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The impact of radiation therapy in cancer treatments has shown great improvement in clinical 

outcomes. Recent radiation therapy advances with innovative technologies have changed the 

standard of care in cancer treatments rapidly. Evolution in radiation therapy has demanded 

highly specialized trained resources and comes at substantial increase in cost. Even though 

evidence based treatments have demonstrated the important role of advanced radiation therapy 

technologies in various cancer treatments, the sustainability of quality healthcare in an 

increasingly resource constrained environment has been ongoing challenge. Therefore, 

economic evaluation for new treatment technologies has been requested to make the most 

effective use of resources. 

       In this dissertation, we evaluated cost effectiveness analysis (CEA) for various disease sites 

with innovative technologies. First, we conducted CEA of 3-dimensional (3D) image guided 

brachytherapy (IGBT) compared to conventional 2-dimensional (2D) high dose rate (HDR) 

brachytherapy for the treatment of locally advanced cervical cancer.  We found that 3D IGBT is 

a cost effective strategy compared to 2D HDR brachytherapy with a willingness to pay (WTP) 

threshold of $50,000/quality adjusted life years (QALY) gained, strongly supporting the routine 

use of 3D image guided brachytherapy. Second, we performed a CEA of single fraction of 

stereotactic body radiation therapy (SBRT) compared with single fraction of external beam 

radiation therapy (EBRT) for palliation of vertebral bone metastases. We found that SBRT is not 

a cost effective treatment strategy compared to conventional EBRT with a WTP threshold of 
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$100,000/QALY gained in patients with relatively short life expectancy. Finally, we performed a 

CEA of stereotactic body radiation therapy (SBRT) compared to radiofrequency ablation (RFA) 

for inoperable colorectal liver metastases. We found that SBRT is not cost effective compared to 

RFA with a WTP of $100,000/QALY gained unless large tumor size is treated.       

        In summary, given increasing attention placed on healthcare costs, a cost-effectiveness 

analysis can provide the appropriate platform to compare these treatment options. Therefore, the 

findings from the papers in this dissertation will identify the proper treatment choice to improve 

clinical outcomes at a reasonable cost, incorporating economic considerations into clinical 

decision making. 



 vi 

TABLE OF CONTENTS 

PREFACE .................................................................................................................................... XI 

1.0 INTRODUCTION ........................................................................................................ 1 

2.0 COST EFFECTIVENENESS ANALYSIS OF 3D IMAGE GUIDED 

BRACHYTHERAPY COMPARED WITH 2D BRACHYTHERAPY IN THE 

TREATMENT OF LOCALLY ADVANCED CERVICAL CANCER ................................... 3 

2.1 INTRODUCTION ............................................................................................... 3 

2.2 METHODS ........................................................................................................... 5 

2.2.1 Decision model ................................................................................................. 5 

2.2.2 Model Assumptions ......................................................................................... 6 

2.2.3 Costs .................................................................................................................. 7 

2.2.4 Utilities .............................................................................................................. 7 

2.2.5 Cost Effectiveness Analysis ............................................................................. 8 

2.2.6 Sensitivity Analysis .......................................................................................... 8 

2.3 RESULTS ........................................................................................................... 12 

2.3.1 Base case analysis........................................................................................... 12 

2.3.2 Sensitivity Analyses ....................................................................................... 12 

2.4 DISCUSSION ..................................................................................................... 17 



 vii 

3.0 COST EFFECTIVENESS ANALYSIS OF SINGLE FRACTION OF 

STEREOTACTIC BODY RADIATION THERAPY COMPARED WITH SINGLE 

FRACTION OF EXTERNAL BEAM RADIATION THERAPY FOR PALLIATION OF 

VERTEBRAL BONE METASTASES ..................................................................................... 20 

3.1 INTRODUCTION ............................................................................................. 20 

3.2 METHODS ......................................................................................................... 22 

3.2.1 Decision model ............................................................................................... 22 

3.2.2 Costs ................................................................................................................ 23 

3.2.3 Utilities ............................................................................................................ 23 

3.2.4 Cost effectiveness analysis............................................................................. 24 

3.2.5 Sensitivity analysis ......................................................................................... 24 

3.3 RESULTS ........................................................................................................... 29 

3.3.1 Base case analysis........................................................................................... 29 

3.3.2 Sensitivity Analyses ....................................................................................... 29 

3.4 DISCUSSION ..................................................................................................... 33 

4.0 COST EFFECTIVENSS ANALYSIS OF STEREOTACTIC BODY 

RADIATION THERAPY COMPARED WITH RADIOFREQUENCY ABLATION FOR 

INOPERABLE COLORECTAL LIVER METASTASES ..................................................... 37 

4.1 INTRODUCTION ............................................................................................. 37 

4.2 METHODS ......................................................................................................... 39 

4.2.1 Decision model ............................................................................................... 39 

4.2.2 Costs ................................................................................................................ 40 

4.2.3 Utilities ............................................................................................................ 41 



 viii 

4.2.4 Cost effectiveness analysis............................................................................. 41 

4.2.5 Sensitivity analysis ......................................................................................... 42 

4.3 RESULTS ........................................................................................................... 46 

4.3.1 Base case analysis........................................................................................... 46 

4.3.2 Sensitivity analysis ......................................................................................... 46 

4.4 DISCUSSION ..................................................................................................... 51 

5.0 CONCLUSION ........................................................................................................... 56 

BIBLIOGRAPHY ....................................................................................................................... 59 



 ix 

 LIST OF TABLES 

 

Table 2.1 Model assumption-clinical parameters ......................................................................... 10 

Table 2.2 Medicare reimbursement unadjusted national rate 2013 for hospital setting ............... 11 

Table 2.3 ICER for 3D IGBT compared with 2D  brachytherapy ................................................ 13 

Table 3.1 Model assumption-clinical parameters ......................................................................... 26 

Table 3.2 Medicare reimbursement unadjusted national rate 2014 for hospital setting ............... 27 

Table 4.1 Model assumption- clinical parameters ........................................................................ 44 

Table 4.2 Medicare reimbursement rates 2014 for professional and technical services related to 

RFA ............................................................................................................................................... 45 



 x 

LIST OF FIGURES 

 

Figure 2.1 ICER Tornado diagram for one-way sensitivity analysis............................................ 14 

Figure 2.2 Two-way sensitivity analysis ...................................................................................... 15 

Figure 2.3 Probabilistic sensitivity analysis.................................................................................. 16 

Figure 3.1 Markov transition model ............................................................................................. 25 

Figure 3.2 One-way sensitivity analysis ....................................................................................... 30 

Figure 3.3 Two-way sensitivity analysis ...................................................................................... 31 

Figure 3.4 Probabilistic sensitivity analysis.................................................................................. 32 

Figure 4.1 Markov state transition model ..................................................................................... 43 

Figure 4.2 One way sensitivity analysis. ...................................................................................... 48 

Figure 4.3 Two way sensitivity analysis. ...................................................................................... 49 

Figure 4.4 Probabilistic Sensitivity Analysis ................................................................................ 50 



 xi 

PREFACE 

I would like to thank my primary mentors, Drs. Saiful Huq and Kenneth Smith, for all of their 

support and encouragement. Also, I thank my dissertation committee members, Drs. Sushil 

Beriwal, Mark Roberts and Galen Switzer, for their guidance and insight. As a full time clinical 

physicist in a very busy clinic and also being out of graduate school for 12 years, it was a huge 

challenge to return to graduate school for study. However, my work place- Radiation Oncology 

department at UPMC Magee Womens Hospital- provided me a great supportive environment to 

pursue my study and research. Every single class at the institute for clinical research education 

has taught me both basic and advanced clinical research methodologies and has been greatly 

valuable. All the teaching staff was phenomenal. I have enjoyed clinical research using what I 

learned from classes and mentors. 

           My three papers in this dissertation are highlights from multidisciplinary efforts between 

the Radiation Oncology department in University of Pittsburgh Cancer Institute, Health Policy 

and Management in University of Pittsburgh School of Public Health and Institute for Clinical 

Research Education in University of Pittsburgh School of Medicine. Through our successful 

collaboration, we published two papers early this year. Those studies are cost effectiveness 

analysis of three-dimensional image-guided brachytherapy compared to two-dimensional 

brachytherapy in the treatment of locally advanced cervical cancer (the paper included in chapter 

2; published in Brachytherapy, January 2015) and cost effectiveness analysis of stereotactic body 



 xii 

radiation therapy compared to single fraction of external beam radiotherapy for palliation of 

vertebral bone metastases (the paper included in chapter 3; published in International Journal of 

Radiation Oncology Biology Physics, March 2015). The publishers retain the copyright for these 

materials. Our most recent project, cost effectiveness analysis of stereotactic body radiation 

therapy compared to radiofrequency ablation in the treatment of inoperable liver metastases from 

colorectal cancer (the paper included in chapter 4), is under review in a peer review journal.   
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1.0  INTRODUCTION 

Approximately sixty percent of cancer patients have an indication to receive radiation therapy 

(1). The results from prospective clinical trials, observational studies and retrospective reviews 

have shown the importance of radiation treatment for cancer patients (2, 3). Over the last decade, 

the evolution in radiation therapy technologies has led to rapid changes in the standard of care 

for cancer treatment. That is, new evidence based treatments through novel high precision 

technologies have demonstrated the crucial role and position of radiation therapy (4, 5). 

However, in an era of ever expanding health care costs globally, clinical effectiveness is no 

longer sufficient to request funding or reimbursement. Economic evaluation for innovative 

technologies is required in an attempt to have a more cost-conscious health care environment (6, 

7).  

           Cost–effectiveness analysis (CEA) is an important tool for incorporating economic 

considerations into clinical decision making. It examines the relative value of new interventions 

to provide a guideline for clinical decision making with greater focus on health care costs. 

Therefore, we identified advanced radiation treatment technologies to compare with the standard 

of care for different disease sites and perform cost-effectiveness analyses (8-10).  

           In project 1, we evaluate the cost effectiveness of 3-dimensional image guided 

brachytherapy (IGBT) compared to conventional 2-dimensional high dose rate (HDR) 

brachytherapy for the treatment of locally advanced cervical cancer. In project 2, we perform a 
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CEA of single fraction of stereotactic body radiation therapy (SBRT) compared with single 

fraction of external beam radiation therapy (EBRT) for palliation of vertebral bone metastases. 

Lastly, in project 3, we conduct a CEA of SBRT compared to radiofrequency ablation (RFA) for 

inoperable colorectal cancer liver metastases.  

          These subjects have not been investigated before and will focus greater attention on health 

economics in radiation oncology, providing a clear reference point for cost-conscious decision 

making in the management of various cancers. Therefore, our studies will provide practical 

knowledge in economic evaluation for various radiation treatments which have been of interest 

nationwide. 
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2.0  COST EFFECTIVENENESS ANALYSIS OF 3D IMAGE GUIDED BRACHYTHERAPY 

COMPARED WITH 2D BRACHYTHERAPY IN THE TREATMENT OF LOCALLY 

ADVANCED CERVICAL CANCER 

2.1 INTRODUCTION 

Intracavitary brachytherapy is an integral component in the definitive management of locally 

advanced cervical cancer (10-13). High-dose rate (HDR) brachytherapy has been increasingly 

adopted in place of low-dose rate since it can be delivered as an outpatient treatment, results in 

decreased radiation exposure to personnel, and allows for the reproducible positioning of 

applicators with the opportunity for optimization of the treatment plan (14, 15). Until the early 

2000s, HDR brachytherapy plans for cervical cancer were generated by 2D orthogonal X-rays 

films (2D conventional brachytherapy) (16). 

            The advent of 3D image-guided brachytherapy (IGBT) is a major step forward for the 

field. IGBT enables clinicians to accurately define the target at risk and surrounding crucial 

structures. With this volumetric information, brachytherapy plans can be optimized to ensure 

adequate coverage of the target while minimizing dose to bladder, rectum and sigmoid. The 

published prospective and retrospective literature has shown that these advantages translate into 

improved local control and reduced morbidities (17-22). Perhaps the best evidence supporting 

IGBT use is a non-randomized, multi-institutional prospective study from France (23). In this 
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study, centers could utilize either a 2D or IGBT approach depending on their practice pattern. 

The authors recruited 235 patients who were treated with definitive chemoradiation therapy 

(n=118 for IGBT and n=117 for 2D). They found grade 3-4 toxicity was substantially reduced 

from 22% to 2.6% (p<0.002). In addition, local control and overall survival were 74% vs. 79% 

and 65% vs. 74% for 2D and IGBT, respectively. In 2005, GEC-ESTRO group published 

guidelines recommending IGBT use for cervical cancer (24). The main advantage of IGBT is the 

opportunity for dose optimization, which enables alteration of size and the shape of the classical 

pear-shaped isodose lines to more accurately conform to the target volume. In small tumors, the 

irradiated volume can be reduced in order to decrease the dose to critical organs, and in larger 

tumors, the prescription isodose depth can be expanded for better coverage. This improvement in 

target coverage and reduction in dose to critical organs is responsible for the superior results. 

            However, IGBT use does carry added costs. Typically IGBT requires the acquisition of 

cross-sectional imaging for treatment planning with each fraction of brachytherapy (24, 25). This 

not only adds costs for imaging, but also additional time for image acquisition and simulation, 

the availability of imaging machines, longer treatment planning time, and their associated costs. 

Whether the benefits afforded by IGBT are cost effective has not been previously studied. Such 

studies become more relevant with the increasing cost scrutiny in health care. Herein, we sought 

to investigate the cost effectiveness of IGBT compared to conventional 2D HDR brachytherapy 

for the treatment of locally advanced cervical cancer. 
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2.2 METHODS 

2.2.1 Decision Model 

To estimate the cost-effectiveness of HDR IGBT compared to conventionally planned 

brachytherapy for FIGO stage IB2-IVA locally advanced cervical cancer, we constructed a 

Markov state transition model comparing IGBT and conventional brachytherapy strategies. In 

the model, identical hypothetical cohorts were treated with five fractions of HDR brachytherapy 

using the ring and tandem applicator after external beam radiation therapy. The treatment scheme 

delivered 5 fractions of HDR brachytherapy, once or twice a week. For IGBT, treatment was 

performed either CT based plan for all fractions (5 CT scans) or MRI based plan for all fractions 

(5 MRI scans). Cohorts were followed for 3 years; the Markov cycle length was 1 month. The 

Markov model is based on 3-year survival estimates and complication rates (RTOG late grade ≥ 

3) obtained from the literature (Table 2.1). For our model calibration, Markov cohort probability

analysis was performed for the expected survival rates for both IGBT and conventional 

brachytherapy cohorts. That is, mortality likelihood was calculated at one and three year 

intervals and our model produced clinically reasonable survival rates. Modeling for 3 years, 

rather than for the cohort’s remaining lifetime, tacitly assumes that all cost and effectiveness 

values are equal after 3 years regardless of treatment strategy, which could bias the analysis 

against the more effective strategy. 

           Treatment occurred in the first cycle of the model. Complications could occur in the post 

treatment phase and were modeled with an onset in the month after treatment. If complications 

occurred, those patients transitioned to the survive with complications state, where the chronic 

loss of health utility due to complications and the likelihood of requiring retreatment for 
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complications were tracked. Patients surviving without complications were tracked separately. 

Utility for each survival state was derived from the likelihood of local control and its associated 

health utility. Transitions to the dead state were based on previously reported strategy-specific 

mortality rates (17- 23) and US life table data for females for mortality from other causes (26).  

           Costs included both hospital and professional costs associated with IGBT and 

conventional brachytherapy based on Medicare reimbursement in 2013 (Table 2.2). The 

effectiveness term was quality adjusted life years (QALYs), accounting for quality of life 

differences between treatment strategies using quality of life utility weights. These were obtained 

through literature review (27, 28). QALYs are the product of a health state’s quality of life utility 

and time spent in that state. Both costs and utilities were discounted at an annual rate of 3%. The 

base case model was developed from the health care system perspective. TreeAge Pro Suite 2013 

software (TreeAge Software, Williamstown, MA) was used to build the Markov model.  

2.2.2 Model Assumptions 

We assumed that, except for differences the frequency of RTOG late grade 3 or higher 

complications after brachytherapy between IGBT and conventional treatment strategies, other 

complications would occur at the same frequency, perhaps biasing against IGBT. The 

probabilities of survival, tumor local control and complications for both treatment strategies were 

obtained from the 3-year survival clinical outcome data (18, 20, 21, 23, 30-34), thus assuming 

that patients in study cohorts were similar to those seen in the general population. 
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2.2.3 Costs 

Table 2 shows the cost estimates for brachytherapy treatment based on CPT codes for Medicare 

reimbursement unadjusted national rates in year 2013. The billing accounted for technical 

(hospital) and professional (physician) fees for 5 fractions of brachytherapy. Total 

reimbursement was $21,373 and $17,931 for IGBT-CT based and 2D X-ray film based 

conventional brachytherapy, respectively. Furthermore, we estimated total costs for IGBT-MR 

image based and it was estimated at $22,847. These costs were varied +/- 20% in 1-way 

sensitivity analyses based on regional variation in Medicare reimbursement. The treatment cost 

for complications and its variation was based on Healthcare Costs and Utilization Project (H-

CUP) database using ICD-9 code (35). Our assumption for complication cost was based on a cost 

of surgical intervention for rectal bleeding (Proctitis; Table 2.1). 

2.2.4 Utilities 

The quality of life utility values are listed in Table 2.1. For brachytherapy treatment, we used 

utilities for IGBT and 2D conventional brachytherapy as 0.8 and 0.7, respectively (27, 28), with 

the consideration of applicator insertion at the time of brachytherapy as well as procedure 

duration. Due to longer procedure time with 3D plan, IGBT has lower utility than 2D 

brachytherapy at the time of treatment. In addition, utility post treatment was estimated at 0.86 

(28). We estimated utility for tumor local control and no control as 0.95 and 0.65, respectively. 

Utility for tumor local control was estimated based on the average of utility for no treatment 

without symptoms and utility post treatment from a study that elicited utilities for cervical cancer 

(28). For no tumor control utility, it was derived based on the average value of utility for local 
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recurrence and distant metastases using breast cancer as a proxy (29).For loss in quality of life 

with complications, the grade 3 rectal bleeding utility (36) was used as a base value. 

2.2.5 Cost Effectiveness Analysis 

Treatment strategies were compared using the incremental cost effectiveness ratio (ICER). That 

is, the ratio of the cost increment of one strategy over the other relative to the improvement in 

QALYs. There is no US consensus on a cost-effectiveness (C/E) criterion, however, 

interventions costing less than $100,000 per QALY gained are typically considered economically 

reasonable while those costing much more than this figure are felt to be an expensive use of 

health care resources (37, 38). A $50,000 per QALY gained criterion is commonly cited as the 

minimum of willingness-to-pay (WTP) (37, 39), thus we used WTP threshold of $50,000/QALY 

gained as our C/E criterion.   

2.2.6 Sensitivity Analysis 

We performed one-way, two-way and probabilistic sensitivity analyses to account for uncertainty 

in clinical assumptions. One way sensitivity analysis, where all parameters are varied 

individually, was examined to detect the effect of these variations on model results. A two-way 

sensitivity analysis varies two parameters simultaneously and denotes where a particular strategy 

is preferred. We performed a two-way sensitivity analysis to determine the optimal treatment 

strategy when cost and survival differences between 3D and 2D treatments are varied. The 

probabilistic sensitivity analysis using a Monte Carlo simulation was conducted to vary all 

parameters simultaneously. That is, distributions for each parameter (Table 2.1) were sampled at 
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random during 5000 trials and results reported as the percentage of trials in which a strategy is 

cost effective at a series of societal WTP (or acceptability) thresholds.  Costs were modeled 

using a normal distribution with a standard deviation of 25% of the base case value, resulting in 

cost distributions varying from 50%-150% of the base cost, to account for the possibility of 

greater cost variation than the +/- 20% tested in 1-way sensitivity analyses. For utilities and 

probabilities, we used a beta distribution function for sampling (40). 
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Table 2.1 Model assumption-clinical parameters 

 

Costs Base Cost Range * Assumed 
distribution** 

Cost for complication a $8,394  ±375 Normal 
(rectal bleeding/proctitis: ICD-9 569.49)       

Cost for 2D treatment b $17,177  ± 20% Normal 

Cost for 3D treatment with CT plan b $21,374  ± 20% Normal 

Cost for 3D treatment with MR plan b $22,847  ± 20% Normal 

        

Utility and probability Base 
Estimate Range Assumed distribution 

Probability of complication with 2D c 0.1 0.07-0.15 Beta 

Probability of complication with 3D c 0.05 0.02-0.07 Beta 

Probability of  survival with 2D c 0.65 0.55-0.7 Beta 

Probability of  survival with 3D  c 0.7 0.65-0.85 Beta 

Probability of local control (2D) c 0.8 0.65-0.85 Beta 

Probability of local control (3D) c 0.9 0.85-0.95 Beta 
Probability of retreatment of 

complication c 0.1 0.03-0.15 Beta 

Disutility with acute complication c -0.4 0.35-0.5 Beta 

Utility of Complication  c 0.6 0.55-0.65 Beta 

(for rectal bleeding complication)       

Utility of local control c 0.95 0.9-0.97 Beta 

Utility of not having local control c 0.65 0.6-0.7 Beta 

Utility of post treatment c 0.86 0.8-0.9 Beta 

Utility of survival c,d calculate     

Utility of survival with complication c,e calculate     

Utility of 2D treatment  
0.8 0.75-0.85 Beta 

(at the time of brachytherapy)c 
Utility of 3D treatment  

0.7 0.65-0.75 Beta 
(at the time of brachytherapy)c 

 

Note: ICD-9 = International Classification of Diseases, Ninth Revision; 2D = two-dimensional; 3D = three-

dimensional. 

a: Healthcare Costs and Utilization Project H-CUP    

b: Medicare National unadjusted rate 2013    
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c: See references in text   

d :(pLocalControl*uLocalControl)+(1-pLocalControl)*uNoLocalControl   

e: ((pLocalControl*uLocalControl)+(1-pLocalControl)*uNoLocalControl)*uComp  

*: For one-way sensitivity analysis  

**: For probability sensitivity analysis 

 

Table 2.2 Medicare reimbursement unadjusted national rate 2013 for hospital setting 

CPT Description 
TC PC Total Medicare 

Reimbursement ($) 
Total Medicare 

Reimbursement($) 
Quantity Quantity 3D 2D 

77280 Simple simulation for 
X-ray  5 5 N/A 754.15 

77014 CT scan for therapy 
guide 5 0          NOT 

REIMBURSABLE                         N/A 

76498 MR scan for therapy 
guide 5 0 1,473.90 N/A 

77263 MD treatment plan 
complex 0 1 166.58 166.58 

57155 Insert uteri 
tandem/ovoids 5 5 8,346.55 8,346.55 

77295 3D treatment plan 5 5 6,296.05  N/A  

77328 Brachytx isodose plan 
compl 5 5 N/A 2,099.55 

77332 Radiation treatment 
aid(s) 1 1 241.79 241.79 

77786 Hdr brachytx 2-12 
channel 5 5 4,512.66 4,512.66 

77336 Radiation physics 
consult 1 1 189.52 189.52 

77370 Special physics consult 1 1 229.28 229.28 

C1717 Brachytx, non-str,hdr 
ir-192 5 5 1,391.25 1,391.25 

  TOTAL 
REIMBURSEMENT     

       21,373.70 (CT) 
17,931.32 

   22,847.60 (MR) 
 

Note: CPT= Current Procedural Terminology; TC = technical (hospital) charge; PC = professional (physician) 

charge; 3D = three-dimensional; 2D = two-dimensional; 

N/A = not applicable; HDR= high dose rate; Ir-192=iridium 192 source 
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2.3 RESULTS 

2.3.1 Base Case Analysis 

In the base case analysis, the IGBT strategy cost $3003 more than 2D while gaining 0.16 

QALYs, resulting in an ICER of $18,634 per QALY gained (Table 2.3). For MR imaging, rather 

than CT, IGBT cost $27,774 per QALY gained compared to 2D. 

2.3.2 Sensitivity Analyses 

In one-way sensitivity analyses, which varied all parameters individually, results were sensitive 

to variation of 3D and 2D treatment costs, survival rate with 3D and 2D treatment, tumor local 

control with 2D treatment and complication probability of 2D treatment in order (Figure 2.1). 

That is, our model is the most sensitive to variation of 3D treatment cost (range: ICER of -$9750 

to $43,000/QALY gained), but the ICER remained <$50,000/QALY gained if IGBT costs were 

<$25,200 (the upper value in our clinical assumption for 3D cost range for CT planning; baseline 

point estimate $21,373). If IGBT cost is less than $18,375, IGBT would be a dominant strategy, 

i.e., a cost-saving, more effective treatment. A two way sensitivity analysis, using a $50,000 per

QALY gained threshold showed that IGBT is always preferred when 1) the cost difference 

between 3D and 2D treatment is $5000 or lower regardless of the survival difference between 3D 

and 2D treatment, or 2) the survival difference between strategies is greater than 7.1% regardless 

of the cost difference (Figure 2.2). A Monte Carlo probabilistic sensitivity analysis, which varied 

all model parameters simultaneously 5000 times, demonstrated that IGBT-CT was favored in 

63% of model iterations at a $50,000/QALY gained threshold and in 72% if a $100,000/QALY 
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threshold was used (Figure 2.3). In addition, IGBT-MR was favored in 62% of model iterations 

at a $50,000/QALY gained threshold and in 69% if a $100,000/QALY threshold was used. 

 

Table 2.3 ICER for 3D IGBT compared with 2D  brachytherapy 

 

Note: ICER =incremental cost-effectiveness ratio; IGBT= image guided brachytherapy; QALY=quality adjusted 

life- year; * 3D IGBT (MRI) compared to 2D conventional brachytherapy 

 

 

 

 

 

Strategy Cost ($) 

Incremental 

cost ($) 

Effectiveness 

(QALY) 

Incremental 

effectiveness (QALY) 

ICER 

($ per QALY gained) 

2D  18,817 -  2.01 -  -  

3D 

IGBT 

(CT) 21,820 3003 2.17 0.16 18,634 

*3D 

IGBT 

(MRI) 23,293 4476 2.17 0.16 27,774 
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Figure 2.1 ICER Tornado diagram for one-way sensitivity analysis 

Note: The central line represents the base-case value ($18,634). Costs of 3D and 2D treatment are top two most 

sensitive parameters to the model. ICER varies from $-9750 to $43,000 for the variation of 3D treatment cost. ICER 

= incremental cost-effectiveness ratio; 3D = three-dimensional; IGBT = image-guided brachytherapy; 2D = two-

dimensional. 
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Figure 2.2 Two-way sensitivity analysis 

Note: The x-axis represents the difference in costs between 3D and 2D treatments. The y- 

axis is the difference in survival between 3D and 2D treatments. The ‘‘X’’ on the graph 

represents the baseline values. Area above the line slope represents that 3D image-guided 

brachytherapy is a favored strategy. 
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Figure 2.3 Probabilistic sensitivity analysis 

Note: Cost effectiveness (CE) acceptability curve, showing the likelihood that strategies  

would be considered cost-effective (on the y-axis) over a range of willingness-to-pay (or  

acceptability) thresholds (the x-axis). Here, 3D IGBT has a 63% probability of being  

considered cost-effective at $50,000/QALY gained threshold.  
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2.4 DISCUSSION 

This is the first study, to our knowledge, to evaluate the cost-effectiveness of 3D image-guided 

brachytherapy compared to conventional (2D) brachytherapy for locally advanced cervical 

cancer. Our analysis demonstrates that 3D IGBT for locally advanced cervical cancer is 

economically reasonable compared with 2D conventional brachytherapy, at a cost of about 

$18,634 per QALY gained for CT planning and $27,774 per QALY gained for MRI based plan. 

This finding was robust over a wide range of plausible clinical assumptions. In one-way 

sensitivity analyses, the ICER for 3D IGBT never exceeded $50,000 per QALY gained with 

variation of any individual model parameter. A probabilistic sensitivity analysis, varying all 

model parameters simultaneously, further supported 3D IGBT. These findings make a very 

compelling case for IGBT use in locally advanced cervical cancer based upon prior evidence of 

improved outcomes and our findings of economic reasonableness. 

           Even though interest in 3D IGBT for locally advanced cervical cancer has grown 

substantially, published outcome data has been limited. With greater focus on healthcare costs, 

cost-effectiveness analyses are important to identify treatment techniques that improve outcomes 

at a reasonable cost. Our study demonstrates that use of 3D IGBT with either cross-sectional 

imaging modality (CT or MR) was cost-effective.   

           There have been several other cost effectiveness analyses regarding locally advanced 

cervical cancer. Most have compared concurrent chemoradiation and adjuvant chemoradiation or 

chemoradiation and radiation alone (41-43). One study has assessed the cost effectiveness of 

intensity-modulated radiation therapy (IMRT) compared to conventional box-field radiation 

therapy (3D CRT) (34). In this analysis, IMRT cost >$100,000/QALY gained compared to 3D 
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CRT for locally advanced cervical cancer; extended field radiation treatment was on the 

borderline of cost effectiveness using a WTP threshold of $100,000/QALY. 

          There have been a number of other cost-effectiveness studies exploring new radiation 

technologies for other disease sites. Proton beam radiation was compared to IMRT for prostate 

cancer. The base cost of IMRT was $25,800 and proton therapy was $58,610. The authors found 

that for a 60-year old and 70-year old man, the ICER was $55,700/QALY and $63,600/QALY, 

respectively. Both were above the usual $50,000/QALY threshold (45). In contrast, our study 

found that the cost differential in absolute dollars between 3D and 2D brachytherapy was only 

about $3,400 and was associated with a greater reduction of toxicities, resulting in the favorable 

ICER.   

           There are several limitations in our study. First, as with most cost effectiveness analyses, 

the probabilities of survival, tumor local control and complications for both treatment strategies, 

were obtained from the available literature and primarily mainly retrospective studies. Also, 

quality of life utility values were extrapolated based on previously published values and tables 

with early stage cervical cancer who had chemotherapy and surgery, thus they may not precisely 

reflect the quality of life for HDR brachytherapy. Since this study model is limited to locally 

advanced cervical cancer patients, one way sensitivity analyses, varying these estimates, 

accounted for uncertainty. In addition, reported clinical follow up is 3 years or less, thus limiting 

our model time horizon to 3 years, which could overemphasize the contribution of acute toxicity 

and underestimate the disutility of long term complications. However, sensitivity analyses 

varying those factors did not appreciably change the favorability of IGBT. Similarly, through 

varying all parameters over wide ranges, we tested our model and consistently found that 3D 

IGBT-CT and MR are cost effective compared with conventional 2D brachytherapy. Finally, 
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while we assessed economic costs, other factors, such as added time, resources, education and 

availability of expertise for performing 3D image guided brachytherapy were not included in the 

model. The assessment in terms of societal perspective to include all other factors as well as 

economic costs is out of our study scope. 

          We used costs and utilities for treatment of rectal bleeding (grade 3; proctitis) as our 

baseline cost and utility for the treatment of complications. That is, we did not account for other 

grade 3-4 complications (vaginal or genitourinary) or for grade 1-2 complications. The exclusion 

of these other complications could bias the model against IGBT, since it assumes that those 

complications are identical between strategies. Were these other costs included, IGBT could be 

even more favorable than presented here. Additionally, there are a couple of different HDR 

fractionations used in routine practices. In USA, the most common fractionation schedule for 

HDR brachytherapy is 5 fractions, and we used it in this study (46). A final caveat is that costs 

were obtained from the Medicare reimbursement fee schedule and these may vary by region and 

with time. Despite these limitations, we found that the findings were robust and IGBT is the 

more cost effective treatment paradigm. 

In conclusion, 3D IGBT for locally-advanced cervical cancer is a more cost effective 

option compared to 2D brachytherapy. These findings were robust to variation of parameter 

values, both individually and collectively, supporting the routine use of IGBT in locally-

advanced cervical cancer.   
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3.0  COST EFFECTIVENESS ANALYSIS OF SINGLE FRACTION OF STEREOTACTIC 

BODY RADIATION THERAPY COMPARED WITH SINGLE FRACTION OF EXTERNAL 

BEAM RADIATION THERAPY FOR PALLIATION OF VERTEBRAL BONE METASTASES 

3.1 INTRODUCTION 

Back pain is the most common initial symptom of vertebral bone metastasis in late stage cancer 

(47, 48). It is often associated with neurological problems and decreased performance status (3). 

External beam radiotherapy (EBRT) has been an effective treatment for palliation of painful 

vertebral bone metastasis (50, 51). Conventional fractionated EBRT (largely 30 Gy in 10 

fractions) has been mostly accepted for the palliative treatment even though dose-pain response 

is not well understood (52, 53). Radiation Therapy Oncology Group (RTOG) 97-14, which 

randomized patients to either 8Gy in a single fraction or 30Gy in 10 fractions for radiation 

treatment of bone metastases, has shown similar pain relief (the primary end point of this study) 

between the two study arms (47, 52). In addition, single fraction has proved more convenient for 

patients and caregivers. For this reason, 8 Gy in a single fraction is one of the acceptable options 

from the American Society for Radiation Oncology (ASTRO) consensus evidence-based 

standard of care for symptomatic bone metastases (48). 

         Recently, stereotactic body radiation therapy (SBRT) has demonstrated better pain control 

and neurological function as compared to historic results with conventional EBRT for spine 
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metastases (54-56).  Unlike with EBRT, where concerns of spinal cord myelopathy have limited 

dose-escalation due to the proximity of the spinal cord to the vertebral body, improved precision 

of dose delivery with SBRT creates a sharp dose fall-off between the target and adjacent spinal 

cord. This high targeting accuracy allows a higher single fraction radiation doses to the vertebral 

target, while maintaining a safe spinal cord dose previously not feasible with EBRT (56). 

Clinical dose-response studies have reported that SBRT dose escalation to ≥ 16 Gy is associated 

with a strong trend toward improved pain relief (57-63).  

         RTOG 0631, a Phase III clinical trial comparing SBRT (16 or 18 Gy in 1 fraction) to 

EBRT (8Gy in 1 fraction) is an ongoing cooperative group trial which will lend further clarity 

about differences in efficacy between these two treatment modalities (49). The trial hypothesis is 

that SBRT can improve pain relief by 40%, in relative difference, compared to EBRT (SBRT 0.7 

and EBRT 0.51; absolute difference 19%). In this study, we performed a cost effectiveness 

analysis of SBRT compared to EBRT in the palliative treatment of painful vertebral bone 

metastases assuming 20% absolute difference in pain control. 
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3.2 METHODS 

3.2.1 Decision Model 

We constructed a Markov state transition model comparing SBRT with single fraction EBRT for 

palliative treatment of painful vertebral bone metastases. In the model, identical hypothetical 

cohorts were treated with single fraction SBRT (16 or 18Gy) or EBRT (8Gy). Patients with 

spinal cord compression were excluded. Cohorts were followed over their remaining life time; 

the Markov cycle length was 1 month. The Markov model is shown in Figure 3.1 representing 

transition probabilities between health states based on medical literature-based treatment 

outcome and survival rates (Table 3.1) (47, 63-67). For our model calibration, Markov cohort 

probability analysis was performed for the expected survival rates for both SBRT and EBRT 

cohorts. That is, mortality likelihood was calculated and our model produced clinically 

reasonable survival rates. With a lifetime time horizon, our model cycled until the entire cohort 

had died.   

         Initial treatment occurred in the first cycle of the model. Patients who were alive had either 

pain relief or no pain relief after initial treatment. Patients who had pain relief after initial 

treatment could have continued pain relief over time, or could develop pain later. Those 

developing pain later and those with unrelieved pain after initial treatment could be retreated 

with the same radiation regimen or treated with pain medicine alone. Retreated patients could not 

receive any further radiation and stayed as unrelieved pain or pain relief state. Death was the 

absorbing state. Transitions to dead were based on previously reported survival rates (47, 63-67).      

         Costs included both hospital and professional costs associated with SBRT and EBRT based 

on Medicare reimbursement in 2014 (Table 3.2).  The effectiveness term was quality adjusted 



 23 

life years (QALYs), accounting for quality of life differences between treatment strategies using 

quality of life utility weights. These were obtained through literature review (68-74). QALYs are 

the product of a health state’s quality of life utility and time spent in that state. Both costs and 

utilities were discounted at an annual rate of 3%. TreeAge Pro Suite 2013 software (TreeAge 

Software, Williamstown, MA) was used to build the Markov model. The base case model was 

developed from a payer's perspective for health care services, using Medicare reimbursement. 

3.2.2 Costs 

Table 3.2 shows the cost estimates for SBRT and EBRT based on CPT codes for Medicare 

reimbursement unadjusted national rates in year 2014. The billing accounted for technical 

(hospital) and professional (physician) fees for single fraction of each treatment strategy. Total 

reimbursement was $9,000 and $1,087 for SBRT and EBRT, respectively. Reimbursement rate 

varies geographically, thus sensitivity analyses were performed to include this variation.    

3.2.3 Utilities  

The quality of life utility values are listed in Table 3.1. For treatment state, we used utility values 

for both SBRT and EBRT as 0.45 (68-70). In addition, utility of post treatment was estimated at 

0.55 for pain relief (69, 70) and 0.3 for unrelieved pain (69, 70). The utility for the retreatment 

state assumed to be less than initial utility of treatment (0.35). Sensitivity analyses were used to 

test utility value assumptions. 
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3.2.4 Cost Effectiveness Analysis 

Treatment strategies were compared using the incremental cost effectiveness ratio (ICER) - the 

ratio of cost and QALY differences between strategies. There is no US consensus on cost-

effectiveness (C/E) criterion, however, interventions costing less than $100,000 per QALY 

gained are typically considered economically reasonable while those costing much more than 

this figure are often felt to be an expensive use of health care resources (75-77). Thus we used 

willingness to pay (WTP) threshold of $100,000/QALY gained as our C/E criterion. In a 

sensitivity analysis, we also examined a $50,000 per QALY gained threshold, a commonly cited 

prior benchmark (78). 

3.2.5 Sensitivity Analysis 

We performed one-way, two-way and probabilistic sensitivity analyses to account for uncertainty 

in decision model assumptions. One-way sensitivity analysis, where all parameters are varied 

individually, was examined to detect the effect of these variations on model results. A two-way 

sensitivity analysis varies two parameters simultaneously and denotes where a particular strategy 

is preferred. We performed a two-way sensitivity analysis to determine the optimal treatment 

strategy when median survival rate and pain relief difference are varied. The probabilistic 

sensitivity analysis using a Monte Carlo simulation was conducted to vary all parameters 

simultaneously. That is, distributions for each parameter (Table 3.1) were sampled at random 

during 5000 trials and results reported as the percentage of trials in which a strategy is cost 

effective at a series of WTP (or acceptability) thresholds. Costs were modeled using a normal 
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distribution with a standard deviation of 25% of the base case value. For utilities and 

probabilities, we used a beta distribution function for sampling (79). 

 

 

Figure 3.1 Markov transition model 

Note: Arrows represent transition between health states. EBRT = external beam radiation therapy; SBRT = 

stereotactic body radiation therapy 
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Table 3.1 Model assumption-clinical parameters 

Cost  Base cost ($) Range  Assumed 
distribution  

Cost for EBRT 1087 870-1304 Normal 
Cost for SBRT 9000 7200-10800 Normal 
Cost of retreatment with EBRT 1087 870-1304 Normal 
Cost of retreatment with SBRT 9000 7200-10800 Normal 
Cost of pain medication 200 100-400 Normal 
        
Probabilities  Base estimate Range Assumed 

distribution 
Median survival for both treatment strategy  9 months  7-24 months Beta 
Probability of pain relief after initial EBRT  0.6 0.45-0.77 Beta 
Probability of pain relief after initial SBRT  0.8 0.75-0.85 Beta 
Probability of retreatment after initial EBRT  0.15 0.12-0.28 Beta 
Probability of retreatment after initial SBRT  0.05 0.03-0.1 Beta 
Probability of pain relief after retreatment from EBRT  0.8 0.66-0.87 Beta 

*Probability of pain relief after retreatment from 
SBRT  

0.95 0.9-1 Beta 

Probability of getting pain later after pain relief from 
initial EBRT  

0.1 0.05-0.2 Beta 

Probability of getting pain later after pain relief from 
initial SBRT  

0.05 0-0.07 Beta 

Probability of getting pain later after pain relief from 
retreatment of EBRT  

0.1 0.05-0.15 Beta 

Probability of getting pain later after pain relief from 
retreatment of SBRT  

0.006 0-0.01 Beta 

Probability of retreatment later time after initial 
EBRT  

0.07 0.05-0.15 Beta 

*Probability of retreatment later time after initial 
SBRT 

0.03 0-0.05 Beta 

        
Utilities  Base estimate Range Assumed 

distribution 
Utility for EBRT  0.45 0.4-0.5 Beta 
**Utility for SBRT  0.45 0.4-0.5 Beta 
Utility for Retreatment  0.35 0.3-0.4 Beta 
Utility for pain medication  0.3 0.2-0.5 Beta 
Utility for pain relief after initial EBRT  0.55 0.4-0.7 Beta 
**Utility for pain relief after initial SBRT 0.55 0.4-0.7 Beta 
Utility for pain relief after retreatment with EBRT  0.55 0.4-0.7 Beta 
**Utility for pain relief after retreatment with SBRT  0.55 0.4-0.7 Beta 

Note: * Estimation from experts’ opinions, ** same value as EBRT utility 
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Table 3.2 Medicare reimbursement unadjusted national rate 2014 for hospital setting 

EBRT 1 fraction 

CPT 
code 

Description TC 
Quantity 

PC 
Quantity 

Medicare Tech 
Reimbursement 

/ Unit ($) 

Medicare Prof 
Reimbursement 

/ Unit ($) 

Total Medicare 
Reimbursement 

($) 
77014 CT image 

guided 
treatment 

fields 

1 0 0.00 0.00 0 
 

77261 MD treatment 
plan (simple) 

0 1 0.00 75.23 75.23 
 

77280 Confirmation 
simulation 

1 1 114.65 36.19 150.84 
 

77305 Isodose plan 1 1 114.65 36.18 150.83 
 

77332 Treatment 
device 

(simple) 

1 1 213.49 28.30 241.79 
 

77300 Basic dose 
calculation 

1 1 114.65 32.24 146.89 
 

77404 Treatment 
delivery 

1 0 104.26 0.00 104.26 
 

77336 Weekly 
physics 

1 0 114.65 0.00 114.65 
 

77431 Radiation 
treatment 

management 

0 1 0.00 102.09 102.09 
 

TOTAL      1,086.58 
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SBRT 1 fraction 

CPT 
Code 

Description TC 
Quantity 

PC 
Quantity 

Medicare Tech 
Reimbursement 

/ Unit ($) 

Medicare Prof 
Reimbursement 

/ Unit ($) 

Total Medicare 
Reimbursement 

($) 
77014 CT image 

guided 
treatment 

fields 

1 0 0.00 0.00 0 
 

77263 MD treatment 
plan 

(complex) 

0 1 0.00 166.58 166.58 
 

77290 Simulation 
with SBRT 

1 1 311.37 80.96 392.33 
 

77295 3D simulation 1 1 1,036.39 222.02 1,258.41 
 

77334 Treatment 
device 

(complex) 

11 11 213.49 64.12 3,053.71 
 

77300 Basic dose 
calculation 

10 10 114.65 32.24 1,468.90 
 

77373 Treatment 
delivery 

1 0 1,921.30 0.00 1,921.30 
 

77336 Weekly 
physics 

1 0 114.65 0.00 114.65 
 

77435 SBRT 
management 

course 

0 1 0.00 633.71 633.71 
 

TOTAL      9,009.59 
 

Note: CPT = Current Procedural Terminology codes; CT = computed tomography; EBRT = external beam radiation 

therapy; MD = physician; PC = professional (physician) charge; SBRT = stereotactic body radiation therapy; TC = 

technical (hospital) charge. 
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3.3 RESULTS 

3.3.1 Base Case Analysis 

In the base case analysis, pain relief after the initial treatment was assumed to be 80% for SBRT 

and 60% for EBRT. In the model, total strategy costs, including all medical care costs, were 

$7380 greater for SBRT, which gained 0.06 more QALYs than EBRT, resulting in an ICER of 

$124,552 per QALY gained.  

3.3.2 Sensitivity Analyses 

In one-way sensitivity analyses, results were most sensitive to variation of the utility of 

unrelieved pain (range: $89,330 to $592,720/QALY gained). The utility of relieved pain after 

initial treatment and median survival were also sensitive to variation (Figure 3.2). If median 

survival is ≥11 months (base case estimate: 9 months), SBRT cost <$100,000/QALY gained. If 

median survival is ≥18 months, SBRT cost <$50,000/QALY gained. A two way sensitivity 

analysis, using a $100,000 per QALY gained threshold (Figure 3.3) showed that SBRT is always 

preferred when the median survival is more than 22 months regardless of difference in the 

likelihood of pain relief between strategies. In addition, if the absolute difference in the 

likelihood of pain relief is more than 28% with a base case 9 month median survival (relative 

difference 47% or higher: SBRT 88% or higher and EBRT 60%), SBRT could be a cost effective 

option. Probabilistic sensitivity analysis, which varied all model parameters simultaneously 5000 

times, demonstrated that SBRT was favored in 30% of model iterations at a WTP threshold of 

$100,000/QALY gained (Figure 3.4). 
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          In addition, we performed two scenario analyses based on current practice patterns. One 

assumed that retreatment was with SBRT regardless of initial therapy.  Total costs were $6924 

more for SBRT with 0.06 QALYs gained compared to EBRT, resulting in ICER of $ 116,871 

per QALY gained. In the other, we compared EBRT 30Gy in 10 fractions to SBRT. Total costs 

were $5802 more for SBRT with 0.06 QALYs gained compared to EBRT, resulting in an ICER 

of $ 92,437/QALY gained. 

 

 

 

 

Figure 3.2 One-way sensitivity analysis 

Note: Incremental cost-effectiveness ratio (ICER) Tornado diagram for 1-way sensitivity analysis. The vertical line 

represents the base case value of ICER ($124,552). Utility of unrelieved pain (range, $89,330 to $592,720/QALY 

gained), utility of relieved pain after the initial treatment (range, $74,339 to $384837/QALY gained), and median 

survival rate (range, $31,828 to $173269/QALY gained) were the parameters whose variations caused the greatest 

changes in model results. 
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Figure 3.3 Two-way sensitivity analysis 

Note: The x axis represents the median survival in months (3-24 months). The y axis is the 

absolute difference in pain relief between stereotactic body radiation therapy (SBRT) and external beam radiation 

therapy (EBRT). Likelihood of pain relief from SBRT is set as 0.8 and 0.6 for EBRT as a base case; the absolute 

pain relief difference is 0.2. The x on the graph represents the base case values for these parameters. 
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Figure 3.4 Probabilistic sensitivity analysis 

Note:  Cost-effectiveness (CE) acceptability curve, showing the likelihood that strategies 

would be considered cost-effective (on the y axis) over a range of willingness to pay (WTP) threshold. Here 

stereotactic body radiation therapy (SBRT) has a 30% probability of being considered cost-effective at $100,000 per 

quality-adjusted life year (QALY) gained threshold. SBRT becomes a favored treatment strategy above a WTP 

$160,000/QALY gained. 
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3.4 DISCUSSION 

This is the first study, to our knowledge, to evaluate cost-effectiveness of single fraction of 

stereotactic body radiotherapy compared to single fraction external beam radiotherapy for 

palliation of painful vertebral bone metastases. We found that SBRT is not cost effective 

compared to single fraction EBRT at the WTP threshold of $100,000/QALY gained.  

          Cost effectiveness analyses can identify treatment strategies that improve outcomes at a 

reasonable cost in an environment with a greater focus on health care expenditures. Our study 

demonstrates that SBRT can be economically reasonable if 1) the quality of life utility value of 

unrelieved pain is worse than the base case (base case: 0.3), 2) the utility of relieved pain is 

better than the base case (base case: 0.55), or 3) median survival ≥ 11 months (base case: 9 

months) compared to single fraction EBRT. In this regard, obtaining accurate quality of life 

utility values is challenging. Published utility values for unrelieved and relieved pain vary widely 

(68-72). This is because quality of life surveys often combine all types of bone metastases, not 

just vertebral metastases, and variation in complications and life expectancy. Thus, variation of 

the expected median survival rate is likely a more concrete parameter than utilities for projecting 

strategy cost effectiveness. Based on our model results, SBRT is economically reasonable in 

patients whose expected median survival is at least 11 months. Moreover, if median survival is ≥ 

18 months SBRT costs $50,000/QALY or less, which is a commonly cited as a benchmark of a 

“good buy” for medical interventions (71, 73).  

          These findings make the case that the most economically feasible approach would involve 

the judicious use of SBRT for spine metastases in patients with relatively long predicted 

survival. Patients with breast or prostate cancer, bone metastasis, and good performance status 
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have a median survival of ≥18 months (80, 81) and thus may be good candidates for this 

approach. 

          Other studies report cost effectiveness analyses of palliative treatment for painful bone 

metastases (66, 68-70). Those studies, including RTOG 97-14 clinical trials comparing a single 

fraction of EBRT to conventional fractionated EBRT, have shown that a single fraction of EBRT 

was cost effective compared to fractionated EBRT. They reported that utility of pain relief post 

treatment was a sensitive parameter in their model; our study results are consistent with theirs. 

However quality of life utility value of pain relief from each strategy in our study was set to be 

same while other studies set this value differently between strategies (68, 69). Because quality of 

life assessment measures mainly whether pain was relieved or not, we used the same utility 

values post treatment when pain was relieved regardless of strategy.  

           Papatheofanis et al. (68) assessed the cost effectiveness of SBRT using Cyberknife system 

compared to conventional fractionated EBRT for spinal metastases. In this analysis, SBRT was 

cost effective, costing $41,500/QALY gained compared to fractionated EBRT. However, this 

study did not include retreatment and their primary assessment end point was pain relief after 

initial treatment. Also, their transition probabilities were mainly from studies reporting 

retreatment: EBRT as an initial treatment and SBRT as retreatment. In addition, their model 

includes spinal cord compression and spinal instability, while ours did not, perhaps explaining 

the difference in results.  

           There are several limitations in our study. First, as with most cost effectiveness analyses, 

transition probabilities for both treatment strategies were obtained from a few prospective 

studies, but mainly from retrospective studies and reviews. There is a lack of prospective studies 

and clinical trials related to SBRT for painful vertebral bone metastases. Thus, our clinical 
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assumptions for SBRT may not accurately reflect reality. Results are sensitive to assumptions 

regarding patient survival and the effectiveness of pain relief following radiation treatment, so 

the model estimates for the cost effectiveness of SBRT will be strengthened by results from 

ongoing prospective clinical trials such as RTOG 0631. However, one-way sensitivity analyses 

were performed to take our model assumptions into account.  Due to scant data on duration of 

pain relief in relation to observed survival, we could not model pain relief as a time-based 

function, which could similarly affect results. In addition, we did not include treatment-related 

adverse effects such as fracture, toxicity and surgical intervention for both strategies. This 

modeling choice tacitly assumes that the likelihood of these events is the same, regardless of 

strategy, perhaps biasing our analysis against SBRT. A number of published papers reported that 

pathological fracture related to EBRT is about 5% (52, 57). However, adverse events from only 

SBRT have not been reported well in literature because SBRT is commonly used for retreatment 

after initial EBRT treatment for painful vertebral bone metastases. Since RTOG 0631 – a Phase 

III clinical trial comparing SBRT (16 or 18 Gy in 1 fraction) to EBRT (8Gy in 1 fraction) – is 

now ongoing, the results from this trial may provide adverse effects data for SBRT. Treatment 

costs were based on Medicare reimbursement. Reimbursement rates are different among various 

payers, but Medicare reimbursement data is commonly used as a proxy for true costs in cost 

effectiveness analysis. Finally, although we assessed economic costs, other factors such as time 

away from home, travel costs, lost productivity costs, education, resources were not accounted in 

this analysis, since our analysis is from a third party payer perspective. Not including those costs 

could also bias our analysis against SBRT.  

            In conclusion, SBRT for palliation of vertebral bone metastases is not cost-effective 

compared to EBRT when a WTP threshold of $100,000/QALY gained is used. However, if 
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median survival is ≥11 or ≥ 18 months, SBRT costs ≤$100,000/QALY or ≤$50,000 /QALY 

gained respectively, suggesting that selective SBRT usage in patients with longer expected 

survival may be the more cost-effective approach. This approach will need to be further 

supported by RTOG 0631 results.   
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4.0  COST EFFECTIVENSS ANALYSIS OF STEREOTACTIC BODY RADIATION 

THERAPY COMPARED WITH RADIOFREQUENCY ABLATION FOR INOPERABLE 

COLORECTAL LIVER METASTASES  

4.1 INTRODUCTION 

Colorectal cancer (CRC) is the third leading cause of US cancer mortality (82). Typically, the 

first detected site of metastatic disease is within the liver. Approximately half of CRC patients 

develop liver metastases within 2 years after initial diagnosis (83, 84). With a relatively 

prolonged survival in patients with CRC metastases limited to the liver, adequate local control of 

liver metastases may be beneficial not only to decrease morbidity but also to potentially prolong 

disease-free and overall survival (85, 86).  

           In this subset of patients, surgical resection is the therapeutic choice and improves 

prognosis and quality of life, but only 15-20% of patients with liver metastases are suitable for 

resection (87, 88). Alternative local therapies for unresectable liver metastases include 

radiofrequency ablation (RFA), cryotherapy, hepatic arterial chemotherapy infusion and laser-

induced thermotherapy. Among these, RFA is the favored treatment based on favorable local 

control and survival rates with fewer required treatments and less invasiveness compared to other 

options (85, 86, 89). However, RFA presents some limitations when lesions are larger than 3.0 

cm in diameter or in proximity to major blood vessels, adjacent to the main biliary tract or 
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gallbladder, or beneath the diaphragm. RFA to lesions with these characteristics yields 

suboptimal local control and progression-free survival rates (90, 91). 

           Stereotactic body radiation therapy (SBRT) is a newer, non-invasive technique for the 

delivery of conformal high radiation doses to the tumor with sub-millimeter accuracy. Due to 

rapid dose falloff, the SBRT technique is superior to three dimensional conformal radiation 

therapy (3D CRT) technique. The normal liver tissue surrounding the target receives 

significantly lower radiation dose in the SBRT treatment compared to the 3DCRT treatment 

thereby, decreasing the potential for radiation-induced liver disease for the former treatment 

technology. In contrast to 3D CRT, SBRT entails precise delivery of a high dose in fewer 

fractions (3-5 fractions; most commonly 3 fractions), resulting in tumor ablation and maximal 

normal tissue sparing (92-97). Based on retrospective and prospective results, SBRT for 

inoperable liver metastases from CRC is safe, non-invasive and has been proved effective, 

leading to comparable results to RFA despite often treating less favorable lesions (92, 97). Yet 

SBRT can be both expensive and resource intensive based on requirement of advanced treatment 

planning, real-time motion management, and three-dimensional multimodal image acquisition 

systems needed to track target position (97). Whether the benefits afforded by SBRT are cost 

effective compared to RFA has not been previously studied. 

          With rapidly evolving modalities in radiation therapy, new sophisticated cutting edge 

technologies such as SBRT have demanded highly specialized resources, but an increasingly 

resource constrained health care environment  has challenged the sustainability of these 

technologies. Decreasing reimbursement and cost scrutiny from insurers further stresses the need 

to rationalize therapies (98). Despite the potentially more favorable toxicity profile of SBRT 

compared to RFA for unresectable liver lesions, justification is needed to determine which 
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modality provides not only more favorable outcomes but employs a cost effective approach. A 

cost effectiveness analysis was therefore conducted to determine whether SBRT is a cost 

effective therapy compared to RFA for patients with unresectable CRC liver metastases. 

4.2 METHODS 

4.2.1 Decision Model 

A Markov state transition model was constructed, comparing SBRT with RFA for liver 

metastases from CRC. In the model, identical hypothetical cohorts were treated with RFA (single 

treatment) or SBRT (utilizing 3 fractions) (97).  Cohorts were followed over their remaining 

lifetime; the Markov cycle length was 1 month. The Markov model is shown in Figure 4.1, with 

arrows representing transition probabilities between health states based on comprehensive review 

of medical literature-based treatment outcome, survival estimates and complication rates (Table 

4.1) (85-92, 94-97, 99-120). For our model calibration, Markov cohort probability analysis was 

performed for the expected survival rates for both RFA and SBRT cohorts. That is, mortality 

likelihood was calculated and our model produced clinically reasonable survival rates. With a 

lifetime time horizon, our model cycled until the entire cohort had died.   

          The seven main health states in this model were: treatment, no disease progression, local 

recurrence, regional/distant failure, disease progression (prompting initiation of palliative 

chemo), disease controlled after retreatment, and death. Death was the absorbing state. 

Transitions to death were based on previously reported survival rates. All patients entered the 

treatment state in the first cycle of the model. Patients who were alive had either no disease 
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recurrence or disease recurrence, which could be either as local or regional/distant failure. Those 

with local recurrence received salvage treatment with the same therapy as initially given. After 

local retreatment, patients could either have a repeat recurrence or no further recurrence. Patients 

who had regional/distant failures or a third local recurrence were transitioned to a palliative 

chemotherapy state. The likelihood of developing complications from either therapy was 

accounted for. 

         Both costs and utilities were discounted at an annual rate of 3%. TreeAge Pro Suite 2015 

software (TreeAge Software, Williamstown, MA) was used to build the Markov model. The base 

case model was developed from a payer's perspective for health care services, using 2014 

Medicare reimbursement rates. 

4.2.2 Costs 

Cost estimates for SBRT and RFA were based on Medicare reimbursement unadjusted national 

rates, derived from current procedural terminology (CPT) codes in the year 2014. Medicare 

reimbursement data account for technical (hospital) and professional (physician) fees for each 

treatment strategy. Total costs were estimated from Center for Medicare and Medicaid Services 

(CMS) and Agency for Healthcare Research and Quality/Healthcare Cost and Utilization Project 

(AHRQ/HCUP) data (121). Costs included the total course of treatment for each strategy, costs 

of potential complications, inpatient hospital stay, retreatments, and palliative chemotherapy 

(estimated from the cost of 6 cycles of FOLFOX). Total Medicare reimbursement for SBRT and 

RFA were $13,000 and $2,240, respectively (Table 4.2), accounting for differences in treatment 

episodes between strategies. For treatment related complications, RFA complication-related 

costs were based on hospital stays. Only severe toxicities (grade 3 or higher) prompting the need 
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for procedural intervention or hospital stay were accounted for in patients treated with SBRT. 

The cost of each event was estimated from inpatient hospital stays (122) and the event rate was 

assumed from SBRT studies for pancreatic cancer (123). Reimbursement varies geographically, 

thus sensitivity analyses were performed to evaluate the impact of this variation. 

4.2.3 Utilities 

The effectiveness term is quality adjusted life years (QALYs), the product of a health state’s 

quality of life utility and time spent in that state, accounting for quality of life differences 

between treatment strategies using quality of life utility weights. Quality of life utility values for 

each health status were acquired through Tufts CEA registry as well as literature search (124-

127) and listed in Table 4.1.  Sensitivity analyses were used to test utility value assumptions. 

4.2.4 Cost Effectiveness Analysis 

Treatment strategies were compared using the incremental cost effectiveness ratio (ICER), the 

ratio of cost and QALY differences between strategies. There is no consensus on cost 

effectiveness (C/E) criterion in United States; however, interventions costing less than $100,000 

per QALY gained are typically considered economically reasonable from a societal perspective, 

while those costing much more than this figure are often felt to be an expensive use of health 

care resources (128-130). The present analysis is based on payer’s perspective (direct medical 

costs) with a willingness to pay (WTP) threshold of $100,000/QALY gained. Sensitivity analysis 

using a WTP threshold of $50,000/QALY gained was also completed, as this is another 

commonly cited benchmark (131). Markov states tracked costs as a patient traversed the model. 



42 

Treatment strategies were compared using the ICER to determine which provides a more cost 

effective therapy based on the $100,000/QALY WTP threshold. 

4.2.5 Sensitivity Analysis 

One-way, two-way and probabilistic sensitivity analyses were utilized to account for uncertainty 

in decision model assumptions. The ranges of clinical parameters were assumed based on data 

obtained from the comprehensive literature review (85-92, 94-97, 99-120). One-way sensitivity 

analysis, where all parameters are varied individually, was examined to detect the effect of these 

variations on model results. A two-way sensitivity analysis was completed to determine the 

optimal treatment strategy when median survivals from RFA and SBRT were varied. The 

probabilistic sensitivity analysis using Monte Carlo simulation was performed to vary all 

parameters simultaneously. That is, distributions for each parameter were sampled at random 

during 5000 trials and results reported as the percentage of trials in which a strategy is cost 

effective at a series of WTP (or acceptability) thresholds. Costs were modeled using a normal 

distribution with a standard deviation of 25% of base case value.  For utilities and probabilities, a 

beta distribution function was used for sampling (132). 
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Figure 4.1 Markov state transition model 

                         Note: Arrows represent transition between health states (see text for details). 
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Table 4.1 Model assumption- clinical parameters 

Cost Base cost ($) Range ($) Assumed 
distribution 

Cost for RFA 2240 1790-2700 Normal 
Cost for SBRT (3 fractions) 13000 11000-15000 Normal 
Cost of hospital stay (per day) 2157 1600-3000 Normal 
Cost of retreatment with RFA 2240 1790-2700 Normal 
Cost of retreatment with SBRT (3 fractions) 13000 11000-15000 Normal 
Cost of chemotherapy (6 cycle)  7542 6033-9050 Normal 
Cost of complication for RFA Calculate * 
Cost of complication for SBRT Calculate * 

Probabilities Base estimate Range Assumed 
distribution 

Median survival for both treatment strategies 25 months 20-30 months Beta 

i) Probability of local recurrence for RFA
ii) Probability of local recurrence for RFA

(only for tumor size > 4.0cm)

i) 0.3
ii) 0.6

i) 0.16-0.44
ii) 0.5-0.7 Beta 

Probability of local recurrence for SBRT 0.2 0.08-0.32 Beta 

i) Probability of any recurrence for RFA
ii) Probability of any recurrence for RFA **

(only for tumor size > 4.0cm)

i) 0.7
ii) 0.85

i) 0.55-0.85
ii) 0.75-0.95 Beta 

Probability of any recurrence for SBRT 0.6 0.5-0.7 Beta 
Probability of retreatment for RFA 0.45 0.25-0.65 Beta 
Probability of retreatment for SBRT 0.1 0.02-0.2 Beta 
¶Probability of any recurrence after retreatment for 
RFA  0.7 0.55-0.85 Beta 

¶Probability of any recurrence after retreatment for 
SBRT  0.7 0.55-0.85 Beta 

Probability of complication after RFA 0.06 0.03-0.1 Beta 
Probability of complication after SBRT 0.02 0-0.05 Beta 

Utilities Base estimate Range Assumed 
distribution 

Utility for RFA 0.7 0.6-0.8 Beta 
Utility for SBRT 0.8 0.7-0.9 Beta 
Utility for disease free after treatment 0.75 0.7-0.8 Beta 
Utility for retreatment with RFA 0.7 0.6-0.8 Beta 
Utility for retreatment with SBRT 0.8 0.7-0.9 Beta 
Utility for local recurrence 0.74 0.64-0.84 Beta 
Utility for regional/distant disease 0.19 0.15-0.3 Beta 
Utility for chemotherapy 0.6 0.5-0.7 Beta 
Utility for complication after RFA 0.47 0.4-0.6 Beta 
Utility for complication after SBRT 0.47 0.4-0.6 Beta 

Note: *: (probability of complication from either strategy)*(days of hospital stay)* (cost per one hospital stay) 
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**: Consensus estimate based on limited reported data. 

¶ : Consensus estimate based on limited reported data. 

Table 4.2 Medicare reimbursement rates 2014 for professional and technical services related to RFA

For one RFA procedure 

 

 

 

 

For SBRT 3 fractions 

CPT 
Description 

TC PC Medicare Tech 
Reimbursement / 

Unit ($) 

Medicare Prof 
Reimbursement 

/ Unit ($) 

Total Medicare 
Reimbursement 

code Quantity Quantity ($) 

77014 

CT image 
guided 

treatment 
fields 

1 0 0 0 0 

77263 

MD 
treatment 

plan 
(complex) 

0 1 0 166.58 166.58 

77290 Simulation 
with SBRT 1 1 311.37 80.96 392.33 

77293 Motion 
Management 1 1 0 103.89 103.89 

77295 3D 
simulation 1 1 1,036.39 222.02 1,258.41 

CPT 
code 

Description 
Medicare 

Reimbursement ($) 

47380 Radiofrequency ablation 1469.45 

36481 Insertion of catheter vein 369.7 

75887 Vein x-ray liver w/o hemodyn 169.8 

36011 Place catheter in vein 163.4 

75894 X-rays transcath therapy 67.7 

TOTAL 2,240 
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   For SBRT 3 fractions (continued) 

77334 
Treatment 

device 
(complex) 

11 11 213.49 64.12 3,053.71 

77300 Basic dose 
calculation 10 10 114.65 32.24 1,468.90 

77373 Treatment 
delivery 3 0 1,921.30 0 5,763.90 

77336 Weekly 
physics 1 0 114.65 0 114.65 

77435 
SBRT 

management 
course 

0 1 0 633.71 633.71 

TOTAL 12,956.08 
Note: TC: technical charge, PC: professional charge, MD: physician 

4.3 RESULTS 

4.3.1 Base Case Analysis 

Cost effectiveness analysis demonstrated that SBRT costs $7,949 more than RFA while gaining 

0.04 QALYs, resulting in an ICER of $185,515 per QALY gained. Assuming similar patients 

treated with either modality, both treatment strategies were assumed to have the same median 

survival (25 months). 

4.3.2 Sensitivity Analysis 

In one-way sensitivity analyses, results were most sensitive to variation of the median survival 

(ICER range, -$240,000 to $185,515 per QALY gained: Figure 4.2). Results were additionally 

sensitive to the following parameters: quality of life utility value of chemotherapy, any tumor 

recurrence rate after RFA, and any tumor recurrence rate after SBRT. If median survival of 
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SBRT was ≥26 months and ≥27 months, SBRT costs ≤$100,000 and ≤$50,000 per QALY 

gained, respectively. However, if median survival of SBRT was ≤ 24 months, RFA led to a 

dominant strategy (less costly and more effective treatment). Noticeably, any variation of clinical 

parameters used, except for median survival rates, within the limits of previously published 

ranges did not lead to SBRT becoming favored based on the ICER threshold of $100,000/QALY 

gained (Figure 4.2).  Median survival variations of both treatment strategies were not performed 

simultaneously to reflect the median survival change of one strategy compared to the other. In 

the analysis, median survival relative risk, the ratio of the two median survivals, was used to 

represent the median survival change of the two strategies dependently. The range of median 

survival relative risk was 0.8-1.2; one strategy survival varied between 20 and 30 months, while 

the other strategy kept base case 25 months.     

         A two-way sensitivity analysis was conducted varying median survival and tumor 

recurrence rate from RFA, the parameters whose variation had the great effects on model results. 

As shown in Figure 4.3, median survival change dramatically influenced the decision of 

treatment strategy preference based on cost effectiveness, regardless of tumor recurrence rates.    

       Probabilistic sensitivity analysis, which varied all model parameters simultaneously, 

demonstrated that SBRT was favored in 47% of model iterations and RFA favored in 53% at a 

WTP threshold of $100,000 per QALY gained (Figure 4.4).  

        In a separate scenario analysis, RFA and SBRT were compared for large tumor sizes (>4 

cm) due to established inferiority of local control rates with RFA in this population. Total costs 

remained higher with SBRT at $7,326 with 0.07 QALYs gained compared with RFA, yielding 

an ICER of $101,052 per QALY gained. 
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Figure 4.2 One way sensitivity analysis. 

Note: ICER Tornado diagram for one way sensitivity analysis. The vertical line represents the base case value of 

ICER (base case median survival is 25 months for both strategies and ICER is $185,515 per QALY gained).  

Median survival relative risk is defined as a ratio of the two median survivals (ranges: 0.8-1.2, ICER -$240,000 to 

185,515/QALY gained). Utility value of chemotherapy (ICER ranges: $ 115,800 to $466,288/QALY gained), any 

tumor recurrence rate from RFA ($115,362 to 460,823/ QALY gained) and any tumor recurrence rate from SBRT 

(ICER ranges: $ 110,000 to 282,000/QALY gained) are also sensitive to model results.  
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Figure 4.3 Two way sensitivity analysis. 

Note: The x axis represents median survival risk ratio (range:  0.8-1.2 reflecting that one of the two strategies is 

varying between 20-30 months, while the other is holding constant as 25 months). The y axis represents any tumor 

recurrence rate from RFA. The” x“on the graph represents the base case value (median survival 25 months and 

recurrence rate as 70%) showing RFA as a preferred strategy at a WTP of $100,000 /QALY gained. 
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                                                  Figure 4.4 Probabilistic Sensitivity Analysis 

Note: Cost- effectiveness acceptability curve, showing the likelihood that strategies would be considered cost-

effective (on the y axis) over a range of willingness to pay (WTP) threshold. Here SBRT has a 47% probability of 

being considered cost-effective at $100,000/QALY gained threshold. SBRT becomes a favored treatment strategy 

above a WTP $200,000/QALY gained. 
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4.4 DISCUSSION 

To our knowledge, this is the first study to conduct a cost effectiveness analysis of SBRT and 

RFA for the treatment of liver metastases resulting from CRC. Results from the analysis 

confirmed that SBRT is not a cost effective strategy compared with RFA using a WTP threshold 

of $100,000 per QALY gained when equal survival between strategies is assumed.  

        Existing literature evaluating cost effective approaches for CRC liver metastases have not 

yet addressed the role of SBRT. Roberts et al (127) completed a cost-utility analysis of operative 

versus non-operative approaches for colorectal liver metastases, incorporating outcomes from 

institutional observational data. This analysis demonstrated that an operative approach was both 

cheaper (€22,200 vs. €32,800) and more effective (4.017 vs. 1.111 QALYs gained) than non-

operative strategies, with results found to be robust in sensitivity analyses. These findings may 

reflect the distinct, nearly two-fold, median survival difference seen with an operative approach. 

One critical difference with our study was evaluation of SBRT, which was not considered in that 

prior study. Additionally, patients treated with non-operative approaches were typically deemed 

surgically unresectable, thus leading to inherent imbalances in patient characteristics between the 

two arms (operative and non- operative cohorts).  

         For non-operative candidates, data supporting both RFA and SBRT are limited to 

retrospective and non-comparative prospective trials, leading to difficulties in comparing 

efficacy. Local control rates in literature using SBRT range from 66-92% (94-97, 113-120) 

versus those with RFA, which range from 56-84% (90, 91, 99-120). The base case assumption 

for local control rate in the present study was 80% and 70% for SBRT and RFA, respectively. 

Additionally, rates of severe toxicity appear slightly lower with SBRT (0-3 vs. 5-10 %). Despite 

these potential gains, these findings suggest these benefits come at a substantial increase in cost.         
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        One significant challenge in the present study is the heterogeneity of results from previously 

established studies. Compared to RFA studies, a majority of reported literature using SBRT 

includes patients with higher rates of comorbidities, larger tumor sizes and suboptimal tumor 

locations (proximity to large vessels). Presumably these patients would have inferior outcomes 

with RFA. Such variability and issues with selection imbalances underscore the need for a 

randomized trial. Unfortunately, a prior attempt at a randomized clinical trial (RAS01: RFA vs. 

SBRT in CRC liver metastases) failed due to poor accrual. Accepting this limitation and using 

existing outcomes for SBRT and RFA, the results of this study suggest SBRT is a less cost 

effective modality for treatment of CRC liver metastases if survival is equal in comparable 

patient cohorts.  

        One notable caveat to this conclusion was the finding of a high degree of sensitivity to 

changes in survival for both treatment strategies. Based on model results, if median survival of 

SBRT was ≤ 24 (base case 25 months), RFA led to a dominant strategy. However, SBRT is 

economically sound at the WTP threshold of $100,000 per QALY gained if median survival of 

SBRT is ≥26 months. Moreover, if median survival is ≥ 27 months, SBRT costs $50,000 per 

QALY or less, which is commonly cited as a benchmark of a “good buy” for medical 

interventions (131). That is, the small absolute survival benefit of SBRT can lead to justify this 

treatment from a cost effectiveness standpoint. However, existing data do not support the 

survival difference between strategies. Based on the lower rates of toxicity and higher local 

control with SBRT, one would expect in appropriately selected patients, survival may be 

improved compared to RFA. If indeed this is assumed, even with as small as a month median 

survival gain, SBRT becomes a more cost effective approach than RFA. These findings should 
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emphasize the critical need for a randomized comparison between these two approaches to avoid 

cohort imbalances. 

        In order to better correct for these imbalances in prior studies, a separate scenario analysis 

was completed for patients with larger tumor sizes (>4 cm). Tumor size has been known as a 

significant predictor for tumor control and survival with RFA (101, 103, 106, 108). In this 

patient subset, SBRT resulted in an ICER of $101,052 per QALY gained with equal survival 

between treatment strategies, while local control rate was assumed as 80% and 40% for SBRT 

and RFA, respectively (94, 96, 101, 103, 106, 108, 113, 114, 117, 119). Therefore, with 

appropriate dose delivery when feasible, SBRT may indeed be a more suitable and cost effective 

approach for these challenging cases. 

        A predominant challenge of cost effectiveness analyses lies in the definition of financial 

costs. In this study, direct medical costs based on a payer’s perspective (Medicare in this 

example) were utilized for several reasons. First, $100,000/QALY threshold is usually 

considered as a societal perspective including both direct medical, direct non-medical, and time 

costs. Direct non-medical costs (costs incurred by the patient for seeking or receiving care) and 

time costs (time for a caregiver or patient seeking or receiving care) are particularly complex to 

calculate for each patient due to a lack of accepted standards of measurement (133). 

Furthermore, these costs are relatively small in comparison to direct medical costs. Therefore, 

ICER results between payer’s perspective and societal perspective will likely not differ 

substantially. Secondly, results based on payer’s perspective can provide a better representation 

of reimbursement-related policy because estimation of direct medical costs has been calculated 

from resource use and separate cost per each unit of resource expanded. Due to its standard 

quantification method based on the resource use across health care setting, medical care policy 
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makers take cost- effectiveness analysis that encompass a payer’s perspective to reflect 

reimbursement insurance policy (134).  

       Aside from those previously discussed, further challenges and limitations exist in our study. 

Treatment-related complications rates for SBRT were limited to severe toxicities (grade 3 or 

higher). While such toxicities are generally uncommon with SBRT (zero to 3%), lesser toxicities 

(grade 1 and 2) are common. Differing rates of low-grade toxicity between treatment strategies 

could bias results and fail to capture the added cost of care. However, sensitivity analyses 

suggested that assumptions about toxicity rates did not change the results. Next, the assumption 

was made that after local recurrence, either the same local therapy, based on prior re-treatment 

rates, or palliative chemotherapy was delivered (96, 106, 110-112, 114, 116, 119). A number of 

alternative salvage regimens exist for these patients such as additional systemic therapy, 

palliative external beam radiotherapy and surgical resection. Establishing exact probability rates 

of receiving any of these other salvage options is challenging due to the complexities of such 

cases. Lastly, treatment costs were based on Medicare reimbursement rates. While 

reimbursement rates vary among payers, Medicare reimbursement data is commonly a model for 

other payers. Other published cost effectiveness analyses have employed this data set as a proxy 

for true costs in cost effectiveness analysis.  

       In conclusion, SBRT was found to not be a cost effective treatment option compared to RFA 

using a WTP of $100,000/QALY gained when equal survival is assumed between strategies. 

However, considerable variability and selection bias exists in reported outcomes for each 

approach. In patients with larger tumor sizes (>4 cm), SBRT was found to be a more cost 

effective choice. Subtle variations in median survival, even as small as a 1-month gain, achieved 
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the threshold where SBRT became more cost effective. Such findings emphasize the need for a 

comparative clinical trial to guide appropriate and cost-conscious management. 
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5.0  CONCLUSION 

The studies in this dissertation evaluated cost effectiveness analyses in radiation therapy 

treatments. Recent advances in radiation therapy technologies have led to rapid changes in the 

standard of care for cancer treatment. New, innovative therapies are more effective than 

therapies developed previously. However, these therapies come at a high cost. In current daily 

practice, we are continuously asked to demonstrate cost- effectiveness and value so that the most 

appropriate management decisions can be performed. 

My dissertation addresses this critical question of cost-effectiveness using quantitative 

analysis methods. The projects in this dissertation investigated whether the clinical benefit from 

innovative radiation treatment technology is worth the higher costs when compared with lower 

cost alternatives. First, we compared 3-dimensional (3D) image guided brachytherapy (IGBT) 

compared to conventional 2-dimensional (2D) high dose rate (HDR) brachytherapy for the 

treatment of locally advanced cervical cancer.  We found that 3D IGBT is a more cost effective 

option compared to 2D HDR brachytherapy with a willingness to pay (WTP) threshold of 

$50,000/quality adjusted life years (QALY) gained. These findings were robust to variation of 

parameter values, both individually and collectively, strongly supporting the routine use of 3D 

image guided brachytherapy for the treatment of locally advanced cervical cancer. Second, we 

compared a single fraction of stereotactic body radiation therapy (SBRT) to a single fraction of 

external beam radiation therapy (EBRT) for palliation of vertebral bone metastases. We found 
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that SBRT is not a cost effective treatment strategy compared to conventional EBRT with a WTP 

threshold of $100,000/QALY gained in patients with relatively short life expectancy. This 

finding suggests that selective SBRT usage in patients with longer expected survival may be the 

more cost-effective approach. Finally, we compared SBRT with radiofrequency ablation (RFA) 

for inoperable colorectal liver metastases. We found that SBRT is not cost effective compared to 

RFA with a WTP of $100,000/QALY gained when equal survival is assumed between treatment 

strategies. However, interestingly, SBRT was found to be a more cost effective choice in patients 

with larger tumor sizes (>4 cm). 

The conclusion of each study, however, has to be taken with caution, as there were 

inevitable limitations in conducting the studies. For example, in the three studies presented here, 

model assumptions with clinical parameters were obtained mainly from retrospective studies and 

reviews. This was because there is a lack of prospective studies and clinical trials related to these 

studies. Furthermore, randomized clinical trial and Meta-analysis were not available for these 

studies. In the first study, a randomized clinical trial between 3D IGBT and 2D conventional 

brachytherapy was not feasible due to an ethical issue. In the second study, RTOG 0631, a Phase 

III clinical trial comparing SBRT (16 or 18 Gy in 1 fraction) to EBRT (8Gy in 1 fraction) is still 

an ongoing cooperative group trial to clarify the clinical effectiveness between the two arms. In 

the third study, a randomized clinical trial (RAS01: RFA vs. SBRT in CRC liver metastases) 

failed due to poor accrual. Moreover, model assumption in this study had a significant 

heterogeneity of results from previously established data, underscoring a need for prospective 

studies for a direct comparison in efficacy between treatment strategies. Also in the second and 

third studies, results were highly sensitive to assumptions regarding patient survival rates and 

quality of life utility values. This highlights that the model estimates for the cost effectiveness 
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should be confirmed with results from comparative prospective trials to increase the robustness 

of model analysis.  

Despite these challenges, the results demonstrate general usefulness of cost effectiveness 

studies in drafting clinical decision guidelines in terms of 1) providing payers with clear picture 

on the cost-benefit relationship; 2) consequences of treatment choices; and 3) making the use of 

resources most efficiently. In addition, these studies provide a practical frame work for 

constructing cost effectiveness analysis models that incorporate data from future prospective 

clinical trials and observational studies. 
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