty pairs, it is

clear that the car option E has the lowest uncertainty in comparison

with other possible combinations. The worst case comes as grey

set I when both travellers can take any choice. From the absolute

uncertainty, the grey set A, C, G and I have the same value, and the

grey set B, D, F and H share the same value, but the uncertainty

pairs can easily identify their difference. It reveals that H and F
have less uncertainty than C and G. This example demonstrates the

effectiveness of the uncertainty pairs.

V. CONCLUSIONS

Different from interval-valued fuzzy sets, a grey set may employ

discrete grey numbers as their characteristic function values. Under

the same absolute uncertainty, the discrete grey numbers may have

different number of candidate values. The present degree of greyness

can only reveal absolute uncertainty and partial relative uncertainty.

In this article we defined a new relative uncertainty of a grey number

and a grey set to give a complete picture of its relative uncertainty.

This proposed relative uncertainty has the ability to reveal the relative

uncertainty in the presence of both continuous intervals and discrete

numbers in the candidate set of a grey number. To reduce confusion

with the two different uncertainty measurements (absolute uncertainty

and relative uncertainty), the concept of an uncertainty pair of a

grey number and a grey set has also been defined. An uncertainty

pair employs both the absolute uncertainty and relative uncertainty

of a grey number and a grey set to represent their uncertainties.

To compare uncertainties between different grey numbers or grey

sets, we constructed the rules of comparison according to their

different roles and significance in the comparison. A number of

simple examples demonstrated the effectiveness of the proposed

models. Our work illustrated that neither the absolute uncertainty nor

the relative uncertainty alone can effectively capture the uncertainty

in a grey number and a grey set, and the combination of both of

them is necessary. Furthermore, the relative uncertainty does reveal an

important difference between a grey set and an interval-valued fuzzy

set as well. Our analysis proved that grey sets and interval-valued

fuzzy sets provide different but overlapping models for uncertainty

representation in sets.
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