
Miah, Habeeba K. and Bennett, David A. and Iuga, Dinu 
and Titman, Jeremy J. (2013) Measuring proton shift 
tensors with ultrafast MAS NMR. Journal of Magnetic 
Resonance, 235 . pp. 1-5. ISSN 1090-7807 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/3277/1/Miah2013.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to 

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham 

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title 
and full bibliographic details are credited, a hyperlink and/or URL is given for the 
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf 

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33563407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk


Measuring Proton Shift Tensors with Ultrafast MAS NMR 

Habeeba K. Miah†, David A. Bennett †, Dinu Iuga‡, and Jeremy J. Titman†* 

†School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK 

‡UK 850 MHz Solid-state NMR Facility, Department of Physics, Millburn House, University of Warwick, Coventry 

CV4 7AL, UK 

*Corresponding author: Email: Jeremy.Titman@nottingham.ac.uk, Tel: +44 115 951 3560 

Abstract 

A new proton anisotropic-isotropic shift correlation experiment is described which operates with ultrafast 

MAS, resulting in good resolution of isotropic proton shifts in the detection dimension. The new experiment 

makes use of a recoupling sequence designed using symmetry principles which reintroduces the proton 

chemical shift anisotropy in the indirect dimension. The experiment has been used to measure the proton 

shift tensor parameters for the OH hydrogen-bonded protons in tyrosine.HCl and citric acid at Larmor 

frequencies of up to 850 MHz. 

Keywords: chemical shift anisotropy, ultrafast magic angle spinning, anisotropic-isotropic shift correlation, hydrogen 
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Introduction 

Hydrogen bonding plays a critical role in directing molecular self assembly, which is ubiquitous in biology 

and an important aspect of supramolecular chemistry, crystal engineering and nanotechnology. Solid-state 

1H NMR spectroscopy provides an excellent means to study hydrogen-bonded structures, because the 1H 

chemical shift interaction contains information about the geometry of the hydrogen bond. For example, an 

early study [1] revealed a relationship between the 1H isotropic shift δiso and the O…O distance in a broad 

range of crystalline solids forming O-H…O hydrogen bonds. By comparison with neutron diffraction data, 

which provides accurate positions for the hydrogen atoms, a linear correlation was later established between 

δiso and the H…O hydrogen bond length [2]. As confirmed by ab initio calculations [3], the main origin of this 

effect is the deshielding of the principal component of the 1H chemical shift tensor perpendicular to the 

hydrogen bond that occurs as the bond length decreases. More recently, Wu et al. [4] showed for a series of 

crystalline hydrates that the span and the skew of the 1H chemical shift tensor were linearly correlated to the 
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hydrogen bond length and the O-H…O bond angle, respectively. A similar correlation was identified 

between calculated values of the 1H chemical shift anisotropy (CSA) and H…O distances in galactose [5]. 

These results suggest that variations in individual principal components are more sensitive indicators of 

changes in the hydrogen bond environment than the 1H isotropic shift alone. 

However, measurements of the 1H shift tensor in solids are challenging, because of strong 1H homonuclear 

dipolar couplings, which broaden the lines and reduce resolution, and the relatively small size of the 1H 

chemical shift interaction. Until recently, experiments have been restricted to simple systems, usually in the 

form of single crystals [6-9] or perdeuterated powders [4], and the resulting lack of experimental data has 

precluded a full understanding of the relationship between 1H shift tensors and hydrogen bond geometry. 

However, some progress has now been made towards more general methodologies for measuring the 1H 

shift tensor based on two-dimensional NMR experiments which correlate the anisotropic and isotropic parts 

of the shift interaction. These make use of magic angle spinning (MAS) and multi-pulse homonuclear 

decoupling [10,11] to resolve different 1H sites via their isotropic shifts in the detection dimension, so that a 

method of reintroducing or “recoupling” the MAS-averaged 1H CSA is required during the evolution time. 

For example, Brouwer and Ripmeester [12] designed a recoupling sequence using symmetry principles 

[13,14], while Duma et al. [15] used rotary resonance [16-18] to reintroduce the 1H CSA. In common with all 

methods based on rotary resonance, the latter suffers from substantial sensitivity to rf inhomogeneity, while 

the sequence symmetry chosen in the former restricts the experiment to relatively slow MAS rates. In order 

to improve the resolution of different sites in ν2, Hou et al. [19] recently exploited magnetization transfer to a 

neighbouring heteronucleus after recoupling the 1H shift anisotropy during t1. This approach was shown to 

be particularly powerful for measuring the 1H shift tensor parameters for the amide protons in 15N-enriched 

proteins, but is less appropriate for hydrogen-bonded OH sites where a suitable directly bonded 

heteronucleus is not available. 

In this communication, we demonstrate a 1H anisotropic-isotropic shift correlation experiment which 

employs a symmetry-based recoupling sequence which is suitable for use when the MAS rate exceeds 50 

kHz. The combination of MAS in this “ultrafast” regime and high B0 field allows the majority of hydrogen-

bonded sites in simple crystalline solids to be resolved in ν2 without the need for multi-pulse homonuclear 

decoupling. The usefulness of the new experiment is demonstrated by measurements of the 1H shift tensors 

for all the hydrogen-bonded OH sites in tyrosine.HCl and citric acid. 
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Pulse Sequence Design 

Levitt and co-workers [13,14] have used symmetry principles to design recoupling sequences which can 

reintroduce specific nuclear spin interactions averaged by MAS. The current work employs the most flexible 

class of symmetry-based recoupling sequence which is designated RNn
ν. These consist of N composite 

inversion pulses R, timed to occupy n rotor periods, where each R element of the overall sequence has 

duration nτr/N and alternate elements have phases 
 
±πnν N . It has been demonstrated that the symmetry 

numbers N, n and ν determine which interactions are retained in the first-order effective Hamiltonian for the 

sequence according to: 

   
H
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where A is a rank-l irreducible spherical tensor operator describing the spatial part of the interaction 

Hamiltonian, and T is a rank-λ irreducible spherical tensor operator describing the spin part. The rotational 

components of the spatial and spin tensors m and µ take values m = l, l - 1, … -l and µ = λ, λ - 1, … -λ, 

respectively, and kλ is any integer with the same parity as λ. 

Recoupling sequences suitable for measuring the 1H shift tensor recouple a single-quantum Hamiltonian 

which takes the form 
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to first order, where the index j runs over all the 1H shift interactions.  The coefficient ωj depends on the 

anisotropic part of the chemical shift interaction and determines the appearance of the recoupled powder 

pattern observed in the evolution dimension. Suitable symmetries must also avoid inadvertently recoupling 

the strong 1H dipolar interactions, as well as isotropic 1H shifts. Of the many symmetries which satisfy these 

conditions, 
 
R18

2

5 [12] and 
 
R12

1

4 [19] have been used successfully to measure 1H shift tensor parameters. 

However, since the pulse sequence is synchronized with the spinning, the required rf amplitude increases 

with ωr, so that these symmetries become impractical at ultrafast MAS rates. For 
 
R18

2

5  and 
 
R12

1

4

 
rf 

amplitudes in excess of 180 kHz and 240 kHz, respectively, would be required for MAS rates above 40 kHz, 

and in Refs. [12] and [19] experiments were carried out below 20 kHz. A different choice of sequence 

symmetry allows similar experiments to be carried out at higher MAS rates at which a well-resolved 

isotropic 1H spectrum can be acquired without the need for homonuclear decoupling as in Ref. [12]. Note 



 
4 

that in the case of OH protons, resolution of different sites cannot be improved by magnetization transfer to 

a directly bonded heteronucleus as in Ref. [19]. 

The pulse sequence used to record 1H anisotropic-isotropic shift correlation spectra in this work is shown in 

Figure 1. The preparation period consists only of a suitable relaxation delay, which is followed immediately 

by a 
 
R16

3

2  recoupling sequence of duration t1. This choice of R sequence symmetry allows MAS rates up to 

67.5 kHz to be used before the required rf amplitude exceeds 180 kHz. During the evolution period, 

longitudinal 1H magnetization decays under the action of the Hamiltonian in Eq. (2), and subsequently a π/2 

pulse transfers any remaining longitudinal 1H magnetization to the transverse plane where it is acquired 

during t2. In practice, the experiment is initiated with a saturation sequence followed by a recovery delay to 

ensure constant initial magnetization and to avoid long recycle delays. 

 

Figure 1. Experiment used to record 1H anisotropic-isotropic shift correlation spectra at ultrafast MAS rates, 

as described in the text: (a) overall pulse sequence. The black bar represents a π/2 pulse. (b)
 
R16

3

2  sequence 

which operates during the evolution period, t1. Each bar represents a π pulse. 

Experimental 

1H anisotropic-isotropic shift correlation spectra were recorded using the pulse sequence shown in Figure 1 

on two spectrometers operating at Larmor frequencies of 600.13 and 850.13 MHz, both equipped with a 1.3 

mm MAS probe. MAS rates of between 58.6 and 62.5 kHz were selected, so that the 
 
R16

3

2  recoupling 

sequence required a 1H rf amplitude of either 156.3 or 166.6 kHz. Note that the small coil diameter means 

that these amplitudes are well inside the manufacturer’s specifications for the ultrafast MAS probes used 
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here. Further experimental details are given in the relevant figure captions. The two-dimensional FID was 

Fourier transformed with respect to t2, and the resulting spectrum was baseline corrected to remove the 

broad 1H background signal. Since t1 samples the decay of longitudinal 1H magnetization quadrature 

detection is not appropriate, and a real Fourier transform was applied in the indirect dimension, resulting in 

1H CSA lineshapes in ν1 which are symmetrical about the origin. For anisotropic interactions, such as the 

CSA, the magnitude of the recoupled Hamiltonian always depends on the orientation of the molecular frame 

with respect to the rotor.!This means that not all orientations are fully recoupled, and in this case there is 

some longitudinal 1H magnetization which does not decay, resulting in a dc offset in the t1 signal and a 

corresponding zero-frequency line in ν1. This was removed by subtracting the average of the final 8 points of 

each interferogram prior to Fourier transform in ν1. A schematic describing all the processing steps is 

included in the Supplementary Information (Figure S1). The t1 dwell time must correspond to an even 

number of π pulses, but if sampling does not coincide with a complete R cycle, cycling sidebands appear in 

the ν1 dimension. Hence, a careful choice of sampling rate in the indirect dimension is necessary to ensure 

that these appear outside the 1H CSA lineshape.  

The anisotropy and asymmetry parameters for the chemical shift are defined according to ζ = δzz – δiso and η 

= (δyy – δxx)/ζ, respectively, with the principal components ordered according to |δzz – δiso | ≥ | δxx –  δiso | ≥ 

| δyy – δiso |. Numerical simulations of the recoupled 1H CSA lineshapes were performed using SIMPSON 

[20]. Powder averaging was achieved using 615 (α,β) orientations chosen according to the scheme of 

Zaremba [21] and 40 uniformly distributed values of γ. B1 inhomogeneity was included by summing 17 

simulations carried out using rf amplitudes weighted according to the experimentally determined B1 

distribution. The experimental distribution is skewed with its maximum on the high B1 side and a long tail 

extending on the low side with significant intensity limited to ±5% of the nominal value. A Gaussian line 

broadening function was applied and the result processed in an identical fashion to the experimental data in 

order to obtain a simulated 1H CSA lineshape. An array of these simulated lineshapes were generated for ζ 

up to 25 ppm and η in the range 0.0 to 1.0, and the 1H shift tensor parameters were extracted by comparing 

these with the experimental data, using a similar method to that described in Ref. [12]. For each simulated 

lineshape the optimal scaling factor was found by fitting to the experimental data, and the corresponding χ2 

parameter was plotted as a function of ζ and η. The resulting error surface allows the best-fit values of ζ and 

η to be obtained, as well as their confidence limits, assuming χ2 is suitably normalized [22]. 
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Results and Discussion 

Figure 2 shows SIMPSON simulations performed as described above of 1H CSA lineshapes recoupled using 

a 
 
R16

3

2  sequence operating at a MAS rate of 62.5 kHz for a Larmor frequency of 600 MHz. These simulations 

demonstrate that measurement of the chemical shift parameters ζ and η is possible using the anisotropic-

isotropic correlation spectrum described here. In (a) the increasing ζ results in an increase in the width of the 

pattern, while the sensitivity of the lineshape to η is demonstrated in (b). The experimentally determined B1 

distribution has been added to otherwise identical simulations which are shown in (c) and (d). Changing the 

R symmetry results in a different scaling factor, so the lineshapes observed with 
 
R16

3

2  are similar but not 

identical to those for 
 
R18

2

5  [12] or 
 
R12

1

4

 
[19]. Even at the relatively low field of 600 MHz, values of ζ below 5 

ppm can be determined as illustrated in (a). In practice the variation with η seen in (b) is obscured to some 

extent by effect of B1 inhomogeneity, as illustrated in (d). In common with 
 
R18

2

5  [12] or 
 
R12

1

4

 
[19], the sign 

of ζ cannot be determined because of the symmetry of the recoupled 1H CSA lineshape. Furthermore, R 

sequences with this symmetry also reintroduce the heteronuclear dipolar interaction, so they are not suitable 

for measuring 1H CSAs in the presence of abundant nuclei without additional decoupling [19]. 
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Figure 2. SIMPSON simulations of 1H CSA lineshapes recoupled using a 
 
R16

3

2  sequence for a Larmor 

frequency of 600 MHz and a MAS rate of 62.5 kHz, carried out as described in the text. The simulations in (a) 

and (c) show the variation of the recoupled lineshape with ζ  for η = 0.0, while (b) and (d) show the variation 

with η for ζ = 20 ppm. The effects of B1 inhomogeneity are neglected in (a) and (b), while the experimentally 

determined B1 distribution is included in (c) and (d).  Note the broadening of the singularities in the latter as 

a result of the B1 inhomogeneity, and the consequent loss of sensitivity to η in particular. 

As an illustration of the method Figure 3(a) shows a 1H anisotropic-isotropic correlation spectrum of 

tyrosine.HCl recorded at a Larmor frequency of 850.13 MHz and a MAS rate of 58.6 kHz. Other 

experimental parameters are given in the caption. The high-field ultrafast MAS 1H spectrum (top) exhibits 

two well-resolved peaks which have been assigned previously by measurement of 1H-17O internuclear 

distances using heteronuclear recoupling experiments [23]. The neutron structure of tyrosine.HCl [24] 

contains two short hydrogen bonds both involving the phenolic OH (designated OηHη in Ref. [24]) which acts 
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as the acceptor group in a hydrogen bond with the carboxylic OH (designated O2H2) and simultaneously as 

the donor in a hydrogen bond with the chloride ion. Figure 3(b) shows (red lines) cross-sections parallel to ν1 

taken at ν2 frequencies corresponding to the isotropic 1H shifts of H2 and Hη. These are compared with 

SIMPSON simulations (dashed lines) for the best-fit ζ and η obtained as described above. The results of the 

fits are given in Table 1, and the error surfaces with respect to ζ and η are shown in the Supplementary 

Information (Figure S2). The sensitivity to η evident in Figure 2(b) is substantially reduced in experimental 

ν1 cross-sections due to rf inhomogeneity which broadens the 1H CSA lineshape. Omitting rf inhomogeneity 

from the simulations used to extract the 1H shift parameters reduces the quality of the fit and results in the 

overestimation of η. 

 

Figure 3. (a) shows a 1H anisotropic-isotropic correlation spectrum of tyrosine.HCl recorded at a Larmor 

frequency of 850.13 MHz. The MAS rate was 58.6 kHz, so that the 
 
R16

3

2

 
recoupling sequence required a 1H 

rf amplitude of 156.3 kHz, corresponding to a π pulse duration of 3.2 µs. There were 48 t1 increments with 

data points sampled every 12 R elements, resulting in a dwell time in the indirect dimension of 38.4 µs. In t2 

2048 complex points were acquired with a spectral width of 150 kHz. Saturation was achieved using a train 

of 200 π/2 pulses separated by intervals of 10 ms with a recovery delay of 4 s. 1H chemical shifts were 

referenced to Me4Si, and the assignments of the 1H sites are taken from Ref. [23] using the labelling scheme 

from Ref. [24]. (b) shows (red lines) cross-sections parallel to ν1 taken at ν2 frequencies corresponding to the 

isotropic 1H shifts of the hydrogen-bonded OH protons H2 and Hη, along with SIMPSON simulations 

(dashed lines) for the best-fit chemical shift parameters. 
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As a further test Figure 4(a) shows a 1H anisotropic-isotropic correlation spectrum of anhydrous citric acid 

recorded at a lower Larmor frequency of 600.13 MHz and a MAS rate of 62.5 kHz. Other experimental 

parameters are given in the caption. The ultrafast MAS 1H spectrum (top) exhibits four well-resolved peaks 

which have been partially assigned in Ref. [12] by comparison with the single-crystal X-ray structure [25]. 

Figure 4(b) shows (red lines) cross-sections parallel to ν1 taken at ν2 frequencies corresponding to the 

isotropic 1H shifts of the four hydrogen-bonded sites. These are compared with SIMPSON simulations 

(dashed lines) for the best-fit ζ and η parameters. The results of the fits are given in Table 1, and the error 

surfaces are shown in the Supplementary Information (Figure S3). There is generally good agreement with 

the ζ values measured by Brouwer and Ripmeester at higher B0 field and lower MAS rate [12]. Ultrafast 

MAS causes sample heating which might cause partial averaging of the 1H CSA, but there is no systematic 

difference between the values obtained at different MAS rates which would suggest this is a problem here. 

Finally, the effect of rf inhomogeneity results in a fairly significant uncertainty for η, but once again this is 

comparable to that obtained at lower MAS rates. 

 

Figure 4. (a) shows a 1H anisotropic-isotropic correlation spectrum of anhydrous citric acid recorded at a 

Larmor frequency of 600.13 MHz. The MAS rate was 62.5 kHz, so that the 
 
R16

3

2  recoupling sequence 

required a 1H rf amplitude of 166.6 kHz, corresponding to a π pulse duration of 3.0 µs and a dwell time in t1 

of 36.0 µs. Other parameters were identical to those given in the caption to Figure 3, except that the recovery 

delay was 120 s. (b) shows (red lines) cross-sections parallel to ν1 taken at ν2 frequencies corresponding to the 

isotropic 1H shifts of the hydrogen-bonded OH protons, along with SIMPSON simulations (dashed lines) for 

the best-fit chemical shift parameters. 
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Table 1. Values of 1H chemical shift parameters (with 95% confidence limits) measured in this work from 

fitting to simulated spectra as described in the text. 

Site δiso 
ζ η 

Tyrosine.HCla 

H2 12.0  17.5 (17.3, 17.7) 0.0 (0.0, 0.1) 

Hη 9.6 18.5 (18.0, 19.0) 0.5 (0.4, 0.7) 

Citric acidb 

H5 13.9 16.9 (16.5, 17.3)  0.3 (0.0, 0.5) 

H6,7 c 10.7 12.5 (12.2, 12.8) 0.3 (0.0, 0.4) 

H6,7 c 10.0 12.5 (12.2, 13.8) 0.2 (0.0, 0.4) 

H8 5.5  13.6 (13.5, 14.2) 0.4 (0.0, 0.7) 

 
a. 1H sites labelled according to Ref. [24] 
b. 1H sites labelled according to Ref. [25] 
c. sites H6 and H7 cannot be assigned. 

Conclusion 

A new 1H anisotropic-isotropic shift correlation experiment has been described which operates with ultrafast 

MAS, resulting in good resolution of isotropic 1H shifts in the detection dimension, especially in combination 

with high B0 fields. A recoupling sequence is required to reintroduce the 1H CSA in the indirect dimension, 

but the symmetry numbers must be carefully chosen in order to avoid high rf amplitudes, and the 
 
R16

3

2  

sequence was found to be an appropriate choice for MAS rates over 60 kHz. The new experiment has been 

used to measure the 1H shift tensor for all the hydrogen-bonded OH sites in tyrosine.HCl and citric acid. 

Good agreement was found between the resulting values of ζ and η and those obtained previously. A 

number of possible improvements to the experiment can be envisioned. The 1H CSA could be recoupled 

using a modified version of the ROCSA experiment due to Chan and Tycko which has been used to measure 

13C shift parameters in uniformly labelled amyloid fibrils [26]. This approach has the advantage that the 

resulting undistorted 1H CSA lineshapes allow measurement of the sign of ζ. The effect of B1 inhomogeneity 

could be reduced by employing amplitude- or phase-modulated R elements after the fashion of Nishiyama et 

al. [27] Alternatively, the signal which results from the extremes of the B1 distribution could be filtered out 

by extending the duration of the π/2 magnetization transfer pulse, as described in a different context by Lu 

et al. [28] These modifications are currently under investigation in our laboratory. 
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