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Filtration in the separation of solid-liquid mixtures has been studied for 90 years. However, the 

lack of a generalized set of laws for filtration has increased the difficulty of incorporating 

equations from one model into another. This thesis is focused on determining the relationship 

between fluid properties and cake structure on the void distribution and ultimate pressure drop 

during a filtration process. By comparing experimental results to those predicted from the 

Kozeny-Carman model/equation, we assess the utility of this equation for application to systems 

that include poly-disperse particles at moderate fluid pressure. We find substantial agreement 

between model and experiment only for systems that result in well-ordered particle packing (i.e., 

those that have a tight distribution of void sizes). Dramatic disagreement is observed for particle 

beds that exhibit wide void size distributions. The cake structure is primarily influenced by the 

size ratio of the particles that compose the cake; specifically, particles with a size ratio in which 

Rs/l is larger than 0.5 do not typically form an ordered pore structure. We propose a modified 

Kozeny-Carman equation, based on a bimodal void distribution, by introducing two factors: the 

fraction of expanded voids (κ) and the ratio of void sizes (β). Discrete Element Method (DEM) 

simulations of the packing of poly-disperse spheres are used to analyze the cake structure for 

different size ratios of binary mixtures. Based on the simulation results, void size distributions of 
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the simulated beds can be extracted by means of a radical Delaunay tessellation. The void 

structure is quantified in terms of probability density functions of pore and constriction sizes. By 

fitting the simulated void size distributions to a bimodal (two normal) distribution, the factors κ 

and β can be calculated based on different mean void sizes and probability density. The predicted 

flow dynamics from the modified equation with factors extracted from the simulation results are 

found to be much more similar to the experimental flow rates than those calculated using the 

unmodified Kozeny-Carman equation. Therefore, the modified equation is deemed reliable at 

predicting the flow behavior, provided that an approximate representation of the void size 

distribution is available. 
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1.0  INTRODUCTION 

Filtration is a process that separates one phase of material from another phase. Types of filtration 

can be classified by different types of filters (i.e., cake filtration, frame filtration and candle 

filters). This thesis is focused on fluid flow through a porous cake, which is widely applied in 

groundwater flow, oil transport in porous rock, the permeation of ink in paper, and other 

engineering applications [1]. In this thesis, cake filtration is used. It is a technique that creates a 

cake – a layer that is composed of solids – on the filter that is then used to separate (additional) 

solid(s) from the liquid [2]. A porous cake, and its interconnect voids are a heterogeneous 

system. The void space allows fluid to pass through [3]. Cake filtration processes can be divided 

into four categories [4]: 

• Constant pressure filtration 

• Constant flow filtration 

• Non-constant filtration: variable pressure, variable flow 

• Stepped pressure filtration 

In constant pressure filtration, an external pressure is added across the filter. In constant 

flow filtration, a positive displacement pump is used to push the liquid through at a constant flow 

rate [5]. A non-constant filtration is a pressure filter fed by a pump. A stepped pressure filtration 

is a system where pressure is increased by increments.  
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1.1 COVENTIONAL THEORY 

Studies on cake filtration have been reported for over ninety years. They changed from simple 

restricted results to more exact and relaxed results. The conventional theory (as shown in Table 1) 

was developed during the beginning of the last century by Ruth, Grace, Tiller, and Shirato [6].  

That is the mainstay in design calculations, scale-up, and data interpretation of cake filtration 

systems [1]. This theory is based on assumptions that the particle velocity is negligible and the 

fluid flow follows Darcy’s law. This indicates that the flow rate of fluid in the filtration process 

is directly proportional to the ultimate pressure drop and inversely proportional to the flow 

resistance between the cake and the medium [1]. Notation: 

𝑞𝑞𝑙𝑙 superficial liquid velocity 𝑝𝑝𝑠𝑠𝑚𝑚 compressive stress at interface 

𝑘𝑘 cake permeability 𝑅𝑅𝑚𝑚 medium resistance 

𝜇𝜇 fluid visocosity 𝑉𝑉 cumulative filtrate volume 

𝑝𝑝𝑙𝑙 liquid (filtrate) pressure 𝑤𝑤 cake mass  

𝑥𝑥 distance away from medium 𝑡𝑡 time 

𝑠𝑠 particle mass fraction  𝑡𝑡𝑚𝑚 fictitious time  

𝑚𝑚�  wet to dry cake mass ratio 𝑄𝑄 constant filtration rate 

𝑃𝑃0 operating pressure 𝛼𝛼 specific cake resistance 

𝑃𝑃𝑎𝑎 quantity pressure 𝛿𝛿 exponent factor 

𝜀𝜀𝑠𝑠 cake solidosity 𝛽𝛽 exponent factor 

𝜀𝜀𝑠𝑠0 cake solidosity at the zero stress 𝐿𝐿 cake thickness 

𝛼𝛼𝑎𝑎𝑎𝑎 average specific cake resistance   
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Table 1. Main results of the conventional theory of cake filtration [1] 

Basic equations  

𝑞𝑞𝑙𝑙 =
𝑘𝑘
𝜇𝜇
𝜕𝜕𝑝𝑝𝑙𝑙
𝜕𝜕𝑥𝑥

 (Darcy’s law) 

Constant pressure filtration  

𝜇𝜇𝑠𝑠𝜇𝜇(1 −𝑚𝑚�𝑠𝑠)−1[𝛼𝛼𝑎𝑎𝑎𝑎]𝑝𝑝𝑠𝑠𝑚𝑚
�������������������������� 𝑉𝑉

2

2
+ 𝜇𝜇𝑅𝑅𝑚𝑚𝑉𝑉 = 𝑝𝑝0𝑡𝑡 [6]  

Constant rate filtration  

𝑞𝑞𝑡𝑡𝑚𝑚 = 𝑄𝑄, 𝑉𝑉 = 𝑄𝑄𝑄𝑄 [9]  

𝑃𝑃0 = 𝜇𝜇𝑄𝑄{𝑠𝑠𝜇𝜇(1 −𝑚𝑚𝑠𝑠)−1[𝛼𝛼𝑎𝑎𝑎𝑎]𝑝𝑝𝑠𝑠𝑚𝑚𝑄𝑄𝑡𝑡 + 𝑅𝑅𝑚𝑚}  

Pressure drop across filter cake  

∆𝑝𝑝𝑐𝑐
𝑃𝑃0

=
𝜇𝜇𝑠𝑠𝜇𝜇(1 −𝑚𝑚�𝑠𝑠)−1[𝛼𝛼𝑎𝑎𝑎𝑎]𝑝𝑝𝑠𝑠𝑚𝑚

��������������������������𝑉𝑉

𝜇𝜇𝑠𝑠𝜇𝜇(1 −𝑚𝑚�𝑠𝑠)−1[𝛼𝛼𝑎𝑎𝑎𝑎]𝑝𝑝𝑠𝑠𝑚𝑚
��������������������������𝑉𝑉 + 𝜇𝜇𝑅𝑅𝑚𝑚

 [10]  

Compressive stress profile  

𝑝𝑝𝑠𝑠
𝑃𝑃𝑎𝑎

= �1 + (1 −
𝑥𝑥
𝐿𝐿

)[(1 +
∆𝑝𝑝𝑐𝑐
𝑃𝑃𝑎𝑎

)1−𝛿𝛿 − 1�
1

1−𝛿𝛿
− 1 [1]  

Solidosity profile  

𝜀𝜀𝑠𝑠
𝜀𝜀𝑠𝑠0

= ��(1 +
∆𝑝𝑝𝑐𝑐
𝑃𝑃𝑎𝑎

)1−𝛿𝛿 − 1� (1 −
𝑥𝑥
𝐿𝐿

) + 1�
𝛽𝛽
1−𝛿𝛿

 [1]  
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1.2 THE KOZENY-CARMAN EQUATION 

The Kozeny-Carman equation can be used in fluid flow through packed beds. It is based on the 

conventional theory and extended with experiments at constant pressure. For laminar flow in 

straight tubes, according to the Hagen-Poiseuille (H-P) equation, 

Δ𝑝𝑝𝑠𝑠 =
32𝐿𝐿𝑉𝑉�µ
𝐷𝐷2  (1.2.1) 

where Δ𝑝𝑝𝑠𝑠is the pressure loss, L is the length of pipe, µ is the dynamic viscosity, 𝑉𝑉�  is the average 

velocity in the channels, and D is the diameter of the tube. In order to determine an effective tube 

diameter (Deq) that mimicks the pores within a cake, the surface area for n monomodal tubes 

should be equal to the surface-volume ratio times the particle volume: 

 𝑛𝑛𝑛𝑛𝐷𝐷𝑒𝑒𝑒𝑒𝐿𝐿 =
𝐴𝐴𝑐𝑐𝑠𝑠𝐿𝐿(1 − 𝜀𝜀)6

Φ𝑠𝑠𝐷𝐷𝑝𝑝
 (1.2.2) 

where Dp is the particle diameter, Φ𝑠𝑠 is the sphericity, Acs is the cross-sectional area of the bed. 

Similarly, the void volume should be equal to the total volume of tubes.  

𝐴𝐴𝑐𝑐𝑠𝑠𝐿𝐿𝜀𝜀 =
1
4
𝑛𝑛𝑛𝑛𝐷𝐷𝑒𝑒𝑒𝑒2 𝐿𝐿 (1.2.3) 

Combining to provides the equation for Deq: 

𝐷𝐷𝑒𝑒𝑒𝑒 =
2
3
Φ𝑠𝑠𝐷𝐷𝑝𝑝

𝜀𝜀
1 − 𝜀𝜀

 (1.2.4) 

The average volume of channels is proportional to the superficial velocity (𝑉𝑉0� ) and inversely 

proportional to the porosity: 

𝑉𝑉� =
𝑉𝑉0
𝜀𝜀
�

 (1.2.5) 

where 𝜀𝜀 is the porosity. Adding a correction factor, 𝜆𝜆, to represents the fact that channels are 

tortuous instead of straight and parallel. Combining this modified H-P equation we get 
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Δp
𝐿𝐿

=
72𝜆𝜆𝑉𝑉0� µ
Φ𝑠𝑠

2𝐷𝐷2

(1 − 𝜀𝜀)2

𝜀𝜀3
 (1.2.6) 

The correction factor (𝜆𝜆) is typically taken as an empirical number equal to 2.1 so that we obtain 

[11]: 

Δp
𝐿𝐿

=
150𝑉𝑉0� µ
Φ𝑠𝑠

2𝐷𝐷2

(1 − 𝜀𝜀)2

𝜀𝜀3
 (1.2.7) 

This indicates that the flow rate is proportional to the ultimate pressure drop and inversely 

proportional to the fluid viscosity. This equation is similar to Darcy’s law; therefore, it does not 

fit when the cake has high porosity, non-spherical particles, or systems of particles that are multi-

disperse [12]. This thesis is focused on modifying the Kozeny-Carman (CK) equation to fit the 

experiment data in a multi-disperse system. 

1.3 MULTI-DISPERSE THEORIES 

Cakes of filtration are always composed of multi-sized particles in industry applications. The 

Kozeny-Carman equation and other theories cannot be directly applied to multi-disperse system. 

In order to verify the change for a multi-disperse system, the studies during the last decade have 

been focused on drag forces because the drag forces between fluid and particles are very 

important in filtration [13]. Koch proposed new relations based on numerical data from 

simulations [14]. Van der Hoef determined the drag forces of particles in bi-sized spheres in 

2005 [15]. Yin and Sundaresan generated a fluid-particle drag forces equation for binary and 

ternary systems [16]. Because these works were based on very loosely packed beds, the 

equations may not work well in dense systems. Based on previous works, Rong organized the 
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relationship between fluid and particles more accurately and reasonably [13]. However, Rong 

and coworkers assumed that the particles remained stationary when the fluid flowed through 

them and used very low pressure during the experiment and simulation. In this thesis, the aim is 

to modify the Kozeny-Carmen equation for a multi-disperse system with a high operating 

pressure.  

1.4 COMPUTATIONAL MODELS 

In this section we discuss two modeling techniques that are well suited for the study of fluid-

particle filtration. The discrete element method (DEM) is a well-known technique for the 

calculation of mechanical forces between particles as well as their subsequent motion. The 

Lattice Boltzmann Method (LBM) is a Lagrangian fluid modeling technique that can easily 

handle the intricate boundaries that arise in systems of particles (that can have disparate sizes 

and/or shapes). 

1.4.1 DEM simulation 

The discrete element method (DEM), which was pioneered by Cundall in 1971, is a numerical 

method that is used to compute the physic properties of an extensive number of particles [17]. 

DEM is widely used in simple models of particle interactions because it models materials as an 

assemblage of discrete particles. It calculates the interaction forces between these particles based 

on Newton’s law. Then it determines how the motion of each particle would change based on the 

calculated forces. DEM simulation can be run with desired initial conditions, such as the number 
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of particles, particle diameter, and particle size distribution, for multi-disperse systems. Because 

DEM can be used to simulate the physical locations of each particle in the model, one method of 

coupling the DEM and Lattice Boltzmann Method (LBM) techniques is to use the result of a 

DEM as the initial particle/boundary locations for the LBM [18].  

1.4.2 LBM simulation 

The Lattice Boltzmann Method (LBM) is a computational model that is widely used in designing 

models of the physic properties of fluid flow, such as flow rate. LBM is based on the fact that 

individual molecules compose the fluid and the total behavior of the fluid can be calculated by 

summing the behavior of each individual molecule [19]. In this thesis, the DEM is used to 

simulate packed cakes to verify the changes of cake structure in different particle size 

distributions. Therefore, the simulated results can represent the void size distribution and 

compare different void size distributions with different particle size distributions. Further work 

should be done with LBM simulation in order to verify the effect of fluid in different particle 

size systems. 
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2.0  FILTRATION EXPERIMENTS 

As we assume that applying the Kozeny-Carman equation to multi-disperse systems can result in 

significant errors, we assess the utility of this equation for application to systems that include 

poly-disperse particles at moderate fluid pressure. It is important to introduce appropriate 

experimental techniques in order to determine the difference. As mentioned above, there are 

different types of filters and operation methods. In this thesis, a Nutsche Filter, which is a cake 

filter and performs filtration at constant operating pressure, was chosen for the experiments, as 

shown in Figure 1. Constant pressure filtration is used with a cake that is composed of glass 

beads with regular, smooth surfaces. The viscous liquid used for the fluid phase in this thesis is 

pure glycerol. 

 

 

Figure 1. Chart of filtration experiment (Chose a pressure nutsche filter with steam jacket) 
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The process for each filtration experiment was as follows: 

1. Fix filter paper cloth at the bottom of the filter. 

2. Pour a known volume and mass of dry glass beads into the filter. 

3. Tap the outside chamber several times until the particles have settle evenly. 

4. Pour the fluid into the chamber; make sure the structure of solid phase is not destroyed. 

5. Apply a known pressure into the filter. 

6. Allow the fluid flow through the filter continuous into a beaker, which posited on a scale. 

7. Calculate the mass of fluid collected every 30 seconds. 

8. Run six times for each cake with six different operating pressures. 

We can read the pressure (p) from the vacuum gauge during the experiment. The ultimate 

pressure drop (Δp) is the pressure in the filter minus the atmospheric pressure:  

Δp = p − p𝑎𝑎 (2.0.1) 

The superficial velocity (V0���) can be calculated by measuring the accumulated mass of filtered 

fluid (𝑚𝑚𝑙𝑙) as a function of time: 

𝑉𝑉0� =
𝑚𝑚𝑙𝑙

𝜇𝜇𝜌𝜌
 (2.0.2) 

where ρ is the density of the fluid, and S is the area of the cake. The volume of the cake (V) is 

measured by a graduated cylinder，which can calculate the cake thickness (L): 

𝐿𝐿 =
𝑉𝑉
𝜌𝜌

 (2.0.3) 

The porosity is the fraction of void space in a material. It is determine by the volume of that cake 

and the mass of added water (𝑚𝑚𝑤𝑤). In this thesis, we measured cake volume and cake weight, 

and then added distilled water until the base of the meniscus of the water liquid was level with 

the top surface of the solid. The mass of the added water can be calculated by subtracting the 
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cake weight from the total weight. The porosity could be calculated. As the pressure dropped, the 

cake thickness, porosity of the cake, diameter of particles, viscosity of the fluid were known, the 

predicted flow rate could be calculated. 

𝜀𝜀 =
𝑉𝑉

𝑚𝑚𝑤𝑤/𝜇𝜇𝑤𝑤
(2.0.4) 

In the following sections we report the raw data obtained from our filtration experiments. 

Analysis and discussion of these results are largely reserved for Chapter 3.0 . 

2.1 FILTRATION IN NARROW SIZE DISTRIBUTION 

In order to verify the influence of different multi-disperse systems on the predicted flow rate 

based on the Kozeny-Carman equation, we chose different size ranges of glass beads with size 

from 50μm to 100μm. For narrow size distribution in this thesis, the difference between particle 

sizes should be less than 15μm. Experiments were run using five different particle size 

distributions and six operating pressures. The cake thicknesses were near 0.5cm and other factors 

were kept constant. Under these varying operating conditions, the predicted flow rate was 

determined using the Kozeny-Carman equation, as shown in Table 2. 
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Table 2. Experiments: predicted flow rate, empirical flow rate in different narrow size distribution 

 
 
 
As shown in the data above, the empirical data is quite similar to the predicted data in 

these narrow size distributions in thin cakes no matter how particle sizes change. Also, the cake 

thickness may also influence the flow rate. In order to verify this influence, experiments were 

run using three different cake thicknesses and six operating pressure with particle sizes between 

Particle size (μm)  Pressure drop (Pa) Predicted flow rate (m/s) Empirical flow rate (m/s) 

53-63 
 

 76500 5.42E-05 6.02E-05 
 124000 8.78E-05 1.05E-04 
 174000 1.23E-04 1.40E-04 
 222000 1.57E-04 1.86E-04 
 268500 1.90E-04 2.15E-04 
 308000 2.18E-04 2.49E-04 

63-75 

 82500 9.24E-05 1.06E-04 
 124000 1.39E-04 1.56E-04 
 183000 2.05E-04 2.24E-04 
 227500 2.55E-04 2.84E-04 
 269500 3.02E-04 3.33E-04 
 314000 3.52E-04 3.88E-04 

75-90 

 87000 2.81E-05 2.92E-05 
 142500 4.61E-05 4.84E-05 
 181000 5.86E-05 5.87E-05 
 230000 7.44E-05 7.23E-05 
 283500 9.17E-05 9.27E-05 
 316000 1.02E-04 1.04E-04 

90-106 

 74000 5.34E-05 5.46E-05 
 131500 9.50E-05 1.00E-04 
 177500 1.28E-04 1.37E-04 
 219000 1.58E-04 1.70E-04 
 264000 1.91E-04 2.08E-04 
 295000 2.13E-04 2.39E-04 
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90 and 106μm. In addition, other factors were kept constant. We compared the predicted flow 

rates to the empirical flow rates, as shown in Table 3. The empirical data is still quite similar to 

the predicted data no matter how the cake thickness was changed. 

 

Table 3. Experiments: predicted flow rate, empirical flow rate in different cake thickness (particle size 90-106μm) 

Cake thickness (cm) Pressure drop (Pa) Predicted flow rate (m/s) Empirical flow rate (m/s) 

0.54 

74000 5.34E-05 5.46E-05 
131500 9.50E-05 1.00E-04 
177500 1.28E-04 1.37E-04 
219000 1.58E-04 1.70E-04 
264000 1.91E-04 2.08E-04 
295000 2.13E-04 2.39E-04 

2.50 

77500 1.76E-05 1.92E-05 
148000 3.36E-05 3.57E-05 
192500 4.37E-05 4.97E-05 
227500 5.17E-05 5.71E-05 
275000 6.25E-05 6.86E-05 
350000 7.95E-05 8.34E-05 

4.91 

78500 6.93E-06 7.62E-06 
137500 1.21E-05 1.29E-05 
171500 1.51E-05 1.57E-05 
213500 1.88E-05 2.03E-05 
269000 2.38E-05 2.46E-05 
307500 2.70E-05 2.92E-05 

2.2 FILTRATION IN WIDE SIZE DISTRIBUTION 

The differences between the predicted flow rates and the empirical flow rates are quite similar in 

narrow size distribution, regardless of particle size and cake thickness. This means that the 
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Kozeny-Carman equation is suitable for use in narrow size distribution system. We chose larger 

size ranges, wide size distribution, with sizes from 50μm to 210μm. In this thesis, wide size 

distribution is defined as when the difference between particle sizes is greater than 15μm. 

Experiments similar to those in Chapter 2.1 were conducted. The empirical results and predicted 

flow rates based on the Kozeny-Carman equation are shown in Table 4. 

 
Table 4. Experiments: predicted flow rate, empirical flow rate in different wide size distribution 

Particle size (μm) Pressure drop (Pa) Predicted flow rate (m/s) Empirical flow rate (m/s) 

50-75 

78000 7.91E-06 1.65E-05 
136000 1.26E-05 3.16E-05 
176500 1.63E-05 4.18E-05 
216000 2.18E-05 5.33E-05 
266000 2.70E-05 6.88E-05 
308000 3.12E-05 8.36E-05 

50-100 

90000 1.40E-05 4.55E-05 
128000 1.99E-05 5.07E-05 
181500 2.82E-05 7.00E-05 
225000 3.50E-05 8.58E-05 
282000 4.38E-05 1.04E-04 
310000 4.82E-05 1.18E-04 

75-100 

82500 1.99E-05 5.91E-05 
126000 3.07E-05 1.03E-04 
172000 4.19E-05 1.06E-04 
224000 5.46E-05 1.57E-04 
235000 5.73E-05 1.60E-04 
298000 7.26E-05 2.10E-04 

150-177 

76000 5.45E-05 9.88E-05 
131500 9.42E-05 1.79E-04 
171500 1.23E-04 2.31E-04 
217500 1.56E-04 2.94E-04 
272000 1.95E-04 3.53E-04 
311000 2.23E-04 4.97E-04 
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Table 4 (continued). 

180-210 

84500 6.91E-05 1.10E-04 
127500 1.04E-04 1.69E-04 
185500 1.52E-04 2.56E-04 
219000 1.79E-04 3.07E-04 
281500 2.29E-04 4.01E-04 
308500 2.52E-04 4.54E-04 

 

As shown by the data above, the empirical data is quite different from the predicted data 

for the wide size distributions. In order to verify the influence of cake thickness, experiments  

 
Table 5. Experiments: predicted flow rate, empirical flow rate in different cake thickness (particle size 50-100μm) 

Cake thickness (cm) Pressure drop (Pa) Predicted flow rate (m/s) Empirical flow rate (m/s) 

0.53 

79000 2.31E-05 4.49E-05 
128500 3.95E-05 7.62E-05 
193000 6.24E-05 1.16E-04 
239500 7.86E-05 1.60E-04 
278000 9.12E-05 1.68E-04 
311500 1.01E-04 1.99E-04 

2.16 

90000 1.40E-05 4.55E-05 
128000 1.99E-05 5.07E-05 
181500 2.82E-05 7.00E-05 
225000 3.50E-05 8.58E-05 
282000 4.38E-05 1.04E-04 
310000 4.82E-05 1.18E-04 

5.10 
 

154000 8.49E-06 3.37E-05 
190500 1.05E-05 4.24E-05 
241000 1.33E-05 5.08E-05 
277500 1.53E-05 5.67E-05 
327500 1.81E-05 6.70E-05 
409000 2.26E-05 8.86E-05 

 



 15 

were run using three different cakes with particle size of 50 to 100μm. Additionally, other factors 

were kept constant. Predicted flow rates were compared to the empirical flow rates that were 

actually obtained, as shown in Table 5. 

 

2.3 FILTRATION IN BINARY DISTRIBUTION 

Based on the results presented in Chapters 2.1 and 2.2, the Kozeny-Carman can only be used to 

predict flow rate in filtration experiments with narrow size distribution. However, the cake 

structure is very complicated and difficult to simulate. Binary mixing was chosen in order to 

specify the effects of particle size distribution on the filtration process. The procedure for each 

filtration experiment is similar to the procedure above. However, before the filtration, a known 

volume of small particles and large particles were agitated with a mixer by add a little water to 

create a roughly homogeneous binary mixture and then the cake was allowed to dry under forced 

air flow. Experiments were run using five different size ratios and six operating pressures. The 

cake thicknesses were near 2cm and other factors were kept constant. From these varying 

operating conditions, we predicted the flow rate using the Kozeny-Carman equation with particle 

averaging methods based on Rong’s work [13]. His method to apply the equation in binary 

mixing is to treat a multi-disperse system as a mono-disperse system by using an average 

diameter, the harmonic mean diameter, as shown [20]. 

𝑑𝑑𝐻𝐻𝐻𝐻 =
𝑛𝑛

∑ 1
𝑑𝑑𝑖𝑖

𝑛𝑛
𝑖𝑖=1

 (2.3.1) 
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The harmonic mean is one of several kinds of average that can be expressed as the reciprocal of 

the arithmetic mean of the reciprocals, and it is appropriate for situations if the average rate is 

desired. The harmonic mean diameter is a mathematical expression that is calculated using the  

 

Table 6. Experiments: predicted flow rate, empirical flow rate in different cake thickness for binary distribution 

Particle size (μm) Pressure drop (Pa) Predicted flow rate (m/s) Empirical flow rate (m/s) 

82:98 

79000 1.23E-05 2.24E-05 
137000 2.14E-05 3.90E-05 
166000 2.59E-05 4.87E-05 
216000 3.38E-05 6.54E-05 
255500 3.99E-05 7.33E-05 
298000 4.66E-05 8.65E-05 

100:200 

104000 4.23E-05 9.61E-05 
145000 5.90E-05 1.25E-04 
196000 7.98E-05 1.67E-04 
251500 1.02E-04 2.16E-04 
281500 1.15E-04 2.38E-04 
330000 1.34E-04 2.75E-04 

100:500 

70000 3.90E-04 4.74E-04 
100000 5.57E-04 6.07E-04 
108000 6.02E-04 6.48E-04 
147500 8.22E-04 8.62E-04 
168500 9.39E-04 9.43E-04 
192500 1.07E-03 1.02E-03 

163:500 

77000 1.82E-04 2.12E-04 
129000 3.06E-04 3.60E-04 
174000 4.12E-04 4.69E-04 
229000 5.42E-04 5.88E-04 
267500 6.34E-04 6.60E-04 
313500 7.43E-04 7.48E-04 
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distribution function. By using the harmonic mean diameter, the Ergun equation (or Darcy’s law) 

have been shown to reasonably estimate the pressure drop for multi-disperse system at low 

pressures [21].The experiment results and predicted flow rates from Kozeny-Carman equation 

are shown in Table 6. 
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3.0  DISCUSSION 

In order to verify the utility of the Kozeny-Carman equation in a poly-disperse system, empirical 

flow rate was compared to predicted flow rate under the same operating pressure. Curve Fitting 

ToolboxTM (from MATLAB, command: cftool) was used to evaluate the goodness of fit between 

data and predicted line. The goodness-of-fit statistics used in this thesis were the Sum of Squares 

Due to Error (SSE), R-square and Root Mean Squared Error (RMSE). SSE measured the total 

deviation of data from the fit model to data: 

𝜌𝜌𝜌𝜌𝑆𝑆 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (4.0.1) 

where 𝑦𝑦𝑖𝑖 is the empirical flow rate and 𝑦𝑦�𝑖𝑖 is the predicted flow rate from models. A smaller value 

of SSE points out that the model fit will be more effective for prediction. R-square is defined as 

the ratio of the Sum of Squares of the Regression (SSR) and the Total Sum of Squares (SST) 

𝜌𝜌𝜌𝜌𝑅𝑅 = �(𝑦𝑦�𝑖𝑖 − 𝑦𝑦�)2
𝑛𝑛

𝑖𝑖=1

 (4.0.2) 

𝜌𝜌𝜌𝜌𝑄𝑄 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
𝑛𝑛

𝑖𝑖=1

 (4.0.3) 

𝑅𝑅 − 𝑠𝑠𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝜌𝜌𝜌𝜌𝑅𝑅
𝜌𝜌𝜌𝜌𝑄𝑄

= 1 −
𝜌𝜌𝜌𝜌𝑆𝑆
𝜌𝜌𝜌𝜌𝑄𝑄

 (4.0.4) 

where 𝑦𝑦� is the mean of the empirical data. R-Square evaluates how well data fit models; a R-

Square of 1 means the predicted line from model fits the data perfectly. 
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3.1 DISCUSSION OF NARROW SIZE DISTRIBUTION 

Figure 2 illustrates how well the empirical flow rates matched the predicted flow rates made by 

the Kozeny-Carman equation in narrow size distribution samples. Although the flow rates 

predicted by the Kozeny-Carman equation were consistently a little lower than the empirical 

results in these narrow size distribution samples, the error between the empirical data and 

predicted data, as calculated by the percent error equation, is less than 15% (see by Table 7). 

Moreover, the goodness-of-fit statistics also illustrate Kozeny-Carman models are useful to 

predict the flow rate in narrow disperse system as the values of R-Square (see by Table 7) are 

consistently larger than 0.95. 

 Because cake thickness can influence flow rate, Figure 3 shows how well the empirical 

flow rates fit with the predicted flow rates for different thicknesses and with the same size 

distribution: 90-106μm. The flow rate decreased significantly with the increase of cake thickness 

in Figure 3. However, the errors between the empirical data and the predicted data are still small, 

and value of R-Square are still larger than 0.95 (see by Table 8). This quantitatively confirms 

that the Kozeny-Carman equation can be applied in multi-disperse systems with very narrow size 

distribution.  
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Table 7. Experiment results: different between predicted flow rate and empirical flow rate in vary sizes 

 (narrow size distribution) 

Size (μm) Error SSE R-square RMSE 

53-63 13.11% 3.700e-10 0.9808 8.602e-06 

63-75 9.36% 4.015e-10 0.9930 8.961e-06 

75-90 3.21% 1.205e-11 0.9969 1.552e-06 

90-106 7.01% 3.946e-10 0.9832 8.884e-06 

500 5.25% 1.194e-10 0.9655 4.887e-06 

 
 
 

 

Figure 2.  The relationship between operating pressure and flow rate with narrow size distribution particles 

(line: predicted flow rate, point: empirical flow rate) 
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Table 8. Experiment results: different between predicted flow rate and empirical flow rate in vary cake thicknesses 

(particle size 90-106μm) 

Cake thickness (cm) Error SSE R-square RMSE 

0.54 7.01% 3.946e-10 0.9832 8.884e-06 

2.51 9.87% 1.242e-10 0.9528 4.550e-06 

4.91 7.81% 1.762e-12 0.9944 5.936e-07 

 
 
 

 

Figure 3.  The relationship between operating pressure and flow rate in different thickness with 90-106μm 

particles (line: predicted flow rate, point: empirical flow rate) 
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3.2 DISCUSSION OF WIDE SIZE DISTRIBUTION 

Figure 4 illustrates how well the empirical flow rates aligned with the predicted flow rates based 

on the Kozeny-Carman equation for wide size distribution samples. The flow rates predicted by 

the Kozeny-Carman equation were consistently much lower than the flow rate obtained 

experimentally, and the error between the empirical data and the predicted data was much larger 

than in the narrow size distribution samples (see by Table 11). Because the error is always larger 

than 50% and values of R-Square (see by Table 11) are always smaller than 0.80, the goodness-

of-fit statistics confirm that Kozeny-Carman models are not well suited to predict flow rates in 

widely dispersed systems. Even if we tried to fit the predicted result with the empirical one, a 

much higher mean diameter is found which is ridiculous as shown in Table 9.  

 

Table 9. Fit size in wide size distribution   

Size (μm) Fit size (μm) 

50-75 92 

50-100 120 

75-100 171 

150-177 223 

180-210 239 
 

 
Figure 5 shows how well the empirical flow rates aligned with the predicted flow rates for cakes 

of different thicknesses and with the same size distribution: 50-100μm. The errors between the 

empirical data and the predicted data are increased by the increase of cake thickness (see by 

Table 12). Also, even if we introduce a fit mean diameter 120 µm, we still need to modify the 

tortuosity to keep the agreement as shown in Table 10. 
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Table 10. Fit tortuosity in wide size distribution (50-100µm)  

Cake thickness (cm) Fit λ 

0.53 2.78 

2.16 2.08 

5.01 1.46 
 
 

We assumed that the increase of error in this situation is caused by the deformation of 

cake structure with wide size distribution. Because the diameter of particles are quite similar to 

each other in narrow size distribution samples, we can treat the cake structure as a mono-disperse 

system, but as the size distribution gets larger, the cake structure changes, and the particles in the 

cake cannot form ordered packings [22]. The large error between the empirical results and the 

predicted results demonstrates the influence of flow rate by changing the void volume of the 

cake. As the void volume becomes larger, caused by the formation of channels, the flow rate can 

be obviously increased.  

 
 

Table 11. Experiment results: different between predicted flow rate and empirical flow rate in vary sizes  

(wide size distribution) 

Size (μm) Error SSE R-square RMSE 

50-75 133.42% 1.246e-09 0.5871 1.579e-05 

50-100 145.32% 1.237e-09 0.7052 1.573e-05 

75-100 62.47% 6.048e-09 0.5778 3.478e-05 

150-177 71.52% 3.133e-08 0.6800 7.916e-05 

180-210 88.21% 1.903e-08 0.7823 6.169e-05 
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Figure 4. The relationship between operating pressure and flow rate with wide size distribution particles 

(line: predicted flow rate, point: empirical flow rate) 

 

 

 

Table 12. Experiment results: different between predicted flow rate and empirical flow rate in vary cake thicknesses 

(particle size 50-100μm) 

Cake thickness (cm) Error SSE R-square RMSE 

0.53 102.87% 4.218e-09 0.7575 2.905e-05 

2.16 145.32% 1.237e-09 0.7052 1.573e-05 

5.01 256.59% 1.028e-09 0.4566 1.434e-05 
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Figure 5.  The relationship between operating pressure and flow rate in different thickness with 50-100μm 

particles (line: predicted flow rate, point: empirical flow rate) 

3.3 DISCUSSION OF BINARY DISTRIBUTION 

As shown in Table 13, the errors between the empirical data and the predicted data are quite 

small for Rs/l=0.20 and Rs/l=0.33. However, the errors between empirical data and predicted data 

are much larger for Rs/l=0.50 and Rs/l=0.84. Therefore, the flow rate for a constant pressure 

filtration cake can be predicted by the Kozeny-Carman equation for small size ratios (Rs/l<0.50), 

and it is inaccurate for large size ratios (Rs/l≥0.50) (as shown by Figure 6). As previously 

explained, empirical results are influenced by particle distribution. Based on the work by Lash 
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[22], for binary systems, particles with Rs/l<0.50 can be packed efficiently, so the cakes have a 

tight distribution of void sizes; in contrast, particles with Rs/l ≥0.50 cannot form ordered packings 

(see by Appendix A). For Rs/l >0.3, a tendency for small particles to form a layer on the substrate 

below the binary-disperse system was observed and more small particles were placed around the 

edges, also shown a disordered packing [22].  

Because the particles cannot form ordered packings for Rs/l ≥0.50, we hypothesize that 

some voids are expanded by this disordered packing which can lead to channel formation and 

ultimately explain the much higher flow rate that is observed during filtration. Alternatively, for 

particles with a size ratio Rs/l <0.50, we expect that the ordered packing that is achieved will 

behave much like a monomodal particle system (with a narrow size distribution). As a test of 

these two hypotheses, we endeavor to examine the void distributions observed in packings of 

binary systems in the next Chapter. 

 

Table 13. Experiment results: different between predicted flow rate and empirical flow rate in different size ratios 

Size ratio Error SSE R-square RMSE 

0.84 87.71% 6.128e-10 0.7803 1.107e-05 

0.50 110.85% 5.821e-09 0.7543 3.412e-05 

0.33 11.17% 1.957e-09 0.9901 1.978e-05 

0.20 4.86% 1.087e-08 0.9526 4.663e-05 
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Figure 6. The relationship between operating pressure and flow rate with binary mixing particles (line: 

predicted flow rate, point: empirical flow rate) 
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4.0  SIMULATION  

4.1 INTRODUCTION OF SIMULATION 

In a medium that is composed of spherical particles, it is difficult to interpret because the forces 

or stresses inside the medium cannot be measured and only can be estimated from the boundary 

conditions, which is non-linear and hysteretic. These complicated forces led to the development 

of models. The analytical models for unique packing made from Duffy and Mindlin (1957). The 

analytical models for random packing made from Digby (1981). These models are limited in 

spherical particles with uniform size; especially loading path and little deformation can be 

occurred. The physical models, or called as typically photo-elastic models made from Dantu 

(1957). These models are time-consuming on and lack flexibility to run multiple test [23].  

  Theoretical models should be validated by physical experiments. Unfortunately, either 

theoretical or experimental methods are based on the assumption of material behavior like the 

macroscopic stress from the boundary conditions. So the reliability to used information obtained 

at the boundary conditions is unknown. As a result, a more powerful way to modeling granular 

media is numerical techniques. In this modeling, boundary conditions can be controlled or 

replaced by a periodic cell; forces can be measured by different changes of any parameter. So we 

chose the distinct element method (DEM) to model the filtration cake. 
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4.2 INTRODUCTION OF DEM SIMULATIONS 

As introduced in Chapter 1.4, DEM includes all numerical methods handling the problem 

domain as a combination of independent elements.  To simulate a granular material, a critical 

component is the formulation for representing contacts between individual particles with 

mathematical and numerical techniques. The basic theory of this method is the Newton’s law. 

Cundall and Strack first developed this method and considered the stress on the granular media 

generated by external forces and friction or elastic impacts between two spheres of particles [24].  

However, they didn’t consider forces of intermolecular or inter-particle. Then DEM was 

introduced on the micrometer scale by account for particle interactions in fine particulate 

systems [25]. Dong especially worked on mechanisms of the cake build-up in filtration and 

sedimentation, which can illustrate the influence of material properties on the cake structure and 

the contact force network inside the filter cake [26].  

  In common, forces acting on the particles can be divided into two parts: primary forces 

that due to external effects and inter-particle interactions formed in the system; contact forces 

that associated with the actual strains within the inter-particle contact regions [27]. Primary 

forces can also be divided into external forces that work on particle itself which depend on their 

absolute position in the model and interaction forces between two nearby particles.   
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4.3 COMPUTATIONAL ALGORITHMS OF DEM SIMULATIONS 

As above, DEM is a method to solve Newton’s laws of motion for each discrete elements 

allowing for all degrees of freedom to describe the physic properties of each particle individually 

in the system depending on time t [27]: 

𝑚𝑚𝑖𝑖
𝑑𝑑𝑣𝑣𝚤𝚤���⃑
𝑑𝑑𝑡𝑡

= 𝐹𝐹𝚤𝚤��⃑  (4.3.1) 

𝐼𝐼𝑖𝑖
𝑑𝑑𝜔𝜔𝚤𝚤����⃑
𝑑𝑑𝑡𝑡

= 𝑄𝑄𝚤𝚤��⃑  (4.3.2) 

where 𝑣𝑣𝑖𝑖 is the transitional velocity of particle i, mi is the mass of particle i, 𝜔𝜔𝑖𝑖 is the rotational 

velocity of particle i, 𝐼𝐼𝑖𝑖 is the moment of inertial of particle i. The force 𝐹𝐹𝚤𝚤��⃑  is the force that acting 

on the particle i as shown: 

𝐹𝐹𝚤𝚤��⃑ = ���⃑�𝐹𝑎𝑎𝑣𝑣𝑣𝑣𝑚𝑚,𝑖𝑖𝑖𝑖 + �⃑�𝐹𝑛𝑛,𝑖𝑖𝑖𝑖 + �⃑�𝐹𝑡𝑡,𝑖𝑖𝑖𝑖� + �⃑�𝐹𝑔𝑔,𝑏𝑏  (4.3.3) 

𝑄𝑄𝚤𝚤��⃑ , the rotation phenomena are not considered.  𝐹𝐹𝑔𝑔,𝑏𝑏  is the gravity and buoyancy forces that 

calculated by: 

�⃑�𝐹𝑔𝑔,𝑏𝑏 =
𝑛𝑛
6
𝑑𝑑3∆𝜇𝜇𝑠𝑠𝑙𝑙�⃑�𝑔 (4.3.4) 

where ∆𝜇𝜇𝑠𝑠𝑙𝑙  is the difference of density between particle and the liquid phase, g is the 

gravitational acceleration, d is the particle diameter. Particle and particle contacts can be treated 

as a hard-sphere approximation or a soft-sphere approach [25]. Soft-sphere approach is 

frequently more useful because collisions in multi-body are shown as a virtual overlapping of the 

particle spheres [27]. The overlap is calculated from: 

𝜆𝜆 =
𝑑𝑑𝑖𝑖 + 𝑑𝑑𝑖𝑖

2
− �𝑠𝑠𝑖𝑖𝑖𝑖� (4.3.6) 



 31 

where 𝑠𝑠𝑖𝑖𝑖𝑖 is the distance between two particle centers, 𝑑𝑑𝑖𝑖 is the diameter of particle i and 𝑑𝑑𝑖𝑖  is the 

diameter of particle j. The contact forces during collisions are shown in Figure 7. The normal 

contact force: 

�⃑�𝐹𝑛𝑛,𝑖𝑖𝑖𝑖𝑛𝑛�⃑ 𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑛𝑛𝜆𝜆1.5 − 𝜂𝜂𝑛𝑛,𝑖𝑖𝑖𝑖�⃑�𝑣𝑟𝑟𝑒𝑒𝑙𝑙,𝑛𝑛,𝑖𝑖𝑖𝑖 (4.3.7) 

where 𝑘𝑘𝑛𝑛is the spring constant in normal direction calculated with:  

𝑘𝑘𝑛𝑛 =
��⃑�𝐹𝑚𝑚𝑎𝑎𝑚𝑚�

[𝑑𝑑(1 − 𝜆𝜆∗)]1.5 (4.3.8) 

where 𝜆𝜆∗ is a defined penetration [28], 𝜂𝜂𝑛𝑛,𝑖𝑖𝑖𝑖  is the damping constant in normal direction: 

𝜂𝜂𝑛𝑛,𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑛𝑛�
9
2
�
𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖

𝑚𝑚𝑖𝑖 + 𝑚𝑚𝑖𝑖
�√𝜆𝜆𝑘𝑘𝑛𝑛 (4.3.9) 

where 𝑐𝑐𝑛𝑛 is the damping coefficient which is equal to 0.3 [29]. Tangential force in static particles 

is shown as: 

�⃑�𝐹𝑡𝑡,𝑖𝑖𝑖𝑖 = −𝑘𝑘𝑡𝑡,𝑠𝑠𝑡𝑡𝑎𝑎∆𝑥𝑥𝑡𝑡,𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑡𝑡,𝑖𝑖𝑖𝑖�⃑�𝑣𝑟𝑟𝑒𝑒𝑙𝑙,𝑡𝑡,𝑖𝑖𝑖𝑖 (4.3.10) 

where 𝑘𝑘𝑡𝑡,𝑠𝑠𝑡𝑡𝑎𝑎 is the static spring constant in tangential direction and 𝜂𝜂𝑡𝑡,𝑖𝑖𝑖𝑖 is the damping constant 

in tangential direction: 

𝑘𝑘𝑡𝑡,𝑠𝑠𝑡𝑡𝑎𝑎/𝑣𝑣𝑑𝑑𝑛𝑛 =
𝜇𝜇𝑠𝑠𝑡𝑡𝑎𝑎/𝑣𝑣𝑑𝑑𝑛𝑛

𝑑𝑑(1 − 𝜆𝜆∗)
��⃑�𝐹𝑚𝑚𝑎𝑎𝑚𝑚� (4.3.11) 

𝜂𝜂𝑡𝑡,𝑖𝑖𝑖𝑖 = 2�
2
7
�
𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖

𝑚𝑚𝑖𝑖 + 𝑚𝑚𝑖𝑖
�𝑘𝑘𝑡𝑡,𝑣𝑣𝑑𝑑𝑛𝑛 (4.3.12) 

where 𝜇𝜇𝑠𝑠𝑡𝑡𝑎𝑎/𝑣𝑣𝑑𝑑𝑛𝑛 is the static or dynamic friction coefficient. Tangential forces are changed with 

the transcending of the static friction and the moving of particles:  

�⃑�𝐹𝑡𝑡,𝑖𝑖𝑖𝑖 = −𝜇𝜇𝑣𝑣𝑑𝑑𝑛𝑛��⃑�𝐹𝑛𝑛,𝑖𝑖𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖∆𝑥𝑥𝑡𝑡,𝑖𝑖𝑖𝑖 (4.3.13) 
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Figure 7. Particle-particle contact models (normal direction: spring and damper; tangential direction: 

spring, damper and slider) adapted from Ref. [27] 

 

Based on DEM simulation of filtration cake, we can get each particle positions during the 

process by changing the initial conditions correlated to the physical conditions of the 

experiments. With the particle positions, the void size distribution of that cake can be represented 

as discussed in Chapter 5.3. The packed beds in Chapter 5 are simulated layer-by-layer (as 

shown in Appendix B), random packed beds analysis is shown in Appendix C . 
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5.0  MODIFIED EQUATION 

As we mentioned above, filtration can be influenced by the size ratio of the particles that 

compose the cake, since different size ratios may form different cake structures. Based on our 

observations in previous chapter, predicted and empirical results can only be favorably compared 

for systems that result in well-ordered particle packings, which have a tight distribution of void 

sizes (or very different means sizes in a binary mixture – size ratios Rs/l <0.50). Dramatic 

disagreement is observed for particle beds that exhibit wide void size distributions or those that 

forma binary mixture with means that are moderately similar (i.e., size ratio Rs/l >0.50). In order 

to test our hypothesis that ordered packings results in narrow void distributions, while disorder 

packings lead to wide void distributions,it is critical to determine the void size distribution of the 

cake. Moreover, in this chapter we propose a modified form of the Kozeny-Carman equation that 

directly utilizes this void distribution and that we expect will be able to more accurately predict 

flow behavior. Simulation models from DEM are used to analyse the void size distribution of 

each simulated cake structure. 

5.1 MODIFICATION OF KOZENY-CARMAN EQUATION 

We assumed that the increase of flow rate is caused by disorder within the cake structure. This 

disorder, at a minimum, will lead to the formation of a non-monomodal distribution of effective 
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void sizes. As such, as a simple first approximation, we intriduce two factors to describe the 

expansion of the voids as shown in Appedix D. κ is the fraction of expanded voids, and β is the 

ratio of void sizes. In all of the foloowing equations, we note that the sphericity of glass beads is 

1 so that subsequent analysis is simplified (although relaxing this simplification would be trivial). 

Φ𝑠𝑠 =
6/𝑑𝑑𝑝𝑝
𝜌𝜌𝑝𝑝/𝑉𝑉𝑝𝑝

= 1 (5.1.1) 

In order to determine the void tube diameter (Deq) in multi-disperse medium, the surface 

area for n tubes should be equal to the surface-volume ratio times the particle volume: 

𝜅𝜅𝑛𝑛𝑛𝑛𝛽𝛽𝐷𝐷𝑒𝑒𝑒𝑒𝐿𝐿 + (1 − 𝜅𝜅)𝑛𝑛𝑛𝑛𝐷𝐷𝑒𝑒𝑒𝑒𝐿𝐿 = 𝐴𝐴𝑐𝑐𝑠𝑠𝐿𝐿(1 − 𝜀𝜀)6/𝐷𝐷𝑝𝑝 (5.1.2) 

𝐴𝐴𝑐𝑐𝑠𝑠𝐿𝐿(1 − 𝜀𝜀)6
𝐷𝐷𝑝𝑝

= [𝜅𝜅𝛽𝛽 + (1 − 𝜅𝜅)]𝑛𝑛𝑛𝑛𝐷𝐷𝑒𝑒𝑒𝑒𝐿𝐿 (5.1.3) 

𝐴𝐴𝑐𝑐𝑠𝑠(1 − 𝜀𝜀)6
𝐷𝐷𝑝𝑝

= [𝜅𝜅𝛽𝛽 + (1 − 𝜅𝜅)]𝑛𝑛𝑛𝑛𝐷𝐷𝑒𝑒𝑒𝑒 (5.1.4) 

Similarly, the void volume is equal to the total volume of tubes. 

𝐴𝐴𝑐𝑐𝑠𝑠𝐿𝐿𝜀𝜀 =
1
4
𝑛𝑛𝑛𝑛𝐷𝐷𝑒𝑒𝑒𝑒2 𝜅𝜅𝛽𝛽2𝐿𝐿 +

1
4
𝑛𝑛𝑛𝑛𝐷𝐷𝑒𝑒𝑒𝑒2 (1 − 𝜅𝜅)L (5.1.5) 

𝐴𝐴𝑐𝑐𝑠𝑠𝜀𝜀 = [𝜅𝜅𝛽𝛽2 + (1 − Κ)]
1
4
𝑛𝑛𝑛𝑛𝐷𝐷𝑒𝑒𝑒𝑒2  (5.1.6) 

Combining to provides the equation for Deq: 

𝐷𝐷𝑒𝑒𝑒𝑒 =
2
3
𝜅𝜅𝛽𝛽 + (1 − 𝜅𝜅)
𝜅𝜅𝛽𝛽2 + (1 − 𝜅𝜅)

𝜀𝜀
1 − 𝜀𝜀

𝐷𝐷𝑝𝑝 (5.1.7) 

Due to the fact that we have now assumed that the packed bed has two mean void size, Deq and 

βDeq, the actual velocity in each tube is no longer identical. We will take the actual velocity in a 

normal tube as v, so the actual velocity in an expanded tube should be βv. Then we can achieve 

the relationship between superficial velocity and actual velocity by match the same volumetric 

flow rate: 
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𝐴𝐴𝑐𝑐𝑠𝑠 × 𝑣𝑣𝑠𝑠𝑠𝑠𝑝𝑝 =
1
4
𝑛𝑛𝑛𝑛[𝜅𝜅𝛽𝛽2𝑣𝑣𝛽𝛽2 + (1 − 𝜅𝜅)𝑣𝑣]𝐷𝐷𝑒𝑒𝑒𝑒2  (5.1.8) 

Combining this expression to gives  

𝑣𝑣𝑠𝑠𝑠𝑠𝑝𝑝 = 𝜀𝜀 × 𝑣𝑣[
𝜅𝜅𝛽𝛽4 + (1 − 𝜅𝜅)
𝜅𝜅𝛽𝛽2 + (1 − 𝜅𝜅)] (5.1.9) 

According to the Hagen-Poiseuille equation: 

∆p
L

=
32𝑣𝑣𝜇𝜇
Deq
2  (5.1.10) 

Taking u to represent 𝑣𝑣𝑠𝑠𝑠𝑠𝑝𝑝, therefore, we can obtain the modified Kozeny-Carman equation for 

multi-disperse systems:  

∆𝑝𝑝
𝜆𝜆𝐿𝐿

=
72𝑣𝑣𝑠𝑠𝑠𝑠𝑝𝑝𝜇𝜇(1 − 𝜀𝜀)2

𝐷𝐷𝑝𝑝2𝜀𝜀3
[𝜅𝜅𝛽𝛽2 + (1 − 𝜅𝜅)]3

[𝜅𝜅𝛽𝛽4 + (1 − 𝜅𝜅)] × [𝜅𝜅𝛽𝛽 + (1 − 𝜅𝜅)]2
 (5.1.11) 

Because we assumed that some voids are expanded, so the pathway can be more linear as fluid 

has more gaps to flow through. As a result, the tortuosity should be decreased. The tortuosity 

factor λ can be modified base on its definition: tortuosity is the ratio between the length of the 

real pathway and the distance between two ends. Based on Figure 8, the length of real pathway 

can be calculated by the equation: 

𝐿𝐿′ = 𝐷𝐷𝑒𝑒𝑒𝑒 + 2𝐷𝐷𝑝𝑝 (5.1.12) 

Similarly, the distance between two ends is: 

𝐿𝐿 = 𝐷𝐷𝑒𝑒𝑒𝑒 + 𝐷𝐷𝑝𝑝 (5.1.13) 

So we can calculate the tortuosity by sum of the normal one and the expanded one, 
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Figure 8. Determination of tortuosity through a particle 

 

𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡 = (1 − 𝜅𝜅)𝜆𝜆𝑛𝑛𝑡𝑡𝑟𝑟𝑚𝑚𝑎𝑎𝑙𝑙 + 𝜅𝜅𝜆𝜆𝑒𝑒𝑚𝑚𝑝𝑝𝑎𝑎𝑛𝑛𝑣𝑣𝑒𝑒𝑣𝑣 =  (1 − 𝜅𝜅)
𝐷𝐷𝑒𝑒𝑒𝑒 + 2𝐷𝐷𝑝𝑝
𝐷𝐷𝑒𝑒𝑒𝑒 + 𝐷𝐷𝑝𝑝

+ 𝜅𝜅
𝛽𝛽𝐷𝐷𝑒𝑒𝑒𝑒 + 2𝐷𝐷𝑝𝑝
𝛽𝛽𝐷𝐷𝑒𝑒𝑒𝑒 + 𝐷𝐷𝑝𝑝

 (5.1.15) 

Based on equation, we can calculate the modified tortuosity with the modified factors. It is 

important to note that, for a mono-modal distribution of voids, this equation predicts a value 

tortuosity equal to 2.1 (as is typically chosen empirically). 

5.2 INTRODUCTION OF DELAUNAY TESSELATION 

Voronoi and Delaunay tessellations can be used to describe a cake geometrically. In mathematics, 

a Voronoi diagram (see Figure 9), also called a Voronoi tessellation, or a Voronoi partition, is a 

partitioning of a space into regions based on distance to points in a specific subset of the space. 

In this thesis, the specific subset is the set (P) of the centres of the particles that make up the 
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assembly. That set of points is specified beforehand and are closer to a given point of P to any 

other points in the set [30]. The Voronoi diagram of a set of point is due to its Delaunay 

triangulation. 

The Delaunay triangulation in the plane, which is also called Delaunay tessellation, is 

another fundamental computational geometrical structure. The Delaunay tessellation (DT) is a 

straight-line dual tessellation of the Voronoi diagram. DT maximizes the minimum angle of all 

the angles of the triangles in the triangulation, which is obtained by attaching entire pairs of 

points belongs to in the set P whose Voronoi regions share a common Voronoi edge (see Figure 

10) [31].  

 

Figure 9. Voronoi diagram for eleven sites in the plane adapted from Ref. [30] 

 

Even though Voronoi tessellation has been commonly used to portray local arrangement 

in a granular medium [32-34], DT is told to be more appropriate for characterizing and 

quantifying pore volumes for fluid flow computations [35-37]. A pore in this thesis is defined as 

the void space inside a Delaunay cell as shown in Figure 11 [38]. Because the positions of the 
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centres of particles in the cake are known by the DEM, we can determine each void volume 

based on their positions in MATLAB. 

 

 

Figure 10. The dual Delaunay triangulation of the Voronoi diagram adapted from Ref. [31] 

 

 

Figure 11. A 3D Delaunay cell (particle size ratio Rs/l = 0.5): a pore located inside the Delaunay 

tetrahedron adapted from Ref. [38] 
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5.3 REPRESENTATION OF THE VOID SIZE DISTRIBUTION  

5.3.1 The void size distribution of mono-disperse medium 

For mono-disperse medium, the void size distribution shows only one peak (see by Figure 12), 

which implies the size of each void space is identical. AIC of normal model is -1971.67 and AIC 

of bi-normal model is -1921.56, which indicates normal model fits better. This result also shows 

that k=0 and β=0: 

∆𝑝𝑝
𝐿𝐿

=
150𝑠𝑠𝜇𝜇
𝐷𝐷𝑝𝑝2𝜀𝜀3

 (5.3.1) 

This equation is also known as the Kozeny-Carman equation. In short, there is no channel 

formed in mono-disperse medium during filtration, so the Kozeny-Carman equation can applied 

in this situation. 

 

 

Figure 12. Probability density functions of the void size for mono-disperse system 
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5.3.2 The void size distribution of multi-disperse medium 

For the multi-disperse medium, the void size distribution can be represented with several fit 

methods. In this thesis, Kernel distribution and Bi-normal (bimodal) distribution were chosen; a 

detailed comparison of these two methods is included in Appendix F. In Figure 13 (a), there are 

three sharp peaks in the Kernel distribution, which indicates that there are three void sizes in the 

cake: the largest one is the main void size, and the other two peaks are caused by the deformation 

of the cakes. For the simulation of binary mixing Rs/l=0.84, two size channels were formed 

during the experiments; therefore, the total void space is larger, causing an increase in the flow 

rate. AIC of normal model is -2767.57 and AIC of bi-normal model is -3516.19, which indicates 

bi-normal model fits better. By analysis with a much more common method: bi-normal 

distribution, two significant peaks are shown. From Figure 13 (b), two sharp peaks are evident in 

the Kernel distribution: for the simulation of binary mixing Rs/l=0.50, a big size channel formed, 

and the possibility to form this channel is quite large because a large probability density at that 

peak can be seen. Even though the difference between the two peaks in the Bi-normal 

distribution is not obvious (since the difference between two mean void sizes is small), the 

percentage of second peak is quite large as shown in Table 14. AIC of normal model is -2444.90 

and AIC of bi-normal model is -3093.52, which indicates bi-normal model fits better. Hence, 

there is a significant impact on the bed’s permeability. In short, in systems that include large size 

ratio mixing (Rs/l>0.50), particle packings are disordered such that they lead to channelling in the 

packed bed.   

Similar to the experiment results, the void size distributions of binary mixing with small 

size ratios are quite similar to the mono-disperse void size distribution. From Figure 14 (a), even 

though two peaks are shown, these peaks are quite near to each other, which means the expanded 
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Table 14. Mean void sizes and the percentages of mixture of the second (expanded) normal for the void size bi-

normal distribution of simulated beds 

 
Size ratio (Rs/l) Void size of first peak Void size of second peak Percentage of second peak 

0.84 0.1707 0.2224 20.54% 

0.50 0.1932 0.2199 45.86% 

0.33 0.1820 0.2021 49.41% 

0.20 0.2046 0.2154 31.43% 

 
 
 

of void size is small and the deformation of the cake is very little. Also, AIC of normal model is -

2554.70 and AIC of bi-normal model is -2510.21, which indicates normal model fits better. From 

Figure 14 (b), there are several small peaks with very low probability density, which also means 

the main structure is not changed. Also, AIC of normal model is -2643.16 and AIC of bi-normal 

model is -2578.67, which indicates normal model fits better. 
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Figure 13. Probability density functions of the void size for multi-disperse system in large size ratio 
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Figure 14.  Probability density functions of the void size for multi-disperse system in small size ratio 
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5.4 APPLICATIONS OF MODIFIED EQUATION 

In Chapter 5.1, a modified Kozeny-Carman equation is proposed based on theoretical derivation. 

To inspect the applicability of the modified equation we compare results using this model to 

empirical data. We should note that, in all cases, void model factors were measured by the 

Kernel distribution and the bi-normal distribution from DEM simulated results. 

5.4.1 Application in binary mixing (Rs/l =0.50) 

Void factors determined by bi-normal distribution are based on different mean void sizes and 

probability density as shown in Table 14. The fraction of expanded voids is equal to the 

percentage of density of the second (expanded) peak (𝜅𝜅 = 45.86%). The ratio of void sizes is 

equal to the ratio of two mean void sizes of two normal (𝛽𝛽 = 1.14). The error between the 

empirical flow rate and the predicted flow rate using the modified version of the Kozeny-Carman 

equation with void factors are 40.37%. 

For Kernel distribution, we can get 𝜅𝜅 by calculating the number of occurrences at area B 

(the second peak) and the number of occurrence at the total area, as: 

𝜅𝜅 =
𝑛𝑛𝑠𝑠𝑚𝑚𝑛𝑛𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑜𝑜𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑐𝑐𝑠𝑠 𝑠𝑠𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐵𝐵
𝑛𝑛𝑠𝑠𝑚𝑚𝑛𝑛𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑡𝑡𝑜𝑜𝑡𝑡𝑠𝑠𝑡𝑡 𝑜𝑜𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑐𝑐𝑠𝑠

× 100% = 40.44% (5.4.1) 

𝛽𝛽 is the expansion rate. It can be calculate by determining the mean void size of area B and the 

mean void size of a normal area A using: 

𝛽𝛽 =
𝑚𝑚𝑠𝑠𝑠𝑠𝑛𝑛 𝑣𝑣𝑜𝑜𝑣𝑣𝑑𝑑 𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐵𝐵

𝑚𝑚𝑠𝑠𝑠𝑠𝑛𝑛 𝑣𝑣𝑜𝑜𝑣𝑣𝑑𝑑 𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑛𝑛𝑜𝑜𝑠𝑠𝑚𝑚𝑠𝑠𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴
= 1.24 (5.4.2) 

We can calculate the predicted flow rate using the 𝜅𝜅 and 𝛽𝛽 we calculated from the simulation of 

the void size distribution. The relationship between operating pressure and flow rate is shown in 

Figure 16. The error between empirical flow rate and predicted flow rate based on the Kozeny-
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Carman equation is very large; the error between empirical flow rate and predicted flow rate 

based on the modified Kozeny-Carman equation in this thesis is much smaller (as shown in 

Table 15), just as we expected. Similarly, the goodness-of-fit statistics also illustrate fit models 

are more reliable to predict flow rate as value of R-Square (see by Table 15) are significantly 

increased. 

 

Table 15. Comparing empirical results to model fits in binary disperse system (Rs.l=0.50) 

Data Error SSE R-square RMSE 

CK equation 110.85% 5.821e-09 0.7543 3.412e-05 

Kernel fit 9.55% 6.119e-11 0.9974 3.498e-06 

Bi-normal fit 40.37% 1.385e-09 0.9415 1.664e-05 

 

 

 

Figure 15. Analysis of the void size for Binary mixing: Rs/l=0.50 
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Figure 16. The relationship between operating pressure and flow rate of binary mixing Rs/l=0.50 

 

 
5.4.2 Application in binary mixing (Rs/l =0.84) 

Method that used to determine the void factors by bi-normal distribution is similar to chapter 5.4. 

The fraction of expanded voids is equal to the percentage of density of the second (expanded) 

peak (𝜅𝜅 = 20.54%). The ratio of void sizes is equal to the ratio of two mean void sizes of two 

normal (𝛽𝛽 = 1.30). The error between the empirical flow rate and the predicted flow rate using 

the modified version of the Kozeny-Carman equation with void factors are 25.68%. 
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For Kernel distribution, we can determine 𝜅𝜅1  and 𝜅𝜅2 by calculating the number of 

occurrence at area B and C with the number of occurrence at the total area from Figure 17, as: 

κ1 =
number of occurence at area B

number of total occurence
= 18.11% (5.4.3) 

κ2 =
number of occurence at area C

number of total occurence
= 7.87% (5.4.4) 

𝛽𝛽1 and 𝛽𝛽2 are calculate using the mean void size of area B and C, with the mean void size of a 

normal area A as determined by: 

β1 =
mean void size of area B

mean void size of normal area A
= 1.37 (5.4.5) 

β2 =
mean void size of area C

mean void size of normal area A
= 1.78 (5.4.6) 

Using 𝜅𝜅1, 𝜅𝜅2and 𝛽𝛽1, 𝛽𝛽2  in order to calculate the predicted flow rate we note the relationship 

between operating pressure and flow rate as shown in Figure 18. The error between empirical 

flow rate and predicted flow rate based on the Kozeny-Carman equation is quite large. 

Conversely, the error between the empirical flow rate and the predicted flow rate using the 

modified version of the Kozeny-Carman equation in this thesis is much smaller (as shown in 

Table 16), as we expected. Similarly, the value of R-Square is significantly increased with a 

modified model. 

 

Table 16. Comparing empirical results to model fits in binary disperse system (Rs.l=0.84) 

Data Error SSE R-square RMSE 

CK equation 87.71% 6.128e-10 0.7803 1.107e-05 

Kernel fit -23.07% 6.119e-11 0.9775 3.54e-06 

Bi-normal fit 25.68% 1.385e-09 0.9557 4.972e-06 
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Figure 17. Analysis of the void size for Binary mixing: Rs/l=0.84. 

 

 

Figure 18. The relationship between operating pressure and flow rate of binary mixing Rs/=0.84. 
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As shown above, if the void size distribution for a specify cake is known, we can 

determine the fraction of expanded voids and the ratio of void sizes, then the predicted flow rate 

can be calculated with the modified Kozeny-Carman equation at a certain ultimate pressure drop. 
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6.0  CONCLUSION 

By comparing experimental results to those predicted from the Kozeny-Carman model/equation, 

we assess the utility of this equation for application to systems that include poly-disperse 

particles at moderate fluid pressure. We find substantial agreement between model and 

experiment only for systems that result in well-ordered particle packing. Dramatic disagreement 

is observed for particle beds that exhibit wide void size distributions, as these particles cannot 

form order packings. We hypothesized and the tested that these disordered packings lead to 

channeling which ultimately causes more fluid to flow through the cake. In contrast, cakes that 

are composed of mono-disperse particles form ordered packings that lead to a tight void size 

distribution. Additionally, cake structures can be quite complicated in multi-disperse systems. 

For multi-disperse cakes, if the size range of particles is quite small, then particles can be treat as 

uniform in size for equation purposes. However, when the size range of particles is large (>10% 

difference), the cake structure is quite different from a mono-disperse one, where the Kozeny-

Carman equation is not suitable to predict the flow behavior. 

As the structure of a cake that is composed of multi-disperse particles can be very 

complicated, we focused on representing cake structures in binary systems. As discussed in 

Chapter 3.0 , particles with Rs/l<0.5 can be packed efficiently, and particles with Rs/l >0.5 cannot 

be packed in order. The experiment results, which are shown in chapters 2.0  and 3.0, show that 

the changes in fluid properties are based on the differences of structure of cakes in different size 
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ratios. Based on the Delaunay Tesselation method, we extract the void size distributions of 

simulated beds that are modeled by DEM simulation and comprised of the same size ratios used 

in the experiments. The void structures are represented by the probability density functions of 

pore sizes. Therefore by analyzing the void size distribution fitted by bi-normal distribution and 

Kernel distribution, the fraction of expanded voids (κ) and the ratio of void sizes (β) can be 

calculated as shown in Chapter 5.0 . A modified Kozeny Carman equation is presented in 

Chapter 5.1. The predicted flow dynamics from the equation with factors κ and β extracted from 

the simulation results are found to be much more similar to the experimental flow rates than 

those calculated using the unmodified Kozeny-Carman equation. In short, the effect of the void 

size distribution on filtration cakes is important. For a multi-disperse system, the prediction of 

flow rate should also consider the percentage of disordered particles and the expanded rate 

during the filtration. The modified equation is deemed reliable at predicting the flow behavior, 

provided that an accurate representation of the void size distribution is available. 

6.1 FUTURE WORK 

 

The next step for this project is trying to figure out the real void size distributions. The expansion 

factors we added to the modified the Kozeny-Carman are based on the representation of the void 

size distribution of the simulated beds, the difference between the simulated beds and the 

filtration cakes of the experiments are indeterminate. Furthermore this representation is based on 

the Delaunay tessellation, which may lead to inaccurate identification of pore locations and sizes 

because it may subdivide a pore into too many void spaces [39]. Even though a more reasonable 
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void size distribution can be achieved by merging Delaunay cells [40], it is very difficult to 

identify which tetrahedral should be merged. Thus, detailed analysis to achieve a more accurate 

void size distribution should be explored in the future. In this thesis, we focused on the void size 

distribution of layer-by-layer beds. Analyses for random packed bed are not very well as shown 

in Appendix C. Further work should explore how to provide an approximate representation of 

the void size distribution of a random packed bed during a filtration process. 

Because the void size distribution changes in different situations, it is difficult to get a 

certain modified equation with a certain distribution-fitting model. In further work, the relative 

quality of different models based on the assumptions of different numbers of expanded rates can 

be measured based on the Akaike information criterion so that a demarcation point of size ratio 

can be explored in order to divide models into applications for different situations.  

Particle interactions are a major part of filtration; in this thesis the main point is trying to 

figure out the relationship between fluid properties and cake structure during a filtration process. 

The relationship between flow properties and individual pore geometry should be further 

explored. Therefore, the Lattice Boltzmann Method (LBM) simulation is needed to mimic fluid 

dynamics. LBM is a computational model that is widely used in designing models of the physics 

properties of fluid flow as we shortly introduced in Chapter 1.4.2.  

In this thesis, simple spherical glass beads were chosen to compose the filtration cake. 

However, particles that are used in real industries are almost never spherical. So it is essential to 

analyze the complexity of particles. This means that particle shapes should be considered when 

try to determine the cake structure and flow rate during filtration. Adding impurity into a filter 

should also be studied in the future. 
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APPENDIX A 

MODEL OF PARTICLE PLACES IN DIFFERENT SIZE RATIO 

 

Figure 19. Model of binary mixing particles (Rs/l=0.20) based on Ref. [22] 
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Figure 20. Model of binary mixing particles (Rs/l=0.50) based on Ref. [22] 
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APPENDIX B 

FIGURES OF SIMULATED BEDS BY DEM METHOD 

 

Figure 21. Simulated bed of mono-disperse system 

 

 

Figure 22. Simulated bed of binary-disperse system 
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APPENDIX C 

ANAYLYSIS OF SIMULATIONS OF RANDOM PACKED BEDS 

 

Figure 23.  Probability density functions of the void size in Binary distribution (Rs/l = 0.20) 
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As we simulated packed beds layer-by-layer in Chapter 4.0 , other beds were simulated based on 

random packing. Figure 23 shows the void size distribution in binary system (Rs/l =0.20), an 

obviously peak can be found at a very small void size, which indicates most of small particles are 

settled in the bottom of the bed. These small particles influence the void size distribution as 

several small peaks can be seen in Figure 23. Figure 24 also shows a peak at small void size. The 

results predicted by this void size distribution are much larger than the empirical results as the 

simulated bed is deformed. As shown in Table 17, the value of R-square decreases much with the 

fit of simulation data of random packed bed.  

 

 

Figure 24.  Probability density functions of the void size in Binary distribution (Rs/l = 0.33) 
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Table 17. Comparing empirical results to model fits in binary disperse system (Rs.l=0.33) 

Data Error SSE R-square RMSE 

CK equation 11.17% 1.957e-09 0.9901 1.978e-05 

Bi-normal fit -21.97% 5.799e-08 0.7073 1.077e-04 

 

 

 

Figure 25. The relationship between operating pressure and flow rate of binary mixing Rs/=0.33 
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Figure 26 shows two nearby peaks. The results predicted by this void size distribution are better 

than the results predicted by Kozeny-Carman equation (see by Figure 27). However, as shown in 

Table 18, the value of R-square is little smaller than the value based on layer-by-layer 

simulation. Thus, the flow rate is unpredictable with the simulation analysis of a random packed 

bed. Further work should explore how to provide an approximate representation of the void size 

distribution of a random packed bed to predict the flow behavior. 

 

 

Figure 26.  Probability density functions of the void size in Binary distribution (Rs/l = 0.84) 
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Table 18. Comparing empirical results to model fits in binary disribution (Rs.l=0.84) 

Data Error SSE R-square RMSE 

CK equation 87.71% 6.128e-10 0.7803 1.107e-05 

Bi-normal fit 43.71% 2.660e-10 0.9046 7.293e-06 

 

 

 

Figure 27. The relationship between operating pressure and flow rate of binary mixing Rs/=0.84 
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APPENDIX D 

SUPPOSE OF THE MODIFED KOZENY-CARMAN EQUATION 

 

In traditional theoretical approach (Kozeny-Carman equation), pores in the cake are replaced by 

circular channels, maintaining the same surface area and void volume as shown in Figure 28. 

And a superficial velocity is assumed to be constant in all pores.  

 

Figure 28. Replace pores with circular channels (match Sa and εV) 

 

The tortuosity factor λ is added to capture bends to increases superficial velocity linearly. The 

tortuosity is the length of the actual flow path divided by the linear distance between the ends of 
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the flow path as shown in Figure 29. To modified the Kozeny-Carman equation, we assumed the 

increase of flow rate in multi-disperse system is caused by the deform of the cake structure, 

which means the void tubes (circular channels) are enlarged as shown in Figure 30.  

 

 

 

 

Figure 29. Tortuosity (red line: straight-line distance; blue line: a potential flow path) 

 

 

 

Figure 30. Diameter of the void tube is enlarged β during the filtration process in multi-disperse system 
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APPENDIX E 

MATLAB CODE FOR REPRESENT THE VOID SIZE DISTRIBUTION 

%%Kernel distribution%% 

A=load('0.75_1kPa.txt'); 

x=A(:,1); 

y=A(:,2); 

z=A(:,3);  

T = delaunayTriangulation(x,y,z);  

coords=[x,y,z];  

V=zeros(size(T,1),1);  

R=zeros(size(T,1),1); 

for i=1:size(T,1) 

V(i) = 1/6*abs(dot(coords(T(i,2),:)-coords(T(i,1),:),cross(coords(T(i,3),:)-

coords(T(i,1),:),coords(T(i,4),:)-coords(T(i,1),:)))); 

R(i) = (V(i)./pi/4*3).^(1/3); 

end 

[f,xi]=ksdensity(R); 

hist(R,0:.00001:0.5); 

plot(xi,f) 
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title('Polydisperse binary  R = 0.20') 

legend('Kernel Distribution') 

xlabel('void size');ylabel('Probability density'); 

 

%%Bi-normal distribution%% 

A1=load('0.326'); 

x1=A1(:,1); 

y1=A1(:,2); 

z1=A1(:,3); 

T1 = delaunayTriangulation(x1,y1,z1); 

coords=[x1,y1,z1]; 

V1=zeros(size(T1,1),1); 

R1=zeros(size(T1,1),1); 

for i=1:size(T1,1)     

V1(i) = 1/6*abs(dot(coords(T1(i,2),:)-coords(T1(i,1),:),cross(coords(T1(i,3),:)-

coords(T1(i,1),:),coords(T1(i,4),:)-coords(T1(i,1),:)))); 

R1(i) = (V1(i)./pi/4*3).^(1/3); 

end 

x = R1; 

pdf_normmixture = @(x,p,mu1,mu2,sigma1,sigma2) ... 

                         (1-p)*normpdf(x,mu1,sigma1) + p*normpdf(x,mu2,sigma2); 

pStart = .5; 

muStart = quantile(x,[0.25 0.75]) 
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sigmaStart = sqrt(var(x) - .25*diff(muStart).^2) 

start = [pStart muStart sigmaStart sigmaStart]; 

lb = [0 -Inf -Inf 0 0]; 

ub = [1 Inf Inf Inf Inf]; 

paramEsts = mle(x, 'pdf',pdf_normmixture, 'start',start, 'lower',lb, 'upper',ub) 

statset('mlecustom') 

options = statset('MaxIter',1000, 'MaxFunEvals',2000); 

paramEsts = mle(x, 'pdf',pdf_normmixture, 'start',start,'lower',lb, 'upper',ub, 'options',options) 

x=0:0.00001:0.5; 

sigma1=0.007302; 

y = pdf_normmixture(x,paramEsts(1),paramEsts(2),paramEsts(3),paramEsts(4),paramEsts(5)); 

plot(x,y,'-b') 

legend('Bi-normal distribution'); 

xlabel('void size'); 

ylabel('Probability density (×0.01)'); 
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APPENDIX F 

COMPARE THE KERNEL DISTRIBUTION WITH THE BI-NOMRAL DISTRIBUTION  

The chi-square test determines if data fit a specified probability distribution, with parameters 

estimated from the data [41]. It returns a test decision for the null hypothesis that the data in 

vector x comes from a normal distribution with a mean and variance estimated from x:  

𝜒𝜒2 = �(𝑂𝑂𝑖𝑖 − 𝑆𝑆𝑖𝑖)2/
𝑁𝑁

𝑖𝑖=1

𝑆𝑆𝑖𝑖 

where Oi are the observed counts and Ei are the expected counts based on the hypothesized 

distribution. For Kernel distribution in this thesis, h=1, p=1.5387e-57. For Bi-normal distribution 

in this thesis, h=1, p=0. 

h=1 indicates that chi2gof rejects the null hypothesis at the default 5% significance 

level[41], which means this two distribution models are not quite fit with the data. p is the 

probability of observing a test statistic as excessive as, the observed value under the null 

hypothesis, and a smaller value of p cast doubt on the validity of the null hypothesis [41], which 

also means Kernel distribution is more similar with the collected data. 

Kolmogorov-Smirnov test can compare these two distributions with the factor k: k is the 

quantified distance between the data and the distribution [41]. A lower k value signifies a better 

agreement between the distribution and the data. k of Kernel is 0.0187 ,which is much smaller 

than the Bi-normal one (0.3085). Kernel distribution is more reliable as it fit every data very 

well. However, Kernel distribution is a non-parametric one, which means it is really hard to get 
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parameters. Bi-normal distribution can achieve parameters (like mean size) directly that makes 

calculation more convenient.  



 68 

APPENDIX G 

PARITY PLOTS (COMPARE EMPIRICIAL RESULTS WITH PREDICTED DATA) 

 

 

 

Figure 31. Empirical vs Predicted flow rate (narrow size distribution: •, 53-63µm; +, 63-75µm; *, 75-90µm; 

o, 90-106µm; △, 500µm; wide size distribution: •, 50-75µm; +, 50-100µm; *, 75-100µm; o, 150-177µm; △, 180-

210µm; Binary distribution: •, Rs/l=0.5; *, Rs/l=0.84; •, Rs/l=0.2; *, Rs/l=0.33; and --, ± 15% error) 
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Figure 32. Empirical vs Predicted flow rate (Predicted by Kozeny-Carman equaiton: •, Rs/l=0.5; *, 

Rs/l=0.84; Predicted by modified equation •, Rs/l=0.5; *, Rs/l=0.84; and --, ± 15% error) 
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