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Abstract—Similarity measures provide one of the core tools
that enable reasoning about fuzzy sets. While many types of
similarity measures exist for type-1 and interval type-2 fuzzy sets,
there are very few similarity measures that enable the comparison
of general type-2 fuzzy sets. In this paper, we introduce a
general method for extending existing interval type-2 similarity
measures to similarity measures for general type-2 fuzzy sets.
Specifically, we show how similarity measures for interval type-2
fuzzy sets can be employed in conjunction with the zSlices based
general type-2 representation for fuzzy sets to provide measures
of similarity which preserve all the common properties (i.e.
reflexivity, symmetry, transitivity and overlapping) of the original
interval type-2 similarity measure. We demonstrate examples of
such extended fuzzy measures and provide comparisons between
(different types of) interval and general type-2 fuzzy measures.

Index Terms—similarity measure, interval type-2, general type-
2, zSlices

I. INTRODUCTION

Fuzzy logic has been successfully applied to many real

world applications in which uncertainty is present. Type-1

(T1) fuzzy logic has been the most popular form of fuzzy

logic used, however, advances in fuzzy logic theory have made

it possible to research more complex types of fuzzy logic

such as interval type-2 (T2) and general T2 fuzzy sets and

systems. In particular, interval T2 fuzzy sets (FSs) have been

used intensively because their computational requirements

compared to that of general T2 FSs are greatly reduced.

One of the most common tools of fuzzy logic is similarity

measures (SMs). A SM between FSs indicates the degree to

which the FSs are similar. The concept is relevant in many

fields, for example, pattern recognition [1], analogical reason-

ing [2] and fuzzy rule base simplification [3]. SMs for T1 FSs

have been extensively studied by many researchers, such as

[4], [5] and [6] where the latter provides a good overview.

However, SMs for T2 FSs have been less widespread. Al-

though some methods have been developed for interval T2

FSs, e.g. [7], [8], [9], [10], [11], fewer methods exist for

general T2 FSs.

This work was partially funded by the EPSRC’s Towards Data-Driven
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Digital Economy Research Hub grant, EP/G065802/1.

Four properties of SMs for FSs that are commonly used in

the literature are:

Reflexivity: s(Ã, B̃) = 1 ⇐⇒ Ã = B̃
Symmetry: s(Ã, B̃) = s(B̃, Ã)
Transitivity: If Ã ≤ B̃ ≤ C̃, then s(Ã, B̃) ≥ s(Ã, C̃)
Overlapping: If Ã ∩ B̃ 6= ∅, then s(Ã, B̃) > 0; otherwise,

s(Ã, B̃) = 0
Note that it is not necessary for a SM to have all of these

properties as the application of the measure may not depend

on all of them.

With the recent increase in T2 applications there is a

growing potential for applications of T2 SMs. This paper

presents a general method of extending SMs on interval T2

FSs to SMs on general T2 FSs. In Section II, background

theory of T1 and T2 FSs will be presented, followed by an

overview of some of the most common existing methods of

similarity for interval T2 FSs. In Section III the generalisation

of interval T2 SMs to general T2 FSs will be introduced,

followed by demonstrations and comparisons of the newly

introduced SM for general T2 FSs and existing interval T2

SMs in Section IV. Finally, some conclusions are presented in

Section V.

II. BACKGROUND

A. Fuzzy Sets

1) Type-1 Fuzzy Sets: T1 FSs have been applied to many

fields from data mining [12] to time-series prediction [13] and

computing with words [14]. The T1 FS F is represented as

F =

∫
X

µF (x)/x (1)

where
∫

denotes the collection of all points x ∈ X with

associated membership function (MF) µF (x) [15].

2) General Type-2 Fuzzy Sets: A T2 FS differs from a T1

FS in that it has a Footprint Of Uncertainty (FOU) which

is defined by two MFs; a lower MF and an upper MF. An

example of a T1 and T2 FS can be seen in Fig. 1. For any

input, x, in the T1 FS the membership value is a crisp number

in [0,1], whereas for the T2 FS the membership value is a T1

FS. A general T2 FS F̃ can be expressed as

F̃ =
∫
x∈X

∫
u∈Jx

µF̃ (x, u)/(x, u) Jx ⊆ [0, 1] (2)



where x is the primary variable in X , u is the secondary

variable which has the domain Jx ⊆ [0, 1], and the amplitude

of µF̃ (x, u) is known as the secondary grade.

3) Interval Type-2 Fuzzy Sets: An interval T2 FS is a

special case of a general T2 FS in which the secondary grade

equals 1 for ∀x ∈ X and ∀u ∈ Jx. Thus the interval T2 FS

F̃ can be expressed as [16]

F̃ =
∫
x∈X

∫
u∈Jx

1/(x, u) Jx ⊆ [0, 1] (3)

Interval T2 FSs are the most commonly used T2 FSs because

of their simplicity and reduced computational cost in compar-

ison to general T2 FSs [17].

T2 FSs have been successfully applied to many fields, such

as autonomous mobile robots [18], decision making [19] and

forecasting of time-series [20]. Additionally, in recent years T2

FSs have proven to outperform T1 FSs in many applications

(when the number of sets is kept constant) because they are

able to model uncertainty with greater accuracy [18], [21],

[22].

4) zSlices-Based General Type-2 Fuzzy Sets: Many efforts

have been made to reduce the complexity of general T2 FSs.

Coupland and John introduced a geometric representation of

T2 FSs [23], Mendel et al. proposed the use of alpha-planes

[24] and Wagner and Hagras put forward the zSlices approach

[25]. This paper will focus on the use of zSlices, which are

described next.

A general T2 FS can be represented by slicing the third

dimension (z) at level zi to create a zSlices-based general T2

FS [25]. The resulting set will consist of zSlices which are

interval T2 FSs with a secondary membership grade of zi;
unlike regular interval T2 FSs, whose secondary membership

grade is always 1. Thus, the zSlice Z̃i can be written as follows

[25]:

Z̃i =

∫
x∈X

∫
ui∈Jix

zi/(x, ui). (4)

The FS F̃ can then be represented as a collection of zSlices

[25]:

F̃ =

I∑
i=1

Z̃i (5)

where I is the number of zSlices. Note that the zSlice Z0 is

disregarded because its secondary grade is 0, and thus Z0 does

not contribute to the FS [25]. As the number of zSlices used

to represent a general T2 FS increases, the zSlices-based T2

FS’s representation of the original set becomes more accurate.

In addition to the purpose of simplifying general T2 FSs,

“pure” zSlices-based general T2 FSs have also been used in

the literature to model agreement [26], [27], for example in

the context of Computing With Words [14], [28].

B. Similarity Measures

In this section, a collection of SMs for interval T2 FSs will

be briefly reviewed. For conciseness we focus on four existing

methods for measuring the similarity between two interval T2

FSs. Though additional measures exist, the measures presented

(a) (b)

Fig. 1. (a) A type-1 fuzzy set. (b) A type-2 fuzzy set.

in this section are the most common and provide a good

overview of the interval T2 SMs available. A more detailed

comparison of these and other interval T2 SMs has been

presented by Wu and Mendel in [11] and [8].

1) Zeng and Li: Zeng and Li [7] proposed the following

SM for interval T2 FSs, Ã and B̃, in a discrete universe of

discourse:

SZL(Ã, B̃) =
1− 1

2n

∑n
i=1(|µÃ

(xi)− µ
B̃
(xi)|+ |µÃ(xi)− µB̃(xi)|)

(6)

where µ
Ã
(xi) denotes the lower membership value of the FS

Ã at xi, µÃ(xi) denotes the upper membership value of Ã at

xi, and n is the total number of discretisations along the x-

axis. This method has the properties of reflexivity, symmetry

and transitivity. However, it does not have the property of

overlapping, and instead as the distance between two disjoint

sets increases their similarity according to the measure also

increases.

2) Jaccard: Wu and Mendel [8] and Nguyen and

Kreinovich [29] proposed the following SM for interval T2

FSs Ã and B̃:

SJ(Ã, B̃) =∫
X

min(µÃ(x),µB̃(x))dx+
∫
X

min(µ
Ã
(x),µ

B̃
(x))dx∫

X
max(µÃ(x),µB̃(x))dx+

∫
X

max(µ
Ã
(x),µ

B̃
(x))dx

(7)

This method has the properties of reflexivity, symmetry, tran-

sitivity and overlapping.

3) Gorzałczany: Gorzałczany proposed a compatibility

measure for two interval T2 FSs [9]; a compatibility measure

has been described as a broad concept which typically en-

compasses both similarity and proximity [30]. Gorzałczany’s

measure is given as follows:

SG(Ã, B̃) = [SL(Ã, B̃), SU (Ã, B̃)] (8a)

SL(Ã, B̃) = min{S1(Ã, B̃), S2(Ã, B̃)} (8b)

SU (Ã, B̃) = max{S1(Ã, B̃), S2(Ã, B̃)} (8c)

S1(Ã, B̃) =
maxx∈X(min[µ

Ã
(x), µ

B̃
(x)])

maxx∈Xµ
Ã
(x)

(8d)

S2(Ã, B̃) =
maxx∈X(min[µÃ(x), µB̃(x)])

maxx∈XµÃ(x)
(8e)



Wu and Mendel have shown in [11] that this measure

does not reflect reflexivity. The result of SG(Ã, B̃) is al-

ways (1, 1) when maxx∈Xµ
Ã
(x) = maxx∈Xµ

B̃
(x) and

maxx∈XµÃ(x) = maxx∈XµB̃(x), even if the shapes of the

two sets are different.

4) Bustince: Bustince proposed the following SM [10]:

SB(Ã, B̃) = [SL(Ã, B̃), SU (Ã, B̃)] (9a)

SL(Ã, B̃) = ΥL(Ã, B̃) ⋆ΥL(B̃, Ã) (9b)

SU (Ã, B̃) = ΥU (Ã, B̃) ⋆ΥU (B̃, Ã) (9c)

ΥL(Ã, B̃) =
infx∈X{1,min(1− µ

Ã
(x) + µ

B̃
(x), 1− µÃ(x) + µB̃(x))}

(9d)
ΥU (Ã, B̃) =
infx∈X{1,max(1− µ

Ã
(x) + µ

B̃
(x), 1− µÃ(x) + µB̃(x))}

(9e)

where ⋆ is any t-norm. This method does not support

overlapping; when Ã and B̃ are disjoint the result of SB(Ã, B̃)
is always greater than zero.

III. SIMILARITY MEASURES FOR GENERAL TYPE-2

FUZZY SETS

This section proposes a general method of extending interval

T2 SMs to general T2 FSs through the zSlices representation

[25]. Any properties that hold for the original interval T2 SM

are upheld in the general T2 SM as proven in Section B.

A. Extending interval-based similarity measures

As has been shown in [25] and Section II, a general T2 FS

can be represented as a series of zSlices. From this, we present

the following definition of a SM for zSlices-based general T2

FSs:

Definition 1 (General type-2 similarity measure): By

using zSlices-based general T2 FSs, a measure of similarity

on interval T2 FSs can be applied to each zSlice, and the

results for each zSlice can be combined as follows:

SZS(Ã, B̃) =

∑
i∈L ziSλ(Ãzi , B̃zi)∑

i∈L zi
(10)

where Sλ(Ãzi , B̃zi) is any SM for interval T2 FSs. Sets Ãzi

and B̃zi are zSlices from sets Ã and B̃ at zLevel zi, and L
is the set of zLevels used by Ã and B̃. For example, if Ã
and B̃ have three zLevels where z1 = 0.33, z2 = 0.66 and

z3 = 1 then L = {0.33, 0.66, 1}. The higher the number of

zSlices that are used to represent the FSs, the more accurate

the representation of the FSs, and thus the more accurate the

SM will be. When the sets use only one zLevel the equation

reduces to the corresponding interval T2 SM.

It is worthwhile to note that in zSlices-based fuzzy logic

systems each set will typically use the same number of zLevels

throughout the system, however, it is possible that a SM will

be required for two zSlices-based T2 FSs which use different

(numbers of) zLevels. For example, consider the general T2

FS Ã in Fig. 2(a). Two zSlices representations of this same

set are shown in Fig. 2(b) and Fig. 2(c). Set B̃, in Fig. 2(b),

TABLE I
AN OVERVIEW OF THE SIMILARITY PROPERTIES OF INTERVAL T2 SMS

reflexivity symmetry transitivity overlapping

Zeng & Li 4 4 4

Jaccard 4 4 4 4

Gorzałczany 4 4

Bustince 4 4 4

uses four zSlices, where z1 = 0.25, z2 = 0.5, z3 = 0.75 and

z4 = 1, and set C̃, in Fig. 2(c), uses three zSlices, where z1
= 0.33, z2 = 0.66 and z3 = 1. To clearly show the zLevels of

each set, the vertical slices of B̃ and C̃ at x = 3 are shown

in Fig. 2(d).

The similarity of sets B̃ and C̃ is calculated using the union

of their zLevels as follows:

L =
M⋃

m=1

zm ∪
N⋃

n=1

zn (11)

Where M and N are the number of zLevels used by

each respective FS. In this example, M = 4 and N =
3, so L = {0.25, 0.5, 0.75, 1.0} ∪ {0.33, 0.66, 1.0} =
{0.25, 0.33, 0.5, 0.66, 0.75, 1.0}. These zLevels are shown in

Fig. 2(e), represented by dashed lines. Note that in set C̃
the zSlice at zi = 0.25 has the same FOU as the zSlice at

zi = 0.33. A worked numerical example of measuring the

similarity between sets with different numbers of zLevels is

included in the appendix.

Through (11), (10) is not restricted to only zSlices-based

general T2 FSs with identical or different (numbers of)

zLevels, but can also be applied to zSlices-based general T2

FSs in combination with interval T2 FSs or T1 FSs.

B. Properties of the Extended Similarity Measure

The following proves that when extending any interval T2

SM as shown in (10), all the common properties for SMs,

namely, reflexivity, symmetry, transitivity, and overlapping,

that hold for the original interval T2 SM will also hold in

the extended zSlices-based T2 SM.

Considering the four properties of similarity introduced in

Section I, an overview of the properties of each interval T2 SM

introduced in Section II is presented in Table I. We consider

each property below:

Theorem 1 (Reflexivity): SZS(Ã, B̃) = 1 ⇐⇒
Sλ(Ãzi , B̃zi) = 1 for each z ∈ Z, where Z is the set

of all zLevels.

Proof: The similarity of each zSlice can be calculated

as Sλ(Ãzi , B̃zi) where Ãzi and B̃zi are interval T2 FSs for

which secondary grade is at zi. If at each zLevel Ãzi = B̃zi ,

then Sλ(Ãzi , B̃zi) = 1, and so SZ(Ã, B̃) will be calculated

as

∑
I

i=1
zi×1∑

I

i=1
zi

= 1.

Alternatively, if at any zSlice Sλ(Ãzi , B̃zi) < 1, then∑
I

i=1
Sλ(Ãzi

,B̃zi
)

I
< 1, where I is the total number of zSlices.



(a)

(b)

(c)

(d)

(e)

Fig. 2. (a) A general T2 FS Ã. (b) A zSlices-based model, B̃, of Ã with four

zLevels. (c) A zSlices-based model, C̃, of Ã with three zLevels. (d) Vertical
slices of B̃ and C̃ at x=3. (e) Vertical slices of B̃ and C̃ at x=3 with dashed
lines marking their shared zLevels.

Therefore

∑
I

i=1
ziSλ(Ãzi

,B̃zi
)∑

I

i=1
zi

< 1. Thus, SZS(Ã, B̃) 6= 1 if

Sλ(Ãzi , B̃zi) 6= 1 for any z ∈ Z.

Theorem 2 (Symmetry): SZS(Ã, B̃) = SZS(B̃, Ã) ⇐⇒
Sλ(Ãzi , B̃zi) = Sλ(B̃zi , Ãzi) for each z ∈ Z.

Proof: Observe that (10) does not depend on the order of

Ã and B̃, thus if Sλ(Ãz, B̃z) = Sλ(B̃z, Ãz), then the same

will be true for SZ(Ã, B̃).
Theorem 3 (Transitivity): SZS(Ã, B̃) ≤ SZS(Ã, C̃) ⇐⇒

Sλ(Ãzi , B̃zi) ≤ Sλ(Ãzi , C̃zi) for each z ∈ Z.

Proof: If Sλ(Ãzi , B̃zi) ≤ Sλ(Ãzi , C̃zi) for each z ∈ Z
then

∑I
i=1 Sλ(Ãzi , B̃zi) ≤

∑I
i=1 Sλ(Ãzi , C̃zi) and therefore∑

I

i=1
ziSλ(Ãzi

,B̃zi
)∑

I

i=1
zi

≤

∑
I

i=1
ziSλ(Ãzi

,C̃zi
)∑

I

i=1
zi

Theorem 4 (Overlapping): SZS(Ã, B̃) = 0 ⇐⇒
Sλ(Ãzi , B̃zi) = 0 for each z ∈ Z.

Proof: If at each zSlice Sλ(Ãzi , B̃zi) = 0 then SZ(Ã, B̃)

will be calculated as

∑
I

i=1
zi×0∑

I

i=1
zi

= 0.

Alternatively, if at any zSlice Sλ(Ãzi , B̃zi) > 0, then∑
I

i=1
Sλ(Ãzi

,B̃zi
)

I
> 0, where I is the total number of zSlices.

Therefore

∑
I

i=1
ziSλ(Ãzi

,B̃zi
)∑

I

i=1
zi

> 0. Thus, SZS(Ã, B̃) 6= 0 if

Sλ(Ãzi , B̃zi) 6= 0 for any z ∈ Z.

IV. DEMONSTRATIONS

In this section, three demonstrations are given to present the

general T2 SM. The first demonstration uses the interval T2

SMs introduced in Section II on interval T2 FSs, and demon-

strations 2 and 3 apply the general T2 SM on different general

T2 FSs. Reviews of the interval T2 measures introduced have

been presented by Wu and Mendel in [11] and [8], however, a

brief review is given in this section so that comparisons can be

made against the demonstrations for the zSlices-based general

T2 case.

A. Demonstration 1 - Comparison of Interval Type-2 Ap-

proaches

In this demonstration, each method was applied to the

interval T2 FSs displayed in Fig. 3, the results of which

are shown in Table II. The x-axis was discretised into 100

equally distanced points, and minimum t-norm was used for

Bustince’s SM. As in [11], it can be observed that neither

Zeng and Li’s nor Bustince’s measures support the property

of overlapping. When the FSs being measured are disjoint,

Zeng and Li’s SM increases as the distance between the sets

increases and Bustince’s measure always gives a constant non-

zero value. This can be seen in the results of sets Ã and D̃
and of sets Ã and Ẽ. Depending on the application, this may

not be what is expected as it is often presumed that S(Ã, B̃)
either decreases as the distance between Ã and B̃ increases, or

is given as 0. Additionally, Gorzałczany’s measure has given

(1.0, 1.0) for sets Ã and B̃ because this measure will always

give (1.0 1.0) when maxx∈Xµ
Ã
(x) = maxx∈Xµ

B̃
(x) and

maxx∈XµÃ(x) = maxx∈XµB̃(x); as is true for sets Ã and

B̃. Jaccard’s SM, however, gives expected results.



TABLE II
COMPARISON OF INTERVAL T2 SMS USING THE FSS DISPLAYED IN FIG. 3

S(Ã, Ã) S(Ã, B̃) S(Ã, C̃) S(Ã, D̃) S(Ã, Ẽ)

Zeng & Li 1.0 0.538 0.345 0.371 0.461
Jaccard 1.0 0.342 0.071 0.0 0.0

Gorzałczany (1.0, 1.0) (1.0, 1.0) (0.0, 1.0) (0.0, 0.0) (0.0, 0.0)
Bustince (1.0, 1.0) (0.0, 0.15) (0.0, 0.15) (0.0, 0.15) (0.0, 0.15)

Fig. 3. Trapezoidal interval T2 FSs used to test interval T2 SMs.

B. Demonstrations of zSlices-Based General Type-2 Ap-

proaches

Two different demonstrations (demonstrations 2 and 3)

apply the zSlices-based SM to zSlices-based general T2 FSs.

Examples of trapezoidal and triangular FSs are presented,

however the SM will work for any type of sets. These demon-

strations use the SMs by Zeng and Li, Jaccard, Gorzałczany

and Bustince; as defined in (6), (7), (8) and (9), respectively.

Demonstration 2 employs the zSlices-based SM on trapezoidal

general T2 FSs that are based on the interval T2 FSs used

in demonstration 1. This enables comparisons to be made

between the interval T2 SMs and their extensions. The final

demonstration measures the similarity between triangular T2

FSs, providing an additional example to demonstrate the

zSlices-based SMs.

1) Demonstration 2: For this demonstration, each interval

T2 FS in Fig. 3 was altered into a standard general T2 FS

with a principal MF as shown in Fig. 4(a), which displays

the set Ã. Each set has a triangular secondary MF, the peak

of which is at the centre of the FOU. The FSs were next

represented by zSlices-based T2 FSs with four zLevels at

coordinates 0.25, 0.5, 0.75 and 1.0. Note that the number of

zLevels was chosen as four to provide a clear demonstration,

however more zLevels may be used to gain a more accurate

representation of the original general T2 FS. The zSlices of all

sets are shown in Fig. 4(b). Fig. 4(c) and Fig. 4(d) show the

zSlices representation of the FS Ã in more detail. The results

of this experiment, for which the x-axis was discretised into

100 equally distanced points, are shown in Table III.

Comparing the results from the experiments on the interval

T2 FSs in Table II with the zSlices-based general T2 FSs

(a)

(b)

(c)

(d)

Fig. 4. (a) A trapezoidal general T2 FS based on the FSs in Fig 3. (b) Five
zSlices-based representations of (a) using four zSlices arranged as Fig 3. (c)

Front view of set Ã. (d) Tilted view of set Ã.



in Table III, each method has maintained the same similarity

properties shown in Table I in both experiments as proven in

Section III B. However, though one would assume that the

results of each experiment should be the same, the measure-

ments given by each method have changed slightly. We next

address the altered result of each SM.

TABLE III
COMPARISON OF THE ZSLICES SIMILARITY MEASURE USING INTERVAL

T2 SMS ON THE ZSLICES-BASED T2 FSS DISPLAYED IN FIG. 4(B).

S(Ã, Ã) S(Ã, B̃) S(Ã, C̃) S(Ã, D̃) S(Ã, Ẽ)

Zeng & Li 1.0 0.496 0.267 0.345 0.443
Jaccard 1.0 0.335 0.041 0.0 0.0

Gorzałczany (1.0, 1.0) (1.0, 1.0) (0.33, 0.66) (0.0, 0.0) (0.0, 0.0)
Bustince (1.0, 1.0) (0.05, 0.1) (0.05, 0.1) (0.05, 0.1) (0.05, 0.1)

• Zeng and Li

As in Table II, Zeng and Li’s measure follows the same

trait in which the SM increases as the distance between

two disjoint sets increases. However, the measurements

between the interval T2 FSs and the zSlices-based general

T2 FSs have changed slightly. This is because Zeng and

Li’s measure focuses on the distance between the upper

and lower MFs of each set, the positions of which alters

at each zLevel. For example, Fig. 5 shows sets Ã and

B̃ at zLevels 0.25 and 1 (zi = 0.25 represents the sets

each as an interval T2 FS in which the upper and lower

MFs are unchanged from Fig. 3, and zi = 1 represents

the sets each as a T1 FS). It can be seen that the distance

between the upper and lower MFs of each set alters when

the zLevel alters, which affects the result of the SM.

• Jaccard

The results of Jaccard’s SM also differ Table II. This is

for the same reason that Zeng and Li’s measurements

changed, which is that Jaccard’s measure focuses on the

distance between the upper and lower MFs of each set,

which alters at each zLevel.

• Gorzałczany

As in Table II, Gorzałczany’s measure still has the

property of overlapping and has also given (1.0, 1.0)

for the trapezoidal zSlice-based general T2 FSs Ã
and B̃ because maxx∈Xµ

Ã
(x) = maxx∈Xµ

B̃
(x) and

maxx∈XµÃ(x) = maxx∈XµB̃(x) is true for each zSlice.

Gorzałczany’s results for the zSlices experiment differ

from the interval T2 case because the method focuses

on the coordinates at which the two sets intersect, which

changes at each zLevel. Referring to Fig. 5, the inter-

section of the lower and upper MFs of Ã and B̃ when

zi=0.25 are at y=0.85 and y=1, respectively. However, the

intersections at zi=1 are at y=0.925 for both the lower and

upper MFs. It is because these coordinates change that

the results of the SM have also changed.

• Bustince

As in the demonstration for interval T2 FSs shown in

Table II, this SM gives a non-zero value when the sets

(a)

(b)

Fig. 5. Sets Ã and B̃ from Fig. 4(b) at different zLevels. (a) zi = 0.25. (b)

zi = 1. Note the intersections of the upper and lower MF of Ã and B̃ have
changed at each zLevel.

being measured are disjoint. Finally, Bustince’s results

have also changed compared to the results in Table II

because this method focuses on the specific position of

each FS’s upper and lower MF; which, as stated earlier,

changes at each zLevel.

2) Demonstration 3: The FSs used in this demonstration

are shown in Fig. 6. They are based on general T2 FSs in

which the secondary MF is triangular with the peak at the

centre of the FOU. The results of this experiment are shown

in Table IV. For each method the x-axis was discretised into

100 equally distanced points, and the z-axis was discretised

into four zLevels at coordinates 0.25, 0.5, 0.75 and 1.0. The

results shown in Table IV correspond with the results in Table

II and Table III and each method has retained the similarity

properties shown in Table I and proven is Section III B.

In this demonstration, the values from Jaccard’s SM have

declined more rapidly than in the previous demonstration,

whilst Zeng & Li’s, and Bustince’s SMs give similar values

to Table III. Gorzałczany’s SM has gradually declined as the

distance between the peak of each set increases. In this case the

SM has also shown reflexivity due to the shape and position

of the sets.



(a)

(b)

Fig. 6. zSlices-based triangular fuzzy sets with four zLevels used in
experiment 2. (a) Front view of fuzzy sets. (b) Tilted view fuzzy sets.

TABLE IV
COMPARISON OF ZSLICES SM USING INTERVAL T2 SMS ON

ZSLICES-BASED GENERAL T2 FSS DISPLAYED IN FIG. 6.

S(Ã, Ã) S(Ã, B̃) S(Ã, C̃) S(Ã, D̃) S(Ã, Ẽ)

Zeng & Li 1.0 0.565 0.49 0.56 0.626
Jaccard 1.0 0.221 0.024 0.0 0.0

Gorzałczany (1.0, 1.0) (0.58, 0.63) (0.14, 0.25) (0.0, 0.0) (0.0, 0.0)
Bustince (1.0, 1.0) (0.14, 0.25) (0.01, 0.01) (0.01, 0.01) (0.01, 0.01)

V. CONCLUSION

In this paper we have introduced a general method of

extending existing SMs on interval T2 FSs to SMs on general

T2 FSs through the use of the zSlices based general T2

FS representation [25] . We have shown how, based on this

approach, any interval T2 FS based SM can be extended to

the general T2 case and that the extension preserves all the

common initial properties for SMs of the interval T2 case,

namely reflexivity, symmetry, transitivity and overlapping.

We have demonstrated the method by extending a series

of the most common SMs for interval T2 FSs to the general

T2 case and providing examples and comparisons of applying

them based on different types (i.e. triangular and trapezoidal)

of FSs.

SMs provide an essential tool for the reasoning on FSs.

In the future we plan to deploy the developed similarity

measures for general T2 FSs in a variety of applications

with a specific focus on Computing With Words [14], where

interval and general T2 FSs provide a promising avenue for

capturing subjective concept and word models [28], [31] and

SMs provide an essential tool for reasoning.
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APPENDIX

NUMERICAL EXAMPLE FOR THE ZSLICES-BASED

GENERAL TYPE-2 SIMILARITY MEASURE

The proposed zSlices-based SM is demonstrated using Jac-

card’s interval T2 SM, as shown in (7) [8]. Jaccard’s measure

has been chosen because it possesses all four properties of

similarity shown earlier and requires only a single step of

calculation for each zSlice, thus it is a favourable method for

demonstrating the extension.

Consider the general T2 FS Ã in Fig. 2(a). Two zSlices

representations of this set are shown in Fig. 2(b) and Fig.

2(c). Set B̃, in Fig. 2(b), consists of four zSlices, the zLevels

of which are at z1 = 0.25, z2 = 0.5, z3 = 0.75 and z4 = 1,

and set C̃, in Fig. 2(c), consists of three zSlices, the zLevels

of which are at z1 = 0.33, z2 = 0.66, z3 = 1. To clearly show

the zLevels of each set, the vertical slice of sets B̃ and C̃ at

x = 3 is shown in Fig. 2(d).

Due to each set using different numbers of zLevels, the

combination of their zLevels will need to be used to calculate

their similarity as shown in (11). Therefore, the zLevels used

will be z1 = 0.25, z2 = 0.33, z3 = 0.5, z4 = 0.66, z5 = 0.75

and z6 = 1.0. The similarity of the FSs B̃ and C̃ is calculated

using the zSlices SM in (10) with Jaccard’s interval T2 SM

in (7) as follows:

SZS(B̃, C̃) =
∑

i∈L
zi

∫
X

min(µ
B̃zi

(x),µ
C̃zi

(x))dx+

∫
X

min(µ
B̃zi

(x),µ
C̃zi

(x))dx∫
X

max(µ
B̃zi

(x),µ
C̃zi

(x))dx+

∫
X

max(µ
B̃zi

(x),µ
C̃zi

(x))dx∑
i∈L

zi

(12)

where L = {0.25, 0.33, 0.5, 0.66, 0.75, 1}.

The FSs B̃ and C̃ are discretised as follows; for space

consideration we focus on the left side of the symmetrical

sets:

µB̃(x = 1) = 1/0 + 0.75/0.093 + 0.5/0.176 + 0.25/0.25
µB̃(x = 2) = 0.25/0 + 0.5/0.119 + 0.75/0.217 + 1/0.3

+ 0.75/0.373 + 0.5/0.439 + 0.25/0.5
µB̃(x = 3) = 0.25/0.4 + 0.5/0.476 + 0.75/0.542 + 1/0.6

+ 0.75/0.653 + 0.5/0.703 + 0.25/0.75
µB̃(x = 4) = 0.25/0.8 + 0.5/0.833 + 0.75/0.867 + 1/0.9

+ 0.75/0.933 + 0.5/0.967 + 0.25/1

µC̃(x = 1) = 1/0 + 0.66/0.136 + 0.33/0.25
µC̃(x = 2) = 0.33/0 + 0.66/0.17 + 1/0.3

+ 0.66/0.407 + 0.33/0.5
µC̃(x = 3) = 0.33/0.4 + 0.66/0.51 + 1/0.6

+ 0.66/0.679 + 0.33/0.75
µC̃(x = 4) = 0.33/0.8 + 0.66/0.85 + 1/0.9

+ 0.66/0.95 + 0.33/1

At zi = 0.25, Jaccard’s SM is calculated as

SJ(B̃z1 , C̃z1) =
(0.25+0.5+0.75+1)+(0+0+0.4+0.8)
(0.25+0.5+0.75+1)+(0+0+0.4+0.8)

= 3.7
3.7

= 1

At zi = 0.33,

SJ(B̃z2 , C̃z2) =
(0.176+0.439+0.703+0.967)+(0+0+0.4+0.8)
(0.25+0.5+0.75+1)+(0+0.119+0.476+0.833)

= 3.485
3.928

= 0.887

At zi = 0.5,

SJ(B̃z3 , C̃z3) =
(0.136+0.407+0.679+0.95)+(0+0.119+0.476+0.833)
(0.176+0.439+0.703+0.967)+(0+0.17+0.51+0.85)

= 3.6
3.815

= 0.944

At zi = 0.66,

SJ(B̃z4 , C̃z4) =
(0.093+0.373+0.653+0.933)+(0+0.17+0.51+0.85)

(0.136+0.407+0.679+0.95)+(0+0.217+0.542+0.867)

= 3.582
3.798

= 0.943

At zi = 0.75,

SJ(B̃z5 , C̃z5) =
(0+0.3+0.6+0.9)+(0+0.217+0.542+0.867)

(0.093+0.373+0.653+0.933)+(0+0.3+0.6+0.9)

= 3.426
3.852

= 0.889

At zi = 1,

SJ(B̃z6 , C̃z6) =
(0+0.3+0.6+0.9)+(0+0.3+0.6+0.9)
(0+0.3+0.6+0.9)+(0+0.3+0.6+0.9)

= 3.6
3.6

= 1

Finally, combining these results in the zSlices SM gives

ZZS = 0.25×1+0.33×0.887+0.5×0.944+0.66×0.943+0.75×0.889+1.0×1
0.25+0.33+0.5+0.66+0.75+1.0

= 3.304
3.49

= 0.947

In this example the results at zi = 0.25 and zi = 1 are both 1

because sets B̃ and C̃ are based on the same original general

T2 FS and these specific zSlices are in fact equal, i.e., the

positions of the lower and upper MFs are the same at the

lowest zLevel - which is the same as the original set, and

at the highest zLevel - which is the T1 representation of the

original set. However, results from zLevels zi = 0.33 to zi =

0.75 are less than 1 because B̃ and C̃ are discretised differently

along the z-axis and are thus not identical.


