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Generally, in most applied fields, the dynamic state space models are of nonlinearity with non-

Gaussian noise. However, as a famous and simple algorithmic filter, Kalman filter can only 

estimate linear system with Gaussian noise state space models. The Extend Kalman filter and the 

Unscented Kalman filter still have limitations and therefore are not accurate enough for 

nonlinear estimation.  The Bayesian filtering approach which is based on sequential Monte Carlo 

sampling is called particle filters. Particle filters were developed and widely applied in various 

areas because of the ability to process observations represented by nonlinear state-space models 

where the noise of the models can be non-Gaussian. However, particle filters suffer from two 

long-standing problems that are referred as sample degeneracy and impoverishment. To fight 

these problems, resampling step is necessary. In this review work, a variety of resampling of 

particle filter methods as well as their characteristics and algorithms are introduced and 

discussed, such as Sampling-Importance resampling, Auxiliary particle filter, Optimal 

resampling and so on to combat against the sample degeneracy and impoverishment. Finally, 

efficient importance sampling, as a more accurate method, capable of estimating high-

dimensional integration and carrying out global optimization, will be introduced and compared 

to particle filters. 
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1.0  INTRODUCTION 

It is well known that the Kalman filter (KF) is the best and simplest algorithmic filter for 

dynamic state estimation (Kalman). The KF is relatively easy to design and code. However, KF 

can only give the optimal estimation for systems with linear dynamics and additive Gaussian 

noise in the transition and the measurement functions. The dynamic models constituted by the 

transition functions and measurement functions are called the state space models (SSMs). SSM 

can estimate both process and observation errors though stochastic process. SSM provides a 

general framework for analyzing deterministic and stochastic dynamic systems. The SSM 

framework has been successfully applied in various areas to solve a broad range of problems in 

dynamic systems. In most cases, the SSMs are nonlinear models with non-Gaussian noise. Thus, 

it is impossible to get the accurate form of posterior probability density function (PDF). A 

number of nonlinear filtering methods have been developed to overcome the KF drawbacks. 

Smith (1962) used Taylor series expansions to linearize a state space model at a working 

point with Gaussian noise, with the method called extended Kalman filter (EKF) [1]. Basically, 

the EKF simply perform linearization on all nonlinear transformations, and then replaces the 

nonlinear transformations by Jacobian matrices in the KF functions. However, EKF is hard to 

implement, hard to modify, and only dependable for systems that are mainly linear on the time 

scale of the modifications which come from the use of linearization [2]. The Unscented Kalman 

filter (UKF), proposed by Julier and Uhlman [3] [4], is a derivative-free alternative method to 

linearization. By using a statistical linearization method, UKF can easily approximate a 

probability distribution. The nonlinear functions are applied to each point, and then the 
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transformed points are computed in order to estimate the nonlinearly transformed mean and 

covariance [5]. Although this method does not require the dynamic system to be almost linear, it 

is still a linear approximation method with some weak points. First of all, the samples are not 

drawn at random. They are actually fixed with some specific properties such as having a given 

mean and covariance. Secondly, the samples are generated with weights. The summation of the 

weights is one, but it allows the weights to be positive or negative.  

Sequential importance sampling (SIS) was first developed by Handschin and Dayne in 

the 1950s for the purpose of doing molecular simulations. Combining powerful sequential Monte 

Carlo sampling methods with Bayesian inference at an affordable computational cost, the 

concept called particle filter (PF) was introduced to work on a wide variety of nonlinear filtering 

problems for parameter estimation and state estimation [6]. It has been over two decades since 

the pioneering contribution of Gordon, Salmond and Smith (1993) was published [7], which is 

commonly regarded as the first instance of the modern Sequential Monte Carlo (SMC) 

algorithm. The name particle filter was first mentioned by Del Moral (1996) [8], also referred to 

sequential imputations by Liu and Chen (1996) [9], the survival of fittest and the likelihood 

weighting algorithm by Kitagawa (1996) [10],  the Monte Carlo filter by Kitagawa[10], and the 

condensation filter by Isard and Blake (1998) [11]. To be consistent, in the following part of this 

thesis, the term particle filter will be used. PF is able to estimate the dynamic systems which 

have nonlinear state-space models and those which have non-Gaussian noise in the state space 

models. The advantage of the PF methods is that they can solve the difficult numerical 

integration problems. Therefore, PFs are extremely useful in diverse real-world applications, 

such as economics [12-14], finance [15], digital signal processing [16, 17], wireless 
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communications [18], automation and controls [19], navigation and tracking [20, 21], robotics 

[22], weather prediction, GPS [23], and geophysical information systems [24, 25]. 

Different from the UKF methods, PF explores the state space with randomly generated 

samples which are also referred as particles. Posterior probability is represented by samplers 

which are generated directly from the state space, and then the posterior is updated by including 

the new observations. By following the Bayesian principle, the particle system is appropriately 

placed, weighted, and propagated recursively [6]. When the number of the particles is very large, 

the distributions PDF of interest are approximated by the generated particles and the weights 

assigned to the particles. The PF approaches the optimal Bayesian estimation. There are many 

researchers who developed PF methods [26, 27].  

However, PF suffers from two major problems: the first one is the sample degeneracy 

which was revealed by Doucet (1998) [28]; the second one is the sample impoverishment. The 

two problems have been a long-standing topic in the academic community. A variety of solutions 

have been proposed to combat these two main problems. In order to fight against sample 

degeneracy - the weakness of the particle filter, the regular PF is usually accompanied with the 

re-sampling approach. A lot of statisticians investigated and developed the so-called sampling-

importance-resampling (SIR) for particle filter. 

Nevertheless, the widely used re-sampling methods can lead to another issue - sample 

impoverishment, which was described in [29, 30]. Several researchers have developed methods 

to address the issue. Recently, a lot of work has been carried out to improve the performance of 

particle filters thanks to the fast development of high performance computers.  

Different from the frame of the PF and SIR, a new method called efficient importance 

sampling (EIS) was developed by Zhang and Richard (2007) [31]. EIS is based on importance 
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sampling and minimizing the Monte Carlo variances. The advantages of this method include its 

ability to estimate high-dimensional interdependent integrals, a better accuracy on estimation, 

and the ability to perform global optimization. In each time, the EIS method is combined with 

likelihood evaluation therefore it can produce global approximations to targeted integrands. The 

EIS method has been applied for dynamic stochastic general equilibrium (DSGE) models [32, 

33]. The EIS method was developed by a combination of the importance sampling and the 

auxiliary particle filter. 

Table 1 compares the algorithms of the above mentioned methods [34].  

In section 2, the SSM and all the associated notations will be introduced. The importance 

sampling, as the basic idea for estimating integrals which serve for PFs and EIS, will be 

described in this section. 

In section 3, the basic algorithm of PF will be given firstly. To overcome the sample 

degeneracy drawback, several resampling methods for PF will be reviewed in detail. Moreover, 

several other resampling methods will also be presented to overcome another problem - the 

sample impoverishment, which is caused by the widely used resampling procedures. 

In section 4, EIS filter will be presented with an example. And by using the same 

example, the effectiveness of the EIS filter and the PF will be compared. 
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Table 1. Comparison of algorithms for nonlinear filtering 

Methods EKF UKF PF &SIR EIS 

Statistics from 

one 

measurement 

period to the 

next 

Use Taylor Series 

expansions to linear 

approximation the 

measurement 

functions 

Use the 

“unscented 

transformation” 

to 

approximation 

the integrals 

Use importance 

sampling & 

resampling to 

Monte Carlo 

sampling of the 

conditional 

density 

Use importance 

sampling and 

regression to 

resampling to 

the Monte Carlo 

sampling of the 

conditional 

density 

Accuracy of 

state vector 

estimate  

Sometimes good but 

requires the models 

to be near linear 

Provides a 

significant 

improvement 

to the EKF, but 

sometimes it 

does not 

Optimal 

performance for 

low dimensional 

problems, 

suboptimal for 

high dimensions 

according to the 

computer speed 

Optimal 

performance for 

low and high 

dimensional 

problems 

Computational 

complexity 

On the order of 3d   

for estimating state 

vectors of 

dimension  d  

Roughly the 

same as the 

EKF 

According to 

the algorithm of 

the PF  

More 

complexity than 

PF 
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2.0  LIKELIHOOD EVALUATION IN STATE-SPACE AND IMPORTANCE 

SAMPLING 

In order to describe efficient filters, the SSM will be defined at first. As described in the 

introduction chapter, the SSM, constituted by the transition functions and measurement 

functions, gives a useful general framework for analyzing dynamic models. The nonlinear 

filtering is a class of stochastic processes that widely exist in a variety of real-world fields. The 

solution of the continuous time filtering problem can be represented as a ratio of the two 

expectations of certain functions. The continuous-time SSM can be converted into a discrete-

time state space model by sampling the outputs through discretization procedure. The SSM can 

be categorized to discrete or continuous time dynamic system. Basically, in the field of signal 

processing, most of the applications use discrete time dynamic system, while continuous time 

dynamic system has more applications in field of economics and finance.  

2.1 THE STATE SPACE MODEL (SSM) 

SSM consists of two equations: 

One is the state transition equation: 

 1( , )t t t ts g s u−=  (1a) 
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Correspondingly, the transition probability density function is given by: 

 1 1( , )t t tf s s Y− −  (1b) 

Another one is the observation measurement function: 

 ( , )t t t ty h s v=  (2a) 

Correspondingly, the measurement probability density function is given by 

 1( , )t t tf y s Y −  (2b) 

For easy notation, it is assumed that 

 1 1 1( , ) ( )t t t t tf s s Y f s s− − −=  (1b) 

 1( , ) ( )t t t t tf y s Y f y s− =  (2b) 
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Table 2. Notations for SSM 

ts   A 1m×  vector of latent state variables at time t   

tS  0 1( , ,..., )t tS s s s  , the history path of the state 

ty   A 1n×  vector of observable variables at time t   

tY  1( ,..., )t tY y y  , the history path of the observation 

( )tg ⋅  The state transition equation at time t  

( )th ⋅  The observation equation at time t  

tu  Noise affecting the system dynamic equation ( )tg ⋅ , at time t  

tv  Noise affecting the observation equation ( )th ⋅ , at time t  

( )i
ts  The state of particle i , at time t  

( )i
tw  The weight of particle i , at time t  

 tN  The total number of particles at time t  

( )sδ ⋅   The delta-Dirac measure located in s  ( (0) 1; ( ) 0xδ δ= =  for 0x ≠  ) 

(. : , )N a b   Gaussian density with mean a  and covariance b   

( )hK ⋅   A kernel function with bandwidth h   
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The assumption made here is that ts  is Markovian, i.e., its conditional probability density 

given the past states tS  depends only on ts  through the transition density 1( )t tf s s − , and that the 

conditional probability density of ty  given the states tS and the past observations 1tY − depends 

only on ts through the conditional likelihood ( )t tf y s . It is further assumed that the initial state 

0s is distributed according to a density function 0( )f s . Thus, the states and data may be sampled 

one by one by drawing random samples from Eq. (1b) and Eq. (2b), the algorithm is following: 

 

Algorithm 1: Generate from a SSM 

  Initialization: Draw sample 
~

0s  from 0( )f s  

                         Draw sample 
~

0y  from 
~

0 0( )f y s  

  For t=1 to T do 

        Draw sample 
~

ts  from 
~

1( )t tf s s −  

        Draw sample 
~

ty  from 
~

( )t tf y s  

  End For 

  
~

TS   and 
~

TY is a random draw from the transition and the 

observation      densities functions. 

 

Algorithm 1 simulates random data and it is a very important part of the particle filter 

algorithms which will be described later. 
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2.2 PREDICTION AND UPDATING 

The filtering problem recursively solving the marginal posterior density ( )|t tf s Y  which is 

called the period t  filtering density can be determined by the recursive Bayesian estimation, 

which has two steps: 

First step is to compute predictive density function in the period t , which is given by 

 1 1 1 1 1( ) ( ) ( )t t t t t t tf s Y f s s f s Y ds− − − − −= ∫  (3) 

Likelihood integral (just in the period t ): 

 1 1( ) ( ) ( )t t t t t t tf y Y f y s f s Y ds− −= ∫  (4) 

The likelihood function for the whole period: 

 1
1

( ) ( )
T

T t t
t

f Y f y Y −
=

=∏  (5) 

Second step is to compute filtering density in the period t  , 

 1

1

( ) ( )
( )

( )
t t t t

t t
t t

f y s f s Y
f s Y

f y Y
−

−

=  (6) 

Here, we initialize 0 0 0( ) ( )f s Y f s= . In Eq. (3) and Eq. (4), the integration of unknown 

functions and probably high-dimensional functions is required. However, this integration is very 

difficult to compute. Therefore, this difficulty makes analytic optimal solutions such as the 

Kalman filter intractable. A convenient solution for this problem is the importance sampling (IS). 

In the next section, the IS method will be briefly reviewed and discussed.  
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2.3 IMPORTANCE SAMPLING 

The PF, SIR, and EIS are all based on the importance sampling (IS), which is a general technique 

for estimating the properties of particular distributions. IS only needs the samples generated from 

a different distribution of interest. For example, we want to get the expectation of ( )p s , which 

is the density of interest. But it is impossible to get the expectation from the integral 

( ) ( )f s p s ds∫ . And we are unable to sample from a required distribution ( )p s . Assuming that 

the density ( )q s  roughly approximates the ( )p s , then we can use a trick that will allow us to 

sample from a known distribution, ( )q s . The trick is that we can generate the samples from the 

available distribution, e.g., a Gaussian distribution, and then re-weight the samples to 

approximate it. Then the expectation over ( )p s  can be computed to yield the following 

approximation: 

 
( )

( )

( )( ( )) ( ) ( ) ( )( ) ( )
( )

( ){ ( )( )}
( )

p s

q s

p sf E f s f s p s ds f s q s ds
q s

p sE f s
q s

∧

= = =

=

∫ ∫
 (7) 

( )
( )

p s
q s

 is called the importance weight. This forms the basis of Monte Carlo importance 

sampling which uses the weighted sum of a set of samples from ( )q s  to approximate Eq. (7): 

 
1

1 ( ) ( )
( )

i
i

i

N

i

p sf f s
N q s

∧

=

≈ ∑  (8) 

We draw N random samples from ( )
( )

p s
q s

, and assign a positive weight to each of the 

random points. Let ( )
( )

i
i

i

p sw
q s

= . The expectation can thus be estimated using a weighted function: 
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 1

1

( )i

N
i

i
N

j

j

w f s
f

w

∧
=

=

≈
∑

∑
 (9) 

and its variance is given by: 

 
2

2 ( ( ) ( ))var( ) ( ) { ( )}
( )

i
p

f s p sf w dx E f s
q s

∧  
= − 

 
∫  (10) 

where is  is drawn from the known density ( )q s . If  ( ) ( )p s q s= , the variance is minimized to 

zero [35]. An easy choice for ( )q s  is linear piecewise functions which can simulate ( )p s  with 

small variance. However it’s not easy to code and its computational complexity is high. There 

are many potential choices for ( )q s  leading to various integration and optimization algorithms, 

as shown in the summary provided in [36] by Del Moral, Doucet et al. (2006). In general, the 

density function of ( )q s  should have relatively heavy tails so that it is insensitive to the outliers. 

In statistics, the heavy-tailed distributions are the probability distributions whose tails are not 

exponentially bounded. In other words, it’s better to draw samples from a known heavy-tailed 

distribution. It is impossible to generate the sampling by using ( )p s  because the density ( )p s  of 

interest is generally unknown. To overcome this drawback, the IS heavily depends on the 

information of ( )q s , which is irrelevant with ( )p s . Several proposed IS methods are 

summarized in Table 3 [30].  

The particle filter approach is based on sequential importance sampling (SIS), which is an 

IS method implemented by using the recursive Bayesian interference. A weight update equation 

for different proposal kernels can be computed by specifically generated SMC samplers from a 

sequence of probability distributions [36]. In EIS, the exponential family of distributions will be 

adopted for the kernel function.  

https://en.wikipedia.org/wiki/Probability_distribution
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Table 3. Advanced important sampling methods 

Annealed importance sampling  Radford, 2001 

Bayesian importance sampling Rasmussen & Ghahramani, 2003 

Adaptive importance sampling Liu & West, 2001 

Numerically accelerated importance sampling Koopman, Lucas, & Scharth, 2011 

Nonparametric importance sampling Neddermeyer, 2011 

Block sampling Doucet, Briers, & Senecal, 2006 

Markov Chain Monte Carlo (MCMC) sampling 
Gilks & Berzuini, 2001; Del Moral et 

al., 2006 

Factored sampling 
Banerjee & Burlina, 2010; Isard & 

Blake, 1998 

Multiple stages of important sampling 
Li, Ai, Yamashita, Lao, & Kawade, 

2008 
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3.0  PF AND SIR 

3.1 PF 

The particle in PF does not mean a minute portion, a piece, a fragment, or an amount. It means a 

sample or an individual which is drawn from a known density function. Basically, the particle 

filters are used to capture the distribution of the state probability by using a group of random 

particles with corresponding weights, then the particle filter in Eq. (6) becomes 

 
1

( ) ( )
tN

i i
t t t t t

i
f s Y w s sδ
∧

=

≈ ⋅ −∑  (11) 

Where { }
1

Ni
t i

s
=

 denotes a vast body of particles drawn from a period t  IS density, and 

{ }
1

Ni
t i

w
=

denotes the respective IS weights. The weights are normalized to be sum to one ( 

1
1

N
i
t

i
w

=

=∑ )  [37]. Then 

 
1

1
1

( ) ( )

( , )

i i i
t t t ti i

t t i i
t t t

f y s f s s
w w

q s s y
−

−
−

∝  (12) 

Here we assume that 1 1( ) ( , )i i i i
t t t t tq s s q s s y− −= , then Eq. (12) becomes 

 
1

1
1

( ) ( )

( )

i i i
t t t ti i

t t i i
t t

f y s f s s
w w

q s s
−

−
−

∝  (12) 
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It can be shown that when N →∞  , the approximation of particle filtering in Eq. (11) 

approaches the true filtering density ( )t tf s Y , defined above in Eq. (6). The algorithm of SIS is 

generating particles according to a known density function 1( , )i i
t t tq s s y− , then assigning weights 

according to Eq. (12) to the corresponding particles.  A pseudo-code description of this algorithm 

is given by Algorithm 2 as following: 

 

Algorithm 2 : Basic PF(SIS) 

  { } { }1 11 1
, , ,

N Ni i i i
t t t t ti i

s w basicPF s w y− −= =
   =      

  

  For  i=1 to N do 

          Draw 
~

0
is  from 0 0( )q s y   

          Assign initial weights 

                          

~ ~

0 0 0~

0 ~

0 0

( ) ( )

( )

i i

i

i

f y s f s
w

q s y
=  

  End for 

  For t=1 to T do 

         For i=1 to N do  

               Draw sample 
~

ts  from 
~ ~

1( , )i i
t t tq s s y−  

               Compute weights according to Eq. (12) 

  End For 

  For i=1 to N 
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          Normalize weights 

                      
~

~

1

i
i t
t N

j
t

j

ww
w

=

=

∑
 

   End for 

   Compute filtering estimate according to Eq. (11) 

End for 

 

The basic PF is also called SIS, which does not depend on the underlying Markov chain. 

Instead, the SIS creates an importance sample, which consequently improves the efficiency. The 

SIS can be also used in a non-Bayesian computation, for example, to estimate the likelihood 

value. However, the importance weights may have large variances, resulting in an inaccurate 

estimate. A common problem with the SIS particle filter is the sample degeneracy phenomenon 

which has been defined and demonstrated by Doucet, Godsill et al. (2000) [27].  

In practice, after a few iterations of the algorithm, only one particle’s weight is almost 

close to one, and all other particles’ weights are very close to zero. This is namely sample 

degeneracy. Doucet proofed that the degeneracy phenomenon is not possible to avoid because 

the variance of the importance weights can increase over time. This degeneracy implies that a 

considerable computational cost is used for updating particles whose contribution to the 

approximation is nearly zero. This is an inherent feature of the SIS. To overcome sample 

degeneracy, the standard PF is usually used with the resampling procedure. This procedure is 

seen to be referred to the so-called Sampling-Importance Resampling (SIR) or Sequential 

Importance Sampling and Resampling (SISR), through which the particles are forced to the areas 
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of high likelihood by multiplying the high-weighted particles with their respective weights, while 

low-weighted particles are discarded in this procedure.  

3.2 SIR 

The sample degeneracy causes the obtained estimates not to be accurate and to have 

unacceptably large variances. With resampling, such shortcomings can be prevented. 

Consequently, resampling methods have been extensively researched. A variety of resampling 

schemes have been proposed by Kitagawa (1996) [10], Beadle and Djuric (1997) [38],  Liu and 

Chen (1998) [39], Carpenter, Clifford et al. (1999) [40],  and Liu, Chen et al. (2001) [41]. The 

surveys of a number of resampling methods can also be found in many papers:  Bolic, Djuric et 

al. (2004) [42],  Douc and Cappe (2005) [43], Hol, schon et al. (2006) [44], and Doucet and 

Johansen (2009) [45]. 

 Next, these resampling methods will be reviewed and discussed. With the development 

of PFs, in this thesis, some of the new methods will be overviewed. These new methods were 

developed by Li, Sattat et al. (2012) [29], Li, Sun et al. (2014) [30], Li, Bolic et al. (2015) [46], 

and Li, Villarrubia et al. (2015) [47]. In those papers, another problem called sample 

impoverishment was introduced. 

The resampling is used to eliminate particles with small importance weights and to 

duplicate the particles of large weights. Almost all of these resampling methods of PF are based 

on three steps: particle generation, weight computation, and resampling. Instead of generating 

particles and assigning with corresponding computed weights, the three steps of resampling 
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procedure will generate another set of particles with weights, that can overcome the sample 

degeneracy problem. 

 

3.2.1 Multinomial Resampling 

The Multinomial resampling method was developed by Gordon, Salmond et al. (1993) [7] based 

on an idea at the heart of the bootstrap method. The main idea of multinomial resampling is to 

generate N   random numbers { }
1

Ni
t i

u
=

 from the uniform distribution on (0,1] , which are 

independent, then to use the random numbers to select samples. In the n th selection, the sample 

i
ts  is chosen when the following condition is meet: 

 1i n i
t t tu−Ω < ≤ Ω  (13) 

where  

 
1

i
i j
t t

j
w

=

Ω =∑  (14) 

Then the probability of choosing particle i
ts  is the same as that of n

tu  being in the interval 

bounded by the cumulative sum of the normalized weights as shown in Eq. (13). The estimates 

from this resampling method meet the unbiasedness condition. 

Here, only part of the resampling algorithm will be described: 

 

Algorithm 3 : Multinomial resampling 

  { } { }
1 1

, ,
N Ni i i

t t ti i
s Multinomial s w N

= =
   =      
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  { } { }
1 1

N Ni i
t ti i

CumulativeSum w
= =

   Ω =      
 

  At time t   

  

1

i
i t
t N

i
t

j

ww
w

=

=

∑
  % Normalize weights 

   
1

i
i j
t t

j
w

=

Ω =∑ ; 

   Index=zeros(1,N); 

    0i = ; 

While i N<   

          1i i= +  ; 

              Draw i
tu  from uniform distribution on (0,1]; 

              1j =  ; 

              While j i
t tuΩ <  

                        1j j= + ; 

               End 

               Index(i)=j; 

     end 

 

Since the sampling of each particle is random, the upper and lower limits of the number 

of the times that a given particle is resampled are zero and tN , respectively. This yields the 

maximum variance of the resampled particles. The computational complexity of the multinomial 

resampling is of order ( )O NM . It is known that multinomial resampling is not efficient in 
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finding Eq. (13). The computational complexity of finding Eq. (13) is of order ( )O N . A faster 

search method called binary search has the computational complexity of order (log )O N . The 

binary search is well known in computer science and here is used to execute the search of n  in 

Eq. (13), therefore reducing the computational complexity from N  to log( )N . In the next step, 

the systematic resampling and the stratified resampling which reduce the variance of the 

resampled particles will be introduced. These two methods introduce the idea of strata into the 

multinomial resampling method. 

3.2.2 Systematic Resampling 

The Systematic resampling method was first proposed by Kitagawa (1996) and further discussed 

by Carpenter, Clifford et al. (1999) [10, 40]. It is the basic and simplest resampling method. The 

core idea is to reset each sample with an equally fixed weight * 1i
tw

N
=  in each time. The 

algorithm is given as following: 

 

Algorithm 4: Systematic Resampling(SIR) 

{ } { }*

1 1
,

N Ni i i
t t ti i

Systema wtics s
= =

   =      
 

 Initialization 

 For  i=1 to N do 

          Draw 
~

0
is  from 0 0( )q s y   

          Assign initial weights 
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~ ~

0 0 0~

0 ~

0 0

( ) ( )

( )

i i

i

i

f y s f s
w

q s y
=  

  End for  

  Resample { }0 0 1
,

Ni i

i
s w

=
  to get the new samples * *

0 0
1

1,
N

i i

i

s w
N =

 = 
 

 

  For t=1 to T do 

         For i=1 to N do  

               Set { } { }*

1 1

N Ni i
t ti i

s s
= =
=  

               Draw sample i
ts  from 1( , )i i

t t tq s s y−  

               Compute weights according to Eq. (12) 

  End For 

  Resample { }
1

,
Ni i

t t i
s w

=
  to get the new samples * *

1

1,
N

i i
t t

i

s w
N =

 = 
 

 

   End for 

   Compute filtering estimate according to Eq. (11) 

End for 

 

The Stratified resampling developed by Kitagawa (1996) [10] also divides the whole 

population of particles in to N  subpopulations. The random numbers { }
1

Ni
t i

u
=

 are drawn 

independently from uniform distribution on each of N  disjoint subintervals 

1 1(0, ] ... (1 ,1]
N N

∪ ∪ −  of (0,1]. And the bounding method on the cumulative sum of normalized 
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weights as shown in Eq. (13) is used. This procedure is same as that of the multinomial 

resampling method. 

The systematic resampling and stratified resampling methods can be implemented simply 

in ( )O N  time and minimizing the Monte Carlo variation. Thus, it is straightforward to conclude 

that this approach is unbiased. Due to the smaller number of random numbers generated, the 

systematic method is computationally more efficient than the stratified method. 

3.2.3 Residual Resampling 

The Residual resampling developed by Beadle and Djuric (1997) [38] is an alternative method to 

algorithmic systematic resampling. It contains two steps of resampling. The first step is to find 

which particle’s weight is bigger than 1
N

 , and the second step is to sample randomly using the 

remaining particles whose weights are smaller than  1
N

 (referred to as residuals). For the first 

step, set 
~ i

i
t tN Nw =   , and this step is called the deterministic replication part. The second step is 

residual resampling, setting the residual of the weight as: 

 
~ i

i ti
t t

NN w
N

= −  (15) 

 Then, the new particles are drawn by calling the multinomial resampling program with 

the parameters ( ),
i
t tN R . That is { } { }~

1 1
, ,

t

NN ii i
tt t ti N i

s Multinomial s N R
= + =

   =      
. The total number of 

replicated particles in the first stage is 
~

( )
i

ttN N=∑ , and in the second step it is 
~

t tR N N= − . In 



 23 

this sampling method, the resampling step will be introduced in algorithm 5, while the other part 

is the same as systematic resampling. 

 

Algorithm 5 : Residual resampling 

  { } { }
1 1

, ,
N Ni i i

t t ti i
s Residual s w N

= =
   =      

  

  At time t   

  

1

i
i t
t N

j
t

j

ww
w

=

=

∑
  % Normalize weights 

Index=zeros(1,N); 

 % step 1 Deterministic replication of particles 

  
~ ~

1 1

, ,
N Ni i

i
t tt

i i

s N Replication s N
= =

      
   =   
         

 

   
~ i

i
t tN Nw =    

   
~

( )
i

ttN N=∑  

t tR N N= −   

1;  0i j= =   

while j N<  

       1j j= +  ; 

       1cnt =  ; 

       while 
~ j

tcnt N≤  
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                Index(i)=j; 

                1; 1;i i cnt cnt= + = +   

        End 

  End 

% step 2 resampling from Multinomial resampling 

 
~ i

i ti
t t

NN w
N

= −  

   For i=1 to M do 

           ~

i i
t t

t

NN N
N N

= ×
−

  

   End 

{ } { }1 1
, ,

t

NN ii i
tt t ti N i

s Multinomial s N R
= + =

   =      
 

    { } { }1 1

tt
N NN N ii

tt i i
CumulativeSum N

−−

= =

  Ω =      
 

 

The algorithm 
~ ~

1 1

, ,
N Ni i

i
t tt

i i

s N Replication s N
= =

      
   =   
         

 will be used in other resampling 

methods. 

From the above algorithm, it is seen that for the residual resampling, the i th particle is 

resampled 
~ i

i
t tN R+  times, where 

~ i

tN  is the number of replications from the first step, and i
tR  is 

the number of replications from the second step. Since the residual resampling has two steps, the 

computational complexity is of order ( ) ( )t tO N O R+  time. The aim of this program is to break 
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the empirical cumulative distribution function up into N  components, each of which is then 

sampled once.  

The first step describes a deterministic replication, so the variation of the number of times 

a particle is resampled is only attributed to the second step. Thus, if the multinomial resampling 

method was used in the second step, the upper limit of the number of times that the i th particle 

is resampled is 
~ i

i
t tN R+ , and the lower limit is 

~ i

tN .  

3.2.4 Residual systematic resampling 

These resampling methods for PF are probably the best known and mostly used. They have been 

changed and developed in many ways. For example, within the second step of the residual 

resampling grogram, we can also use systematic resampling or stratified resampling programs to 

resample. If in the second step, the systematic resampling method is used to resample, the new 

method is called residual systematic resampling (RSR) which was described by Bolic, Djuric et 

al. [42, 48]. As described in multinomial resampling method whose sample is from the 

normalized fractions, the computational time is more complex than other resampling methods. 

Different from residual resampling which proceeds in two separate loops, RSR proceeds in only 

one loop with the integer replication. And there is no additional procedure required for the 

residuals. Thus, the computational complexity of RSR is of order ( )O N . The idea of RSR is 

identical with the idea which is used in systematic resampling method. That is to accumulate the 

fractional donations of each particle in the searching list until it is large enough to generate a 

sample. The algorithm of the resampling part of RSR is as following:  
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Algorithm 6 : RSR 

  { }
~

1
1

, ,
Ni Ni i

t t t i
i

s RSR s w N
=

=

      =       
  

  At time t   

  Draw a random number u∆  form uniform distribution 1(0, ]U
N

 

  

1

i
i t
t N

i
t

j

ww
w

=

=

∑
  % Normalize weights 

  For i= 1 to N do 

          
~

( ) 1
i

i
t tN N w u = × −∆ +   

           
~ i

t i
t

Nu u w
N

∆ = ∆ + −  

   End 

  
~ ~

1 1

, ,
N Ni i

i
t tt t

i i

s N Replication s N
= =

      
   =   
         

 

 

3.2.5 Branch-kill resampling 

All of the resampling methods introduced above generate particles with the fixed-size N  on 

every time step by forcing the particle size to be a constant N . If the size is allowed to change, 

there are simple ways to generate particles in parallel and just in one loop. Parallel algorithm 

dramatically improves the speed of computation, thanks to the development of the high 
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performance computer, which allows parallel algorithms be adopted in PF. There is a method 

called the branch-kill procedure (Budhiraja, Chen et al. 2007) [49] or branching (Crisan and 

Lyons 1999) [50]. The algorithm is given by: 

 

Algorithm 7: Branch-kill resampling 

  { }
~

1
1

, ,
Ni Ni i

t t t rei
i

Brancs s wl Nh ki l
=

=

      =     
−

 
  

  At time t   

  For i=1 to N do 

  Draw a random number u∆  form uniform distribution 1(0, ]
re

U
N

 

          
~ i

i
t re tN N w = ×   

          If 
~ i

i
tre tN w N u

 
× − ≥ ∆ 

 
 

           
~ ~

1
i i

t tN N= +  

           End 

     End 

     
~ ~

1 1

, ,
N Ni i

i
t tt t

i i

s N Replication s N
= =

      
   =   
         

 

 

In this method, the number of repeat generated particles of i
ts  is equal to 

~
1

i
i

t tN Nw = +   

with probability p  or equal to 
~ i

i
t tN Nw =    with the probability 1 p− . Where, i i

t tp Nw Nw = −   , 
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and reN  is the real number of generated particles in the last step. There is another approach is 

called rounding-copy resampling which was described by Li, Sattar et al. (2013) [51]. Just as its 

name implies, in this method, 
~ i

tN  is the rounding result of i
tNw . These two parallel resampling 

methods do not need any additional operation and their samples are unbiased with a varying 

particle size. The main ideas of the RSR method, branch-kill resampling method, and rounding-

copy resampling method come from the residual resampling method. Thus, their lower and upper 

limits of the repeat time of the i th particle are same: i
tNw   and 1i

tNw  +  , respectively. 
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The following Table 4 summarizes the characters of these resampling methods: 

 

Table 4. A comparison of traditional resampling methods 

Resampling 

method 

Computational 

time 

Number of 

random numbers 

Fixed sample 

size 

Lower 

limit 

Upper 

limit 

Multinomial 

resampling 
( )O MN  N  YES 0 N  

Systematic 

resampling 
( )O N  1 YES i

tNw    1i
tNw  +   

Stratified 

resampling 
( )O N  N  YES 0 2i

tNw  +   

Residual 

resampling 
( )O N  tR  YES i

tNw    i
t tNw R  +   

Residual 

systematic 

resampling 

( ) ( )tO M O R+  1 YES i
tNw    1i

tNw  +   

Branch-kill 

resampling 
( )O N  N  NO i

tNw    1i
tNw  +   

Rounding-

copy 

resampling 

( )O N  0  NO i
tNw    1i

tNw  +   
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The resampling methods addressed so far are based on an approach where all the particles 

are sampled in the same way. This entails yielding relatively similar resampling results. For all 

of the methods, the condition of unbiasedness is satisfied, and the resampled particles are equally 

weighted. In the following content, the methods whose resampling is realized without attempting 

to satisfy the conditions of unbiasedness and equal-weighting are discussed. This may entail risks 

of which practitioners must be aware. After that, several new methods will be introduced, as well 

as a new problem. 

3.2.6 Auxiliary Particle Filter 

The auxiliary resampling particle filter (APF) method was introduced by Pitt and Shephard 

(1999) in [52] as a variant of the standard PF resampling filter. This filter introduced an 

importance density 1( , , )i i
t t tq s i s y− , which samples the particle with another index ij  according to 

the empirical distribution on the stochastic processes. Then the samples at time 1t −   should 

be
~

1 1
iji

t ts s− −= , and the weights are assigned. The algorithm becomes: 

 

Algorithm 8: Auxiliary Particle Filter 

{ } { }
11

, , ,
N Ni i i i

t t t t ii
s w APF s w j

==

   =     
  

 Initialization 

 For  i=1 to N do 

          Draw 
~

0
is  from 0 0( )q s y   
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          Assign initial importance weights 

                          

~ ~

0 0 0~

0 ~

0 0

( ) ( )

( )

i i

i

i

f y s f s
w

q s y
=  

  End for  

  For t=1 to T do 

            Select N particle indices {1,..., }ij N∈  according to weights 

                           { }1 1

Ni
t i

v − =
  

             For  i=1 to N do 

                     Set 
~

1 1
iji

t ts s− −=  

                     And set first stage weights 

                             1
1

1

i

i

j
i t
t j

t

wu
v

−
−

−

=  

     End for 

     For i=1 to N do 

               Draw sample 
~
i
ts  from 

~

1( , )i i
t t tq s s y−  

               Compute weights according to 

                          

~ ~

1

1
1

( ) ( )

( , )

i i i
t t t t

i i
t t i i

t t t

f y s f s s
w u

q s s y

−

−
−

∝  

  End For 

Normalize weights 
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~

~

1

i
i t
t N

j
t

j

ww
w

=

=

∑
,   1,...,i N=  . 

    End for 

   Compute filtering estimate according to Eq. (11) 

End for 

 

The previous methods were aimed primarily at improving the proposal distribution for 

the new state at the time instant t . Compared with these resampling methods above, the APF 

filter generates points form the sample at the time 1t − , which are more likely to be close to the 

true state by being conditioned on the current measurement.  In other words, APF can be viewed 

as resampling based on some point estimates 1
i
tu −  at the previous time step, represented as 

1( )i i
t tf s s − . Thus, the APF filter is very useful when the noise is small because 1( )i i

t tf s s −  can be 

well described by 1
i
tu − . However, when the process noise is very large, the APF resamples will 

be based on a poor approximation of 1( )i i
t tf s s −  because a single point can not describe the 

1( )i i
t tf s s −  well. Thus, the APF filter is not fit for estimating a large noise state space model.  

Several improvements were proposed to reduce its variance by Pitt and Shephard (2001) 

and Whiteley and Johansen (2010) [53, 54] in their summary of the APF method. Next, two of 

these methods will be introduced. One of the methods is called auxiliary marginal particle filter 

which was described by Klaas, De Freitas, et al. (2012) [55]. As we know that most particle 

filtering methods rely on a numerical approximation to evaluate the integrals Eq. (3) and Eq. (4), 

it differs in some details with the original formulation. Specially, the predictive density function 

Eq. (3) and the likelihood integral Eq. (4) are not obtained by approximating the predictive 
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distribution by drawing particles from their density functions. However, if Eq. (3) and Eq. (4) are 

obtained by doing so, this approach will have some difficulties. In APF method, an importance 

correction is adopted when this filter is used to approximate the Eq. (6). Thus the algorithm of 

the APF resampling method with this approach has a computational complexity 2( )O N , while 

most other particle filters lead to algorithms of complexity ( )O N . 

Another efficient APF method is the stratified auxiliary particle filter which reduces the 

variance. The method was first proposed by Karlsson and Bergman (2000) [56]. This method 

first draws each particle i
ts  by conditional density function 1( , )i i

t t tq s s y−  instead of by randomly 

sampling a value to i
ts . It evaluates one importance weight for every possible value of i

ts , 

yielding a set of N M×  weighted sample points. The resultant distribution on 

{ } { }1,2,..., 1, 2,...,N M×  was drawn N times in the next step of SIR algorithm - resampling step. 

This assignment can be performed with a low variance resampling mechanism. 

3.3 SEVERAL NEW RESAMPLING METHODS TO FIGHT SAMPLING 

IMPOVERISHMENT 

As described above, the goal of the resampling step is to reduce the effects of the degeneracy 

problem. However, the resampling step brings in other practical problems. First, because all the 

samples must be combined, it is hard to execute parallel computing. Second the resampling step 

has to choose the particles with high weights many times. Therefore, a high likelihood will be 

obtained by multiplying high weighted particles and their respective weights. This resampling 

procedure results in a loss of diversity among the particles. That means new samples will contain 
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many repeated points. In other words, a few particles with significant weights are repeated many 

times while most other particles with small weights are abandoned during the resampling 

process. This problem is known as “sample impoverishment”. Specially, in the case of very 

small noise in process, all particles will collapse to a single point after just a few iterations. In 

addition, any smoothed estimates, which are based on the paths of particles, will degenerate 

because the diversity of the particle paths is reduced.  

Figure 1 shows the relationship between degeneracy and impoverishment. The weights of 

the particles are represented by circle size; after generic resampling, jointed circles share the 

same state as shown in the lower row of Figure 1 In the resampling procedure, only the large 

weighted particles (the red particles shown in Figure 1) are resampled. While the other particles 

with small weights (the blue particles shown in Figure 1) are discarded. 

 

 

Figure 1. Trade-off between sample degeneracy and impoverishment 

 

From Figure 1, sample degeneracy is obviously the result of particles distributed in 

various places (some with high weights, and some with low weights), while after resampling 

sample impoverishment can be viewed as particles just distributed in narrow region with similar 

weights. The red part of the particles with large weights which will be generated repeatedly more 
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times while the blue part of the particles will be ignored after resampling. The resampling step 

directly leads to the sample degeneracy problem, which will transfer to the sample 

impoverishment problem. Moreover, if the resampling is unbiased, a more severe degeneracy 

problem will lead to a more severe impoverishment problem. 

To deal with the sample impoverishment problem, the trade-off between degeneracy and 

impoverishment should be balanced. That means when and how to apply resampling should be 

considered. The only method is to set up a pre-specified threshold at deterministic steps, i.e. to 

perform resampling only when the variance of the non-normalized weights is under the 

threshold. If particles have un-normalized weights with a small variance, the resampling step 

might be unnecessary. This is often evaluated by investigating the variability of the weights 

using the Effective Sample Size (ESS) criteria which was introduced by Kong, Liu et al. (1994) 

[57]. In some papers, the notation effN   is used as ESS instead. 

  ( )
1

2

1

N
i

eff t
i

N ESS w
−

=

 = =  
 
∑  (16) 

Several resampling schemes will be introduced to alleviate impoverishment. 

 

3.3.1 Optimal resampling 

We consider the compound sampling methods which are based on grouping the particles by 

using pre-specified criterion before performing resampling. The groups are not overlapped, 

representing a part of the whole particle set. Particles with similar weights are organized to the 

same group by using weight-based thresholds as the criterion for grouping. Resampling is then 
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executed for each group in different ways. The application of compound resampling aims to 

reduce the resampling time and to preserve particle diversity. 

In group based resampling, particles are put into different groups using the thresholds 

based on weight. Different sampling strategies can be adopted for each group to have more 

flexibility. The threshold can be deterministic or dynamic, and one can have one or a number of 

thresholds. 

The optimal resampling was developed by Fearnhead and Clifford (2003) [58]  who 

automatically sets a threshold value tc , which has a unique solution of  

 
1

min( ,1)
iI
t

i t

wN
c=

=∑  (17) 

where I N< . All the particles whose weights are higher than this threshold are completely 

preserved instead of being replicated. Therefore, multiple copies of these particles do not exist in 

the final set of N  particles. Resampling are performed on the other particles using a probability 

according to their weights and assigned them with weight tc . It is seen that the resampled 

particles do not have equal weights. The merit of the method among the unbiased resampling 

methods is its optimization in terms of minimizing the squared error-loss function 

 ( )2

1

I i i
t t

i
E w w

=

 − 
 
∑  (18) 

Where 
i
tw  is the new weight of i

ts  when it is resampled; otherwise, 
i
tw  is equal to zero. 

Optimal resampling is suitable for PF that uses increased number of propagated particles. And 

this method reduces the number to I N< . A drawback is that it needs to calculate tc  in each 

iteration. In addition, the resampled particles may still have degeneracy issue because of the high 

variance of the weights. The algorithm is given: 



 37 

 

Algorithm 9: Optimal resampling 

  { } { }
11
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N Ii i i i

t t t t ii
Optis w sal w Nm

==

   =     
   

  Calculate  tc  according to Eq. (17) 

  0; 0i h= =   

  For i=1 to I do 

        If i
t tw c≥  

            1i i= +  

            
i i
t ts s=  and 

i i
t tw w=  

        Else 

             h i
tA s=  and h i

tB w=  

        End 

 End 

 1N i=   

{ } { }
1

111
, ,

N hi r r
t

ri N
Stratifiedrs A B N Nesample

== +

   = −     
  

 For i = 1 1N +  to N do  

       
i
t tw c=       

 End 

 



 38 

There are similarities between optimal resampling, rejection control resampling which 

was introduced by Liu, Chen et al. (1998) [59], and partial rejection control resampling which 

was described by Liu, Chen et al. (2001) [60]. Rejection control resampling method computes a 

control threshold tc , which can be assigned in advance by the median or a quantile of the 

weights, and the i th particle is accepted with a probability given by 

 min( ,1)
i
t

t

wp
c

=  (19) 

In the partial rejection control method, the particles whose weights are larger than or 

equal to tc  are automatically accepted, while the other particles are accepted with probability p . 

So this method combines the rejection method and importance sampling. The rejected particles 

are replaced by the ones regenerated from previous time instances. An accepted particle i
ts  is 

reweighted with a new weight ( )max , i
t tc w . The difference of the two forms of rejection control 

resampling are basically about how far one goes back to regenerate particles. The rejection 

control resampling goes back to the earliest time, i.e.  0t = . While the partial rejection control 

resampling regenerates particles from 1t −  to save computational time. Because of the 

undetermined execution time and high memory demand, these methods cannot be considered for 

real-time implementation. 

3.3.2 Reallocation resampling 

This part will introduce a fixed threshold resampling method. Reallocation resampling was 

proposed in Liu, Chen et al.(2001) [60]. In the method, one chooses 1
N

 as the fixed threshold. 
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Then, if the weight of the i th particle is larger than 1
N

 , the i th particle will be generated 

repeatedly i
tNw    or 1i

tNw  +   times. After resampling, the new weights are 
i
t

i
t

w
Nw  

 or 

1

i
t

i
t

w
Nw  + 

. If the weight of the i th particle is less than 1
N

 , the i th particle will be sampled with 

probability i
tNw  repeatedly. And it is assigned 1

N
 as new weight. The algorithm is given as 

follow: 

 

Algorithm 10: Reallocation resampling 

  { } { }
*

11
,e, R ,

N Ii i i i
t t t t ii

allos w scati n w No
==

   =     
   

   0;i =   

  For i=1 to I do 

        If 1i
tw

N
≥  

              i i
t tN Nw =    (or 1i i

t tN Nw = +  ) 

               For 1h =  to i
tN  do 

                      1i i= +  

                      
i i
t ts s=  and 

ii t
t i

t

ww
N

=  

               End 

       Else 
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             Drawn a random number u∆  from a uniform distribution 

1(0, ]U
N

  

             If i
tw u≥ ∆  

                  1i i= +  

                  
i i
t ts s=  and  1i

tw
N

=  

              End 

        End 

 End 

 *N i=   

 

From above algorithm, it is seen that the resampled particles are not equally weighted. 

Moreover, the sum of all weights is not one, thus in the whole resampling portion, the 

normalization step is performed as an additional requirement.  

In order to reduce the computational complexity, resampling is executed only on some of 

the particles. First step is to find the particles classified as moderate, negligible, or dominating; 

then in the second step, various resampling methods are applied on each particle group. There 

are different resampling functions proposed in [59] for determining which particles are to be 

resampled or discarded as well as how the weights are allocated. 
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3.3.3 Regularized Particle Filter 

The regularized particle filter (RPF) is developed by Musso, Oudjane et al. (2001) [61]. This is 

another method to solve the sample impoverishment problem. Most parts of RPF are same with 

the basic PF algorithm, with the only difference being the resampling stage.  PF which resamples 

form Eq. (11) is a discrete approximation. The RPF resamples from a diffusion kernel function to 

apply approximation:  

 
1

( ) ( )
tN

i i
t t t h t t

i
f s Y w K s s
∧

=

≈ ⋅ −∑  (20) 

where the Kernel density function is: 

 1( ) ( )h m

sK s K
h h

=  (21) 

From Table 2, m  is the dimension of the state vector s , 0h >  is the kernel band-width, 

and i
tw  are normalized weights.  The kernel density is a symmetric probability density function 

satisfying that 

 ( ) 0sK s ds =∫  and 2 ( )s K s ds < ∞∫  (22) 

The kernel and band-width h  are chosen to minimize the mean integrated square error 

(MISE) between the true density and the corresponding regularized empirical representation in 

Eq. (20). The MISE is 

 
2

( ) ( )t t t t tMISE E f s Y f s Y ds
∧  = −    

∫  (23) 

If all the samples have the same weight (a special case), the optimal choice of the kernel 

function is the so-called Epanechnikov kernel [61] 
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22 (1 ), 1
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n

n s if s
cK s

otherwise

+ − <= 



 (24) 

Where 
snc is the volume of the unit hypersphere in snℜ . In EIS method, the expansion of 

the family density kernel function will be adopted. The optimal choice of bandwidth h  is: 

 ( )
1

418 ( 4) 2
ss

nn

opt s
s

h N n
n

p
+  

= +  
  

 (25) 

 The algorithm is given: 

 

Algorithm 11: Regularized resampling 
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         Draw i
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            Compute the empirical covariance matrix tM  of  { }
1

,
Ni i

t t i
s w

=
 

            Compute tD   which T
t t tD D M=  

{ } { }1 11 1
, , ,

N Ni i i i
t t t t ti i

s w basicPF s w y− −= =
   =      

 

 For i=1 to N do 

        Draw i
   from the Epanechnikov Kernel function 

        
i i i
t t opt ts s h D= +

  

  End 

End 

 

Even though Eq. (24) and Eq. (25) are for special cases of equally weighted particles and 

are under Gaussian noise, these methods can still be used in the general case of resampling. 

In recent years, some new resampling methods were developed by Li, Sattar et al. (2012, 

2014, 2015) [29, 30, 46] to overcome sample degeneracy and impoverishment, with an emphasis 

on intelligent approaches. They have been investigating methods which are particularly efficient 

in particle distribution optimization (PDO). PDO is mathematically sound method to alleviate 

sample degeneracy and impoverishment efficiently, therefore enhanced PF.  

When deal with sample degeneracy problem and impoverishment problem, the weight 

and state can be taken into account for the optimization operation executed. For the PDO method, 

the state of particles was especially interested to take into account.  
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4.0  EIS AND ITS APPLICATION 

The EIS filter which was developed by Richard and Zhang (2007) [31] is based on auxiliary PF 

and least-squares regressions. The EIS filter can produce un-biased estimates of state trajectories 

at high degrees of numerical precision. In particular, the EIS filter can dramatically reduce mean 

squared errors (MSEs). The EIS filter yields the iterative construction of global approximations 

of targeted integrands in Eq. (3) and Eq. (4). Here, combining Eq. (3) and Eq. (4), the target 

density kernel to be approximated is given by 

 

1 1 1 1( , ) ( ) ( ) ( )t t t t t t t ts s f y s f s s f s Yϕ − − − −=  (26) 

To estimate the integral of Eq. (26) in EIS, the first step is to choose a parametric class 

kernel function { }1( ; );t t tK k s s a a A−= ∈ of auxiliary IS density kernels. Here, the kernel 

functions are mainly coming from the exponential family of distributions according to the state 

space model. 

 1
1

( ; )
( ; )

( )
t t t t

t t t t
t t

k s s a
m s s a

aχ
−

− =  (26) 

For easy notation, in the following part of the thesis, the index of time t  will be ignored. 

And let 1( , )t ts sλ −= , where  

 ( ) ( ; )a k a dχ λ λ= ∫  (27) 

 And the integrand can be rewritten as 
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d m a d
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m a dk a
a

ϕ λϕ λ λ λ λ
λ

ϕ λ λ λλ
χ

=

=

∫ ∫

∫
 (28) 

Similar to the importance sampling, the weight is  

 
( )( ; )

( ; )
w a

m a
ϕ λλ
λ

=  (29) 

Draw particles from Eq. (26), then Eq. (28) can be estimated by 

 1 1
1

1 ( )( ) ( ) ( ; )
( )

N

i
d a k aN

a

ϕ λϕ λ λ χ λ
χ

=

= ∑∫  
(30) 

The goal of EIS is to find an optimal a A∈  which is a vector of parameters. The a  

should minimize the MC variance of the weight over the full support of ϕ .  

 

2

( , ) 1
( , ) arg min ln ( ) ln ( , )

N
i i

a c i
a c c k aϕ ll

=

 = − − ∑  (31) 

Eq. (31) is a standard least-squares problem. But here, the auxiliary sampling density m    

itself depends on a . Therefore, a simple example is introduced to explain EIS filter. The 

example using EIS filter was described in [62]. The State space is given as following: 

 1t t ts s Vδ η−= +  (32a) 

 exp( )
2

t
t t

sy β e= ⋅  (32b) 

We can also get the density functions according to Eq. (32) 

 
( )2

1
1 2

1( ) exp
22

t t
t t

s s
f s s

vv
δ

p
−

−

 − = − 
  

 (33a) 
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 (33b) 

where 0.6, 0.95, 0.2, 1, 500v T Nβ δ= = = = = . The kernel function also comes from the 

expansion of family density function:  

 
2 2 2 2
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1 2 2

1 1( ; ) exp exp
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 (34) 

where  
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 (35) 

 

The EIS example can be performed by the following steps: 

Step 1, call the algorithm 1 to generate the data.  

Step 2, give initial value for t T= , which is the last time instant. Because in the last 

period, 1 1Tχ + =  is known, according to Eq. (31), then we can regress 

( )2

1 0 1 2ln ( ) ln
i i i i
t t tt t t t t tY f y s a a s a s uχ += + = + + +    on ( )2

1
i i
t tX s s =   
   to get the optimal 

estimated parameters 
0

0
1

2

t
t

t
t

t

a
a

a
a

a

 
   =      

 

.  

Step 3, track back to find all ta ; and according to Eq. (35), compute the normal density 

1( ; )t t t tm s s a− ’s mean and variance: 2
t

t

u
δ
 
 
 

. 

Step 4, we can draw the samples *i
ts  from normal distribution 2( , )t tN u δ  for each time.  
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Now we compare the EIS filter and the PF filter (here only use symmetric resampling 

method) by using the above example to calculate likelihood at time T . 

In Table 5, the different mean values of the likelihood values based on the EIS method 

and the PF method at time T are almost equal. The variance of the likelihood values based on the 

EIS filter is smaller than that based on PF. Thus we can say that the EIS method is more efficient 

than the PF method. The EIS filter was applied to Bearings-Only tracking by DeJong et al. 

(2008) [63]. In [32], the EIS filter offers a significant advance in the empirical analysis of DSGE 

models. DeJong, Liesenfeld et al. (2015) had tried to use this EIS to estimate real business cycle 

models [33].  

The EIS filter has been applied less than PF because EIS is a new method and its 

computational complexity is high. But, the EIS filter allows the establishment of optimal 

continuous IS densities that are global approximations to target integrands. Moreover, the EIS 

procedure can generate continuous and full adapted samples. These samples can deal with the  

sample degeneracy problem and impoverishment problem, avoid likelihood discontinuities, and 

dramatically reduce the MC errors which were produced by likelihood approximations. Some 

parallel computing algorithms may be used in EIS. And EIS is a more efficient filter and better 

suited for high-dimension state space models. With these merits, it is expected that in the future, 

EIS will be applied more in a large number of fields. 
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Table 5. A comparison of results of PF and EIS 

 
Likelihood value based 

on PF 

Likelihood value based 

on EIS 

1 0.70694 0.69319 

2 0.70911 0.69157 

3 0.70307 0.69528 

4 0.69957 0.69481 

5 0.69629 0.69450 

6 0.680579 0.692259 

7 0.701422 0.69087 

8 0.705163 0.691569 

Mean of likelihood value 0.700270 0.693007 

Variance of Likelihood value 0.0089 0.001689 
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5.0  CONCLUSION 

KF can estimate linear and Gaussian dynamic models. However, in the most general cases the 

state space models are nonlinear with non-Gaussian noise which leads to the fast development of 

nonlinear non-Gaussian filters. In this thesis, the theoretical frameworks of IS, PF, and EIS are 

reviewed. Specially, the resampling methods of PF to fight sample degeneracy and 

impoverishment are given in different algorithms of programming. IS is the basic idea to 

compute the integrals which are required in PF and EIS. For the SIS method, after very few 

iterations, the sample degeneracy which has only one particle has the particle weight almost 

close to one, and all other particles’ weights are very close to zero will appear. To deal with the 

problem, many resampling method are introduced, including multinomial resampling, systematic 

resampling, stratified resampling, residual resampling, residual systematic resampling, branch-

kill resampling, rounding-copy resampling, and auxiliary particle filter. However, too much 

resampling leads to another problem: sample impoverishment, which occurs when few particles 

have significant weight while most particles with small weight are abandoned during the 

resampling process. Optimal resampling, rejection control resampling, partial rejection control 

resampling, reallocation resampling, and regularized particle filter resampling are introduced to 

fight the problem. Lastly, the EIS filter is reviewed and it is shown that this method is more 

efficient. In the future, the EIS filter will be applied in more fields, such as signal processing, 

physics, finance, geography etc. 
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