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Abstract—The measure of distance between two fuzzy sets is
a fundamental tool within fuzzy set theory. However, current
distance measures within the literature do not account for the
direction of change between fuzzy sets; a useful concept in a
variety of applications, such as Computing With Words. In this
paper, we highlight this utility and introduce a distance measure
which takes the direction between sets into account. We provide
details of its application for normal and non-normal, as well
as convex and non-convex fuzzy sets. We demonstrate the new
distance measure using real data from the MovieLens dataset
and establish the benefits of measuring the direction between
fuzzy sets.

Index Terms—distance measure, fuzzy sets, Hausdorff metric,
directional distance

I. INTRODUCTION

Distance measures for fuzzy sets are an important tool and

have been applied to many fields. For example, Bonissone [1]

illustrates examples of applying distance measures in decision

analysis and artificial intelligence and Wang and Xing [2]

demonstrate distance measures applied to pattern recognition,

particularly to the problem of classification. Turksen and

Zhang [3] also demonstrate the applicability of similarity

based on distance measures in fuzzy logic inference based

on analogical reasoning.

A function d(A,B) → R
+, for which A and B are fuzzy

sets in the universe of discourse X , is commonly called a

distance measure if it satisfies the following properties [4]:

1) d(A,B) = d(B,A)
2) d(A,A) = 0
3) d(D,Dc) = maxA,B∈Xd(A,B)
4) If A ⊂ B ⊂ C, then d(A,B) ≤ d(A,C) and d(B,C) ≤

d(A,C)

Distance measures that are currently in the literature do

not account for the “change in direction” between fuzzy sets.

That is, they reveal the distance between two fuzzy sets, but

they do not indicate if a fuzzy set is placed to the left or

right of another fuzzy set; a concept which will prove useful

within Computing with Words (CW) and the ranking of fuzzy

numbers. This paper discusses the value of using a distance

This work was partially funded by the EPSRC’s Towards Data-Driven
Environmental Policy Design grant, EP/K012479/1 and the RCUK’s Horizon
Digital Economy Research Hub grant, EP/G065802/1.

measure which identifies the direction of change between

fuzzy sets, and proposes an extension of the Hausdorff metric

to implement it. Additional extensions of the distance measure

are also presented to solve measuring the distance between

non-normal and non-convex fuzzy sets.

In Section II we present some background information of

fuzzy sets, followed by a discussion presenting the importance

of using α-cuts in distance measures of fuzzy sets as well as

introducing a number of alpha-cut based distance measures

currently used in the literature. Section III introduces a new

direction-based distance measure, followed by demonstrations

of the new measure compared with current measures in Section

IV. Demonstrations using synthetic fuzzy sets and real data are

presented. Sections V and VI look at extensions of the newly

proposed distance measure for non-normal and non-convex

fuzzy sets, respectively. Finally, conclusions are presented in

Section VII.

II. BACKGROUND

A. Fuzzy Sets

Fuzzy sets were first introduced by Zadeh [5] in 1965 and

have since been applied to many fields, including data mining

[6], time-series prediction [7] and CW [8]. A fuzzy set is a

set in which the membership of each element is no longer a

Boolean, i.e. not 0 or 1, but instead its membership lies in

the interval [0,1]. A fuzzy set F may be viewed as a set of

ordered pairs as follows [9]:

F = (x, µF (x)) | x ∈ X (1)

where µF (x) indicates the membership grade of the element

x in the fuzzy set F . In a discrete universe of discourse, the

fuzzy set F can also be written as [9]

F =
∑

x

µF (x) / x (2)

where
∑

denotes the collection of all points x ∈ X with

associated membership value µF (x).

B. α-cuts vs Vertical Slices

In [10] it is noted that a distance measure for fuzzy sets

should ideally focus on the ordering within the x-axis as it is



this axis that holds the important information regarding where

a set’s membership lies.

To show the importance of α-cuts in distance measures,

consider the following example. A survey of three restaurants

(A, B and C) is taken to find out how delicious the food is

at each restaurant, on a scale of 0 to 10. Fuzzy sets are then

constructed using the results of the survey; Fig. 1(a) shows an

example of such fuzzy sets. A distance measure can be used

on these fuzzy sets to determine how much more delicious the

food of one restaurant is compared to another. Two common

methods of measuring the distance (or similarity) between

fuzzy sets are vertical slices (shown in Fig. 1(b)) and α-cuts

(shown in Fig. 1(c)). The α-cut of the fuzzy set A is a non-

fuzzy set comprised of all the elements whose membership

grade within A is greater than or equal to α [11]; this is written

as Aα = {x | µA(x) ≥ α}.

Using a vertical slice approach will give an indication of

how much the two sets overlap, capturing the respective food

quality. This is useful and most often used when measuring

the similarity between the two sets e.g. their intersection, but

it does not indicate how far apart they are along the x-axis.

For example, if the intersection between two fuzzy sets is the

empty set then both sets could be infinitely far apart or right

next to each other.

By using α-cuts to measure the distance between fuzzy sets

we get an approximation of how far apart the two sets are

in terms of their universe of discourse. Thus, the result of the

distance measure will be a value that is meaningful to the user.

For example, if the distance between two of the restaurants is

5 then the user can understand that one of the restaurants was

rated approximately 5 points higher than the other restaurant.

Two equations ((3) and (4)) have been created to demon-

strate this idea. (3) uses vertical slices and is written as follows:

d(A,B) =
1

n

n
∑

i=1

|µA(xi)− µB(xi)| (3)

where n is the total number of discretisations on the x-axis.

The next equation (4) uses α-cuts and is written as:

d(A,B) =
1

m

m
∑

i=0

max{|Aαil
−Bαil

|, |Aαir
−Bαir

|} (4)

where Aαil
is the left point of the α-cut of A at αi, Aαir

is the right point of the α-cut of A at αi, and m is the total

number of α-cuts. The fuzzy sets used in this demonstration

are shown in Fig. 1(a). Both the x-axis and y-axis were

discretised into points each at a distance of 0.1. The results

of this demonstration are displayed in Table I. Examining the

fuzzy sets in Fig. 1(a), it would be sensible to describe set C
as being at a greater distance from set A than set B is from

A. However, it can be clearly seen that when using vertical

slices the result of the distance measure decreases as the sets

are placed further apart along the x-axis. This is a result of

the equation measuring the distance between the fuzzy sets

according to their membership values on the y-axis, which can

lead to unintuitive results when the fuzzy sets being measured

(a)

(b) (c)

Fig. 1. (a) Three fuzzy sets to demonstrate vertical slices and α-cuts; A, B and
C (b) Dashed lines representing vertical slices. (c) Dashed lines representing
α-cuts.

TABLE I
A COMPARISON OF VERTICAL SLICE AND α-CUT APPROACHES ON

MEASURING DISTANCE USING THE FUZZY SETS IN FIG. 1(A).

(A,A) (A,B) (A,C)

Vertical slice based distance (3) 0.0 0.538 0.396
α-cut based distance (4) 0.0 3.495 6.262

are disjoint. For example, between x = 4 and x = 6 the

distance between sets A and C is 0 because they both have

the same membership value at these coordinates.

Considering the α-cut approach, the distance according to

the measure increases as the sets move further apart along the

x-axis. This seems logical as it is the x-axis that is of most

importance when defining sets so it is generally this axis that

a user is interested in when comparing different fuzzy sets.

C. Current Distance Measures

In this section, the Hausdorff metric for two intervals is

reviewed, followed by two existing distance measures for

fuzzy sets which use α-cuts.

The Hausdorff metric gives a generalisation of the distance

between two non-empty crisp sets. The Hausdorff distance

between two intervals is defined as [10]:

h(Ā, B̄) = max{|Āl − B̄l|, |Ār − B̄r|} (5)



where Ā = [Āl, Ār] and B̄ = [B̄l, B̄r]. This is a common

metric used to measure the distance between two α-cuts.

Two common distance measures for fuzzy sets which use the

Hausdorff metric are introduced next.

Ralescu and Ralescu [12] introduced the following generali-

sation of the Hausdorff metric to measure the distance between

fuzzy sets:

dRR(A,B) =

∫ 1

α=0

h(Aα, Bα)dα (6)

where h is the conventional Hausdorff metric as shown in (5).

Chaudhuri and Rosenfeld also proposed a new metric to

determine the distance between fuzzy sets based on the Haus-

dorff metric as follows [13].

dCR(A,B) =

∑m
α=1 yα h(Aα, Bα)

∑m
α=1 yα

(7)

where the y-axis is discretised into m points (y1, y2, ..., ym),

Aα is the non-fuzzy α-cut set of the fuzzy set A at y-

coordinate yα, and h is the conventional Hausdorff metric in

(5).

Both Ralescu & Ralescu’s and Chaudhuri & Rosenfeld’s

distance measures assume the fuzzy sets being measured are

normal (i.e. ∃x ∈ X µA(x) = 1 and ∃x ∈ X µB(x) = 1).

However, an extension of Chaudhuri & Rosenfeld’s measure

(7) for non-normal fuzzy sets (i.e. ∀x ∈ X µA(x) < 1 or

∀x ∈ X µB(x) < 1) is given in [13] and is discussed in

Section V.

Having reviewed the core concepts of this paper, we proceed

to develop direction-based distance measures for normal and

convex, as well as non-normal and non-convex fuzzy sets.

III. DIRECTIONAL DISTANCE MEASURES

The following proposes the idea that the property of sym-

metry for distance measures (i.e., d(A,B) = d(B,A)) is not

ideal for every problem. For example, consider two fuzzy sets

that represent on a scale of 1 to 10 how fun two different

roller coasters are according to a public survey (1 denoting

not at all and 10 meaning very much). When comparing the

distance between these fuzzy sets, the result will indicate how

similar the roller coasters are in terms of how fun they are,

but it will not indicate which is more fun. For example, if

d(rollercoasterA, rollercoasterB) = 6, we will know that one

of them was given, roughly speaking, “6 more points” than

the other. However, there is no way to determine which is

the more fun roller coaster without visually checking which

set is actually on the left or right of the other. This can be

time-consuming and tedious if many comparisons need to be

made.

Instead, it would be ideal if the result were a signed

value. For example, the result will be a positive value

if rollercoasterB is more fun than rollercoasterA, and will

be a negative value if the opposite case is true. For ex-

ample d(rollercoasterA, rollercoasterB) = 6 indicates that

rollercoasterB was rated approximately 6 points higher than

rollercoasterA. For the same case, it will be true that

d(rollercoasterB, rollercoasterA) = −6, indicating that roller-

coasterA was rated approximately 6 points less than roller-

coasterB. Now, it is clear from the result of d which roller

coaster is the most fun and by how much.

By taking this approach, the distance measure will no longer

have the property of symmetry (i.e., d(A,B) 6= d(B,A)),
however the absolute values of d(A,B) and d(B,A) will be

equal (i.e. |d(A,B)| = |d(B,A)|).
The concept of a directional distance measure will prove

useful in analysing survey data as shown in Section IV-B and

will be a valuable tool in CW [8] and, more generally, in the

evaluation of ratings and rankings of fuzzy numbers and sets.

As mentioned in (5), when comparing intervals, the Haus-

dorff metric is described by

h(Ā, B̄) = max{|Āl − B̄l|, |Ār − B̄r|}

where Ā = [Āl, Ār] and B̄ = [B̄l, B̄r] [10]. Currently, this will

never give a negative value for a negative distance. However,

it can be modified as follows:

h(Ā, B̄) =

{

B̄l − Āl, if |B̄l − Āl| > |B̄r − Ār|.

B̄r − Ār, otherwise.
(8)

This ensures that both the maximum distance and the sign

are preserved. For example, in Fig. 2, set Ā is defined as [1, 3]
and set B̄ is defined as [5, 11]. By using (8) for h(Ā, B̄) the

result of h is 8. Alternatively, when computing h(B̄, Ā) the

result of h is −8.

By testing |B̄l − Āl| > |B̄r − Ār| within (8), the absolute

values of h(Ā, B̄) and h(B̄, Ā) remain the same as when using

the conventional Hausdorff metric (5). It also follows that the

modified property |d(A,B)| = |d(B,A)| is satisfied.

Fig. 2. Two interval sets, Ā and B̄.

IV. DEMONSTRATIONS

This section presents demonstrations of the new direction-

based distance measure. The distance measures by Ralescu

and Ralescu given in (6) and Chaudhuri and Rosenfeld (7)

are presented using the regular Hausdorff metric for intervals

as shown in (5), and the new direction-based measure shown

in (8). Two demonstrations are presented in this section. The

first uses synthetic fuzzy sets, and the second uses fuzzy sets

constructed from real data.

A. Synthetic Example

The fuzzy sets shown in Fig. 3 were constructed to demon-

strate the new direction-based distance measure compared to

conventional measures. For this demonstration, 51 α-cuts were

taken for the distance measures. We next present and discuss

the results of this demonstration shown in Table II.



It can be seen through the measurements based on sets

A through C, that as the distance between the sets along

the x-axis increases, the value of the distance measures also

increases. Also, for the proposed direction-based measures

based on (8), if the fuzzy set given as the second parameter

to the distance function is placed to the right of the fuzzy

set given as the first parameter then the distance according to

the measure is a positive value, and if the fuzzy set of the

second parameter is to the left of the fuzzy set of the first

parameter then the distance measure gives a negative value.

Also, it can be seen by the results between fuzzy sets A and

D and fuzzy sets A and E that if the peak of the second fuzzy

set is positioned to the right of the peak of the first fuzzy set

then the result of the distance measure will be a positive value.

Note from Table II that when using (8), the modified

property of distance measures has been obeyed. Only the

sign of the value has changed, but their absolute values are

the same. For example, d(A,C) and d(C,A) share the same

absolute value, it is only their signs that differ. Additionally,

it can be seen in Table II that the results from Ralescu &

Ralescu’s and Chaudhuri & Rosenfeld’s equations share the

same absolute value using (8) and (5).

B. Real World Example

MovieLens is a dataset of movie ratings developed by

the GroupLens project at the University of Minnesota. Their

datasets are available at http://www.grouplens.org. The dataset

used for this demonstration is the 100k MovieLens dataset,

which consists of 100,000 ratings from 943 users on 1682

movies, where each rating is between 1 and 5.

Fuzzy sets were constructed for each film by calculating

the histogram of all ratings given to each film, and linear

interpolation was used to find the values between known

points. The distance measures introduced thus far have been

designed only for normalised fuzzy sets, so it is necessary

that the histograms of the films are normalised so that the

distance measures can be used. The sets were normalised by

dividing the y value at each x-coordinate by the peak y value;

this ensures that the peak value of each fuzzy set is now 1.

The histograms for the three films Super Mario Bros. (SMB),

Mars Attacks! (MA) and Star Wars (SW) and their normalised

fuzzy sets are shown in Fig. 4. The two previously shown

distance measures by Ralescu and Ralescu (RR) (6) and by

Chaudhuri and Rosenfeld (CR) (7) are demonstrated using

the conventional Hausdorff metric in (5) and the proposed,

modified, direction-based Hausdorff measure in (8). These

measures were applied to the fuzzy sets in Fig. 4(b) to

(a)

(b)

(c)

Fig. 3. Fuzzy sets used to demonstrate the distance measures. (a) Fuzzy sets
A, B and C. (b) Fuzzy sets A and D. (c) Fuzzy sets A and E.

TABLE II
RESULTS OF DISTANCE MEASURE APPLIED TO THE FUZZY SETS IN FIG. 3.

(A,A) (A,B) (A,C) (C,A) (B,A) (A,D) (D,A) (A,E) (E,A)

Ralescu & Ralescu & (5) 0.0 3.0 6.0 6.0 3.0 4.0 4.0 2.0 2.0
Ralescu & Ralescu & (8) 0.0 3.0 6.0 -6.0 -3.0 4.0 -4.0 2.0 -2.0

Chaudhuri & Rosenfeld & (5) 0.0 3.0 6.0 6.0 3.0 3.65 3.65 1.65 1.65
Chaudhuri & Rosenfeld & (8) 0.0 3.0 6.0 -6.0 -3.0 3.65 -3.65 1.65 -1.65



(a)

(b)

Fig. 4. (a) Histogram based fuzzy sets of three film ratings from the
MovieLens dataset. (b) Normalised histogram based fuzzy sets of the same
films.

determine how much better or worse each film was rated

compared to each other film. The results of this experiment,

for which 51 α-cuts were taken, are shown in Table III.

The results of the distance measures shown in Table III

indicate that the difference in rating between MA and SW

is slightly greater than the distance between SMB and MA

Referring to the fuzzy sets in Fig. 4(b), these results are

expected; the membership functions of SMB and MA are

much closer to each other compared to the membership

functions of MA and SW. Additionally, referring to Fig. 4(b),

it is expected that the greatest distance between any two films

TABLE III
RESULTS OF DISTANCE MEASURE APPLIED TO THE FUZZY SETS IN FIG.

4(B).

(SMB, MA) (SMB, SW) (MA, SW) (MA, SMB) (SW, SMB) (SW, MA)

RR & (5) 1.194 2.775 1.974 1.194 2.775 1.974

RR & (8) 1.194 2.775 1.974 -1.194 -2.775 -1.974

CR & (5) 1.399 3.270 2.097 1.399 3.270 2.097

CR & (8) 1.399 3.270 2.097 -1.399 -3.270 -2.097

is between SMB and SW as their membership functions share

an inverse relationship, and the peaks of their membership

functions are the furthest apart than any other two films. In

Table III it can be seen that SMB and SW do have the greatest

distance by a considerable margin.

Observing the measures by Ralescu & Ralescu and Chaud-

huri & Rosenfeld when using the conventional Hausdorff

metric (5), the difference in ratings between each film is clear.

For example, in both measures the distance between SMB

and SW is clearly greater than the distance between SMB and

MA, however, it is not clear which film is better. When using

the direction-based Hausdorff measure in (8) the latter is not

the case. Thus, the extended measure has shown additional

information whilst also maintaining the same absolute values

that are produced when using the conventional Hausdorff

metric.

V. NON-NORMAL FUZZY SETS

Thus far, the distance measures introduced can only be

applied to normalised fuzzy sets, where the peak of a set’s

membership is 1. However, it is common for sets to be non-

normal. Referring to Fig. 4, it is clear from the original

histograms in Fig. 4(a) that SW received a higher propor-

tion/number of ratings of 5 than MA did of 3, however,

this information is lost in the normalised histograms in Fig.

4(b). The following process was performed to retain this

information. For every film, each value on the y-axis pertaining

to the number of times a rating on the x-axis was given is

divided by the total number of ratings given for that film; ergo

the membership value µA(x) now indicates the percentage of

people that gave the rating x for the film A. This was applied

to all of the films in Fig. 4(a) resulting in the fuzzy sets shown

in Fig. 5.

It can be seen that the current α-cut approach to measuring

distance cannot be used on these sets. For example, comparing

SMB with SW at α = 0.5, the α-cut of SMB is [null, null]
because the set is not present at this α-level. However, SW has

an α-cut of [4.8, 5.0]. This poses the question ‘how can the

distance between these two fuzzy sets be measured?’ Existing

solutions from the literature include the following approaches

by Chaudhuri and Rosenfeld [13] and Fan [14].

Chaudhuri and Rosenfeld put forward an extension of their

distance measure (7) in [13]. Firstly, each set is modified so

that the maximum membership value of each fuzzy set is 1,

and these modified fuzzy sets are applied to (7). Next, the

original, non-modified fuzzy sets are applied to the following



equation [13]

e(A,B) = ε

∑

x∈X |µA(x)− µB(x)|
∑

x∈X x
(9)

where ε is a small positive constant, and its value is determined

by the importance of the equation. Finally (7) and (9) are

joined together as follows [13]:

dCR(A,B) =
∑

m

α=1
yα h(Aα,Bα)

∑
m

α=1
yα

+ ε
∑

x∈X
|µA(x)−µB(x)|
∑

x∈X
x

(10)

Using Chaudhuri and Rosenfeld’s method in (10) with the

direction-based Hausdorff measure in (8), we have altered the

extension for non-normal fuzzy sets to no longer take the

absolute value |µA(xi) − µB(xi)|. This is in keeping with

the desire to maintain information regarding the direction of

change between the fuzzy sets, and ensures that the property

|d(A,B)| = |d(B,A)| is maintained. Thus, Chaudhuri and

Rosenfeld’s measure is altered to

dCR(A,B) =
∑

m

α=1
yα h(Aα,Bα)

∑
m

α=1
yα

+ ε
∑

x∈X
µB(x)−µA(x)
∑

x∈X
x

(11)

Fan [14] also put forward the following extension of the

Hausdorff metric for non-normal fuzzy sets within the compact

metric space S. Let h(∅, ∅) = 0 and h(∅, U) = h(U, ∅) = w
for all non-empty sets U , where w = suph(U, V ) for all non-

empty compact subsets U, V ⊂ S. Based on Fan’s measure,

we propose the following extension.

Let h(Aα, ∅) = h(Aαk
, Bαk

) where αk is the α-level

at max{|h(Aα, Bα)|} ∀α Aα 6= ∅ ∧ Bα 6= ∅. Likewise,

let h(∅, Aα) = h(Bαk
, Aαk

) where αk is the α-level at

max{|h(Bα, Aα)|} ∀α Aα 6= ∅ ∧Bα 6= ∅. By using this, the

distance between an α-cut and the empty set is the maximum

distance between the non-empty α-cuts of the sets being

measured. Additionally, this approach also ensures that the

sign of the distance is maintained.

We propose to disregard h(∅, ∅) for the following reason.

Using (8), the distance between SMB and SW in Fig. 5 at

α = 0.36 is 2.52. Next, the distance at α = 0.46 (at which the

α-cut of SMB is the empty set) is 2.56. This was calculated

using the newly introduced extension based on Fan’s extension

[14]. Considering this, it is unrealistic to state that the distance

at α = 0.56, at which the α-cut of each film is the empty set,

is 0. Though neither fuzzy set is present at this α-cut, it is

nonsensical to describe the fuzzy sets as having a distance

of 0 when all other α-cuts denote otherwise. Taking this into

account, we propose the following new distance measure for

non-normal fuzzy sets:

dCRF (A,B) =

∑

α∈[0,λ]] yα h(Aα, Bα)
∑

α∈[0,λ] yα
(12)

where λ = sup{α ∈ [0, 1] : Aα 6= ∅ ∨ Bα 6= ∅} and h
is described in (8). A numerical example of measuring the

distance between non-normal fuzzy sets using (12) is presented

in the appendix.

Fig. 5. Three non-normal film ratings from the MovieLens dataset.

TABLE IV
RESULTS OF DISTANCE MEASURES APPLIED TO THE FUZZY SETS IN FIG. 5.

(SMB, MA) (SMB, SW) (MA, SW) (MA, SMB) (SW, SMB) (SW, MA)

(11) & (8) 1.431 3.261 2.057 -1.431 -3.261 -2.057

(12) & (8) 0.904 2.374 2.348 -0.904 -2.374 -2.348

Demonstrations were performed on these non-normal fuzzy

sets using Chaudhuri and Rosenfeld’s altered method given in

(11), and the proposed method shown in (12). Both equations

use the modified direction-based Hausdorff measure in (8).

Each axis was discretised into 51 equidistant points, and ε
was set as 1. The results are shown in Table IV.

Comparing the results on the normalised fuzzy sets in

Table III with the results on the non-normal fuzzy sets in

Table IV, the distances of the non-normal sets have changed

significantly. For example, in Table IV, according to (12),

SMB and SW are now approximately as close to each other

as MA and SW. Whereas in the previous experiment in Table

III the films SMB and SW have the greatest distance by a

considerable margin. In Fig. 5, the difference between the

membership functions of SMB and MA is much smaller

than in Fig. 4 because their membership functions have been

compressed. It is due to their membership functions being

more similar that the distance of these films from SW is

also similar. The distances according to (11), however, are

approximately the same in both experiments. Note that in

Table IV both Chaudhuri & Rosenfeld’s altered measure and

the proposed measure based on Fan’s extension still satisfy

|d(A,B)| = |d(B,A)|.

VI. NON-CONVEX FUZZY SETS

The distance measures discussed so far can only be utilised

on convex fuzzy sets. For example, consider the fuzzy set for



Fig. 6. The non-convex fuzzy set for the film All Dogs Go to Heaven 2.

the film All Dogs Go to Heaven 2 shown in Fig. 6. The α-

cut for this film at y = 0.6 yields four points. The Hausdorff

measure in (5) and (8) can so far only be applied when there

are two distinct end points, and therefore cannot be applied

to this set without loss of information, for example discarding

two data points so that only two remain.

Firstly, to solve this problem, it needs to be decided what

the result of the distance measure should be. For example,

in Fig. 7, should the distance increase as the fuzzy set A
becomes more concave, or should the distance decrease? It

could be argued that since the similarity between the shapes

of the two sets decreases, the distance should increase. The

following proposes a method to solve this problem.

Fig. 7(e) shows two fuzzy sets, A and B. At α = 0.8,

Aα = [1.8, 2.6, 3.5, 4.3], and Bα = [6.8, 9.2]. One method

to calculate the distance at this α-cut is to split Aα into

two intervals, Aα1 and Aα2. Next, we calculate the distance

between Aα1 and Bα and the distance between Aα2 and Bα.

Then, to reduce the resulting two distances to one value, a fair

approach is to take their average. Thus, the α-cut at α = 0.8,

is calculated as follows.

First, Aα is split into two intervals, Aα1 = [1.8, 2.6] and

Aα2 = [3.5, 4.3]. Next, using (8), h(Aα1, Bα) = 6.6 and

h(Aα2, Bα) = 4.9. Finally, the average of these is 5.75 and

is used as the result of h(Aα, Bα) at α = 0.8.

To test this method, an experiment was carried out on the

sets in Fig. 7 using this extension with RR’s (6) and CR’s

(7) measures. The non-convex set (A) was given as the first

parameter of the distance measure, and the convex set (B)

was given as the second parameter; thus, each measure should

result in a positive distance. The results of the experiment are

displayed in Table V. These results show that as the fuzzy

set A becomes increasingly concave, the result of the distance

measure increases.

Using this method, it is now possible, for example, to

compare the ratings of the film All Dogs Go to Heaven 2

in Fig. 6 with any of the films in 4(b).

(a)

(b)

(c)

(d)

(e)

Fig. 7. Comparing distance between a non-convex fuzzy set and a convex
fuzzy set.



TABLE V
RESULTS OF THE EXTENDED HAUSDORFF MEASURE APPLIED TO THE

FUZZY SETS IN FIG. 7; I.E. d(A,B)

a b c d e

RR 4.99 5.061 5.141 5.227 5.317
CR 5.00 5.183 5.312 5.436 5.552

VII. CONCLUSIONS

In this paper we have introduced a distance measure for

fuzzy sets which accounts for their direction of change, and

have presented extensions of this distance measure for non-

normal and non-convex fuzzy sets. We have demonstrated the

applicability of the new distance measure using the MovieLens

dataset and have asserted the advantage of using the new

measure over distance measures which do not account for

distance.

In the future, we plan to further develop and test the new

distance measures, and implement extensions for interval and

general type-2 fuzzy sets [15]. We will also apply the new

distance measures within applications in CW, using fuzzy sets

to construct word models of subjective information [16] and

apply distance-based reasoning.
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APPENDIX

NUMERICAL EXAMPLE ON NON-NORMAL FUZZY SETS

The proposed direction-based distance measure using (12)

and (8) is demonstrated using the non-normal fuzzy sets SMB

and SW in Fig. 5. The fuzzy sets for SMB and SW are

distributed as follows:

SMB = 0.385/1, 0.269/2, 0.231/3, 0.115/4, 0.0/5
SW = 0.015/1, 0.027/2, 0.098/3, 0.302/4, 0.557/5

Using linear interpolation, the α-cuts of each film, given in

the format α/[xl, xr], are:

SMB = 0.1/[1.0, 4.0], 0.2/[1.0, 4.0], 0.3/[1.0, 1.0]
SW = 0.1/[2.44, 5.0], 0.2/[3.08, 5.0], 0.3/[3.36, 5.0],

0.4/[3.64, 5.0], 0.5/[3.92, 5.0]

The α-cut at 0.0 has been disregarded because it does not

contribute to (12). The distance measure using (12) and (8)

is calculated as follows where λ = 0.5:

At α= 0.1, h(SMBα, SWα) = 1.44
At α= 0.2, h(SMBα, SWα) = 2.08
At α= 0.3, h(SMBα, SWα) = 2.36
At α= 0.4, h(SMBα, SWα)

= h(Aαk
, Bαk

)
= 2.36

At α= 0.5, h(SMBα, SWα)
= h(Aαk

, Bαk
)

= 2.36

Finally, combining these results in (12) gives

d(A,B)
= 0.1×1.44+0.2×2.08+0.3×2.36+0.4×2.36+0.5×2.36

0.1+0.2+0.3+0.4+0.5

= 3.392
1.5

= 2.261


