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Despite the significant progress made in the field of tissue engineered vascular grafts (TEVG), 

there still exist a number of barriers that inhibit the clinical translation of many TEVG designs. 

This is illustrated by the high number of pre-clinical evaluations, but limited number of clinically 

tested grafts. The goal of this dissertation was to identify the most paramount of these barriers 

and address them in the adipose-derived mesenchymal stem cell (AD-MSC)-based TEVG 

previously developed within the laboratory of Dr. David Vorp. First, as many pre-clinical 

investigations that fail to assess cells derived from clinical populations who would routinely 

require a TEVG therapy, AD-MSCs from two prominent clinical populations – diabetics and 

elderly were evaluated. Utilizing both in vitro and in vivo approaches to identify altered 

functions with regards to TEVG maturation and patency, it was shown that diabetic patients in 

particular produce TEVGs that readily occlude via thrombosis. Additionally, decreased 

fibrinolytic activity was shown to be one altered pathway contributing to the pro-thrombotic 

phenotype. Second, as many approaches are practically limited by extensive fabrication times, a 

freshly-derived adipose-derived cell population – the stromal vascular fraction (SVF) – was 

utilized to fabricate TEVGs. This was compared to donor-matched culture expanded AD-MSCs 

to demonstrate the use of a new cell source free from the necessity of culture expansion. The 

results of this study showed similar in vitro and in vivo functionality of both cell populations in 

the context of TEVG applications. Finally, a cell-free alternative TEVG design was proposed 
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with a proof of concept study that is alleviated from either barrier. A novel technology – termed 

as “artificial stem cells” – was developed that combines the stem cell secreted products with a 

microsphere-based delivery system to replace the in vivo cellular activity of AD-MSCs. 

Together, the work of this dissertation advanced the field of stem cell-based TEVGs by 

investigating the use of cells clinically realistic populations and proposing novel cell sources 

(SVF and artificial) to practical barriers to propel TEVGs towards clinical translation. 

 



 vi 

TABLE OF CONTENTS 

TABLE OF CONTENTS ........................................................................................................... VI 

LIST OF TABLES ................................................................................................................... XIV 

LIST OF FIGURES ................................................................................................................... XV 

1.0 INTRODUCTION ........................................................................................................ 1 

1.1 ARTERIAL ANATOMY: WHAT ARE THE MAIN CONSTITUENTS OF 

A TEVG? .............................................................................................................. 3 

1.1.1 The Cardiovascular System and General Arterial Anatomy ...................... 3 

1.1.2 Endothelial Cells .............................................................................................. 5 

1.1.3 Smooth Muscle Cells ....................................................................................... 7 

1.1.4 Collagen ............................................................................................................ 9 

1.1.5 Elastin ............................................................................................................. 10 

1.2 TYPES OF CARDIOVASCULAR DISEASE: WHERE IS A TEVG 

APPLIED? ......................................................................................................... 12 

1.2.1 Cardiovascular Risk Patient Cohorts .......................................................... 15 

1.2.2 Elderly Etiology and Vascular Related Effects ........................................... 15 

1.2.3 Diabetes Etiology and Vascular Related Effects ......................................... 17 

1.2.4 Current Clinical Treatment Options ........................................................... 19 

1.3 TISSUE ENGINEERING APPROACHES ..................................................... 22 



 vii 

1.3.1 General Considerations ................................................................................. 23 

1.3.2 Scaffold Considerations ................................................................................ 25 

1.3.3 Cellular Considerations ................................................................................ 29 

1.3.4 Cell Seeding Techniques ............................................................................... 31 

1.3.5 Bioreactors and Culture Post-Seeding ......................................................... 32 

1.3.6 Acellular TEVGs............................................................................................ 33 

1.4 CURRENT CLINICAL TEVG APPROACHES ............................................ 34 

1.4.1 Approach 1 – Bone Marrow Cells with Synthetic Scaffold ....................... 34 

1.4.2 Approach 2 – Cell Sheet Technology ........................................................... 36 

1.4.3 Approach 3 – Decellularized Vein ................................................................ 38 

1.4.4 Approach 4 – Bioreactor Produced TEVG ................................................. 40 

1.5 CURRENT BARRIERS TO CLINICAL TRANSLATION .......................... 41 

1.5.1 Improper Cell Sourcing ................................................................................ 42 

1.5.2 Fabrication Time ........................................................................................... 43 

1.5.3 In Vivo TEVG Mechanisms .......................................................................... 44 

1.6 TEVG STUDIES IN THE VORP LAB ........................................................... 48 

1.7 HYPOTHESES AND SPECIFIC AIMS ......................................................... 49 

2.0 SPECIFIC AIM 1, PART 1:  EVALUATION OF HIGH-CARDIOVASCULAR 

RISK DONOR AD-MSCS  FOR USE AS TEVGS ................................................. 52 

2.1 INTRODUCTION ............................................................................................. 52 

2.1.1 AD-MSCs and the Effect of Donor Populations ......................................... 53 

2.1.2 Definitions of Essential Cellular Functions and Performance Criteria for 

Vascular Engineering ................................................................................... 55 



 viii 

2.2 METHODS ......................................................................................................... 56 

2.2.1 Isolation and Culture of Cells and Collection of Conditioned Media ....... 56 

2.2.2 Differentiation of AD-MSCs into SMCs ...................................................... 60 

2.2.3 Ability of AD-MSCs to Promote SMC Migration ...................................... 61 

2.2.4 PEUU Scaffold Fabrication .......................................................................... 63 

2.2.5 Cell Seeding into TEVG Scaffolds ............................................................... 64 

2.2.6 Measurement of Uniform Cell Seeding ....................................................... 64 

2.2.7 In Vivo TEVG Implantation ......................................................................... 65 

2.2.8 Histologic Evaluation and Immuno-fluorescence ....................................... 67 

2.2.9 Morphometric and Quantitative Analyses .................................................. 68 

2.2.10 Multiphoton Analysis of Collagen Architecture ......................................... 68 

2.2.11 Statistics .......................................................................................................... 69 

2.3 RESULTS ........................................................................................................... 70 

2.3.1 Differentiation of AD-MSCs from Diabetic and Elderly Donors into SMCs

......................................................................................................................... 70 

2.3.2 Ability of AD-MSCs to Produce SMC Pro-Migratory Factors in Healthy, 

Diabetic, and Elderly Donors ....................................................................... 77 

2.3.3 Uniform Cell Seeding Analysis for Healthy, Diabetic, and Elderly AD-

MSCs .............................................................................................................. 82 

2.3.4 In Vivo Gross Observations and Patency of Healthy, Diabetic, and 

Elderly TEVGs .............................................................................................. 93 

2.3.5 Morphometric Measurements of Explanted TEVGs ................................. 96 

2.3.6 Cellular Composition of Explanted TEVGs ................................................ 98 



 ix 

2.3.7 Matrix Composition of Explanted TEVGs ................................................ 100 

2.4 DISCUSSION ................................................................................................... 104 

2.5 CONCLUSION ................................................................................................ 108 

2.6 FUTURE WORK ............................................................................................. 109 

2.7 ADDITIONAL STUDIES AND THOSE CONTRIBUTING TO FUTURE 

WORK .............................................................................................................. 112 

2.7.1 Short Term Implants ................................................................................... 112 

2.7.2 Further ECM Characterization via Mason’s Trichrome and Verhoeff Van 

Gieson ........................................................................................................... 116 

2.7.3 Explanted TEVG Mechanical Testing ....................................................... 117 

2.7.4 Calcification of Implanted TEVGs ............................................................ 123 

2.7.5 T cell and B cell Activity Within Implanted TEVGs ................................ 128 

3.0 SPECIFIC AIM 1, PART 2:  MECHANISM OF DIABETIC AD-MSC 

THROMBOSIS ......................................................................................................... 131 

3.1 INTRODUCTION ........................................................................................... 131 

3.2 METHODS ....................................................................................................... 134 

3.2.1 Cell Culture .................................................................................................. 134 

3.2.2 Platelet Adhesion Assay .............................................................................. 134 

3.2.3 Fibrinogen Zymography ............................................................................. 135 

3.2.4 Western Blot for uPA .................................................................................. 136 

3.2.5 uPA Fluoro-metric Activity Kit .................................................................. 136 

3.2.6 Fabrication of Fibrin Constructs and Stimulation with AD-MSC Media

....................................................................................................................... 137 



 x 

3.2.7 Compressive Mechanical Testing of Gels .................................................. 137 

3.2.8 Statistics ........................................................................................................ 138 

3.3 RESULTS ......................................................................................................... 138 

3.3.1 Platelet Adhesion Assay .............................................................................. 138 

3.3.2 Fibrinogen Zymography ............................................................................. 139 

3.3.3 Western Blot for uPA and uPA Activity Kit ............................................. 142 

3.3.4 Fibrin Based Construct Degradation ......................................................... 144 

3.3.5 Mechanical Compression Testing of Fibrin-based Constructs ............... 148 

3.4 DISCUSSION ................................................................................................... 151 

3.5 CONCLUSION ................................................................................................ 154 

3.6 FUTURE DIRECTIONS................................................................................. 155 

3.7 ADDITIONAL STUDIES LEADING TO FUTURE WORK ..................... 158 

3.7.1 Identification of tPA in AD-MSC Conditioned Media ............................. 158 

4.0 SPECIFIC AIM 2: USE OF CULTURE FREE SVF CELLS FOR TEVGS ...... 159 

4.1 INTRODUCTION ........................................................................................... 159 

4.2 METHODS ....................................................................................................... 161 

4.2.1 Isolation and Culture of SVF cells ............................................................. 161 

4.2.2 Differentiation of SVF cells into SMCs ...................................................... 162 

4.2.3 Ability of SVF Cells to Promote SMC Migration ..................................... 162 

4.2.4 Scaffold Fabrication, Cell Seeding, and In Vivo Implantation ............... 163 

4.2.5 Assessment of Cellular, Extracellular, and Morphometric Parameters of 

Explanted TEVGs ....................................................................................... 163 

4.2.6 Statistics ........................................................................................................ 163 



 xi 

4.3 RESULTS ......................................................................................................... 164 

4.3.1 Ability of SVF Cells to Perform Essential Functions: SMC Differentiation 

and Secretion of SMC Pro-Migratory Factors ......................................... 164 

4.3.2 Uniform Cell Seeding Analysis of SVF Cells ............................................. 168 

4.3.3 In Vivo Gross Observations and Patency .................................................. 170 

4.3.4 Morphometric Measurements and Vascular-Like Composition of 

Explanted TEVGs ....................................................................................... 172 

4.4 DISCUSSION ................................................................................................... 177 

4.5 CONCLUSION ................................................................................................ 179 

4.6 FUTURE WORK ............................................................................................. 179 

4.7 ADDITIONAL STUDIES ADDING TO FUTURE WORK ........................ 181 

4.7.1 Marker Profile of SVF Seeded TEVG Scaffolds ....................................... 181 

4.7.2 Fabrication of an Implantable TEVG Without Spinner Flask Culture . 184 

4.7.3 TEVG Scaffolds Seeded At Varying Densities .......................................... 186 

5.0 SPECIFIC AIM 3: DEVELOPMENT OF AN ARTIFICIAL MSC-BASED 

TEVG ......................................................................................................................... 188 

5.1 DESIGN CRITERIA ....................................................................................... 190 

5.1.1 Seeding of Artificial MSCs – Determining Appropriate Diameter ......... 191 

5.1.2 Seeding of Artificial MSCs – Determining Optimal Seeding Parameters

....................................................................................................................... 192 

5.1.3 Seeding of Artificial MSCs – Retention Under Flow Conditions ............ 193 

5.1.4 Bioactive Factor Release – Cell Source for Bioactive Factors ................. 193 

5.1.5 Bioactive Factor Release – Customizable Release .................................... 194 



 xii 

5.1.6 Bioactive Factor Release – Processing of Media (Concentration) .......... 194 

5.1.7 Bioactive Factor Release – Release of Desired Factors and Maintained 

Bioactivity .................................................................................................... 195 

5.1.8 In Vivo Functionality................................................................................... 195 

5.2 METHODS ....................................................................................................... 196 

5.2.1 Microsphere Fabrication ............................................................................ 196 

5.2.2 Obtaining MSC Conditioned Media .......................................................... 197 

5.2.3 Seeding of Microspheres Within TEVG Scaffolds ................................... 198 

5.2.4 Exposure of Microsphere Seeded TEVG Scaffolds to Physiologic Flow 198 

5.2.5 Concentration and Release of Microsphere Encapsulated Conditioned 

Media ............................................................................................................ 199 

5.2.6 Scratch Assay for Bioactivity of Microsphere Released MSC Conditioned 

Media ............................................................................................................ 200 

5.2.7 Statistics ........................................................................................................ 200 

5.3 RESULTS ......................................................................................................... 200 

5.3.1 Seeding of Artificial MSCs – Determining Appropriate Diameter ......... 200 

5.3.2 Seeding of Artificial MSCs – Determining Optimal Seeding Parameters

....................................................................................................................... 203 

5.3.3 Seeding of Artificial MSCs – Retention Under Flow Conditions ............ 214 

5.3.4 Bioactive Factor Release – Customizable Release .................................... 218 

5.3.5 Bioactive Factor Release – Processing of Media (Concentration) .......... 220 

5.3.6 Bioactive Factor Release – Release of Desired Factors and Maintained 

Bioactivity .................................................................................................... 223 



 xiii 

5.3.7 In Vivo Functionality................................................................................... 226 

5.4 CONCLUSION ................................................................................................ 228 

5.5 DISCUSSION AND FUTURE DIRECTIONS ............................................. 229 

6.0 STUDY SUMMARY ................................................................................................ 232 

6.1 SUMMARY OF RESULTS ............................................................................ 232 

6.1.1 Specific Aim 1............................................................................................... 232 

6.1.2 Specific Aim 2............................................................................................... 233 

6.1.3 Specific Aim 3............................................................................................... 233 

6.2 SUMMARY OF ACOMPLISHMENTS ........................................................ 234 

6.3 FUTURE DIRECTIONS................................................................................. 236 

APPENDIX A: DETERMINING APPROPRIATE CELL DENSITY FOR SMC 

SCRATCH MIGRATION ASSAY ......................................................................... 237 

APPENDIX B: IMAGEJ CELL COUNTING TOOL TUTORIAL AND SCRIPT ........... 239 

APPENDIX C: ANEURYSMAL TEVG HISTOLOGY FROM AIM 1 .............................. 242 

APPENDIX D: GELATIN COATED SLIDES RECIPE ...................................................... 244 

BIBLIOGRAPHY ..................................................................................................................... 245 



 xiv 

 LIST OF TABLES 

 

Table 1. List of AD-MSC donors utilized in Aim 1-1. “X” marks use in particular experiment 
whereas multiple “X” identify multiple in vivo implantations of the same line. .... 59 
 

Table 2. All quantified morphometric, histological, and micro-architectural parameters of 
patent TEVGs. No statistical significance was seen comparing between healthy, 
elderly, and diabetic parameters. ............................................................................. 97 
 

Table 3.  List of AD-MSC donors utilized in Aim 1-2. ......................................................... 134 
 

Table 4.  List of donors utilized in Aim 2. ............................................................................. 162 
 

Table 5.  All quantified morphometric, histological, and micro-architectural parameters of 
patent SVF and paired cultured AD-MSCs. No statistical significance was seen 
comparing between SVF and AD-MSC parameters. ............................................. 176 
 

Table 6.  Continued passage expansion of SVF cells results in phenotypic changes. After 
expanding the SVF into AD-MSCs via continual passage expansion and seeding 
them into TEVG scaffolds, the marker profile of seeded cells alters. In particular, 
CD31 expression is maintained while CD34 is lost (n=1). .................................... 184 
 

Table 7.  ELISA measurement of growth factors relevant to TEVG success in microsphere 
releases. The average generated from one cell line is provided with samples 
acquired from two separate culture flasks performed with measurements performed 
at least in triplicate. All values were subtracted from those present in non-
conditioned media. ................................................................................................. 224 



 xv 

LIST OF FIGURES 

Figure 1.  Experimental schematic of SMC scratch wound Migration Assay. SMCs are 
induced to migrate via a scratch wound assay while being stimulated with AD-MSC 
conditioned media over the course of 24 hours. Example images of this assay can be 
seen in APPENDIX A. ............................................................................................. 63 

 
Figure 2.  AD-MSC differentiation into SMC is decreased for diabetic patients based on 

calponin expression. Diabetic AD-MSCs displayed a less efficacious SMC 
differentiation compared to healthy AD-MSCs in terms of the expression of 
calponin ((A) – immuno-fluorescence for calponin (green) with counterstained 
nuclei (blue)). This was quantified by percentage of calponin expressing cells (B). 
Data is presented as mean ± SEM with *= significant difference at p<0.05. For 
calponin expression n=7 was used for the healthy group and n=4 for the diabetic 
group. ....................................................................................................................... 71 

 
Figure 3.  AD-MSC differentiation into SMC is decreased for diabetic patients based on cell 

morphology. Upon differentiation AD-MSCs did not acquire an SMC spindle 
morphology ((A) – immuno-fluorescence for F-actin (green) with counterstained 
nuclei (blue)). This was quantified by measuring the shape factor of the cells 
(4π×area/perimeter2, ~0 = ellipsoid, 1 = circular) (B). Data is presented as mean ± 
SEM with *= significant difference at p<0.05. n=4 was used per group for shape 
factor experiments. ................................................................................................... 72 

 
Figure 4.  AD-MSC differentiation into SMC is decreased for elderly patients based on 

calponin expression. Elderly AD-MSCs displayed a reduced ability to differentiate 
into SMCs under AngII stimulation for 4 days. AngII stimulated AD-MSCs showed 
a significantly lower expression of calponin ((A) – immuno-fluorescence for 
calponin (green) with counterstained nuclei (blue)). This was quantified by number 
of calponin expressing cells (B). Data is presented as mean ± SEM with *= 
significant difference at p<0.05. For calponin expression n=7 was used for the 
healthy group and n=5 for the elderly group. .......................................................... 74 

 
Figure 5.  AD-MSC differentiation into SMC is decreased for elderly patients based on cell 

morphology. Differentiated AD-MSCs did not acquire an SMC spindle morphology 
((A) – immuno-fluorescence for F-actin (green) with counterstained nuclei (blue)). 
This was quantified by measuring the cells shape factor (4π×area/perimeter2, ~0 = 
ellipsoid, 1 = circular) (B). Data is presented as mean ± SEM with *= significant 
difference at p<0.05. n=4 was used per group for shape factor experiments. ......... 75 



 xvi 

 
Figure 6.  Gender and BMI do not affect AD-MSC differentiation into SMCs. Comparing 

gender of AD-MSCs from both healthy male and female donors produced 
equivalent results when AD-MSCs were stimulated to differentiate into SMCs with 
AngII based on calponin expression (A) and change in cell morphology (B). 
Performing a regression analysis utilizing BMI from all donors produced no 
correlation for the percentage of cells expressing calponin (C). Data for bar graphs 
is represented as mean ± SEM with *= signficant difference at p<0.05. n=4 was 
used per group for shape factor experiments and for calponin expression 
experiments, n=7 was used for the female group and n=5 for the male group. ....... 76 

 
Figure 7.  AD-MSC secreted factors can promote SMC migration. SMCs are induced to 

migrate via a scratch wound assay while being stimulated with AD-MSC 
conditioned media over the course of 24 hours. AD-MSCs promote the migration of 
SMCs compared to non-conditioned controls (A). This data was quantified by 
measuring the normalized wound area over time. This data converted to migration 
rate per hour relative to controls, expressing a significant difference between AD-
MSC conditioned media and non-conditioned controls (B). Additionally, heat 
inactivating conditioned media caused a significant loss in functionality indicating 
SMC pro-migratory effects happen at least in part on a protein level. Diluting AD-
MSC conditioned media to varying levels of conditioning cells/mL produced a dose 
dependent effect (dose 1:0 = 500,000 conditioning cells/mL) (C). Data is presented 
as mean ± SEM with *= significant difference at p<0.05. n=4 was used per group in 
all experiments. ........................................................................................................ 78 

 
Figure 8.  AD-MSCs from diabetic patients produce SMC pro-migratory secreted factors. 

Investigating diabetic patient AD-MSCs for the ability of their secreted factors to 
promote SMC migration, showed an increased migration compared to non-
conditioned media ((A) – wound closure over time; (B) – wound closure rate per 
hour). This increased migration rate was similar to that seen with healthy AD-
MSCs. Data is presented as mean ± SEM with *= significant difference at p<0.05. 
n=4 was used per group in all experiments. ............................................................. 80 

 
Figure 9.  AD-MSCs from elderly patients do not produce SMC pro-migratory secreted 

factors. When comparing between healthy and elderly patient AD-MSCs, those 
from elderly patients displayed an inability of their secreted factors to produce SMC 
pro-migratory effects ((A) – wound closure over time; (B) – wound closure rate per 
hour). Data is presented as mean ± SEM with *= significant difference at p<0.05. 
n=4 was used per group in all experiments. ............................................................. 81 

 
Figure 10.  Gender and BMI do not affect AD-MSC secreted SMC pro-migratory factors. 

Comparing across the gender of AD-MSCs from both healthy male and female 
donors produced equivalent SMC pro-migratory responses (A). Performing a 
regression analysis utilizing BMI from all donors  produced no correlation for 
migration rate (B). Data for bar graphs is represented as mean ± SEM with *= 
signficant difference at p<0.05. n=4 was used per group for migration. ................. 82 



 xvii 

 
Figure 11.  ImageJ cell counting tool procedure. (A) An original multicolored image (or single 

color) is imported into ImageJ for analysis. (B) The specified individual channel 
representing the cell nuclei is selected and converted to grayscale. A Gaussian Blur 
of Radius 1 pixel (C) and 4 pixels (D) is applied to the image and subtracted from 
one another to reduce background noise and develop more punctate cell nuclei (E). 
(F) Otsu’s Threshold is performed to transform the image to a binary format where 
all cell nuclei are converted to black and the background is converted to white. (G) 
Both “Open” and “Watershed” commands are performed to remove small pixel 
artifacts and separate overlapping cell nuclei, respectively. (H) Finally, each cell 
nuclei is identified and counted. Blowup image shown in (I). ................................ 84 

 
Figure 12.  The automated ImageJ cell counting tool produces equivalent results to manual 

counting. Three lab members performed manual cell counting for three cell seeded 
TEVG scaffold images. Equivalent results were observed when comparing to the 
program output. ........................................................................................................ 85 

 
Figure 13.  AD-MSCs from healthy, diabetic, and elderly donors qualitatively seed successfully 

within scaffolds. AD-MSCs from healthy, diabetic, and elderly  donors were seeded 
into scaffolds (n=3) and stained for cell nuclei (blue: DAPI) and F-actin (green: 
Phalloidin). All scaffolds showed a uniform distribution of cells and consistent 
spreading along the scaffold. White arrow indicates the lumen. ............................. 87 

 
Figure 14.  AD-MSCs from all donor groups seed quantitatively uniformly in TEVG scaffolds. 

TEVG Scaffolds seeded with AD-MSCs from healthy, diabetic, and elderly groups 
were confirmed as quantitatively uniform by measuring the cell numbers (presented 
as mean percentage of total ± SD) across radial (A), circumferential (B), and 
longitudinal (C) segments. The results show that each donor group achieves similar 
cell numbers regardless of segment or direction (No significant difference was 
observed with p>0.05.). These values are also comparable to a perfectly even 
distribution (e.g. three radial segments results in 33% for each). When comparing 
the radial segments adjustments were made based on area as the increasingly larger 
concentric circle segments would inherently possess more a higher number of cells. 
A schematic of the segmentation strategy can be seen in (D). ................................ 88 

 
Figure 15.  Illustration of a false-positive example of cell seeding analysis and the superiority 

of an increased number of circumferential segments. An example case is given 
where if only four segments are utilized (left) the automated cell counting method 
will determine the cell density per region as similar comparing circumferentially 
despite the qualitatively obvious non-uniform distribution. However, increasing the 
number of circumferential segments (right) reduces the chance of this happening. 90 

 
Figure 16.  Circumferential analysis of cell seeded TEVG scaffolds with an increased number 

of circumferential segments. The circumferential analysis seen in Figure 14 was 
advanced by using a higher number of circumferential segments (9 slices instead of 
4 slices). The resulting data further confirm the circumferential uniformity AD-



 xviii 

MSC seeded scaffolds composed of cells from all donors (healthy (red), diabetic 
(yellow), elderly (gray)). .......................................................................................... 91 

 
Figure 17.  AD-MSC seeded scaffolds have similar variability in the circumferential direction. 

The average variability between the 9 circumferential slices in Figure 16 was 
compared between healthy, diabetic and elderly groups and displayed similarity 
(p=0.22). This indicated that there are no anomalies in the seeding distribution (i.e. 
a uniform seeding was achieved) which would have resulted in unusual increases in 
variability (as any variability induced strictly by random chance is would be similar 
across all groups). .................................................................................................... 91 

 
Figure 18.  The cell density in AD-MSC seeded scaffolds across the circumferential direction 

display a normal distribution. The percentage of total cross sectional cell densities 
across each of the 9 circumferential slices (e.g. theoretical average = 100%/9 = 
11%) in Figure 16 (and triplicate images) were plotted as a histogram for each 
healthy, diabetic or elderly group. A normal distribution resulted for each group 
further indicating in conjunction with Figure 17 that there are no anomalies in the 
seeding distribution which would have resulted in unusual increases in variability.
.................................................................................................................................. 92 

 
Figure 19.  Diabetic AD-MSCs do not produce patent vessels whereas healthy and elderly do. 

(A) Example image of TEVG implant is shown. (B) Angiograms were performed to 
assess the patency of TEVGs at the 8 week endpoint with a patent vessel showing 
clear flow past the graft to the hindquarters (indicated by arrows). (C) Total patency 
rate was calculated based on the number of patent vs. total TEVGs; note that 
TEVGs created using cells from diabetic donors show a marked reduction in 
patency. .................................................................................................................... 94 

 
Figure 20.  Occlusion of diabetic TEVGs is due to thrombosis. (A) Gross inspection of the 

explants revealed that the primary reason for non-patent TEVGs was occlusive 
thrombosis. (B) H&E stained sections of a patent 8 week TEVG, a non-patent 8 
week TEVG, and a non-implanted PEUU scaffold. Significant remodeling of patent 
TEVGs included newly developed neotissue (Neo) lumenally and breakdown of the 
original PEUU scaffolding material (inner layer: TIPS, outer layer: ES). Occluded 
grafts displayed presence of a thrombus and no remodeling. Arrows indicate lumen.
.................................................................................................................................. 95 

 
Figure 21.  All patent TEVGs display similar cell phenotypes. Patent TEVGs, regardless of 

AD-MSC donor type, display significant remodeling with the development of 
neotissue composed of SMA (red; left column) and calponin (green; middle 
column) positive SMCs, as well as a continuous lining of vWF positive ECs (green; 
right column) which is qualitatively similar to native arteries (bottom row). All 
images were counterstained for cell nuclei (blue: DAPI). White arrow indicates the 
lumen. Note that the residual PEUU scaffolding material produces a significant 
amount of auto-fluorescence and should not be regarded as positive staining in 
these images. ............................................................................................................ 99 



 xix 

 
Figure 22.  All patent TEVGs have a robust network of aligned collagen fibers. (A) TEVGs, 

regardless of AD-MSC donor type, display a development of a fibrous, 
circumferentially aligned collagen network (red). However, the collagen fibers 
present within a TEVG are not fully distributed throughout the neotissue thickness 
like that seen in native artery controls (see phase contrast overlay). White arrow 
indicates lumen. ..................................................................................................... 101 

 
Figure 23.  TEVGs display presence of elastin but no elastic lamellae. TEVGs, regardless of 

AD-MSC donor type, display alpha-elastin throughout the neotissue thickness (red) 
including a prominent layer next to the lumen. However the prominent medial 
elastic lamellae which are present in native arteries were absent in remodeled 
TEVGs. White arrow indicates. Note that the residual PEUU scaffolding material 
produces a significant amount of auto-fluorescence and should not be regarded as 
positive staining in these images............................................................................ 103 

 
Figure 24. Short-term implantation reveal incomplete recellularization with vascular 

components. PEUU scaffolds seeded with AD-MSC were implanted for 1 or 8 
weeks (see Aim 1-1). After explantation, the vessels were analyzed for using 
immuno-fluorescent staining for the SMC marker smooth muscle alpha-actin 
(SMA) or the EC marker von Willebrand Factor (VWF). Recellularization is 
incomplete with 1 week of implantation, but complete by 8 weeks. (n=2, lumenal 
surface is indicated by white arrows). .................................................................... 114 

 
Figure 25. Immuno-staining for human CD90 reveals presence of implanted cells during short 

term implantations. Explanted TEVGs were stained with human specific CD90 
(red; counterstained with DAPI (blue)) to identify the presence of implanted AD-
MSCs in explants consisting of (A) a clotted TEVG seeded with diabetic AD-MSCs 
at 3 days, (B) a patent TEVG seeded with healthy AD-MSCs at 1 week, (C) and a 
patent TEVG seeded with healthy AD-MSCs at 8 weeks. .................................... 115 

 
Figure 26.  Characterization of 8 week TEVG explants by Mason’s Trichome staining. Further 

characterization of the extracellular matrix was performed using Mason’s 
Trichrome staining which indicates collagen (blue). Only healthy (A-C) and elderly 
(D-F) AD-MSC-based explants were used in this analysis which both displayed 
clear development of collagen within TEVGs. ...................................................... 116 

 
Figure 27.  Characterization of 8 week TEVG explants by Verhoeff van Gieson staining. 

Further characterization of the extracellular matrix was performed using Verhoeff 
van Gieson Staining which indicates elasatin (black). Only healthy (A-C) and 
elderly (D-F) AD-MSC-based explants were used in this analysis which both 
displayed clear development of elastin within TEVGs.......................................... 117 

 
Figure 28.  Explanted TEVGs display limited compliance compared to native vessels. (A) 

Explanted TEVGs were tested in an in vitro perfusion apparatus where they were 
applied with a physiologic waveform (120/80 mmHg) and their diameter was 



 xx 

monitored with a laser micrometer. While native aortas displayed a high degree of 
compliance (B), explanted vessels displayed little (C) (y-axis scaled to the same 
intervals in (B) and (C)). Calculating the compliance values (inclusive table) 
showed that explanted TEVGs at 8 weeks had compliance an order of magnitude or 
less than native vessels and this value deceased with increased in vivo maturation (2 
weeks to 8 weeks). ................................................................................................. 120 

 
Figure 29.  Explanted TEVGs display tensile properties less than native vessels. (A) Explanted 

TEVGs were cut into rings and stretched uniaxially to measure tensile mechanical 
properties. The shown image depicts a point where the inner TEVG layer 
(neotissue/TIPS) has fractured and the remaining force being generated is from the 
outer TEVG layer (electrospun) leading to a biphasic response. Representative 
images of stress-strain curves from native aorta (B) and explanted TEVGs (C) as 
well as quantified mechanical parameters (inclusive table) are shown. The tangent 
modulus (unitless, i.e. MPa/MPa) within the physiologic range was defined as the 
slope of the stress-strain curve between 120 and 80 mmHg and the tangent modulus 
(unitless, i.e. MPa/MPa) in the elastic portion was defined as the slope of the linear 
portion of the stress-strain curve. ........................................................................... 121 

 
Figure 30.  Bending of PEUU scaffolds results in kinking. The TEVG within this study utilizes 

a linear test bed (i.e. aortic interposition graft). However anecdotally it was noted 
that kinking can occur in bending of the TEVG scaffolds. This was not assessed 
further in those seeded with cells but is an important consideration in future studies 
which may encounter a more geometrically challenging text bed. ........................ 122 

 
Figure 31.  Calcification sporadically occurs in explanted TEVGs. Alizarin Red Staining was 

performed on explanted TEVG samples which sporadically displayed the presence 
of calcium rich nodules. This occurred in all cases, regardless of donor. Instances of 
calcified healthy and elderly TEVGs are shown in (A) and (C) and non-calcified 
ones are shown in (B) and (D). .............................................................................. 125 

 
Figure 32.  Alizarin Red and von Kossa staining overlap confirmed the presence of calcific 

nodules. In addition to staining with Alizarin Red which indicated the presence of 
calcium ions (red), von Kossa staining was also used which indicated phosphate 
ions (black). As both of these were noted to overlap in the same positions, this 
confirms the nodules to be calcific and thus composed of calcium phosphate. .... 126 

 
Figure 33.  Calcification was not noted in instanced of thrombosis. In TEVGs which were 

occluded with thromosis no calcification was observed. As in occluded TEVGs in 
Aim 1-1 it was noted that no graft remodeling occurred and these grafts were 
explanted in < 1 week, this result indicates the necessity for graft remodeling prior 
to calcification. ....................................................................................................... 126 

 
Figure 34.  No calcification is observed in AD-MSC seeded scaffold prior to implantation. To 

confirm that no calcification was present prior to implantation AD-MSC seeded 
scaffolds were stained with Alizarin Red immediately after seeding (A) or when 



 xxi 

cultured in spinner flask for 2 days (B) at which point the construct would be 
implanted. Additionally AD-MSC seeded scaffolds cultured in spinner flasks for 5 
(C) and 7 days (D) as well as non-seeded PEUU scaffolds (E) were stained. In all 
cases no calcification was observed suggesting it to be an in vivo process. ......... 127 

 
Figure 35.  Historic TEVG samples from the Vorp lab using human pericytes also displayed 

calcification. To determine if calcification was occurring solely due to the AD-
MSCs utilized within this study, historic samples from the Vorp lab (8 week 
implanted human pericyte graft (A) or 1 year pericyte implant graft (B)) were 
stained for Alizarin Red. Calcification was present in these samples. .................. 128 

 
Figure 36.  Lymphocyte activity is not present in TEVGs. To confirm the lack of lymphocyte 

activity (T-cell, B-cell) in our TEVG implants using human cells in a Lewis rat 
model, staining on 1 week explants was performed (A). A rat spleen (B) was 
utilized as a positive control to confirm antibody functionality. ........................... 130 

 
Figure 37.  Fibrinolytic Molecular Pathway. The fibrinolytic pathway ultimately results in the 

cleavage (and thus dissolution) of fibrin. The main molecular player responsible for 
this action is plasmin which is regulated by multiple activators (uPA – urokinase 
plasminogen activator, tPA – tissue plasminogen activator), and inhibitors (PAI-1 – 
plasminogen activator inhibitor-1, α2-antiplasmin). The molecular weights of each 
of these elements is provided. ................................................................................ 132 

 
Figure 38.  Healthy and diabetic AD-MSCs adhere a similar number of platelets. Monolayers 

of AD-MSCs from either healthy or diabetic donors were incubated with bovine 
platelet rich plasma to allow for platelet adhesion (example shown in (A); platelet – 
red; cell body (green)). The number of platelets adhered to cell bodies were counted 
and revealed no difference between healthy of diabetic groups (B; p=0.48, n=3) 139 

 
Figure 39.  Diabetic AD-MSCs produce less fibrinolytic factors than healthy AD-MSCs. (A) 

Zymography was performed utilizing conditioned media from AD-MSCs from 
healthy or diabetic donors using acrylamide gels doped with fibrinogen. White 
bands indicate areas of fibrinogen degradation, several of which were more 
prominent when AD-MSC from healthy donors were used. Media control = non-
conditioned serum-containing media. (B) Bands were quantified using toolboxes 
within ImageJ; bands at 31, 40, and 150 kD were increased in healthy samples. Data 
is presented as mean ± SD. Black bar = statistically significant difference with 
p<0.05. ................................................................................................................... 140 

 
Figure 40.  Zymography performed at earlier time points results in less prominent degradation 

bands. In addition to the 7 day zymogram performed in Figure 39, additional 
zymograms were performed at 1 (A) and 3 (B) days. Less prominent bands are seen 
at both days with bands occurring at lower molecular weights (31 kD) beginning to 
appear at 3 days. ..................................................................................................... 141 

 



 xxii 

Figure 41.  Fibrinogen zymoraphy performed under serum-free conditions confirm AD-MSC 
produced fibrinolytic factors. (A) Zymography performed using conditioned media 
isolated under serum-free demonstrated that all bands are capable of being produced 
by AD-MSCs and not masked by fibrinolytic serum factors. S = non-conditioned 
media containing serum. M = non-conditioned media without serum. (B) 
Additionally, quantification of bands in (A) demonstrated elevation of the 40 kD 
band in media conditioned by AD-MSC from healthy donors. ............................. 141 

 
Figure 42.  Urokinase plasminogen activator (uPA) is in part responsible for the differences in 

fibrinolytic ability between AD-MSCs from healthy and diabetic donors. (A) A 
Western blot was performed utilizing dilutions of human uPA protein standard. 
Positive signal appeared at molecular weights of 31, 50, and 100 kD matching 
zymographic bands seen in Figure 39 and Figure 41. (B) A uPA fluorometric 
microplate activity kit was performed on conditioned media samples. A significant 
reduction in uPA activity was observed when cells sourced from diabetic donors 
were used. Data is presented as mean ± SD. Black bar = statistically significant 
difference with p<0.05. .......................................................................................... 143 

 
Figure 43.  Secreted factors from AD-MSCs promote fibrin construct degradation. Fibrin-based 

constructs were fabricated and cultured with control (non-conditioned) media or 
media conditioned by AD-MSC from one of three healthy or diabetic donors. Each 
group was run in triplicate. The percentage of each set of nine constructs remaining 
at 1, 4, or 7 days is plotted by analogy to a “survival curve” to illustrate the loss of 
constructs when conditioned media what used. ..................................................... 145 

 
Figure 44.  Media conditioned by AD-MSC from healthy donors promotes higher degradation 

of fibrin-based constructs than media conditioned by AD-MSC from diabetic 
donors. (A) To achieve a higher resolution on the degradation of fibrin constructs 
stimulated with AD-MSC conditioned media, we inhibited gels with either 0.5, 1, or 
3 mM ε-amino caproic acid (ACA). Images are shown from an overhead view of 
fibrin disks at a 7 day time point. (B) Quantifying the mean grayscale intensity of 
each gel normalized to the background reveals that AD-MSCs from healthy patients 
promoted more fibrinolysis, when inhibited at an intermediate 1 mM ACA 
concentration. Images and measurements were also taken at days 1 and 4 and are 
shown in Figure 45. Data is presented as mean ± SD. Black bar = statistically 
significant difference with p<0.05. ........................................................................ 147 

 
Figure 45.  Earlier time points of fibrin construct degradation by analogy to Figure 44. Using 

the same method described in Figure 44, quantification of construct degradation 
was performed at day 1 (A) or day 4 (B). Data is presented as mean ± SD. Black bar 
= statistically significant difference with p<0.05. .................................................. 147 

 
Figure 46.  Mechanical compression testing of fibrin constructs has distinct loading phases. 

Compressive loading of fibrin gel constructs initially reveals a negative (tensive) 
force as the compression plate initially makes contact with the surface tension of the 



 xxiii 

gel. Further loading produces a linear increase. Upon unloading of the gel a tensive 
force is seen as the gel retracts from the top plate. ................................................ 149 

 
Figure 47.  Compressive tensile strength and energy reveal no differences between any fibrin 

gel construct. The compression testing illustrated in Figure 46 was performed on the 
fibrin gels after 7 days of degradation in Figure 44. Both the compressive strength 
and energy were calculated from stress-strain curves and displayed no difference for 
any gel, regardless of group or concentration of inhibitor. .................................... 150 

 
Figure 48.  Initial tensive forces from fibrin construct surface tension reveal differences 

between healthy and diabetic constructs. Analysis of the tensive properties 
experienced by the surface tension after the initial contact of the compression plate 
with the fibrin gel surface (as illustrated in Figure 46), similar trends to Figure 44 
can be seen for both the maximum tensive force (A) and energy (B). Namely, both a 
high (3 mM) and low (0.5 mM) inhibitor concentration reveal indiscriminant 
differences between groups, but an intermediate level of inhibitor (1 mM) a 
difference can be observed. Black bar = significant difference at p<0.05. ............ 150 

 
Figure 49.  More degraded fibrin gels experience a reduced contact angle. The results seen in 

Figure 48 can be explained by the hydrophilicity of the gel. As the gel becomes 
more degraded it will release a higher amount of energetically free water which 
increase the hydrophilicity of the gel and contribute to stronger surface tension 
forces. Indeed, the contact angle of the gels (A) were shown to decrease (B) as gels 
became more degraded and these trends mirror that seen in both Figure 44 and 
Figure 48.  Black bar = significant difference at p<0.05. ...................................... 151 

 
Figure 50.  Human SVF cells performed an essential function of vascular tissue engineering: 

SMC Differentiation. (A) SVF cells and donor-paired cultured AD-MSCs were 
differentiated towards SMCs via Angiotensin II stimulation. SVF cells show an 
acquisition of the marker calponin similar to that of AD-MSCs. Images shown are 
representative of donor paired SVF and AD-MSCs. Data is presented as mean ± SD 
with a statistically significant difference defined at with p<0.05. n=3 donors were 
used per group. ....................................................................................................... 165 

 
Figure 51.  Stimulation with AngII induced a morphometric change in both SVF cells AD-

MSCs wherein they adopted a more spindle-like shape. (A) When stimulated with 
AngII both SVF cells and donor-matched AD-MSCs underwent a morphological 
shift to a more SMC spindle-like cell shape when stained for F-actin (green; DAPI 
counterstain in blue). (B) This was quantified by measuring the shape factor (4p X 
area/perimeter2, ~0 = ellipsoid, ~1 = circular) of the cell where both SVF cells and 
AD-MSCs were showed a significant decrease in shape factor. Images shown are 
representative of donor paired SVF and AD-MSCs. Data is presented as mean ± SD 
with a statistically significant difference defined at with p<0.05. n=3 donors were 
used per group. ....................................................................................................... 166 

 



 xxiv 

Figure 52.  Human SVF cells performed essential functions to vascular tissue engineering: 
Promoting SMC Migration. (A) Conditioned media was acquired from SVF cells 
and used to stimulate SMCs in a scratch migration assay. (B) Quantitatively these 
cells are able to promote migration over non-conditioned controls and are on par 
with that seen with AD-MSCs. Images shown are representative of donor paired 
SVF and AD-MSCs. Data is presented as mean ± SD with a statistically significant 
difference defined at with p<0.05. n=3 donors were used per group. ................... 167 

 
Figure 53.  Human SVF cells were uniformly seeded within TEVG scaffolds. (A) SVF cells 

(n=3) were obtained from human patients and seeded directly into PEUU scaffolds 
where they seeded uniformly (blue, DAPI stain) across radial, circumferential, and 
longitudinal direction (not shown) of the scaffolds. (B) This uniformity was 
quantitatively confirmed by comparing the cell densities across virtually segmented 
pieces (B – Radial; C – Circumferential, D – Longitudinal). Data is presented as 
mean ± SD with a statistically significant difference defined at with p<0.05. As in 
Figure 14, adjustments were made based on area when comparing across the radial 
section due to increasingly larger concentric circular areas. ................................. 169 

 
Figure 54.  Human SVF cell-based TEVGs generated patent vessels. (A) SVF seeded scaffolds 

were implanted in a Lewis rat model wherein they developed patent vessel at an 8 
week timepoint shown by angiography. (B) Explanted SVF cell-based TEVGs 
displayed a clear tissue-like gross appearance. (C) Histologic H&E staining 
revealed SVF-based TEVGs showed signs of possessed newly developed tissue 
lumenally (neotissue) which showed ingrowth into scaffolding material. Both SVF 
cells and donor-matched AD-MSCs were equally capable of generating patent 
TEVGs (inclusive Table). ...................................................................................... 171 

 
Figure 55.  Human SVF cell-based TEVGs developed vascular-like tissue with primary cellular 

components. TEVGs, regardless of being created with SVF cells or donor-matched 
AD-MSCs displayed significant remodeling with the presence of vascular-like 
tissue. This tissue contained primary components such as SMCs (SMA (red), 
calponin (green)), endothelial cells (vWF (green))). White arrow indicates lumen. 
The presence of these components were quantitatively analyzed and all showed no 
significant difference (defined as p<0.05) between SVF cells or AD-MSCs (Table 
5). Additionally, morphometric parameters such as cell density (# of cells per µm3 
x 1000), the thickness of newly developed vascular tissue (i.e. neotissue thickness), 
and nuclear shape factor as a means to show alignment in the circumferential 
direction, all showed non-significant differences (Table 5). ................................. 174 

 
Figure 56.  Human SVF cell-based TEVGs developed vascular-like tissue with primary 

extracellular matrix components. TEVGs, regardless of being created with SVF 
cells or donor-matched AD-MSCs displayed significant remodeling and contained 
primary extracellular matrix components such as collagen (multiphoton (red)) and 
elastin (alpha-elastin (red)). White arrow indicates lumen. The presence of these 
components were quantitatively analyzed and all showed no significant difference 
(defined as p<0.05) between SVF cells or AD-MSCs (Table 5). Analysis of the 



 xxv 

collagen micro-architecture for parameters such as fiber intersection density 
(number of intersection points per area), segment length (distance between cross-
links, µm), fiber tortuosity, fiber orientation (circumferential ~90 degrees), and 
fiber diameter (µm) all revealed similarity between SVF and AD-MSC indicated by 
a non-statistically significant difference (Table 5). ............................................... 175 

 
Figure 57.  Phenotypic characterization of SVF seeded scaffolds. Immuno-fluorescence shows 

presence of endothelial cells (CD31) and endothelial precursor cells (CD34) in SVF 
seeded scaffolds and a lack of T-cells (CD4), B-cells (CD20), and macrophages 
(CD68) (n=3). White arrow indicates lumen. ........................................................ 183 

 
Figure 58.  AD-MSC seeded scaffolds cultured in spinner flasks for 0 and 2 days reveal no 

qualitative differences in density or spreading. AD-MSCs were seeded in TEVG 
scaffolds and subjected to spinner flask culture for 0 (A) or 2 (B; current regiment) 
days. Staining for DAPI (blue) and F-Actin revealed no qualitative differences for 
cell density and spreading, respectively (n=3). White arrow indicates lumen. ..... 185 

 
Figure 59.  SVF seeded scaffolds prior to implantation reveal punctate F-Actin staining. Three 

SVF scaffolds (A, B, C) were stained for DAPI and F-actin prior to implantation 
(i.e. after a 2 day spinner flask culture). F-actin staining revealed punctate staining 
for SVF cells as opposed to the elongated morphology seen in cultured AD-MSCs 
seeded scaffolds (Figure 58). White arrow indicates lumen. ................................. 186 

 
Figure 60.  Seeding TEVG scaffolds with varying densities is achievable with our 

methodology. TEVG scaffolds were seeded with 0.3, 1, 1.65, 2.33, or 3 million AD-
MSCs (n=1). A clear change in cell density is observed consistent with the number 
of seeded cells. Additionally, the seeding methodology preserves a uniform cell 
seeding, despite the change in number. White arrow indicates lumen. ................. 187 

 
Figure 61.  Size distribution of AD-MSCs The trypsinized AD-MSCs (i.e. those prior to cell 

seeding) placed on a hemocytometer (A) were imaged and their diameter was 
measured to determine their size and distribution (B). .......................................... 192 

 
Figure 62.  Only microspheres of less than 5 µm successfully seed within TEVG scaffolds. 

Microspheres of Average Size 20 (A) and 40 µm (B) were both seeded within 
TEVG scaffolds. However, only small microspheres (yellow arrows) were shown to 
fit within scaffold pores whereas larger sized ones are lumenally excluded (red 
arrows). The microspehres were quantitatively determined to be 5 µm or less. These 
lumenally excluded microspheres were further noted as additional histologic 
processing steps resulted in removal of microspheres from the scaffold lumen 
appearing as a white cloudiness within clear media (C). ....................................... 202 

 
Figure 63.  The diameter threshold of seeded microspheres at 5 µm or less was consistent 

across all experiments in this aim. The sizing of microspheres was analyzed for all 
seeded scaffolds within this Aim which consistently revealed a cutoff range of 5 
micrometers or less. ............................................................................................... 203 



 xxvi 

 
Figure 64.  The ImageJ-based cell counting tool developed in Aim 1 can be utilized for analysis 

of microsphere seeded scaffolds. The ImageJ tool developed in Aim 1 was utilized 
for counting microspheres seeded within scaffolds and determining their diameter. 
Each step (A-E) is depicted for a microsphere seeded scaffold and is consistent with 
that seen in Figure 11. ............................................................................................ 204 

 
Figure 65.  Microspheres seeded under current protocols for cells achieve only 50% of the 

seeding density. (A) Example of a cell (AD-MSCs; blue) seeded scaffold which 
displays a high degree of cell density and uniform distribution. (B) An example of a 
10 µm FITC-embedded microsphere (green) seeded scaffold that has been seeded 
with an identical number to cells. Microsphere seeded scaffolds display both poor 
uniformity and density compared to an AD-MSC one. (C) Quantification (n=3) of 
the cell density using the ImageJ script in Figure 64 revealed only approximately 
50% of the density compared to cells. Black bar = significant at p<0.05. n = 3 each.
................................................................................................................................ 206 

 
Figure 66.  Only microspheres of size 5 µm or less are seeded within TEVG scaffolds. The size 

distribution of the 10 µm microsphere population (left) consists of normally 
distributed population with an average diameter of approximately 5 micrometers. 
However, the size of microspheres that successfully seed within scaffolds (right) 
only consist of diameters at 5 µm or less. As this represents approximately half of 
the population, this size exclusion can explain the reduced seeding density. ........ 207 

 
Figure 67.  Microsphere seeded scaffolds have a radial distribution skewed inward. (A) Cell 

seeded grafts (AD-MSCs) are seeded with a uniform distribution whereas (B) 
microsphere seeded grafts display significant skewing towards the lumen indicating 
poor thickness penetration during the seeding process. Black bar = significance at 
p<0.05. n=3 each. ................................................................................................... 207 

 
Figure 68.  Compensating the 50% loss in seeding density when using microspheres with 

increased number is insufficient. To compensate for the 50% the loss in 
microsphere seeding density (Figure 65) the number of microspheres seeded within 
TEVG scaffolds was doubled by either increasing the concentration of microsphere 
seeding solution (A) or increasing the volume (B). Both cases (n=1 each) were 
unable to recover the density of microspheres to the same level as cells and a 
luminal skewing is still present. ............................................................................. 209 

 
Figure 69.  Microsphere seeded scaffolds with increased number and increased vacuum 

pressure During the Seeding Process Seed Similarly to Cells. As shown in Figure 
68, increasing the number of microspheres alone was insufficient to increase the 
seeding density and a luminal aggregation is still present likely due to poor 
penetration of microspheres. To increase the transmural force during microsphere 
seeding to better distribute through the thickness, the vacuum pressure was 
increased 3-fold. Seeding in this manner (n=1) resulted in a microsphere seeded 



 xxvii 

scaffold (A) with cell density similar to that of cells (B) with a uniform radial 
distribution (C). ...................................................................................................... 211 

 
Figure 70.  Increased vacuum alone without increased number was insufficient to compensate 

for seeding density or to obtain a uniform distribution. A TEVG scaffold (n=1) was 
seeded with increased but the original number of microspheres to evaluate the effect 
of increased vacuum pressure alone. No qualitative increase to either the seeding 
density or radial distribution can be observed comparing beyond that which was 
originally achieved in Figure 65 utilizing the standard protocol. .......................... 212 

 
Figure 71.  Seeded microspheres across all experiments remain circular and have similar sizes. 

To confirm that microspheres were not damaged and/or deformed when utilizing 
the increased vacuum pressure during the seeding process, all seeded microsphere 
grafts were analyzed for their (A) circularity (also known as Shape Factor; see 
Figure 3, 1 = circular, 0 = elliptical) and (B) size distribution. Similar results are 
seen in both cases indicating that the microspheres are not deformed during the 
seeding process. ..................................................................................................... 213 

 
Figure 72.  Microspheres placed under flow conditions showed no differences in seeding 

density. Microsphere seeded scaffolds (n=3) were subjected to flow conditions 
(120/80 mmHg physiologic waveform; 5 hours) with a static control piece removed 
prior. Comparing the seeding density of (A) static  or (B) flow seeded scaffolds 
revealed (C) no differences (p=0.4) ....................................................................... 215 

 
Figure 73.  Analysis of the radial distribution of microsphere seeded scaffolds post-flow 

showed radially outward skewing. The radial distribution of the microsphere seeded 
scaffolds exposed to flow was analyzed and compared to static controls. As shown 
qualitatively if Figure 72 and quantitatively above, a skewing outward of the 
microspheres is observed (n=3 each). .................................................................... 216 

 
Figure 74.  Microsphere seeded scaffolds with the increased vacuum/increased number seeding 

method shows high density and uniformity after subjection to flow. To confirm that 
microspheres were retained in TEVG scaffold utilizing the newly optimized seeding 
methodology for microspheres, one microsphere seeded scaffold under this method 
was subjected to physiologic flow in the same manner as Figure 72. Qualitatively it 
is observed that a high seeding density and uniformity persist. ............................ 217 

 
Figure 75.  Cumulative release of multiple microsphere formulations. PLGA microspheres 

were fabricated using three different configurations (non-porous, porous, and burst). 
In all cases, AD-MSC conditioned media was encapsulated. Releasates were 
harvested daily and total protein content of each sample was measured by the 
bicinchoninic assay. Cumulative protein release was then plotted over the seven day 
period, to illustrate the three different release profiles. (data generated and utilized 
with permission by Dr. Morgan Fedorchak) .......................................................... 219 

 



 xxviii 

Figure 76.  Conditioned media can be concentrated by filtration or lyophilization. Conditioned 
media from AD-MSCs (n=3, mean ± SD) were concentrated via filtration or 
lyophilization and reconstitution in the smallest volume possible. Lyophilization 
resulted in a superior concentration (approximately 10-fold) and less variability 
than filtration. (data generated and utilized with permission by Dr. Morgan 
Fedorchak) ............................................................................................................. 221 

 
Figure 77.  Lypohilized and reconstituted MSC conditioned media retains its SMC pro-

migratory potential. Media conditioned by MSC (RoosterBio) was lyophilized, 
reconstituted to the original volume with ultrapure water, and then used in a SMC 
migration assay as in Figure 7. This media displayed no different in potential to 
promote the migration of SMCs to the positive control (unprocessed conditioned 
media from the same stock) and was significantly higher than control (non-
conditioned) media. Black bar = significance at p<0.05. ...................................... 222 

 
Figure 78.  Microsphere release is unaffected by seeding. Microspheres were vacuum-seeded 

into PEUU scaffolds, assayed by BCA, and compared to release from microspheres 
alone in solution (mean ± SD, n=3 per group)....................................................... 225 

 
Figure 79.  Implanted FITC-embedded microsphere were retained in scaffolds and induced 

thombosis. A pilot study was performed where two FITC-microsphere seeded 
scaffolds were implanted in our Lewis Rat model for 3 days. (A) Angiogram upon 
study completion revealed occlusion of both TEVGs. This can further be seen due 
to the dark color of the proximal and distal graft anastomosis (B) and the observed 
thrombosis when transecting the TEVG (C). (D) Microscopy revealed that FITC-
microspheres were retained in TEVGs under in vivo conditions. ......................... 227 

 
Figure 80.  SMCs were plated at various densities to determine an ideal number to achieve 

confluence but not encounter tearing/compaction from too high an SMC density or 
lack of migration from cellular adhesion and/or extracellular matrix deposition. All 
cells were plated 1 day prior to experimentation to resist the aforementioned 
extracellular matrix deposition. At a plating density of 75,000 SMC per well of a 24 
well plate both a lack of migration was denoted by the lack of cellular movement 
across the initial wound line (red line). Additionally, tearing was noted as cells 
retracted from the initial scratch wound (red line). At a cellular density of 37.5k 
SMCs, migratory effects were recovered but tearing and compaction was still 
denoted in some wells. Finally, at 18.75 SMCs neither tearing or compaction was 
shown and was utilized to generate data for all subsequent experiments (example 
for test assay shown). Although not shown, a density of less than 18.75k SMCs 
does not achieve enough cellular confluence. ........................................................ 238 

 
Figure 81.  Aneurysmal TEVG explanted sample at 8 weeks. One TEVG sample from Aim 1-1 

was implanted and incurred significant aneurysmal dilation (~4 mm diameter vs 1 
mm diameter). (A,B) Angiography results show signifanct dilation of the 
aneurysmal TEVG (right, white arrow) compared to both the adjacent aorta and a 
non-dilated TEVG implant (right, white arrow). (C,D) Gross observation of 



 xxix 

transected the TEVG explant. (E, F) Von Kossa (E) and Alizarin Red (F) staining 
show general histological characteristics pointing to fragmentation of the TIPS 
scaffold layer and absence of the ES layer (i.e. a manufacturing defect) as a 
potential explanation for aneurysmal dilation and additionally show the presence of 
calcification (which occurred in other non-dilated TEVG explants). (G,H) Staining 
for SMC markers revealed prominent staining of SMA (G) but minimal staining for 
calponin (H). .......................................................................................................... 243 

 

 

 



 1 

1.0  INTRODUCTION 

The goal of this dissertation is to develop functional tissue engineered vascular grafts (TEVGs) 

that overcome key clinical and practical barriers essential for enabling the translation of this 

technology. To do so, tissue engineering utilizes the combination of cells, materials, and/or 

bioactive factors to repair or replace tissues of interest – in this case the blood vessels. In order to 

develop an effective TEVG that addresses current barriers, one must first have an understanding 

of the vascular anatomy the TEVG is trying to recreate, comprehend the limitations of current 

approaches, and what define what barriers remain to be conquered in the field of TEVGs that 

hinder their translation. This introductory chapter will review the current state of the scientific 

field within these areas providing an overview of scientific knowledge contributing to this body 

of work. In this way, the reader is presented with a clear perspective in understanding the 

limitations of the previous scientific endeavors leading this work and the significant impact and 

novelty that it achieves.  

The TEVG being investigated within this study is an autologous mesenchymal stem cell-

based design that is intended to be used for small diameter revascularization procedures. In this 

way cells are isolated from a patient, fabricated into a cell-scaffold construct, and implanted 

within that same patient for small diameter applications such as the coronary artery, peripheral 

arteries, or for use as an arteriovenous fistula during hemodialysis. While in a broad sense this 

TEVG could utilized in larger settings (e.g. in the case of pediatric vein reconstruction 
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procedures), the current scope of this work is to apply this those patients who possess 

cardiovascular disease and are thus prone to small diameter vascular complications. The work of 

this dissertation is specifically meant to guide the TEVG being developed within the laboratory 

of Dr. David Vorp towards clinical translation by defining and addressing current rate-limiting 

barriers. 

The introductory chapter of this dissertation will first provide a broad overview of the 

arterial anatomy to define the main constitutive components of a TEVG (Section 1.1). Next, an 

overview of cardiovascular disease, its prominent patient populations, and the etiology of those 

populations will be described to identify the intended target for our TEVG (Section 1.2). 

Following this, an overview of various TEVG design components of a will be given (Section 

1.3). Then, as the scope of this dissertation is to begin directing our TEVG towards clinical 

translation, an in depth discussion and criticism of TEVG approaches that have successfully 

engaged in clinical trials will be provided (Section 1.4). Finally, the current clinical barriers will 

be distilled and discussed (Section 1.5) to guide the specific aims of this dissertation. 
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1.1 ARTERIAL ANATOMY: WHAT ARE THE MAIN CONSTITUENTS OF A 

TEVG? 

1.1.1 The Cardiovascular System and General Arterial Anatomy 

The cardiovascular system is responsible for the circulation of fluids, cells, nutrients, bio-active 

factors, and heat throughout the body [1]. It consists of two main circulatory loops –pulmonary 

and systemic – which are driven by the pumping effects of the heart [1]. The pulmonary loop 

directs blood to the lungs where it receives oxygenation prior to being returned to the heart 

where it will enter the arteriovenous loop to be delivered to the rest of the body [1]. While the 

pulmonary loop has similar features to the arteriovenous system, the latter is ultimately more 

complex [1]. The arteriovenous system begins as a major artery (the aorta) which undergoes 

multiple branchings (largest to smallest: aorta, artery, arterioles) where it decreases in both 

diameter (aorta: 30 mm aorta, arteriole: 10 µm) and thickness, but increases in number and total 

system cross sectional area (aorta: 7 cm2, arteriole: 150 cm2) [1]. The smallest of arteries then 

connect to a network of capillaries (the smallest vessels) which are thin walled and responsible 

for exchange between the blood and body, such as delivery of oxygen [1]. These vessels then 

converge into the venous tree (smallest to largest: venuoles, veins, vena cava) where they group  

to one single vessel to return blood to the heart where it can be oxygenated [1]. 

Besides the classification of vessels based on their anatomical location and size, they can 

also be characterized based on their function and composition. For example, the aorta is a 

conducting vessel where its main function is to deliver blood received from the heart [1]. To 

overcome the volatile and high pressure environment experienced during ejection of blood from 

the heart, the aorta possesses a structure with a high number of fibers allowing it to recoil the 
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deformations it undergoes in comparison to other vessels [1]. This ability to recoil – otherwise 

known as elasticity – is imparted to the vessel by elastin (i.e. elastic fibers) which will be 

discusses in Section 1.1.5 (“Elastin”). Smaller arteries – mainly arterioles – can be classified into 

another vessel type called resistance vessels [1]. These are mainly responsible for contracting 

and relaxing to regulate blood pressure within the circulation and as such are highly muscular 

[1]. The smallest vessels – capillaries – are classified as exchange vessels which, create a system 

of transport between the blood and tissues [1]. Finally the vessels within the vein system are 

classified as capacitance vessels and are highly compliant and thin walled [2] so they can receive 

the high volume of blood from the capillaries which is transported it back to the heart [1]. 

Despite the variety of the different vessel types within the circulatory system, their wall 

anatomy consists of a three layered structure (with the exception of capillaries) consisting of the 

intima, media, and adventitia with each layer having its own unique composition [1, 3]. The 

intima – the innermost layer – is composed mainly of endothelial cells and the vascular basement 

membrane while the media – the middle layer – consists of smooth muscle cells, elastic fibers, 

and collagen. Finally the adventitia – the outermost layer – consists of fibroblasts and connective 

tissue [1]. This however, this is a simplification as there additionally exist a variety of other 

minor vascular structures, cell types, and proteins associated with the cellular and micro-

architectural environment of the vessel wall. These include the glycocaylx coating on the luminal 

surface of endothelial cells [4], matricellular proteins [3], vascular progenitor cells [5, 6], nerves 

present within the adventitia [1], and depending on the size of the vessel a self-sustaining 

capillary network known as the vaso vasorum [1]. However due to their contribution as the main 

functional components of the vessel wall – and thus a TEVG – only the primary components – 

EC, SMC, collagen and elastin – will be discussed below. Information on vascular extracellular 
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components such as fibulins, fibronectin, basement membrane associated proteins, 

proteoglycans, and matricellular proteins can be found reviewed by Kelleher et al. [3] 

Additionally, information on the cell subpopulations within the vascular wall such as progenitor 

cells can be found reviewed by Pacilli et al. [5] and Torsney et al. [6] and with their debated 

contribution to vascular pathology found discussed in work by Song Li [7-10]. 

1.1.2 Endothelial Cells 

 Endothelial cells are one of two primary cell types within the vessel wall and are located as a 

monolayer lining along the lumen of the vessel. These cells arise during embryonic development 

from mesodermal lineage-derived angioblast cells [11, 12] and are of critical importance for the 

regulation of many aspects of physiology. This importance is illustrated by the considerably 

large quantity of endothelial cells present in the adult body with their surface area covering 

approximately 1000 m2 [13]. Broadly, endothelial cells regulate 5 main functions: transport (e.g. 

nutrients to tissues), vascular tone (vasoconstriction and dilation), host defense (leukocyte rolling 

and extravasation; inflammation), hemostasis (coagulation and fibrinolysis), and angiogenesis 

[14-16]. In each of these cases, endothelial cells possess a high number of inducible genes 

allowing a duality to either promote or decrease each of these functions [15]. As an example 

endothelial cells can regulate vessel size through constriction via production of endothelin-1 or 

dilation via NO [11]. As another example, ECs can express a variety of anti-coagulant (NO, 

surface heparin sulfate) and fibrinolytic (uPA, tPA) factors but also express pro-coagulant (TF, 

ET-1) and anti-fibrinolytic (uPAR, PAI-1) factors depending on their activation state [11].  

Endothelial cells display a high degree of structural, functional, and molecular 

heterogeneity based on their location in the vascular bed or organ [12, 15]. Structurally for 
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instance, artery endothelial cells are long and aligned with blood flow in straight vessel segments 

whereas in branch segments and veins they are not [2, 15, 17]. Structural heterogeneity also 

occurs with regards to the intended organ function where endothelial cells are located, such as 

the fenestrated pattern which occurs in filtration based organs (e.g. kidney, liver) allowing for 

increased transport instead of the continuous configuration seen in high blood flow situations 

[12, 15].  In addition, capillary endothelial cells – where the majority of transport occurs – are 

more permeable than that seen in greater vessels [15, 17]. Functionally, different areas of the 

vascular beds can have a different balance of anti- and pro-coagulant factors [17], venules 

mediate the majority of inflammatory responses [2, 17], and arterioles mediate the majority of 

vascular tone regulation [2, 17]. Finally, endothelial cells can have unique location-dependent 

molecular markers such as ephrinB2 which is expressed in arteries as opposed to EphB4 in veins 

[2, 18]. However, endothelial cells also display a high degree of plasticity when subjected to 

different environmental stimuli allowing them to alter their phenotype [2, 15]. Two examples are 

the increased expression of eNOS adopted by vein endothelial cells when placed under arterial 

flow conditions in the case of a coronary bypass graft [2], and the high degree of heterogeneity 

seen in tumors [15].   

While endothelial cells offer a variety of functions, for the purposes of TEVGs the most 

important characteristic is their anti-thrombogenic effect. From a design standpoint, anti-

thrombotic effects preserve the main purpose of a vascular graft: to act as a patent conduit to 

allow for blood flow. The other characteristics of endothelial cells such as vessel tone regulation 

to alter blood pressure, trafficking of immune cells, angiogenic sprouting, and nutrient transport 

while important in their own merits, are secondary to the main performance of a vascular graft. 

Acquiring autologous endothelial cells for use in TEVGs have their drawbacks as these must be 
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acquired through sacrifice of a vessel segment which could likely be utilized clinically as a 

vascular graft itself. In more recent years acquisition of endothelial cells has shifted towards 

differentiation of stem cells such as adipose-derived mesenchymal stem cells [19-28] as these 

can be isolated more desirably through liposuction.  

1.1.3 Smooth Muscle Cells 

Smooth muscle cells are the primary cell type located in the medial layer of the vascular wall [1]. 

Under normal physiologic conditions (particularly in resistance vessels) these cells are 

responsible for contractile functions which alter vessel diameter to regulate blood pressure or 

maintain rigidity of the wall via isometric contractions [1, 29, 30]. In these situations SMCs 

remain quiescent and proliferate at a slow rate [29]. However unlike other muscle cells (cardiac, 

skeletal), smooth muscle cells also have a strong degree of plasticity to them and change their 

phenotype to proliferate, migrate, and synthesize extracellular components in response to injury 

[1, 29]. The phenotypic sensitivity seen with these cells provides a usefulness to injury repair but 

can be a detriment as they are also affected by pathologic signals [29, 30]. Indeed, SMC 

plasticity has been implicated in multiple vascular diseases such as intimal hyperplasia [8, 10, 

31], aortic aneurysm [32-35], calcification [36-38], hypertension [29], and atherosclerosis [1, 31, 

39, 40].  

 The plasticity of smooth muscle cells can be characterized based on the presence of 

contractile proteins and the morphological features of the cell [41, 42]. As a SMC becomes more 

differentiated to a contractile phenotype it adopts markers such as smooth muscle alpha actin 

(early), calponin (intermediate), and myosin heavy chain (late) while displaying a spindle-like 

morphology [31, 41, 42]. As it transitions to become a synthetic SMC, these markers will be lost 
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for proliferative, migratory, and protein synthesis markers such as PDGF, MMPs, and collagens 

[41]. A variety of signals exist which can promote SMCs to assume a contractile or synthetic 

phenotype such as biochemical factors [30, 41, 42] (TGF-beta, AngII: contractile, PDGF, bFGF: 

synthetic), extracellular matrix [41, 42] (fibrillar collagen I: contractile, monomeric collagen I: 

synthetic), mechanical stress [41, 42] (environmental dependent), substrate stiffness [43] (stiffer: 

synthetic), endothelial cell signals [30, 31, 42, 44, 45] (environmental dependent), and 

inflammation [42] (increased inflammation: synthetic). However, many contractile proteins 

which are utilized to label SMCs and identify their phenotype are non-unique and expressed in 

other cell types present in the vascular wall such as fibroblasts [29] and progenitor cells [7]. This 

has ultimately made the study of SMCs difficult, especially with regards to lineage tracing [8, 9, 

29].  

As with endothelial cells, acquiring SMCs for autologous vascular tissue engineering 

requires sacrifice of a vascular segment which can be non-ideal as this could likely have been 

utilized as a suitable graft itself and requires the patient to undergo an extra-surgery to isolate. 

Additionally, obtaining a suitable quantity of SMCs requires in vitro expansion but SMCs 

possess a limited proliferation capacity [46]. This, coupled with their propensity for phenotypic 

switch makes it difficult to acquire native-like quiescent, contractile SMCs. However, having a 

TEVG populated with SMCs is critical to the success of a vascular graft. In particular SMC 

content indicates a higher degree of vascular maturity [47] and mechanical properties such as 

tensile strength and stiffness are correlated with SMC content [48, 49]. Without these properties, 

TEVGs can be prone to failure by intimal hyperplasia or aneurysmal rupture [50]. As with 

endothelial cells AD-MSCs have also been utilized in recent times to generate them [19, 27, 51-

57]. 
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1.1.4 Collagen 

Collagen is an abundant and ubiquitously expressed class of proteins within the body and is one 

of two primary extracellular components of the vascular wall [3]. Primarily collagen functions to 

provide mechanical tensile strength to the wall [3, 58] however this must be within an 

appropriate range. If too little collagen is present the wall will have insufficient strength to 

overcome hemodynamic forces at which point the wall can rupture or dilated. If the wall has too 

much collagen it will stiffen causing adverse cellular effects such as encouraging a pro-fibrotic 

phenotype [59],  increasing systemic resistance, and increasing the risk of cardiovascular disease 

[60]. The arrangement in collagen is layer-dependent with medial collagen being aligned 

circumferentially to resist hemodynamic pressure and adventitial collagen being aligned 

longitudinally to resist changes in length [1]. While being mainly a structural component, 

collagen can also provide cell signaling events via adhesion of cellular integrins (e.g. α1β1) and 

is thought to contribute to SMC quiescence under normal physiologic conditions [3, 46].  

Despite the abundance of collagen in the body, it can exist in many different forms and is 

encoded by large array of genes with 17 types of collagen having been identified (each denoted 

by a roman numeral suffix, e.g. collagen IV) [3]. Each of these collagen types form the basic 

collagen fiber structure consisting of a woven triple helix but can be altered in assembly and 

prevalence [3]. The most important collagen types for the vasculature are collagens I, III, and IV 

[3]. Within the arterial wall, types I and III are the most abundant residing in the medial and 

adventitial layers [1, 3] consisting of an elongated fiber-like structure with type III assisting the 

regulation of the diameter of type I collagen [3].  Collagen type IV is present in the basement 

membrane adjacent to endothelial cells and consists of a network-like structure rather than an 

elongated fiber like the other types [1, 3]. 
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Unlike the other vascular components (EC, SMC, and elastin) collagen can be easily 

acquired for use in vascular tissue engineering as it can be both produced in vitro by cells [61, 

62] and produced in vivo [63-66].  

1.1.5 Elastin 

The other main extracellular structural protein within the vascular wall is elastin which mainly 

occurs in the form of elastic fibers/lamellae. While elastin can provide cellular signals such as 

maintaining SMC cell senescence [67], its primary role is to impart the biomechanical property 

of elasticity to the vascular wall [3, 58, 68]. This provides a direct contrast to collagen as its 

tensile strength is insignificant comparatively but its elasticity is essential for arteries to recoil 

and recover the deformation they experience under the cyclic loading throughout the cardiac 

cycle [58, 68, 69]. Additionally, the amount of elastic fibers present in a vessel are linearly 

proportional to the pressure they experience [3]. 

Structurally elastic fibers consist predominantly of an elastin core which is surrounded by 

relatively small proteins known as micro-fibrils [68]. Unlike collagen which is coded by many 

genes, elastin is only coded by one [3] but is associated with a plethora of different molecular 

components with regards to elastic fiber composition and assembly [68, 70]. In particular, the 

main players in the process of elastic fiber formation are elastin binding protein, fibrillins 

(particularly 1, 3 and 5), MAGPs (1 and 2; 2 is more specialized), fibulins (1,2, and 5), and lysyl 

oxidase [67, 68, 70, 71]. Formation of elastin first occurs through translation, splicing, and 

shuttling of the soluble precursor to elastin – tropoelastin – to the cell surface for secretion via 

elastin binding protein [67, 68, 70, 71]. The secreted tropoelastin then self-aggregates via 

coacervation where it is chaperoned via fibulin to be deposited onto a microfibril scaffolding. 
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This scaffolding consisting mainly of fibrillins with MAGPs acting to assist in both the binding 

of tropoelastin to fibrillin and maintaining structural integrity of the microfibrils [3, 67, 68, 70-

72]. The combination of coacervated elastin deposited on a micro-fibril scaffold leads to a 

“beads on a string” architecture [68]. As a final step, lysl oxidase links the tropoelastin globules 

via crosslinking lysine residues [67, 70, 71] generating elastin. An interesting side effect of the 

cross-linking process is the generation of fluorophore structures which impart elastin with auto-

fluorescent properties [73].  

Loss or fragmentation of elastic fibers and genetic abnormalities in elastin-associated 

genes have been shown to result in debilitating diseases (reviewed [3, 67, 68, 71]) and adverse 

cellular effects. Two examples are aneurysmal dilation (i.e. progressive dilation of the artery) 

[69] and Marfan syndrome [67, 68, 71]. Additionally, during the process of elastin fragmentation 

soluble elastin products can result and act as cell signaling molecules inducing negative effects 

such as SMC hyper-proliferation [67], inflammation [74], and calcification [36]. However, 

unlike collagen which can easy be replaced by de novo synthesis throughout adulthood, elastin 

production can be exceedingly difficult. This is for two reasons: 1) the genes coding for elastin 

and elastin-related proteins are downregulated post-natally [3, 75], and 2) the highly orchestrated 

process of elastic fiber formation is difficult to recreate in vitro [76]. The down regulation of 

elastin-related genes is a conserved process occurring across a variety of species [3, 75]. 

This difficultly in adulthood elastin formation has posed a great challenge for vascular 

tissue engineers in the development of elastic fiber-rich TEVGs. This has led to several studies 

investigating the fabrication of elastin-based scaffolds (reviewed [67, 77]). However, processing 

elastin is a difficult process due to its insolubility, limiting these constructs in terms of size, 

shape, and supply [67]. Elastin can be hydrolyzed to enhance its solubility but comes at an 
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expense of mechanical properties and propensity to induce inflammation [67]. However, the use 

of synthetic peptides and fabrication techniques such as electrospinning is helping to advance 

this work [67].  The generation of elastin through cellular mechanisms has also been investigated 

as a way to generate functional elastic fibers. This includes alterations to gene expression [78] 

and regulation [79-81] of elastin-related proteins, stimulation of cells through TGF-beta [82-84], 

and administration of tropoelastin to vascular SMCs [76].   Another route to recreate the 

biomechanical effects of elastin has been to use synthetic elastomeric materials (see Section: 

“1.3.2 Scaffold Considerations”). However, as these are intended to break down eventually in 

vivo, development of elastin will ultimately be necessary to compensate. 

1.2 TYPES OF CARDIOVASCULAR DISEASE: WHERE IS A TEVG APPLIED? 

Cardiovascular disease can take many forms but often necessitates the need for a vascular 

replacement or bypass due to the occlusive nature of these diseases. While an in depth discussion 

of all forms of cardiovascular disease is beyond the scope of this dissertation, a brief overview of 

the main forms and their associations will be presented below. Further discussions relevant to 

this body of work such as their occurrence with advanced age and diabetes will be discussed in 

the following sections (see Sections: “1.2.2 Elderly Etiology and Vascular Related Effects”, 

“1.2.3 Diabetes Etiology and Vascular Related Effects”). It is important to note that while a brief 

summary is provided below, it is not a definitive explanation of their pathology as many factors 

can play a role on a cellular (e.g. SMC phenotype switch – see Section: “1.1.3 Smooth Muscle 

Cells”), mechanical [85], genetic [86, 87], or inflammatory level [88, 89]. The most prominent 
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vascular diseases will be introduced including intimal hyperplasia, atherosclerosis, aneurysms, 

hypertension, calcification, and thrombosis. 

Intimal hyperplasia is characterized by a narrowing of the lumen of a vessel caused by 

thickening of the intimal layer and is induced by the inward migration, proliferation, and matrix 

synthesis of SMCs [90]. The main mechanism by which this occurs is due to the phenotypic 

switch in SMCs [8, 10, 31] seen during cases of vessel injury (e.g. during surgical intervention), 

inflammation, or increases in wall shear stress (e.g. vein graft) [90]. 

Atherosclerosis results in the development of a fatty plaque within the arterial wall 

causing its narrowing and is a result of endothelial cell dysfunction, SMC phenotypic switch, 

inflammation, and penetration of lipids into the vascular wall [13, 39, 40]. This disease is heavily 

associated with diabetes (see Section: “1.2.3 Diabetes Etiology and Vascular Related Effects”) 

and is often associated with other co-morbidities such as calcification [37, 40]. Atherosclerosis 

occurs more frequently in certain areas of the vascular bed such as branch points and vessels 

with tortuous geometries [2]. Plaques may also rupture – triggering thrombosis – and a higher 

vulnerability is seen in ones that have high inflammation and a larger lipid core size [13].  

Aneurysms are characterized by progressive dilation of the arterial wall and triggered by 

an initial insult to elastin [69, 91]. Subsequent changes will occur due to this dilation such as 

synthetic SMC phenotype switch [32-35], stiffening of the wall [91], and loss of strength [69, 91-

93]. Aneurysm can be different in shape such as the saccular aneurysms occurring in the cerebral 

arteries [69] or the fusiform aneurysms occurring in the abdominal aorta [91]. Additionally, in 

the case of abdominal aortic aneurysms they can be accompanied by an intraluminal thrombus 

which induces hypoxia, reduces strength, and causes loss of SMC [92, 93]. Aneurysms are 
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commonly associated with age (elderly), gender (male), and smoking [91, 94] and occur more 

frequently in the abdominal aorta, thoracic, and cerebral arteries. 

Hypertension is persistent elevation of blood pressure in the arteries and is associated 

with progressive stiffening of the blood vessel wall. This is commonly seen in aged patient 

populations with related associations (see Section: “1.2.2 Elderly Etiology and Vascular Related 

Effects”) including loss in EC function, synthetic phenotype SMC, and loss in vessel elasticity 

[95]. 

Calcification is the presence of calcified mineral deposits within the arterial wall and 

predominantly occurs in the medial layer. This is associated with a variety of dietary (e.g. high 

glucose), inflammatory, and metabolic conditions ultimately resulting in expression of 

osteogenic signals that cause phenotypic modulation of SMCs into osteoblast-like cells [36-38]. 

Thrombosis is the end result of an insult to the fluid dynamics within blood flow [96] or 

perturbations to the biochemical factors within the coagulation cascade [97, 98] and/or 

fibrinolysis [99] cascade causing development of an blood clot (thrombus). Many factors can 

influence thrombosis but two examples relevant to this dissertation are the increase in 

fibrinolytic inhibitors in diabetes (see Section: “3.4 Discussion”) or improper methods of 

achieving cellular coverage of TEVG materials (e.g. cell seeding, see Section: “1.3.4 Cell 

Seeding Techniques”) which both increase the propensity for thrombosis.  

The following section will detail two patient cohorts which are at a high risk for these 

cardiovascular diseases [100], outlining their etiology and adverse effects to the native 

vasculature. 
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1.2.1 Cardiovascular Risk Patient Cohorts 

In the development of an ideal TEVG, it is imperative that the appropriate patient populations are 

considered as these will be the most likely recipients of this technology. While there are many 

demographics that have been shown to act as predictors to cardiovascular disease such as gender, 

BMI, smoking, and family history, the two most prominent factors are the presence of diabetes 

and advanced age [101-103]. This is a major concern in the United States as both of these 

cohorts have reached exceedingly high numbers within recent years. Diabetes occurs in 

approximately 10% of population (~30 million people) [104] and the currently sizable elderly 

population within the U.S. (35 million) is expected to double by 2030 [105]. Diabetes is 

particularly troubling as cardiovascular related mortality rates have been reported in upwards of 

70% in diabetics [28]. It is also important to note that while aging and diabetes have their own 

independent mechanisms, the occurrence and subsequent pathological effects of both can happen 

concurrently [106].  

1.2.2 Elderly Etiology and Vascular Related Effects 

The pathologic consequences of aging are not completely understood but are believed to be due 

to shortening of telomeres during cellular replication (i.e. mitosis) leading to cellular senescence 

[106-108]. During the DNA replication stage of mitosis two new strands of DNA are formed by 

DNA polymerase. However, due to the unidirectional activity of DNA polymerase, each strand 

has to be synthesized by different mechanisms. To synthesize the strand that is opposite to the 

direction of DNA polymerase, RNA primers must be laid down. However, as these are later 

removed rather than overwritten, each replication will result in the end of being shortened in  in 
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the repetitious sequence-rich end regions known as telomeres [106, 107]. In these regions 

enzymes known as telomerases exist which repair the missing ends, but in most cell types these 

are inactive [106]. Over the multitude of replications a cell will undergo within a lifetime, 

shortening will happen to a critical point and pathologic effects will occur such as chromosomal 

end-to-end fusions, replicative senescence, and apoptosis [106, 107]. 

Aging related changes in the vascular extracellular matrix typically manifest as an arterial 

stiffening contributing to the pathology of hypertension [105, 109]. The end result is an increase 

in both collagen and elastin cross linking [105, 109] leading to a stiffened vascular wall. 

Additional changes to the extracellular components include increased collagen content and 

elastin fragmentation [105, 109]. While it is unclear the exact mechanism that causes these 

changes, associations have been made with age related decreases in endothelial NO production, 

synthetic phenotype SMC switch resulting in hypertrophy and collagen production, age related 

loss in elasticity, genetics, and a high salt diet [95]. Additionally, senescent SMCs are present in 

hypertensive patients and secrete factors which result in hypertrophy of non-senescent SMCs 

[110]. This hypertensive stiffening results in increases in blood pressure [111] and subsequent 

cardiac afterload [95, 109, 112] which can be predictive of cardiovascular mortality [109, 111]. 

Aging can also create dysfunctional effects in both the endothelial cells and SMCs within 

the vascular wall contributing to vascular pathologies. For endothelial cells, aging results in 

endothelial dysfunction via reduced eNOS and presence of increased ROS [106, 107, 113], both 

of which are associated with telomere loss [106]. eNOS function is one of the most important for 

endothelial cells and helps resist a variety of pathologic effects due to its vasodilative (protects 

hypertension) and anti-platelet properties (prevents platelet aggregation and thus thrombosis), as 

well as its ability to reduce SMC proliferation (implicated in multiple vascular pathologies) and 
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reduces reactive oxygen species [113]. Endothelial cell proliferation is also stunted [106] with 

increasing age and a higher degree of permeability is seen [114]. For SMCs, telomere shortening 

is associated with loss of proliferative ability [106] converting the cell to a senescent phenotype 

but these cells also release secreted factors which promote hypertrophy of surrounding SMCs 

[110] contributing to the pathology of hypertension [95]. Aged SMCs and increased oxidative 

stress can also present with increased alpha-SMA (potentially leading to higher tension), 

increased collagen and MMP expression, as well as an apoptotic phenotype [115]. Finally, 

senescent EC and SMC with shortened telomeres are typically located at the sites vascular 

disease such as atherosclerotic lesions [106].    

1.2.3 Diabetes Etiology and Vascular Related Effects 

Diabetes has a ubiquitous pathologic effect on the vascular system which can present as 

complications such as retinopathy, stroke, peripheral artery disease, and coronary artery disease 

[116]. Diabetes most commonly occurs in the type II form where it is characterized by an 

increased blood glucose concentration coupled with insulin resistance [116, 117]. Unlike type I 

which is triggered by an auto-immune response, type II can ultimately be preventable with tight 

glycemic control [118]. The induced insulin resistance present within diabetes reduces the 

effectiveness of insulin to trigger glucose uptake from the blood into the liver, muscle, or fat 

where it can be stored as glycogen. This results in the hallmark of diabetes: hyperglycemia, 

which develops pathological consequences due to the inability of endothelial cells to regulate 

glucose uptake thus rapidly importing it [119]. This is due to the endothelial cell expression of 

Glut1 (as opposed to Glut4 in other tissues which can be regulated) transporters which are not 

signaled by or change their regulation based on insulin concentrations [120-122]. Under normal 
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conditions where glucose would be utilized for either storage (conversion to glycogen), energy 

(glycolysis), or building of amino acids (pentose phosphate pathway), the now overabundance of 

glucose is shunted to the polyol pathway [119, 123] which leads to the development of ROS and 

AGE. Respectively, ROS leads to an increase in oxidation within the wall promoting an 

inflammatory environment and AGEs result due to glycation reactions which alter the functions 

of reacted proteins. For example, AGEs can lead to faster stiffening of the arterial wall [30]. In 

addition to these changes, the endothelium becomes more permeable [123].  

Following the changes induced by hyperglycemia, dyslipidemia (elevated plasma 

triglycerides and cholesterol) which occurs in 97% of diabetic patients [116], leads to an 

abundance of LDL that penetrate the vascular wall leading to atherosclerosis initiation [13]. This 

LDL can also undergo glycation which further prolongs its half-life leading to more prolonged 

effects [116]. Furthermore, the abundance of ROS within the vessel wall causes oxidation of 

LDL particles which recruit blood leukocytes, instigating an inflammatory response [13, 116, 

124]. Ultimately these events work in tandem to develop the fatty streak and SMC proliferation 

seen in atherosclerotic plaques [13].  

While this illustrates a few primary mechanisms by which diabetes exerts its pathologic 

effects, several other mechanisms such as altered cell signaling of PKC, generation of other AGE 

products, and other metabolic changes (glucose conversion in hexosamine) can also occur [119, 

123, 125, 126]. However, it is apparent that glucose-induced ROS is central to these mechanisms 

[123] which is in part due to an increase in incomplete glycolysis – resulting in mitochondrial 

electron transport chain intermediate products – due to the overabundance of intracellular 

glucose [123]. 
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Besides the aforementioned changes in the diabetic vasculature as a whole, diabetes also 

induces phenotypic changes to the cells within the vessel wall. It causes the endothelial cells to 

become more permeable and decreases endothelial produced NO [118, 123]. Without NO, SMCs 

lose their quiescence where they proliferate causing vascular complications [123, 126] (see 

Section: “1.2 Types of Cardiovascular Disease”) and the endothelium-dependent vaso-dilative 

properties of the wall are lost [118]. Additionally, the increased blood insulin concentration that 

occurs during diabetic insulin resistance increases endothelial adhesion molecules which 

exacerbate the recruitment of inflammatory cells ultimately accelerating atherosclerotic 

progression [118]. Other changes include decreased thrombo-resistance [122] and calcific 

changes to SMCs [36].  

1.2.4 Current Clinical Treatment Options 

Cardiovascular disease is the leading cause of death and results in over 600,000 [127] 

revascularization procedures being performed annually in the United States. This, coupled with 

7.3 million deaths due to coronary heart disease [128, 129] and 17% of the national expenditures 

being attributed to cardiovascular diseases [130] highlights the critical need for functional 

vascular replacements. Additionally, hemodialysis which utilizes vascular grafts for access 

occurs in 340,000 patients each year in the U.S. [131]. However, the gold standard vascular 

replacements used in the clinic such as non-degradable synthetic material grafts or autografts 

(i.e. a vessel from a patient utilized on themself) have drawbacks making them non-ideal 

treatment options.  

Non-degradable synthetic grafts such as ePTFE (expanded Polytetrafluoroethylene) or 

Dacron® (Polyethylene terephthalate) are the most common non-native materials used for 
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vascular conduits and see wide success in large diameter applications despite their aberrant lack 

of endothelium [129, 132]. However, as the diameter of these grafts decrease to less than 6 mm 

(defined as a “small diameter” application), the lack of endothelium results in thrombotic failure 

(39% patency for lower limb bypasses) [129, 132, 133]. Mechanistically this occurs by the 

deposition of blood proteins such as fibrin onto the hydrophobic graft surface initiating 

thrombosis [132]. Additionally, platelet activation – which amplifies thrombosis – also occurs 

more readily on hydrophobic surfaces [132]. In large diameter grafts this concern effect is 

minimized due to the high flow rates which achieve removal of these proteins. However, in 

smaller sized grafts have an increased as the surface-to-flow ratio, thrombotic complications are 

critical. Additionally, blood becomes more coagulant under low-flow conditions [96] or if flow 

is perturbed leading to a pro-thrombogenic phenotype of endothelial cells [134]. This commonly 

occurs in the case of a compliant-mismatched vein graft wherein a ballooning effect happens 

resulting in improper flow [135]. Thrombotic failure of grafts typically occurs at acute time 

points (< 30 days) [129]. 

Autografts – such as the saphenous vein, internal mammary artery, and radial artery [129, 

136] – are preferred vascular replacements due to their similarity to native vessels. However, 

these grafts are accompanied by their own set of drawbacks. The IMA is the current gold 

standard, particularly in the case of coronary artery bypass grafting wherein it achieves a 5-year 

patency of about 90% [136-138]. The IMA also is less prone to atherosclerosis than the 

saphenous vein as it has higher NO production, less fenestrated endothelium, higher tPA activity, 

more heparin sulfate, and similar mechanical properties to native arteries [139]. However, this 

vessel is limited in availability to only two vessel segments [137] which may exclude its use 

during additional operations or in the case if it was previously used. Additionally harvesting of 
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this vessel requires strong surgical proficiency, results in increased surgical time, and possess 

risks of sternal infection [136, 137]. Patency rates of artery grafts can also decline with age [140] 

however in the cases of coronary procedures, artery autografts are preferred to vein grafts as they 

show an improved performance [138]. 

The greater saphenous vein is another gold standard vascular conduit but healthy vein 

segments for this are quite limited with only 45% of patients having suitable vein grafts [28, 

141]. However, while the saphenous vein is preferred to other vein segments [141], its patency is 

remarkably low as shown by a 60% patency rate over 5 years when used for lower extremity 

bypass grafting [141] and 45% when used for coronary procedures [138, 142]. Selection choice 

of an appropriate vein segment is also a concern. A vein segment utilized for a coronary grafts 

requires a segment of approximately 10 cm [143] and a larger diameter is preferred due to the 

correlation between loss in patency and decreased diameter [141]. The primary cause of patency 

reduction is due to their high compliance compared to arteries they replace [50, 62]. This 

mismatched compliance will induce a significant dilation in the vein triggering the vein SMCs to 

adopt a proliferative and migratory state inducing intimal hyperplasia (or stenosis) resulting in a 

narrowing of the graft and eventual occlusion of the graft [143]. Intimal hyperplasia could also 

be induced by harvest-related endothelial trauma [144]. However, failures resulting from this 

develop at an extended time course [129] take upwards of 12 years [145]. 

Both these clinical vascular conduits have highlighted two main mechanisms by which 

vascular grafts fail: thrombosis due to lack of endothelium or thrombo-resistant mechanisms (as 

seen in synthetic grafts) and intimal hyperplasia due to improper mechanical properties (as seen 

in autografts). Methods such as endothelialization have been developed to enhance the patency 

of ePTFE grafts but this still only achieves patency indistinguishable to vein grafts and their 
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patency is reduced as size decreases (71% for 7mm vs 55% for 6 mm at 10 years) [146]. 

Additionally, many factors in the coagulation system have been targeted to reduce the 

coagulation of synthetic graft materials [132]. While these show an improved efficacy, human 

data and long term performance still remain to be seen. Notably, in the case of anti-platelet 

therapy in the context of vascular access for dialysis, no effect on improving patency is observed 

[147]. Additionally, use of drug therapeutics could lead to bleeding complications or systemic 

effects [132].  

In the case of vein grafts, methods have been developed to enhance their mechanical 

properties by coating them with an electrospun sheath [148]. The development of this technology 

has shown promising results and is currently underway by Neograft Inc. [149] 

Despite the attempts to resolve the failure mechanisms seen in these two clinical 

conduits, there are still irreparable characteristics that make them non-ideal. In the case of 

synthetic grafts, these cannot grow in patients preventing their use in pediatric applications and 

are prone to calcification [150]. Additionally, graft infection is infrequent (up to 5%) [151] but is 

admittedly higher than seen in autografts [132] and presents with devastating mortality rates 

(75%) or limb amputations (70%) [151]. In the case of autografts, the availability of appropriate 

vessel segments is limited compared to the need.  

1.3 TISSUE ENGINEERING APPROACHES 

In the near three decades since the pioneering work of Weinberg and Bell in 1986 [152] in the 

development of a living vessel composed of a collagen tube seeded with vascular cells,  vascular 

tissue engineering has expanded to include a plethora of different methodologies. At its core, 
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tissue engineering utilizes the combination of cells within a scaffolding material intended to 

functionally replicate the tissue type being studied. More recently, the field of tissue engineering 

has expanded to the use of a variety of materials, cells, biologic factors, and culture methods. 

While the review of all the contributing individual studies to this body of work is beyond the 

scope of this dissertation, the following section will summarize the broad categories of 

approaches. Additionally, as this dissertation is specifically focused on considerations related to 

clinical translation of the TEVG within the Vascular Bioengineering Laboratory, an in depth 

discussion of the TEVGs which have underwent clinical trials will be discussed separately (see 

Section: “1.4 Current Clinical TEVG Approaches).  

1.3.1 General Considerations 

As stated above, a TEVG consists of the combination of cells, scaffolding materials, biologic 

factors, and culture methods. However, these components must be combined in such a way that 

present a feasible design in terms of both functionality and practicality. Ideally, a TEVG will 

possess attractive characteristics in the following three broad criteria: biocompatibility, 

mechanical properties, and manufacture [129].  

Biocompatibility when broadly defined is the ability of a material to elicit an appropriate 

application-specific response when applied to a biological system. For the field of vascular 

engineering this consists of the following characteristics: non-toxic (including scaffold and 

scaffold breakdown products), has no susceptibility to infection, is non-immunogenic, and is 

anti-thrombogenic [129]. While the criteria of non-toxicity and susceptibility to infection are 

self-evident, the latter two require more explanation. Non-immunogenicity refers to the ability of 

the graft to not elicit an immune/inflammatory response that can cause rejection of the graft (i.e. 
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in the same manner that can occur during organ transplantation). This is typically an antigen 

mediated phenomenon by T and B cells and does not imply that inflammation should be entirely 

absent in vivo. On the contrary, mild inflammation has been shown to be a key component in 

TEVG success (see Section: “1.5.3 In Vivo TEVG Mechanisms”). Anti-thrombogenicity refers 

to the ability of the TEVG to resist formation of a luminal blood clot (i.e. thrombus) leading to 

graft occlusion. This can be done in a variety of methods from tailored materials [153], bioactive 

factor incorporation [154-156], use of heparin [156], and most commonly endothelialization [19, 

157]. 

A TEVG must also have suitable mechanical properties including elasticity, burst 

pressure, and compliance similar to that of native vessels. Elasticity allows the vessel to recoil to 

recover its deformation following loading with pulsatile blood pressure. Under normal 

physiology this is accomplished via the extracellular matrix component elastin (see Section: 

“1.1.5 Elastin”) but for tissue engineering this can also be achieved through use of elastomeric 

materials. Without proper elasticity vessels can become prone to progressive dilation as seen 

with aneurysm pathology (see Section: “1.2 Types of Cardiovascular Disease”). A TEVG must 

also have enough strength to withstand the loading induced by blood pressure or else it will be at 

risk for rupture. Most commonly, strength is reported as measure of vessel burst pressure with 

that of the saphenous vein (~1680 mmHg)  [158, 159] being the gold standard. Finally, the 

TEVG must have a similar compliance to the tissue it is replacing. As discussed in the case of a 

vein graft used as an arterial bypass (see Section: “1.2.4 Current Clinical Treatment Options”), 

too much compliance can induce intimal hyperplasia but as in the case of a calcified graft, too 

little can cause adverse cellular effects such as a pro-fibrotic phenotype (see Section: “1.1.4 

Collagen”) . Adding to the difficulty of matching the mechanical properties of a native vessel is 
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that these conditions must be preserved throughout the time course in vivo when substantial 

remodeling and architectural changes are occurring (see Section: “1.5.3 In Vivo TEVG 

Mechanisms”). Indeed, mechanical properties have been shown to change throughout the 

duration of an implanted TEVG [49, 63, 64, 160].  

Two more essential properties of a TEVG are the ability to resist tearing of the 

anastomotic sutures and kinking. The ability to resist the tearing of sutures is measured by the 

suture retention force and should be adequate enough such that the graft can be easily secured by 

a surgeon and not tear after placement. The necessity for kink resistant grafts is application 

specific – such as the case of a coronary artery bypass which presents a non-linear geometry – 

but a critical aspect as a kink will result in immediate impediment of blood flow through the 

graft. Despite this, susceptibility to kinking is not a reported parameter in TEVG literature and 

can often be missed as initial animal studies utilize linear interposition grafts such as at the 

abdominal aorta or carotid artery locations [47, 66, 161-163].  

Finally, the practicality in regards to manufacture of the TEVG must be considered. In 

particular, a fabrication process that is both rapid and at low cost is ideal as there are many 

barriers to translation with regards to extended or costly fabrication methods (see Section: “1.5.2 

Fabrication Time”). Additionally, a graft should be capable of being made to a variety of sizes, 

able to be sterilized, and easily stored. 

1.3.2 Scaffold Considerations 

Choosing an appropriate scaffolding material to utilize for a TEVG is a critical consideration as 

it both establishes the 3D architectural support for the cells and the initial mechanical properties 

of the TEVG. Throughout the development of TEVGs many different scaffolding materials have 
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been utilized – each with their own advantages – including non-degradable synthetic materials, 

degradable synthetic materials, natural polymers, decellularized vessels, and fully biological 

materials. 

 Some the earliest TEVG studies (prior to 1996) utilized synthetic materials that were 

non-degradable [158] such as Dacron. However, the inability to degrade carries a variety of 

negative aspects. First, tissue ingrowth into a non-degradable graft will ultimately only be able to 

stiffen  the graft potentially resulting in a loss in compliance [158]. Additionally, the use of non-

degradable materials has shown to induce calcification [150] in newly formed tissue around the 

synthetic graft exacerbating this issue. Finally, non-degradable materials do not offer the same 

remodeling potential as degradable or purely biological tissue and as such cannot change their 

size in vivo preventing their potential use for pediatric applications. As such, most of the focus of 

TEVG development has subsequently shifted to use of biodegradable synthetic or biological 

materials. 

Biodegradable synthetic materials offer several advantages for the development of 

TEVGs as they can be cheaply fabricated, have tunable properties, can be elastomeric, and offer 

the ability to resorb to allow for newly formed native-like tissue to develop (i.e. neotissue) 

throughout the TEVG. Tuning this latter aspect is particularly important as a graft which 

degrades too quickly – such as that seen with PGA – will result in loss of mechanical properties 

which have not yet been adequately established by the neotissue [158]. The most common 

material to be utilized are polyesters due to their ability to break down via hydrolysis and their 

common use in the clinic with the most popular being PGA, PLA, PCL and their various co-

polymers [158, 164]. Various properties of these materials can be found discussed by Tara et al 

[164]. Other example materials include degradable polyurethanes [161] and PGS [162]. One 
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attractive aspect of biodegradable synthetic materials is that they can be fabricated in multiple 

ways generating porous or fibrous structures [162, 165, 166]. However, most of these materials 

often require seeding with vascular or stem cells as a means to prevent thrombosis (see Section: 

“1.5.3 In Vivo TEVG Mechanisms”). Criticisms have been made against synthetic grafts due to 

their biological inertness [158], and the lack of cellular signals which natural materials possess 

[158], and low amount of functional groups to bind axillary molecules such as growth factors 

[167]. 

Natural materials and polymers can also be utilized together to create scaffolds [168].  

While collagen can be easily isolated [159], the isolation of elastin is difficult due to its 

insolubility and typically results in a loss of mechanical properties (see Section: “1.1.5 Elastin”). 

Other natural materials have been utilized such as silk [167],  hyaluronan [169], and fibrin [159]. 

In particular, fibrin presents an attractive alternative as its components (fibrinogen, thrombin) 

can be easily isolated from a patient’s own blood and its properties can be heavily customized 

[170]. However, in order to have enough strength it must undergo a lengthy culture with cells in 

a bioreactor [171]. The drawbacks of natural materials are plentiful as they commonly lack 

adequate strength [159], have high cost, and possess a high degree of variability [158]. Due to 

these deficits, obtaining biologically-derived materials is more commonly done through 

decellularization of vascular tissue. 

Decellularization is the process of removing cellular material from tissue through the use 

of detergents and enzymes leaving only the extracellular matrix components [164, 172]. 

Commonly, this is accomplished with detergents such as SDS (ionic) or triton-X (non-ionic) and 

enzymes such as nucleases, dispases, and trypsin [159]. Physical forces such as freeze drying can 

be used in addition [159]. While this ultimately results in a scaffold with a similar matrix 
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composition to that of a native vessel, there are several challenges to this approach. Specifically, 

scaffolds can be prone to shrinkage due to loss of proteoglycans in the decellularization process 

[173], have reduced mechanical properties [173], and can exhibit degeneration of the scaffolding 

material in vivo [174]. Additionally, if this scaffold is obtained from a human, the sacrifice of a 

potentially suitable vessel already prepared for clinical use is required. Conversely, if the vessel 

segment is obtained from animal tissue there are worries of disease transmission (example: HIV 

in non-human primates [175]). Ultimately this limits the size, shape, and supply of obtained 

these types of scaffolds. Additionally, decellularized scaffolds possess exposed collagen – which 

possesses a high degree of thrombogenicity [158, 176] – and therefore cell seeding must be 

utilized to resist thrombosis. However, cell seeding of these scaffolds is be challenging due to 

their low porosity and presence of elastic lamellae in within the vascular matrix [177]. Recent 

studies have been investigating other methods to produce scaffolds similar to a decellularized 

scaffold by stimulating the production of vascular ECM with SMCs cultured in a bioreactor [61, 

62] circumventing the need for isolation from a patient. 

The final method to produce a TEVG scaffold is through the use of completely 

biologically generated materials. Multiple methods have been utilized to develop these materials 

with two main examples being growing cells to obtain a cell sheet which is subsequently rolled 

to obtain a tubular construct or utilizing the foreign body response to generate a fibrous tissue 

around a subcutaneously implanted material. Cell sheet engineering was pioneered by by 

L’Heureux in 1998 [178] and has progressed to the point of clinical trials (see Section: “1.4.2 

Approach 2 – Cell Sheet Technology”). Many other groups have adopted this technology making 

improvements to the mechanical properties, sheet adhesiveness [179, 180], switching to an more 

proliferative cell type such as MSCs instead of the traditionally used SMCs or fibroblasts [181], 



 29 

and growing cells on thermo-sensitive polymers to allow for lifting of cell sheets without 

mechanical tearing [159]. However, despite these advances there are two main drawbacks of this 

approach: the enormous amount of fabrication time and the difficultly switching synthetic cells 

back to a contractile phenotype (see Section: “1.1.3 Smooth Muscle Cells”). The second example 

which utilizes subcutaneously implanted tubular materials that are subsequently encapsulated 

with fibrous tissue due to the foreign body response [182] generate tissue that is both autologous 

and has substantial strength. However, the resulting graft still requires performing an additional 

surgery on the patient to obtain and requires an extended fabrication time. 

1.3.3 Cellular Considerations 

As a means to provide functionalization to scaffolding materials to overcome hurdles such as 

anti-thrombogenicity and poor remodeling, cells are often utilized. At minimum, cells must be 

viable, non-immunogenic, and able to perform specialized functions [159]. However, from a 

practical and translation standpoint it is ideal for cells to also be highly proliferative and easily 

harvested [159]. Additionally, autologous cells are preferred due to the risks of disease transfer 

and immune-rejection associated with xenogenic or allogenic cells, respectively [159]. 

Vascular cells such as SMCs and ECs are common cell choices for vascular engineering 

as these intrinsically possess specialized functions available within the vasculature. However, 

isolation of autologous cells requires sacrifice of a vascular segement which must be isolated 

from the patient via surgery and often times are acquired at low quantities [159]. In addition, 

vascular cells have a limited proliferation capacity and can often undergo phenotypic changes in 

culture [158].  Genetic alterations to these cells such as induction of telomerase have been 

utilized but genetic manipulation raises risks and regulatory barriers [159]. Due to this, MSCs 
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have been proposed as one mechanism to acquire vascular cell phenotypes (see Sections: “1.1.2 

Endothelial Cells”, “1.1.3 Smooth Muscle Cells”).  

Much of the focus of vascular engineering has shifted to the use of adult stem cells which 

can be isolated autologously from a patient, present more attractive isolation sites, and have an 

high proliferation potential. Mesenchymal stem cells are one adult stem cell type which can be 

isolated from bone marrow, muscle, and adipose tissue [19]. These cells are multipotent and 

secrete a variety of angiogenic, mitotic, and anti-thrombogenic factors [183-189] making them 

ideal for tissue engineering. Their use has followed two main functions where they have either 

been coaxed to differentiate into vascular cell phenotypes prior to implantation, or utilized 

directly in their undifferentiated state as a source of potent bioactive factors to enable in situ 

development of vascular cells [19, 190] (see Section: “1.5.3 In Vivo TEVG Mechanisms”). This 

latter approach is preferred as it substantially reduces the time to implantation. The other adult 

stem cell type frequently utilized is the hematopoietic-derived endothelial precursor cell (EPC) 

[19]. This cell type can be isolated from the peripheral blood [19], adipose tissue [191], or bone 

marrow [19] of a patient and displays similar properties to endothelial cells but with an increased 

proliferation rate [19]. Most commonly these cells are seeded to provide thrombotic resistance in 

the same manner as endothelial cells. A more in depth review of these cell types can be seen in a 

separate publication (Krawiec and Vorp [19]).  

Other cell types which have the potential to be utilized in vascular engineering are 

embryonic stem cells and the related iPS cells [192] (somatic cells coaxed via viral vectors back 

to a pluripotent state). Due to ethical concerns, embryonic cells are not routinely utilized but both 

cell types present substantial challenges due to lengthy and difficult differentiation protocols 

which limit their translatability.  
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1.3.4 Cell Seeding Techniques 

Cell seeding is the process by which cells are incorporated within a tissue engineering scaffold. 

An ideal cell seeding process can incorporate cells in an efficient, rapid, reproducible, and 

controllable way while minimizing their injury. Additionally, cell seeding methods can be 

utilized to achieve either a surface or bulk (i.e. through thickness) seeding with this distinction 

often being a function of scaffold geometry [193]. For example, if a scaffold is intended to be 

seeded with a lumenal endothelial cell lining a low porosity scaffold is best suited [194], while if 

a scaffold is intended to have cells present throughout the thickness a highly porous [195] 

scaffold is preferred. Achieving proper bulk seeding with a uniform distribution of cells is 

challenging, but a uniform distribution is required to provide cellular activity and anti-thrombotic 

effects throughout the entirety of the scaffold wall. As porous scaffolds are routinely utilized in 

tissue engineering, utilizing bulk seeding methodologies is preferred. 

 However, despite the advantages which cell seeding techniques can offer, they are often 

an underutilized aspect of TEVG fabrication. In particular, the most commonly used approach is 

to simply pipette a cell solution onto a scaffold surface [193, 196]. Not only does this passive 

method result in poor efficiency (10-25%) and cellular penetration, but it can require additional 

weeks of fabrication time to allow the cells to migrate within scaffold pores [193, 196]. Due to 

these drawbacks several alternative seeding methodologies have been proposed utilizing active 

transmural forces to increase both cell seeding efficiency and penetration [193, 196].   Examples 

of these include the use of rotation, magnetic forces, acoustic waves, vacuum, and flow [193, 

196]. However, while these may be useful in the case of seeding a flat sheet, the more 

complicated tubular geometry utilized in vascular engineering presents additional challenges. For 

example, the use of a single transmural force (e.g. vacuum) will result in an uneven 
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circumferential distribution due to gravitational effects [193]. To address this, our lab has 

investigated the combined effect of both vacuum and rotation utilizing a controllable device 

[197, 198]. In this way, cells are infused lumenally throughout the scaffold at which point they 

are subjected to rotation and vacuum. This process achieves a higher efficiency (>90%) than 

most other reported techniques [196] and requires no user manipulation making it ideal for 

translation. Additionally, we have collaborated with another group to develop a controllable 

vacuum-based seeding system [199] which has since had additional design features such 

enabling a completely closed fabrication process [200, 201]. It is important to note however that 

when utilizing vacuum based seeding methods, pressures must be controlled as values over 250 

mmHg will have negative effects on cell viability [199]. 

Other techniques such as integration during scaffold fabrication have been investigated, 

but this can be difficult and highly dependent on fabrication or polymerization conditions. In 

most cases, cell survival in these processes are negatively affected [193].  

1.3.5 Bioreactors and Culture Post-Seeding 

Bioreactors enable post-seeding culture and maturation of three dimensional cell seeded TEVG 

constructs and overcome the limited nutrient diffusion in typical flask-based culture with the 

potential addition of mechanical stimulation [159, 202]. Bioreactors can vary in their degree of 

complexity from a simple spinner flask that provides convective transfer of nutrients, to the more 

complicated flow loop-based bioreactors where mechanical stimuli can additionally be applied 

(more examples have been reviewed by Blose and Krawiec et al. in Chapter 13 [202]). In 

vascular tissue engineering dynamic culture is utilized as a means to allow for cellular adhesion 

and spreading along scaffolds [197], while flow loop bioreactors place the construct in line with 
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pulsatile flow allowing for the application of shear and stretch to the construct [61, 62, 159, 171]. 

This is most often utilized as an in vitro means to encourage the development of natural proteins 

such as collagen [61, 62, 159, 171] or coax the differentiation of mesenchymal stem cells [203, 

204] (see Sections: “1.1.2 Endothelial Cells”, “1.1.3 Smooth Muscle Cells”). However, these 

approaches are often accompanied with the drawback of a lengthy and costly in vitro culture 

time which will likely not be clinically applicable for emergency situations. Due to this loss in 

translatability, many approaches have shifted to utilize in vivo maturation phases instead where 

the body acts a pseudo-bioreactor [19, 190] enabling maturation (see Section: “1.5.3 In Vivo 

TEVG Mechanisms”). 

1.3.6 Acellular TEVGs 

While cellular incorporation within tissue engineered scaffolds has been routinely utilized as a 

method to reduce thrombogenicity and enhance graft remodeling (see Section: “1.5.3 In Vivo 

TEVG Mechanisms”), the inherent variability and fabrication concerns (see Sections: “1.5.1 

Improper Cell Sourcing”, “1.5.2 Fabrication Time”) associated with these approaches has led to 

the development of several accellular TEVGs [65, 153-156, 162, 169, 205-223]. This is often 

done by functionalizing biodegradable materials with surface coatings, bioactive factor 

immobilization, or drug delivery vehicles, all of which have shown promising results in the 

development of patent and remodeled TEVGs. However, these functionalized biodegradable 

materials often utilize a single or limited number of factors (e.g. heparin [156, 210, 212]; hirudin 

[222]; phospholipids [153, 205]; antibodies [212]; growth factors such as VEGF [212, 213], 

bFGF [211], BDNF [155], MCP-1 [216], NGF [154], SDF-1a [156, 209, 215], and G-CSF [206-

208]; TGF-beta inhibitors [221]; and adhesive proteins such as fibronectin [211, 215]), and this 



 34 

approach is constrained in that a limited number of factors cannot replicate the complex, multi-

factorial coordination involved in biological systems. Further, utilizing a high concentration of a 

single factor – which many such approaches resort to – can lead to deleterious systemic side 

effects [224, 225].  

In some cases materials alone can be sufficient to generate patent and remodeled TEVGs. 

These include grafts composed of natural materials such as hylaronan [169], silk [217], SIS 

[218], or synthetic materials designed to be rapidly degrading [162, 226],  or fabricated into 

woven [219, 220],  nanofibrous [65], or electrospun [223]  structures.  However, despite the 

obvious advantages of being able to be utilized “off-the-shelf” which minimizes fabrication time, 

their degradation times or potential incorporation with bioactive factors should be carefully 

considered as a scaffold with a length that supersedes the migratory capacity of the remodeling 

process can fail [227].  

1.4 CURRENT CLINICAL TEVG APPROACHES 

The following section will detail the four TEVGs that have entered clinical trials. Interesting, 

each of these approaches utilizes entirely different methodologies. The advantages and 

disadvantages of each will be discussed.  

1.4.1 Approach 1 – Bone Marrow Cells with Synthetic Scaffold 

The first TEVG to successfully reach clinical trials [228-230]  used of bone marrow cells to 

construct a TEVG [48]. In this method bone marrow mononuclear cells were obtained from 
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patient specific bone marrow aspirates to obtain 200 million cells which were seeded onto 

PGA/CL/LA scaffolds by manual pipetting. Following incubation in autologous blood plasma 

for 2 hours, the constructs were implanted. All surgeries (Fontan procedure; vena cava to 

pulmonary connection) performed were elective procedures and occurred between September 

2001 and December 2004 in Tokyo, Japan in 25 children (average age: 5.5 years). The patients 

were followed on average of 6 years where all grafts showed no signs of aneurysm formation, 

graft failure, graft infection, or calcification. However, one graft showed partial thrombosis and 4 

others showed stenosis; these complications were all treated successfully through additional 

interventions. This clinical study has been discussed and reviewed heavily [228, 231-234]. 

This study was successful for multiple reasons. First, the TEVG in this study was 

constructed with bone marrow cells, was cultured in autologous plasma, and post-seeding was 

implanted within 2 hours. This rapid and xeno-material free approach is extremely attractive in 

terms of clinical translation as financial burdens and culture-related risks are minimized. 

Additionally, this graft utilized biodegradable synthetic materials which allowed for graft 

remodeling and lengthening that is necessary in a growing pediatric patient. However, the major 

drawback of this graft was that it was tested in a low pressure environment and likely doesn’t 

have the strength to withstand arterial conditions in its current form [66]. Additionally, while this 

graft showed great promise in children, considering its use in diseased populations is unclear. 

Since the clinical trials of this TEVG, this group (Shinoka and Breuer) has been 

extremely productive. To better understand one of the main complications they experienced 

within their clinical trials – stenosis – they have underwent a series of studies investigating this 

process within their graft [221, 235, 236] which appears to be mediated by high levels of TGF-

beta [221], platelets [236], and NK cells [236]  and can be mitigated by cell seeding [235].  They 
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have also shifted to the development of a new arterial graft which presents a more challenging 

test bed due to the high pressure environment [65, 66, 160, 237, 238]. Despite initial studies 

which showed aneurysmal dilation [66], they have ultimately been successful in this endeavor. 

They have also performed investigatory studies into the remodeling process of TEVGs [63-66, 

160, 192, 216, 221, 235, 236, 239-242] which can be coupled with long term implantations [64, 

66, 160, 238, 242] and studies of explanted graft biomechanics [49, 63, 64, 160] to better 

understand how a TEVG mechanistically develops. These will be discussed in Section “1.5.3 In 

Vivo TEVG Mechanisms”. Additionally, to improve upon the translatability of their TEVG they 

have begun development of an acellular graft [63-66, 236, 242] and developed a closed-loop 

seeding method to reliably incorporate cells within their scaffolds under sterile conditions [199-

201, 243] without culture [243, 244]. Finally, they have performed axillary studies looking at the 

usage of iPS cells [192] for TEVG fabrication, guiding the development of TEVGs using 

computational models [64, 245], and are utilizing non-invasive in vivo imaging modalities to 

assess TEVG development [242, 246].  Excitingly this group is currently pursing studies which 

include the first clinical trial within the US to implant a TEVG in children [247]. 

1.4.2 Approach 2 – Cell Sheet Technology 

A TEVG constructed with the cell sheet technology (see Section: “1.3.2 Scaffold 

Considerations”) first developed by L’Heureux [178] underwent clinical testing [248-250]  in 

Argentina and Poland between 2004 and 2007 where TEVGs were utilized as an arterial-venous 

fistula for hemodialysis. A total of 10 patients (ages: 29-89) were documented in this study all 

whom were suffering from end stage renal disease and had previously failed at least one attempt 

at hemodialysis. It is important to note that this model is particularly challenging for TEVGs as it 
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utilizes patients who already possess significant health problems and the repeated puncturing 

utilized during hemodialysis can result in disruption of hemostasis and graft remodeling. 

However, it also has several advantages in that it allows for easy monitoring of the TEVG and 

failures are tolerated well since they are not life or limb threatening.  

TEVGs were fabricated by culturing fibroblasts taken from patient skin biopsies 

supplemented with ascorbate until cell sheets were formed at which point they were wrapped 

around a mandrel and allowed to mature until the sheets fused together. Following maturation, 

the inner layers of the graft were devitalized via air drying and seeded with patient endothelial 

cells isolated from saphenous veins. The average time of fabrication was 7.5 months. Upon 

implantation no antiplatelet therapies were used unless the patient already had a catheter in place. 

Throughout this study, one patient withdrew and 5 adverse events occurred among the 9 

other patients. These included 2 cases of aneurysm, 1 dilation, 1 thrombosis, and 1 death 

unrelated to the TEVG. No infections were present. The TEVGs displayed a 78% (7 out of 9) 

primary patency – meaning no interventions were used to restore patency – at 1 month and a 

60% (5 out of 8) primary patency at 6 months. The authors commented that the dilation-based 

complications the TEVGs experienced were not due to the strength of the vessels since their 

burst pressures were sufficiently high, but most likely due to delamination between the layers of 

the TEBV or weakening due to repeated puncturing. Despite these complications, this study 

shows great efficacy for this TEVG due to the extraordinary patient cohort and challenging 

model that was used. Additionally, unlike the graft designed by Shinoka (see Section: “1.4.1 

Approach 1 – Bone Marrow Cells with Synthetic Scaffold”), this was the first clinical TEVG to 

have enough strength to be placed in the high pressure arterial environment. 
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While this TEVG offers many advantages having underwent such a challenging clinical 

study in terms of both the test bed and being part of a multi-center study, it has a large downfall 

of taking many months to manufacture. This is a very large concern for translation since the 

longer the time it takes to grow the less likely it could be used in emergency situations and 

possesses high costs. In particular, it is still economically challenging to produce a TEVG in this 

manner due to the high production cost and low patient reimbursement potential [250, 251]. 

Another criticism is that multiple interventions to the patient (skin biopsy, saphenous vein 

isolation) had to be performed in order to obtain cells. 

The creators of this graft (now called LifelineTM) are now established as a company – 

Cytograft – and have begun another clinical trial for lower limb bypasses. However, their 

documented progress in scientific literature has been limited since the first clinical trial [252, 

253]. Published studies have shown their investigations into the mechanical properties of their 

TEVG showing that it had similar strength and suture retention force as the IMA but less 

compliance [252]. However, at 6 months post-implantation compliance levels had increased 

[252]. Additionally, three allogenic-derived TEVGs were implanted within patients that were 

constructed in the same manner as above but completely devitalized and not seeded with 

endothelial cells prior to implantation [253]. Grafts were not afflicted with immune reactions and 

withstood up to an 11 month time course implantation without degradation but continually 

reduced flow and encountered cases of thrombosis due to the lack of endothelium [253]. 

1.4.3 Approach 3 – Decellularized Vein 

Another type of TEVG that has reached clinical trials took place in Gothenburg, Sweden 

(published 2012) which was utilized to alleviate portal vein obstruction (thrombosis) in a 10 year 



 39 

old girl [254]. The graft was fabricated from a decellularized 9cm segment of a deceased 

allogenic donors iliac vein (age 30) and then populated with SMCs and ECs generated from the 

patient’s own bone marrow cells. The total fabrication time took a total of 12 days. However, 

unlike other dual seeding approaches [47, 163, 206, 255-258] which incorporate SMCs prior to 

ECs to achieve medial and intimal presence of the two cell types, respectively, this study did the 

opposite. The complete TEVG was utilized as a bypass between the superior mesenteric vein and 

the intrahepatic left portal vein and was chosen as a therapy due to the patient’s lack of suitable 

vein segments and to avoid life-long immuno-suppression in the case of a liver transplant. 

 Upon implantation the TEVG immediately provided functional blood flow and was stable 

to 9 months but decreased its flow at one year due to narrowing and mechanical obstruction. At 

this point the clinicians intervened to remove the section of the graft which was narrowed and 

proceeded to attach a segment of newly fabricated, identical TEVG to compensate for the length 

loss which resolved the obstruction. The patient was not maintained on immuno-suppressive 

drugs but was maintained on anticoagulants (aspirin) for 6 months. 

This TEVG, like the prior (see Section: “1.4.2 Approach 2 – Cell Sheet Technology”), 

shows that materials (but not cells) derived from allogenic sources can indeed be utilized. 

Through the use of a decellularized vessel they were able to more rapidly generate a suitable 

vascular matrix as opposed to having to utilize extensive culture methods. Additionally, utilizing 

natural materials which can be remodeled in vivo will allow for the implanted vessel to grow 

with the adolescent patient. Despite these advantages there are still a few drawbacks. First, using 

a multiple step culture method still possesses a risk of contamination for the TEVG and as SMCs 

were generated from bone marrow cells which required cellular differentiation, potential adverse 

transformations could occur. Also, the authors noted that the vascular matrix was dissimilar to 
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native vessels following the decellularization procedure and postulated that it may not be suitable 

for the more mechanical robust arterial environment.  

1.4.4 Approach 4 – Bioreactor Produced TEVG 

The final and most recent (2014) TEVG clinical study has not yet published scientific literature 

and evidence of their progress is only limited one brief conference abstract [259]. This graft 

originates from Niklason [61, 62] – and the subsequently established Humacyte company – 

which utilize SMCs grown in a degradable PGA scaffold within a pulsatile bioreactor to generate 

a vascular matrix with no residual scaffolding material. This matrix is then decellularized and re-

cellularized with endothelial cells prior to implantation. The advantage of this approach is that 

once the matrix is fabricated and subsequently decellularized, it can be stored until ready for use 

with a patient. Additionally due to the lack of immunogenicity seen with allogenic matrix 

materials in other clinical studies (see Sections: “1.4.2 Approach 2 – Cell Sheet Technology”, 

“1.4.3 Approach 3 – Decellularized Vein”), these matrices can be fabricated ahead of time 

through non-patient specific (i.e. allogenic) cells. Indeed, this group has created grafts of both 

animal and human cadaver cells [61, 62]. Grafts fabricated in this manner have shown strength, 

compliance, and suture retention forces similar to that of native vessels [62]. 

The clinical study, which is currently underway [259], utilizes this TEVG for 

hemodialysis vascular access in patients with end-stage renal disease and is the first to test this 

application within the United States. Pre-clinical studies for this graft in large animal and 

nonhuman primate models have been documented with results showing suitable mechanical 

properties for arterial conditions, promising remodeling to a vascular-like tissue, and no adverse 

events [62, 259]. However the early term clinical results have not yet been published. 
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While this approach has several advantages particularly in terms of developing TEVGs 

scaffolds from non-patient specific (i.e. non-autolgous) approaches and that they maintain their 

mechanical properties even after 12 months of storage [62], there are some concerns due to 

practicality. The fabrication of this TEVG utilizes both a pulsatile bioreactor and long term 

culture (10 weeks) which induce significant cost. As cells for developing this primarily collagen-

based scaffold utilize cells isolated from cadavers [62], a more practical and less costly method is 

to utilize a decellularized cadaver vessel. This will also provide the added benefit of containing 

more prominent elastin. 

1.5 CURRENT BARRIERS TO CLINICAL TRANSLATION  

Despite the extensive amount of pre-clinical testing seen in the field of cell-based TEVGs with 

both small [63-66, 160, 161, 181, 192, 216, 221, 235-241, 243, 255, 260-266] and large [47-49, 

61, 62, 163, 178, 206, 242, 244, 256-258, 263, 267-279] animal models, few TEVG approaches 

have progressed to clinical trials (see Section: “1.4 Current Clinical TEVGs”). Indeed, there are a 

number of inhibitory barriers encountered during the clinical translation of TEVGs with regards 

to usage of cells, establishing feasible and consistent modes of manufacture, difficult regulatory 

pathways, and financial concerns. While many studies have begun to address these barriers 

through the in vivo use of human cells [62, 178, 216, 237, 240, 255, 260-264, 266], and/or the 

development of large animal sized scaffolds [47-49, 61, 62, 163, 178, 206, 244, 256-258, 263, 

267-279], many barriers still remain unaddressed. This is abundantly clear when criticizing the 

drawbacks of the four TEVG approaches which have reached clinical trials. In particular, 

Approach 1 and Approach 3 tested their grafts in children who are physiologically healthy and 
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displays minimal relevance to the adverse conditions see in cardiovascular disease patients. 

Additionally, many of the studies have concerns related to fabrication such as cost (Approach 2, 

Approach 4), time (Approach 2), potential for cellular transformation (Approach 3), and 

practicality (Approach 4). The final concern comes from both a regulatory and development 

stand point in understanding the mechanisms and processes by which a TEVG remodels in vivo. 

The following section will detail these three prominent barriers still currently present in the field 

of TEVGs.  

1.5.1 Improper Cell Sourcing 

When developing a cell-based therapy it is critically important to evaluate the functionality of the 

intended patient’s cells as this will directly impact the efficacy of the treatment. However, 

despite the many advances in the field of TEVGs, studies have yet to assess TEVG functionality 

when comprised of cells from realistic clinical populations. Instead, many preclinical evaluations 

of cell based TEVGs utilize cells from healthy humans or animals [47-49, 61, 62, 161, 163, 178, 

181, 206, 216, 235, 237, 239, 240, 244, 255-258, 260-264, 267-277, 280]. While these studies 

have shown that incorporating cells within scaffolds promotes patency and regenerative effects, 

these are not directly representative of patients at high risk for cardiovascular disease. Diabetic 

and elderly individuals are two such demographics (see Section: “1.2.1 Cardiovascular Risk 

Patient Cohorts”) and cells isolated from these cohorts have specific deficits which brings into 

question their therapeutic utility. As cells are fundamental to the success of many TEVG 

approaches, evaluating the suitability of each cell source is an essential step towards clinical 

translation. 
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1.5.2 Fabrication Time 

Another major hurdle in the development of TEVGs – and one that is seen in tissue engineering 

as a whole – is fabrication time. While fabrication of the TEVG components such as a scaffold 

can take an extended period of time, many of these can be produced in large quantity and stored 

minimizing the actual burden of this process. Cells on the other hand are living and must be 

maintained with careful observation; depending on the cell type, these can grow at a 

prohibitively slow pace. Ultimately, the cells (and the combined cell-scaffold construct) are the 

most common rate limiting step in TEVG fabrication.  

Having a TEVG approach that utilizes an extended culture period can encounter many 

detriments with regards to clinical application. Creating excess waiting time for the patient may 

make the TEVG inapplicable for acute situations. In particular, the risk of mortality while 

waiting for coronary artery bypass graft procedures increases by 11% each month [281] and most 

patients (>70% [282]) are operated on in less than 6 months. Additionally, extended fabrication 

can incur significant costs [250] and raises concerns about potential cellular transformation. 

These, coupled with the number of hurdles already present for cell-based tissue engineered 

products [283] such as the need for extensive pre-clinical testing, funding shortages, complicated 

regulatory pathways, and poor commercial reimbursement [250] only amplify the difficulty in 

translating a TEVG. However, having a method to rapidly fabricate a TEVG at a low cost would 

make a large step towards alleviating many of these concerns. To illustrate this, one of the few 

TEVGs that has made it to clinical trials – that of Shinoka and Breuer (see Section: “1.4.1 

Approach 1 – Bone Marrow Cells with Synthetic Scaffold”) – utilizes a non-cultured bone 

marrow derived source and uses methods to quickly fabricate their graft. Despite this, it is still a 

common occurrence for cell-based TEVGs approaches to utilize extensive in vitro culture 
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periods – with many on the order of a week or longer – after primary cells have been 

successfully expanded [47, 163, 178, 179, 181, 206, 237, 256-258, 262, 268, 270, 272-278, 280]. 

Therefore, in order to successfully translate TEVGs to the clinic, it is important to utilize an 

available and easily obtainable cell source. 

1.5.3 In Vivo TEVG Mechanisms 

Stem cell-based TEVG approaches allow for two maturation mechanisms by which they can 

develop into native-like vascular replacements [19, 51, 129, 190]. In one case the stem cells are 

utilized as a source for vascular cells – such as SMCs [19, 27, 51-55] and EC [19-28] – which 

are then used in combination with scaffolding materials and often times bioreactors [202] (see 

Section: “1.3.5 Bioreactors and Cultures Post-Seeding”) to generate a vascular-like construct. 

This is mainly induced by stimulation with growth factors known to induce specific routes of 

differentiation and/or by physiologically relevant mechanical stimulation. In this case the stem 

cells can spend weeks to months under in vitro culture before a construct is available for use. 

From a practical standpoint this extended culture can act as a barrier to clinical translation due to 

the high costs [250], potential risks for cellular transformation, and waiting time for a patient 

(see Section: “1.5.2 Fabrication Time”).  

The second maturation mechanism [19, 51, 129] is where stem cells are implanted 

directly after incorporation into TEVG scaffolds and the body is utilized as a “bioreactor” for 

maturation. This process allows for quicker generation of useable TEVG constructs but the exact 

mechanisms behind this process are still being determined. While it was originally proposed that 

these cells differentiate in vivo [48], recent studies have disproved this hypothesis by showing 

that stem cell retention within TEVGs only lasts on the order of 1 week [192, 216, 239, 246, 261, 



 45 

262]. This instead designates them as initial mediators of the TEVG remodeling process. Adding 

to this, studies have shown that remodeling happens through adjacent migration of vascular cells 

[239] and that stem cells both secrete factors that induce SMC migration [51] and provide initial 

anti-thrombogenicity [261, 284](see Aim 1-2). This is further corroborated by studies showing 

acellular TEVGs (see Section: “1.3.6 Acellular TEVGs”) are also repopulated with SMCs and 

ECs [153-156, 162, 169, 212, 217-221] including scaffolds with low porosity [153, 169, 217, 

220] or scaffolds with bound growth factors specifically designed to recruit host cells [154-156, 

216]. Additionally, TEVGs that have undergone this first type of maturation step (i.e. already 

developed vascular layer) experience host-based remodeling as implanted TEVGs with already 

intact SMC layers [276] or EC only [47, 62] are shown to be populated with host SMCs. Similar 

dynamic remodeling processes occur whether the implanted graft is fully synthetic [153, 162, 

205, 219, 220] fully biological [62, 169, 217, 218] or a hybrid of the two [156, 216, 235, 239, 

261, 262, 276]. 

Cell seeded scaffolds have also been suggested to be superior to non-seeded counterparts. 

In particular, the usage of cells [47, 161, 216, 260] or their bioactive products [154-156, 216] are 

able to generate grafts with a higher degree of cell density [47, 154, 155, 161, 216, 260] and 

EC/SMC maturity [47, 156, 161, 260] than non-seeded ones. Additionally these grafts are more 

resistant to failure mechanisms such as thrombosis [161, 260, 261] and stenosis (aka intimal 

hyperplasia) [235, 242, 261]. Cell seeding also produced TEVGs with significant longitudinal 

growth in a growing animal model [242], display better controlled MMP activity [242] and 

inflammation [216, 235], and contain higher GAG content indicating a more mature graft [242] 

compared to their unseeded counterparts. It has also been reported that TEVGs seeded with 

MSCs were able to generate more elastin in vivo compared to those without seeded cells [261]. 
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Finally, as humans achieve much slower transanastomotic migration than animals due to their 

inability to adequately heal their vessels or spontaneously endothelialize [285-287], cell seeding 

may be a potential avenue to encourage this process thus achieving a functional TEVG. 

Additionally, utilization of a highly porous scaffold may also aid higher porosities have been 

shown to lead to a higher degree of cell ingrowth [288]. 

The mechanisms that ultimately lead to a functional TEVG  (i.e. one that is fully 

populated with vascular cells and matrix) is just beginning to be understood with inflammation 

being considered as one of the key components [65, 66, 216, 235, 236, 239, 246, 262]. In 

particular, studies have shown that monocyte/macrophage infiltration is one of the first events 

and occurs on the order of 3 days [216, 235, 239, 262] immediately following an initial 

deposition of fibrin and platelets [235], but preceding any vascular tissue development. Adding 

to this, grafts composed purely of monocytes [240] or an inflammatory cytokine (MCP-1) [216] 

can produce remodeled TEVGs. However, the amount of inflammation a TEVG experiences is 

critical to its success. Too much inflammation in the form of macrophage infiltration has been 

shown to induce stenosis within TEVGs while none at all completely negates the remodeling 

process [235]. This study [235] also revealed that acellular grafts are more prone to a high degree 

of inflammation which can be attenuated by cell seeding [235]. Additionally, utilizing an animal 

with a functional immune system is essential to assess TEVG remodeling. In particular, it was 

shown that when an acellular scaffold is implanted into a mouse with dysfunctional NK cells and 

platelets (bg mutation) the TEVG will achieve an appropriate level of inflammation and remodel 

successfully, but in a mouse with wild type immunity will fail due to high levels of inflammation 

[236]. 
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The time course of events at which vascular tissue develops within a TEVG is also 

beginning to be understood. Multiple studies have noted that initial population with endothelial 

cells begins on the order of 2-4 weeks and further matures in a time dependent manner [62, 156, 

216, 235, 239, 261, 262]. SMC development also occurs with the same timing [62, 156, 162, 

216, 235, 239, 261, 262]. Extracellular matrix development begins with an initial burst of 

collagen types I and III over the first 4 weeks achieving a quantity much higher than that or 

native arteries, but tapers over time to achieve native levels [63-66]. This activity is mirrored by 

the presence of MMPs within TEVGs [63, 66, 241]. Ultimately  this newly formed tissue 

coupled with the presence of an intact scaffold that has yet to achieve significant breakdown at 

early time points, leads to an initially stiffer than native TEVG [49, 63, 64]. Collagen type IV, 

which is present in the basement membrane behind the endothelium, develops at a later time 

point than the other collagen types [241]. Finally, there is an initial burst of fibrillin at 1 week 

[63, 241] which abruptly drops off laying the initial scaffolding structure for elastic fiber 

assembly (see Section: “1.1.5 Elastin”) which will then occur and continue to increase over time 

[63, 65, 160, 241]. 

Despite the advances in understanding the TEVG remodeling process, these studies only 

lay the initial ground work and further investigation is required. The remodeling process can  be 

dependent on features of the TEVG such as porosity [288] and length [62], but also change 

within different animal models [62]. Additionally, long-term studies should eventually be carried 

out at a time point where the implanted scaffolding material has been completely degraded and 

the remodeling has been stabilized. However, one study has shown the remodeling process of 

TEVGs to conclude by 24 weeks and remain stable for up to 2 years [64] but admittedly, this is 

parameter will be unique to each TEVG. 
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1.6 TEVG STUDIES IN THE VORP LAB 

The TEVG developed in the Vascular Bioengineering Laboratory – which is the subject of this 

dissertation – was initiated during the PhD work of Lorenzo Soletti, who established the 

methodology and began initial preclinical testing [193]. This body of this work can viewed in 

depth in the following thesis and journal publications [153, 161, 165, 193, 195, 198, 205, 260, 

265]. The original concept for the graft was created by combining a cellular source – rat muscle 

derived stem cells [197] – with a porous scaffolding material created from thermally induced 

phase separation of a biodegradable polyurethane based material – poly(ester urethane)urea 

(PEUU) [165]. This scaffolding material offered pores which were large enough for cellular 

incorporation (50 µm [260] vs ~20 µm for a trypsinized cell (see Section: “5.1.1 Seeding of 

Artificial MSCs – Determining Appropriate Diameter) and these cells were successfully 

incorporated via a rapid (< 5 min), efficient (> 90%), and repeatable rotational vacuum-based 

bulk seeding process [195, 198]. Post-seeding the construct is incubated for 2 days in a spinner 

flask to allow for cellular adhesion and spreading where no changes to cell phenotype or viability 

were seen [193, 197]. Initial testing with this TEVG showed aneurysmal dilation [161] at which 

point an external electrospun sheath was applied and resulted in mechanical properties similar to 

that of native vessels [165] and circumvented the dilations initially seen [161]. This TEVG was 

shown to result in good patency within a rat model and exhibited remodeling that generated the 

presence of vascular-like components [161]. Other studies have involved the use of different cell 

types such as human pericytes [260], human AD-MSCs (unpublished), or rat SMCs [265]; the 
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development of an acellular vessel [153, 205]; methods to scale fabrication from small to large 

animal models [193]; and a year-long implantation (unpublished).   

This approach possess several advantages such as the minimal time between fabrication 

and implantation, the controllable seeding process, ability to remodel in vivo due to the 

biodegradation properties of the scaffold, and appropriate mechanical properties to be utilized in 

arterial conditions. However, there are still many areas to improve this TEVG, particularly with 

regards to the barriers to clinical translation outlined in Section “1.5 Current Barriers to Clinical 

Translation”. This includes use of a clinically relevant cell source, fabrication time and the need 

for cell culture, and understanding the mechanism. These concerns inspired the aims to this 

proposal detailed below. 

1.7 HYPOTHESES AND SPECIFIC AIMS 

The work of this dissertation will utilize the autologous AD-MSC-based TEVG previously 

developed by the Vascular Bioengineering Lab and – based on the critical analysis of literature –  

will direct it toward clinical translation by addressing key rate-limiting barriers. In particular, 

these include the testing of the current clinically relevant cell sources and removing the need for 

cell culture thus reducing fabrication time. This study includes the three following Specific Aims 

and Hypotheses:  

Specific Aim 1: Characterize AD-MSCs from two high-risk patient cohorts – diabetic 

and elderly humans – as functional or dysfunctional by evaluating their ability to serve as the 

cellular component of TEVGs. Studies in the field of TEVGs utilize stem cells for two essential 

functions: inducing their differentiation into vascular cell phenotypes and/or utilizing their 
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paracrine (i.e. secreted factor-based) effects to inducing host repopulation via migration of 

adjacent SMCs. We hypothesize that AD-MSCs are capable of performing both of these essential 

functions and these are less efficacious in high-risk donors, and this will attribute a poorer 

performance as TEVGs in vivo.  

Specific Aim 2: Develop a more clinically-feasible TEVG by utilizing freshly isolated 

SVF cells and evaluating them in both in vitro and in vivo studies. For cellular approaches, it is 

more desirable to use cells directly from harvest (i.e., fresh AD-MSCs) as this removes the need 

for an in vitro expansion period, thereby alleviating costs and potential cellular transformation 

issues, reducing regulatory barriers. We hypothesize that fresh AD-MSCs will function as well 

as cultured AD-MSCs in a TEVG and will test this using in vitro and in vivo approaches from 

Specific Aim 1. 

Specific Aim 3: Develop a more clinically-feasible TEVG by utilizing secreted factors 

from AD-MSCs alone; i.e., without seeded cells. If AD-MSCs from any high-risk cohorts are 

unable to develop functional TEVGs (as evaluated in Specific Aim 1) it would be imprudent to 

simply exclude these patient populations from the promise of an engineered graft. Further, the 

regulatory pathway is challenging for any implantable device containing cells.  In this aim, an 

alternative TEVG will be designed by saturating it with factors secreted by healthy AD-MSCs. 

We hypothesize that this acellular TEVG will function as well in a rat model as a TEVG seeded 

with AD-MSCs. This aim will consist of a pilot study to illustrate the feasibility of this design. 

This research project was designed to address two primary barriers related to the clinical 

translation of TEVGs utilizing an adipose-derived stem cell source. First, AD-MSCs from two 

clinically relevant patient cohorts whose respective demographic pathologies are known to effect 

cell function were evaluated for use as an autologous TEVG through both in vitro and in vivo 



 51 

methods (Chapter 2). Then resulting complications that were observed specifically in one patient 

cohort – diabetics – were mechanistically investigated (Chapter 3). Secondly, a non-culture 

adipose derived cell population –raw SVF cells – was utilized for development of a TEVG 

(Chapter 4) and tested for their ability to perform essential functions contributing to a TEVG in 

vitro as well as their in vivo performance. Finally, in an attempt to alleviate the complications 

seen in the high cardiovascular risk patient cohorts from Specific Aim 1, secreted factors – which 

are a primary contributor to TEVG success – were utilized to create a microsphere-based drug 

delivery system (Chapter 5). These AD-MSC secreted factor encapsulated microspheres were 

termed as “artificial AD-MSCs” due to their resemblance in geometry and ability to be utilized 

with similar methodology to AD-MSCs themselves. A pilot study was performed demonstrating 

the feasibility of this technology. Finally, a summary of results and thoughts on future directions 

will be provided (Chapter 6).  
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2.0  SPECIFIC AIM 1, PART 1:  

EVALUATION OF HIGH-CARDIOVASCULAR RISK DONOR AD-MSCS  

FOR USE AS TEVGS 

2.1 INTRODUCTION 

Tissue engineering of small-diameter blood vessels is a promising alternative to currently-used 

vascular grafts having shown both reduced intimal hyperplasia and thrombosis compared to 

standard grafts  [19, 61, 161, 163, 206, 235, 260, 267]. However, when developing an autologous 

cell-based therapy – such as the stem cell-based TEVG within this dissertation – it is critically 

important to evaluate the functionality of the intended patient’s cells as this will directly impact 

the efficacy of the treatment. The cell type utilized in this dissertation will be adipose-derived 

mesenchymal stem cells (AD-MSCs) due to their attractive isolation via liposuction and the 

prowess of MSCs as a cell type compared to traditional vascular cells (see Section “1.3.3 

Cellular Considerations”). However, AD-MSCs of patients at high cardiovascular risk, such as 

diabetics and the elderly (see Section: “1.2.1 Cardiovascular Risk Patient Cohorts”), have not yet 

been evaluated in the context of TEVG applications leaving it unclear if cells from these patient 

populations are suitable for producing autologous functional TEVGs and thus eligible for the 

promising treatments tissue engineering offers (see Section: “1.5.1 Improper Cell Sourcing”). 

Additionally, many cells utilized in pre-clinical studies are isolated from commercial sources 
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which do not represent realistic clinical populations. Metrics for evaluating the effectiveness of a 

cell for a TEVG have also not been clearly defined. The purpose of this aim is to define metrics 

for evaluation of different donor cells within the context of TEVGs and to evaluate those cells 

using both in vitro and in vivo methodologies. In this aim we hypothesize that diabetic and 

elderly AD-MSCs will function poorly in terms of the aforementioned metrics and this will 

provide a poor performance in vivo. 

2.1.1 AD-MSCs and the Effect of Donor Populations 

It has been clearly established that the use of adult stem cells –particularly MSCs –represents a 

critical step in increasing the translatability of autologous tissue engineered technologies (see 

Section: “1.3.3 Cellular Considerations”). As previously stated, these cells can offer a variety of 

advantages over primary cells that include an easier isolation process, the ability to self-renew, 

the potential to differentiate into multiple cell types, and the ability to secrete a wide spectrum of 

bioactive factors with varying functional effects [183, 187-189, 289-291]. Indeed, in tissue 

engineering as a whole, MSCs have seen use in multiple applications [19, 292-296] including for 

TEVGs [19]. 

While MSCs can be isolated from a variety of tissues, the most attractive source is from 

adipose tissue due to its ease and abundant isolation via liposuction. In general, all MSCs – 

independent of their isolated location – display similar characteristics in terms of morphology 

and immuno-phenotypic marker profiles, but display slight variation in their propensity to 

differentiate into various mesodermal lineages [297]. This similarity and occurrence in multiple 

organs is thought to be due to MSCs being located in a perivascular location within blood vessels 

throughout the body [298, 299]. For AD-MSCs in particular, in addition to the classic 
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mesodermal markers that are used to classify MSCs (e.g. CD44, CD73, CD90, CD105 [300]), 

AD-MSCs also transiently express markers such as CD34 which decrease over extended culture 

[301, 302] and distinguishes them from bone marrow MSCs [303]. This is likely a function of 

the various subpopulations present within the AD-MSC population upon initial plating [191] and 

will be discussed separately in Aim 2 when comparing the use of freshly isolated SVF cells to 

the subsequent culture expanded AD-MSCs. When considering which fat depot to isolate AD-

MSCs from, studies have shown similar functionality in terms of proliferation, lipid 

accumulation upon adipogenic differentiation, and efficiency of osteogenic differentiation in 

female populations but some differential effects can be seen in terms of their susceptibility to 

apoptosis or osteogenic differentiation in male populations [304-306].  

Historically (approximately 3 decades ago), AD-MSCs were termed as “preadipocytes” 

and mainly studied in the context of obesity and adipogenesis [307-310]. However, upon their 

definition as a multipotent stem cell (i.e. MSC) in 2001 [311], their research has expanded to 

fields including multiple regenerative medicine applications [312-322] and cancer [184, 323, 

324]. Additionally, while it was initially suggested decades ago that these cells consist of 

multiple populations [325, 326], it was only until recently that their surface marker profile, 

genome, and composition has been sufficiently characterized [191, 327-330]. 

When considering the two prominent cardiovascular disease patient cohorts which this 

dissertation will utilize (i.e. diabetics, elderly; see Section: “1.2.1 Cardiovascular Risk Patient 

Cohorts”), AD-MSCs have been shown to be adversely affected. AD-MSCs isolated in the 

presence of diabetes were shown to possess increased ROS [331], increased susceptibility to 

apoptosis [331, 332], decreased differentiation potential (osteo [331, 333], adipo [333], 

endothelial [28]), decreased production of secreted factors (angiogenic [332, 334], fibrinolytic 
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[335]; also see Aim 1-1 for promigratory effects and Aim 1-2 for fibrinolytic effects), and 

decreased functional performance (angio [333], wound healing [333, 334], vascular stability 

[332]). AD-MSCs isolated from elderly donors have also been shown to possess similar 

dysfunctional characteristics such as a decreased differentiation potential (osteo [336], adipo 

[304], myogenic [337]), altered secreted profile [338], and decreased functional performance 

(angiogenesis [339], myogenic regeneration [337]). However, no differences in isolation 

efficiency or proliferation have been seen with either diabetic [28] or aged AD-MSCs [20, 304, 

336]. Despite this work, the function of AD-MSCs from these two cohorts has yet to be 

evaluated in the context of vascular tissue engineering. As such, the next section will aim to 

define a set of criteria to evaluate the function of these cells within this context. Understanding 

these effects is paramount for autologous cell which is preferred as the use of allogenic cells 

which would require immuno-suppression diminishes the viability and survival of AD-MSCs 

[340]. 

2.1.2 Definitions of Essential Cellular Functions and Performance Criteria for Vascular 

Engineering 

To define the essential functions which an AD-MSC must perform in order to be a successful 

cell source in the context of vascular tissue engineering one must consider the manner in which it 

is utilized and the mechanistic nature of the processes involved in vivo for TEVG generation (see 

Section: “1.5.3 In Vivo TEVG Mechanisms”). As outlined in Section “1.5.3 In Vivo TEVG 

Mechanisms”, there are two main methodologies in which stem cells are utilized to achieve a 

matured, vascular-like TEVG. The first is through the differentiation of stem cells into vascular 

phenotypes prior to implantation in vivo and the second is through the use of the cells in their 
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undifferentiated state which act to secrete bioactive factors that recruit host vascular-like cells. 

Considering both of these options reveals two critical performance criteria of stem cells: 1) the 

ability to differentiate into vascular cells (e.g. SMCs), and 2) the ability to secrete SMC pro-

migratory factors.  Beyond these functions on a cellular level, however, the cells must also be 

able to be successfully incorporated within a tissue engineered scaffold leading to a third 

performance criteria: 3) the ability to successfully seed and attach to tissue engineered scaffolds. 

For this dissertation, this is particularly a concern for elderly cells as age has been shown to be 

associated with cell size [341] which could hinder the seeding process. Finally, one must 

consider the end goal of a TEVG which is to generate patent, vascular-like grafts which 

establishes the final criteria: 4) in vivo performance. For this Specific Aim both diabetic and 

elderly AD-MSCs will be evaluated within these 4 contexts to consider their suitability for a 

clinical TEVG. If these criteria cannot be met by a specific cohort’s cells, an acellular TEVG for 

these patients will be developed and discussed in Aim 3. 

2.2 METHODS 

2.2.1 Isolation and Culture of Cells and Collection of Conditioned Media 

AD-MSCs were isolated from human patients using previously described methods [51, 191, 

304]. All AD-MSCs were isolated (or had been previously isolated and banked) under the 

surgical service of Dr. Peter Rubin during elective procedures. All tissue was obtained through 

use of an approved Institutional Review Board (IRB) exemption status protocol allowing the 

following information to be gathered to protect patient confidentiality: gender, age in years, 
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presence of diabetic condition, and body-mass index (BMI). Isolated adipose tissue was then 

minced and digested in a collagenase solution (1 mg/mL, type II) for 30 minutes to remove cells 

from their surrounding matrix. The solution was then filtered through gauze to remove debris 

and centrifuged to remove the buoyant adipocytes. The pellet was then resuspended in an NH4Cl 

erythrocyte lysis buffer (154 mM) to remove red blood cells, and finally centrifuged again to 

obtain a cell pellet. That cell pellet was plated and cultured to obtain AD-MSCs. In this study 

cells were used between passage numbers 2 to 6. 

For the purposes of this study AD-MSCs of various patient demographics were selected 

and classified into the following groups: “healthy” (< 45 years of age, non-diabetic), “diabetic” 

(< 45 years of age, diabetic (type 2)), and “elderly” (> 60 years of age, non-diabetic). Both the 

diabetic and elderly groups were considered as high cardiovascular risk, clinically relevant 

cohorts whereas the healthy group was utilized as a control. The age thresholds were established 

based on SCORE (Systematic COronary Risk Evaluation [102]) charts provided by the European 

Society of Cardiology and represented a point where aging demonstrated a high (in the case of 

elderly) or low (in the case of healthy) cardiovascular risk. To isolate the specific effects of each 

individual factor (i.e. diabetes or elderly compared to healthy), the ages were kept similar in a 

younger bracket for diabetic patients, and only non-diabetics were considered for the elderly 

group. Additionally, all cells were isolated from female patients to isolate gender effects between 

these comparisons, however to allow for a gender based comparison for the in vitro studies, a 

healthy male group was also established. A list of donors, their demographics, and the 

experiments which they were used for are listed in Table 1. 

All AD-MSCs were cultured in 75-cm2 tissue culture flasks (Corning) and grown under 

defined culture media  [1:1 Dulbecco’s modified Eagle’s medium (DMEM; Gibco #11965) to 
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DMEM/F12 (Gibco #113300) with 10% fetal bovine serum (Atlanta Biologics #S11550), 

antibiotics (1% Pen/Strep, 0.5% Fungizone, 0.1% Gentamycin), and 10 µL of 10 mM 

dexamethasone] mixed with 25% Preadipocyte Growth Medium (#C-27410, #C-39425; 

PromoCell). Culture media was changed every 2-3 days and when AD-MSCs were expanded to 

near confluence, they were passage expanded utilizing 0.25% trypsin-EDTA (#25200-056; 

Gibco) or utilized for subsequent experimentation. 

To obtain conditioned media, culture media was replenished in near confluent flasks of 

AD-MSCs (~80%) and cultured for an additional two days upon which it was collected. The 

conditioned media was then centrifuged (#Sorvall Legend RT, 1200 rpm, 5 min) to remove any 

cellular material or debris. It was stored at –80ºC until use. 

Additionally, human aortic SMCs were purchased from ATCC (#PCS-100-012) and 

grown in a similar manner to AD-MSCs but in their own culture media (Cell Applications, #311-

500, #311-GS).   
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Table 1. List of AD-MSC donors utilized in Aim 1-1. “X” marks use in particular experiment whereas multiple “X” 
identify multiple in vivo implantations of the same line. 

 



 60 

 

2.2.2 Differentiation of AD-MSCs into SMCs 

To induce differentiation of AD-MSCs into SMCs, AD-MSCs were plated at on PLL coated 

coverslips (Neuvitro, GG-22-pll) at a density of 10,000 cells per coverslip. They then 

subsequently cultured in a differentiation media based on MEMα (Life Technologies, #12561-

056) containing angiotensin II (AngII, 1 μM, Sigma #A9525) and 10% serum for 4 days [342]. 

After 4 days, AD-MSCs were fixed using 4% paraformaldehyde for 30 minutes and were 

evaluated using a standard immuno-fluorescent chemistry protocol to detect the SMC contractile 

markers calponin (1:250, Abcam #ab46794), myosin heavy chain (1:250, Abcam #ab77967), and 

smoothelin (1:250, #ab8969). F-actin (1:250, Sigma #P5282) was additionally used to assess the 

presence of an SMC spindle-like morphology. Calponin was chosen as a marker as it is 

expressed in aortic SMCs across their phenotype diversity [41, 42, 343]. Myosin heavy chain and 

smoothelin were chosen in addition as they are both indicative of fully mature, contractile SMCs 

[41, 42, 343]. In this study SMA could not be utilized as it is inherently expressed in AD-MSCs 

during flask culture. All images were acquired with an epi-fluorescent microscope with NIS 

Elements software (version 4, Nikon Instruments Inc., Melville, New York) and results were 

quantified using built-in tools. Expression of SMC contractile markers was quantified as the 

percentage of expressing cells and cell morphology via F-actin stain was quantified as shape 

factor (4*pi*area/perimeter2, ~0 = ellipsoid, ~1 = circular). Primary human aortic smooth 

muscle cells (ATCC, #PCS-100-102) were used as controls. AD-MSCs were utilized to compare 

across the basis of diabetes, age, gender, and BMI. 



 61 

2.2.3 Ability of AD-MSCs to Promote SMC Migration 

SMCs were plated within 24 well plates (TPP) at 10,000 cells/cm2 (~20,000 cells per well) one 

day prior to experimentation to achieve confluent monolayers. Initial pilot studies were 

performed to determine this as the optimal cell density as SMCs plated at too high of a density 

will produce extracellular matrix and induce contractile effects that will inhibit their migratory 

effects (see Appendix A). To perform the migration assay (Figure 1), each well of SMCs had 

their media removed and were scratched with a single stroke of a 200µL pipette tip (scratch 

wound length: 682µm ± 105µm (avg ± SD, n=48). SMCs were then washed with 1X Hanks’ 

Balanced Salt Solution to remove any cellular debris. SMCs were then incubated for 30 minutes 

with SMC media containing 1µL/mL of Cell Tracker Red (Invitrogen, #C34552) for 30 minutes 

for fluorescent visualization. The media was then replaced with AD-MSC conditioned media 

from healthy, diabetic, elderly, or healthy male donor groups and allowed to migrate over 24 

hours. Non-conditioned AD-MSC media was used as a control.  

For all experiments comparing between donor groups, conditioned media was diluted 

with stock culture media to 100,000 conditioning cells/mL. However, additional experiments 

were performed utilizing heathy AD-MSC-derived conditioned media for dose dependent 

studies. Here, media was diluted from 500,000 conditioning cells/mL (termed dose 1:0) to 

various dilutions of 1:2, 1:4, 1:9, and 1:19. Finally, healthy conditioned media was also heat-

inactivated where it was raised to a temperature of 56ºC for 30 minutes.  

To acquire images throughout the time course of migration the plates were placed in a 

closed, thermo-controlled (37⁰C) stage top incubator  (Tokai Hit Co., Shizuoka-ken, Japan) atop 

the motorized stage of an inverted Nikon TiE fluorescent microscope (Nikon Inc., Melville, NY) 

equipped with a 10X, 0.5NA plan apochromat lens (Nikon Inc., Melville, NY). This allowed 
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cells to be maintained under typical cell culture conditions (20% O2, 5% CO2, 37⁰C). NIS 

Elements software (version 4.0) was utilized to automatically image cell migration every 2 

hours. The resulting images were analyzed by measuring the area of the wound normalized to the 

area at the initial time point for each well. Migration rate was calculated by averaging the 

difference in normalized area between the first 4 time points (equivalent to 8 hours) and was 

normalized to non-conditioned controls. 

Additionally, to detect one bioactive factor was indeed produced by AD-MSCs, an 

enzyme-linked immunosorbent assay (ELISA) kit (R&D Systems, #DVE00) was utilized to 

probe for vascular endothelial growth factor (VEGF) within the conditioned media of AD-MSCs. 

All protocols were followed according to manufacturer instructions. However, in this study only 

healthy donors (i.e. <45 years of age, non-diabetic) were utilized and a higher number was 

utilized to get a greater sense of the population variability (n=12; inclusive of donors 1, 2, 5, 8, 

20, 21, 4, 10, 11 in Table 1 plus the following: [#7, Healthy, Female, 26, No, 21.3], [#23, 

Healthy, Female, 25, No, 29], [#24, Healthy, Female, 34, No, 27]). The donors utilized spanned a 

wide range of BMI (avg±std: 27.3±4.3, range: 21.3 to 34.7). 
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Figure 1. Experimental schematic of SMC scratch wound Migration Assay. SMCs are induced to migrate via a 
scratch wound assay while being stimulated with AD-MSC conditioned media over the course of 24 hours. Example 
images of this assay can be seen in Appendix A. 
 

2.2.4 PEUU Scaffold Fabrication 

Bilayered, tubular, biodegradable, elastomeric scaffolds (1.3 mm ID, 10 mm length) were 

created from poly(ester urethane)urea (PEUU) as previously described [165, 344, 345]. PEUU 

was synthesized utilizing polycaprolactone diol, 1,4-diisocyanatobutane, and putrescine [344] 

then fabricated in two different layers [165, 345]. This is a design which has been previously 

utilized by David Vorp’s laboratory [161, 165, 260, 265]. Thermally induced phase separation 

(TIPS) was utilized to fabricate the inner layer of the scaffold which creates a highly porous 

network allowing for cellular integration [260]. This scaffold was then placed on a rotating 

mandrel where it was finished by electrospinning PEUU to create a fibrous outer layer to provide 

mechanical stability (~400 µm TIPS thickness, ~70 µm ES thickness [260]).  
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2.2.5 Cell Seeding into TEVG Scaffolds 

AD-MSCs were seeded into PEUU scaffolds using the previously developed and validated 

Rotational Vacuum Seeding Device within David Vorp’s laboratory [197, 198]. Briefly, PEUU 

scaffolds were mounted within the device chamber where they were infused lumenally with a 

cell suspension containing 3 million AD-MSCs (suspension concentration: 1 million cells/mL, 

total volume: 3 mL, infusion rate: 2 mL per minute). During this time, the chamber was closed 

and a vacuum force of -127 mmHg was applied. Following seeding, constructs were statically 

rested for 4 hours in media to allow for cellular adhesion and were then moved to 500 mL 

spinner flasks (Kontes #Cytostir 882911-0250) where they were cultured for 48 hours (stir rate: 

15 rpm). At this point the constructs were considered prepared for in vivo implantation. 

2.2.6 Measurement of Uniform Cell Seeding 

As part of our TEVG design cells are incorporated into scaffold pores in a uniform manner (i.e. 

similar density and distribution across the radial (thickness), circumferential, and longitudinal 

directions). As a means to ensure that cell seeding was not altered across AD-MSC donor groups 

causing confounding effects during in vivo studies, the cell seeding of each donor type was 

validated (healthy (n=4), diabetic (n=3), elderly (n=3)). This is particularly a concern for elderly 

cells as age has been associated with an increase in cell size [341] which can directly affect cell 

seeding. Post-seeding and following spinner flask incubation, the constructs were fixed in 4% 

paraformaldehyde for 30 minutes, cut into three longitudinal pieces, and frozen for histologic 

analysis using standard protocols (30% sucrose for 30 min them embedded in OCT compound 

(#Fisher). To analyze cell seeding, sections were stained with DAPI to identify cell nuclei and F-
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actin (Phalloidin, 1:250; Sigma #P5282) to show cellular spreading along scaffolding material. 

Images were acquired at 10x using an epifluorescent microscope with NIS Elements software 

(version 4, Nikon Instruments Inc., Melville, New York).  

Due to the cumbersome and time consuming nature of manually counting cells, an 

automated cell counting tool was developed utilizing scripts within ImageJ (1.47, Rasband, 

Bethesda, Maryland) (see Appendix B for script). This tool was designed such that it could 

detect the presence of cells within a stained fluorescent image and output cell density. Acquired 

10x images from each seeded construct were first stitched together utilizing ImageJ toolboxes 

(MosaicJ Plugin) to acquire complete cross sectional views and were counted with the 

aforementioned script. Then to compare across the circumferential and radial directions, each 

cross section image was virtually segmented (non-automated) into circumferential or radial 

pieces. Cell densities per area were compared across all directions (i.e., radial, circumferential, 

and longitudinal). 

2.2.7 In Vivo TEVG Implantation  

Seeded scaffolds (n=8 healthy, n=7 diabetic, and n=7 elderly; some donors had multiple grafts 

implanted as indicated by the “XX” in Table 1) were implanted as abdominal aortic interposition 

grafts in Lewis rats for 8 weeks as previously described [153, 161, 260, 265]. For the purposes of 

this study all rats were kept similar between all groups (i.e. in a healthy status: non-diabetic, non-

elderly). All AD-MSCs in this study had a BMI range that was consistent (p=0.62) between the 

groups: 29.4±4.8 (healthy), 26.7±4.2 (diabetic), 28.7±0.8 (elderly). Implantations were 

performed as follows. Briefly, rats were anesthetized (4% Isofluorane and 50 mg/kg ketamine for 

induction; 1% Isofluorane for maintenance), placed in a supine position, and administered an 



 66 

injection of cefazolin (100 mg/kg, intramuscular) as a prophylactic. A midline incision was then 

made and the infrarenal abdominal aorta was exposed via manual dissection. Microclamps were 

then applied and the aorta was transected. An AD-MSC seeded construct was then sutured as an 

end-to-end anastomosis with interrupted 10-0 prolene sutures. After the graft was secured, the 

microclamps were released to restore blood flow. The patency of the graft was verified by direct 

observation of distal pulse pressure prior to closing the animal where the muscle and skin layers 

of the rat were sutured in a continuous style with 3-0 polyglactin resorbable sutures.  

Following surgery all animals were maintained on both antibiotics (Baytril, 10 mg/kg, 

oral, twice per day) and analgesics (buprenorphine, 0.5 mg/kg, subcutaneous, twice per day) for 

3 days, in addition to antiplatelet therapy for the first 4 weeks (dipyridamole – 250 mg/kg for the 

first 7 days, 100 mg/kg for the following 3 weeks, oral; aspirin – 200 mg/kg for the first 7 days, 

100 mg/kg for the following 3 weeks, oral). All implantations were carried out to the 8 week 

study endpoint unless obvious distress was observed due to thrombotic complications, at which 

point animals were euthanized.  

Upon euthanasia, an angiography was performed to assess the patency of the TEVG prior 

to explant wherein a catheter was placed in the descending thoracic aorta and infused with an x-

ray contrast agent (Renograf). TEVGs were then explanted TEVGs and were fixed in 4% 

paraformaldehyde for 30 minutes, bathed in 30% sucrose for 30 minutes, and then frozen for 

histologic analysis. 

Three native aortas were explanted from non-operated rats to be utilized as a positive 

control. 

It is important to note that one of the TEVGs in our study from the elderly group was 

patent but aneurysmally dilated upon explant and appeared to be due to abnormal fragmentation 
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of the electrospun scaffold layer. As this was an anomaly that has not been observed in any of 

our previous studies [161, 260, 265] this sample was excluded from analysis of composition. 

Histologic results from this sample can be seen in Appendix C. 

For discussion on the use of human cells within the inbred Lewis rat model, see Section 

2.7.5 (“T cell and B cell Activity Within Implanted TEVGs”).   

2.2.8 Histologic Evaluation and Immuno-fluorescence 

Frozen TEVGs were sectioned via a cryo-microtome at an 8 µm thickness mounted on gelatin 

coated slides (for recipe see Appendix D) to improve their adhesion throughout the staining 

process. Sections were then stained with hematoxylin & eosin (H&E) or immuno-fluorescent 

chemistry both using standard techniques. Antibodies were used to detect the presence of ECs 

(von Willebrand Factor (vWF) – 1:250; US Biological #V2700-07), SMCs (smooth muscle 

alpha-actin (SMA) – 1:1000; Sigma #A5228 and calponin – 1:250; Abcam #ab46794), and 

elastin (1:100; EPC #RA75) with fluorescent secondary antibodies (Rockland #611-1202 

(1:1000); Invitrogen #A10521 (1:1000), Sigma #C2821 (1:300)). When performing elastin 

staining an etching procedure was utilized prior to staining to expose elastin from potentially 

surrounding microfibrils which can block immuno-based staining. Briefly, sections were 

incubated in solution of Guanidine and DTT (6M Guanidine-HCl in 20 mM Tris pH 8.0, with 

0.8g dithiothreitol (DTT) per 10 ml) for 15 minutes to dissociate disulfide bonds and then in a 

solution of iodoacetamide (0.19g iodoacetamide per 10 ml in 20 mM Tris pH 8.0) for 15 minutes 

to prevent reformation. All images were acquired at 20x using an epifluorescent microscope with 

NIS Elements software. Analysis was restricted to the newly developed luminal tissue within 
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TEVGs (see Section: “2.3.4 In Vivo Gross Observations and Patency of Healthy, Diabetic, and 

Elderly TEVGs”). 

2.2.9 Morphometric and Quantitative Analyses 

To perform morphometric analyses, the following metrics were acquired manually using tools in 

NIS Elements software: cell density, neotissue thickness, nuclear shape factor, percentage of 

cells positively expressing SMA or calponin, percentage of luminal perimeter occupied by vWF 

positive cells, and percentage of thickness occupied by elastin. Neotissue thickness was defined 

as the thickness of the newly developed vascular-like tissue which is present on the luminal side 

of the explanted TEVG. Nuclear shape factor (defined as [4π x area/perimeter2]) measured the 

circularity of cell nuclei giving an indication of cellular alignment. For each image parameter, 

measurements were made using 4 replicate images from each explanted TEVG. 

2.2.10 Multiphoton Analysis of Collagen Architecture 

To analyze the presence of collagen within explanted TEVGs we utilized multiphoton 

microscopy as previously described by our group [346, 347]. Briefly, an Olympus multi-photon 

microscope (Model FV10, ASW software, Olympus America Inc., USA) was used via second-

harmonic generation (excitation wavelength: 780nm, emission wavelength: 400 nm) acquired at 

25x magnification. To quantitatively assess the collagen architecture within acquired images, we 

employed a custom image-analysis MATLAB script specifically designed to output the 

following parameters: fiber intersection density, segment length, fiber tortuosity, mean fiber 

orientation with 90 degrees set as the circumferential direction, and the mean fiber diameter. 
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These methods have been previously described in detail by our group [346, 347]. In brief, the 

script identifies fibers and intersection points between fibers within a multi-photon image. Fiber 

intersection density is defined as the number of intersection points per area, segment length is 

defined as the average length of fibers between intersection points, and tortuosity is the segment 

length divided by the direct line length between intersections. In addition, the orientation of each 

fiber segment is calculated with respect to the circumferential direction (i.e. 90 degrees) and the 

average diameter of each fiber segment is calculated. 

2.2.11 Statistics 

All statistical analysis was done utilizing Minitab software (version 16) to perform either a t-test, 

ANOVA, or linear regression. Statistical significance was accepted at p<0.05. All data were 

verified for parametric tests by confirming normality and homogeneity of variance (not shown). 

Appropriate post-hoc tests when using ANOVA analyses were performed (Fisher’s LSD, 

Tukey). 

When performing comparisons across donor groups (i.e. healthy, diabetic, elderly) and 

between donors of different genders (i.e. female, male) during the in vitro SMC differentiation 

and SMC migration studies, t-tests were performed to elucidate differences between each pair. 

While this experimental design could be classified as a two-way ANOVA, this was not 

performed as all group combinations were not present required to run the test (e.g. male diabetic) 

and these comparisons were not the end goal of this study (i.e. altering a single factor while 

controlling for all others; e.g. comparing the female healthy and male elderly would introduce 

multiple biasing effects and is thus irrelevant to this study). 
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2.3 RESULTS 

2.3.1 Differentiation of AD-MSCs from Diabetic and Elderly Donors into SMCs 

To assess whether AD-MSCs from diabetic donors had a reduced ability to differentiate into 

SMCs compared to healthy donors, they were stimulated with angiotensin II for 4 days. Diabetic 

AD-MSCs revealed a less efficacious differentiation compared to healthy AD-MSC controls 

indicated by a significantly lower expression of the SMC marker calponin (Figure 2). 

Additionally, diabetic AD-MSCs failed to adopt the typical SMC spindle-like morphology 

(Figure 3) observed in healthy AD-MSCs as shown qualitatively by F-actin staining and 

quantified by a lack of a significant reduction in shape factor. No positive staining was seen with 

myosin heavy chain or smoothelin in either healthy or diabetic donor differentiated AD-MSCs 

(data not shown). Unstimulated AD-MSCs from both groups did not express calponin, myosin 

heavy chain, or smoothelin (data not shown) and display a flat morphology (see Figure 3). 

SMCs were used to confirm the functionality of the antibodies for these three markers (data not 

shown) and the SMC spindle-like morphology.   
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Figure 2. AD-MSC differentiation into SMC is decreased for diabetic patients based on calponin expression. 
Diabetic AD-MSCs displayed a less efficacious SMC differentiation compared to healthy AD-MSCs in terms of the 
expression of calponin ((A) – immuno-fluorescence for calponin (green) with counterstained nuclei (blue)). This 
was quantified by percentage of calponin expressing cells (B). Data is presented as mean ± SEM with *= significant 
difference at p<0.05. For calponin expression n=7 was used for the healthy group and n=4 for the diabetic group. 
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Figure 3. AD-MSC differentiation into SMC is decreased for diabetic patients based on cell morphology. Upon 
differentiation AD-MSCs did not acquire an SMC spindle morphology ((A) – immuno-fluorescence for F-actin 
(green) with counterstained nuclei (blue)). This was quantified by measuring the shape factor of the cells 
(4π×area/perimeter2, ~0 = ellipsoid, 1 = circular) (B). Data is presented as mean ± SEM with *= significant 
difference at p<0.05. n=4 was used per group for shape factor experiments. 
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  Similar to the diabetic donor AD-MSCs, those from elderly donors also displayed a 

reduced differentiation potential towards SMCs under angiotensin II stimulation. This was 

shown based on the lower expression of calponin (Figure 4) and maintenance of a flat 

morphology throughout the differentiation process (Figure 5). Additionally, similar to healthy 

and diabetic donor AD-MSCs, elderly ones revealed no positive staining for myosin heavy chain 

or smoothelin in either stimulated or unstimilated cases (data not shown). 

Gender did not affect the ability of AD-MSCs to differentiate into SMCs as both male 

and female donors showed equivalent results in terms of expression of calponin post-

differentiation and were induced morphologically into a SMC-like spindle shape (Figure 6).  

Finally, to assess the influence of BMI as a potentially confounding variable a linear 

regression analysis was performed across all donors (Figure 6). No significant BMI-dependence 

was seen across calponin expression (R2 = 0.001, p=0.96). 
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Figure 4. AD-MSC differentiation into SMC is decreased for elderly patients based on calponin expression. Elderly 
AD-MSCs displayed a reduced ability to differentiate into SMCs under AngII stimulation for 4 days. AngII 
stimulated AD-MSCs showed a significantly lower expression of calponin ((A) – immuno-fluorescence for calponin 
(green) with counterstained nuclei (blue)). This was quantified by number of calponin expressing cells (B). Data is 
presented as mean ± SEM with *= significant difference at p<0.05. For calponin expression n=7 was used for the 
healthy group and n=5 for the elderly group.   
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Figure 5. AD-MSC differentiation into SMC is decreased for elderly patients based on cell morphology. 
Differentiated AD-MSCs did not acquire an SMC spindle morphology ((A) – immuno-fluorescence for F-actin 
(green) with counterstained nuclei (blue)). This was quantified by measuring the cells shape factor 
(4π×area/perimeter2, ~0 = ellipsoid, 1 = circular) (B). Data is presented as mean ± SEM with *= significant 
difference at p<0.05. n=4 was used per group for shape factor experiments. 
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Figure 6. Gender and BMI do not affect AD-MSC differentiation into SMCs. Comparing gender of AD-MSCs from 
both healthy male and female donors produced equivalent results when AD-MSCs were stimulated to differentiate 
into SMCs with AngII based on calponin expression (A) and change in cell morphology (B). Performing a 
regression analysis utilizing BMI from all donors produced no correlation for the percentage of cells expressing 
calponin (C). Data for bar graphs is represented as mean ± SEM with *= signficant difference at p<0.05. n=4 was 
used per group for shape factor experiments and for calponin expression experiments, n=7 was used for the female 
group and n=5 for the male group. 
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2.3.2 Ability of AD-MSCs to Produce SMC Pro-Migratory Factors in Healthy, Diabetic, 

and Elderly Donors 

To investigate the ability of AD-MSCs to exert a secreted factor-based pro-migratory effect on 

SMCs and assess how this critical function for TEVGs is altered in high-cardiovascular risk 

donor demographics, conditioned media was collected from AD-MSCs of healthy, elderly, and 

diabetic patients and utilized in a scratch wound SMC migration assay. Upon stimulation with 

AD-MSC conditioned media from healthy donors, SMCs showed a more rapid wound closure 

rate when compared with non-conditioned control media (Figure 7). This data was expressed as 

migration rate per hour (over the first 8 hours prior to inevitable slowing due to plate filling). 

Additionally, the pro-migratory effect was removed upon heat inactivation indicating the heat-

liability of the secreted factors (Figure 7). The AD-MSC conditioned media also showed a dose 

dependent response as dilution to varying levels of conditioning cells/mL produced a less rapid 

migration rate with a 20-fold dilution producing a similar effect to non-conditioned media 

(Figure 7). Finally, a representative growth factor that is responsible for SMC migration [348] – 

VEGF – was probed for in media conditioned by healthy AD-MSCs and was shown to be present 

at 4091±1903 pg/106. Additionally, the correlation of production of VEGF with BMI showed no 

significant trend (data not shown, R2=0.01, p=0.74). 
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Figure 7. AD-MSC secreted factors can promote SMC migration. SMCs are induced to migrate via a scratch wound 
assay while being stimulated with AD-MSC conditioned media over the course of 24 hours. AD-MSCs promote the 
migration of SMCs compared to non-conditioned controls (A). This data was quantified by measuring the 
normalized wound area over time. This data converted to migration rate per hour relative to controls, expressing a 
significant difference between AD-MSC conditioned media and non-conditioned controls (B). Additionally, heat 
inactivating conditioned media caused a significant loss in functionality indicating SMC pro-migratory effects 
happen at least in part on a protein level. Diluting AD-MSC conditioned media to varying levels of conditioning 
cells/mL produced a dose dependent effect (dose 1:0 = 500,000 conditioning cells/mL) (C). Data is presented as 
mean ± SEM with *= significant difference at p<0.05. n=4 was used per group in all experiments. 



 79 

To then determine differences related to donor demographics, we analyzed the potency of 

AD-MSC conditioned media from two high cardiovascular risk populations: diabetics and the 

elderly. Similarly to healthy AD-MSC conditioned media, SMCs stimulated with conditioned 

media from diabetic patients also induced a more rapid wound closure compared to non-

conditioned media (Figure 8). However, AD-MSC secreted factors from elderly donors were 

unable to induce pro-migratory effects (Figure 9). It is also noteworthy that all AD-MSCs in this 

study were cultured in high glucose growth media (~17 mM which is equivalent to 306 mg/dl 

which is above the diabetic threshold) indicating that the diabetic hyperglycemic environment 

does not limit the ability of AD-MSCs to produce SMC pro-migratory factors. 

As all the donors utilized for the previous experiments were female to reduce 

confounding effects, it was important to assess whether gender played a role in AD-MSC 

secretion of SMC pro-migratory factors. Comparing the migration rate induced by healthy 

female and healthy male cells revealed the effect not to be gender specific (Figure 10) as there 

was no difference between the groups. 

Finally, to assess a potential confounding variable of BMI a linear regression analysis 

was performed including all donors utilized in this study (Figure 10). No significant trend was 

seen (migration rate: R2 = 0.05, p=0.4) 
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Figure 8. AD-MSCs from diabetic patients produce SMC pro-migratory secreted factors. Investigating diabetic 
patient AD-MSCs for the ability of their secreted factors to promote SMC migration, showed an increased migration 
compared to non-conditioned media ((A) – wound closure over time; (B) – wound closure rate per hour). This 
increased migration rate was similar to that seen with healthy AD-MSCs. Data is presented as mean ± SEM with *= 
significant difference at p<0.05. n=4 was used per group in all experiments. 
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Figure 9. AD-MSCs from elderly patients do not produce SMC pro-migratory secreted factors. When comparing 
between healthy and elderly patient AD-MSCs, those from elderly patients displayed an inability of their secreted 
factors to produce SMC pro-migratory effects ((A) – wound closure over time; (B) – wound closure rate per hour). 
Data is presented as mean ± SEM with *= significant difference at p<0.05. n=4 was used per group in all 
experiments. 
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Figure 10. Gender and BMI do not affect AD-MSC secreted SMC pro-migratory factors. Comparing across the 
gender of AD-MSCs from both healthy male and female donors produced equivalent SMC pro-migratory responses 
(A). Performing a regression analysis utilizing BMI from all donors  produced no correlation for migration rate (B). 
Data for bar graphs is represented as mean ± SEM with *= signficant difference at p<0.05. n=4 was used per group 
for migration. 

 

2.3.3 Uniform Cell Seeding Analysis for Healthy, Diabetic, and Elderly AD-MSCs  

To ensure consistent TEVG fabrication across all groups, the cell seeding process was 

investigated and compared for uniformity. As first step to overcome the potential error associated 

with manually counting as well as to increase throughput of experiments requiring quantification 

of cells, a cell-counting tool was developed utilizing scripts in ImageJ. First, this tool imports a 

multi-channel (i.e. colored) image and then extracts the desired channel which was utilized for 

the detection of cells. In most cases this is the blue channel due to the common use of DAPI 

staining for cell nuclei. Next, the tool applies a Gaussian blur to the image and subtracts this 

from the original to eliminate background noise and develops more sharply defined particles. An 

Otsu threshold [349] is then applied to form a binary image utilized in subsequent counting steps. 

This method converts a gray scale image to one consisting only of two binary pixel colors (black 

and white) by defining the optimal pixel gradient between immediate separations. The particles 
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are then eroded and subsequently dilated. In this situation, particles which are of normal size will 

remain the same but particles that are sufficiently small and likely imaging artifacts (as opposed 

to cells) will be eliminated. Finally a watershed transformation is applied prior to counting which 

separates touching circular objects. A visual representation of these steps can be seen in Figure 

11. The script with now isolated cells can output various parameters within ImageJ toolboxes 

such as number of cells, area, perimeter, etc. To validate the accuracy of this tool compared to 

manual counting, three images were manually counted by three lab members and subsequently 

analyzed using the automated analysis tool which showed a striking similarity (Figure 12). 
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Figure 11. ImageJ cell counting tool procedure. (A) An original multicolored image (or single color) is imported 
into ImageJ for analysis. (B) The specified individual channel representing the cell nuclei is selected and converted 
to grayscale. A Gaussian Blur of Radius 1 pixel (C) and 4 pixels (D) is applied to the image and subtracted from one 
another to reduce background noise and develop more punctate cell nuclei (E). (F) Otsu’s Threshold is performed to 
transform the image to a binary format where all cell nuclei are converted to black and the background is converted 
to white. (G) Both “Open” and “Watershed” commands are performed to remove small pixel artifacts and separate 
overlapping cell nuclei, respectively. (H) Finally, each cell nuclei is identified and counted. Blowup image shown in 
(I). 
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Figure 12. The automated ImageJ cell counting tool produces equivalent results to manual counting. Three lab 
members performed manual cell counting for three cell seeded TEVG scaffold images. Equivalent results were 
observed when comparing to the program output. 

 

 

As a next step, to ensure that cell seeding was consistent between different AD-MSC 

donor cohorts, scaffolds were seeded with AD-MSCs from each donor (healthy, diabetic, elderly; 

n=3 per group) and subsequently analyzed with the aforementioned code. In all cases AD-MSCs 

were successfully seeded within scaffolds at high efficiency (>95% of the infused cells became 

entrapped within scaffolds) and achieved qualitative uniformity (Figure 13). Additionally, F-

actin staining revealed that the cells were appreciably spread on the scaffold. Quantitative 

analysis comparing the number of cells per area across segmented longitudinal, circumferential, 

and radial directions confirmed this uniformity (Figure 14). As an example, when cross-section 

images were segmented into three radial pieces, approximately one-third (~33%) of the total 

cells were present in each segment. In all cases statistical analysis revealed a non-significant p-

value was shown via one-way ANOVA (radial: 0.94, 0.75, 0.77; circumferential: 0.96, 0.48, 
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0.65; longitudinal: 0.76, 0.05, 0.26; for healthy, diabetic, and elderly, respectively) confirming 

uniformity. 
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Figure 13. AD-MSCs from healthy, diabetic, and elderly donors qualitatively seed successfully within scaffolds. 
AD-MSCs from healthy, diabetic, and elderly  donors were seeded into scaffolds (n=3) and stained for cell nuclei 
(blue: DAPI) and F-actin (green: Phalloidin). All scaffolds showed a uniform distribution of cells and consistent 
spreading along the scaffold. White arrow indicates the lumen. 
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Figure 14. AD-MSCs from all donor groups seed quantitatively uniformly in TEVG scaffolds. TEVG Scaffolds 
seeded with AD-MSCs from healthy, diabetic, and elderly groups were confirmed as quantitatively uniform by 
measuring the cell numbers (presented as mean percentage of total ± SD) across radial (A), circumferential (B), and 
longitudinal (C) segments. The results show that each donor group achieves similar cell numbers regardless of 
segment or direction (No significant difference was observed with p>0.05.). These values are also comparable to a 
perfectly even distribution (e.g. three radial segments results in 33% for each). When comparing the radial segments 
adjustments were made based on area as the increasingly larger concentric circle segments would inherently possess 
more a higher number of cells. A schematic of the segmentation strategy can be seen in (D). 
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However, one drawback in performing the approach above is that obtaining appropriately 

paired circumferential segments (i.e. the same scaffold spot for each longitudinal ring analyzed) 

to compare is difficult due to manufacture artifacts in scaffold and rotation that occurs through 

processing. This is not experienced while segmenting across the radial and longitudinal 

directions as the pairs are obvious. As a means to further refine the circumferential analysis, we 

increased the number of segments to 9 to improve the detection of circumferential uniformity. 

An illustration of the superiority of this approach can be seen in Figure 15. As shown by the 

example, if significant clumping occurs it is possible to achieve a numerical indication of either 

uniformity or non-uniformity depending on where the segmentation occurs. However, by 

increasing the number of segments this error is minimized. Segmenting all AD-MSC seeded 

TEVGs in this manner utilizing 9 segments still resulted in a uniform circumferential distribution 

of the cells (Figure 16). Additionally, the average variability experienced across these segments 

was similar between all groups (Figure 17) and experienced a normal distribution (Figure 18) 

indicating that any variation experienced in cell seeding was due to random chance and not due 

to anomalies (which would be experienced if clumping occurred). Admittedly this approach still 

is not perfect and further refinement could be made in the future by measuring average inter-

particle distances. 
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Figure 15. Illustration of a false-positive example of cell seeding analysis and the superiority of an increased 
number of circumferential segments. An example case is given where if only four segments are utilized (left) the 
automated cell counting method will determine the cell density per region as similar comparing circumferentially 
despite the qualitatively obvious non-uniform distribution. However, increasing the number of circumferential 
segments (right) reduces the chance of this happening. 
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Figure 16. Circumferential analysis of cell seeded TEVG scaffolds with an increased number of circumferential 
segments. The circumferential analysis seen in Figure 14 was advanced by using a higher number of circumferential 
segments (9 slices instead of 4 slices). The resulting data further confirm the circumferential uniformity AD-MSC 
seeded scaffolds composed of cells from all donors (healthy (red), diabetic (yellow), elderly (gray)). 

 

Figure 17. AD-MSC seeded scaffolds have similar variability in the circumferential direction. The average 
variability between the 9 circumferential slices in Figure 16 was compared between healthy, diabetic and elderly 
groups and displayed similarity (p=0.22). This indicated that there are no anomalies in the seeding distribution (i.e. a 
uniform seeding was achieved) which would have resulted in unusual increases in variability (as any variability 
induced strictly by random chance is would be similar across all groups). 
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Figure 18. The cell density in AD-MSC seeded scaffolds across the circumferential direction display a normal 
distribution. The percentage of total cross sectional cell densities across each of the 9 circumferential slices (e.g. 
theoretical average = 100%/9 = 11%) in Figure 16 (and triplicate images) were plotted as a histogram for each 
healthy, diabetic or elderly group. A normal distribution resulted for each group further indicating in conjunction 
with Figure 17 that there are no anomalies in the seeding distribution which would have resulted in unusual 
increases in variability. 
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2.3.4 In Vivo Gross Observations and Patency of Healthy, Diabetic, and Elderly TEVGs 

Upon implantation of all AD-MSC seeded grafts (Figure 19) regardless of donor group, obvious 

blood flow was observed indicated by a strong distal pulse pressure. Following 8 weeks of 

maturation in vivo the patency of TEVGs were assessed via angiography wherein only TEVGs 

which maintained patency would exhibited flow of the contrast agent past the graft to the legs 

(Figure 19). Investigating the donor-related effects revealed that whereas healthy and elderly 

AD-MSCs were able to produce patent vessels (100% and 71% of the time, respectively), 

diabetic AD-MSC-based had a marked reduction in this ability (28%) (Figure 19). Nearly all 

animals with non-patent grafts showed debilitating occlusion related symptoms at acute time 

points (< 1 week) at which point they were euthanized and TEVGs were explanted. Due to the 

acute timings of these occlusions and due to literature evidence suggesting that this is a time 

when stem cells are retained within TEVGs (see Section: “1.5.3 In Vivo TEVG Mechanisms”) 

this effect was attributed to the stem cells themselves. However, one single animal with AD-

MSC from diabetic donors remained free of symptoms for 8 weeks despite full occlusion of the 

graft which can occur due to collateral vessel growth. Gross observation of all occluded grafts 

revealed the presence of a lumenal clot (Figure 20). Observation of patent grafts revealed 

significant remodeling with a tissue-like appearance in the generation of TEVGs, whereas non-

patent grafts – even the one that was explanted after 8 weeks – exhibited no such tissue-like 

appearance (Figure 20). In particular, a newly developed vascular-like “neotissue” developed 

lumenally while the PEUU scaffold TIPS layer (thermally induced phase separation, i.e. the 

inner layer) showed visual signs of degradation. 
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Figure 19. Diabetic AD-MSCs do not produce patent vessels whereas healthy and elderly do. (A) Example image of 
TEVG implant is shown. (B) Angiograms were performed to assess the patency of TEVGs at the 8 week endpoint 
with a patent vessel showing clear flow past the graft to the hindquarters (indicated by arrows). (C) Total patency 
rate was calculated based on the number of patent vs. total TEVGs; note that TEVGs created using cells from 
diabetic donors show a marked reduction in patency. 
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Figure 20. Occlusion of diabetic TEVGs is due to thrombosis. (A) Gross inspection of the explants revealed that the 
primary reason for non-patent TEVGs was occlusive thrombosis. (B) H&E stained sections of a patent 8 week 
TEVG, a non-patent 8 week TEVG, and a non-implanted PEUU scaffold. Significant remodeling of patent TEVGs 
included newly developed neotissue (Neo) lumenally and breakdown of the original PEUU scaffolding material 
(inner layer: TIPS, outer layer: ES). Occluded grafts displayed presence of a thrombus and no remodeling. Arrows 
indicate lumen. 
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2.3.5 Morphometric Measurements of Explanted TEVGs 

Three morphometric measurements were performed on all patent TEVGs explanted at 8 weeks 

(n=8 healthy, n=2 diabetic, n=4 elderly): cell density, neotissue thickness, and nuclear shape 

factor (an indication of circumferential alignment). All of these parameters were equivalent 

across donor groups (Table 2; one-way ANOVAs for cell density (p = 0.7), neotissue thickness 

(p = 0.22) and nuclear shape factor (p = 0.68)). Comparing to native artery controls however, 

neotissue thickness and shape factor were similar but TEVGs had a higher cell density (Table 2). 
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Table 2. All quantified morphometric, histological, and micro-architectural parameters of patent TEVGs. No 
statistical significance was seen comparing between healthy, elderly, and diabetic parameters. 
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2.3.6 Cellular Composition of Explanted TEVGs 

To determine which types of cells and the extent at which they were incorporated within TEVG 

neotissue, we performed immuno-fluorescent chemistry for the presence of vascular SMCs 

(SMA, calponin) and endothelial cells (vWF). All patent explanted TEVGs displayed a similar 

composition with the majority of the tissue thickness being comprised of SMA-positive cells 

with a continuous lining of vWF-positive endothelial cells along the lumen (Figure 21). 

Quantifying the percentage of cells expressing these markers revealed that SMA-positive cells 

were indeed distributed through the thickness of the neotissue and that vWF-positive cells were 

ubiquitous along the luminal surface (Table 2). Both of these features were equivalent to native 

artery controls. Further confirming the presence of SMCs, the marker calponin was also present 

throughout the TEVG neotissue but while similar across AD-MSC donor groups (Table 2; 80%, 

p = 0.78), it was lower than the  100% expression seen in native artery controls. 

In this study no neovascularization in the form of vaso vasorum was observed.  However 

this was not expected due to the lack of its presence in rodent aortas [350] and that our neotissue 

thickness is smaller (<150 µm) than the necessary capillary distance required by tissues (200 

µm) [351]. 
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Figure 21. All patent TEVGs display similar cell phenotypes. Patent TEVGs, regardless of AD-MSC donor type, 
display significant remodeling with the development of neotissue composed of SMA (red; left column) and calponin 
(green; middle column) positive SMCs, as well as a continuous lining of vWF positive ECs (green; right column) 
which is qualitatively similar to native arteries (bottom row). All images were counterstained for cell nuclei (blue: 
DAPI). White arrow indicates the lumen. Note that the residual PEUU scaffolding material produces a significant 
amount of auto-fluorescence and should not be regarded as positive staining in these images. 
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2.3.7 Matrix Composition of Explanted TEVGs 

To determine the presence of extracellular matrix within TEVG neotissue we performed two 

forms of microscopic analysis. Multiphoton microscopy was utilized to image collagen, which 

qualitatively displayed a fiber-like structure (Figure 22). Of note is that collagen fibers were not 

present entirely throughout the neotissue thickness – as they were in native arteries – and were 

specifically absent near the lumen (Figure 22). Utilizing custom scripts developed in MATLAB 

to analyze the micro-architecture of vascular tissue, we assessed parameters revealing 

information about fiber intersections, segment lengths between intersections, tortuosity, fiber 

orientation with respect to the circumferential direction (set at 90 degrees), and fiber diameter 

(i.e. thickness) (Table 2). For each parameter, no difference was observed between any patent 

TEVG which had utilized AD-MSC from healthy, diabetic, or elderly patients (one-way 

ANOVAs for fiber intersections: 0.48; segment lengths: 0.56; tortuosity: 0.93; fiber orientation: 

0.9; fiber diameter: 0.9). Native artery controls displayed similar micro-architectural parameters 

with the exception of having fewer fiber intersections (Table 2). 



 101 

 

Figure 22. All patent TEVGs have a robust network of aligned collagen fibers. (A) TEVGs, regardless of AD-MSC 
donor type, display a development of a fibrous, circumferentially aligned collagen network (red). However, the 
collagen fibers present within a TEVG are not fully distributed throughout the neotissue thickness like that seen in 
native artery controls (see phase contrast overlay). White arrow indicates lumen.  
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Immuno-fluorescent chemistry was then used to detect the presence of elastin within 

explanted TEVGs. Elastin was qualitatively (Figure 23) and quantitatively (Table 2) present 

throughout the thickness of TEVG neotissue. This is the same distribution as native artery 

controls. However, despite the immunological presence of elastin, the pronounced elastic 

lamellae of native arteries and their inherent autofluorescence was not observed within TEVGs 

(data not shown). 
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Figure 23. TEVGs display presence of elastin but no elastic lamellae. TEVGs, regardless of AD-MSC donor type, 
display alpha-elastin throughout the neotissue thickness (red) including a prominent layer next to the lumen. 
However the prominent medial elastic lamellae which are present in native arteries were absent in remodeled 
TEVGs. White arrow indicates. Note that the residual PEUU scaffolding material produces a significant amount of 
auto-fluorescence and should not be regarded as positive staining in these images.  
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2.4 DISCUSSION 

The ability of an implanted scaffold to become populated with functional cellular constituents is 

a critical factor for success in tissue engineering applications. As discussed in Sections 1.1.3 

(“Smooth Muscle Cells”) and 1.5.3 (“In Vivo TEVG Mechanisms”), a TEVG with higher SMC 

content indicates a greater degree of contractility and correlates with desirable mechanical 

properties. As many tissue engineering approaches employ biodegradable scaffolds, if 

insufficient vascular cells are not developed or recruited the TEVG could fail. Additionally, 

MSCs can guide the maturation process of a TEVG by their ability to differentiate into vascular 

cells and secretion of factors that can recruit them (see Section: 2.1.2 Definitions of Essential 

Cellular Functions and Performance Criteria for Vascular Engineering”). In this Aim it was 

shown that donor demographics in human AD-MSCs can affect the ability to differentiate into 

SMCs and the ability to produce secreted factors that are responsible for SMC migration. Age 

diminished both of these the abilities of AD-MSCs while diabetes only affected the ability of 

AD-MSCs to differentiate.  Gender and BMI however did not seem to play a role in either stem 

cell function, which is surprising since female AD-MSCs proliferate at a higher rate than male 

ones [352, 353] and BMI is negatively correlated with AD-MSC differentiation capacity [354]. 

As we have utilized human cells in this study, particularly those from clinically realistic groups, 

and shown functional differences in a mechanism of action by which TEVGs remodel and the 

ability of AD-MSCs to form SMCs, this represents is a critical step in the clinical translation of 
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TEVGs. While these cells may have auxiliary functions such as providing resistance against 

thrombosis [261], this clearly could reduce the effectiveness of an autologous TEBV therapy. 

One area of interest that was not yet investigated in the migration experiments is the 

effects of each AD-MSC demographic with their respective SMC demographic, such as diabetic 

SMCs and elderly SMCs. However, these have been previously shown to have increased [355] 

and deceased [356] migration, respectively, in human SMCs.  This parallels the conclusions 

above that the combination of AD-MSC and SMC of diabetic patients is pro-migratory, where 

those of elderly is not.  

As many TEVG approaches utilize AD-MSCs to differentiate into SMCs (see Section: 

“1.1.3 Smooth Muscle Cells” and “1.5.3 In Vivo TEVG Mechanisms”), those utilizing elderly 

and diabetic cells could be heavily affected due to the reduced differentiation potential for both 

groups. One point worth noting in this regard is that under 1 µM AngII stimulation for 4 days 

AD-MSCs do not achieve complete differentiation into SMCs as shown by positive staining of 

calponin (an intermediate differentiation marker) in approximately 30-50% of AD-MSCs with no 

staining for myosin heavy chain or smoothlin (both late differentiation markers).  

We have also shown that the ability of AD-MSCs to induce SMC migration is decreased 

upon heat inactivation indicating that these secreted factors likely operate on a protein level. One 

likely explanation could be that growth factors secreted by MSCs are responsible for this pro-

migratory function. Indeed we have shown that one known factor to promote SMC migration, 

VEGF, is present in our conditioned media. However, many growth factors produced by AD-

MSCs are pro-migratory for SMC [357] but also can induce other mitogenic, proteolytic, 

extracellular matrix producing, inflammatory, and angiogenic effects [187]. This is concerning 

for studies that target elderly patients as the same growth factors that lead to the deficiency in 
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promoting SMC migration may also affect other applications beyond TEVGs.  Additionally, with 

AD-MSC secreted factors showing a dose dependent response, the need to optimize the number 

of cells utilized in cell therapy approaches is clear. 

Additionally in this Aim we have shown that scaffolds seeded with AD-MSCs from 

human patients can remodel into native-like TEVGs following 8 weeks of implantation. Among 

the three different donor populations analyzed (healthy, diabetic, elderly) – which included two 

cohorts at high cardiovascular risk – a low patency rate for the TEVGs was found only when 

using AD-MSCs from the diabetic cohort. TEVG failures were consistently due to thrombotic 

occlusion at an early timepoint. Throughout the study we took measures to minimize 

confounding effects (e.g. using the same gender, avoiding overlapping age brackets between 

elderly and diabetic patients) and ensured that in vivo effects were not related to fabrication (i.e. 

poor or non-uniform cell seeding as all TEVGs seeded similarly) of the vascular grafts. For the 

AD-MSC-based grafts which remained patent, remodeling resulted in a cellular composition and 

matrix structure closely mimicking those seen in native arteries. We note that there were some 

exceptions, including a lower percentage of cells expressing calponin in the TEVG, versus native 

artery, and both the lack of a full-thickness distribution of collagen and pronounced elastic 

lamellae in the TEVG. We expect that the remodeling process is incomplete at 8 weeks and 

further SMC maturation and extracellular matrix synthesis will occur. Indeed, several groups 

have shown that TEVG remodeling is a long-term process [49, 162, 276]. Providing further 

evidence to the continued remodeling in our TEVGs at this time point is the presence of collagen 

abluminally and the presence of calponin lumenally. Based on this configuration it is likely that 

abluminal SMCs are currently engaged in a synthetic phenotype wherein they are actively 

depositing collagen and those closer to the lumen are assuming a contractile phenotype.  
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We have demonstrated here that cells from a diabetic patient cohort fail in our TEVG 

application where cells from healthy patients do not. Since it is a common practice to use cells 

from healthy patients in pre-clinical studies [47-49, 61, 62, 161, 163, 178, 181, 206, 216, 235, 

237, 239, 240, 244, 255-258, 260-264, 267-277, 280] (see Section: “1.5.1 Improper Cell 

Sourcing”), we would contend that testing cells from the intended patient cohort (and therefore 

the source of autologous cells) is critical. Additionally, while only AD-MSCs were tested in this 

study, other cell types routinely utilized in vascular engineering such as endothelial cells [106, 

116, 358-360], endothelial precursor cells [361-367], and SMCs [106, 355, 356, 359, 360, 368] 

can also be affected by donor demographics. Several questions remain about the donor effects 

observed here, including 1) What is the mechanism for thrombotic failure seen with cells from 

diabetic donors?, and 2) What other high-risk donor populations could possess ineffective cells 

for this graft strategy? Answering these and similar questions could be the next frontier in 

autologous vascular engineering.    

Cells from elderly patients induced successful remodeling of the scaffolds utilized for the 

TEVG. This was unexpected since also shown in this Aim is that AD-MSCs from elderly 

patients were defective at differentiating into SMC and inducing SMC migration. As such we 

had expected less SMCs in the explanted grafts from the elderly cohort. There are a few possible 

explanations why the elderly-derived cells worked in this in vivo model. One explanation relates 

to the concept of a “critical size defect”. In many models of tissue regeneration, the size of the 

defect may be small enough (and the host robust enough) that regeneration is successful, while 

beyond some size threshold therapy is no longer effective. In the current study we employed a 1 

cm long scaffold, which is significantly smaller than that required for a human-sized graft (on the 

order of 10 cm for a coronary artery bypass [143]). It may be that the in vitro deficiency we saw 



 108 

using AD-MSC from elderly patients will become consequential upon moving to a larger sized 

graft. Another explanation could be the hemodynamic parameters of the rat interpositional 

implant model. While this model is useful for initial screening, the local flow and stress patterns 

will be very different (and more similar to humans) in larger and more geometrically challenging 

models [369, 370]. Therefore large animal models will be needed to move this technology 

forward. 

2.5 CONCLUSION 

In conclusion, the essential functions and criteria for use of AD-MSCs within a TEVG as defined 

in Section 2.1.2 (“Definitions of Essential Cellular Functions and Performance Criteria for 

Vascular Engineering”) were evaluated across two clinically relevant human donor populations 

(diabetic, elderly) which include: 1) the ability of AD-MSCs to differentiate into SMCs, 2) the 

ability to of AD-MSCs to secrete SMC pro-migratory factors, 3) the ability to successfully seed 

within TEVG, and 4) the in vivo functional performance.  

The presence of diabetes was shown to reduce the ability of SMCs to differentiate but 

their ability to produce pro-migratory factors was unaffected. However while these AD-MSCs 

were able to successfully seed within TEVGs scaffolds they displayed poor in vivo performance 

due to thrombotic occlusion.  

AD-MSCs isolated from an elderly population also displayed a decreased ability to 

differentiate and in contrast to diabetic AD-MSCs, an inability to produce pro-migratory factors. 

However, while similar to diabetic AD-MSCs in that those from elderly patients were able to 
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successfully seed TEVG scaffolds, their in vivo performance was unaffected despite both 

analyzed cellular functions being decreased.  

This Aim clearly demonstrates that patient demographics – specifically those at high 

cardiovascular risk – can negatively affect autologous cells and induce poor performance in 

TEVG applications. This is particularly shown in those patients with diabetes which fail to 

thrombosis. However, interestingly all patent grafts – regardless of donor group – are able to 

develop into robust TEVGs containing key vascular components such as SMCs, endothelial 

cells, collagen, and elastin. These results indicate that if methods could be utilized to alleviate 

these thrombotic affects, functionality could be restored to the diabetic population. Further 

investigation into this will be discussed in Aim 1-2. 

2.6 FUTURE WORK 

While this Aim makes clear progress in identifying the concerns for the use of autologous cells 

from realistic clinical populations, this research is still nascent and there are still multiple factors 

to be investigated. As this study solely isolated the effects of cells by removing biasing effects 

due to patient demographic cross-over and keeping all other parameters (e.g. scaffold, animal 

model, etc.) similar, many environmental effects which may affect TEVG performance still must 

be considered. As discussed above (see Section: “2.4 Discussion”) the presence of diabetes and 

advanced age have been shown to affect the migratory potential of SMCs. As the main TEVG 

remodeling mechanism relies heavily on the recruitment of host cells (see Section: “1.5.3 In 

Vivo TEVG Mechanisms”), understanding this effect is critically important. Adding to this, the 

diabetic environment has been shown to be pro-calcific which could compromise graft 
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performance [371] and the functions of AD-MSCs have been shown to be environmentally 

sensitive [372-374]. Considering both diabetic and aged animal models is an appropriate next 

step. 

Additionally, while removing biasing via strict stratification of donor groups assisted in 

elucidating differences due to independent effects it did not successfully validate changes that 

would be observed in the highest cardiovascular risk group: elderly diabetics [100]. However, 

due to the independent pathologic mechanisms associated with diabetes and aging (i.e. 

hyperglycemia and age-related senescence, respectively) it is likely that cross-over of cellular 

effects unique to each group or synergistic effects could occur. Indeed, cross-over of effects have 

been reported between aged and diabetic conditions [335, 375, 376] and certain effects are not 

observed until both aging and diabetes happen co-currently [377]. Evaluating this group is a 

worthwhile next step. 

Another concern for the use of animal models is that only a small animal model has been 

utilized in this study. While this animal model was suitable for this study as it acted to screen 

TEVGs from multiple patient groups, a larger model could offer several advantages due to their 

higher similarity to human hematology and vessel geometry [132, 369, 378, 379]. As an 

example, rodent models have quicker pro-thrombin time resulting in faster coagulation and have 

substantially more platelets than humans [378]. This could result in a stronger susceptibility to 

thrombosis. As diabetic TEVGs displayed significant thrombosis, testing in a larger animal 

model may assist in alleviating this effect.  Adding to this, different sized vessels can lead to 

thrombosis via different mechanisms. For example when considering the role of tissue factor, 

microvascular thrombosis is dominated by circulating tissue factor whereas macrovascular 

thrombosis is dominated by vessel wall tissue factor [379]. Additionally, the test bed utilized in 
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small animal models may not be representative of the intended clinical setting due to their linear 

geometry. For example a coronary artery procedure will encounter complex geometries and 

kinking which will not be encountered in our current model [369].  

One limitation is that we did not perform extensive mechanical characterization of our 

TEVGs upon explant which can be another critical factor to their success as discussed in Section 

1.3.1 (“General Considerations”). While the mechanics of explanted TEVGs were initially rarely 

investigated when performing pre-clinical TEVG analysis, more studies have begun to perform 

these tests in recent years (see Section: “2.7.3 Explanted TEVG Mechanical Testing”). For the 

purposes of this dissertation a pilot study on the explanted properties of our TEVG was 

performed as discussed below (see Section: “2.7.3 Mechanical Testing Data”).  

Another limitation of this study was that the cells present within the TEVG were not 

labelled or identified in explanted samples. Doing so could provide further insight into the 

potential mechanisms of TEVG remodeling as well as guide future experiments when designing 

the artificial stem cells within Aim 3. To do this, pre-implanted cells could be labelled with 

membrane dyes, transfected with reporters such as GFP, or identified via immuno-straining by 

detection of human specific markers. However, one technical challenge in identifying cells 

within the seeded pores is the strong auto-fluorescence in explanted TEVG scaffolds (see the 

smooth muscle actin column in Figure 21 for example images displaying strong scaffold-based 

auto-fluorescence adjacent to the neotissue). 

Finally, while it was shown how diabetes and aging affect the ability of AD-MSCs to 

differentiate and promote SMC migration via conditioned media, this was not shown for other 

vascular cells such as endothelial cells. This is due to the fact that the decline of endothelial 

differentiation of AD-MSCs and the ability of MSC conditioned media to be pro-migratory for 
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endothelial cells has been shown in other studies [28, 380]. However, differences in the pro-

migratory secreted factors due to donor base remains to be investigated and could be pursued in 

future studies. 

2.7 ADDITIONAL STUDIES AND THOSE CONTRIBUTING TO FUTURE WORK 

2.7.1 Short Term Implants 

In addition to the 8 week implants performed in Aim 1, shorter implants were performed at both 

1 and 2 weeks (n=2 each). The implants at 1 week were utilized to confirm the lack of an 

immune response present when utilizing human cells within a Lewis rat model (see Section: 

“2.7.5 T cell and B cell Activity Within Implanted TEVGs”) and to assess short term TEVG 

remodeling for the future tuning of the acellular TEVG proposed in Aim 3. Immuno-staining for 

SMA and vWF revealed the early stages of SMC recruitment to the graft but also completely 

lack of ECs (Figure 24). This is in contrast to the well-developed neotissue present at an 8 week 

time point.  

Explants performed at 2 weeks were done as a pilot study for assessing the mechanical 

properties of our TEVG. The results can be seen in Section 2.7.3 (“Mechanical Testing Data”). 

In the future it is important to evaluate the dynamics of the remodeling process 

particularly for the development and tuning the release of the artificial MSC technology being 

developed in Aim 3. In this manner the evaluation of the TEVG composition should be 

performed to identify the presence of vascular components (i.e. EC, SMC, collagen, elastin) and 

the implanted AD-MSCs in order to understand the necessary timing of delivered factors. While 
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some work has been performed in the Vorp laboratory to track the presence of human cells using 

fluorescent in situ hybridization (FISH) showing minimal presence of human cells at 8 weeks 

[260], tracking can also be done through dyes, GFP labelling, or human-specific antibodies. In 

this study it was preliminary shown that at short timepoints (3 days from a diabetic thrombosed 

sample; 1 week from a patent healthy sample) human cells were present, however at later time 

points (8 weeks) they were absent via staining for the MSC marker CD90 (Figure 25). 

Additionally, this antibody was confirmed via positive staining in an MSC seeded scaffold and 

negative seeding in a rat artery (data not shown). This staining also suggests that the poor 

patency observed in diabetic TEVGs is due to their diminished anti-thrombogenicity due to their 

persistence in TEVGs at times when clotting occurs. 
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Figure 24. Short-term implantation reveal incomplete recellularization with vascular components. PEUU scaffolds 
seeded with AD-MSC were implanted for 1 or 8 weeks (see Aim 1-1). After explantation, the vessels were analyzed 
for using immuno-fluorescent staining for the SMC marker smooth muscle alpha-actin (SMA) or the EC marker von 
Willebrand Factor (VWF). Recellularization is incomplete with 1 week of implantation, but complete by 8 weeks. 
(n=2, lumenal surface is indicated by white arrows).  
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Figure 25. Immuno-staining for human CD90 reveals presence of implanted cells during short term implantations. 
Explanted TEVGs were stained with human specific CD90 (red; counterstained with DAPI (blue)) to identify the 
presence of implanted AD-MSCs in explants consisting of (A) a clotted TEVG seeded with diabetic AD-MSCs at 3 
days, (B) a patent TEVG seeded with healthy AD-MSCs at 1 week, (C) and a patent TEVG seeded with healthy 
AD-MSCs at 8 weeks. 
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2.7.2 Further ECM Characterization via Mason’s Trichrome and Verhoeff Van Gieson 

In addition to the extracellular matrix data on collagen and elastin generated from immuno-

fluorescent microscopy, a subset of TEVG explants were stained with Verhoeff-Van Gieson 

(VVG) and Mason’s Trichrome to identify collagen and elastin, respectively. All grafts showed 

clear presence of elastin (black) and collagen (blue) further validating their presence within 

TEVGs (Figure 26 and Figure 27). 

 

 

Figure 26. Characterization of 8 week TEVG explants by Mason’s Trichome staining. Further characterization of 
the extracellular matrix was performed using Mason’s Trichrome staining which indicates collagen (blue). Only 
healthy (A-C) and elderly (D-F) AD-MSC-based explants were used in this analysis which both displayed clear 
development of collagen within TEVGs. 
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Figure 27. Characterization of 8 week TEVG explants by Verhoeff van Gieson staining. Further characterization of 
the extracellular matrix was performed using Verhoeff van Gieson Staining which indicates elasatin (black). Only 
healthy (A-C) and elderly (D-F) AD-MSC-based explants were used in this analysis which both displayed clear 
development of elastin within TEVGs. 
 

2.7.3 Explanted TEVG Mechanical Testing  

Understanding the mechanical properties of the TEVG throughout its in vivo development is a 

critical concern as they can be predictive of failure mechanisms such as intimal hyperplasia and 

graft rupture. However, another aspect of TEVG mechanics is that early stage mechanical 

properties can influence those in the long term [64]. In particular, a study performed by Khosravi 

et al. showed that the presence of a TEVG that possesses a higher stiffness at an early time point 

in vivo – than to a less stiff one, all other things being equal – will result in a stiffer graft at later 

time points [64]. Indeed, due to the importance of mechanical properties, studies are now 

beginning to emerge investigating the mechanical properties of explanted TEVGs [47, 49, 63, 
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64, 153, 160, 252, 273, 275]. In addition to the analysis in Aim 1, a preliminary investigation 

was performed to investigate the mechanics of our TEVG upon explant wherein dynamic 

compliance and uniaxial tensile testing were performed on a subset of the grafts. Included in this 

analysis is one SVF composed TEVG from Aim 2. The cell lines used for the 8 week implants 

from the following cell line numbers (see Table 1): 2, 16, SVF8, SVF 5 p4, SVF 7 p4, and SVF 

8 p4.  

To measure dynamic compliance, explanted TEVGs were placed within an ex vivo 

vascular perfusion system using previously established protocols [165] where they were 

subjected to pulsatile physiologic pressure waveforms (120/80 mmHg) via a Bio-Medicus pump 

(#520D). During this time a laser micrometer was utilized to measure the outer diameter of the 

TEVG with dynamic compliance was then calculated as (D120 – D80)/(D80*(P120 – P80)). 

Immediately following, the TEVGs were removed from the system, cut circumferentially into 

rings and were tested uniaxially using an Instron Tensile Tester (#5543A) following established 

protocols [165]. The mechanical parameters were calculated from the resulting stress(Cauchy)-

strain curves: ultimate tensile stress (UTS; maximum stress experienced by the sample) and the  

tangent modulus in the both the physiologic region (between 120 and 80 mmHg) and the elastic 

region. Additionally, in both these studies sections of native rat aorta explanted proximal to the 

TEVG were utilized to reflect native-like properties.  

Dynamic compliance testing (Figure 28) revealed that all TEVGs, regardless of time 

point or donor group, had limited compliance in comparison to native rat aorta controls. 

Additionally, TEVGs explanted at 8 weeks were less compliant than those at 2 weeks or our 

initially implanted scaffolds which have compliance similar to native vessels [165]. From this we 
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hypothesized that our TEVGs could be experiencing calcification which was analyzed in the 

following section (see Section: “2.7.4 Calcification of Implanted TEVGs”). 

Tensile testing (Figure 29) revealed that explanted TEVGs have a tensile strength (UTS) 

and tangent modulus 10-fold less than that seen in native vessels. Additionally, unlike native 

vessels scaffolds which display a singular peak stress, explanted TEVGs displayed a biphasic 

response. This was noted to be due to the difference in mechanics in the inner scaffold layer 

(neotissue/TIPS) which fractures first compared to the outer scaffold layer (electrospun). Despite 

these differences, the strength of TEVGs increased with further in vivo maturation (2 weeks to 8 

weeks) and all explanted TEVGs display tangent moduli in the physiologic region on the same 

order of magnitude as native vessels.  

One noteworthy observation is that although both mechanical tests introduce 

circumferential stretch, a loss in compliance was shown when performing pressure-diameter 

testing but a higher stiffness was not shown when performing uniaxial tensile tests. There are 

two main reasons for these differences. First, the pressure-diameter testing is a biaxial test 

(circumferential and radial) and introduces longitudinal fixation whereas the uniaxial test 

(strictly circumferential) does not. This allows for more prominent Poisson effects (i.e. reduction 

of transverse dimensions during elongation of the primary direction) under the assumption of 

incompressibility which can drastically alter the response. Secondly, the pressure-diameter 

testing gives global effects of the entire explanted TEVG whereas uniaxial tests only observe 

local effects (i.e. you are testing multiple ring pieces of the graft as opposed to the graft as a 

whole). As calcification may not be uniformly distributed throughout the entirety of the graft, 

there are instances where these effects could be missed. 
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One final mechanical parameter that was only anecdotally noted was the potential for 

kinking of the scaffolding material when bending is experienced (Figure 30) which could affect 

TEVG tested in more geometrically complex models. However, this is only noted for blank (i.e. 

non-seeded scaffolds) and was not further investigated in those that were cellularized. This point 

remains as speculation and should be investigated in future studies. 

 

 

Figure 28. Explanted TEVGs display limited compliance compared to native vessels. (A) Explanted TEVGs were 
tested in an in vitro perfusion apparatus where they were applied with a physiologic waveform (120/80 mmHg) and 
their diameter was monitored with a laser micrometer. While native aortas displayed a high degree of compliance 
(B), explanted vessels displayed little (C) (y-axis scaled to the same intervals in (B) and (C)). Calculating the 
compliance values (inclusive table) showed that explanted TEVGs at 8 weeks had compliance an order of magnitude 
or less than native vessels and this value deceased with increased in vivo maturation (2 weeks to 8 weeks). 
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Figure 29. Explanted TEVGs display tensile properties less than native vessels. (A) Explanted TEVGs were cut into 
rings and stretched uniaxially to measure tensile mechanical properties. The shown image depicts a point where the 
inner TEVG layer (neotissue/TIPS) has fractured and the remaining force being generated is from the outer TEVG 
layer (electrospun) leading to a biphasic response. Representative images of stress-strain curves from native aorta 
(B) and explanted TEVGs (C) as well as quantified mechanical parameters (inclusive table) are shown. The tangent 
modulus (unitless, i.e. MPa/MPa) within the physiologic range was defined as the slope of the stress-strain curve 
between 120 and 80 mmHg and the tangent modulus (unitless, i.e. MPa/MPa) in the elastic portion was defined as 
the slope of the linear portion of the stress-strain curve. 
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Figure 30. Bending of PEUU scaffolds results in kinking. The TEVG within this study utilizes a linear test bed (i.e. 
aortic interposition graft). However anecdotally it was noted that kinking can occur in bending of the TEVG 
scaffolds. This was not assessed further in those seeded with cells but is an important consideration in future studies 
which may encounter a more geometrically challenging text bed. 
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2.7.4 Calcification of Implanted TEVGs 

As a potential explanation for the lack of compliance seen within our TEVGs – which display 

native-like compliance values upon implant [165] – we investigated graft calcification which has 

been shown to occur in vascular grafts composed of synthetic material [66, 150, 238]. Therefore 

we stained a small subset of our grafts for Alizarin Red (calcium: red) and Von Kossa 

(phosphates: black) using standard histological techniques. Stains for Alizarin Red revealed 

sporadic nodules throughout explanted TEVGs and occurred regardless of donor group (Figure 

31). Additionally, as both Alizarin Red and Von Kossa staining displayed a similar staining 

pattern, this confirmed these nodules to indeed be composed of calcium phosphate (Figure 32). 

However this effect seems to be mediated by the host remodeling response as when thrombosis 

occurred in grafts (i.e. no remodeling occurs) calcification was absent (Figure 33). Additionally, 

cell seeded scaffolds revealed no positive staining for Alizarin Red prior to implantation 

confirming this as a post-remodeling event (Figure 34).  To further assess whether this was not 

simply due to the newly incorporated adipose-derived cell type, historical explanted TEVG 

samples from the Vorp laboratory using human pericytes also stained positive for Alizarin Red 

(Figure 35).  

Understanding and addressing the TEVG calcification is critically important for moving 

forward as one of the prime clinical demographics – diabetics – have been shown to possess a 

high propensity for calcification [371]. As our TEVGs were tested within a physiologically 

healthy rat model (i.e. non-diabetic) and still showed degrees of calcification, this effect could be 

exacerbated in diabetic patients. However, one way to alleviate this may be to alter the scaffold 
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pore size as TEVGs with larger pore scaffolds have been shown to be more resistant to 

calcification [238]. Optimization of pore size may also affect the development of extracellular 

matrix [381]. 
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Figure 31. Calcification sporadically occurs in explanted TEVGs. Alizarin Red Staining was performed on 
explanted TEVG samples which sporadically displayed the presence of calcium rich nodules. This occurred in all 
cases, regardless of donor. Instances of calcified healthy and elderly TEVGs are shown in (A) and (C) and non-
calcified ones are shown in (B) and (D). 
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Figure 32. Alizarin Red and von Kossa staining overlap confirmed the presence of calcific nodules. In addition to 
staining with Alizarin Red which indicated the presence of calcium ions (red), von Kossa staining was also used 
which indicated phosphate ions (black). As both of these were noted to overlap in the same positions, this confirms 
the nodules to be calcific and thus composed of calcium phosphate. 
 

 

Figure 33. Calcification was not noted in instanced of thrombosis. In TEVGs which were occluded with thromosis 
no calcification was observed. As in occluded TEVGs in Aim 1-1 it was noted that no graft remodeling occurred and 
these grafts were explanted in < 1 week, this result indicates the necessity for graft remodeling prior to calcification. 
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Figure 34. No calcification is observed in AD-MSC seeded scaffold prior to implantation. To confirm that no 
calcification was present prior to implantation AD-MSC seeded scaffolds were stained with Alizarin Red 
immediately after seeding (A) or when cultured in spinner flask for 2 days (B) at which point the construct would be 
implanted. Additionally AD-MSC seeded scaffolds cultured in spinner flasks for 5 (C) and 7 days (D) as well as 
non-seeded PEUU scaffolds (E) were stained. In all cases no calcification was observed suggesting it to be an in 
vivo process. 
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Figure 35. Historic TEVG samples from the Vorp lab using human pericytes also displayed calcification. To 
determine if calcification was occurring solely due to the AD-MSCs utilized within this study, historic samples from 
the Vorp lab (8 week implanted human pericyte graft (A) or 1 year pericyte implant graft (B)) were stained for 
Alizarin Red. Calcification was present in these samples. 

 

2.7.5 T cell and B cell Activity Within Implanted TEVGs 

The animal model used within this study is a Lewis rat which gains immune-tolerance due to its 

inbred nature. By inbreeding, these rats develop a lack of MHC gene diversity which prevents 

the recognition of foreign antigens [382, 383] and thus allow for the use of non-autologous cells 

without immune rejection. However, as this model is not fully immune-deficient (i.e. it is not 

athymic), it is important to confirm that the survival – and thus function – of the implanted 

human cells within this study were not negatively affected by a potential immune response. To 

confirm the lack of immunological concerns within our TEVG samples, explanted samples at 1 

week were stained for CD45RA (a marker present on both T and B cells (#MCA340G, AbD 

Serotec) revealed no presence of lymphocytes (Figure 36).  
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Additionally, further evidence for the tolerance of human MSCs in this model has been 

reported by other studies showing a lack of an immune response and engraftment of human 

MSCs to at least 8 weeks within different applications [384, 385]. Additionally, even studies 

using fully immune tolerant rat models with human MSCs show survival for at least 7 days [386] 

which likely attests to the immuno-suppressive abilities of these cells [387, 388] further allowing 

for immune-tolerance. However, despite the poor survival of cells in the aforementioned study, 

this time point (7 days) is likely sufficient for the cells to perform the necessary functions to 

induce TEVG remodeling. Indeed, TEVG studies performed using fully immuno-deficient 

animal models have shown that implanted MSCs will be lost in approximately 1 week (see 

Section: “1.5.3 In Vivo TEVG Mechanisms”) regardless, due to host remodeling. As we have 

observed no gross inflammation in our explants, there is a lack of T/B cell activity at time points 

when the cells are likely around, and that sufficient remodeling is present (i.e. the cells are 

performing their necessary functions to generate patent and remodeled vessels) it argues that 

these human MSCs are well tolerated in this model. 

In addition, this model may be superior to fully immuno-compromised animals when 

assessing TEVG remodeling as common immuno-deficient models that directly alter immune 

cell function such as the SCID-bg mutation can present false-positive remodeling events (see 

Section: “1.5.3 In Vivo TEVG Mechanisms”). 
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Figure 36. Lymphocyte activity is not present in TEVGs. To confirm the lack of lymphocyte activity (T-cell, B-cell) 
in our TEVG implants using human cells in a Lewis rat model, staining on 1 week explants was performed (A). A 
rat spleen (B) was utilized as a positive control to confirm antibody functionality. 
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3.0  SPECIFIC AIM 1, PART 2:  

MECHANISM OF DIABETIC AD-MSC THROMBOSIS 

After revealing that the main effect seen in Aim 1-1 was the decreased patency due to thrombosis 

when utilizing diabetic AD-MSCs within TEVGs, we next performed a mechanistic study to 

identify potential molecular players. By understanding this, modifications to the TEVG strategy 

could be designed to enable autologous therapy. In this study two potential processes involved in 

thrombosis were initially investigated: platelet adhesion and fibrinolysis. However, after initial 

experimentation with platelet adhesion revealed no differences between healthy or diabetic AD-

MSCs, this aim mainly focused on fibrinolysis. 

3.1 INTRODUCTION 

Thrombosis (i.e. a blood clot) is a physiological phenomenon that occurs in the vasculature 

where erythrocytes and platelets will bind together and form a complex held together by fibrin at 

sites of injury site to prevent fatal loss of blood. While in normal physiology, thrombosis 

formation is a beneficial to the survival after an injury to the vascular system, in diseased 

conditions or during vascular interventions – in the case of a vascular graft – formation of a 

blood clot can lead to life- or limb-threatening consequences. Thrombosis formation occurs 

through a cascade of molecular pathways called termed the intrinsic [97] and extrinsic [98] 
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pathways. Each of these pathways involves different activators, but ultimately converge to a 

central pathway to generate thrombin which acts to deposit crosslinked fibrin.  

In addition, regulatory pathways such as fibrinolysis act to remove thrombus material. 

The fibrinolysis pathway operates as a proteolytic cascade ultimately leading to activation of 

plasmin and digestion of the fibrin-rich thrombus. However, one potential mechanism to 

establish a pro-thrombogenic environment is under-activation of this pathway. Indeed, one of the 

initial time-course events in TEVG remodeling is the initial deposition of fibrin to the graft 

lumen which is removed at later time points (see Section: “1.5.3 In Vivo TEVG Mechanisms”). 

Activity of the fibrionlytic cascade is regulated by multiple species including two plasminogen 

activators (urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA)) and 

various inhibitors (e.g. plasminogen activator inhibitor (PAI-1), soluble uPA receptor (suPAR), 

alpha2-antiplasmin) (Figure 37). 

 

 

Figure 37. Fibrinolytic Molecular Pathway. The fibrinolytic pathway ultimately results in the cleavage (and thus 
dissolution) of fibrin. The main molecular player responsible for this action is plasmin which is regulated by 
multiple activators (uPA – urokinase plasminogen activator, tPA – tissue plasminogen activator), and inhibitors 
(PAI-1 – plasminogen activator inhibitor-1, α2-antiplasmin). The molecular weights of each of these elements is 
provided. 
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Formation of a thrombus is a heavily regulated molecular event [97, 98] but when 

simplified has two critical components: the adhesion of activated platelets and the deposition of 

the fibrin mesh. In this way when considering the pro-thrombotic effect of diabetic AD-MSCs as 

seen in Aim 1-2, an increase in thrombosis can be attributed to two mechanisms. First, 

thrombosis could occur from an increase in the degree of platelet adhesion. Second, a higher 

deposition of fibrin or a decrease in the degree of fibrin degradation by the cell’s secreted factors 

could result in thrombosis. This Aim will investigate both of these phenomenon to establish a 

mechanistic explanation of the pro-thrombogenic phenotype of diabetic AD-MSCs. 

While a pro-thrombotic phenotype can commonly be seen in diabetic individuals [389-

391], a phenotypic change in this manner for cells used in vascular engineering – particularly 

AD-MSCs – has not been previously reported. Previous studies have shown that MSCs are 

capable of expressing components of the fibrinolytic pathway [184, 187, 188, 335, 392-394] and 

normally display an anti-thrombogenic phenotype [261] but the differential effects due to 

diabetic condition still remain poorly characterized [335, 392]. Investigating the mechanism 

behind the pro-thrombogenic phenotype of AD-MSCs from diabetic patients could provide 

insights on how to make these cells functional for downstream autologous vascular tissue 

engineering.  
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3.2 METHODS 

3.2.1 Cell Culture 

AD-MSCs and SMCs were cultured in the same manner as in Aim1-1. Additionally, conditioned 

media was acquired in the same way but was not diluted and the number of conditioning cells 

observed upon collection was the same between both groups (healthy: 0.06±0.01 x 106 cells/cm2, 

diabetic: 0.05±0.01 x 106, p=0.16). The same cell lines were in Aim 1-1 were utilized but in this 

case BMI was noted to be similar between both groups (healthy: 28.2±4.9, diabetic: 26.0±3.8; 

p=0.49). For a list of donors see Table 3. 

 

Table 3. List of AD-MSC donors utilized in Aim 1-2. 

 

3.2.2 Platelet Adhesion Assay 

In order to test the ability of diabetic AD-MSCs (control: healthy AD-MSCs) to adhere platelets, 

monolayers were incubated with bovine platelet rich plasma anti-coagulated with a 7:1 vol/vol 

citrate dextrose for 30 minutes. This was followed by several PBS washes to remove any 
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unbound platelets.  Bound platelets were then labeled using a standard immune-fluorescence 

protocol staining for CD41 (1:100, Kingfisher #CAPP2A) with counterstains for DAPI and F-

actin (1:250, Sigma #P5282). Samples were imaged using NIS Elements software (version 4.0). 

Platelets bound to cell bodies and cell nuclei were manually counted in each image, which was 

then utilized to calculate the average number of platelets per cell.  

3.2.3 Fibrinogen Zymography 

Zymography was performed utilizing acrylamide gels with the incorporation of fibrin using 

previously established techniques [395]. Briefly, fibrin was mixed into the resolving phase 

solution prior to polymerization of a 1.5 mm thick 7.5% acrylamide gel (resolving gel 

formulation: 3.25 mL water, 3.37 1M Tris-HCl pH 8.8, 90 µL 10% SDS, 2.25 mL 40% 

acrylamide, 90 µL 10% APS, 9 µL TEMED, and 400 µg/mL fibrinogen) to achieve a final 

fibrinogen (Sigma #F8630) concentration of  5.33 µg/mL. The gels were loaded with conditioned 

media (40 µL total sample; mixed 3:1 with 4x Laemmli Sample Buffer (BioRad #161-0747)) 

from AD-MSCs. Following SDS-PAGE (25 mA per gel) the gels underwent several washes in 

water and 2.5% Triton-X prior to incubation (37°C) in a divalent cation reaction buffer (50 mM 

Tris-HCl pH 7.4, 1 mM CaCl2, 1 mM MgCl2). Digestions were performed for 7 days to allow for 

enzymatic degradation of the entrapped fibrin within the gel. This degradation occurs via active 

enzymes directly digesting fibrinogen, or reacting indirectly with contaminating 

plasminogen/plasmin present in the fibrinogen mixture. Following incubation, each gel was 

stained with Blue BANDit Protein Stain (Amresco) to visualize the degradation bands which 

appear as white on a blue background. The amount of degradation was quantified using gel 
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analysis tools within ImageJ (National Institutes of Health, Bethesda, Maryland) by integrating 

the mean gray scale intensity over the area of each band. 

3.2.4 Western Blot for uPA 

Western blot procedures were performed using standard protocols [396]. Briefly, samples 

(undiluted AD-MSC conditioned media or 6U uPA protein (AnaSpec, #72159)) were mixed with 

non-reducing sample buffer (mixing 3:1 with 4x Laemmli Sample Buffer (BioRad #161-0747)), 

heated for 15 minutes at 65°C, and loaded onto a 12.5% polyacrylamide gel (40 µL per lane) 

(formulation: 1.75 mL water, 3.37 1M Tris-HCl pH 8.8, 90 µL 10% SDS, 3.75 mL 40% 

acrylamide, 90 µL 10% APS, and 9 µL TEMED)). Following SDS-PAGE, the gels were 

electrophoretically transferred to a nitrocellulose membrane. Membranes underwent a standard 

immuno-staining procedure for uPA using a 5% milk blocking solution (in PBS with 0.1% 

Tween, 1 hr.), a rabbit anti-uPA antibody (1:500 in block, Abcam #ab24121, overnight at 4°C), 

and a horseradish peroxidase conjugated anti-rabbit IgG secondary (1:2000 in block, Amersham 

#NA934VS, 1 hr.). Blots were then developed with an in-house luminol-based ECL solution 

prior to imaging on a Bio Rad #ChemiDoc XRS+ imaging system.   

3.2.5 uPA Fluoro-metric Activity Kit 

A fluorometric microplate kit was utilized to detect the level of uPA activity within conditioned 

media samples (AnaSpec, #72159). All protocols were followed according to the manufacturer’s 

instructions and all samples were repeated in triplicate. 
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3.2.6 Fabrication of Fibrin Constructs and Stimulation with AD-MSC Media 

Fabrication of fibrin-based constructs containing entrapped SMCs was performed as previously 

described [395]. Briefly, fibrin gel constructs were created by immediately pipetting 200 µL of a 

polymerization mixture (3.7 mg/mL fibrinogen (Sigma #F4753-5G), 0.2 U/mL thrombin (Sigma 

#T7513-500UN), 1.25 mM CaCl2, and 50,000 cells/mL) into a 1 cm circle etched on tissue 

culture plastic. Gels were then incubated (37°C for 30 minutes) to allow for polymerization prior 

to adding conditioned media. Non-conditioned media was used as a control. Additionally, to 

provide for a gradation in fibrinolysis, conditioned media was supplemented with the fibrinolytic 

inhibitor, ε-amino caproic acid (ACA, 0.5, 1.0, or 3.0 mM). All samples were repeated in 

triplicate using n=3 donors per group. 

To analyze the degradation of each gel, images were taken with a 16 megapixel camera at 

1, 4, and 7 days. To quantify this degradation, which appeared as the gels developing a porous 

structure and becoming increasingly translucent, mean grayscale intensity measurements of each 

gel image were made in ImageJ. Specifically, gels that had a lower intensity were more 

translucent and thus considered as more degraded. Those gels which were incubated without 

ACA were found to catastrophically detach from the edges rather than showing a smooth change 

in translucence. 

3.2.7 Compressive Mechanical Testing of Gels 

To further assess fibrin degradation of fibrin-based constructs, those which were inhibited with 3 

mM, 1 mM, or 0.5 mM hexanoic acid were tested utilizing mechanical compression. All gels 

which were administered non-inhibited conditioned media were either completely degraded or 
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degraded to a point that testing was not possible. Each gel was placed between two flat glass 

plates. The top plate was connected to a stepper motor translating at a rate of 0.005 mm/s and a 

50g load cell (Transducer Techniques #GS0-50). The dimensions of each gel were measured and 

then loaded to 50 percent of the thickness in a non-confined state. Maximum tensile and 

compressive forces and energies were calculated for each sample. Samples were repeated in 

triplicate. Additionally, images of each gel were acquired from the sagittal plane and the contact 

angle of each gel was measured using tools within ImageJ. 

3.2.8 Statistics 

All statistics were performed in a similar manner to Section 2.2.11 (“Statistics”). 

3.3 RESULTS 

3.3.1 Platelet Adhesion Assay 

AD-MSCs obtained from healthy and diabetic donors showed no difference in the number of 

bound platelets per cell (Figure 38) and in either case the platelet binding was lower than when 

human SMCs (i.e. positive control; data not shown) were used. 
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Figure 38. Healthy and diabetic AD-MSCs adhere a similar number of platelets. Monolayers of AD-MSCs from 
either healthy or diabetic donors were incubated with bovine platelet rich plasma to allow for platelet adhesion 
(example shown in (A); platelet – red; cell body (green)). The number of platelets adhered to cell bodies were 
counted and revealed no difference between healthy of diabetic groups (B; p=0.48, n=3) 
 

3.3.2 Fibrinogen Zymography 

To screen for fibrinolytic factors potentially secreted by AD-MSCs, fibrinogen zymography was 

utilized. Following 7 days of enzymatic reaction, prominent degradation bands were seen at 

molecular weights of 31, 40, 85, 150, and 250 kD using healthy AD-MSCs (Figure 39). 

Development of the zymograms for shorter periods (1 or 3 days) revealed less prominent bands 

and were thus not utilized (Figure 40).Visual comparisons of the degradation bands showed that 

media conditioned by healthy AD-MSCs produced prominent bands at 31 kD and 40 kD whereas 

media conditioned by AD-MSCs from diabetic donors did not. Quantifying the band areas at 

these molecular weights revealed a significant difference between healthy and diabetic AD-

MSCs at these weights with an additional increase in the band at 150 kD (Figure 39) indicating a 

higher fibrinolytic activity in healthy AD-MSCs. Since serum alone provided a degradation band 

at 85 kD, we repeated the experiment using AD-MSCs cultured under serum-free conditions. In 

this case, bands at 40, 50, 85, 100 and 150 kD were apparent (Figure 41). Notably, in the serum-
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free case the bands at 31 kD were lost and new bands appeared at 50 kD. Quantifying this set 

revealed a significant difference at 40 kD further confirming the higher fibrinolytic activity in 

healthy AD-MSCs. It is important to note that serum-free conditions do not represent the 

physiologic environment under which thrombosis occurs (i.e. within blood serum) but it 

confirms that AD-MSCs are capable of producing all of the bands seen within zymograms and 

are not confounded by the fibrinolytic factors within serum. 

 

 

Figure 39. Diabetic AD-MSCs produce less fibrinolytic factors than healthy AD-MSCs. (A) Zymography was 
performed utilizing conditioned media from AD-MSCs from healthy or diabetic donors using acrylamide gels doped 
with fibrinogen. White bands indicate areas of fibrinogen degradation, several of which were more prominent when 
AD-MSC from healthy donors were used. Media control = non-conditioned serum-containing media. (B) Bands 
were quantified using toolboxes within ImageJ; bands at 31, 40, and 150 kD were increased in healthy samples. Data 
is presented as mean ± SD. Black bar = statistically significant difference with p<0.05. 
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Figure 40. Zymography performed at earlier time points results in less prominent degradation bands. In addition to 
the 7 day zymogram performed in Figure 39, additional zymograms were performed at 1 (A) and 3 (B) days. Less 
prominent bands are seen at both days with bands occurring at lower molecular weights (31 kD) beginning to appear 
at 3 days. 
  

 

Figure 41. Fibrinogen zymoraphy performed under serum-free conditions confirm AD-MSC produced fibrinolytic 
factors. (A) Zymography performed using conditioned media isolated under serum-free demonstrated that all bands 
are capable of being produced by AD-MSCs and not masked by fibrinolytic serum factors. S = non-conditioned 
media containing serum. M = non-conditioned media without serum. (B) Additionally, quantification of bands in 
(A) demonstrated elevation of the 40 kD band in media conditioned by AD-MSC from healthy donors. 
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3.3.3 Western Blot for uPA and uPA Activity Kit 

Prior literature [397-403] suggested that uPA would be present at three of the band weights 

observed in our zymography results: 31, 50, 100 kD (see Figure 37). Performing a Western blot 

using purified human uPA protein confirmed the location of uPA bands at these molecular 

weights and suggested the identity for the 31 kD zymographic band (Figure 42). However, we 

were unable to detect uPA in conditioned media using Western blot procedures with the same 

antibody and this was likely due to the levels of protein present in the media being below the 

detection limit. Instead, to specifically detect uPA we utilized a high sensitivity fluorometric 

uPA activity assay kit. Conditioned media from both cell types displayed uPA specific protease 

activity and that the activity of cells from diabetic patients was approximately 67% of that seen 

with cells from healthy patients (Figure 42). 
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Figure 42. Urokinase plasminogen activator (uPA) is in part responsible for the differences in fibrinolytic ability 
between AD-MSCs from healthy and diabetic donors. (A) A Western blot was performed utilizing dilutions of 
human uPA protein standard. Positive signal appeared at molecular weights of 31, 50, and 100 kD matching 
zymographic bands seen in Figure 39 and Figure 41. (B) A uPA fluorometric microplate activity kit was performed 
on conditioned media samples. A significant reduction in uPA activity was observed when cells sourced from 
diabetic donors were used. Data is presented as mean ± SD. Black bar = statistically significant difference with 
p<0.05. 
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3.3.4 Fibrin Based Construct Degradation 

As a final means to show that healthy AD-MSCs produced more potent fibrinolytic factors than 

those isolated from diabetic patients, we created fibrin-based constructs containing SMCs and 

exposed them to AD-MSC conditioned media. Due to the fibrinolytic nature of SMCs 

themselves, this assay was designed to address how AD-MSC in a vascular graft might influence 

the fibrinolytic potential of host SMCs and thus the local anti-thrombogenic environment. In gels 

cultured in the absence of ACA (Aminocaproic acid, i.e. hexanoic acid) and under stimulation 

with media conditioned by AD-MSCs, catastrophic detachment and compaction of constructs 

resulted due to a high degree of degradation (Figure 43). This effect was observed to be reduced 

by using media conditioned by cells from diabetic patients. It is also important to note that AD-

MSC based gels did not detach or substantially degrade (data not shown). 
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Figure 43. Secreted factors from AD-MSCs promote fibrin construct degradation. Fibrin-based constructs were 
fabricated and cultured with control (non-conditioned) media or media conditioned by AD-MSC from one of three 
healthy or diabetic donors. Each group was run in triplicate. The percentage of each set of nine constructs remaining 
at 1, 4, or 7 days is plotted by analogy to a “survival curve” to illustrate the loss of constructs when conditioned 
media what used. 
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As the degradation of these uninhibited gels occurred so rapidly, we treated a separate set 

of constructs with varying concentrations of the fibrinolytic inhibitor ACA to allow visual 

resolution of the degradation rate differences between the healthy and diabetic AD-MSCs. 

Inhibiting degradation with 3 mM ACA was sufficiently potent to prevent any degradation over 

7 days regardless of group (Figure 44). On the other hand, inhibiting with 0.5 mM ACA was not 

sufficient enough to differentiate the effects between the healthy and diabetic groups. However, 

the intermediate inhibitor concentration of 1 mM was able to discriminate between the groups 

where it revealed a significant drop in grey intensity of gels treated with healthy AD-MSC 

conditioned media, particularly at the 4 and 7 day time points (Figure 45 shows day 1 and 4 time 

points). This indicates that AD-MSCs from healthy donors have a strong enough fibrinolytic 

activity to overcome inhibition by 1 mM of ACA while cells from diabetic donors do not. 
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Figure 44. Media conditioned by AD-MSC from healthy donors promotes higher degradation of fibrin-based 
constructs than media conditioned by AD-MSC from diabetic donors. (A) To achieve a higher resolution on the 
degradation of fibrin constructs stimulated with AD-MSC conditioned media, we inhibited gels with either 0.5, 1, or 
3 mM ε-amino caproic acid (ACA). Images are shown from an overhead view of fibrin disks at a 7 day time point. 
(B) Quantifying the mean grayscale intensity of each gel normalized to the background reveals that AD-MSCs from 
healthy patients promoted more fibrinolysis, when inhibited at an intermediate 1 mM ACA concentration. Images 
and measurements were also taken at days 1 and 4 and are shown in Figure 45. Data is presented as mean ± SD. 
Black bar = statistically significant difference with p<0.05. 
 

 

Figure 45. Earlier time points of fibrin construct degradation by analogy to Figure 44. Using the same method 
described in Figure 44, quantification of construct degradation was performed at day 1 (A) or day 4 (B). Data is 
presented as mean ± SD. Black bar = statistically significant difference with p<0.05. 
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3.3.5 Mechanical Compression Testing of Fibrin-based Constructs 

To further show these fibrin gels stimulated with healthy AD-MSC conditioned media were 

indeed more degraded their diabetic counterparts, we performed compressive mechanical testing 

of the gel constructs obtained following the 7 day degradation. As stated above, only gels which 

were exposed to a fibrinolytic inhibitor were able to be tested as those from non-inhibited 

samples were near-completely degraded. Each gel revealed two distinct loading phases under 

compression (Figure 46). The first phase occurred when the gel initially made contact with the 

compressive plate breaking the surface tension of the gel. In this phase, substantial compressive 

loading had not yet occurred allowing the force to dominated by a tensive (i.e. negative) force 

imparted by the surface tension of each gel onto the plate. The second phase occurred as the gel 

underwent further compressive loading where it displayed a clear increase in load. Quantification 

of the mechanical parameters (compressive energy and maximum stress) during the second phase 

revealed no discernable differences between any groups or inhibitor concentration (Figure 47). 

However, quantifying the maximum negative stress and energy seen in the first phase of loading 

(Figure 48) reveals similar trends to Figure 44. Specifically, through the use of a mid-range 

inhibitor concentration (1 mM) a difference between the two groups can be observed where as 

too high (3 mM) or too low (0.5 mM) it is indiscriminant. In particular, gels stimulated with 

healthy AD-MSC conditioned media display an increased tensive force and energy which likely 

occurs as the more degraded gels become more hydrophilic (occupied by a higher water:fibrin 

ratio). This increased hydrophilicity was confirmed by decreased contact angle observed in gels 

stimulated with healthy conditioned media (Figure 49). 
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Figure 46. Mechanical compression testing of fibrin constructs has distinct loading phases. Compressive loading of 
fibrin gel constructs initially reveals a negative (tensive) force as the compression plate initially makes contact with 
the surface tension of the gel. Further loading produces a linear increase. Upon unloading of the gel a tensive force 
is seen as the gel retracts from the top plate. 
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Figure 47. Compressive tensile strength and energy reveal no differences between any fibrin gel construct. The 
compression testing illustrated in Figure 46 was performed on the fibrin gels after 7 days of degradation in Figure 
44. Both the compressive strength and energy were calculated from stress-strain curves and displayed no difference 
for any gel, regardless of group or concentration of inhibitor. 
 

 

Figure 48. Initial tensive forces from fibrin construct surface tension reveal differences between healthy and 
diabetic constructs. Analysis of the tensive properties experienced by the surface tension after the initial contact of 
the compression plate with the fibrin gel surface (as illustrated in Figure 46), similar trends to Figure 44 can be 
seen for both the maximum tensive force (A) and energy (B). Namely, both a high (3 mM) and low (0.5 mM) 
inhibitor concentration reveal indiscriminant differences between groups, but an intermediate level of inhibitor (1 
mM) a difference can be observed. Black bar = significant difference at p<0.05. 
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Figure 49. More degraded fibrin gels experience a reduced contact angle. The results seen in Figure 48 can be 
explained by the hydrophilicity of the gel. As the gel becomes more degraded it will release a higher amount of 
energetically free water which increase the hydrophilicity of the gel and contribute to stronger surface tension 
forces. Indeed, the contact angle of the gels (A) were shown to decrease (B) as gels became more degraded and 
these trends mirror that seen in both Figure 44 and Figure 48.  Black bar = significant difference at p<0.05. 

3.4 DISCUSSION 

In this study we sought a mechanistic explanation for the thrombotic failure seen when using 

AD-MSCs derived from diabetic donors as shown in Aim 1-1. Here utilizing age and sex 

matched human donors, it is shown that presence of diabetes reduces the fibrinolytic ability of 

AD-MSC secreted factors compared to non-diabetic (i.e. healthy) counterparts, which can 

explain in part their pro-thrombotic phenotype. This broad fibrinolytic phenotype was 

demonstrated in vitro using fibrinogen zymography and fibrin-based constructs. At the molecular 

level, we used an enzyme kinetics assay to show that cells from diabetic donors have decreased 

uPA activity, which is a potential mechanistic explanation for the thrombotic failure. 

Investigating static platelet adhesion revealed no differences between the two groups.  
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Our zymography performed with serum revealed fibrinolytic activity within conditioned 

media at 31, 40, 85, 100, 150, and 250 kD. Qualitatively and quantitatively, the bands at 31 and 

40 kD were more abundant in media conditioned by AD-MSC from healthy patients. Based on 

literature reports (see Figure 37), the 31 kD band is consistent with low molecular weight uPA 

(molecular weight: 33 kD [398, 400, 401, 404]). We observed that the low molecular weight 

uPA form was highly prevalent in conditioned media isolated under serum conditions but was 

barely present under serum free conditions. This is likely a result of plasminogen in serum, 

which is activated by uPA then cleaves uPA from its high to low molecular weight form [397]. 

Additionally, bands were noticed at 50 and 100 kD which likely correspond to high molecular 

weight uPA (molecular weight: 54 kD [397-402]), and high molecular weight uPA in complex 

with its inhibitor PAI-1 (molecular weight: 54 kD + 43 kD (PAI-1) = 97 kD [397, 399, 402, 

403]). While it is counterintuitive that activity would be seen for the inhibitory complex, 

reactivation can occur under zymography conditions [403]. The activity of this complex also 

indicates the presence of the active double-chain form of high molecular weight uPA (as opposed 

to the inactive single-chain form [397, 399]), which PAI-1 selectively binds to it [402, 404] and 

this form is indistinguishable at the 50 kD band due to activation of the single-chain form via 

zymography conditions. 

The lower amount of active uPA in AD-MSCs from diabetic donors can potentially be 

explained by upregulation of uPA receptors (such as uPAR [405-408], and suPAR [409-415]) in 

diabetic conditions. Increased uPAR causes more localization of uPA to the cell membrane [397, 

399, 401], whereas a higher amount of suPAR scavenges uPA from the surrounding solution 

[397, 401, 409]. As uPA bound to its receptor is not readily released [401], and suPAR 

scavenged uPA is inhibited, these two mechanisms effectively reduce uPA activity in the bulk 
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solution and decrease overall fibrinolysis. Additionally, low molecular weight uPA does not bind 

to these receptors [401, 404, 416], and therefore has prolonged activity. 

A significant increase was additionally seen at the 150 kD band under serum conditions. 

Literature reports suggest that the 85 and 150 kD bands are likely plasminogen/plasmin and a 

plasmin-α2 antiplasmin complex, respectively [395, 397]. Plasminogen activation is also 

suggested in our fibrin construct degradation experiments, as ACA slows degradation which 

occurs in a plasmin-dependent manner [417-420]. Finally, as there is a higher degree of uPA 

activity produced by AD-MSCs from healthy patients, an increase in downstream active plasmin 

is expected. 

One limitation of this study is that we have not conclusively identified the 40 kD band, 

which differs in abundance between the two groups of cells. Literature reports suggest that this 

band could be tPA [421-424]. Typically, tPA (molecular weight: 70 kD) is enzymatically active 

upon cleavage from its single to double chain form. The two component chains are 33 and 39 

kD, with the latter responsible for catalytic activity. We were unable to confirm the 40 kD band 

as the catalytically active chain of tPA by Western blot, and similar to uPA (which was 

undetectable via Western Blotting) this could be due to tPA’s low concentration in conditioned 

media. ELISA,  immuno-precipitation, or tPA activity assays offer alternative approaches in the 

future. 

The results of this study are further corroborated by systemic reports of diabetic patients 

displaying a greater pro-thrombogenic phenotype with reduced fibrinolysis [425-429]. Studies 

have reported that diabetics have lower levels of fibrinolytic stimulators (tissue plasminogen 

activator [425]) and higher levels of fibrinolytic inhibitors (PAI-1 [405, 425-428, 430], uPAR 

[405-408], suPAR [409-415]), which contributes to an overall reduction in fibrinolysis. 
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Additionally, the high glucose environment seen in diabetes reduces plasmin activity via 

glycosylation [429], and reduced uPA activity can be seen in wound healing [431] and 

trophoblast invasion [432] applications. Other fibrinolytic factors altered specifically in AD-

MSCs from diabetic donors include thrombospondin [392], tissue plasminogen activator [335], 

and PAI-1 [335]. To the best of our knowledge, our work is the first report to highlight a 

reduction in uPA activity by AD-MSCs from diabetic donors, and the first to implicate a donor-

linked stem cell deficiency as a method of TEVG failure. 

3.5 CONCLUSION 

In conclusion, we present that fibrinolytic ability of AD-MSCs is decreased when the cells are 

sourced from diabetic donors, which offers an explanation for the high rate of thrombotic failure 

seen when these cells are used as the basis for tissue engineered vascular grafts. Additionally, we 

have identified loss of uPA activity as one potential mechanism for the thrombotic failure seen 

when AD-MSCs from diabetic patients are used in grafts. While other fibrinolytic mediators may 

also contribute to thrombotic failure in this application, we can now consider pursuing 

modulation of uPA activity in the short term as a method for enabling autologous TEVG therapy 

for the diabetic patient. 
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3.6 FUTURE DIRECTIONS 

While we have shown that one molecular explanation for the decreased functional performance 

(i.e. ability to develop patent TEVGs) in diabetic cells is decreased uPA activity, this still does 

not provide the complete framework for a mechanism as to how the diabetic condition directly 

causes these cellular changes. Adding to this, compositional differences between healthy and 

diabetic AD-MSCs have also not been considered. However, one likely candidate for how 

diabetic cells acquire a pro-thrombotic phenotype is by the pathologic hallmark of diabetes – 

hyperglycemia – which results in a high intracellular glucose concentration leading to high levels 

of ROS (see Section: “1.2.3 Diabetes Etiology and Vascular Related Effects”). Indeed, this has 

been shown to be a contributing factor promoting damage of AD-MSCs causing losses in 

angiogenic function [433]. Another explanation could be from changes in the cellular 

composition of diabetic AD-MSCs compared to healthy ones which are more fibroblastic and 

present less stem cell markers such as CD105 and CD133 [434]. This effect is mirrored by 

fibrotic changes to adipose tissue which is seen during obesity [435] which can occur 

concurrently to diabetes. 

Future directions for this portion of Aim 1 can encompass two components: performing 

more mechanistic studies and utilizing the mechanistic data to increase the pro-thrombotic 

activity of diabetic AD-MSCs thus restoring their use for autologous therapy. The platelet 

adhesion assay performed in this study revealed no differences between the healthy or diabetic 

group but this was far from conclusive. In particular this was performed under static conditions 

which are not physiologically representative and flow induces a higher degree of platelet 

activation [96] which would allow for more sensitivity when distinguishing between the groups. 

Future experiments utilizing a physiologic flow system and an AD-MSC seeded scaffold (as for 
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measuring dynamic compliance; see Section 2.7.3 Explanted TEVG Mechanical Testing) could 

be employed. Additionally, no studies were performed to show that a pro-thrombotic phenotype 

would be acquired via knockdown of uPA activity (e.g. genetic alteration, molecular inhibitors) 

in healthy cells to definitively complete the mechanistic investigation. Finally, other pathways 

contributing to thrombosis could be investigated in future studies. For example, Tissue Factor is 

one of the key regulators of the coagulation cascade leading to thrombosis initiation [436] and 

could be checked for upregulation in diabetic AD-MSCs. Additionally, as pro-inflammatory 

cytokines such as TNF-α, INF-γ, and IL-8 can cause upregulations in Tissue Factor production 

[436] and induce neutrophil extracellular DNA traps (NETs) which contribute to thrombosis 

[437]. These could also be investigated to play a major role. The activity of membrane bound 

inhibitory compounds such as thrombomodulin [436] and heparin [261] could further be 

investigated for alterations in the diabetic phenotype.  

Pursing strategies to restore the changes in anti-thrombotic properties of diabetic cells 

could take a few avenues. First, AD-MSCs have been shown to be highly plastic and can 

undergo restorative changes under different environmental conditions (e.g. culture conditions). 

For example, diabetic cells removed from the diabetic environment can revert their metabolic 

properties under normal culture conditions [372], differences in adipogenic differentiation 

observed fat depots of different genders is not reflected in AD-MSCs when cultured [373], and 

weight loss can restore losses in AD-MSC adipogenic differentiation potential [374]. However, 

as the AD-MSCs used in this study are already passage expanded to at least four times, this may 

suggest the change to be irreversible via culture expansion alone. However, the opposite 

approach – using diabetic cells which have not undergone culture expansion (see SVF in Aim 2) 

– could hold promise. Indeed, culture expansion has a number of negative side effects which 
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affect both the function and composition of the AD-MSC population. First, extensive cell 

expansion reduces the differentiation potential of AD-MSCs and these changes can occur to a 

significant degree after as early as four successive passages (assuming that approximately 2 

doublings per passage occur) [308].  These changes that occur via culture expansion have been 

attributed to a loss in stemness of these populations [308-310]. Further validating this point is 

that successive culture expansion reduces the presence of endothelial cells (CD31+) and 

progenitor cells (CD34+) within the AD-MSC culture (see Section: “4.7.1 Marker Profile of SVF 

Seeded TEVG Scaffolds”). As these cells can display anti-thrombogenic properties, preserving 

these within the population could potentially assist in restoring diabetic cell function. 

Additionally, the presence of CD34+ cells have been shown to enhance functional performance 

of the AD-MSC population [438, 439]. However one road block here is that endothelial cells 

from diabetic patients have decreased functions (see Section: “2.4 Discussion”). Thus the 

artificial stem cell concept defined in Aim 3 or supplement with additional anti-thrombotic 

factors may be ideal. While another consideration would be to perform alterations to the 

biomaterial utilized in this study (PEUU) which was performed previously to reduce its 

thrombogenicity [153, 205, 440, 441], it is unlikely that this would aid significantly in the case of 

cellularized TEVGs due to the insulating effect achieved by the cells spreading along the 

polymer surface protecting it from blood contact. Another solution could be to use genetic 

alteration to stimulate the production of uPA. Indeed increased production of certain proteins 

have been shown to alleviate dysfunctional effects [442], however this is not advisable due to the 

regulatory hurdles and risk present for genetic alteration. Finally, the administration of additional 

anti-coagulants could be utilized to alleviate the pro-thrombotic diabetic phenotype. The 

currently used dipyridamole and aspirin during in vivo studies both work to block mechanisms of 
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platelet adhesion however as this was at least preliminary this was shown that this effect was not 

as significant as other thrombotic pathways (i.e. fibrinolysis), drugs that target additional 

coagulation pathways could be used. For example, administration of uPA could be used to target 

the fibrinolysis pathway, heparin to enhance the activity of anti-thrombin, and warfarin could be 

used to inhibit the synthesis of multiple vitamin-K dependent factors. 

3.7 ADDITIONAL STUDIES LEADING TO FUTURE WORK 

3.7.1 Identification of tPA in AD-MSC Conditioned Media 

While it was established throughout this Aim that the significant difference at the 31 kD 

zymographic band was due to uPA, the 40 kD band which showed a significant effect still 

remained to be quantified but was conjectured to be tPA. Similar to uPA, Western blot was 

performed but was unable to detect the presence of tPA likely due to low concentrations. This 

was attempted with both reducing (Abcam, #157469) and non-reducing (Abcam, #ab82249) 

antibodies. 
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4.0  SPECIFIC AIM 2: USE OF CULTURE FREE SVF CELLS FOR TEVGS 

4.1 INTRODUCTION 

As highlighted in Section 1.3 (“Tissue Engineering Approaches), vascular tissue engineers have 

developed a plethora of vascular grafts which have shown promising results and represent 

excellent progress on the way towards a clinical solution. However, despite the significant 

degree of pre-clinical testing that cell-based TEVGs have undergone (see Section: “Improper 

Cell Sourcing”), multiple barriers still exist which inhibit clinical translation of this technology. 

This is illustrated by the few TEVG approaches to reach clinical trials (see Section: “1.4 Current 

Clinical TEVG Approaches”). As outlined in Section 1.5 (“Current Barriers to Clinical 

Translation”), these barriers include the incorporation and testing of human cells, feasible and 

consistent modes of manufacture to appropriate sizes, and fabrication time. However, while 

advances have been made addressing the both the use of human cells (including Aim 1 which 

tests clinically relevant human cells) and scaffold production methods, minimizing fabrication 

time is still a major concern. 

While human adipose-derived mesenchymal stem cells (AD-MSCs) are a very attractive 

cell source as they are abundant, easily obtained, and can be rapidly expanded in vitro, they still 

require culture expansion to isolate [443]. However, adipose tissue itself is uniquely 

advantageous to the field of vascular tissue engineering as its raw population (the stromal 
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vascular fraction (SVF)) is progenitor rich, containing AD-MSCs, pericytes, endothelial 

progenitor cells, and endothelial cells [191, 444] which have all been successfully used in 

vascular tissue engineering [19]. Additionally, adipose tissue also offers a large quantity of cells 

and typical liposuction volumes can provide suitable quantities for construction of a “human-

sized” graft without additional in vitro expansion [445-448]. Together this illustrates that SVF 

cells represent an ideal cell population for TEVGs as these can be utilized without the need for a 

culture step thereby minimizing fabrication time. This would relieve many regulatory and 

financial concerns with regards to clinical translation. Ultimately this strategy is analogous to use 

of bone marrow mono-nuclear cells which can also be utilized without culture and has led to the 

development of a clinically applied TEVG [244](see Section: “1.4.1 Approach 1 – Bone Marrow 

Cells with Synthetic Scaffold”). 

However, while use of the SVF could provide a substantial reduction in time to fabricate 

an implantable TEVG construct it must also be coupled with a reliable seeding methodology to 

incorporate cells within scaffolds. The rotational vacuum seeding device developed by our 

laboratory which provides rapid (< 5 min), efficient (> 90%), and uniform cell seeding of tissue 

engineered scaffolds [193, 197, 198, 449, 450] is ideal for this application. By combining our 

current RVSD technology with SVF cells, it is possible to quickly fabricate an adipose tissue-

based TEVG without the need for cell expansion.  

In this Aim, we investigated the use of SVF cells (i.e. freshly derived adipose cells) for 

use in vascular tissue engineering through both in vitro and in vivo studies. Similar to Aim 1 the 

defined essential functions of a cell for vascular engineering were utilized (see Section: “2.1.2 

Definitions of Essential Cellular Functions and Performance Criteria for Vascular Engineering”). 

These included the ability of SVF cells to differentiate into SMCs, the ability to secrete SMC 
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pro-migratory factors, the ability to seed within TEVG scaffolds, and the ability to achieve 

effective in vivo performance. Additionally, a head-to-head comparison with culture expanded 

AD-MSCs generated from the same SVF populations was performed. 

4.2 METHODS 

The methodology performed in this Aim is nearly identical to that which was performed in Aim 

1-1 but instead with the use of a non-cultured cell type. For simplicity, many of the following 

sections below will refer back to those previous methods while discussing any potential 

differences. 

4.2.1 Isolation and Culture of SVF cells 

SVF cells were obtained from human patients in the same manner as AD-MSCs (see Section: 

“2.2.1 Isolation and Culture of Cells and Collection of Conditioned Media”) but were utilized 

directly for seeding within a TEVG (see Section: “2.2.5 Cell Seeding into TEVG Scaffolds”) as 

opposed to culture expansion. The list of donors can be seen in Table 4. However, a fraction of 

the obtained SVF (approximately 1 million cells) was obtained and passaged four times to 

establish a paired cultured AD-MSC control. These were grown in the same manner as the AD-

MSCs in Aim 1 (see Section: “2.2.1 Isolation and Culture of Cells and Collection of Conditioned 

Media”).  
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Table 4. List of donors utilized in Aim 2. 

 

4.2.2 Differentiation of SVF cells into SMCs 

This assay was performed in the same manner as Aim 1 (see Section: “2.2.2 Differentiation of 

AD-MSCs into SMCs”) with SVF cells being plated directly onto glass coverslips instead of 

PLL coated ones. Three donors were utilized (see Table 4) with paired cultured AD-MSCs 

acting as controls. 

4.2.3 Ability of SVF Cells to Promote SMC Migration 

SVF cells were also probed for their ability to secrete soluble products to induce the migration of 

SMCs. This occurred in the same manner as Aim 1 (see Section: “2.2.3 Ability of AD-MSCs to 

Promote SMC Migration”) and with culture paired AD-MSC conditioned media as a control. To 

obtain SVF conditioned media, non-cultured SVF cells were plated at high density (near 

confluence) and allowed to attach overnight. The media was subsequently changed and collected 

two days following. 
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4.2.4 Scaffold Fabrication, Cell Seeding, and In Vivo Implantation 

All procedures regarding the fabrication of scaffolds, seeding of cells, and implantation in vivo 

were done in the same manner as Aim 1 (see Sections: “2.2.4 PEUU Scaffold Fabrication”, 

“2.2.5 Cell Seeding into TEVG Scaffolds”, “2.2.6 Measurement of Uniform Cell Seeding”, 

“2.2.7 In Vivo TEVG Implantation”). SVF cells (n=6, see donors Table 4) and donor paired 

cultured AD-MSCs (n=5) were utilized. Some donors were used to fabricate multiple grafts as 

denoted by the number of “X” in the table.  

4.2.5 Assessment of Cellular, Extracellular, and Morphometric Parameters of Explanted 

TEVGs 

The analysis of explanted TEVGs was done using the same methods as Aim 1 (see Sections: 

“2.2.8 Histologic Evaluation and Immuno-fluorescence”, “2.2.9 Morphometric and Quantitative 

Analyses”, “2.2.10 Multiphoton Analysis of Collagen Architecture”). This allowed for the 

detection of morphometric parameters, as well as the cellular and extracellular components.   

4.2.6 Statistics 

All statistics were performed in a similar manner to Section 2.2.11 (“Statistics”). 
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4.3 RESULTS 

4.3.1 Ability of SVF Cells to Perform Essential Functions: SMC Differentiation and 

Secretion of SMC Pro-Migratory Factors 

To initially investigate the relevance of SVF cells for TEVG applications, the ability of SVF 

cells to differentiate into SMCs and induce SMC migration was analyzed (see Section: “2.1.2 

Definitions of Essential Cellular Functions and Performance Criteria for Vascular Engineering”). 

Compared to donor matched AD-MSCs – acting as a positive control as demonstrated in Aim 1 – 

SVF cells underwent differentiation into SMC like-cells and secreted factors to promote SMC 

migration on equal levels. SMC differentiation was shown by induced expression of the SMC 

marker calponin (Figure 50) and a morphologic change to a more spindle-like cell shape (Figure 

51). It is important to note as described in Aim 1, this assay does not induce complete 

differentiation but is still able to produce discernable effects from different cell types.   

The ability of SVF cells to promote migration of SMCs was evident by the significant 

increase in migration rate observed in SMCs when stimulated with conditioned media of SVF 

cells (Figure 52). The was similar to that seen with donor matched AD-MSCs. Taken together 

these results verify that SVF cells indeed have functions that can be utilized in the context of 

vascular tissue engineering. 



 165 

 

Figure 50. Human SVF cells performed an essential function of vascular tissue engineering: SMC Differentiation. 
(A) SVF cells and donor-paired cultured AD-MSCs were differentiated towards SMCs via Angiotensin II 
stimulation. SVF cells show an acquisition of the marker calponin similar to that of AD-MSCs. Images shown are 
representative of donor paired SVF and AD-MSCs. Data is presented as mean ± SD with a statistically significant 
difference defined at with p<0.05. n=3 donors were used per group. 
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Figure 51. Stimulation with AngII induced a morphometric change in both SVF cells AD-MSCs wherein they 
adopted a more spindle-like shape. (A) When stimulated with AngII both SVF cells and donor-matched AD-MSCs 
underwent a morphological shift to a more SMC spindle-like cell shape when stained for F-actin (green; DAPI 
counterstain in blue). (B) This was quantified by measuring the shape factor (4p X area/perimeter2, ~0 = ellipsoid, 
~1 = circular) of the cell where both SVF cells and AD-MSCs were showed a significant decrease in shape factor. 
Images shown are representative of donor paired SVF and AD-MSCs. Data is presented as mean ± SD with a 
statistically significant difference defined at with p<0.05. n=3 donors were used per group. 



 167 

 

Figure 52. Human SVF cells performed essential functions to vascular tissue engineering: Promoting SMC 
Migration. (A) Conditioned media was acquired from SVF cells and used to stimulate SMCs in a scratch migration 
assay. (B) Quantitatively these cells are able to promote migration over non-conditioned controls and are on par with 
that seen with AD-MSCs. Images shown are representative of donor paired SVF and AD-MSCs. Data is presented 
as mean ± SD with a statistically significant difference defined at with p<0.05. n=3 donors were used per group. 
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4.3.2 Uniform Cell Seeding Analysis of SVF Cells 

To verify that SVF cells can be seeded within tissue engineering scaffolds and as a point of 

quality control, the extent to which SVF were incorporated within our scaffolds using our RVSD 

was analyzed. Qualitatively, SVF cells were evenly seeded throughout the scaffolds in cross 

section and an equivalent cell densities were observed across the radial, circumferential, and 

longitudinal directions (Figure 53).  
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Figure 53. Human SVF cells were uniformly seeded within TEVG scaffolds. (A) SVF cells (n=3) were obtained 
from human patients and seeded directly into PEUU scaffolds where they seeded uniformly (blue, DAPI stain) 
across radial, circumferential, and longitudinal direction (not shown) of the scaffolds. (B) This uniformity was 
quantitatively confirmed by comparing the cell densities across virtually segmented pieces (B – Radial; C – 
Circumferential, D – Longitudinal). Data is presented as mean ± SD with a statistically significant difference 
defined at with p<0.05. As in Figure 14, adjustments were made based on area when comparing across the radial 
section due to increasingly larger concentric circular areas. 
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4.3.3 In Vivo Gross Observations and Patency 

Following successful cell seeding analysis, SVF seeded scaffolds were then implanted in a Lewis 

rat model where after 8 weeks in vivo they remained patent, as confirmed by angiography 

(Figure 54). No dilation was observed for any implanted vessel. On gross observation, TEVGs 

showed an evident tissue-like appearance (Figure 54) and further histologic evaluation of 

explants (Figure 54) revealed clear breakdown of scaffolding material with the development of 

newly formed tissue lumenally (termed as neotissue). Culture paired AD-MSC-based TEVGs 

also displayed luminal neotissue formation (not shown) and exhibited similar patency rates 

(Figure 54). Together these results show that SVF cells are functionally equivalent to donor 

matched AD-MSCs for generating patent, tissue-like TEVGs. 
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Figure 54. Human SVF cell-based TEVGs generated patent vessels. (A) SVF seeded scaffolds were implanted in a 
Lewis rat model wherein they developed patent vessel at an 8 week timepoint shown by angiography. (B) Explanted 
SVF cell-based TEVGs displayed a clear tissue-like gross appearance. (C) Histologic H&E staining revealed SVF-
based TEVGs showed signs of possessed newly developed tissue lumenally (neotissue) which showed ingrowth into 
scaffolding material. Both SVF cells and donor-matched AD-MSCs were equally capable of generating patent 
TEVGs (inclusive Table). 
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4.3.4 Morphometric Measurements and Vascular-Like Composition of Explanted TEVGs 

To analyze the composition of the newly developed tissue within our TEVGs we probed for the 

primary cellular (SMC, endothelial cells), and extracellular (collagen, elastin) vascular 

components. Indirect immunofluorescence (Figure 55) revealed that the cellular components of 

all explanted TEVGs primarily consisted of SMCs (SMA and calponin labeling) and endothelial 

cells (vWF labeling). The percentage of cells expressing these markers was indistinguishable 

between SVF and donor-matched AD-MSC grafts (Table 5). Additionally, morphometric 

parameters to analyze cell density, cellular alignment (nuclear shape factor), and neotissue 

thickness were also all similar between the non-cultured SVF cells and cultured AD-MSCs 

(Table 5).  

To investigate the presence of the extracellular matrix component collagen within 

explanted TEVGs we employed multiphoton microscopy. This imaging modality revealed 

prominent, circumferentially aligned collagen fibers within TEVGs produced with either SVF 

cells or AD-MSCs (Figure 56). Additionally, quantitatively assessing the fiber network revealed 

a similar number of intersections, segment lengths, tortuosity, diameters, and orientation between 

the two cell types (Table 5). 

To investigate the presence of elastin, indirect immuno-fluorescence was utilized. This 

confirmed the immunological presence of elastin in both SVF and AD-MSC-based TEVGs 

(Figure 56). Additionally, quantitatively assessing its presence throughout the thickness of 

TEVG neotissue revealed similarity between these two cell types (Table 5). It is important to 

note however that although the presence of elastin was observed, it has not yet formed into 

functional elastic lamellae. Taken together, these results show that when non-cultured SVF cells 
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are utilized as the cell source for TEVGs they generate a vascular-like composition that is on par 

with that seen when utilizing cultured AD-MSCs. 
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Figure 55. Human SVF cell-based TEVGs developed vascular-like tissue with primary cellular components. 
TEVGs, regardless of being created with SVF cells or donor-matched AD-MSCs displayed significant remodeling 
with the presence of vascular-like tissue. This tissue contained primary components such as SMCs (SMA (red), 
calponin (green)), endothelial cells (vWF (green))). White arrow indicates lumen. The presence of these components 
were quantitatively analyzed and all showed no significant difference (defined as p<0.05) between SVF cells or AD-
MSCs (Table 5). Additionally, morphometric parameters such as cell density (# of cells per µm3 x 1000), the 
thickness of newly developed vascular tissue (i.e. neotissue thickness), and nuclear shape factor as a means to show 
alignment in the circumferential direction, all showed non-significant differences (Table 5). 
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Figure 56. Human SVF cell-based TEVGs developed vascular-like tissue with primary extracellular matrix 
components. TEVGs, regardless of being created with SVF cells or donor-matched AD-MSCs displayed significant 
remodeling and contained primary extracellular matrix components such as collagen (multiphoton (red)) and elastin 
(alpha-elastin (red)). White arrow indicates lumen. The presence of these components were quantitatively analyzed 
and all showed no significant difference (defined as p<0.05) between SVF cells or AD-MSCs (Table 5). Analysis of 
the collagen micro-architecture for parameters such as fiber intersection density (number of intersection points per 
area), segment length (distance between cross-links, µm), fiber tortuosity, fiber orientation (circumferential ~90 
degrees), and fiber diameter (µm) all revealed similarity between SVF and AD-MSC indicated by a non-statistically 
significant difference (Table 5). 
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Table 5. All quantified morphometric, histological, and micro-architectural parameters of patent SVF and paired 
cultured AD-MSCs. No statistical significance was seen comparing between SVF and AD-MSC parameters. 
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4.4 DISCUSSION 

The results of this study show that SVF cells can perform as well as AD-MSCs derived from the 

same population for use as a TEVG. First, these cells are capable of two stem cell-based 

bioactivities utilized heavily in vascular tissue engineering: undergoing differentiation into 

vascular SMCs and secreting pro-migratory factors. Second, it was shown that SVF cells can be 

incorporated within tissue engineered scaffolds and generate patent TEVGs with vascular-like 

tissue after implantation. The results of this study clearly indicate the functional efficacy of a 

non-cultured adipose-derived cell source in the context of vascular tissue engineering and that 

this efficacy is similar to that when using cultured AD-MSCs. Ultimately, the use of this cell 

source reduces rate-limiting barriers that could hinder the clinical translation of TEVGs. Indeed, 

the efficacy of the SVF in comparison to AD-MSCs has been shown in other applications  [444, 

451-454] and its use encouraged multiple clinical trials  [452, 455, 456].  

While non-cultured bone marrow cells have already been employed as a non-cultured cell 

source for vascular tissue engineering [229, 244] and can generate an equally sizable amount of 

cells [229, 457] as adipose tissue [445-448] (both on the order of millions per mL), the use of a 

non-cultured adipose-derived cell source could provide unique benefits. In addition to the 

attractive site which SVF cells can be harvested, performing a liposuction on a patient is 

associated with a reduction in cardiovascular disease risk factors [458]. This could offer 

resistance against recurrent vascular disease. On a cellular level, freshly isolated adipose cells 

(i.e. SVF) contain a higher percentage of cells that can provide anti-thrombogenic effects 

compared to bone marrow which could affect graft patency. These include cells such as MSCs 
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(30% adipose [191, 452] vs 0.001% bone marrow [216, 452]), endothelial cells (3% adipose 

[191] vs 0.1% bone marrow [216]), and endothelial precursor cells (14% adipose [191] vs. 2% 

bone marrow [216]). However, this statement remains as a conjecture as a side-by-side 

comparison of the two freshly isolated cell types has yet to be performed in vascular tissue 

engineering. 

One of the major challenges currently present in stem cell-based vascular engineering is 

fabrication time. To reach clinical trials, tissue engineered products face a number of hurdles 

[283] including extensive pre-clinical testing, complicated and uncertain regulatory pathways, 

the necessity to improve product practicality, and funding shortages. These are amplified by the 

landscape of the current market where substantial reimbursement for cell-based technologies 

does not yet exist [250]. Additionally, regulations and recommendations set forth by the Food 

and Drug Administration (FDA) [459, 460] encourage the use of fresh cells as well as 

approaches that minimize time between isolation and use of a patient’s cells for clinical trials. 

Indeed one of the few literature reports [228, 259, 461] in vascular engineering to make it to 

clinical trials utilized a non-cultured cell population (bone marrow mono-nuclear cells). The 

FDA also encourages controllable methods [459, 462] of manufacture which can be 

accomplished with cell processing devices. Utilizing our automated bulk cell seeding device in 

conjunction with fresh adipose-derived cells makes a significant practical step towards clinical 

translation. However, manual methods and xeno-genic enzymes are still required to isolate these 

cells [51, 191, 304, 443]. Automated technologies [451, 463] are currently being tested to 

alleviate these concerns and technologies [464-466] which can isolate SVF cells without 

enzymes are also being considered. It is foreseeable that with the combination of these 



 179 

technologies, SVF cells, and our cell seeding methods, a TEVG could be fabricated at bed-side 

and within the same surgical procedure. 

4.5 CONCLUSION 

In conclusion, we have shown that a non-cultured human cell source (SVF cells) can be isolated 

from adipose tissue and utilized as effectively in vascular tissue engineering as AD-MSCs. These 

cells are capable of performing essential regenerative functions, can be seeded using a 

controllable device, and can generate TEVGs with a vascular-like composition. This study makes 

a significant step towards clinical translation of stem cell-based TEVGs. 

4.6 FUTURE WORK 

While this Aim acted as a proof of concept for use of a non-cultured adipose cell source for 

TEVG applications, there are still multiple unaddressed areas that need investigation. First, all 

cells used in this study were isolated from a population which would have been defined as 

“healthy” in Aim 1 and was chosen as such to show the efficacy of SVF cells under the best-case 

scenario. However this does not represent a clinically realistic population such as diabetic or 

elderly patients. Moreover, being a different cell population and one with a high degree of 

endothelial cells and EPCs [191], SVF could potentially possess a high enough anti-

thrombogenicity to overcome the dearth seen in diabetic AD-MSCs in Aim 1. Second, SVF cells 

display a markedly different composition than AD-MSCs and understanding the cell types that 
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can be seeded within TEVGs is critically important for future optimization or mechanistic 

investigation. Third, while the use of SVF cells provides a substantial reduction in time to 

fabricate an implantable TEVG construct by removing the need to culture expand cells, our 

current protocol still includes 48 hours of dynamic culture in serum-supplemented media [161, 

197, 260, 265]. This results in excess costs, the need for specialized equipment, and a potential 

risk for cellular contamination or transformation. Removal of this dynamic culture entirely 

coupled with our current RVSD technology [198] which can seed cells within minutes, would 

allow for an immediately usable TEVG. Adding to this the use of xeno-free enzymes [467, 468] 

or mechanical methods to isolate SVF cell (as discussed in Section 4.4 “Discussion”) would also 

be preferred. Finally, while we currently utilize 3 million cells for our rat-sized construct, it may 

be possible to utilize a lower number to produce a functional TEVG. When scaling to a human 

sized construct (e.g. 4mm ID, 15 cm L) although adipose tissue can provide a suitable amount of 

cells (on the order of 100 million) seeding too many cells may affect the remodeling process. 

Indeed, one of the SMC pro-migratory factors secreted by MSCs, VEGF, actually displays a 

reduced effect at higher doses [348] implying that a lower number of cells could even lead to a 

more optimal host repopulation response so long as there is enough to provide adequate anti-

thrombogenicity. 

Pilot studies and further discussion of the cellular composition of an SVF seeded scaffold 

(see Section: “4.7.1 Marker Profile of SVF Seeded TEVG Scaffolds”), removal of a dynamic 

culture step (see Section: “4.7.2 Fabrication of an Implantable TEVG Without Spinner Flask 

Culture”), and seeding TEVG scaffolds with different cell densities (see Section: “4.7.3 TEVG 

Scaffolds Seeded At Varying Densities”) will be discussed below.  
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Additionally, as one of the goals of this aim was to reduce the regulatory burden 

associated with TEVG translation, it is important to consider the regulatory pathway that this 

device could pursue. As this device would be classified as a combination product (materials and 

bioactive factors/cells), the FDA would the prominent agency for the market approval of this 

device. Additionally, as this device is implantable it would fall under the Class III which requires 

a strict premarket approval (PMA) process through generation of clinical safety and efficacy 

data. One way to expedite this process however would depend on if any of the current TEVG 

trials reach the market prior in which a 510k process could be pursued by showing device 

similarity. 

4.7 ADDITIONAL STUDIES ADDING TO FUTURE WORK 

4.7.1 Marker Profile of SVF Seeded TEVG Scaffolds 

The composition of SVF cells is heterogeneous – unlike the more purified culture expanded AD-

MSCs –and thus can result in TEVG scaffold populated with a variety of cell types. However, 

this composition when incorporated within scaffolds may be different than the raw SVF 

population. SVF cells consist of all cell types present in digested adipose tissue – which is 

heavily microvascularized – with the exclusion of erythrocytes and adipocytes which are 

removed through processing. This results in a heavily heterogeneous mixture consisting of 

endothelial cells, endothelial precursor cells, AD-MSCs, pericytes, leukocytes (macrophages), 

and lymphocytes (T-cell, B-cell) [191, 301, 302, 444, 469-471]. However, upon culture 

expansion this composition changes with a loss of endothelial cell markers and removal of non-
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attachment dependent cells (leukocytes, lymphocytes) resulting in a purification of AD-MSCs 

[301, 302]. This is likely due to the high proliferative potential of AD-MSCs over the other cell 

types under the defined culture conditions (i.e. media recipe). Analyzing which cell types are 

contributing to the TEVGs is necessary not only from a quality control standpoint but also 

because the efficacy of cell based therapies, such as tissue engineering, are heavily impacted by 

the types used. From a pre-clinical standpoint this is particularly a concern; if human immune 

cells (lymphocytes) are entrapped within TEVG scaffolds prior to implantation within animal 

models it could cause adverse reactions. 

A pilot study was performed to assess the cellular composition of SVF seeded scaffolds. 

For this, three SVF seeded TEVGs were utilized for analysis which were derived from separate 

donors than those detailed within Aim 2 (see Table 4: SVF 1, SVF 2, SVF 3). Similar 

fabrication methods were utilized to establish grafts prior to implantation (i.e. they underwent 

dynamic culture for 2 days within a spinner flask). Sections of SVF seeded scaffolds underwent 

immuno-fluorescent staining to detect the presence of the primary cellular components within the 

SVF: endothelial cells (CD31, Abcam #ab24590, 1:100), endothelial progenitor cells (CD34, BD 

Pharminogen #550390, 1:100), macrophages (CD68, Santa Cruz #SC-9139, 1:200), T cells 

(CD4, Abgent #AP1496a, 1:50), and B cells (CD20, Novus Bio #NB100-64858, 1:50). All 

seeded scaffolds showed presence of endothelial and progenitor markers CD31 and CD34 of the 

absence of the immunological markers CD68, CD4, and CD20 (Figure 57). As these latter 

markers are only present on cells which are not attachment dependent, it is likely that they were 

washed away during the dynamic culture despite being incorporated within scaffold pores during 

the seeding process.  
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Figure 57. Phenotypic characterization of SVF seeded scaffolds. Immuno-fluorescence shows presence of 
endothelial cells (CD31) and endothelial precursor cells (CD34) in SVF seeded scaffolds and a lack of T-cells 
(CD4), B-cells (CD20), and macrophages (CD68) (n=3). White arrow indicates lumen. 
 

Additionally, one cell line (see Table 4: #SVF 2) was subsequently passage expanded 

and a cell seeded scaffold was produced at each subsequent passage to assess the phenotypic 

change in SVF cells over the culture period. It was observed that both CD31 and CD34 were 

present during seeding of TEVG scaffolds with raw SVF cells and at early passages, but this 

declined during continued passage expansion (Table 6). This finding is consistent with studies 

investigating the marker profile of SVF cells throughout passage expansion in typical flask 

culture [299, 301, 302].  
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Table 6. Continued passage expansion of SVF cells results in phenotypic changes. After expanding the SVF into 
AD-MSCs via continual passage expansion and seeding them into TEVG scaffolds, the marker profile of seeded 
cells alters. In particular, CD31 expression is maintained while CD34 is lost (n=1). 

 

 

4.7.2 Fabrication of an Implantable TEVG Without Spinner Flask Culture 

As mentioned in Section 2.4 (“Discussion”), removing the currently used 48 hours dynamic 

culture step prior to in vivo implantation would allow an almost immediate fabrication. As many 

TEVG approaches utilize extended culture methods (see Section: “1.5.2 Fabrication Time”) 

which are limited by high cost and contamination risk, this would further enhance the 

translatability of our TEVG. Indeed, one of the most successful TEVG approaches and one that 

has reached clinical trials utilizes a closed cell seeding system which prepares a graft within 

hours (see Section: “1.4.1 Approach 1 – Bone Marrow Cells with Synthetic Scaffold”). As an 

initial means to assess the potential of eliminating the need for a culture period post-seeding, a 

pilot study was performed where AD-MSCs were seeded in TEVGs and incubated in dynamic 

culture conditions (spinner flask, 15 rpm) for 0 and 2 days (n=3).  Qualitatively when staining for 

F-actin (green) and DAPI (blue) no difference in either cell spreading or cell density, 

respectively, is observed (Figure 58). Adding to this, in a separate study, SVF seeded scaffolds 

following the same dynamic culture period reveal a punctate F-actin staining pattern and are not 
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as well spread as AD-MSCs (Figure 59). However, both of these cell types displayed proper in 

vivo functionality despite this difference in spreading. Due to these findings, achieving optimal 

spreading prior to implantation may be unnecessary. 

 

 

Figure 58. AD-MSC seeded scaffolds cultured in spinner flasks for 0 and 2 days reveal no qualitative differences in 
density or spreading. AD-MSCs were seeded in TEVG scaffolds and subjected to spinner flask culture for 0 (A) or 2 
(B; current regiment) days. Staining for DAPI (blue) and F-Actin revealed no qualitative differences for cell density 
and spreading, respectively (n=3). White arrow indicates lumen. 
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Figure 59. SVF seeded scaffolds prior to implantation reveal punctate F-Actin staining. Three SVF scaffolds (A, B, 
C) were stained for DAPI and F-actin prior to implantation (i.e. after a 2 day spinner flask culture). F-actin staining 
revealed punctate staining for SVF cells as opposed to the elongated morphology seen in cultured AD-MSCs seeded 
scaffolds (Figure 58). White arrow indicates lumen. 
 

4.7.3 TEVG Scaffolds Seeded At Varying Densities 

As stated in Section 4.4 (“Discussion”), although our current rat-sized TEVG requires 3 million 

cells this number has not yet been optimized and it is not clear if the number of cells will 

correlate with functional efficacy. Ideally, there should be enough cells to provide sufficient anti-

thrombogenicity but not so much that growth factor signaling achieves supra-physiologic 

concentrations which could potentially reduce graft functionality. A pilot study was performed to 

illustrate that TEVGs could be constructed with varying cell densities while still retaining a 

uniform distribution is easy achievable with our methodology (Figure 60). 
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Figure 60. Seeding TEVG scaffolds with varying densities is achievable with our methodology. TEVG scaffolds 
were seeded with 0.3, 1, 1.65, 2.33, or 3 million AD-MSCs (n=1). A clear change in cell density is observed 
consistent with the number of seeded cells. Additionally, the seeding methodology preserves a uniform cell seeding, 
despite the change in number. White arrow indicates lumen. 
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5.0  SPECIFIC AIM 3: DEVELOPMENT OF AN ARTIFICIAL MSC-BASED TEVG 

Autologous cell seeding of biodegradable scaffold materials is frequently utilized for TEVGs in 

order to offer resistance against acute thrombosis, to prevent stenosis, and to provide 

paracrine/secreted factors to encourage substantial remodeling of the graft in the form of host 

cell recruitment (see Section: “1.5.3 In Vivo TEVG Mechanisms”). However, investigatory 

studies into the mechanism of TEVG remodeling have shown that these seeded cells are not 

retained in the TEVGs long term but are needed acutely to provide these benefits until the host 

environment can adequately take over. This is typically performed in a paracrine (i.e. secreted 

factor) manner. As illustrated by this dissertation, MSCs are a potent cell type which can lead to 

a successful TEVG but their function is highly dependent on donor demographics (see Aim 1). 

Indeed, many functions that can lead to a successful TEVG are diminished in the MSC of 

clinically relevant populations, namely the potency of pro-migratory and anti-thrombogenic 

secreted factors. As such, the promise of autologous MSCs in tissue engineering approaches for 

vascular replacement may not be tractable for those significant patient populations.  However as 

MSCs secrete a variety of beneficial bioactive factors which can provide pro-migratory, 

mitogenic, anti-thrombogenic, and immuno-regulatory effects [183-189], delivering these factors 

produced by a healthy MSC source could lead to a functional arterial replacement even in high-

risk clinical populations. Beyond this, as a TEVG produced with secreted factors would be 

acellular, multiple TEVGs could be produced by one potent MSC cell line and could then be 
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stored for later use. This leads to an “off-the-shelf” approach overcoming many costs and risks 

associated with fabrication time, cellular transformation in culture, and donor-to-donor 

variability (see Section: “1.5 Current Barriers to Clinical Translation”).  

Additionally, the approach of utilizing an artificial system is superior to utilizing a potent 

allogenic cell (e.g. healthy cells into a diabetic patient) line due to their practical limitations. The 

use of allogenic cells would require immuno-suppression therapy which could predispose the 

patient to life threatening diseases. As there already exist other potential therapies (e.g. the 

currently used saphenous vein) available without this risk, this is a significant hurdle to 

overcome. Additionally, generating clinical safety data to confirm the use of allogenic cells 

would require use of a control group which implants an allogenic graft exposing the patient to 

immune-rejection. As rejection of an artery could pose serious risks such as bleeding, donor site 

morbidity, or loss of a limb, this is not advisable. 

To date, several attempts have been made to create acellular TEVGs by functionalizing 

biodegradable materials through surface coatings, growth factor immobilization, drug delivery, 

or methods to resist thrombosis (see Section: “1.3.6 Acellular TEVGs”) and have shown 

promising results in the development of patent and remodeled TEVGs. However, these 

functionalized biodegradable materials often utilize a single or limited number of factors and this 

approach is constrained in that a limited number of factors cannot replicate the complex, multi-

factorial coordination involved in biological systems. Further, utilizing a high concentration of a 

single factor – which many such approaches resort to – can lead to deleterious systemic side 

effects [224, 225].  

In this Aim an innovative TEVG approach was developed incorporating a delivery 

system for the broad spectrum of secreted factors derived from healthy human MSCs by 
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encapsulating conditioned media within degradable PLGA microspheres. These MSC 

conditioned media encapsulated microspheres will be termed “artificial MSCs” due to their 

mimicry of many facets of cell use within a TEVG. Namely these are able to replicate the 

paracrine activity of MSCs, be seeded within a TEVG scaffold, and display a similar geometry to 

that of a cell. In essence, artificial MSCs seeded within our biodegradable tubular scaffold will 

create a new, clinically-translatable TEVG paradigm that can be utilized in place of any MSC 

lacking appropriate function and be “off-the-shelf” allowing them to be produced in mass 

quantity while not being practically limited by fabrication time. It is also noteworthy that while 

in this application artificial MSCs are utilized for TEVG applications, they may hold value in 

other MSC cell therapies. The goal of this Aim was to demonstrate the feasibility of artificial 

MSCs by making initial assessments of many of the design criteria (see Section: 5.1 “Design 

Criteria”). Further optimization will be discussed in future work (see Section: 5.5 “Discussion 

and Future Directions”).  

5.1 DESIGN CRITERIA 

In order for artificial MSCs to be successful in releasing bioactive factors within a TEVG 

scaffold they must satisfy two main criteria: 1) be able to be seeded within TEVG scaffolds, and 

2) release the broad spectrum of bioactive factors at appropriate potency. To satisfy both of these 

criteria multiple facets of each microsphere manufacture (e.g. sizing, loading, release) and 

seeding methodologies must be considered. The following sections will describe the subsets of 

these two main criteria and consider their desired characteristics.  
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5.1.1 Seeding of Artificial MSCs – Determining Appropriate Diameter 

When considering the appropriate size of the microsphere two aspects must be considered: 1) 

what size will be successfully incorporated within the scaffold via the seeding process, and 2) 

how much cargo will be delivered. As the latter point can easy be overcome via incorporation of 

a higher number of microspheres or concentration of media within the microspheres, establishing 

the appropriate diameter based on cell seeding is considerably more important. While 

microspheres can have their fabrication tuned to achieve a variety of diameters (on the order of 1 

[472-474], 10 [474-478], and 100 [474] µm), the sizing of microspheres for this application is 

ultimately limited by scaffold pore size. As our scaffold pores are approximately 50 µm in 

diameter, microspheres must be sized to be less than this value. Additionally, as trypsinized AD-

MSCs average around 20 µm (Figure 61) and seed successfully, we expect microspheres around 

this size to be successful. To appropriately define the appropriate diameter, microspheres from 

sizes ranging from 1-50 µm will be seeded within TEVG scaffolds and a successful diameter will 

be defined as any that allows incorporation within the scaffold post-seeding. 
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Figure 61. Size distribution of AD-MSCs The trypsinized AD-MSCs (i.e. those prior to cell seeding) placed on a 
hemocytometer (A) were imaged and their diameter was measured to determine their size and distribution (B). 
 

5.1.2 Seeding of Artificial MSCs – Determining Optimal Seeding Parameters 

Microspheres possess substantial differences from cells which may alter the seeding method and 

number of necessary microspheres. As microspheres display a high degree of structural rigidity 

while a cell is comparably fluid, microspheres may have difficulty navigating through scaffold 

pores when exposed to the transmural vacuum forces during the seeding process. However, as an 

initial benchmark to begin optimization of seeding parameters, microspheres were seeded to 

achieve a similar density and distribution (i.e. uniform in all directions) as MSCs. While 

admittedly, this does not determine the appropriate quantity of microspheres, this is ultimately 

beyond the scope of this dissertation and will require a time course in vivo investigation into the 

TEVG remodeling process (see Section: 5.5 “Discussion and Future Directions”). To determine 

methods to successfully seed microspheres to our benchmark, microspheres will be seeded with 

current methods and then based on the results, various parameters will be altered (solution 

concentration, vacuum force, etc.). It is also noteworthy that utilization of a seeding technology 

that can apply transmural forces such as our vacuum-based seeding is essential to the 
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incorporation of artificial MSCs as they cannot seeded via manual pipetting due to their lack of 

attachment and migratory abilities. 

5.1.3 Seeding of Artificial MSCs – Retention Under Flow Conditions 

Unlike cells, microspheres do not possess attachment mechanisms such as integrins to allow for 

adherence to scaffolding materials and can only rely on passive wedging effects within scaffold 

pores. However, retention of microspheres is necessary as they will encounter arterial flow 

conditions when placed in vivo. If the microspheres become dislodged from scaffolds it is likely 

that the therapeutic efficacy of the TEVG would be reduced and the microspheres could 

contribute to a potential embolism. To investigate if the current passive wedging effects of the 

microspheres are insufficient, microsphere seeded scaffolds will be placed under arterial flow 

conditions and monitored for their cell densities compared to static controls. 

5.1.4 Bioactive Factor Release – Cell Source for Bioactive Factors 

An ideal cell source to obtain MSC secreted factors to be incorporated within artificial MSCs 

would be one such that it can produce the necessary bioactive factors for TEVG remodeling but 

not be limited by donor effects which could compromise the graft such as diabetes. The current 

gold standard for this would be our healthy AD-MSC group from Aim 1. However, from a 

commercialization standpoint it is foreseeable that one potent cell line will be utilized to produce 

multiple artificial MSC based-TEVGs. As such, another potential cell source is a commercial 

MSC cell line as it offers several advantages with regards to characterization and quality control. 

For the purposes of this study, AD-MSCs utilized in Aim 1 were originally employed but studies 
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were later shifted to a commercial MSC line (RoosterBio). The distinction for which experiments 

were performed with each cell type will be made clear in the methods section below. 

5.1.5 Bioactive Factor Release – Customizable Release 

A critical design criterion for these microspheres is that they be tunable with regards to their 

release of cargo, which will allow the best mimicry of the action of MSCs in our TEVG. Several 

parameters can be controllably varied for this purpose, including polymer composition, 

concentration and/or composition of encapsulated factors, and microsphere porosity (pore 

diameter) [479]. Ideally, microspheres will release in such a way that the broad spectrum of 

MSC factors are released in tandem – thus mimicking the profile of a cell – and done so in 

correlation with regards to the number of seeded cells within a stem cell-based TEVG. However, 

as mentioned in above when discussing about determining the appropriate number of seeded 

microspheres, the exact timing of the release is unclear as we do not yet know the timing of host 

cell recruitment within our model system; determination of this will be reserved for future sides 

(see Section: 5.5 “Discussion and Future Directions”). However, as a proof of concept this study 

will show that the microspheres’ release can be customized to achieve a variety of release 

profiles with different timings.  

5.1.6 Bioactive Factor Release – Processing of Media (Concentration) 

In order to achieve equivalent biological activity to a batch of conditioned media, the 

microspheres forming artificial MSCs must encapsulate a relatively concentrated solution of 

secreted factors. This is because the volume of encapsulated media within microspheres is only a 



 195 

fraction compared to the total volume of their surrounding solution, yet they must release a high 

enough concentration of factors to achieve a functionally relevant dose. Additionally, 

microspheres cannot continually produce factors as cells can. To determine a method which can 

result in the highest appropriate strategy to concentrate media, multiple concentration methods 

will be employed and the bioactivity of concentrated media will be verified. 

5.1.7 Bioactive Factor Release – Release of Desired Factors and Maintained Bioactivity 

One of the essential design characteristics of the artificial MSC technology is that it releases the 

broad spectrum of bioactive factors instead of solely singular or limited factors which have been 

employed in other TEVG approaches. We will demonstrate the release of multiple bioactive 

factors by measuring four representative factors: vascular endothelial growth factor (VEGF), 

monocyte chemotactic protein-1 (MCP-1), brain-derived neurotrophic factor (BDNF), and 

urokinase plasminogen activator (uPA). These are chosen since all four are known to be among 

the secretory products of AD-MSCs, and to be involved with aspects or mechanisms of TEVG 

remodeling (e.g., smooth muscle cell (SMC) migration, monocyte recruitment, angiogenesis, 

anti-thrombogenicity, etc.) [155, 183, 216, 357, 480-482] (also see Aim 1-2). Additionally, the 

factors released by artificial MSCs must remain bioactive. To confirm bioactivity, assays utilized 

in Aim 1 (e.g. SMC scratch migration assay) will be employed. 

5.1.8 In Vivo Functionality 

The ultimate success of the artificial technology is to induce similar in vivo effects to that of an 

MSC, namely delivering bioactive factors over the same time course seen with an MSC seeded 
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TEVG. This includes both delivery of the broad spectrum of bioactive factors and dosing them 

appropriately to the number of cells present within the TEVG (i.e. as the MSCs are removed 

from the graft no longer providing their secreted factor benefit, artificial MSCs are no longer 

releasing those same factors). In this way, artificial MSCs will induce an similar remodeling 

response as that seen with healthy MSCs thus alleviating concerns of donor-to-donor variability 

that might cause graft failure such as in the case of diabetes. While optimization of all 

microsphere parameters are beyond the scope of this study due to the need to perform multiple 

time course animal studies to successfully define the release profile needed for artificial MSCs 

(see Section: 5.5 “Discussion and Future Directions”), a proof of concept in vivo implantation 

will be performed as part of this study.  

5.2 METHODS 

5.2.1 Microsphere Fabrication  

Microsphere fabrication will follow previously established methods to generate microspheres of 

different porosities and sizes utilizing double emulsion techniques to generate PLGA 

microspheres [483]. In this technique the size of the microsphere can be altered through changes 

in homogenization speed during the second emulsion formation (increase speed leads to 

increased size) and the size of pores can be altered by adjusting the solution osmolarity during 

fabrication (no adjustment leads to more pores). For determining the appropriate size of 

microspheres for TEVG scaffolds and when performing all seeding experiments (see Sections: 

“5.3.1 Seeding of Artificial MSCs – Determining Appropriate Diameter”, “5.3.2 Seeding of 
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Artificial MSCs – Determining Optimal Seeding Parameters”, “5.3.3 Seeding of Artificial MSCs 

– Retention Under Flow Conditions”), microsphere populations were created to different sizes 

with an average diameter of 40 µm (blank), 20 µm (blank), or 10 µm (FITC-dextran 

encapsulated; Sigma #FD2000S). To show the ability to tailor the release of microspheres (see 

Section: “5.3.4 Bioactive Factor Release – Customizable Release”), conditioned media 

encapsulated microspheres were created to different porosities (non-porous, porous, and burst 

(i.e. highly porous)). As following these experiments and out of these current formulations, the 

size of the 10 µm and the burst porosity were found most suitable, this formulation was utilized 

for release studies (see Section: “5.3.6 Bioactive Factor Release – Release of Desired Factors and 

Maintained Bioactivity”). 

 

5.2.2 Obtaining MSC Conditioned Media 

For this study conditioned media was obtained from two cell lines. The first was from utilizing 

healthy AD-MSCs employed in Aim 1 (Table 1: #1, 2, 5) and acquired in the same manner as 

previously described (see Section: “2.2.1 Isolation and Culture of Cells and Collection of 

Conditioned Media”). Briefly, near confluent flasks of AD-MSCs were given fresh media and 

conditioned for 2 days. AD-MSC conditioned media was utilized for the experiments controlling 

the release and concentrating conditioned media (see Section: “5.2.5 Concentration and Release 

of Microsphere Encapsulated Conditioned Media”). 

 Due to the attractive translatability of utilizing a commercial cell line which has a high 

degree of characterization and quality control, all other experiments employed conditioned media 

derived from an MSC cell line produced by RoosterBio (#KT-002, cell line #00055). The donor 
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information for this cell line is as follows: 22 year old, male. Conditioned media was isolated in 

the same manner as with AD-MSCs and  the RoosterBio MSC line was utilized between 

passages 0 and 3. 

5.2.3 Seeding of Microspheres Within TEVG Scaffolds 

Microspheres were seeded in a similar fashion to all other studies within this proposal (see 

Section: “2.2.5 Cell Seeding into TEVG Scaffolds”). Microspheres of size 40 µm, 20 µm, and 10 

µm (FITC-dextran embedded) were utilized in this process. Prior to cell seeding microspheres 

were incubated in buffer (PBS) with end-over-end mixing for 1 hour to solubilize. As initial 

results of seeding utilizing our standard parameters were deemed inadequate, alterations to 

various parameters such as vacuum pressure, seeding solution volume, and seeding solution 

concentration were made. 

5.2.4 Exposure of Microsphere Seeded TEVG Scaffolds to Physiologic Flow 

Following seeding of microsphere-based TEVGs, a section of scaffold (~1/3) was removed to act 

as a static (i.e. no flow) control while the remainder of the scaffold was immediately placed 

within the pulsatile flow loop described in Section 2.7.3 (“Explanted TEVG Mechanical 

Testing”). Each scaffold was subjected to physiologic pressure waveforms (120 mmHg/80 

mmHg) and flow (22.3 mL/min, equivalent to rodent aortic flow rate [484]) for 5 hours. 

Scaffolds were then removed from the system, fixed, frozen, and imaged.  
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5.2.5 Concentration and Release of Microsphere Encapsulated Conditioned Media 

Conditioned media produced by AD-MSCs of three donors (see Table 1, donors #1, #2, #5) was 

concentrated either by filtration or lyophilization. To filter concentrate media, conditioned media 

samples were placed in Millipore Centrifugal Filters (3K MWCO) and centrifuged at max speed 

until concentrated. For lyophilization, conditioned media samples were dehydrated and 

reconstituted in the smallest volume of water possible to completely dissolve the sample. The 

degree of concentration was assessed on total protein by a bicinchoninic acid assay 

(Thermofisher). 

To demonstrate that the release of MSC conditioned media could be tailored, 

microspheres were fabricated in non-porous, porous, and burst configurations (see Section: 

“5.2.1 Microsphere Fabrication”). Each microsphere population was incubated at 37ºC in 5 mL 

of PBS  while being rocked end-over-end. At specified times, the microsphere populations were 

centrifuged (1000 rpm, 5 min), a sample was drawn, and the microspheres were re-incubated in 

fresh buffer. For the non-porous and porous microsphere configurations samples were drawn at 

1, 3, and 7 days, and for burst release configuration samples were drawn at 1, 2, 4, and 7 days. 

Cumulative release was assessed based on total protein utilizing a bicinchoninic acid assay 

(Thermofisher). Microspheres in this experiment were encapsulated with AD-MSC conditioned 

media (non-concentrated) and experiments were performed in triplicate.  

Next to demonstrate that relevant factors to vascular tissue engineering was present in 

MSC conditioned media and could be released from microspheres, ELISA kits identifying 

human VEGF (DVE00, R&D Systems), MCP-1 (#DCP00, R&D Systems), BDNF (#DBD00, 

R&D Systems), and uPA (#DUPA00, R&D Systems) were utilized following the manufacturer’s 

instructions. Microspheres in this study were fabricated by encapsulating concentrating 
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conditioned media produced with RoosterBio MSCs in a burst configuration. The microspheres 

were released in a similar manner as above but preserved the entirety each releasate for the first 

three days (a time point when this fabrication of microsphere fully releases its cargo). The 

releases samples were then lyophilized, reconstituted, and combined such that the original 

volume of the pre-encapsulated sample was restored prior to performing ELISAs. Samples 

obtained in this study were also utilized in a bioactivity assay (see below) 

5.2.6 Scratch Assay for Bioactivity of Microsphere Released MSC Conditioned Media  

To confirm the bioactivity of microsphere released MSC conditioned media, a scratch assay was 

employed similar to that in Aim 1 (see Section: “2.2.3 Ability of AD-MSCs to Promote SMC 

Migration”. 

5.2.7 Statistics 

All statistics were performed in a similar manner to Section 2.2.11 (“Statistics”). 

5.3 RESULTS 

5.3.1 Seeding of Artificial MSCs – Determining Appropriate Diameter 

The first design criteria for the use of PLGA microspheres with a TEVG scaffold was to 

appropriately assess the diameter range of microspheres which would appropriately fit within 

TEVG scaffolds. As a pilot study, microspheres were created with an average diameter of 20 µm 
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or 40µm to mimic the average size of AD-MSCs (see Figure 61) or to match the pore size of the 

scaffold (~50 µm [260]). However, it is noteworthy that each microsphere population has a wide 

range of diameters around this average value. The rationale for testing both of these sizes is that 

due to the lack of adhesive properties present on the microsphere surface, they may be physically 

removed under arterial flow conditions and a larger size may be necessary to “wedge” within 

pores to prevent this from occurring. Upon seeding of both 20 µm and 40 µm microspheres 

utilizing our standard methods (3 million objects seeded, vacuum pressure -127 mmHg) a 

majority of the microspheres did not penetrate within scaffold pores, persisting lumenally 

(Figure 62). Anecdotally, a large amount of these spheres were washed away in subsequent 

processing steps (fixation/freezing) as shown by a white powder eluting from the lumen of the 

scaffolds (Figure 62). Upon imaging cross sections of microsphere seeded TEVG scaffolds two 

phenomenon were evident: 1) microspheres of an average size around 5 µm were present within 

TEVG scaffolds, and 2) the microspheres themselves were difficult to visualize utilizing solely 

brightfield imaging. For all subsequent seeding experiments a population of microspheres with 

an average diameter of 5 µm utilized and were loaded with a FITC-labelled dextran for 

visualization. Indeed, all subsequent seeding experiments (see Sections:  “5.3.2 Seeding of 

Artificial MSCs – Determining Optimal Seeding Parameters”, “5.3.3 Seeding of Artificial MSCs 

– Retention Under Flow Conditions”) confirmed that 5 µm or less is indeed the diameter for 

seeding microspheres within our PEUU scaffolds (Figure 63). Although this is much less that 

the size of cells themselves (Figure 61, average: 20 µm), it likely occurs due to the lack or 

rigidity of PLGA microspheres – as opposed to cells – which cannot deform to navigate through 

scaffold pores. 
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Figure 62. Only microspheres of less than 5 µm successfully seed within TEVG scaffolds. Microspheres of Average 
Size 20 (A) and 40 µm (B) were both seeded within TEVG scaffolds. However, only small microspheres (yellow 
arrows) were shown to fit within scaffold pores whereas larger sized ones are lumenally excluded (red arrows). The 
microspehres were quantitatively determined to be 5 µm or less. These lumenally excluded microspheres were 
further noted as additional histologic processing steps resulted in removal of microspheres from the scaffold lumen 
appearing as a white cloudiness within clear media (C). 
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Figure 63. The diameter threshold of seeded microspheres at 5 µm or less was consistent across all experiments in 
this aim. The sizing of microspheres was analyzed for all seeded scaffolds within this Aim which consistently 
revealed a cutoff range of 5 micrometers or less. 
 

5.3.2 Seeding of Artificial MSCs – Determining Optimal Seeding Parameters 

Following determination of the appropriate microsphere size which would seed within PEUU 

scaffolds, we then sought to optimize the cell seeding in such a way were microspheres could be 

seeded to similar metrics as AD-MSCs (i.e. cell density and distribution). While admittedly 

future studies may prove that number of microspheres needed to induce a regenerative response 

may be different from that of cells, these metrics were utilized as a benchmark to evaluate 

potential abnormalities encountered during the seeding process when utilizing microspheres. As 

mentioned in the previous section, all seeding experiments utilized a microsphere population 

with an average diameter of 5µm with a range from 1-10 µm, and were loaded with FITC for 

visualization. Additionally, previous methods to count cells via the ImageJ-based automated cell 

counting tool (see Section: “2.3.3 Uniform Cell Seeding Analysis for Healthy, Diabetic, and 

Elderly AD-MSCs”) developed in Aim 1-1 were utilized and indeed showed the ability to 



 204 

quantify the microsphere density within seeded scaffolds (Figure 64). Additionally this tool 

allows for determination of microsphere diameter. 

 

 

Figure 64. The ImageJ-based cell counting tool developed in Aim 1 can be utilized for analysis of microsphere 
seeded scaffolds. The ImageJ tool developed in Aim 1 was utilized for counting microspheres seeded within 
scaffolds and determining their diameter. Each step (A-E) is depicted for a microsphere seeded scaffold and is 
consistent with that seen in Figure 11. 
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Seeding of microspheres following standard parameters (number: 3M objects, 

concentration: 1 million/mL, volume: 3 mL, vacuum: -127 mmHg) was found to result in a 

scaffold with lower density and non-uniform distribution. Each microsphere seeded scaffold 

when compared to one seeded with AD-MSCs with the same number or objects (i.e. either AD-

MSCs or microspheres) was shown to achieve approximately half the density (Figure 65). As 

only microspheres of diameter 5 µm or less can be seeded within our PEUU scaffolds, the 

observed half density is a result of only half of the microsphere diameter range occurring at less 

than 5 µm (range: 1-10 µm) (Figure 66). Additionally, when investigating the distribution of 

microspheres within seeded scaffolds, although the circumferential and longitudinal sections 

displayed uniformity, the radial distribution was skewed lumenally (Figure 67, see Figure 14 for 

AD-MSC uniform distribution in circumferential, longitudinal, and radial directions). As stated 

before when considering the microsphere size, it is likely that the rigidity of the sphere results in 

poor navigation of scaffold pores during the seeding process.  



 206 

 

Figure 65. Microspheres seeded under current protocols for cells achieve only 50% of the seeding density. (A) 
Example of a cell (AD-MSCs; blue) seeded scaffold which displays a high degree of cell density and uniform 
distribution. (B) An example of a 10 µm FITC-embedded microsphere (green) seeded scaffold that has been seeded 
with an identical number to cells. Microsphere seeded scaffolds display both poor uniformity and density compared 
to an AD-MSC one. (C) Quantification (n=3) of the cell density using the ImageJ script in Figure 64 revealed only 
approximately 50% of the density compared to cells. Black bar = significant at p<0.05. n = 3 each. 
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Figure 66. Only microspheres of size 5 µm or less are seeded within TEVG scaffolds. The size distribution of the 10 
µm microsphere population (left) consists of normally distributed population with an average diameter of 
approximately 5 micrometers. However, the size of microspheres that successfully seed within scaffolds (right) only 
consist of diameters at 5 µm or less. As this represents approximately half of the population, this size exclusion can 
explain the reduced seeding density. 
 

 

Figure 67. Microsphere seeded scaffolds have a radial distribution skewed inward. (A) Cell seeded grafts (AD-
MSCs) are seeded with a uniform distribution whereas (B) microsphere seeded grafts display significant skewing 
towards the lumen indicating poor thickness penetration during the seeding process. Black bar = significance at 
p<0.05. n=3 each. 
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To compensate for the lower cell density (~50%) observed within microsphere seeded 

scaffolds, the total number of seeded spheres was doubled. This was done in two manners. First, 

this was done by doubling the concentration of the microsphere suspension utilized during the 

seeding process (2M/mL, 3mL volume). Secondly, a double number was achieved by increasing 

the total volume but keeping the concentration the same (1M/mL, 6 mL volume). Seeding 

microspheres in both manners produced a cell density no better than that observed prior to 

increasing the microsphere number and qualitatively still displayed a distribution mostly residing 

in the luminal region (Figure 68). This is likely a result of “bottle-necking” where under the 

current radial forces applied throughout the seeding process do not induce substantial penetration 

to clear luminal pores for additional microspheres.  
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Figure 68. Compensating the 50% loss in seeding density when using microspheres with increased number is 
insufficient. To compensate for the 50% the loss in microsphere seeding density (Figure 65) the number of 
microspheres seeded within TEVG scaffolds was doubled by either increasing the concentration of microsphere 
seeding solution (A) or increasing the volume (B). Both cases (n=1 each) were unable to recover the density of 
microspheres to the same level as cells and a luminal skewing is still present. 
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To better enhance the penetration of microspheres during the seeding process to achieve 

both a more uniform radial distribution and to clear the aforementioned “bottleneck”, the vacuum 

pressure was increased  to -381 mmHg (house line pressure) during the seeding process. Under a 

higher vacuum pressure, seeding microspheres with the increased number used in Figure 68 was 

able to achieve a density similar to that observed when seeding cells (Figure 69). Additionally, 

this resulted in a uniform radial distribution (Figure 69). Seeding microspheres with increased 

vacuum but non-increased number was unable to produce this effect in terms of both distribution 

and density (Figure 70). To confirm that the increased vacuum pressure was not inducing 

unwanted deformation of the microspheres we confirmed the circularity (i.e. shape factor) of the 

microspheres post-seeding (Figure 71). Additionally, as the seeded microspheres throughout 

these experiments still displayed a diameter of 5 µm of less (Figure 71), it can be argued that no 

deformation occurs as deformation would likely result in better penetration of larger sized 

spheres.. 
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Figure 69. Microsphere seeded scaffolds with increased number and increased vacuum pressure During the Seeding 
Process Seed Similarly to Cells. As shown in Figure 68, increasing the number of microspheres alone was 
insufficient to increase the seeding density and a luminal aggregation is still present likely due to poor penetration of 
microspheres. To increase the transmural force during microsphere seeding to better distribute through the thickness, 
the vacuum pressure was increased 3-fold. Seeding in this manner (n=1) resulted in a microsphere seeded scaffold 
(A) with cell density similar to that of cells (B) with a uniform radial distribution (C).  
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Figure 70. Increased vacuum alone without increased number was insufficient to compensate for seeding density or 
to obtain a uniform distribution. A TEVG scaffold (n=1) was seeded with increased but the original number of 
microspheres to evaluate the effect of increased vacuum pressure alone. No qualitative increase to either the seeding 
density or radial distribution can be observed comparing beyond that which was originally achieved in Figure 65 
utilizing the standard protocol. 
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Figure 71. Seeded microspheres across all experiments remain circular and have similar sizes. To confirm that 
microspheres were not damaged and/or deformed when utilizing the increased vacuum pressure during the seeding 
process, all seeded microsphere grafts were analyzed for their (A) circularity (also known as Shape Factor; see 
Figure 3, 1 = circular, 0 = elliptical) and (B) size distribution. Similar results are seen in both cases indicating that 
the microspheres are not deformed during the seeding process. 
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5.3.3 Seeding of Artificial MSCs – Retention Under Flow Conditions 

As microspheres do not have a mechanism to attach to the scaffolds in the same manner as cells 

do and may dislodge when subjected to flow, microsphere seeded scaffolds (3M microspheres,  

-127 mmHg) were subjected to arterial flow conditions for approximately 5 hours. To obtain a 

static control, a section of each scaffold was removed prior to flow exposure. Comparing the 

density of microspheres within the scaffolds exposed to flow versus static controls revealed no 

differences (Figure 72). Additionally, the sizing of microspheres within the wall remained 

unchanged post-flow which indicates that smaller microspheres do not become dislodged 

(Figure 71). Interestingly, the distribution of microspheres became skewed outward (i.e. deeper 

into the wall) (Figure 73) as a result of the hydrostatic pressure from arterial flow which could 

be protective against potential embolism of the microspheres. However, as microspheres are 

biodegradable, a smaller size (< 5µm) than  micro-embolisms (10-50 µm) [485, 486], and a 

similar size to circulating blood cells [486], it is unlikely for occlusion due to embolism to be a 

concern. Additionally, a microsphere seeded scaffold with the optimized seeding parameters (6M 

microspheres, -381 mmHg) determined in the previous section was subjected to flow and still 

maintained a high density and uniform distribution (Figure 74) 
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Figure 72. Microspheres placed under flow conditions showed no differences in seeding density. Microsphere 
seeded scaffolds (n=3) were subjected to flow conditions (120/80 mmHg physiologic waveform; 5 hours) with a 
static control piece removed prior. Comparing the seeding density of (A) static  or (B) flow seeded scaffolds 
revealed (C) no differences (p=0.4) 
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Figure 73. Analysis of the radial distribution of microsphere seeded scaffolds post-flow showed radially outward 
skewing. The radial distribution of the microsphere seeded scaffolds exposed to flow was analyzed and compared to 
static controls. As shown qualitatively if Figure 72 and quantitatively above, a skewing outward of the microspheres 
is observed (n=3 each). 
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Figure 74. Microsphere seeded scaffolds with the increased vacuum/increased number seeding method shows high 
density and uniformity after subjection to flow. To confirm that microspheres were retained in TEVG scaffold 
utilizing the newly optimized seeding methodology for microspheres, one microsphere seeded scaffold under this 
method was subjected to physiologic flow in the same manner as Figure 72. Qualitatively it is observed that a high 
seeding density and uniformity persist. 
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5.3.4 Bioactive Factor Release – Customizable Release 

Utilizing a standard double emulsion fabrication procedure [483], PLGA microspheres 

encapsulated with MSC conditioned media with non-porous and increasingly porous 

configurations to generate distinct release profiles (total protein, measured by the bicinchoninic 

acid assay). As can be seen in Figure 75, release is tunable by an order of magnitude as well as 

by as little as 2-fold by simply varying the porosity of the microspheres. It is also possible to 

tune the ratio of the amount delivered within the first two days compared to the amount delivered 

over the first week of release. The most appealing release is the highly porous release denoted by 

the red line in Figure 75 which we term as the “burst” configuration. This offers the advantage 

of releasing of all MSC bioactive factors in concert as opposed to potentially excluding certain 

factors based on size resulting in drastically different functional effects in the case of a non-

porous configuration. Utilizing the “burst” configuration will allow delivery of the entire 

combination of secreted factors, fully imparting the beneficial effects of MSCs. However, as a 

release in this manner will exhaust the supply of encapsulated factors at an acute time course, 

future studies will focus on extending the release time while still allowing delivery of the full 

spectrum of factors (see Section: 5.5 “Discussion and Future Directions”). 
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Figure 75. Cumulative release of multiple microsphere formulations. PLGA microspheres were fabricated using 
three different configurations (non-porous, porous, and burst). In all cases, AD-MSC conditioned media was 
encapsulated. Releasates were harvested daily and total protein content of each sample was measured by the 
bicinchoninic assay. Cumulative protein release was then plotted over the seven day period, to illustrate the three 
different release profiles. (data generated and utilized with permission by Dr. Morgan Fedorchak) 
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5.3.5 Bioactive Factor Release – Processing of Media (Concentration) 

To verify that we can achieve concentration of conditioned media, we performed both centrifugal 

filtration and lyophilization. The highest and most consistent concentration was achieved using 

lyophilization and resuspension - this media was concentrated 13-fold. Concentration with 

filtration resulted in ~6-fold concentration but was more variable between samples 

(Unconcentrated: 647±4.7 µg/mL, Lyophilization: 8639±129 µg/mL, Filtration: 2859±1376 

µg/mL, n=3) (Figure 76). From these results, all subsequent studies (i.e. release to confirm 

bioactivity) were performed with concentrated media via lyophilization and resuspension. 

To confirm that bioactivity was retained through the lyphilization process, the lyophilized 

media samples were re-diluted to their original concentrations, and then utilized in a SMC 

migration assay. We determined from the results of this assay that the conditioned media 

retained its pro-migratory effect on SMCs even after lyophilization (Figure 77). 
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Figure 76. Conditioned media can be concentrated by filtration or lyophilization. Conditioned media from AD-
MSCs (n=3, mean ± SD) were concentrated via filtration or lyophilization and reconstitution in the smallest volume 
possible. Lyophilization resulted in a superior concentration (approximately 10-fold) and less variability than 
filtration. (data generated and utilized with permission by Dr. Morgan Fedorchak) 
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Figure 77. Lypohilized and reconstituted MSC conditioned media retains its SMC pro-migratory potential. Media 
conditioned by MSC (RoosterBio) was lyophilized, reconstituted to the original volume with ultrapure water, and 
then used in a SMC migration assay as in Figure 7. This media displayed no different in potential to promote the 
migration of SMCs to the positive control (unprocessed conditioned media from the same stock) and was 
significantly higher than control (non-conditioned) media. Black bar = significance at p<0.05.  
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5.3.6 Bioactive Factor Release – Release of Desired Factors and Maintained Bioactivity 

To show that MSC secreted factors could indeed be released from microspheres (instead of total 

protein in conditioned media which includes serum as in Section 5.3.4 “Bioactive Factor Release 

– Customizable Release”) and maintain their bioactivity, we created microspheres with our 

current best case design: “burst” configuration microspheres encapsulated with concentrated 

MSC conditioned media. This allows for release of all MSC factors and provides the highest 

concentration delivery. Releasates from these microspheres were then analyzed via ELISA for 

representative factors that induce TEVG remodeling (VEGF, MCP-1, BDNF) and maintain anti-

thrombogenicity (uPA). All of these factors were shown to be present in pre-encapsulated media 

(Table 7) and absent in non-conditioned media controls. However, post-released samples 

displayed values that were prohibitively low (Table 7) with only two factors (VEGF, uPA) being 

able to be detected. Despite the low efficacy of the release, these results still illustrate that 

multiple MSC secreted factors which are relevant to TEVG processes can be released from this 

microsphere configuration. Further studies to optimize this release will be discussed in Section: 

5.5 (“Discussion and Future Directions”) 

To show that microsphere encapsulated factors could be released when seeded into 

scaffolds, microsphere seeded scaffolds bathed in solution were compared based on total protein 

to an equivalent number of microsphere in solution alone. Monitoring the total protein release 

over the course of 7 days via a micro-BCA kit revealed similar values between both groups 

(Figure 78) indicating that released protein does not become entrapped within scaffold pores. 
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Additionally, these released samples were employed in an SMC migration assay to 

confirm bioactivity the bioactivity of released samples. The results indicate that no bioactivity 

was present and the released samples induced cell death. While the lack of migratory effects 

could indeed be due to the aforementioned low release efficiency, the occurrence of cell death 

may be a confounding effect due to a high salt concentration as salt containing media samples 

were released into PBS. Additionally, degradation of the PLGA-based microspheres could cause 

acidic degradation products thus causing alterations to solution pH due to the small volumes used 

in this assay. 

  

Table 7. ELISA measurement of growth factors relevant to TEVG success in microsphere releases. The average 
generated from one cell line is provided with samples acquired from two separate culture flasks performed with 
measurements performed at least in triplicate. All values were subtracted from those present in non-conditioned 
media. 
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Figure 78. Microsphere release is unaffected by seeding. Microspheres were vacuum-seeded into PEUU scaffolds, 
assayed by BCA, and compared to release from microspheres alone in solution (mean ± SD, n=3 per group). 
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5.3.7 In Vivo Functionality 

To demonstrate the in vivo potential of a microsphere seeded TEVG, a pilot study was 

performed wherein two microsphere seeded grafts were implanted for a short duration (3 days). 

This initial investigation was performed with FITC-encapsulated microspheres to demonstrate 

that microspheres will be retained within TEVG scaffolds under in vivo conditions. The 

microsphere grafts were successfully implanted and the patency of each was confirmed by 

monitoring the distal pulse pressure at the completion of surgery. Both grafts seeded with FITC-

microspheres were unable to resist thrombosis (Figure 79). Additionally, FITC-microspheres 

were still present within TEVG scaffolds after exposure to physiologic flow (Figure 79). While 

it is unclear at which point the thrombosis developed during the 3 day implant as both rats were 

free from symptoms, in vivo flow conditions were still applied for some duration as the graft was 

confirmed patent upon the completion of surgery.  
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Figure 79. Implanted FITC-embedded microsphere were retained in scaffolds and induced thombosis. A pilot study 
was performed where two FITC-microsphere seeded scaffolds were implanted in our Lewis Rat model for 3 days. 
(A) Angiogram upon study completion revealed occlusion of both TEVGs. This can further be seen due to the dark 
color of the proximal and distal graft anastomosis (B) and the observed thrombosis when transecting the TEVG (C). 
(D) Microscopy revealed that FITC-microspheres were retained in TEVGs under in vivo conditions. 
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5.4 CONCLUSION 

Through this Aim a proof of concept has been shown and the process of determining the initial 

design elements of the novel artificial MSC technology has begun. The diameter of microspheres 

that can be incorporated within our TEVG scaffold was shown to be 5 µm or less and methods to 

successfully seed them with the same cell density and distribution as MSCs was demonstrated. 

The diameter of 5 µm spheres incorporated within scaffolds was consistent regardless of using 

populations consisting of larger microspheres or through increasing the vacuum pressure while 

seeding. Additionally, seeded microspheres were not dislodged when exposed to flow conditions 

and showed resistance to embolism as hydrostatic pressure showed a tendency to drive them 

radially outward. With regards to the encapsulation and release of MSC media it was shown that 

conditioned media-based microspheres can be tuned to offer multiple release profiles, the media 

can successfully be concentrated, and that MSC factors can be released. However, in this initial 

trial the quantity of those factors were prohibitively low and initial bioactivity assays were 

unsuccessful. Despite this, the experiments performed in this Aim clearly demonstrate the 

feasibility of a conditioned media encapsulated microsphere-based TEVG design showing that 

these artificial MSCs can be successfully seeded and release relevant factors. Further refinement 

to this technology will be discussed in the following section. 
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5.5 DISCUSSION AND FUTURE DIRECTIONS 

As mentioned above, while this study demonstrated the feasibility of artificial MSCs showing the 

ability to be successfully seeded within TEVG scaffolds, appropriate size, and possibility of 

release, there are still many unaddressed areas which require further investigation before the 

artificial MSC technology can become a reality. In particular, these include two major areas: 1) 

determining the desired release profile necessary for the microspheres, and 2) optimizing 

methods to release conditioned media at higher efficiency. 

To determine the appropriate release profile it is important identify the series of in vivo 

time course events that lead to successful remodeling of TEVG with host cells when utilizing an 

MSC-based TEVG. These include four critical events: 1) the disappearance of seeded MSC, 2) 

the appearance of SMC, 3) the appearance of EC, and 4) the appearance of vascular ECM. While 

literature evidence provides evidence for some of these parameters (see Section: “1.5.3 In Vivo 

TEVG Mechanisms”), the resolution of these studies is insufficient for determining the release 

profile of artificial MSCs. Ideally, artificial MSCs will be utilized to release a similar quantity of 

bioactive factors to seeded MSCs and this will correlate with the disappearance of seeded MSCs. 

That is, as the seeded MSCs decline over time as host repopulation progresses, the release profile 

(and/or number of artificial MSCs) will taper off to mirror this. Ultimately a study performed in 

this manner will both guide the release profile as well as both the necessary number of 

microspheres and concentration of encapsulated conditioned media required. One criticism in 

this approach however is that the in vitro MSC secreted factor profile utilized to generate 

conditioned media for artificial MSCs may not match the profile in vivo as the secreted profile 

has been shown to change based on different environmental effects [480, 487-490]. However, 

based on the results of this dissertation and literature evidence it is clear that the MSC factors 



 230 

produced in vitro (e.g. VEGF, MCP-1, BDNF, uPA) have unequivocally been shown to 

positively influence he TEVG remodeling process. 

Another important parameter is to ensure that artificial MSCs release the broad spectrum 

of MSC secreted factors. While microspheres have been extensively utilized to release several 

compounds ranging from growth factors (VEGF [474, 491, 492], FGF [478, 493-495], PDGF 

[496, 497], MCP-1 [491], TGF-beta [472, 498], EGF [475], BMP-2 [499-501], BMP-7 [500], 

IGF-1 [498, 499, 501], NGF [502], GCNF [503]), drugs [477, 504, 505], peptides [473, 476], 

and siRNAs [506] these are often only delivered as single factors. Some studies have attempted 

simultaneous delivery of two factors through encapsulation within either the same microsphere 

[491, 498] or using two separate populations [499, 500]. However, achieving appropriately timed 

releases with microspheres has been difficult [507-509]. Indeed, mixed results have been seen 

when encapsulating two different factors within the same formulation of particles either showing 

the same release profile [499] or drastically different ones [491, 498, 501]. However, utilizing 

highly porous microspheres such as the “burst” release fabrication utilized in this Aim clearly 

shows the ability to simultaneously release multiple factors. Additionally, the collaborators (Dr. 

Steven Little’s laboratory) on this project have extensive experience tailoring the release profile 

of microspheres [510-512] and are capable of utilizing unique mathematical modeling techniques 

and finite element analysis to directly translate desired release profiles into several physically 

relevant fabrication instructions. One conceptual design to achieve a sustained release of the 

entire spectrum of MSC factors is to design is highly porous microspheres similar to the “burst” 

ones used in this Aim, but to operate different sub-populations on a time delay such that the 

cumulative release over time is constant.. 
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From a technical standpoint while this Aim showed that MSC secreted factors can be 

released from microspheres, the release was low (< 10%) and will need additional refinement. 

First, the low amount of released product could be explained by poor encapsulation efficiency, a 

high occupancy of serum within microspheres which excludes MSC products, or potential 

binding to polymer fragments during release. Further investigation will be required to determine 

and alleviate the cause. Secondly, the bioactivity (scratch migration) assay was unsuccessful 

predominantly due to cell death. As the release assay was performed releasing conditioned media 

into PBS and with microsphere degradatory products, a high salinity (i.e. high osmotic pressure) 

or acidity may be contributing factors. While these issues are not relevant in the infinite sink 

conditions that would be experienced during implantation testing, the issue needs to be resolved 

when considering the small volumes used during in vitro assays.   While no other bioactivity 

assays were attempted due to the low release efficiency, future studies could employ assays 

similar to the zymography performed in Aim 1-2 to detect anti-thrombotic (fibrinolytic) activity 

of released samples.  
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6.0  STUDY SUMMARY 

The following sections will summarize the key findings presented within this dissertation, 

discuss the future directions of each Aim, and present my scientific accomplishments achieved 

through this work.  

6.1 SUMMARY OF RESULTS 

6.1.1 Specific Aim 1 

Aim 1 of this dissertation investigated the use of AD-MSCs from two high cardiovascular risk 

patient demographics – diabetic and elderly – in the context of vascular tissue engineering. It was 

shown that AD-MSCs from these donors had functional deficiencies in two essential functions of 

TEVG maturation. First, the ability of diabetic and elderly AD-MSCs to differentiate into SMCs 

was shown to be less efficacious for both donor types compared to healthy controls. Second, the 

ability of the secreted factors from elderly AD-MSCs, but not diabetic ones, was shown to be 

unable to promote the migration of SMCs. However, when considering the fabrication of TEVG 

constructs, all donor types (healthy, diabetic, elderly) were able to successfully seed scaffolds in 

line with our gold standard data (i.e. at high cell density and uniform distribution). Comparing 

the in vivo functionality revealed the main complication to be thrombosis which was 
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encountered in the diabetic group. Despite the initial in vitro data (SMC differentiation and 

ability to promote SMC migration via secreted factors) showing functional deficiencies, all 

patent TEVGs in vivo regardless of group were able to remodel to a vascular-like construct 

similarly.  

In the second part of this aim a mechanistic study was performed to identify the reason 

for the thrombosis encountered in the diabetic AD-MSC group. Using fibrinogen zymography, 

an enzymatic activity assay, and monitoring the degradation of fibrin-based constructs it was 

shown that diabetic AD-MSCs have a reduced fibrinolytic activity compared to healthy controls. 

Additionally, one molecular player – uPA – was identified to be decreased in diabetic AD-

MSCs. 

6.1.2 Specific Aim 2 

The focus of Aim 2 was to evaluate the use of a culture-free adipose-derived cell population – 

SVF cells – for TEVG applications to reduce clinical barriers associated with fabrication time. It 

was shown that SVF cells were equipotent compared to paired cultured AD-MSCs at performing 

the two essential functions for TEVG maturation defined in Aim 1 (SMC differentiation, ability 

of secreted factors to promote SMC migration), seeding within TEVG scaffolds, and developing 

patent vascular-like TEVGs when implanting in vivo. 

6.1.3 Specific Aim 3 

The goal of Aim 3 was to perform a feasibility study for a novel TEVG construct incorporating 

microsphere encapsulating AD-MSC products as a replacement for cells themselves (termed as 
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“artificial AD-MSCs”. This would allow for a functional TEVG regardless of deficiencies in 

autologous donor AD-MSCs (such as the lack of uPA production as determined in Aim 1-2). It 

was shown that microspheres can be seeded within TEVG scaffolds under redefined 

methodologies, microspheres remain embedded within TEVG scaffolds under flow conditions, 

their cargo and release can be customized, and they can release relevant biologic factors. This 

ultimately lays the ground work for future studies which can customize this technology to induce 

the in vivo processes seen when utilizing cells with a TEVG. 

6.2 SUMMARY OF ACOMPLISHMENTS 

The work of this dissertation, this work has led to the generation of the following scientific 

manuscripts: 

1. Krawiec JT, Weinbaum JS, St. Croix CM, Phillippi JA, Watkins SC, Rubin JP, Vorp 
DA. “A Cautionary Tale for Autologous Vascular Tissue Engineering: Impact of 
Human Demographics on the Ability of Adipose-Derived Mesenchymal Stem Cells 
to Recruit and Differentiate Into Smooth Muscle Cells”  Tissue Engineering Part A, 
2014 

2. Krawiec JT, et al. “In Vivo Functional Evaluation of Tissue Engineered Vascular 
Grafts Fabricated Using Human Adipose-Derived Stem Cells from High-
Cardiovascular Risk Populations” [in submission] 

3. Krawiec JT, et al. “Impaired Fibrinolytic Activity of Adipose-Derived Stem Cells 
from Diabetic Patients is Associated with Thrombotic Failure of Stem Cell-Based 
Tissue Engineered Vascular Grafts” [in submission] 

4. Krawiec JT, et al. “Culture-Free Human Stromal Vascular Fraction Cells Produce a 
Functional Tissue Engineered Vascular Graft” [in preparation] 
 

Additionally, a review and a book chapter were written pertaining to the background material 

utilized in this dissertation: 

1. Krawiec JT, Vorp DA.  “Adult stem cell-based tissue engineered blood vessels: A 
review,” Biomaterials, 33(12):3388-3400, 2012. 
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2. Blose KJ, Krawiec JT, Weinbaum JS, Vorp DA. “Chapter 15: Bioreactors for Tissue 
Engineering Purposes,” Regenerative Medicine Applications in Organ 
Transplantation, 1st Edition. Giuseppe Orlando, ed. Academic Press, 2013. 
 

Finally, multiple individual fellowships were obtained by the author of this dissertation or by 

undergraduates who were mentored by the author: 

1. NIH T32 HL094295-02, “Optimal Stem Cell Type and Effect of Donor 
Demographics on Engineered Autologous Human Blood Vessels”, 9/2011-7/2012 
[Training fellowship to Jeffrey Krawiec] 
 

2. AHA 12PRE12050163, “Stem Cell Based-Tissue Engineered Vascular Grafts: Effect 
of Cell Type and Type-2 Diabetes”, 7/2012-6/2014 [Predoctoral Fellowship to Jeffrey 
Krawiec] 

 
3. Undergraduate Summer Research Internship Scholarship, Swanson School of 

Engineering (SSOE), University of Pittsburgh, 6/2013-8/2013 [Summer Fellowship to 
Alexander Josowitz (mentored undergraduate student)] 
 

4. Biomedical Engineering Summer Undergraduate Research Program (BME-
SURP) Scholarship, Carnegie Mellon University, 6/2013-8/2013 [Summer 
Fellowship to Katelyn Bruce (mentored undergraduate student)] 
 

5. Undergraduate Summer Research Internship Scholarship, Swanson School of 
Engineering (SSOE), University of Pittsburgh, 5/2014-7/2014 [Summer Fellowship 
to Dominic Pezzone (mentored undergraduate student)] 
 

6. Biomedical Engineering Summer Undergraduate Research Program (BME-
SURP) Scholarship, Carnegie Mellon University, 6/2014-8/2014 [Summer 
Fellowship to LaiYee (Lily) Kwan (mentored undergraduate student)] 
 

7. AHA Summer Undergraduate Research Program (AHA-SURP) in 
Cardiovascular Sciences Scholarship, Vascular Medicine Institute, University of 
Pittsburgh, Summer 2015 [Summer Fellowship to Dominic Pezzone (mentored 
undergraduate student)] 
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6.3 FUTURE DIRECTIONS 

The future directions of this dissertation are discussed within each Aim due to the independent 

nature of those projects. For the discussion of future directions in Aim 1-1 see Section 2.6, for 

Aim 1-2 see Section 3.6, for Aim 2 see Section 4.6, and for Aim 3 see Section 5.5. 
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APPENDIX A 

APPENDIX A: DETERMINING APPROPRIATE CELL DENSITY FOR SMC 

SCRATCH MIGRATION ASSAY 

Prior to performing the SMC scratch migration assay detailed in Aim 1  a pilot study was 

performed to determine the optimal number of SMCs to be plated to achieve a cell confluence 

enough to allow for unidirectional migration (i.e. towards to wound area) but to avoid a 

confluence that would allow cells to establish cellular adhesions which would prevent their 

migration. The results of this study can be seen in Figure 80 which indicates that 18,750 cells 

per well in a 24 well plate allow for an optimal cell density for this assay.
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Figure 80. SMCs were plated at various densities to determine an ideal number to achieve confluence but not 
encounter tearing/compaction from too high an SMC density or lack of migration from cellular adhesion and/or 
extracellular matrix deposition. All cells were plated 1 day prior to experimentation to resist the aforementioned 
extracellular matrix deposition. At a plating density of 75,000 SMC per well of a 24 well plate both a lack of 
migration was denoted by the lack of cellular movement across the initial wound line (red line). Additionally, 
tearing was noted as cells retracted from the initial scratch wound (red line). At a cellular density of 37.5k SMCs, 
migratory effects were recovered but tearing and compaction was still denoted in some wells. Finally, at 18.75 
SMCs neither tearing or compaction was shown and was utilized to generate data for all subsequent experiments 
(example for test assay shown). Although not shown, a density of less than 18.75k SMCs does not achieve enough 
cellular confluence. 
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APPENDIX B 

APPENDIX B: IMAGEJ CELL COUNTING TOOL TUTORIAL AND SCRIPT 

“Readme” written by Alex Josowitz 

This is a guide for running the imageJ macro, analyze_Scaffolds.ijm, to count cells in fluorescent 
images of seeded scaffolds: 
 

1. Before you do anything else, make sure the images you are using are in the "snapshot" 
format from the NIS Elements software. The original images do not open correctly on 
imageJ due to their imageJ type. RGB images are essential for this macro to work. 
 
2. Open ImageJ or Fiji on your computer. This macro should work in both versions of the 
software. 
 
3. Next, you may need to change one or two things in the macro itself. Depending on 
what color you used to mark the cells/particles you may have to change the number in the 
"selectImage()" command in Line 7 of the macro. To do this, click "File" and then 
"Open" in the ImageJ toolbar. You should select "analyze_Scaffolds.ijm" from wherever 
you have the file stored. In the lab computers,  the file is in the Vorp Shared R-drive in 
the "Alex Josowitz" folder. The script for the macro should appear. 
 
4. Find line 7 of the script which says "selectImage(#)". The # is either 1, 2, or 3, 
corresponding to red, green, and blue. If you used a TRITC dye (red), change the number 
to 1. If you used a FITC dye (green) change the number to 2. If you used a DAPI  (blue) 
dye, change the number to 3. You must save the script (File-save) after making changes. 
 
5. You must now install the script before it can be used. In the ImageJ toolbar, navigate to 
"Plugins" and click on it. A drop down menu should appear. 
 
6. The first option in the dropdown menu is "Macros", which is another drop down menu. 
Hover over it and click the "Install" option. 
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7. Once you click "Install" a file browser window should appear. You should select 
"analyze_Scaffolds.ijm" from wherever you have the file stored. In the lab computers, the 
file is in the Vorp Shared R-drive in the "Alex Josowitz" folder. It is necessary to install 
the macro every time you open/reopen ImageJ. 
 
8. Now you must open the image you wish to analyze. Simply click "File" and then 
"Open" and locate the image of your choice. 
 
9. Once the image pops up, you are ready to use the analysis tool. Click on "Plugins" and 
then "Macros". At the bottom of the "Macros" menu should be a new option 
"analyze_Scaffolds". Click that. 
 
10. The analysis tool should run its course. Multiple images should appear on the screen, 
representing the different modifications that the script performs on the original image. 
You can ignore those if you'd like. The only window that matters, if you are counting 
cells, is the small "Summary" window that pops up. It my be hiding behind the other 
images so you may have to move or delete the images to find it. The summary window 
should display the number of cells in the "Count" section. 
 
11. There is also a small "Results" window that pops up. It details each individual 
particle, the particle's pixel area, and possibly coordinates for the particle's location. This 
"Results" window can be useful as the tool can be set to measure aspects of individual 
particles rather than simply counting them all. To do this, go to the ImageJ toolbar, click 
"Analyze" and then click "Set Measurements". A window should pop up with a variety of 
clickable options, including "Area", "Centroid", and "Perimeter" as well as other possibly 
useful measurements. You can click the box next to any of these measurements before 
running the macro and then the "Results" window should display values for the 
measurements you chose next to each particle. 
 
12. In order to run a new image, you should close all of the residual images from your 
initial run. This can be done simply by clicking "File" and "Close All". This will not get 
rid of the "Summary" or "Results" sections, so you can still see them if need be. 
 
13. Repeat steps 7-9 for each image you'd like to analyze. 

 

ImageJ Cell Counting Script – “analyze_Scaffolds.ijm” 

//Macro to count the number of cells in a multi-channel image of a seeded scaffold 
//Created by Alex Josowitz 
//splits channels between red, blue and green 
//blue is on top 
run("Split Channels");   
//select red (1) green (2) blue (3) 
selectImage(2) 
//identifies image ID  
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idOrig = getImageID(); 
//converts to 32-bit to reduce rounding inaccuracies 
run("32-bit"); 
//copies image 
run("Duplicate...","title=[copy]"); 
//identifies copied image ID 
idDup = getImageID();   
selectImage(idOrig); 
//applies Gaussian blur with small radius to original blue channel 
run("Gaussian Blur...", "sigma=1"); 
selectImage(idDup);   
//applies Gaussian blur with larger radius to duplicate  
run("Gaussian Blur...", "sigma=3");   
//subtracts duplicate blur from original blur to view distinct cells 
imageCalculator("Subtract create", idOrig, idDup);   
//applies Otsu threshold to image to remove unnecessary points 
setAutoThreshold("Otsu dark");   
//run("Threshold..."); 
setThreshold(26.5376, 170.7419);   
//make binary 
run("Make Binary"); 
//run Open command to clear small particles 
run("Open"); 
//watershed separation 
run("Watershed"); 
//counts cells and determines areas 
run("Analyze Particles...", "size=10-Infinity circularity=0.00-1.00 show=Outlines display 
exclude clear summarize"); 
//Change “size=10-Inifinity” to “size=0-Infinity” for measuring microspheres instead of cells. 
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APPENDIX C 

APPENDIX C: ANEURYSMAL TEVG HISTOLOGY FROM AIM 1 
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Figure 81. Aneurysmal TEVG explanted sample at 8 weeks. One TEVG sample from Aim 1-1 was implanted and 
incurred significant aneurysmal dilation (~4 mm diameter vs 1 mm diameter). (A,B) Angiography results show 
signifanct dilation of the aneurysmal TEVG (right, white arrow) compared to both the adjacent aorta and a non-
dilated TEVG implant (right, white arrow). (C,D) Gross observation of transected the TEVG explant. (E, F) Von 
Kossa (E) and Alizarin Red (F) staining show general histological characteristics pointing to fragmentation of the 
TIPS scaffold layer and absence of the ES layer (i.e. a manufacturing defect) as a potential explanation for 
aneurysmal dilation and additionally show the presence of calcification (which occurred in other non-dilated TEVG 
explants). (G,H) Staining for SMC markers revealed prominent staining of SMA (G) but minimal staining for 
calponin (H).  
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APPENDIX D 

APPENDIX D: GELATIN COATED SLIDES RECIPE 

Ingredients: 

Gelatin Type A (#Sigma G-2500) 0.75g 
Chromium  sulfate 0.125 g 
Water 250 ml 
 

Heat 250 mL water to 60#C. Remove from heat and dissolve 0.75g of Gelatin (Type A, #Sigma 

G-2500) with aid of a stir bar. After the gelatin has been completely dissolved, add chromium 

sulfate. Move solution to a Coplin staining jar and dip electrically charged slides (#Shandon 

Colorfrost Plus) for 5-10 seconds. Remove, pat dry, and repeat three times. Allow slides to dry 

for 24 hours prior to use. 
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	Figure 54.  Human SVF cell-based TEVGs generated patent vessels. (A) SVF seeded scaffolds were implanted in a Lewis rat model wherein they developed patent vessel at an 8 week timepoint shown by angiography. (B) Explanted SVF cell-based TEVGs displayed a clear tissue-like gross appearance. (C) Histologic H&E staining revealed SVF-based TEVGs showed signs of possessed newly developed tissue lumenally (neotissue) which showed ingrowth into scaffolding material. Both SVF cells and donor-matched AD-MSCs were equally capable of generating patent TEVGs (inclusive Table). 171
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	Figure 57.  Phenotypic characterization of SVF seeded scaffolds. Immuno-fluorescence shows presence of endothelial cells (CD31) and endothelial precursor cells (CD34) in SVF seeded scaffolds and a lack of T-cells (CD4), B-cells (CD20), and macrophages (CD68) (n=3). White arrow indicates lumen. 183
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