
Remenyte-Prescott, Rasa and Andrews, John (2009) An
efficient real-time method of analysis for non-coherent
fault trees. Quality and Reliability Engineering
International, 25 (2). pp. 129-150. ISSN 1099-1638

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/3307/1/An_Efficient_Real-
time_Method_of_Analysis_for_Non-coherent_Fault_Trees_authors_copy.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33563467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

An Efficient Real-time Method of Analysis for Non-coherent Fault
Trees

Rasa Remenyte-Prescott, John D. Andrews

Aeronautical and Automotive Engineering , Loughborough University,
Loughborough, UK

Abstract

Fault tree analysis is commonly used to assess the reliability of potentially hazardous
industrial systems. The type of logic is usually restricted to AND and OR gates which
makes the fault tree structure coherent. In non-coherent structures not only
components’ failures but also components’ working states contribute to the failure of
the system. The qualitative and quantitative analyses of such fault trees can present
additional difficulties when compared to the coherent versions. It is shown that the
Binary Decision Diagram (BDD) method can overcome some of the difficulties in the
analysis of non-coherent fault trees.

This paper presents the conversion process of non-coherent fault trees to BDDs. A
fault tree is converted to a BDD that represents the system structure function
(SFBDD). A SFBDD can then be used to quantify the system failure parameters but is
not suitable for the qualitative analysis. Established methods, such as the meta-
products BDD method, the zero-suppressed BDD (ZBDD) method and the labelled
BDD (L-BDD) method, require an additional BDD that contains all prime implicant
sets. The process using some of the methods can be time consuming and not very
efficient. In addition, in real time applications the conversion process is less important
and the requirement is to provide an efficient analysis. Recent uses of the BDD
method are for real time system prognosis. In such situations as events happen, or
failures occur the prediction of mission success is updated and used in the decision
making process. Both qualitative and quantitative assessment are required for the
decision making. Under these conditions fast processing and small storage
requirements are essential. Fast processing is a feature of the BDD method. It would
be advantageous if a single BDD structure could be used for both the qualitative and
quantitative analyses. Therefore, a new method, the ternary decision diagram (TDD)
method, is presented in this paper, where a fault tree is converted to a TDD that
allows both qualitative and quantitative analyses and no additional BDDs are
required. The efficiency of the four methods is compared using an example fault tree
library.

1. Introduction

Fault trees were first developed in the 1960s and are commonly used for the
qualitative and quantitative analyses of causes of system failure. The analysis of
complex industrial systems may produce thousands of combinations of events
(minimal cutsets/prime implicants) which can cause system failure. The determination
of these failure combinations can be a time-consuming process even on modern high
speed digital computers. If the fault tree has many failure modes, the determination of
the exact top event probability also requires lengthy calculations. For many complex
fault trees this requirement may be beyond the capability of the available computers.

Thus, approximation techniques have had to be introduced which resulted in loss of
accuracy.

A more convenient form for the logic function from the mathematical viewpoint is
that of a Binary Decision Diagram [1]. It overcomes some disadvantages of
conventional FTA techniques enabling efficient and exact qualitative and quantitative
analyses of both coherent and non-coherent fault trees. The BDD method is efficient
for quantifying the system failure likelihood since it does not need the system failure
modes as an intermediate step. It is also more accurate as there is no need for the
approximations used in the traditional approach of kinetic tree theory [2]. The
efficiency and the accuracy of the BDD method is discussed in [3,4].

Rather than analysing the fault tree directly the BDD method first converts the fault
tree to a binary decision diagram, which represents the Boolean Equation for the top
event. The resulting SFBDD can be used in the quantitative analysis, calculating the
top event probability or frequency.

An SFBDD does not provide all the information for the qualitative analysis, since not
all the implicant sets of a non-coherent fault tree are necessarily prime and the list
may not be complete. This means that it requires more than just a minimisation, as in
the coherent case, to produce a full list of prime implicants. The full list can be
obtained by applying the consensus theorem [5] to pairs of prime implicant sets
involving a normal and negated literal. The first approach to this was presented by
Courdet and Madre [6] and further developed by Dutuit and Rauzy [7] where a meta-
products BDD is formed. Every basic event is represented by two variables, Px and Sx,
where the first of them represents the relevancy of the component (relevant or
irrelevant) and the second variable represents the type of the relevancy (failure
relevant or repair relevant). Since a meta-products BDD is in its minimal form,
traversing its branches gives all the prime implicant sets.

The second alternative method presented by Rauzy [9] uses the system SFBDD and
converts it to the zero-suppressed BDD (ZBDD), presented by Minato [10]. The
method requires to label nodes with failed and/or working states of basic events and to
decompose prime implicant sets according to the presence of a given state of a basic
event. The resulting ZBDD is in its minimal form and traversing its paths from the
root vertex to terminal vertex 1 results in all prime implicant sets.

The third alternative method investigated produces a labelled binary decision diagram
(L-BDD), presented by Contini in [11] where every basic event is labelled according
to its type. The additional information about the occurrence of every basic event is
considered at an early stage of the algorithm, i.e. while converting a fault tree to an L-
BDD. An L-BDD has two branches, therefore, it does not provide all prime implicant
sets. The L-BDD obtained from the fault tree is simplified and then the determination
of prime implicant sets is performed where the rules of the calculation depend on the
type of a basic event. The L-BDD resulting is minimised.

The new alternative method for performing the qualitative analysis for non-coherent
fault trees is presented in this paper where a fault tree is converted to a ternary
decision diagram (TDD). The main concept of a TDD was presented by Sasao [8],
which is expanded into an implementation methodology for fault tree analysis in this

paper. A TDD has three branches leaving any variable: the 1 branch represents the
failure relevance of the component, the 0 branch represents the repair relevance of the
component (so far this is a conventional BDD presentation) and the consensus branch
represents the irrelevance of the component. A TDD encodes all the prime implicant
sets, since while calculating the consensus branch for every node the consensus
theorem is applied and all “hidden” prime implicant sets are obtained. However, the
TDD can be non-minimal, therefore, the minimisation process needs to be performed
removing the non-minimal paths from the 1 and 0 branches. Then the prime implicant
sets can be obtained. Also, the obtained TDD can be used for the quantitative analysis
as well as the qualitative analysis, therefore, no additional BDDs are required.

The four methods are described in the following sections and demonstrated
throughout with the use of an example. Their efficiency is investigated using a library
of large example fault trees.

2. Non-coherent fault trees

Fault tree structures can be classified according to their underlying logic. If during
fault tree construction the failure logic is restricted to the use of the AND gate and the
OR gate, the resulting fault tree is called coherent. If NOT logic is used or directly
implied (by for example the use of exclusive OR, XOR, gates) the resulting fault tree
can be non-coherent.

Define each component in the system according to an indicator xi to show its status:

working.iscomponentif0

failed,iscomponentif1

i

i
xi (1)

where ni ,...,2,1 , n is the number of components in the system.

The fault tree diagram represents a logic structure which can be expressed by a
structure function :

working.issystemif0

failed,issystemif1
 (2)

 = (x), where x = (x1, x2, … , xn).

According to the requirements of coherency [5], a structure function (x) is coherent
if:

 Each component i must be relevant, i.e.

iii xxx somefor),0(),1(. (3)

 (x) is increasing (non-decreasing) for each xi , i.e.

iii),0(),1(xx . (4)

where

),,,1,,,(),1(111 niii xxxx x , (5)

).,,,0,,,(),0(111 niii xxxx x (6)

The second of these conditions means that as the component deteriorates (x fails, so xi
= 1) the system condition either does not change or also deteriorates. If the system is
non-coherent for component i then for some state of the remaining components the
system is failed then component i works and then when i fails the system is restored to
the functioning (non-failed) condition. For example, system failure might occur due to
the recovery of a failed component. Alternatively, during system failure, the failure of
an additional component may bring the system to a good state. The fault tree is
coherent if the NOT logic can be eliminated from the fault tree.

Consider an example of the leak detection system shown in Figure 1.

Figure 1. Leak protection system

A very high pressure gas is flowing as part of a gas transport system. If a leak (L)
occurs on the section after the isolation valve (VAL), a gas detection system closes the
valve. This stops a build up of the gas concentration in a location where an ignition
source (I1) is possible. If the valve works and isolation occurs the high pressure gas
can cause a rupture of the pipe and a second leak prior to the isolation valve. There is
a permanent ignition source (I2) in this area, therefore, the problem can be avoided by
a pressure relief valve (PRV) diverting the gas flow.

An explosion can occur in two ways:

 Gas is released prior to isolation valve, when the leak is detected, the isolation
valve works but the pressure relief valve fails.

 Gas is released after isolation valve, when the leak is detected, the isolation
valve fails and the ignition source occurs.

A fault tree representing causes of an ignition following a gas release is shown in
Figure 2.

I2

I1

L

VAL

PRV

Figure 2. Explosion fault tree

Working in a bottom-up way the following logic expression is obtained.

1IVALLPRVVALLTop ,

where “+” is OR, “:” is AND.
Therefore, PRVVALL ,, and 1,, IVALL are prime implicants, as combinations of
component conditions (working or failed) which are necessary and sufficient to cause
system failure.

Also, unlike the reduction of the logic expression for a coherent fault tree the logic
Equation for the top event in the non-coherent case does not produce a complete list
of all prime implicants. In this example, there is one more failure mode:

}1,,{ IPRVL ,

i.e. if a leak occurs and the pressure relief valve has failed and an ignition source is
present on the section after the isolation valve it does not matter if the isolation valve
closes or not, an ignition of the gas release will occur.

Therefore, the full logic expression for the Top event is:

11 IPRVLIVALLPRVVALLTop ,

which can be obtained by applying the consensus law:

YXYAXAYAXA .

There are usually considerably more prime implicant sets than there are minimal cut
sets for a coherent representation. Also the prime implicant sets tend to be a larger
order (number of elements in a set) than the minimal cut sets. The increase in length
of the logic Equation can cause difficulties for large fault trees. A coherent
approximation can be obtained by assuming that all working states are TRUE, i.e. the
probability of a component working is very close to 1. In the example shown in
Figure 2 there are two minimal cut sets, PRVL, and 1,, IVALL :

Ignition following
gas release

Top

Gas release prior to
VAL and ignition

G1

Gas release after
VAL and ignition

G2

L VAL

PRV VAL L I1

.1

11

11

IVALLPRVL

IPRVLIVALLPRVL

IPRVLIVALLPRVVALLTop

3. Conversion to BDDs

Binary Decision Diagrams can be used for the accurate quantification of fault trees.
They do not need to evaluate the prime implicant sets as an intermediate step and do
not need approximations. These advantages are critical when analysing non-coherent
fault trees and overcome the difficulties encountered with conventional fault tree
theory. To utilise the method, the fault tree is converted to a binary decision diagram,
representing the structure function SFBDD.

Before the fault tree is converted to a BDD, the fault tree is manipulated so that the
NOT logic is “pushed” down the fault tree until it is applied to basic events by using
De Morgan’s laws, i.e.

BABA , (7)

BABA . (8)

Each vertex in a SFBDD has an ite (if-then-else) structure. To illustrate this consider
the ite structure ite(x, f1, f0), which means that if x fails then consider function f1, else
consider function f0. Also, f1 lies on the 1 branch of x and f0 lies on the 0 branch.

Constructing the SFBDD from a fault tree initially requires the basic events in the
fault tree to be given an ordering. SFBDD construction then moves through the fault
tree in a bottom-up manner.

 Each basic event is assigned an ite structure
a = ite(a,1,0). (9)

 Alternatively, a basic event a is assigned an ite structure:

a = ite(a,0,1). (10)

 Dealing with gate inputs:

If J = ite(x,f1, f0) and H = ite(y,g1, g0) represent two inputs to a gate of logic type

then

ordering.theinif),,(

ordering,theinif),,(

0011

01

yxgfgfx

yxHfHfx
HJ

ite

ite
 (11)

For small examples the variable ordering is largely irrelevant. Variable ordering
schemes are discussed in [12,13]. Consider the variable ordering scheme L < VAL <
PRV < I1. Applying the conversion rules (9)-(11) to the fault tree in Figure 2 results
in a SFBDD presented in Figure 3.

Figure 3. SFBDD for the fault tree in Figure 2

4. Calculation of prime implicant sets

In addition to quantification of the top event, knowledge of prime implicant sets can
be valuable in gaining an understanding of the system. It can help to develop a repair
schedule for failed components if a system cannot be taken off line for repair. The
SFBDD which encodes the structure function cannot be used directly to produce the
complete list of prime implicant sets of a non-coherent fault tree.

For example, consider a general component x in a non-coherent system. In a prime
implicant a component x can appear in a failed or working state, or can be excluded
from the failure mode. In the first two situations x is said to be relevant, in the third
case it is irrelevant to the system state. Component x can be either failure relevant (the
prime implicant set contains x) or repair relevant (the prime implicant set contains x).
A general node in the SFBDD, which represents component x, has two branches. The
1 branch corresponds to the failure of x; therefore, x is either failure relevant or
irrelevant. Similarly, the 0 branch corresponds to the functioning of x and so x is
either repair relevant or irrelevant. Hence it is impossible to distinguish between the
two cases for each branch and the prime implicant sets cannot be identified directly
from the BDD.

4.1. Ternary Decision Diagram method

A method to use a ternary decision diagram (TDD) in order to compute the prime
implicant sets of a non-coherent fault tree structure is proposed in this section. It
employs the consensus theorem and creates, in addition to the two branches of the
BDD, a third branch for every node, called the consensus branch. This third branch
encodes the “hidden” prime implicant sets. The minimisation algorithm [1] is applied
to remove non-minimal paths.

4.1.1. Conversion of fault trees to TDDs

The TDD representation features a node structure with three exit branches. A new ifre
structure is presented which distinguishes not only between relevant and irrelevant
components but also it distinguishes between the type of relevancy, i.e. failure
relevant and repair relevant. The ifre structure for a node x is given in Figure 4. So if:

1

L

0

0

1

VAL

0

1

1 0

I1
0

PRV

1

1 0

0

F1

F2

F3 F4

 = ifre(x, f1, f0, f2), (12)

then

 = x f1+ x f0 + f2, (13)

where

 f2 = f1┳f0. (14)

Figure 4. ifre structure

The 1 branch encodes prime implicant sets for which component x is failure relevant,
the 0 branch encodes prime implicant sets for which component x is repair relevant,
and the “C” branch encodes prime implicant sets for which component x is irrelevant.
The ifre structure shown in Figure 4 can be interpreted as follows:

If x is failure relevant

 then consider f1,

 else x is repair relevant

 then consider f0

 else consider f2

endif

Function f2 represents prime implicant sets for which x is irrelevant, i.e. neither failure
nor repair relevant combinations. The “C” branch is not obtained for all components.
Therefore, this branch can be kept “empty” for components that are only failure or
repair relevant but not both. If the conjunction of the two branches f1┳f0 is not required,
f2 = NIL. Symbol NIL identifies cases when the “C” branch is not required and no
Boolean operations that involve this branch are needed. When operating the new
symbol in the Boolean algebra, it is defined that NILA= NIL.

The conversion process for computing the TDD from the non-coherent fault tree is an
extension to the method used to develop the conventional BDD. Basic events of the
fault tree must be ordered. Then the following process is presented:

 By the application of De Morgan’s laws push any NOT gates down through
the fault tree until it reaches a basic event level.

 Each basic event is assigned an ifre structure.
If a is only failure or repair relevant:

a = ifre(a,1,0,NIL), (15)

x

f1 f2 f0

1 C 0

a = ifre(a,0,1,NIL). (16)

If a is failure and repair relevant:

a = ifre(a,1,0,0), (17)

a = ifre(a,0,1,0). (18)

 Traversing the fault tree in a bottom-up manner and considering gates whose
inputs have been expressed in an ifre format gives:

If J = ifre(x, f1, f0, f2) and H = ifre(y, g1, g0, g2), then

),,,(

),,,(

0101

0101

LLLLx

KKKKx
HJ

ifre

ifre

ordering.theinif

ordering,theinif

yx

yx

 (19)

here HfK 11 , HfK 00 , 111 gfL , 000 gfL , K1· K0 – consensus of

K1 and K0, L1· L0 – consensus of L1 and L0.

If component x is failure or repair relevant, K1· K0 = NIL, L1· L0 = NIL in Equation
19.

Within each ifre calculation an additional consensus calculation is performed to
ensure all the “hidden” prime implicant sets are encoded in the TDD. It calculates the
product of the 1 and the 0 branch of every node and thus identifies the consensus of
each node.

Consider the fault tree in Figure 2. Introducing the ordering of basic events L < VAL
< PRV < I1 and applying the rules described in Equations (15)-(19) gives the TDD in
Figure 5.

Figure 5. The TDD for the fault tree shown in Figure 2

It can be seen that the TDD in Figure 5 is different from the SFBDD in Figure 3 only
with its “C” branch that represents the intersection of the 1 and 0 branches. Only for
node F2 a new structure F5 is created. The other nodes have the “C” branch leading
to value NIL, since they encode variables that only appear as failure or repair relevant
To obtain prime implicant sets non-minimal combinations from every path need to be
removed.

1
L

1
VAL

0 C

F1

F2 0
0 C

NIL

1

1

I1 F3

0
0 C

NIL

PRV
1

1

F4

0
0 C

NIL

1
PRV

1

1

I1

F5

F6 0
0 C

NIL

0
0 C

NIL

4.1.2. Minimisation of TDDs

Once the TDD has been computed there is no guarantee that the resulting structure
will be minimal, i.e. produce the prime implicant sets exactly. In order to perform the
qualitative analysis a minimisation procedure needs to be implemented.

The algorithm developed by Rauzy for minimising the BDD [1] can be extended to
create a minimal consensus TDD that encodes only the prime implicant sets.

Consider a general node in the TDD which is represented by the function F, where

F = ifre(x, G, H, K). (20)

Since there are three types of variables in the TDD (failure relevant, repair relevant
and both), the minimisation process is described for these three cases.

Minimal solutions of G, H and K are denoted as Gmin, Hmin and Kmin. Let h be a
minimal solution of G, which is not a minimal solution of K. Then the intersection of
h and x (x) will be a minimal solution of F. Similarly, let け be a minimal solution
of H, which is not a minimal solution of K, and the intersection of け and x (x)
will be a minimal solution of F.

Case 1 - x is failure relevant only

In Equation (20) K = NIL and the calculation of prime implicant sets is equivalent to
the BDD case where the “C” branch does not exist, i.e.

solmin(F) = min)(Hx . (21)

The set solmin(F) represents the minimal solutions of F by removing any minimal
solutions of G that are also minimal solutions of H.

Case 2 - x is repair relevant only

Again, in Equation (20) K = NIL and the calculation of prime implicant sets is defined
as:

solmin(F) = min)(Gx . (22)

The set solmin(F) represents the minimal solutions of F by removing any minimal
solutions of H that are also minimal solutions of G.

Case 3 - x is failure and repair relevant

The set of all the minimal solutions of F is given as:

solmin(F) = min)()(Kxx . (23)

The set solmin(F) represents the minimal solutions of F by removing any minimal
solutions of G and H that are also minimal solutions of K.

4.1.3. Obtaining prime implicant sets from TDDs

The identification of prime implicant sets depends on the relevance of the node in the
three cases, as it was given in the section above.

Case 1

Traversing the 1 branch of node x results in a failed state of a component in a
particular failure mode. Traversing the 0 branch of node x does not include that
component in a particular failure mode.

Case 2

Traversing the 0 branch of node x results in a repaired state of a component in a
particular failure mode. Traversing the 1 branch of node x does not include that
component in a particular failure mode.

Case 3

Traversing the 1 branch of node x results in a failed state of a component in a
particular failure mode. Traversing the 0 branch of node x results in a working state of
a component in a particular failure mode. Finally, traversing the “C” branch of node x
does not include that component in a particular failure mode at all

Traversing the TDD in Figure 5 from the root vertex to terminal vertices 1 gives three
prime implicant sets.

F1-F2-F3 {L, VAL, I1}

F1-F2-F4 },,{ PRVVALL
F1-F2-F5-F6 {L, PRV, I1}

The TDD method provides a good alternative technique for performing the qualitative
analysis for non-coherent fault trees.

4.2. Established methods

This section presents the existing methods for converting non-coherent fault trees to
BDDs and obtaining prime implicant sets. In the later section the efficiency of all
methods, including the TDD method, will be investigated and compared using some
example fault trees.

4.2.1. Meta-products BDD method

This method converts a SFBDD to a meta-products BDD which produces all prime
implicant sets. A meta-products BDD obtained is in its minimal form.

4.2.1.1.Conversion of SFBDDs to meta-products BDDs

An alternative notation was developed in [6,7] that associates two variables with
every component x. The first variable, Px, denotes relevancy and the second variable,
Sx, denotes the type of relevancy, i.e. failure or repair relevant. A meta-product,
MP(ʌ), is the intersection of all the system components according to their relevancy to
the system state and ヾ represents the prime implicant set encoded in meta-product
MP(ʌ).

.tobelongsnorneitherif

,

,

)(

xxP

xifSP

xifSP

MP

x

xx

xx

 (24)

The proposed algorithm by Dutuit and Rauzy [7] is used for calculating the meta-
products BDD of a fault tree from the BDD. The meta-products BDD is always
minimal, therefore it encodes the prime implicant sets exactly.

In order to present the algorithm, consider node F in a SFBDD, where F = ite(x, F1,
F0). The meta-products BDD, that describes prime implicant sets using Equation (24),
is expressed as:

PI(F) = ite(Px, ite(Sx, P1, P0), P2), (25)

where

P2 = PI(F1·F0), (26)

P1 = PI(F1) · 2P , (27)

P0 = PI(F0) · 2P . (28)

x is the first element in the variable ordering, PI(F) represents the structure of a meta-
products BDD, PI is used to denote the prime implicants.

P2 encodes the prime implicants for which x is irrelevant, P1 encodes the prime
implicants for which x is failure relevant and P0 encodes the prime implicants for
which x is repair relevant.

If not all the basic events in the variable ordering appear on the particular path, then

PI(F) = ite(
jxP , 0, PI(F)). (29)

here xj is before xi and xj does not appear on the current path from the root node to
node F.

If F is a terminal node, then

PI(0) = 0, (30)

PI(1) = ite(
ixP , 0, ite(

1ixP , 0,…, ite(
nxP , 0, 1))). (31)

where xi, …, xn are basic events from the variable ordering that have not yet been
considered in the process.

Each node in Figure 3 is considered in turn. Applying Equations (25)-(28) to node F1
gives:

PI(F1) = ite(PL, ite(SL, PI(F2) · 1, PI(0) · 1), PI(F2 · 0)) = ite(PL, ite(SL, PI(F2), 0), 0).

Now consider node F2. Applying Equation (25) to node F2 gives:

PI(F2) = ite(PVAL, ite(SVAL, PI(F3)· 43 · FFPI , PI(F4)· 43 · FFPI), PI(F3 · F4)).

First of all, PI(F3 · F4) is calculated using Equations (25)-(28):

PI(F3 · F4) = ite(PPRV, ite(SPRV, ite(PI1, ite(SI1, 1, 0), 0), 0), 0).

Applying Equations (29)-(31) gives the two following expressions:

PI(F3) = ite(PPRV, 0, ite(PI1, ite(SI1, 1, 0), 0)),

PI(F4) = ite(PPRV, ite(SPRV, ite(PI1, 0, 1), 0), 0).

Negation 43 · FFPI is calculated swapping terminal vertices 1 and 0.

 43 · FFPI = ite(PPRV, ite(SPRV, ite(PI1, ite(SI1, 0, 1), 1), 1), 1).

Since there are no repeated parts between PI(F3) and 43 · FFPI ,

PI(F3)· 43 · FFPI = PI(F3).

The same simplification is applied to PI(F4) and 43 · FFPI ,

PI(F4)· 43 · FFPI = PI(F4).

The resulting meta-products BDD for the BDD in Figure 3 is shown in Figure 6.

4.2.1.2.Obtaining prime implicant sets

Now it is possible to obtain the meta-products and identify the prime implicant sets.
Every path from the root node to a terminal 1 gives a prime implicant set.

 11 IIPRVVALVALLL SPPSPSP {L, VAL, I1}

 1IPRVPRVVALVALLL PSPSPSP },,{ PRVVALL

 11 IIPRVPRVVALLL SPSPPSP {L, PRV, I1}

For example, in the first meta-product PL signifies that component L is relevant and SL

signifies that component L is failure relevant. The same with components VAL and I1.

PRVP means that component PRV is irrelevant. Hence the prime implicant set

obtained is {L, VAL, I1}.

The number of nodes in a meta-products BDD increases largely since every basic
event x is presented by two nodes, Px and Sx. The process can be time-consuming.

Figure 6. Meta-products BDD for calculating prime implicant sets

4.2.2. ZBDD method

An alternative method presented by Rauzy in [9] uses the idea of zero-suppressed
BDDs (ZBDD) introduced by Minato in [10]. The method requires to label nodes with
failed and/or working states of basic events and to decompose prime implicant sets
according to the presence of a given state of a basic event.

4.2.2.1.Zero-Suppressed BDDs

Zero-suppressed BDDs are BDDs based on a reduction rule. This data structure
provides a unique and compact representation which is more efficient and simpler
than the usual BDDs when manipulating sets in combinatorial problems. The
following reduction rules for BDDs are applied:

 Eliminate all the nodes that have the 1 branch pointing to terminal vertex 0.
Then connect the branch that was pointing to the eliminated node to the BDD
structure beneath the 0 branch of the eliminated node as shown in Figure 7.

 Share all equivalent BDD structures as for original BDDs.

1

1 0

0

PL

0

SL 0

1 0

PVAL

1

SVAL
0

1 0

0

PI1

1

1 0

SI1

0

1

0

PPRV

0

1 0

0

PPRV

1

0

SPRV

0

1 0

0

PPRV

1

0

SPRV

0

1

0 1

PI1

0

F1

F2

F3

F4 F5

F6 F7

F8

F9

F10

F11

F12

Figure 7. Elimination process

ZBDDs automatically suppress basic events that do not appear in prime implicant
sets. It is very efficient when calculating sets with basic events that are far apart in the
variable ordering scheme. For example, in Figure 7 the left-hand BDD contains a
prime implicant set {a, e}. The established variable ordering is a<b<c<d<e. The
ZBDD obtained by applying the reduction rules brings basic events close since the
intermediate nodes (F2, F3, F4) can be eliminated.

4.2.2.2.Decomposition rule

The principle of this algorithm is to traverse the SFBDD that encodes structure
function = ite(x, f1, f0) in a depth-first way and to build a ZBDD that encodes the
prime implicant sets of in a bottom-up way.

The rule is divided in four cases:

Case 1: if basic event x appears in its failed and working states then

PI() = 201 SSxxS , (32)

where

S2 = PI(f1∙ f0), (33)

S1 = PI(f1) \ S2, (34)

S0 = PI(f0) \ S2. (35)

Here “\” is operator without [1] that is used minimising conventional BDDs.

Case 2: if basic event x appears in its failed state only then

PI() = 01 SxS , (36)

where

S0 = PI(f0), (37)

1

a

f0

0

1

b

0

F1

0

F2

c

0 1

F3

0
1

d

0

0 e

0 1

1 g0

F4

F5

1

a

f0

0

1

e

0

F1

1

F5

g0

S1 = PI(f1) \ S0. (38)

Case 3: if basic event x appears in its working state only then it is considered in a
similar way to case 2.

Case 4: if basic event x does not appear in the system then

PI() = PI(f1 + f0). (39)

The resulting ZBDDs retain the variable ordering from the SFBDD. In addition,
working states of basic events that appear in both states are incorporated in the
ordering scheme, i.e. they appear after the basic event in its failed state in the ordering
scheme.

4.2.2.3.ZBDD Example

Consider the SFBDD in Figure 3. Introduce the variable ordering for the ZBDD

method L < VAL < VAL < PVR < I1. Applying the rules described in Equations (32)-
(39) gives the ZBDD in Figure 8.

Each node is considered in the bottom-up way.
F3 = ite(I1, 1, 0), PI(F3) = ite(I1, 1, 0) - Both vertices are terminal.
F4 = ite(PRV, 1, 0), PI(F4) = ite(PRV, 1, 0) - Both vertices are terminal.

F2 = ite(VAL, F3, F4), PI(F2) = ite(VAL, S1, ite(VAL , S0, S2)) - Basic event VAL
appears in both failed and working states.
Here, following Equations (33)-(35) gives:
S2 = PI(F2∙F3) = PI(ite(PRV, ite(I1, 1, 0), 0)) = ite(PRV, ite(I1, 1, 0), 0) - Both basic
events PRV and I1 appear only in their failed state.
S1 = PI(F3) \ S2 = ite(I1, 1, 0) - There are no repeated paths in F3 that are covered by
S2.
S0 = PI(F4) \ S2 = ite(PRV, 1, 0) - There are no repeated paths in F4 that are covered
by S2.

Therefore,

PI(F2) = ite(VAL, ite(I1, 1, 0), ite(VAL ,ite(PRV, 1, 0), ite(PRV, ite(I1, 1, 0), 0))).

According to Equation (36)
F1 = ite(L, F2, 0), PI(F1) = ite(L, PI(F2), 0) - Basic event L appears only in its failed
state.

After the last substitution we obtain:

PI(F1) = ite(L, ite(VAL, ite(I1, 1, 0), ite(VAL , ite(PRV, 1, 0),
ite(PRV, ite(I1, 1, 0), 0))), 0).

The ZBDD in Figure 8 is different form the SFBDD in Figure 3 because it has an

additional variable VAL that indicates prime implicant sets that contain VAL .

Figure 8. The ZBDD for the SFBDD in Figure 3

Every path from the root vertex to terminal vertex 1 presents a prime implicant set.
Therefore, this ZBDD contains three prime implicant sets:

F1-F2-F3 {L, VAL, I1}

F1-F2-F4-F5 },,{ PRVVALL
F1-F2-F4-F6-F7 {L, PRV, I1}

The ZBDD is an efficient technique where all prime implicant sets are described by a
compact and easy handling structure.

4.2.3. Labelled variable method

The labelled variable method [11] provides another alternative method for
constructing BDDs for non-coherent fault trees. BDDs constructed using this
conversion approach consist of variables that are labelled according to their type.
They are called labelled binary decision diagrams (L-BDDs).

The background for this method is that the current analysis algorithms consider the
fault tree structure as a Boolean function in which all variables have the same
properties, whereas the operations to be applied to determine the prime implicant sets
are dependent on the variables’ type. For example, variables that appear in their
failure and success states can appear in combinations of events which lead to system
failure in both states, and which are not covered by the SFBDD obtained. In the L-
BDD method it is convenient to consider this additional information about the type of
a variable during the conversion process itself. The aim of the L-BDD method is to
construct and analyse a L-BDD in which all variables are labelled with their type.

F3

F2

F1

F6

1

L

0

0

1

VAL

0

1

1 0

I1
0

0

1

VAL
 0

1

1 0

PRV

0 1

PRV

0

1

1 0

I1
0

F4

F5

F7

4.2.3.1.Conversion of fault trees to L-BDDs

The structure function (x) of a non-coherent fault tree may contain three different
types of basic events. For example, the function cbcabax)(contains a
double form (DF) variable a that appears in both states, a single form positive (SFP)
variable b and a single form negative (SFN) variable c. In the further presentation the
SFP variable x will be simply presented by x, the SFN variable x will be labelled as
“$x” and the DF variable x will be labelled as “&x”.

The conversion process for computing the L-BDD from the non-coherent fault tree is
an extension to the method used to develop the SFBDD. Basic events of the fault tree
must be ordered. Then the following process is performed:

 By the application of De Morgan’s laws push any NOT gates down through
the fault tree until it reaches a basic event level.

 Each basic event is assigned an ite structure as in Equation (9) or Equation
(10).

 Traversing the fault tree in a bottom-up manner and considering gates whose
inputs have been expressed in an ite format using Equation (11).

The last rule Equation (11) of this algorithm is extended presenting some additional
rules that incorporate labelled variables.

 Considering the ordering &x < x < $x implements the following Equations:

If J = ite(x,f1, f0) and H = ite($x,g1, g0),

 then),,(& 1001 gfgfxHJ ite
(40)

If J = ite(&x,f1, f0) and H = ite(x,g1, g0),

then),,(& 0011 gfgfxHJ ite
(41)

If J = ite(&x,f1, f0) and H = ite($x,g1,g0),

then),,(& 1001 gfgfxHJ ite
(42)

Applying the conversion rules given in Equations (9)-(11) and Equations (40)-(42) to
the fault tree in Figure 2 results in a L-BDD presented in Figure 9. The variable
ordering is L < VAL < PRV < I1.

Figure 9. BDD with labelled variables for the fault tree in Figure 2

1

L

0

0

1

&VAL

0

I1

1

1 0

0

PRV

1

1 0

0

F1

F2

F3 F4

The resulting L-BDD is equivalent to its SFBDD in Figure 3, if DF variable “&VAL”
is replaced by variable VAL. The L-BDD does not provide all the information for the
qualitative analysis, therefore some additional calculations are performed in order to
get all prime implicant sets.

4.2.3.2.Simplification of L-BDD

The most complex rules of the qualitative analysis of the L-BDD are applied to nodes
with DF variables. Therefore, it is convenient to reduce the number of DF variables
before calculating prime implicant sets. The rules are applied on the parts of the L-
BDD that have a terminal vertex. Simplification rules are shown in Figure 10.

Figure 10. Simplification rules for the L-BDD

The example L-BDD in Figure 9 is in its simplest form, therefore the simplification
rules are not applied.

4.2.3.3.Obtaining prime implicant sets from L-BDD

Let structure function be:

01 fxfx ii (43)

where the two residues are:

),...,1,...,(11 nxxf (44)

),...,0,...,(10 nxxf (45)

Let PI() be the prime implicants of . Visiting the L-BDD in the bottom-up way
the procedure to be applied to the node xi to determine the prime implicants is as
follows:

 If xi has label “&” then

201 $)(SSxSxPI ii (46)

where

&x

1 G

x

1 G

&x

0 G

$x

0 G

&x

1 F

$x

1 F

&x

0 F

x

0 F

(1)

(2)

(3)

(4)

200211012 \,\, SfSSfSffS . (47)

 Else

01)(fSPI (48)

where

011 \,$ ffSxorx ii (49)

“\” is the operator “without” proposed by Rauzy [1]. Some extra rules are applied in
the cases with labelled variables.

For example, 01 \ ff gives the L-BDD of f1 in which the combinations of f1 repeated

in f0 are removed.

The heaviest operation is the intersection S2 = 01 ff that, however, is applied only

when dealing with “&” type variables. It calculates the “hidden” prime implicant sets.
If there are no “&” type variables, the L-BDD contains all prime implicant sets.

The rules for writing the prime implicant sets from an L-BDD are straightforward. On
the path from the root to any terminal node:

 For variables x, “$x” do not consider the negated part,
 For variables “&x” consider the right branch as x .

Consider the L-BDD shown in Figure 9. Prime implicant sets can be calculated using
Equations (46)-(49).

Since the variable of node F2 is a DF variable, i.e. it appears in the fault tree in both
success and failure states, the intersection of its 1 and 0 branches is calculated in order
to get all prime implicant sets. This process is similar to the calculation of the “C”
branch in the TDD method.

 P = F3 · F4 = ite(I1, 1 , 0) · ite(PRV, 1 , 0) = ite(PRV, ite(I1, 1 , 0), 0),

 PI(P) = PRV · S1 + f0, here S1 = I1, f0 = 0,

 PI(P) = PRV · I1.

Since there are no repeated paths between the 1 branch and the structure P and none
between the 0 branch and the structure P, prime implicant sets of F2 are as follows:

 PI(F2) = VAL · I1 + VAL · PRV + PRV · I1.

Finally, the last node F1 is considered:

 PI(F1) = L · S1 + f0, here S1 = PI(F2), f0 = 0,

 PI(F1) = L · (VAL · I1 + VAL · PRV + PRV · I1).

The three prime implicant sets are obtained:

{L, VAL, I1}, },,{ PRVVALL , {L, PRV, I1}.

The L-BDD method provides an efficient technique that allows to calculate prime
implicant sets using the prior information about the type of every variable.

5. Quantitative analysis of non-coherent

5.1.Quantification of a non-coherent system using the TDD

In order to perform the quantitative analysis for non-coherent fault trees using the
BDD method, a non-coherent fault tree is converted to a SFBDD that represents the
structure function of the fault tree. In the TDD method the non-coherent fault tree is
converted to the TDD that has three branches from each node. The third branch is
created to encode all prime implicants of the system. However, the TDD can be used
not only for the qualitative analysis but also for the quantitative analysis.

Consider node F in the TDD, F = ifre(x, f1, f0, f1f0). The structure function)(x was

expressed in (13), i.e. 0101)(fffxxf x . Using the pivotal decomposition to the

structure function of order n it is possible to express it in terms of structure functions
that are of order n-1. Pivoting)(x about variable x and applying the absorption law
to Equation 35 gives:

 01010011),0(),1()(fxxffffxfffxxx ii xxx . (50)

Then the expectation of)(x is obtained and the top event probability is calculated:

)(1)(01 fQqfQqEQ xxSYS x . (51)

Therefore, the probability of the top event, QSYS, is the sum of the probabilities of the
disjoint paths through the TDD. The disjoint paths, that are taken into account, can be
found by tracing all paths from the root vertex via the 1 and 0 branches to terminal 1
vertices. The disjoint paths via the “C” branch are not included in the quantification
process.

If the quantitative analysis is required as well as the qualitative analysis, the TDD
before the minimisation can be used for the quantification process. Additional
calculations for obtaining the SFBDD are not required.

5.2.Quantitative analysis using other methods

Consider a node F in the SFBDD, F = ite(x, f1, f0). The structure function)(x is

expressed as 01)(fxxf x , which is adequate to the expression in (50). Therefore,

the probability of the top event, QSYS, is obtained as a sum of probabilities of the
disjoint paths through the SFBDD. Quantitative analysis is performed in this way
applying the meta-products BDD method and the ZBDD method, where the SFBDD
is obtained after fault tree conversion prior to the qualitative analysis.

In the L-BDD method the quantitative analysis is adequate, i.e. the probability of the
top event, QSYS, is the sum of the probabilities of the disjoint paths through the L-
BDD. In this case each variable &x is treated as x, and $x – as x .

6. Comparison of the four methods

The theoretical comparison of the four different techniques is provided in Table 1.

Method Minimisa

tion
Construction

technique
Advantages Disadvantages

Ternary
Decision
Diagram
(TDD)

Required Basic event x is
coded by a node
with three branches.
The third branch is
the conjunction of
the 1 and the 0
branches and the
conjunction is
performed if needed

A clear
representation
of all implicant
sets is
provided.

1.Minimisation is
required

2.TDD size is 3n.

Meta-
products
BDD

Not
required

Basic event x is
coded by two
variables Px and Sx.

No
minimisation
is required.

1.Meta-products
BDD size is 22n

2.It results in a
time consuming
process.

Zero-
suppres-
sed BDD
(ZBDD)

Not
required

Basic event x is
coded by x and, in
addition, by x , if
needed. The
conjunction of the 1
and the 0 branches
is performed only
for dual state
variables.

1.No
minimisation
is required

2.Compact
representation
of prime
implicant sets
is provided.

Dual state events
are coded by two
variables

Labelled
BDD (L-
BDD)

Required Basic event x is
labelled according
to its occurrence,
(&x<x<$ x). The
conjunction of the 1
and the 0 branches
is performed only
for dual state
variables.

Labels identify
where the
conjunction of
the 1 and the 0
branches is
required.

1.Minimisation is
required

2.Labelling
introduces some
additional
variables

Table 1. Comparison of the four techniques

Table 1 gives a short overview of all four construction techniques. It highlights the
main advantages and disadvantages of the four approaches. The TDD method
provides a clear and efficient representation of prime implicant sets when the “C”
branch for a node is created if needed. Also, using the ZBDD a compact
representation of prime implicant sets is obtained which does not require the
minimisation process. The least favourable technique is the meta-products BDD
method where two variables are assigned for every basic event. Due to this feature the
size of the BDD and the processing time is increased unavoidably.

The efficiency of the four methods for calculating prime implicant sets was
investigated using a benchmark of medium sized fault trees from industry. The

performance over 13 example fault trees was obtained, since each method may
perform well on some fault trees dependent upon the fault tree structure. The
complexity of the 13 fault trees is indicated in columns 2, 3 and 4 of Table 2,
representing the number of gates, the number of events and the number of prime
implicant sets in their solution.

The number of nodes using the TDD method, the meta-products BDD method, the
ZBDD method and the L-BDD method are presented in columns 5, 6, 7 and 8
respectively. The number of nodes in the TDD method describes the sum of the
number of nodes in the TDD before the minimisation and the number of nodes in the
TDD after the minimisation. The number of nodes for the second method covers the
number of nodes in the SFBDD and the meta-products BDD. For the ZBDD method
the number of nodes in the SFBDD and the number of nodes in the ZBDD is given.
The number of nodes in the L-BDD method contains the sum of the number of nodes
in the L-BDD before applying the minimisation and the number of nodes in the
minimised L-BDD.

Similarly, the processing time in seconds covers the time taken to convert example
fault trees to BDDs and perform the qualitative analysis. Results of processing time
are shown in columns 9, 10, 11 and 12 of Table 2 for the four methods respectively.

E
xa

m
p

le

N
u

m
b

er
 o

f
g

at
es

N
u

m
b

er
 o

f
b

as
ic

ev

en
ts

N
u

m
b

er
 o

f
p

ri
m

e
im

p
lic

an
t s

et
s

N
u

m
b

er
 o

f
n

od
es

 in

T
D

D
 f

o
r

th
e

1st

(T
D

D
)

m
et

h
o

d

N
u

m
b

er
 o

f
n

od
es

 in

B
D

D
 f

o
r

th
e

2nd

(M
P

P
I)

 m
et

h
o

d

N
u

m
b

er
 o

f
n

od
es

 in

Z
B

D
D

 f
o

r
th

e
3rd

(Z

B
D

D
)

 m
et

h
o

d

N
u

m
b

er
 o

f
n

od
es

 in

L
-B

D
D

 f
o

r
th

e
4th

(L

-B
D

D
)

m
et

h
o

d

T
im

e
ta

ke
n

 fo
r

th
e

1st
 m

et
h

o
d

T
im

e
ta

ke
n

 fo
r

th
e

2nd
 m

et
h

o
d

T
im

e
ta

ke
n

 fo
r

th
e

3rd
 m

et
h

o
d

T
im

e
ta

ke
n

 fo
r

th
e

4th
 m

et
h

o
d

1 31 88 41388 784 2207 580 2942 1.43 484.24 1.91 4.68
2 29 63 7433 984 1366 427 1231 0.20 10530.99 0.24 34.94
3 40 86 5447 560 2189 564 1704 0.18 526.2 0.22 21.85
4 32 83 4979 412 1854 496 1874 0.17 50.78 0.25 1.03
5 28 69 1186 1276 3356 869 2991 0.09 1590.85 0.10 26.10
6 26 50 1001 581 2692 596 2223 0.07 140.54 0.06 9.02
7 21 42 289 298 880 223 610 0.01 36.65 0.04 0.22
8 32 47 155 324 1038 309 1000 0.14 67.98 0.20 0.68
9 19 42 152 452 1309 493 732 0.04 158.84 0.05 0.48
10 34 57 71 258 816 284 708 0.02 60.07 0.04 1.00
11 25 43 43 737 877 293 913 0.04 784.89 0.05 0.74
12 41 74 35 396 741 214 264 0.08 15.05 0.21 0.50
13 36 49 24 412 613 283 685 0.14 474.99 0.20 0.53

Table 2. Calculation results for example fault trees

As it was expected from the theoretical comparison of the methods, the meta-products
BDD algorithm produced a lot larger final BDDs than any other methods that were
used for the calculation of prime implicant sets. Processing time was also greater.
This was especially true for examples with a large number of prime implicant sets
(example 2 and 5). In those situations the number of nodes and the processing time

could be decreased using any other method instead of the conventional meta-products
BDD method.

The TDD method performed as well as the ZBDD method. Both methods were more
efficient than the meta-products BDD method and the L-BDD method in terms of the
number of nodes and the processing time. For all example fault trees the TDD method
was faster than the ZBDD method. This is due to the efficient representation of prime
implicant sets in the TDD method, when the third branch is created if needed.
According to the number of nodes, for some examples the ZBDD method was better
than the TDD method. This outcome is explained by a compact representation of
prime implicant sets in the ZBDD method and no requirement of additional storage
for a minimal BDD.

The second worst result was obtained using the L-BDD method. The weaknesses of
the L-BDD method are the introduction of the three different types of basic events and
the requirement for minimisation before obtaining prime implicant sets.

Overall, these results show that the TDD method is an efficient method to obtain
prime implicant sets, when all prime implicant sets are obtained by performing the
conjunction of the two branches of each node. Information about the failure and/or
repair relevancy of the component is used to identify if the conjunction of the two
branches is needed, which makes the process efficient. Finally, the same TDD that is
used to represent prime implicant sets before the minimisation can be used for the
quantitative analysis, no additional structure is required.

7. Discussion of Real-time BDD Analysis

Recent research into autonomous vehicles (such as UAVs) is using BDDs to calculate
the probability of mission failure at the current point in time. At a point in time certain
phases may be known to have completed successfully (i.e. NOT failed, therefore
requiring a non-coherent analysis), component failures may exist (as indicated by a
fault detection and identification tool) or other events may have occurred. By
establishing the potential causes of mission failure (prime implicant sets) and the
updated likelihood decisions are made regarding the future operation of the
autonomous vehicle.

The fault tree to BDD conversion in this application is done off-line and so
conversion time is important but not critical. Storing and processing the BDD on-
board of the vehicle are the factors which are the more critical in determining which is
the best method to use.

Since the Ternary Decision Diagram permits one representation for both qualitative
and quantitative analyses and has a very good efficiency compared to the alternatives
this representation is advantageous in this particular circumstance.

8. Conclusions

This paper presents procedures by which non-coherent fault trees can be examined
and prime implicant sets obtained. Since the introduction of NOT logic to the logic
function expands the calculation time and increases the size of the problem, the BDD

method can be used as an alternative way for qualitative and quantitative analyses of
non-coherent fault trees. This paper proposes a new alternative technique that
produces a ternary decision diagram, which allows to calculate all prime implicants
directly. Established methods - the conventional algorithm that produces a meta-
products BDD, the zero-suppressed BDD method and the labelled BDD method are
presented and their efficiency is compared using some example fault trees. Efficiency
analysis indicates that the new proposed TDD method is the fastest method and it
provides an efficient representation of prime implicant sets. Another advantage of the
TDD method is that it is suitable for both qualitative and quantitative analyses of non-
coherent fault trees, whereas in the existing techniques two separate BDDs need to be
constructed if the full analysis is required.

9. References

1. Rauzy, A. New Algorithms for Fault Tree Analysis, Reliability Engineering and

System Safety, 40, pp203-211 (1993)
2. Vesely, W.E. A Time Dependent Methodology for Fault Tree Evaluation, Nuclear

Design and Engineering, 13, pp337-360, (1970)
3. Sinnamon, R.M. and Andrews, J.D. Improved efficiency in qualitative fault tree

analysis, Quality and Reliability Engineering International, 13, pp293-298 (1997)
4. Sinnamon, R.M. and Andrews, J.D. Improved accuracy in quantitative fault tree

analysis, Quality and Reliability Engineering International, 13, pp285-292 (1997)
5. Andrews, J.D. To Not or Not to Not!!, Proceedings of the 18th International

System Safety Conference, pp267-274 (2000)
6. Courdet, O. and Madre, J.-C. A New Method to Compute Prime and Essential

Prime Implicants of Boolean Functions, Advanced Research in VLSI and Parallel
Systems, pp113-128 (1992)

7. Dutuit, Y. and Rauzy, A. Exact and Truncated Computations of Prime Implicants
of Coherent and Non-Coherent Fault Trees with Aralia, Reliability Engineering
and System Safety, 58, pp225-235 (1997)

8. Sasao, T. Ternary Decision Diagrams and their Applications, Chapter 12, pp269-
292, Representations of Discrete Functions, Edited by Sasao, T. and Fujita, M.
Kluwer Academic Publishers (1996)

9. Rauzy, A. Mathematical Foundation of Minimal Cutsets, IEEE Transactions on
Reliability, volume 50, 4, pp389-396 (2001)

10. Minato, S. Zero-Suppressed BDDs for Set Manipulation in Combinatorial
Problems, Proceedings of the 30th ACM/IEEE Design Automation Conference,
DAC’93, pp272-277 (1993)

11. Contini, S. Binary Decision Diagrams with Labelled Variables for Non-Coherent
Fault Tree Analysis, (European Commission, Joint Research Centre) 2005

12. Bartlett, L.M. and Andrews, J.D. Comparison of Two New Approaches to
Variable Ordering for Binary Decision Diagrams, Quality and Reliability
Engineering International, 17, pp151-158 (2001)

13. Bartlett, L.M. and Andrews, J.D. Selecting am ordering heuristic for the fault tree
binary decision diagram conversion process using neural networks, IEEE Trans
Reliab, (51) 3, pp344-349 (2002)

