
EFFICIENTLY AND EFFECTIVELY LEARNING MODELS

OF SIMILARITY FROM HUMAN FEEBACK

by

Eric Heim

B.S. in Computer Science, Kutztown University, 2009

M.S. in Computer Science, University of Pittsburgh, 2010

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences in partial

fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2015

UNIVERSITY OF PITTSBURGH

KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Eric Heim

It was defended on

November 20th, 2015

and approved by

Milos Hauskrecht, Professor, University of Pittsburgh

Rebecca Hwa, Associate Professor, University of Pittsburgh

Jingtao Wang, Assistant Professor, University of Pittsburgh

Aarti Singh, Associate Professor, Carnegie Mellon University

Dissertation Director: Milos Hauskrecht, Professor, University of Pittsburgh

ii

Copyright © by Eric Heim

2015

iii

EFFICIENTLY AND EFFECTIVELY LEARNING MODELS OF SIMILARITY FROM

HUMAN FEEBACK

Eric Heim, PhD

University of Pittsburgh, 2015

Vital to the success of many machine learning tasks is the ability to reason about how objects relate.

For this, machine learning methods utilize a model of similarity that describes how objects are to be

compared. While traditional methods commonly compare objects as feature vectors by standard

measures such as the Euclidean distance or cosine similarity, other models of similarity can be used

that include auxiliary information outside of that which is conveyed through features. To build

such models, information must be given about object relationships that is beneficial to the task

being considered. In many tasks, such as object recognition, ranking, product recommendation,

and data visualization, a model based on human perception can lead to high performance. Other

tasks require models that reflect certain domain expertise. In both cases, humans are able to

provide information that can be used to build useful models of similarity. It is this reason that

motivates similarity-learning methods that use human feedback to guide the construction of models

of similarity.

Associated with the task of learning similarity from human feedback are many practical chal-

lenges that must be considered. In this dissertation we explicitly define these challenges as being

those of efficiency and effectiveness. Efficiency deals with both making the most of obtained

feedback, as well as, reducing the computational run time of the learning algorithms themselves.

Effectiveness concerns itself with producing models that accurately reflect the given feedback,

but also with ensuring the queries posed to humans are those they can answer easily and without

errors. After defining these challenges, we create novel learning methods that explicitly focus on

one or more of these challenges as a means to improve on the state-of-the-art in similarity-learning.

iv

Specifically, we develop methods for learning models of perceptual similarity, as well as models

that reflect domain expertise. In doing so, we enable similarity-learning methods to be practically

applied in more real-world problem settings.

Keywords: Similarity Learning, Kernel Learning, Metric Learning, Online Learning, Active

Learning.

v

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Challenges . 2

1.2 Thesis Statement . 5

1.3 Contributions . 6

1.4 Outline . 8

2.0 PRELIMINARIES . 9

2.1 Notation . 9

2.2 Fundamental Models of Similarity . 10

2.2.1 Distance Metrics . 10

2.2.1.1 Generalized Mahalanobis Distance Metrics 12

2.2.2 Kernels . 13

2.2.2.1 Kernel Matrices . 16

2.3 Forms of Human Feedback and Their Applications 16

2.3.1 Labels . 17

2.3.2 Pair-wise Feedback . 19

2.3.3 Relative Triplet Feedback . 21

2.3.4 Comparison of Forms . 22

2.3.4.1 Model Effectiveness . 24

2.3.4.2 Human Efficiency . 25

2.3.4.3 Human Effectiveness . 27

2.3.4.4 Summary . 28

2.4 Similarity-Learning Settings . 30

vi

2.4.1 Batch versus Online Learning . 30

2.4.1.1 Batch versus Stochastic Gradient Methods 32

2.4.2 Random versus Active Learning . 35

3.0 RELATED WORK . 37

3.1 Metric Learning . 37

3.1.1 Large Margin Nearest Neighbors . 37

3.1.2 Metric Learning for Kernel Regression 39

3.2 Kernel Learning . 40

3.2.1 Multiple Kernel Learning . 40

3.2.2 Non-Parametric Kernel Matrix Learning 42

3.2.2.1 Relative Comparison Kernel Learning 42

3.3 Online Learning . 46

3.4 Active Learning . 49

3.4.1 Active Sequential Triplet Query Selection 49

3.4.2 Adaptive Crowd Kernel Learning . 51

4.0 SIMILARITY LEARNING FROM TRIPLET FEEDBACK WITH AUXILIARY

INFORMATION . 53

4.1 Learning a Non-Parametric Kernel with Auxiliary Information 54

4.1.1 Multiple Kernel RCKL . 55

4.1.2 RCKL with Auxiliary Kernels . 56

4.1.2.1 Projected Gradient Descent for RCKL-AK Methods 58

4.1.3 Relationship to Metric Learning . 59

4.1.4 Experiments . 60

4.1.4.1 Synthetic Data . 61

4.1.4.2 Music Artist Data . 64

4.2 Actively Learning an Object Embedding with Auxiliary Information 66

4.2.1 A Probabilistic Embedding-Learning Formulation with Auxiliary Features 67

4.2.2 Active Embedding-Learning with Auxiliary Features 72

4.2.3 Experiments . 74

4.2.3.1 Synthetic Data . 75

vii

4.2.3.2 Yummly Food Data . 76

4.2.3.3 Zappos Shoes Data . 77

4.3 Summary . 80

5.0 ONLINE SIMILARITY LEARNING FROM TRIPLET RESPONSES 81

5.1 Efficient Online Relative Comparison Kernel Learning (ERKLE) 82

5.1.1 Stochastic Gradient Step . 83

5.1.2 Efficient Projection . 83

5.1.3 Passive-Aggressive Updates . 86

5.1.4 ERKLE with Multiple Passes . 89

5.2 Experiments . 89

5.2.1 Small-Scale Synthetic Data . 92

5.2.2 Large-Scale Synthetic Data . 93

5.2.3 Music Artist Similarity . 95

5.2.4 Outdoor Scene Similarity . 96

5.3 Summary . 97

6.0 METRIC LEARNING FROM AUXILIARY CONFIDENCE LABELS WITH AP-

PLICATION TO CLINICAL DECISION MODELING 99

6.1 Previous Work Using Auxiliary Confidence Labels 101

6.2 Methodology . 102

6.2.1 Incorporating Confidence Labels . 104

6.3 Experiments . 106

6.3.1 Data Set Description . 106

6.3.2 Experimental Methodology . 108

6.3.3 Discussion . 109

6.4 Summary . 113

7.0 CONCLUSION AND FUTURE WORK . 115

7.1 Contributions . 115

7.2 Future Work . 119

7.2.1 Directions of Future Work Specific to Methods Introduced in this Dissertation119

7.2.2 Directions of Future Work in Similarity Learning from Human Feedback . 122

viii

APPENDIX A. PROOFS OF CONVEXITY FOR RCKL-AK FORMULATIONS 124

A.1 Proof of Proposition 1 . 125

A.2 Proof of Proposition 2 . 126

A.3 Proof of Proposition 3 . 127

APPENDIX B. DERIVATION OF STE PASSIVE-AGGRESSIVE STEP SIZE 128

BIBLIOGRAPHY . 130

ix

LIST OF TABLES

1 Summary statistics for expert-labeled HIT data . 106

2 Methods used in CAMEL experimental evaluation 107

3 CAMEL HIT data experiments: Mean (STD) sparsity statistics over all experiments 110

x

LIST OF FIGURES

1 The four categories of challenges considered in this work 3

2 Directed graph depictions of relative feedback . 20

3 Example object embeddings using different forms of feedback 23

4 Direct quantitative query vs. relative query . 27

5 Batch, online, and mini-batch learning settings . 31

6 Random versus active query selection . 34

7 RCKL-AK synthetic data experiments: Test TQPE vs. number of training responses

(ten trials, 95% CI) . 62

8 RCKL-AK synthetic data experiments: mean values of weight parameters (µ1 (red),

µ2 (blue), µ3 (green), µ4 (teal), µ5 (pink), µ6 (purple)) 63

9 RCKL-AK aset400 data experiment: Test TQPE vs. number of training responses

(ten trials, 90% CI) . 65

10 Plate diagram depicting TACKL variable relationships 69

11 Plate diagram depicting triplet query/object dependencies 70

12 TACKL synthetic data experiments (ten trials, 90% CI) 75

13 TACKL Yummly data experiments (20 trials, 90% CI) 75

14 Example task deployed via AMT to collect Zappos triplet data (three triplet queries

per task) . 77

15 TACKL Zappos data experiments (ten trials, 90% CI) 78

16 Example two-dimensional embedding learned by A-TACKL on Zappos data 79

17 ERKLE small-scale synthetic data experiments (ten trials, 95% CI) 91

18 ERKLE large-scale synthetic data experiments (five trials, 95% CI) 93

xi

19 Results from experiments on the aset400 data set (ten trials) 94

20 Results from experiments on the OSR data set (ten trials) 97

21 CAMEL HIT data experiments: number of training instances vs. AUROC on test set

(Row 1 = Expert 1, Row 2 = Expert 2, ten trials, 95% CI) 108

22 CAMEL HIT data experiments: feature weight statistics (CAMEL-CL, Expert 2, ten

trials) . 111

23 CAMEL HIT data experiments: normalized absolute values of L entries (left =

CAMEL, right = CAMEL-CL) . 112

xii

LIST OF ALGORITHMS

1 A Prototypical Batch RCKL Learning Algorithm 43

2 Active Sequential Triplet Query Selection . 49

3 RCKL-AK Projected Gradient Descent . 58

4 Active TACKL . 73

5 Efficient PSD Projection . 84

6 Efficient online Relative comparison Kernel LEarning (ERKLE) 85

7 ERKLE with Multiple Passes . 88

xiii

1.0 INTRODUCTION

The ability to reason about how objects relate in a problem domain is of central importance for

many machine learning methods to perform a task. To this end, a model of similarity that dictates

how objects are compared to one another is required. Most commonly in machine learning, objects

are represented by so-called feature vectors that are composed of uniquely defining characteristics

drawn from raw data. Then, standard measures of similarity or distance are used on this predefined

representation of objects. Take, for example, classical k Nearest Neighbor (kNN) classification.

Class membership is determined by standard Euclidean distance between feature vectors. In this

scenario, both the features and the Euclidean distance metric, together, define a model of similarity

that allows the kNN classifier to perform a task. The success of many machine learning methods,

including the kNN classifier in this case, is highly dependent on the assumed model of similarity on

which it acts. As a result, when applying machine learning methods to a task, it is of the utmost

importance to have a model of similarity among objects that is useful for that task.

Unfortunately, it is often the case in real-world applications that simple features constructed

from raw data alone do not result in similarity models that that lead to desirable performance. In

these instances, a model of similarity must be designed to reflect a notion of how objects relate that is

beneficial for a task. It is this observation that has motivated the development of similarity-learning

methods [157, 1, 75, 10]. Similarity-learning methods are a class of supervised learning methods

that learn a model of similarity over a domain of objects given supervision or feedback regarding

how objects relate. For instance, in classification tasks, the class labels themselves obviously give

strong indication about which objects should be deemed similar and which should be deemed

different in a problem domain. If that information was used to learn a model of similarity in which

objects with the same class label are close together, then a kNN classifier using this model could

have improved performance over using one ignorant of this information.

1

However, like other supervised learning methods, similarity-learning methods require a source

of feedback to provide supervision. For many tasks, humans are called upon to be this source

of feedback. Humans tend to have an innate understanding of how common objects relate that

is difficult to capture from raw data alone. As a result, this human perception that most humans

possess is useful in tasks where that require a model of similarity reflecting how the average human

reasons about objects, such as in product recommendation, or for tasks that humans find easier to

accomplish than computers, such as visual object recognition. In addition, certain humans have

specific domain knowledge that allows them to make assessments on objects that the most humans

cannot. Accordingly, expert feedback can be leveraged to learn a model of similarity for settings

that require expertise in a specific domain.

In this dissertation, we focus on the general problem of learning models of similarity over

objects from feedback obtained from humans. We consider both learning perceptual similarity that

can be used in tasks that require a model that reflects how the average person views the relationships

among objects, as well as expert similarity for tasks that call for a model conveying specific expertise

in a domain. Associated with this problem are a considerable number of challenges related to the

methodology in learning similarity models as well as practical challenges in obtaining and using

human feedback. In the next section, we define these challenges.

1.1 CHALLENGES

Though having a model of similarity based on human feedback is useful in many machine learning

applications, the act of learning such a model faces numerous challenges. To better understand

these challenges we separate them into four challenge categories formed by the union of two criteria

depicted in Fig. 1. One criterion separates the practical challenges that arise when prompting humans

for feedback from methodological challenges in the learning algorithms themselves. The second

criterion contrasts challenges in efficiency (reducing effort or cost) versus those in effectiveness

(increasing accuracy). Below we explain each category:

Human Efficiency Obtaining human feedback requires time, and often money, especially in do-

mains where expert feedback is required. As such, practically obtaining a sufficient amount of

2

Human

Efficiency

Human

Effectiveness

Computational

Efficiency

Model

Effectiveness

Efficiency Effectiveness

H
um

an
Le

ar
ni

ng

Figure 1: The four categories of challenges considered in this work

feedback to learn an accurate model is often the most costly step in learning similarity. Thus,

effort should be made to reduce the burden placed on humans by making the most of their

service. By doing so, one can lessen the amount of feedback required to learn a useful model.

Stated more plainly, a human efficient similarity-learning method would require as little human

feedback as possible to learn an accurate similarity model.

Computational Efficiency In order for a model of similarity to be useful, it needs to take a form in

which learning algorithms can use as input. For this reason, the models considered in this work

take forms that allow their use in many popular techniques in machine learning. Unfortunately,

this often imposes strict constraints that an lead to considerable computational overhead in

learning the models. If no attempt is made to mitigate this overhead, the practical run time of

learning a similarity model could be too high to warrant their use for certain applications.

3

Human Effectiveness Many of the models considered in this work represent complex relationships

among a large number of objects. Humans may find it difficult to directly provide the similarity

being conveyed in these models, which can lead to inaccurate or contradictory feedback. This

noise that can lead to learned models that do not faithfully reflect the desired relationships of

objects. To ensure a similarity-learning method is human effective, one must either assume

that the form of feedback being given leads to many noisy responses, and attempt to reduce the

effect of the noise, or ask queries that humans find easy to answer, and adapt their methods to

learn from a form of feedback that may not directly convey the same information the learned

model provides.

Model Effectiveness Another important characteristic that models of similarity should possess is

accuracy. More specifically, a model should accurately reflect the notion of similarity being

conveyed through given feedback. Furthermore, a learned model should also convey a more

general sense of similarity that captures object relationships not explicitly given, resulting in

a more complete model than one that only echoes obtained supervision. Less obviously, it is

also important to ensure that both the model being learned and the questions being asked are

expressive enough to capture the true relationships among objects that the human is trying to

convey. If the choice for either cannot express object relationships essential for a task, then no

similarity-learning method can produce a model useful for that task.

The similarity-learning methods discussed in Chaps. 5, 4, and 6 provide methods with explicit

focus on one or more of these challenges. Yet, providing a solution to a challenge in one category

often creates a problem in another. For instance, one may choose to ask queries that humans find

easy to answer (high human effectiveness), but by doing so, the number of queries needed to learn an

accurate model may be large (low human efficiency). Or, one could learn a model of similarity that

very closely adheres to given feedback (high model effectiveness), but the algorithm to learn such a

model has a long run-time (low computational efficiency). In short, there is a trade-off between the

challenge categories that must be considered when developing similarity-learning methods.

4

1.2 THESIS STATEMENT

Having defined these challenges, we are able to state the thesis of this dissertation:

By defining and explicitly attending to the practical challenges in learning models of similarity from

human feedback, more efficient learning methods can be developed to learn more effective models

that can be used in machine learning and data mining methods.

In order to confirm this thesis, we introduce four novel similarity-learning methods that focus on

improving performance in one or more of the challenge categories defined in the previous section

over previous methods, while ensuring not to reduce the performance in others to the point where

they are impractical for real-world learning tasks. Indeed, the individual works discussed in the

subsequent share a common goal: To develop similarity-learning methods can be used in practical,

real-world learning scenarios where human feedback is obtained.

Two important items relating to this thesis statement must be defined. First, what is meant

by a “model” of similarity? In this work, we define a model of similarity between objects to

have two components: a representation of objects and a measure in which they can be compared

with respect to that representation. Without a representation, objects cannot be compared to one

another. Once objects have a representation, the way in which they are compared must be described

by a well-defined measure. Often the line between these two components can be blurred. We

make a focused effort on explicitly defining both components in the similarity models used in the

similarity-learning methods outlined in this dissertation.

The other item needed to be defined is how one evaluates a similarity-learning method’s

performance in a challenge category. To measure computational efficiency, we use time complexity

of the learning algorithms themselves as it a well-understood standard for algorithm analysis.

In some cases we also show actual run-time of the algorithms to further emphasize differences

in efficiency. The analogue of time complexity (number of elementary operations) for human

efficiency is the number of queries asked to learn a given model. Human effectiveness is as much of

a psychological issue as it is a machine learning one. Because of this, measuring human effectiveness

is somewhat more nebulous than measuring computational or human efficiency. We dedicate a large

5

portion of Sec. 2.3 to discussing human effectiveness in terms of the forms human feedback can

take.

Finally, the model effectiveness of a method depends on task-specific measures of accuracy.

In settings where the goal is to learn a perceptual model, which then can be used as a basis for

numerous other machine learning tasks, measures of accuracy should reflect how well the learned

model adheres to the general similarity being conveyed by humans. In similarity-learning settings

with a particular task in mind, the model can be judged by it’s use for that task, thus task-appropriate

measures of accuracy can be used. The distinction is subtle, but important. If one learns a model of

similarity for the specific task of kNN classification, then metrics for classification accuracy can

be used to measure model effectiveness. If the goal is to simply learn a model that reflects how

humans reason about objects that can be used in various machine learning tasks, then accuracy is

determined by how well the learned model captures human similarity. As we evaluate the methods

in this dissertation, we will introduce evaluation metrics that measure task-appropriate accuracy.

Because of the close relationship the challenge categories share, we evaluate similarity-learning

methods as a function of two or more metrics measuring performance in different categories. For

instance, in Chap 5 we evaluate methods in terms of run time as a function of the number of

queries answered. In Chap 4, we evaluate methods by a measure of model accuracy versus the

number of queries answered. Though much of the discussion may revolve around performance in a

single challenge category, the results can be viewed as comparing methods over multiple different

categories. Through the evaluation of the methods introduced in this dissertation in terms of their

ability to manage the effect of similarity-learning challenges, we aim to verify our hypothesis.

1.3 CONTRIBUTIONS

In Chap. 4 we address the inherent human inefficiency of learning a model of similarity from a

particular form of human feedback called relative triplet feedback. Relative triplet feedback is

useful for modeling human perception as it is both sufficiently human and model effective for

that task. However, it it inherently human inefficient. To mitigate this human inefficiency, we

developed a novel framework for incorporating auxiliary information about object relationships

6

into common similarity-learning methods that use relative triplet feedback as input. By doing

so, we permit the auxiliary information to model trends that allow the similarity models

learned within our framework to generalize to object relationships not explicitly given, while

requiring less feedback. Then, we use the intuition gained by developing this framework, and a

specific similarity-learning technique as a basis to develop a novel active learning method that

intelligently selects queries in order to further increase human efficiency.

In Chap. 5 we address the computational inefficiency of common similarity-learning methods that

learn from triplet feedback in the online learning setting. Traditional methods for this task

consider the batch learning case. Their learning methods typically include a projection step that

has time complexity O (n3). In the online learning setting, this is prohibitively expensive. In

response to this, we develop a novel framework that can update models with online feedback in

O (n2) time in the worst case. By taking advantage of the structure of our particular updates, we

can even skip the projection step and perform constant time updates under certain conditions.

In addition, we leverage recent techniques in online learning to determine how newly obtained

feedback should affect the model. In doing so, we eliminate the need for users of our method to

manually set any hyperparameters. Even with the improvements in computational efficiency

and ease of use, we show that our method can learn models of similarity that are as accurate as

traditional methods.

In Chap. 6 we address the human efficiency and model effectiveness of learning a model of

similarity to be used in a classification task in the clinical medical domain. Here, we consider

the application of learning an inference model to alert a clinician when a patient is at risk for

a disease from patient Electronic Health Record (EHR) data and expert provided class labels.

For such a method to be practically useful, the model of similarity used to make inferences

should have two properties. First, it should be able to convey more information about patient

relationships with respect to disease than simply providing alerts. Second, it should be as human

efficient as possible as expert supervision is especially costly. We develop a similarity-learning

method with a focus on these two goals. The model our method learns can be used to give

additional information about a prediction, such as how confident the model is, and what specific

characteristics of the patient factored into the prediction. In addition, we formulate a version of

our method that can take auxiliary confidence information from expert labels and utilize it to

7

learn more accurate classification models from fewer labeled patient instances.

1.4 OUTLINE

The rest of this dissertation proceeds as follows. Chapter 2 provides a review of foundational topics

to be used in subsequent chapters, including those in fundamental models of similarity and the

forms human feedback can take. Chapter 3 discusses work related to the methods presented in this

dissertation to confirm out thesis. More specifically, we review two classes of similarity-learning

methods, and two orthogonal learning settings. Chapters 4, 5, and 6 present the main contributions

of this dissertation. Finally, Chap. 7 concludes by recapitulating the contributions of this dissertation

and discussing avenues of future work.

8

2.0 PRELIMINARIES

In order to begin our study of learning models of similarity from human feedback, we must first

introduce the basic formalisms commonly considered similarity-learning. In this chapter, we define

forms both human feedback and similarity models can take, and review foundations in each. Also,

we provide a brief summary of the learning settings in which our methods act. We begin this

chapter by defining the notation used in the remainder of this dissertation. Then, we review two

fundamental measures of similarity that lay a foundation for the methods outlined in subsequent

sections. Next, we discuss common forms of human feedback, provide example applications in

literature, and compare them in terms of the challenge categories defined in the introduction. After

that, we compare online learning to traditional batch learning as a means to motivate our online

similarity-learning method in Chap. 5. Finally, we discuss active vs. random selection of queries to

provided background for our active query selection algorithm presented in Chap. 4.

2.1 NOTATION

The following notation will be used in the subsequent. We denote vectors as bold, lower-case Latin

or Greek letters (i.e. a), and use subscripts on non-bold letters to denote individual elements in

vectors (e.g. ab is the bth element in a). Matrices are denoted by bold, upper-case letters (e.g. A),

and we use superscripts to denote individual elements (e.g. Abc is the element in the bth row and

cth column). Script capital letters denote sets (e.g. A). Italicized letters (i.e. a or A) denote either

scalars or abstract objects. Which is being used should be clear in context. Set membership is

denoted by subscripts (i.e. if ab ∈ A, then b uniquely identifies the object ab from others in A).

Special sets used throughout this work include: R, R+, RA, and RA×B, which are the set of

9

real numbers, the set of non-negative real-numbers, the set of real row vectors of length A, and the

set of real matrices with A rows and B columns, respectively. For both vectors and matrices, the

superscript T denotes the transpose. The rank of a matrix (number of linearly independent rows

or columns) is denoted by the function rank. The trace of a matrix (sum of diagonal elements) is

denoted by the function trace. A matrix M ∈ RA×A is denoted as positive semi-definite (PSD), i.e.

has no negative eigenvalues, by M � 0. The function [·]+ is the “hinge” function that is equivalent

to max (0, ·).

2.2 FUNDAMENTAL MODELS OF SIMILARITY

A common way to reason about the relationships among objects is through pair-wise measures,

meaning similarity is expressed over pairs of objects. Pair-wise models of similarity are attractive

because they provide a direct way to compare one object to another, but also can be used to express

more complex relationships. Similarity between a large group of objects can be determined by

measuring how similar each pair in the group is. If similarity to a single object is of importance to a

task (e.g. for ranking or clustering using centroids), all other objects in a domain can be compared,

pair-wise, to an object of importance. For this reason, many standard methods in machine learning,

data mining, and information retrieval assume a pair-wise model of similarity. However, some of

these methods do not necessarily use a measure of similarity, but one of distance. In this work, we

consider similarity and distance to be one and the same. Distance is most commonly interpreted

as a measure of dissimilarity, which is the converse of similarity. As such, a measure of distance

implies a measure of lack of similarity. Furthermore, we consider two specific models of similarity

in this dissertation, each can be used to define a distance or similarity measure. These two measures

represent a fundamental basis for which similarity-learning methods can build off of.

2.2.1 Distance Metrics

One of the most natural ways to quantify the relationships between pairs of objects is though the

concept of distance. Distance, as most humans understand it, is concrete, but distance can also me

10

abstractly defined when considering objects without a specific representation. Let X be an abstract

domain of objects, where xi ∈ X is a single object. Let d : X x X → R be a distance measure

that conveys a notion of distance or dissimilarity between two objects. This abstract definition of

distance can characterize well understood notions of distance, such as physical distance between

tangible objects (“That tree and that rock are 10 feet apart”), or less tangible ones (“The distance

between these two directed graphs is 10”). The power in the abstraction of distance is that object in

domains for which distance is not well-understood can have a means of comparison.

Distance measures allow for unitless real numbers to be considered as distances between objects

without further definition. A more principled measure of distance can be defined through metrics.

The function d′ is a distance metric if it is a distance measure and also follows the following four

properties for all xi, xj, xk ∈ X :

1. d′ (xi, xj) ≥ 0 (Non-negativity)

2. d′ (xi, xj) = 0 iff xi = xj (Distinguishability)

3. d′ (xi, xj) = d′ (xj, xi) (Symmetry)

4. d′ (xi, xk) ≤ d′ (xi, xj) + d′ (xj, xk) (Triangle Inequality)

In a sense, these properties express intuitive notions about the concept of distance, such as, distance

should not be negative (non-negativity) and if a distance between two objects is zero, then those

two objects are actually the same object (distinguishability). The space of objects X in conjunction

with a distance metric d′ over objects in X together make a metric space. Metric spaces can be

viewed as models of similarity as they contain both components necessary to fulfill our definition of

a model of similarity: a representation X and a means to compare objects d′.

Many useful measures of distance can be defined as metric spaces. Possibly the most popular

one of which is the Euclidean metric space, where objects are represented as real vectors (X = Rm)

and distance between objects is defined as:

d2 (xi,xj) = ||xi − xj||2 =

√√√√ d∑
k=1

(
xki − xkj

)2
(2.1)

Here, xi = xi ∈ Rm, and || · ||2 is the `2 or Euclidean norm:

||x||2 =
m∑
i=1

√
xi ∗ xi (2.2)

11

This metric space is particularly convenient in machine learning where objects are typically repre-

sented as feature vectors. In data-driven tasks, object representations are often derived by extracting

uniquely-defining characteristics about each objects from data. In many machine learning appli-

cations, these characteristics are modeled as real-valued features, which when combined create a

vector of real values that define an object. The Euclidean distance between these representations

define and “ordinary” or “straight-line” distance between objects, which machine learning methods

can use as a way to compare objects.

2.2.1.1 Generalized Mahalanobis Distance Metrics Because it is such an intuitive way to

describe distance, the Euclidean distance metric is popular among machine learning methods to

compare objects in a feature space. However, other distance measures can be used. Consider the

case where objects xi and xj are drawn from a normal distribution N (µ,Σ). The Mahalanobis

distance metric for these two objects is defined as follows:

dΣ (xi,xi) =

√
(xi − xj) Σ−1 (xi − xj)

T (2.3)

In short, (2.3) measures the distance between points with consideration of how the objects are

distributed by normalizing based on the covariance between and within features. When Σ−1 is

identity, (2.3) reduces to Euclidean distance. When Σ−1 is diagonal with elements σi, ...σm, (2.3) is

known as normalized Euclidean distance:

dΣ (xi,xj) =

√√√√ d∑
k=1

(
xki − xkj

)2

σj
(2.4)

In practice, Σ is estimated from data. However, the only requirement for (2.3) to be a valid

metric is that Σ−1 be PSD. As a result, one can define a generalized Mahalanobis distance metric:

dM (xi,xi) =

√
(xi − xj) M (xi − xj)

T (2.5)

12

(2.5) can be understood by interpreting M as a Gram matrix. By definition of a Gram matrix, M

can be decomposed: M = LLT , where L ∈ Rmxm′ . Thusly, (2.5) can be written as:

dM (xi,xj) =

√
(xi − xj) M (xi − xj)

T

=

√
(xi − xj) LLT (xi − xj)

T

=

√
(xiL− xjL) (xiL− xjL)T

= d2 (xiL,xjL) = dL (xi,xj) (2.6)

With this, (2.5) can be interpreted as simply the Euclidean distance metric after a linear transforma-

tion of the objects into a m′-dimensional metric space. If L is not full-rank, then different objects in

the original feature space can be projected onto the same point in the new space, and in doing so,

breaking distinguishability. Thus, if L is not full-rank, then (2.6) is a pseudometric by having all

the properties of a metric except distinguishability.

Because the only requirement for (2.5) to be a valid metric or pseudometric is that M is PSD,

one can learn M or L so that the metric has properties that are beneficial to a task. This is the

goal of metric learning [75, 10] methods: use information regarding how objects relate to learn a

generalized Mahalanobis distance metric that reflects this information. Note, that “metric learning”

is sometimes used broadly to mean the problem of learning any form of a metric. For the sake of

this work, we use the term restrictively to mean learning a generalized Mahalanobis distance metric.

For the problem settings considered in this dissertation, one can employ metric learning methods to

learn a model of similarity that reflects a given set of human feedback. We review metric learning

methods in section 3.1.

2.2.2 Kernels

While distance metrics represent a principled way to measure dissimilarity between objects, kernels

can be used as a way to measure similarity based on many of the same foundation as metrics. Let

k : X × X → R be a kernel function. Formally speaking, a kernel function is the canonical inner

product of objects in X . Similar to a metric space, an inner product space is defined by X and k

together with the following assumptions. First, X must be a vector space for which vector addition

and scalar multiplication are defined. Second, k must have three properties:

13

1. k (xi, xj) = k (xi, xj) (Symmetry)

2. k (a ∗ xi, xj) = a ∗ k (xi, xj) (Linearity)

3. k (xi, xi) = 0 =⇒ xi = 0 (Positive Definiteness)

An instructive example that illustrates the relationship between kernel functions and similarity

is cosine similarity:

sim (xi,xj) =
〈xi,xj〉

||xi||2 ∗ ||xj||2
(2.7)

Here, objects are real vectors (X ∈ Rm), and 〈·, ·〉 is the canonical inner product k for real vectors,

which is also known as the the Euclidean inner product

〈xi,xj〉 = xTi xj =
d∑

k=1

xki ∗ xkj (2.8)

Cosine similarity is simply the cosine of the angle between two vectors, which can be interpreted as

a magnitude-independent measure of how similar two vectors are. If both feature vectors are normal,

then the denominator in (2.8) is one. As a result, if objects are represented by normalized feature

vectors, the inner product between them is equivalent to the cosine similarity, and thus can be used

as a method of comparison. Also, Euclidean distance can be defined in terms of inner products:

d2 (xi,xj) = ||xi − xj||2

=

√
(xi − xj) (xi − xj)

T

= xix
T
i + xjx

T
j − 2xix

T
j

= 〈xi,xi〉+ 〈xj,xj〉 − 2 ∗ 〈xi,xj〉 (2.9)

Thus, a model of similarity defined by feature vectors and the Euclidean inner product as a kernel

function that can be used to define distance, as well.

The power of kernels, however, comes from the so-called “kernel trick”, popularized first by it’s

use in Support Vector Machine (SVM) classification [29]. Since then, there have been numerous

machine learning methods that utilize kernels as a model of similarity to perform various tasks

[115], collectively called kernel methods. The intuition behind the trick is as follows. Instead of

assuming that the domain of objects is a vector space, assume that there exist a feature mapping

φ : X → H from the space of objects to an inner product space H. Now, we can write the inner

product of objects as 〈φ (xi) , φ (xj)〉H = kH (xi, xj). The mapping φ allows for abstract objects to

14

be given a representation. However, φ need not be explicitly defined as long as k is a valid inner

product. Mercer’s theorem states that a φ exists for a given kernel function k as long as k satisfies

Mercer’s Condition: ∫
xi∈X

∫
xj∈X

k (xi, xj) g (xi) g (xj) dxidxj ≥ 0 (2.10)

for all square integrable functions g. As a result, objects from a domain can be given a model of

similarity by choosing k that satisfies (2.10).

This observation is powerful for two reasons. First, for some domains there may not be clear

ways to represent objects. One can still define a well-principled model of similarity that can be used

in kernel methods by designing a valid kernel function over that domain. For instance, it may not

be clear how to represent strings of characters so that they can be successfully used in machine

learning methods. Nevertheless, kernels over strings have been developed that allow machine

learning methods to be applied to tasks such as text classification [86]. In addition, objects may

have vector representations, but they may be ill-suited for a task. For instance, if a linear classifier is

applied to a setting where the objects are not linearly separable, then performance of that classifier

could be poor. However, a proper choice of a kernel function k, can implicitly map the objects

into a space where they are linearly separable, thus potentially increasing the performance of the

classifier. For this, many different kernel functions have been designed to create more expressive

models of similarity than just using the unchanged, original feature vector representation of objects.

A comprehensive review of all kernel functions currently in use is outside the scope of this

dissertation. However, the Gaussian kernel function is of special note due to it’s relationship to

work later in this document:

k (xi,xj) =
exp (−d2 (xi,xj) /σ

2)

σ
√

2π
(2.11)

Here, it is assumed that the domain of objects are real-valued feature vectors. This function is at

its maximum when the distance between objects is zero, and decreases as their distance increases.

The parameter σ determines how rapidly the value of k decreases as distances between objects

increase, and is often called the “bandwidth” of the kernel due to it’s relationship to the width of

the contours of a Gaussian distribution. The setting of the bandwidth has a rather large effect on

the resulting model of similarity, which has lead to the popularity of the Gaussian kernel function

15

amongst practitioners, as it can approximate a large class of functions with different settings of the

bandwidth [92]. Note, that the Gaussian kernel is a function of Euclidean distance. However, other

distance metrics can be substituted to easily change the distance metric into a kernel function.

2.2.2.1 Kernel Matrices If an application requires a model of similarity not over a domain of

objects, but a finite set of objects, then a function over the entire domain is unnecessary. In terms of

kernels, this means that if similarity is only relevant to a task over a given set of objects, then simply

having the values of the kernel function applied to all pairs of objects in the set is sufficient. To

model this, often a kernel matrix is used. Consider a set of objects {x1, x2, ..., xn} ⊂ X for which

we require a model of similarity. A kernel matrix K ∈ Rn×n is a model of similarity in which

Kij = k (xi, xj) for i, j = 1, 2, ..., n; thus, K models similarity amongst all objects in question.

Learning such a model is practically useful. Much like having a valid kernel function eliminates

the need to explicitly define a mapping function φ, learning a valid kernel matrix directly eliminates

the need to define a specific kernel function k. The only two requirements for K to be a valid

kernel matrix is that it must be symmetric (Kij = Kji) and PSD (K � 0). A special case of this

is the correlation matrix, which imposes the additional constraint that the diagonal entries are one

(Kii = 1 for i = 1, 2, ...n). Such a constraint means that the objects in the inner product space

induced by K are normal. As a result, the entries of a correlation matrix are equivalent to the cosine

similarity among objects. In addition, the Euclidean distance between objects inH can be defined

with simple operations on the elements of K:

dK (xi, xj) =
√

Kii + Kjj − 2Kij (2.12)

This comes directly as a consequence of construction of K, the definition of k as an canonical inner

product, and (2.9).

2.3 FORMS OF HUMAN FEEDBACK AND THEIR APPLICATIONS

The mathematical constructs used to model similarity are only one component in modeling human

notions of similarity. Another component is the feedback used to learn these models. Humans are

16

able to convey how they view the relationships among objects in many different ways. Because

of this, feedback can take different forms that impart different kinds of information about object

relationships. In this section, we compare and contrast some of the most widely-used forms

of human feedback in terms of the similarity-learning challenge categories. More specifically,

different forms are more expressive than others, affecting model effectiveness. Some forms give

less information per query, thus having an impact on human efficiency. Finally, humans have the

ability to provide certain kinds of feedback more easily than others, clearly influencing human

effectiveness. Note that other forms of feedback exist that are not explicitly mentioned in this

section. We limit the discussion to a sampling of the most popular forms, but much of the analysis

performed here can be applied easily to those not included in this dissertation.

For a more formal viewpoint, first let Q = {q1, q2, ..., qm} be a set of queries, and R =

{r1, r2, ..., rm} be a set of valid responses. Though we refer to them as responses to emphasize

the fact that they are how humans respond to queries, a name for elements inR more common to

supervised learning settings is supervision. We use the terms interchangeably. We can view humans

providing feedback as a function f : Q → R, and a set of human feedback to be pairs of queries and

their corresponding responses {(q1, r1) , (q2, r2) , ...}. Indeed, the goal of many similarity-learning

applications is to estimate f by learning model M using a set of obtained feedback and a predefined

way of answering queries f̂M . Different forms of feedback are defined by the queries that can be

asked Q, the valid responses to those queriesR, and the interpretation of f . The space of queries is

defined by the number of objects considered in a single query. For instance, let X = {x1, x2, ..., xn}

be a collection of objects. Label feedback asks queries about single objects, which we denote

Q = Q1 = X . For pair-wise feedback, Q = Q2 = X × X , and so forth. Each of the following

subsections discuss forms of feedback with a different choice for Q.

2.3.1 Labels

The most basic form of feedback humans can provide is judgments on single objects, whose

responses are commonly called labels. A class label indicates that an object is the member of a

discrete category, i.e., f (xi) = ri ∈ {C1, C2, ...Cc}. Class labels are one of the most studied forms

of feedback, as they are the supervision considered in classification, a problem studied as early as

17

the 1930s [48] with entire textbooks dedicated to the subject [93, 38]. When c = 2, class labels are

called binary labels, which typically indicate the presence or absence of a characteristic. When

c > 2, then the labels are called multi-class labels. Another special case is when a single object has

multiple labels [137], for which classification methods are often called multi-label classifiers.

Labels can also be real-valued (yi ∈ R). Supervised learning techniques that use real-valued

labels are regression methods, which have an even longer history than classification methods

[82, 51]. Important special cases of regression labels can be created by restricting their domains. For

instance, regression labels can have a probabilistic interpretation by restricting the labels to [0, 1].

Also, ordinal labels [89, 49] are values on on an arbitrary scale where only the relative ordering

of the labels is considered significant. For example, if yi < yj , then this implies that xi ≺ xj

(interpreted as “precedes”) in a total ordering, or ranking of objects. This differs from traditional

regression labels in that the exact difference between yi and yj is considered meaningless.

Of those listed in this section, the two kinds of labels classically used to obtain human feedback

are class and ordinal labels. Class labels obtained from humans have been used in a variety of

applications, ranging from perceptual tasks such as object recognition [36, 42, 46] to expert tasks

like medical diagnosis [71, 107, 127], or bird call [2], leaf [77], and music genre classification

[140]. There has even been work where human-perceptual class labels are used to mimic domain

expertise [18]. As for ordinal labels, most recent usage has been in point-wise learning to rank

techniques [32, 125, 27]. Here, the ordinal categories are meant to convey a human’s preference of

the objects. As such, learning to rank techniques are motivated by applications where the goal is to

model human preference, such as document retrieval or collaborative filtering.

In all these works, the labels are obtained for the sole purpose of learning an inference model to

predict the label of unseen objects, i,e, they aim to find f̂M : X → R that estimates f . However,

recently there has been work to prompt humans for mid-level binary attributes [47, 79, 45, 103]

whose purpose is to describe objects. The reason attributes are described as “mid-level” is that

they are meant to represent concepts more abstract than what is typically reflected in features

extracted from raw data, but less abstract than higher level concepts commonly represented by class

labels. For instance, when describing images of scenes, features drawn from images of the scene

can capture information about the color and shape of objects within the scenes. Binary attributes

obtained from humans can describe more abstract concepts such whether scenes appear “cold”,

18

“man-made”, and/or “enclosed”. These human-perceptual attributes can be incorporated into a

similarity model that can then be used in tasks where perception is valuable.

2.3.2 Pair-wise Feedback

Humans can provide pair-wise feedback by considering two objects at a time, i.e. f (qi = (xa, xb)) =

ri. For some forms of pair-wise feedback, it is assumed that queries are symmetric, meaning

f (xa, xb) = f (xb, xa). This is the case in pair-wise similarity/dissimilarity assessments. Here, it is

assumed that pairs of objects belong to one of two classes: similar pairs of objects S , or dissimilar

pairs of objects D. A response ri indicates whether (xa, xb) ∈ S or (xa, xb) ∈ D for xa 6= xb. As

such, ri can be seen as a binary class label over pairs of objects. In a more practical sense, this form

of feedback is most commonly used to indicate whether pairs of objects are members of the same

cluster or not [146, 156, 9]. This allows for “human in the loop” clustering [44], where a human is

shown a visualization of the objects organized into clusters. Then, the human can provide feedback

indicating where the clustering is wrong by indicating examples of similar and dissimilar pairs not

reflected by the current clustering.

Pair-wise feedback can also be relative. Like with similarity/dissimilarity assessments, relative

pair-wise responses can be viewed as binary labels applied to pairs of objects. In this case, however,

responses indicate whether xa ≺ xb or xa � xb in a total order or ranking of objects. As a result,

relative pair-wise feedback is asymmetric. Note that though this form of feedback is meant to

convey information similar to ordinal labels, it only conveys a relative assessment of the ordering of

two objects rather than the exact position of either object in the total ordering. Due to this, learning

to rank methods that use this form of feedback are commonly categorized separately from those use

ordinal labels [113, 68, 50, 19, 20].

As with labels, pair-wise feedback can convey mid-level attribute information. In this case,

however, attributes are given in a relative fashion. Instead of describing the presence or absence

of an attribute, a relative attribute [102, 72, 13] describes to what degree the object expresses the

attribute relative to other objects. For example, an attribute can indicate that an image of Pittsburgh,

Pennsylvania is “cold”, but relative attributes can indicate that Pittsburgh is “colder” than Miami,

Florida, but “warmer” than Antarctica. This can be viewed as ranking objects according to attributes

19

𝑥𝑎 𝑥𝑏 𝑥𝑐
𝑥𝑎 ≺ 𝑥𝑏 𝑥𝑏 ≺ 𝑥𝑐

(a) Pair-wise

𝑥𝑎 , 𝑥𝑏 𝑥𝑎 , 𝑥𝑐 𝑥𝑎 , 𝑥𝑑
(𝑎, 𝑏, 𝑐) (𝑎, 𝑐, 𝑑)

(b) Triplet

Figure 2: Directed graph depictions of relative feedback

rather than applying binary labels to them.

Two key ways pair-wise feedback differs from unary feedback are in concepts of implied and

conflicting responses. Intrinsic in the nature of pair-wise feedback is the ability to identify when a

response is implied through previous feedback and when a set of responses cannot all be true. For

instance, a person providing similarity/dissimilarity assessments could respond that objects xa and

xb and similar and that xb and xc are similar, i.e. (xa, xb) , (xb, xc) ∈ S. Through these responses

it is implied that (xa, xc) ∈ S, meaning we already know the answer to the query asking whether

xa and xc are similar or dissimilar. If the person gives a response (xa, xc) ∈ D, then, this clearly

creates a contradiction with the previous responses. For labels, without other information about the

objects or model assumptions (e.g. classes are linearly separable) it is impossible to tell whether the

responses contain conflicts or if certain feedback is unnecessary.

We can draw these conclusions by assuming that similarity, and conversely distance, between

objects is metric and follows the properties of metrics. Specifically in this case, we leverage the

triangle equality to imply certain responses by transitive relationship among objects. A more

illustrative example of this is looking at pair-wise ordinal feedback as a directed graph. In this case,

vertices are objects and directed edges indicates the “precedes” relationship. Figure 2a illustrates an

example with three objects where responses xa ≺ xb and xb ≺ xc. The response xa ≺ xc is implied,

20

and xa � xc would conflict with the other responses. The idea of forms of feedback possibly having

redundant or conflicting responses is useful in comparing it to other forms, which we will discuss in

Sec. 2.3.4.

2.3.3 Relative Triplet Feedback

The idea of relative pair-wise feedback can be expanded to more than two objects. When three

objects are considered they form relative triplet feedback. Triplet feedback can be positive or

negative. Positive triplet feedback is meant to communicate how the similarity between one pair of

objects compares to the similarity of another pair. In English, a positive triplet query is a question

of the form “Is object xa more similar to object xb than it is to object xc?”. Notationally, we define

a positive triplet query as a tuple (a, {b, c}), where xa is the head of the triplet being compared to a

pair of objects xb and xc. The response to such a query is either b or c. For ease of discussion, we

denote triplet feedback (the query and response together) as a triplet. For instance, the response “a

is more similar to b than it is to c” implies the query (a, {b, c}) was asked, thus we can represent

triplet feedback as simply (a, b, c). Note the subtle notational difference from queries in that b and c

here are ordered in the feedback triple to indicate which was chosen.

Negative triplet queries are questions of the form: “Which one of these three objects, xa, xb,

and xc is different than the other two?”, and the response is any of the three objects. Much like the

positive form, negative triplet feedback gives relationships among each pair of objects. For instance

if xa, xb, and xc are being compared and a human chooses xc, this can be interpreted that xa and xb

are more similar than both xa and xc, and xb and xc. Thus, a single unit of negative feedback gives

two positive triplet responses: (a, b, c) and (b, a, c).

Two other special cases of triplet feedback include quadruplets, which use queries of the form:

“Which pair of objects, xi and xj or xk and xl are more similar?”, and multi-triplets, which ask

humans to select all objects from a set that are similar or dissimilar to each other. All of these forms

of triplet feedback are closely related. Note that many works using either negative triplet feedback

[59, 35, 5] or multi-triplets [155] effectively distill their forms to positive triplet feedback. Positive

triplet feedback itself is a special case of quadruplet feedback in which the two pairs being compared

share a common object. As a result, methods that use quadruplet feedback [74, 4, 141] can often

21

easily me applied to scenarios where positive triplet feedback is obtained. For ease of discussion

going forward, we limit ourselves to positive triplet feedback (henceforth, simply “triplet feedback”)

and note that much of the discussion and the techniques in the remainder of this dissertation can be

extended to these other cases.

Triplet feedback is powerful in that it can impart similarity information in a general sense.

Almost all forms of feedback require context for humans to provide it. Class labels need names so

humans know how to categorize objects. Pair-wise relative feedback requires a context in which

objects are ranked, such as relevancy to a query if the objects are documents, or a named attribute if

relative attributes are trying to be learned. Triplet feedback requires no context and solely relies on

a person’s ability to make relative assessments about how she views the objects in a general sense.

As a result, triplet feedback can be used in many different applications including semi-supervised

clustering [5], density estimation [141], and even to identify multiple unnamed attributes [6]. More

commonly, however, triplet feedback is used to learn general models of similarity that simply capture

how humans perceive objects [4, 132, 91, 143]. It it for this reason that the methods presented in

this dissertation use triplet feedback to learn perceptual models of similarity.

As with relative pair-wise feedback, triplet feedback can conflict or be implied. If responses

(a, b, c) and (a, c, d) are given then (a, b, d) is implied and (a, d, b) would conflict. Also like pair-

wise feedback, triplet feedback can be represented as a directed graph [91]. We illustrate an example

of a triplet graph in Fig. 2b. Here, a node in the graph represents a pair of objects while a directed

edge represents a triplet response, or a “more similar than” relationship. Besides the interpretation

of nodes and edges, the difference between pair-wise and triplet graphs is in how valid edges are

defined. In a pair-wise graph, a valid edge can be drawn between any two nodes. In a triplet graph,

only nodes with a common object can have an edge between them, as a unit of triplet feedback

requires a single single “head” object. This implies that triplets allow not for a total ordering of the

pair-wise similarity between objects, but a partial ordering.

2.3.4 Comparison of Forms

Clearly, different forms of feedback are meant to convey different kinds of information. Yet, the

differences between the forms affect more than the information content within responses. These

22

𝑥𝑖 ∶ 𝑟𝑖 = 0 𝑥𝑗: 𝑟𝑗 = 1

?

(a) Binary Labels

𝑥𝑎

𝑟𝑎 = 1.3

𝑥𝑏

𝑟𝑏 = 2.9

𝑥𝑐

𝑟𝑐 = 7.1

1.6 4.2

(b) Regression Labels

SimilarSimilar

?

Similar

(c) Pair-wise Similarity/Dissimilarity Assessments

𝑥𝑎 𝑥𝑎 ≺ 𝑥𝑏
𝑥𝑏 𝑥𝑏 ≺ 𝑥𝑐

𝑥𝑐

(d) Relative Pairs

𝑥𝑎 𝑥𝑏 𝑥𝑐

(𝑎, 𝑏, 𝑐)
(𝑏, 𝑎, 𝑐)
(𝑐, 𝑏, 𝑎)

(e) Relative Triplets (3 objects)

𝑥𝑎

𝑥𝑏

𝑥𝑐

𝑥𝑑

𝑎, 𝑏, 𝑐
𝑎, 𝑑, 𝑏
𝑎, 𝑑, 𝑐
𝑏, 𝑐, 𝑎
𝑏, 𝑐, 𝑑
𝑏, 𝑎, 𝑑
𝑐, 𝑏, 𝑎
𝑐, 𝑑, 𝑎
𝑐, 𝑏, 𝑑
𝑑, 𝑎, 𝑏
𝑑, 𝑐, 𝑏
𝑑, 𝑎, 𝑐

(f) Relative Triplets (4 objects)

Figure 3: Example object embeddings using different forms of feedback

differences must be considered when obtaining feedback for practical applications. In this section,

we compare and contrast each form of feedback in terms of three of the four challenge categories in

23

learning models of similarity. Note that computational efficiency is not a good metric in which to

compare forms of feedback as it is largely dependent on the learning algorithms themselves.

2.3.4.1 Model Effectiveness A form of feedback’s model effectiveness can be more succinctly

described as its expressiveness. While certain forms are meant to convey a particular kind of

information, others may be able to express more complex relationships among objects. If a task

requires an intricate model of similarity, then prompting humans for simple forms of feedback may

not be appropriate. To guide our discussion on expressiveness, we view forms of feedback in terms

of learning a particular models of similarity called object embeddings. An embedding of objects

is a placement of each object in a d-dimensional real space where common Euclidean notions of

distance and similarity can be used. An object’s placement in the space is entirely determined by the

feedback given over it. As such, embeddings can faithfully reflect given feedback without biasing

the model to common external factors, such as an assumed feature representation. Even so, these

models are not perfect, as certain forms do not provide information regarding relationships, thus

the embeddings must make certain assumptions. In practice, it is up to the embedding-learning

methods themselves how to reconcile this lack of information in the learned embedding. For our

comparisons, we remark when this is the case and use it to discuss the expressiveness of the models.

Figure 3 shows a number of object embeddings that reflect different sets of feedback of different

forms. The most simple forms are those that express a categorical relationship among objects:

class (including binary) labels, and pair-wise similarity/dissimilarity assessments. In our examples,

objects expressed as similar or of the same class are positioned on exactly the same point, which we

display in the figures as plates over unlabled points. Objects of different categories are embedded as

different points. However, other embedddings that reflect the given feedback are possible. How pairs

of objects in different categories or within the same category compare to each other is not expressed.

In terms of embedding objects, this means that the distance between objects of different categories

should be greater than those of the same category, but the exact distances are unknown. In fact, Fig.

3c shows a two-dimensional embedding from pair-wise similarity/dissimilarity assessments, but an

accurate one dimensional embedding, as in Fig. 3a, is also possible.

All other embeddings depicted in Fig. 3 must position individual objects with nonzero distance

between them to faithfully reflect their respective sets of feedback. Regression labels allow for

24

exact distances between objects to be known in the embedding (Fig. 3b). For the relative forms,

the exact distance between objects is not known because their relationships are relative. In Fig. 3d,

the feedback dictates that xa precedes xb in a total ordering, but information defining exactly how

similar those two objects are is not given. Thus, the embedding that reflects the total ordering of

objects can reflect the total ordering of objects, but must assume some distance between xa and xb.

This is also true for relative triplet feedback. However, as more objects are sampled and feedback

given, the number of constraints on pair-wise distances between objects increase. As a result, the

distances between pairs of objects becomes more defined [126].

Possibly the most important factor when discussing expressiveness is the dimensionality of the

spaces for which a form is able to convey. All embeddings can accurately reflect their respective

given feedback in one dimension: Regression labels simply indicate position on the real-number

line, relative pairs indicate relative position in a single-dimensional total ordering, etc. The only one

that cannot be accurately captured in one dimension is the triplet responses in 3f. There does not

exist a one dimensional embedding for which every triplet response on the right can be reflected

in the embedding (e.g. for (a, b, c) objects a and b should be closer together than a and c). As

a result, if the true notion of similarity trying to be gained is multidimensional, relative triplets

are the only one of these forms that can express multidimensional relationships. This is not to

say that other forms cannot be modified to convey multidimensional similarity. Multiple binary

or regression labels or relative pair-wise comparisons across multiple dimensions can be used to

describe multidimensional spaces, but it requires putting names to the specific labels or comparisons.

For instance, multiple, different relative attributes can be found over a given set of scenes, such as

“warmth” or “plant growth”, but these individual attributes require names so humans have context

for which comparisons can be made. Relative triplet feedback need not name the kind of similarity

trying to be gained. As a result, if perceptual similarity is trying to be obtained from humans without

biasing them to specific attributes, then relative triplets can be used.

2.3.4.2 Human Efficiency Informally, human efficiency for a form of feedback is the amount

of information contained in a response. If humans can entirely describe a desired model of similarity

by only answering a few queries of a particular form, then that form of feedback is considered

human efficient. Unfortunately, because forms convey relationships of different complexity, they

25

are not directly comparable. Nevertheless, we attempt to compare each form in terms of human

effectiveness, while introducing some alternative forms that could be more efficient, but have high

impact on human effectiveness (discussed next section).

We compare each form by the total number of unique queries can be asked when procuring

feedback over n objects. As a result, we consider forms over fewer objects per unit of feedback to

be more human efficient. Labels are the most efficient of the forms of feedback discussed, requiring

only n queries to be responded to in order to obtain a complete set of responses. Symmetric

pair-wise feedback requires
(
n
2

)
queries, and asymmetric pair-wise feedback requires n!/ (n− 2)!;

both of which are O (n2). Finally relative, triplet feedback requires n ∗
(
n−1

2

)
= O (n3) queries

(each head object can be compared to two other unique objects).

While this metric of comparison sheds some light onto the human efficiency of different forms,

it does not tell the whole story. While pair-wise and triplet feedback has many more potential

queries than labels, many responses can be redundant. As stated previously, some sets of pair-wise

and triplet responses imply other responses without having to pose those queries to a human. As

a result, the number of queries needed to be asked in order to obtain a complete set of responses

can be less than the total number possible. For example, finding a total ordering using pair-wise

relative comparisons is known to require only O (n ∗ logn) units of feedback in the worst case [70].

Similar reasoning can be used for triplet feedback. Triplet feedback can be seen as an ordering with

respect to a single object of all other objects. In other words, it is n separate orderings of n − 1

objects. Because of this, finding a partial ordering that satisfies a complete set of triplet feedback

using comparison-based sorting techniques requires only O (n2 ∗ logn) units of feedback in the

worst case.

The relative forms of feedback are clearly less human efficient than labels, though they have

benefits in terms of model effectiveness. This provokes the question: Are there forms that have the

expressiveness of relative feedback, while being more efficient? To answer this, consider instead of

comparing pairs of objects to each other as in relative triplets, simply asking exactly how different

two objects are. We will call this form quantitative pair-wise feedback. This from can still be used

to elicit multidimensional models of similarity, but requires asking only O (n2) queries to obtain a

complete set of responses. Furthermore, quantitative pair-wise feedback can be interpreted as an

exact measure of distance, eliminating any ambiguity in pair-wise distances between objects. In the

26

?

(a) Quantitative pair-wise query

?

(b) Relative triplet query

Figure 4: Direct quantitative query vs. relative query

next section, we discuss why prompting humans for exact, quantitative assessments about similarity

can have practical issues, despite being otherwise attractive.

2.3.4.3 Human Effectiveness We define the human effectiveness of a form of feedback as the

ease in which humans can answer queries of that form. If humans find queries to be easy to answer,

then their responses contain more accurate information. While this particular challenge is more

qualitative than quantitative, human effectiveness can be studied in a larger sense by what tasks

27

humans tend to find easy, and which they find difficult; A problem studied in cognitive psychology.

Previous work [28] suggests that humans naturally categorize objects when they reason about them.

As such, feedback that requires humans to reason about objects in a categorical sense (class labels,

pairwise similarity assessments), tend to be easier for humans to respond to.

Also, humans tend to find relative assessments of objects easier to provide than exact, quantita-

tive ones [135, 130]. As a result, relative feedback is much easier to provide than exact measure of

similarity or distance. Consider, again, quantitative pair-wise feedback. In Fig. 4a, there are pictures

of an emu and an ostrich. A quantitative pair-wise query would ask a human for a number, either

discrete or real on a scale, of how similar the two images are. Such a query may be difficult for a

human to answer because of the many factors involved in how she compares birds. In Fig. 4b, there

is a depiction of a relative triplet query. A human would most likely be able to answer this query

with more ease because it requires her to compare two pair-wise similarities relative to each other.

In addition, quantitative pair-wise feedback can be difficult for humans because they may not

have the correct idea of the domain of objects. Assume the first query posed to a human is the

one illustrated in Fig. 4a. If the human thinks the task is comparing animals, or birds, she could

give a response indicating the images are very similar. However, if the domain of images is all

ostriches and one emu, then she may have answered this query differently. Conversely, because

relative triplet feedback can ground the response relatively, order of queries or knowledge of the

domain is much less of a factor in the responses a human can provide. Therefore, responses could

be more consistent. A similar argument can be made for relative pair-wise feedback versus ordinal

labels. A human may find providing the exact positioning of an object in the total ordering to be

challenging without knowledge of other objects. Because of this, ordinal labels may be difficult for

humans to provide compared to relative pair-wise feedback.

2.3.4.4 Summary To summarize the strengths and weaknesses of each form of feedback dis-

cussed in this section:

Class Labels

+ O(n) unique queries

+ Asks for categorical information, which is often easy for humans to provide

28

- Cannot express information about the relationship between categories or objects within the

same category

- Limited to modeling categories

Ordinal Labels

+ O(n) unique queries

+ Can convey ordering information

- Exact position of an object can be difficult for humans to provide without knowledge of all

other objects

- Limited to conveying single dimensional relationships among objects

Pair-wise similarity/dissimilarity feedback

+ Asks for categorical information, which is often easy for humans to provide

+ Can be used to find clustering or unnamed classes of objects

- O (n2) unique queries

- Cannot express information about the relationship between categories or objects within the

same category

Relative pair-wise feedback

+ Asks for relative information, which is often easy for humans to provide

+ Can convey ordering information

- O (n2) unique queries

- Limited to conveying single dimensional relationships among objects

Relative triplet feedback

+ Asks for relative information, which is often easy for humans to provide

+ Can convey multidimensional relationships among objects

- O (n3) unique queries

- Does not exactly convey pair-wise similarity, only defines it relatively

29

2.4 SIMILARITY-LEARNING SETTINGS

Now that we have discussed both the input (forms of feedback) and the output (models of similarity)

of our problem, we can discuss the settings in which similarity-learning methods can act. Specifically,

we discuss learning settings defined by two characteristics. The first concerns itself with how

feedback is obtained for learning a model: all at once, or in small amounts at a time. The second

separates learning settings where feedback is obtained at random, as opposed to settings where the

learner is able to choose which queries humans are to respond to.

2.4.1 Batch versus Online Learning

Traditionally in machine learning, data collection is assumed to be a separate step from learning a

model from the data. As a result, the majority of machine learning applications consider feedback

or supervision to be obtained in batch. Figure 5a depicts the batch learning process. Here, it is

assumed that all feedback to learn a model is available at a single point in time, namely train time.

At train time, all feedback {(q1, r1) , (q2, r2) , ..., (qn, rn)} is used as a train set D ⊂ Q×R to be

used as the input to a learning algorithm, which in turn produces a learned model M . Generally

speaking, the model should in some way reflect the given feedback, and can then be used in the

application it was made for. For instance, if the goal is to learn a function f̂ that estimates f , then a

learned model M can be a component in such a function, i.e f̂M : Q → R. In Secs. 3.1 and 3.2 we

discuss how this is done for a variety of tasks and models of similarity.

However, in many real-world problems, feedback is being obtained continuously, and models

learned from feedback must be updated as feedback is obtained. This is the setting in which online

learning methods act. We illustrate online learning in Fig. 5b. Here, the plates around components

of the diagram indicate iteration. In this setting, the goal is to update a learned model as feedback is

continuously being obtained. More specifically, at each time step t, a single unit of feedback (qt, rt)

is given, and an updated model Mt is produced. Such a model should not only reflect feedback

obtained at time t, but also all that which was previously obtained. The hope is that Mt is at least

as accurate as using all t responses as a training set in batch learning. In the simplest case at time

t, a single unit of feedback, and the model from the previous time step t − 1 are used as input

30

𝑀
Batch

Learning
Method

𝑞1, 𝑟1
𝑞2, 𝑟2

𝑞𝑛, 𝑟𝑛

…

(a) Batch Learning

𝑀𝑡

Online
Learning
Method

𝑞𝑡, 𝑟𝑡

(b) Online Learning

𝑀𝑡

Mini-
Batch

Learning
Method

𝑞𝑡, 𝑟𝑡

𝑞𝑡1 , 𝑟𝑡1
𝑞𝑡2 , 𝑟𝑡2

𝑞𝑡𝑚 , 𝑟𝑡𝑚

…

(c) Mini-Batch Learning

Figure 5: Batch, online, and mini-batch learning settings

31

to an online learning method. The model produced by the learning method should then contain

information from the previous model as well as the most recent feedback.

Online learning is attractive for multiple reasons. Online methods tend to be simple with fast,

easy to implement updates. By virtue of this, they can be utilized to quickly create up-to-date

models in applications where feedback is obtained in a streaming fashion, which are many (spam

filters, stock market readings, human-computer interactions, etc.). Also because of their simplicity,

online learning methods tend to be amenable to analysis, resulting in many theoretical guarantees.

Theoretical work typically studies online learning using regret analysis, which defines online

learning slightly differently than we do in this work. Because this dissertation is focused more on

the practical application of online methods we defer to the following references for discussion of

online learning methods under the lens of regret analysis [21, 120].

Mini-batch learning can be seen as a compromise between the two extremes of batch and online

learning, and is shown in Fig. 5c. In this case, feedback is continuously being obtained in small sets

or “mini-batches” of m units. As such, it is very similar to the online case, but instead of individual

units of feedback obtained at each time step, multiple units are provided.

2.4.1.1 Batch versus Stochastic Gradient Methods A particularly popular class of learning

methods that can be used for either batch, mini-batch, or online problem settings are gradient

descent methods. Consider, again, the case where we wish to estimate f by learning M to be used

in f̂M . In the batch gradient case, M is found by optimizing an objective over all training feedback.

The objective is often formulated as a loss function that measures how well f̂M fits to the training

data:

L
(
f̂M ,D

)
=

∑
(qi,ri)∈D

l
(
f̂M (qi) , ri

)
(2.13)

In this case, the loss function over all training data is the sum of the loss l with respect to individual

training samples of feedback. Batch gradient descent procedures minimize the loss L by performing

the following updates until a convergence criterion is met:

Mi ←Mi−1 − δi ∗ ∇L
(
f̂Mi−1

,D
)

(2.14)

where δ is the learning rate or step size. By performing these updates, batch gradient descent

procedures are minimizing the empirical risk of prediction on the training set. Empirical risk is

32

meant to approximate the risk over the true distribution of feedback P (Q,R):

R
(
f̂M , L,Q,R

)
=

∫
q∈Q

∫
r∈R

l
(
f̂M (q) , r

)
P (q, r) dqdr (2.15)

The conditions in which empirical risk is a good approximation for (2.15), known as expected risk,

are outlined by VC-theory [144].

In contrast to batch gradient methods, stochastic gradient methods [110] perform updates using

the loss function defined for a single unit of feedback (qt, rt):

Mt ←Mt−1 − δt ∗ ∇l
(
f̂Mt−1 (qt) , rt

)
(2.16)

For batch learning, single units of feedback are randomly chosen from the training set and used to

update the model repeatedly until convergence. However, because updates are defined over single

units of feedback, they can be applied as feedback is obtained in an online fashion. While this is a

clear benefit over batch gradient optimization for the online learning setting, stochastic methods

enjoy other benefits in general. By performing updates without reference to a particular training set,

stochastic gradient methods can be viewed as updating a model by taking individual samples from

the distribution P (Q,R). The average stochastic update, then, directly minimizes expected risk,

not approximating it as with empirical risk. However, convergence to the minimum expected risk is

highly dependent on the step size δt. In practice, the step size is a function of the number of steps

taken. Specifically, δt ← O
(√

t
)

is a popular choice as it enjoys various convergence guarantees for

objectives with different properties [15, 96, 3, 121, 7]. Part of these guarantees assume that some

form of averaging takes place. Possibly the simplest way to perform this in practice is to revisit

previously obtained feedback periodically by randomly sampling from the set of obtained feedback

and updating with these samples as well as new feedback, as it is obtained. In short, one can achieve

an averaging effect in practice by performing the update in (2.16) with feedback as it is obtained,

but also randomly updating using samples from the pool of feedback obtained in previous steps.

Both batch and stochastic gradient methods can be applied to mini-batches of feedback, creating

mini-batch gradient descent methods. At time t, the new mini-batch of feedback can be combined

with all previous mini-batches to make a single train set on which batch methods can be run.

Similarly, the mini-batch obtained at time t can be incorporated into the model by taking stochastic

steps with respect to each individual unit of feedback within the mini-batch. Only recently has there

been gradient methods developed specifically for the mini-batch learning setting [30, 131, 85].

33

𝑞1
𝑞2

𝑞𝑛

…

𝑞1, 𝑟1
𝑞2, 𝑟2

𝑞𝑛, 𝑟𝑛

…
Learning
Method 𝑀

(a) Random query selection

𝑞𝑡1
𝑞𝑡2

𝑞𝑡𝑚

…

𝑀𝑡

𝑄

Active
Selection
Method

Learning
Method

𝑞𝑡1 , 𝑟𝑡1
𝑞𝑡2 , 𝑟𝑡2

𝑞𝑡𝑚 , 𝑟𝑡𝑚

…

(b) Active query selection

Figure 6: Random versus active query selection

34

2.4.2 Random versus Active Learning

The batch/mini-batch/online setting effectively determines “how much” feedback is received at

a time. These settings, however, do not describe “which” feedback is received. In most cases,

which queries are posed to a human are determined before a model is learned. Because of this,

most methods assume that feedback is sampled at random from the distribution P (Q,R). Figure

6a shows this in more detail. In batch learning, a set of predefined training queries are posed to

a human, which she answers. This feedback is used to train a model. Note that the batch case is

pictured, but this can easily applied to the online or mini-batch case where single or mini-batches of

randomly-selected queries are iteratively posed to a human for responses.

However, the number of possible queries that can be posed to a human is high in many domains.

Many of which contain redundant or unimportant information for a learning task. If the learner

is able to choose which queries are “most informative” for learning from a pool of possible

queries, then it could require less feedback to learn an accurate model, effectively increasing human

efficiency. This is the motivation behind pool-based active learning. We show an example of

pool-based active learning in Fig. 6b. Here, after an initial set of m queries are answered and the

resulting feedback is used to train a model, an active selection method considers the current model

as well as a pool of possible queries that can be posed to a human. With this information, the active

selection method produces the next round of queries that can potentially be most informative in

learning Mt+1. We say this is an example of pool-based active learning as there are many variations

of this process. For instance, the active selection method may also consider which queries were

already asked or the specific method that produced Mt to determine the next round of queries. Also,

m can be set to one to more closely resemble the online learning case.

Where active selection methods primarily differ from one another is in the criteria they use

to determine the informativeness of a query. Active selection strategies range from maintaining a

committee of learned models and choosing the queries in which most models disagree in prediction

[119, 33, 88], to choosing queries that maximally reduce error in expectation [112, 159, 54] to

selecting queries that result in the biggest change in the model from the previous iteration in

expectation [118]. The most popular active selection strategy is uncertainty sampling [84, 83, 136].

These methods score each query about how uncertain the current model is in its prediction of how

35

the human will respond to it. Consider the case where f̂M has a probabilistic interpretation, namely,

that it induces well-defined probabilities Pf̂M (r|q) for all responses and queries in their respective

domains. With such probabilities one can define various measures of how uncertain f̂M is in a query

q. Possibly the most well-known measure of uncertainty is Shannon entropy [124]:

Hf̂M
(q) = −

∑
r

Pf̂M (r|q) log
(
Pf̂M (r|q)

)
(2.17)

Here, the sum is over all r such that r is a valid response to query q. This assumes the likely

case where there are a discrete number of valid responses r for a given query q. If responses are

continuous, then the entropy of a query q is defined as:

Hf̂M
(q) = −

∫
r

Pf̂M (r|q) log
(
Pf̂M (r|q)

)
dr (2.18)

Armed with such a powerful measure, active learning methods can be created for any models for

which Pf̂M (r|q) can be defined by simply scoring all queries in the pool according to (2.17), and

choose the one(s) with the highest entropy given the current model. In practice, this can be difficult

if there are a high number of queries or valid responses to queries. In these cases, more thoughtful

methods than brute force scoring of all queries must be developed.

On a final note, pool-based active learning is only one of many active learning settings, and is

reviewed here as a means to provide a basis for our active learning method in Chap. 4. For further

review on other other active learning settings, as well as a more comprehensive survey of methods

and their theoretical guarantees, see [117].

36

3.0 RELATED WORK

In this chapter, we build off of the concepts introduced in Chap. 2, and review specific previous

works that are related to that which is presented in the remainder of this dissertation. We begin with

a survey various methods in metric learning, highlighting those most relevant to this dissertation.

Then, we transition to methods that learn kernels, namely those in Multiple Kernel Learning and

Non-Parametric Kernel Learning. Finally, we discuss relevant work in online and active learning.

3.1 METRIC LEARNING

Metric learning methods learn a generalized Mahalanobis distance metric from feedback about

objects. Different metric learning methods have been developed for different forms of information

describing objects pair-wise similarity/dissimilarity assessments [156], relative pair-wise compar-

isons [116], and general linear constraints [34], just to name a few. Here, we review two methods

that influenced the development of our metric learning method in Chap. 6. For more comprehensive

review on metric learning methods and their applications, see [157, 75, 10].

3.1.1 Large Margin Nearest Neighbors

Large Margin Nearest Neighbor (LMNN) [151, 152, 153] metric learning, as the name implies,

learns a metric from class labels for the purpose of nearest neighbor classification. LMNN distin-

guishes itself by being more efficient than its predecessors. Previous methods [156, 122, 52] used

objectives that consider distances between all pairs of objects. The key observation that motivates

LMNN is that for a kNN classifier to be accurate, only the closest objects to a query object needs to

37

be of the same class. With this in mind they formulated LMNN to be a semidefinite program (SDP)

that learns a metric such that the k closest neighbors to every training object are of the same class.

By limiting the scope of the optimization, training an LMNN metric is much faster in practice. Even

with the simplified learning procedure, LMNN achieves state-of-the-art classification performance.

For these reasons, LMNN has become a popular baseline in the metric learning community, and

many extensions to it have since been developed [105, 101, 69].

In practice, LMNN learns L using the the factorized metric shown in (2.6) squared, instead of

learning M as in (2.3). This effectively drops the PSD constraint in their optimization problem,

which is computationally expensive to maintain. The main drawback is that their objective, which

is convex in M is non-convex in L. Indeed, this trade-off is one that many metric learning methods

must face. Here though, the creators of LMNN show in their experiments that they are still able to

achieve high classification accuracy despite solving a non-convex optimization problem.

To motivate their formulation, the authors of LMNN introduce the concepts of target neighbors

and impostors for each object. Target neighbors to a training object are the k other training objects

with the same label that are the closest to it in terms of Euclidean distance in the original feature

space. Impostors are objects that do not have the same label that are closer to a training object than

its target neighbors. The objective of LMNN contains two terms: a “pull” energy that pulls target

neighbors toward each training object and a “push” energy that forces impostors away:

Epull (L) =
∑
j;i

d2
L (xi,xj) (3.1)

Epush (L) =
∑
i,j;i

∑
l

(1− yil)
[
1 + d2

L (xi,xj)− d2
L (xi,xl)

]
+

(3.2)

Here, j ; i indicates that xj is a target neighbor of xi, yil is 1 if xi and xl have the same class

label (0 otherwise). In this case, [·]+ is known as the hinge loss function for which loss is strictly

non-negative. LMNN minimizes the sum of the push and pull energy of all training objects via a

gradient descent procedure. In doing so, the distance between each training object and its target

neighbors is minimized (pull), and the distance between each training object and its impostors

is increased until the impostors are farther away from the training point than its target neighbors

(push) by a margin of one. Note that the set of impostors for an object may change as steps are

taken towards a solution. Normally, LMNN would need to find the new set of impostors after every

38

gradient step. The authors remark that in practice, the set of impostors changes little from step to

step. Because of this, they recompute the set of impostors after every couple of steps, reducing

computation time significantly.

3.1.2 Metric Learning for Kernel Regression

There are decidedly fewer metric learning methods developed for regression than classification.

However, Metric Learning for Kernel Regression (MLKR) [154] does, indeed, learn a metric from

real-valued labels. The goal in MLKR is to learn a kernel regressor, where a predicted label ŷi for

an object xi is defined as the weighted mean of the training objects:

ŷi =

∑
j 6=i yj ∗ k (xi,xj)∑

j 6=i k (xi, xj)
(3.3)

where yj is the label for object xj . The sum in both the numerator and the denominator is for all

training objects not including the one in which the label is predicted for. Essentially, an object’s

label is constructed by the labels of those most similar to itself. MLKR learns a Gaussian kernel

function k, as in (2.11), where the Euclidean distance is instead a factorized Mahalanobis distance,

as in (2.6), that is learned. Note, however, that the bandwidth parameter of the Gaussian kernel is

simply a scaling of the distance, which is a function of L. Because of this, the authors drop the

bandwidth from the kernel and instead learn the scaling through L.

Their optimization, which they solve via gradient descent, minimizes leave-one-out quadratic

regression error over training objects:

EMLKR (L) =
∑
i

(yi − ŷi)2 (3.4)

Here, both the predicted and true labels are real-valued, thus error in this case is a function of how

far off the predicted label is from the true label. MLKR is prohibitively computationally expensive

for problems with many objects due to the fact that the kernel must be computed at each gradient

step for all pairs of objects. However, the authors remark that they can take advantage of the fact

that the Gaussian kernel decays rapidly towards zero. As a result, the kernel function need only be

computed for a small subset of objects to closely approximate the exact solution.

39

3.2 KERNEL LEARNING

Mahalanobis distance metric learning methods, at their core, learn a linear transformation of objects

in a feature space into a metric space. Kernel-learning methods learn models of similarity that can be

more expressive than simple linear transformations. In this section, we discuss two kernel-learning

techniques that act under different assumptions: Multiple Kernel Learning and Non-Parametric

Kernel Learning. These two categories of kernel-learning methods show both the versatility of

kernels and different settings in which they can be used to learn a model of similarity. We finish this

section by surveying methods in a special case of Non-Parametic Kernel Learning called Relative

Comparison Kernel Learning where kernels are learned using relative triplet feedback.

3.2.1 Multiple Kernel Learning

In practice, the success of a kernel method depends heavily on the choice of kernel used. If a

linear kernel does not discriminate objects of different classes well, then a linear SVM will often

perform poorly. Often in practice, a kernel is chosen through some form of validation. This involves

applying a kernel function with a certain parameterization to training data, training a kernel method

with the result, and evaluating the resulting model on a held-out validation set. After numerous

kernel functions are evaluated, the one that performs the best on the validation set is used. Choosing

a kernel in such a way is both time consuming and can lead to sub optimal performance. A alternate

strategy is to consider a particular kernel function with a free parameter, such as the Gaussian kernel

with a bandwidth, and learn the parameter through some optimally criteria [22, 23, 26]. These

methods eliminate the need for manual validation, but separate the problem of finding the kernel

and the application in which the kernel is used. Also, these methods tend to restrict themselves to a

class of kernels with a particular form, while not considering other potential kernels.

Multiple Kernel Learning (MKL) methods [80, 8, 128, 106, 145, 53], on the other hand, attempt

to solve this problem by learning an appropriate kernel while simultaneously learning the model in

which it is to be used. MKL methods assume that there exist numerous predefined basis kernels

k1, k2, ..., kA that can be applied to objects. These kernels can be entirely different kernel functions

(e.g. linear kernel, polynomial kernel, Gaussian kernel, etc.), different parameterizations of kernel

40

functions (e.g. Gaussian kernels with different bandwidths), or kernel functions applied different

subsets of the object feature space. The benefit MKL methods offer is that different combinations of

a large number of basis kernels can represent a large class of kernel functions. MKL methods learn

the “optimal” kernel from this class using the same criteria used to learn the model for which the

kernel is used. For instance, if the kernel is meant to be used in a SVM classifier, an MKL method

would learn both the parameters of an SVM while learning the optimal kernel. If the same task were

to be accomplished by validation, it would require many iterations of validation.

In a sense, MKL methods eliminate problem of choosing the best single kernel, but create

another one: What combination, and thus, what class of kernels should be learned? While various

combinations have been proposed, the work discussed in this dissertation focuses on a conic

combination of basis kernels, which is defined as:

k (xi, xj) =
A∑
a=1

µaka (xi, xj)

s.t. µ ∈ RA
+

(3.5)

The parameter to be learned by an MKL method in this case is µ. Intuitively, kernels that are better

suited for the task will have a higher setting of their corresponding weight µa. Further intuition

can be gained by considering the resulting kernel mapping of the objects. Let φ1, φ2, ..., φA be the

A feature mappings that correspond to the basis kernels k1, k2, ..., kA. The conic combination of

kernels defined in (3.5) induces the following mapping [115]:

φ (xi) =
[√
µ1 ∗ φ1 (xi) ,

√
µ2 ∗ φ2 (xi) , ...,

√
µA ∗ φA (xi)

]
(3.6)

This is simply the weighted concatenation of the inner product spaces induced by each of the basis

kernels. Stated another way, by learning a conic combination, MKL methods implicitly learn an

embedding of the objects in a feature space that is composed of a scaling of different features.

41

3.2.2 Non-Parametric Kernel Matrix Learning

For many methods, defining k is sufficient for kernelization and there is no need to explicitly define

φ. Similarly, in scenarios where k only needs to be defined for a fixed set of objects, learning a

kernel matrix K is sufficient. For instance, clustering is often performed over a fixed set of observed

objects. Learning over a fixed set of objects is known as transductive learning, as opposed to

inductive learning which learns a model that can be applied to a domain of objects. The benefit

of inductive learning methods, such as Mahalanobis distance metric learning methods as well as

many MKL methods, is that they can be used to perform inference on objects not explicitly trained

on. Transductive methods cannot be applied to such out-of-sample objects, but because they limit

themselves to a specific set of objects, tend to enjoy much more freedom in modeling assumptions.

This transductive learning setting is the one in which non-parametric kernel learning (NPKL)

[78, 76, 63, 160] methods were created for. NPKL methods do not learn a kernel function k as many

MKL methods do, but the elements of a kernel matrix K directly. While NPKL methods cannot

learn a model of similarity for unobserved objects, they enjoy other benefits over techniques that

learn a kernel function or a metric. MKL and metric learning methods are limited to a class of kernel

functions or metrics that may not be able to model all desired relationships between objects. If the

elements of the matrix K are learned directly, the only constraint is that the learned kernel matrix

must be PSD. Indeed, learning a kernel matrix is equivalent to learning an embedding X ∈ Rn×d of

the objects, where each row is an object embedded in a d-dimensional space, such that K = XXT .

Thus, the only restriction placed on NPKL methods is that they must induce a d-dimensional

embedding of objects in an inner product space. Also as a result of their relationship to embeddings,

many NPKL methods can be defined as equivalent embedding-learning formulations.

3.2.2.1 Relative Comparison Kernel Learning Different NPKL methods are guided by dif-

ferent forms of information, including forms of feedback discussed in Sec. 2.3. Much of the

subsequent work in this document revolves around developing NPKL methods. More specifically,

in Chaps. 4 and 5 we study a special case of NPKL we call Relative Comparison Kernel Learning

(RCKL), which uses relative triplet feedback to learn a kernel matrix. Let T be a set of triplet

42

Algorithm 1 A Prototypical Batch RCKL Learning Algorithm
Input: T

1: K0 ← I

2: for i = 1, 2, 3, ... until convergence do
3: K′i ← Ki−1 − δt∇L (Ki−1, T) + λI

4: Ki = Π+ (K′i)

5: end for

responses, obtained from humans:

T = {(a, b, c)|xa is more similar to xb than xc} (3.7)

The goal of RCKL methods is to learn a kernel K, such that the relationships among objects given

by the triplets are modeled by K. More specifically:

∀(a,b,c)∈T : d2
K(xa, xb) < d2

K(xa, xc)

Where d2
K(xa, xb) = Kaa + Kbb − 2Kab

(3.8)

Much of the previous work in RCKL has focused on designing different loss functions that measure

a kernel’s ability to satisfy the constraints outlined in (3.8) for a given T . Many RCKL methods

attempt to learn a kernel by solving an optimization problem of the following form:

min
K

L(K, T) + λtrace(K)

s.t. K � 0,
(3.9)

The first term, L(K, T), is a function of the loss that the objective incurs for K not satisfying triplets

in T , which typically can be written as a sum of loss functions over individual triplets:

L(K, T) =
∑
t∈T

l (K, t) (3.10)

The second term regularizes K by its trace. Here, the trace is used as a convex approximation of

the non-convex rank function. The rank of K directly reflects the dimensionality of the embedding

of the objects inHK, the inner product space induced by K. A low setting of the hyperparameter

λ favors a more accurate embedding, while a high value prefers a lower rank kernel. The PSD

43

constraint ensures that K is a valid kernel matrix, and makes (3.9) an SDP over n2 variables. For

the remainder of this dissertation we will refer to (3.9) as traditional RCKL.

Most RCKL methods solve (3.9) via projected gradient descent in batch. A prototypical batch

RCKL procedure is outlined in Alg. 1. At each iteration of this procedure, a gradient step is taken

along in the descending direction of the objective (line 3). Then, the result of that step is projected

onto the PSD cone on line 4 using the projection procedure Π+. The computational bottleneck is in

the PSD projection, which is commonly defined as follows:

Π+ (K) = VK[ΛK]+VT
K (3.11)

Here, VK is a matrix consisting of eigenvectors of K as rows. The matrix ΛK has the eigenvalues

of K on the diagonal, and zeros elsewhere. Finally, [·]+ is taken element-wise, i.e [Λii
K]+ for

i = 1, ..., n. Succinctly put, the projection operator Π+ performs full eigendecomposition of K,

sets negative eigenvalues to zero, and then reconstructs K from the new eigenvalues and original

eigenvectors. Without prior assumptions on the structure of the gradient in Alg. 1, any number

of the eigenvalues of K′i can be negative. Thus, full eigendecomposition is necessary for the PSD

projection. Full eigendecomposition of a dense matrix is known to be a O (n3) operation [100].

Where many RCKL methods differ is in their choice for L. We consider three such methods in

this work. First, Generalized Non-Metric Multidimensional Scaling (GNMDS) [4] uses hinge loss:

LGNMDS (K, T) =
∑

(a,b,c)∈T

[
d2

K(xa, xb)− d2
K(xa, xc) + 1

]
+

(3.12)

Here, only triplets that are not satisfied by a margin of one effect the objective. Stochastic Triplet

Embedding (STE) [143] proposes the following probability that a triplet is satisfied:

pK
abc =

exp(−d2
K(xa, xb))

exp(−d2
K(xa, xb)) + exp(−d2

K(xa, xc))
(3.13)

If this probability is high, then xa is closer to xb than it is to xc. As such, they minimize the negative

sum of the log-probabilities over all triplets:

LSTE (K, T) = −
∑

(a,b,c)∈T

log(pK
abc) (3.14)

44

Like STE, Crowd Kernel Learning (CKL) [132] defines a probability that a triplet is satisfied:

pK
abc =

d2
K(xa, xc) + µ

d2
K(xa, xb) + d2

K(xa, xc) + 2µ
(3.15)

Where µ is a “uniqueness” parameter that ensures that no probability can be exactly one, even if the

distance between two objects is zero. CKL differs from GNMDS and STE in a few key aspects.

First, the creators of CKL choose to minimize the sum of the inverse probabilities defined in (3.15)

for all obtained triplets. Their objective is then non-convex K. Furthermore, the creators of CKL

opt to constrain K to be a correlation matrix instead of regularizing it by its trace. This has a

similar, but not equivalent regularization effect. This removes the last term in line 3 in Alg. 1, and

changes the projection in line 4 to one that projects K′i onto the set of PSD correlation matrices.

Such a projection is even more expensive to perform in practice. The authors suggest a projection

scheme that alternates between projecting onto the PSD cone and diagonal matrices [81]. For further

comparison of all three of these RCKL methods, see [143].

RCKL methods, like other NPKL methods, can be formulated to learn object embeddings.

In fact, the foundational work that introduced the problem of learning similarity from relative

comparisons poses it as an embedding-learning problem [74]. As an example example, the CKL

probabilities shown in (3.15) can be defined as a function of an embedding X:

pX
abc =

d2
2(xa,xc) + µ

d2
2(xa,xb) + d2

2(xa,xc) + 2µ
(3.16)

In [132], the authors suggest to use this embedding-learning formulation as a means to avoid their

costly alternating projection. For GNMDS and STE, formulating their respective loss functions in

terms of an embedding makes them non-convex. Thus, the two different formulations of RCKL

create a trade-off between computational efficiency and guaranteed optimality.

RCKL methods assume a particular model of similarity, namely a kernel matrix or an embedding.

One may wonder how expressive this choice of model is. More specifically, one can ask the question:

Can any set of triplet responses be represented by a kernel matrix? Appendix A of [91] proves the

following theorem in response to this question:

Theorem 1 For any non-conflicting set of triplet responses T , there exists a embedding X, or

equivalently, a kernel K such that all triplet constraints defined in (3.8) induced by T are satisfied.

45

They authors of [91] prove this by showing any set of non-conflicting triplets can be satisfied by

an n-dimensional embedding, or, equivalently, a full-rank kernel matrix. This shows the power

of RCKL methods. RCKL methods do not limit themselves to a parametric class of functions.

Instead, they directly learn a representation of a given set of objects. Because of this, they have the

expressiveness to produce models that faithfully reflect given triplet feedback. Note, that if there

exists conflicts in a set of triplet responses, there does not exist an embedding of any dimensionality

that can satisfy all responses in that set. Thus, if inconsistent feedback is given, some responses will

be unsatisfied in a model learned by any RCKL method.

Because the dimensionality of a learned embedding (or equivalently the rank of a learned

kernel matrix) determines the complexity of the models learned by RCKL methods, choosing

the dimensionality (or how much to regularize K by) greatly affects the expressiveness of RCKL

methods. If the dimensionality is chosen to be too small, then some triplet constraints may not

be satisfied in the model. A simple example is the one depicted in Fig. 3f. The figure depicts a

two-dimensional object embedding. If the dimensionality was chosen to be one, then the full set of

triplet responses could not be satisfied. On the other hand, it can often be beneficial to assume a low

dimensional object embedding. In [66] the authors prove the following theorem:

Theorem 2 The number of triplet queries required to determine the embedding of n objects in d

dimensions that satisfies all true triplet constraints is Ω (dn log (n)).

This theorem states that the number of triplet queries required to be asked in order to model all

responses in an embedding is a function of the assumed dimensionality of the learned embedding.

In other words, if d is small, then fewer queries are required to understand all object relationships

than if d is large. In the worst case, if d = n, then this bound reduces to the one if comparison-based

sort methods are used without knowledge of the complexity of object relationships.

3.3 ONLINE LEARNING

Learning either of the two models of similarity considered in this work, non-parametric kernel

matrices and Mahalanobis distance metrics, require a PSD constraint. If the factored version of these

46

models are learned, common convex methods of solving for them become non-convex optimization

problems. In the online learning case, the problems associated with these two alternatives are

amplified. Consider a batch non-convex optimization procedure. Most standard optimization

techniques guarantee locally, but not necessarily globally optimal solutions. If this is a concern,

random restarts are often used and the optimization procedure is run multiple times to convergence

using different starting positions. Now consider the online non-convex optimization case. Ideally,

online learning methods globally minimize a loss function by using the most recent feedback and

make little use of previously obtained feedback. Randomly restarting an online optimization means

all previously obtained feedback must be used again. In doing so, the optimization acts much more

like the batch procedure than a true online method. The other option is to optimize the convex

versions of the objectives in an online fashion, and handle the PSD constraint. In stochastic gradient

online learning, stochastic steps can be taken with respect to an objective, and then the solutions are

projected onto the cone of PSD matrices. If done naively, this projection, like in the batch case, is

an O (n3) operation that must be performed every time an update is made.

In Chap. 5 we introduce online stochastic optimization procedure for RCKL problems that

maintains a PSD constraint while still being computationally efficient enough to be applied to large-

scale problems. Recently, there has been work developing efficient, general-purpose, stochastic

optimization procedures for SDPs [58, 87, 123]. These methods either formulate stochastic steps

that either require no projection, or formulate projection procedures that are more efficient than

than projecting naively. The method most similar to ours is low-rank stochastic gradient descent

(LR-SGD) [25], where the authors assume stochastic updates that are rank-two:

Mt ←Mt−1 − δt ∗
(
λ1 ∗ v1v

T
1 + λ2 ∗ v2v

T
2

)
(3.17)

Here, v1 and v2 are the first and second eigenvectors of the gradient matrix ∇l, and λ1 and λ2

are their corresponding eigenvalues. With this assumption, one can bound the number of negative

eigenvalues after the update to be at most two. Because of this, projection requires only finding

the smallest two eigenvalues of a matrix after an update, which can be done in O (n2) time using

iterative eigendecomposition methods. In our work, we show common RCKL loss functions have

similar properties that allow us to bound the number of negative eigenvalues after an update. In

addition, we are able to conservatively estimate when an update will result in a PSD matrix without

47

eigendecomposition. Because of this, we are able to create an online RCKL framework that is often

able to skip the projection step entirely, resulting in constant time updates. When our framework is

unsure whether the update will result in a non-PSD matrix, it is still able to project onto the PSD

cone in O (n2) time.

Our framework is also inspired by passive-aggressive online learning [31], which was first

introduced as a means to learn support vector machines in an online fashion. The intuition behind

passive-aggressive learning is that in the online setting, single updates should not skew the model to

reflect only the most recent feedback, but also shouldn’t entirely ignore it. For problems that use a

hinge-loss function as their objective, such as in SVMs, only instances that incur a positive loss

affect the objective. In stochastic online learning, this means that only the units of feedback that do

not satisfy a margin constraint require an update. As a result, an online algorithm could passively

ignore feedback that is already sufficiently represented in the learned model. If a unit of feedback is

obtained that does incur a loss, passive-aggressive learning methods aggressively step so that the

new solution has a loss of zero for the most recently obtained unit of feedback.

A simple but illustrative example of passive-aggressive online learning is passive-aggressive

hard-margin SVM classification. Here, class label feedback (xt, yt) is obtained in an online fashion.

The goal is to find a weight vector wt for an SVM classifier that is close to the solution in the

previous step, but also correctly classifies feedback (xt, yt) by a margin of one. The solution at time

t, then, can be found by solving the following problem:

argmin
wt

1
2
||wt −wt−1||22

s.t. [1− yt (wt · xt)]+ = 0
(3.18)

Here, the squared Euclidean norm between the weight vectors at times t and t − 1 is used as a

measure of distance between them. The constraint ensures that the SVM classifier parameterized by

wt classifies xt correctly by a margin of one (it is assumed yt ∈ {−1, 1}). The solution of (3.18)

induces in the following online update:

wt ← wt−1 + δtytxt

where δt =
[1− yt (wt · xt)]+

||xt||22

(3.19)

48

Algorithm 2 Active Sequential Triplet Query Selection
Input: X = {x1, x2, ..., xn}

1: R ← {}
2: for a = 2, ..., n do
3: for b = 1, ..., a do
4: for c = 1, ..., a do
5: if q = (a, {b, c}) is ambiguous then
6: Ask source for response r to q
7: else
8: Infer r fromR
9: end if

10: R ← R∪ r
11: end for
12: end for
13: end for

Hence, if the SVM hinge-loss is zero for the feedback at time t, the second term in the update is

zero, making the solution at time t the same as it was at time t− 1. Otherwise, a step is taken with a

learning rate that ensures the loss will be zero after the update.

3.4 ACTIVE LEARNING

In Chap. 4 we introduce a novel active RCKL method as a means to increase human efficiency in

a task that uses an inherently human inefficient form of feedback. The goal of an active learning

method for RCKL is to select triplet queries for which the most informative triplet responses will

be given. In doing so, RCKL methods can learn a model of similarity that can reflect a complete

notion of similarity that extends to responses yet to be obtained. To our knowledge only two active

learning methods exist for the RCKL problems. In this section, we discuss both.

3.4.1 Active Sequential Triplet Query Selection

In [66] the authors consider the embedding-learning version of the RCKL problem. They aim to

learn a d-dimensional embedding of n objects that models a large set of true triplet responses by

49

asking only a few triplet queries. Instead of thinking about an object embedding being in Rn×d,

where each row is an embedded object, the authors equivalently think of an embedding as the

concatenation of each d-dimensional representation of an object into a single vector x ∈ Rnd. A

query, then, divides Rnd into two regions: one in which the query is answered one way ((a, b, c))

and one where it is answered the other ((a, c, b)). The set of all possible queries over n objects

divides Rnd into nd-cells via the intersection of the regions created by individual queries. A set

of feedback induces a single nd-cell in which the feedback is satisfied. By this interpretation, the

active RCKL problem can be viewed as finding the nd-cell for which every true response is satisfied

by asking the fewest number of queries.

With this in mind, the authors formulate an active sequential triplet query selection algorithm,

which we outline in Alg. 2. Each possible query over the n objects is considered by iterating

over all pairs of object for a randomly selected head object. If a query is deemed ambiguous

given the previous responses, then ask for a response from the source of feedback. Otherwise,

infer the correct response to the query without asking the source of feedback and proceed to the

next query. Ambiguity is determined as follows. Assume at iteration i of the algorithm responses

Ri−1 = {r1, r2, ..., ri−1} have been either provided by a source of feedback or inferred by the

algorithm. Assume without loss of generality that qi = (a, {b, c}). The ambiguity finding procedure

then determines if the nd-cells induced byRi ∪ (a, b, c) andRi ∪ (a, c, b) are feasible. If both are,

then qi is ambiguous. If only one of the two possible responses induces a feasible nd-cell, then the

algorithm can infer it to be the correct response. In short, if the intersection of the nd-cell induced

by previous responses and a possible response to a query is non-empty, then the response can be

given and still be consistent with previous responses. The sequential algorithm forgoes asking

queries for which one of the two possible responses would be inconsistent.

The motivation behind the sequential selection procedure comes from their proof of Thm. 2,

where they consider an oracle sequentially providing the exact positions of each object in the

embedding. The difference in their active algorithm is that instead of exact positions, a source

of feedback give all responses with respect to each object as the head. Even so, experimentally,

the authors show their sequential query algorithm is able to infer the responses to many queries if

the objects can be embedded in d << n and still reflect all feedback. The subroutine the authors

use to determine if a query is ambiguous is essentially a procedure for finding an embedding. As

50

such, it is a non-convex optimization problem. Since only local optimality is guaranteed in solving

such a problem, their subroutine could determine that a query is not ambiguous when it actually is,

resulting in inferred responses that could be false. The authors note that in practice their solution for

finding an embedding is most often correct, and random restarts can be used for increased accuracy.

3.4.2 Adaptive Crowd Kernel Learning

The other active triplet query selection method for RCKL is Adaptive Crowd Kernel Learning

(A-CKL) [132] that is uses CKL as a basis for active selection. A-CKL considers the case

where triplets are obtained in rounds, where a triplet query is actively chosen for each of the

n objects as the head. As a result, A-CKL chooses mini-batches of n queries to be asked

at a time. Consider, then, selecting a query with head xa at round i of the algorithm. Let

Ra
i−1 = {(a, b1, c1) , (a, b1, c1) , ..., (a, bi−1, ci−1)} be all response with head object xa obtained

before round i, and let Xi−1 be the embedding learned by CKL from
⋃n
j=1R

aj
i−1. The creators of

A-CKL define a posterior probability over the embeddings of xa:

τa (x) = π (x) ∗
∏

a,b,c : (a,b,c)∈Ra
i−1

pXi−1
x,xb,xc

(3.20)

Where:

pX
x,xb,xc

=
d2

2(x,xc)

d2
2(x,xb) + d2

2(x,xc)
(3.21)

and π is a prior distribution of object embeddings. The probability (3.21) is the same as (3.16) with

the exceptions that the head object’s embedding is not from the learned embedding X, but explicitly

input, and the uniqueness parameters are removed.

In A-CKL all possible triplet queries (a, {b, c}) are scored. The ones with the highest scores per

head are chosen to be asked in that round. To this end, the creators of A-CKL define the probability

that the source of feedback (a “crowd” in their application) will respond to (a, {b, c}) with (a, b, c)

as:

p ∝
∫

x∈Rd

τa (x) ∗ pXi−1
x,xb,xc

dx (3.22)

If the source of feedback were to respond with (a, b, c), the posterior probability would then become:

τa,b (x) = τa (x) ∗ pXi−1
x,xb,xc

(3.23)

51

To score this query, then, A-CKL uses information gain based on these distributions:

H (τa)− (p ∗H (τa,b) + (1− p) ∗H (τa,c)) (3.24)

Here, H is Shannon entropy:

H (τ) =

∫
x∈Rd

τ (x) log (τ (x)) dx (3.25)

The first term in (3.24) measures the uncertainty in the position of xa before the next query is

answered. The second term measures the expected uncertainty after (a, {b, c}) is answered. As

such, (3.24) effectively measures the expected decrease in uncertainty of the position of xa after

(a, {b, c}) is answered. The query for which (3.24) is maximized is chosen for each object as head

a at iteration i.

For A-CKL to be applied to real-world problems, many design decisions need to be made.

First, the integrations for both (3.22) and (3.25) do not have analytical solutions, so they must

be approximated using numerical methods such as Monte Carlo integration. Furthermore, an

appropriate prior π must be chosen. The authors of [132] suggest taking the uniform prior over the

current positions of all other objects. This effectively enforces an assumption that the positions of

all objects besides the head objects is perfectly known, and that the head object is actually one of

the other objects. This greatly simplifies the computation of the scores. Even with this assumption,

scoring every query would be costly for a large n. In practice, a sample of all queries for a given

head can be taken and selection can be made over this reduced pool.

52

4.0 SIMILARITY LEARNING FROM TRIPLET FEEDBACK WITH AUXILIARY

INFORMATION

The RCKL methods discussed in Sec. 3.2.2.1 assume that no prior information is known about a

domain of objects, and only the given set of triplet responses is used to learn a model of similarity

over objects in that domain. Yet, in many scenarios, it is common to have auxiliary information

associated with the objects that captures some latent aspect of the perceptual similarity space trying

to be learned. In images for instance, humans must consider objects visually, and thus visual features

can play a role in how humans make comparisons. Auxiliary visual features, such as those learned

from convolutional neural networks on the images themselves [37], are readily available and can be

used as a basis in learning similarity. If these features reflect how humans perceive the objects, then

a learned similarity model based on features can capture a more complete notion of similarity from

fewer responses.

In this chapter, we introduce techniques for incorporating such auxiliary information into RCKL

methods. Ideally, an RCKL method that includes auxiliary features would identify general trends

within the features that coincide with the perceptual similarity being conveyed through an obtained

set of triplet responses. If it is able to do this, it can then include the relevant features into a learned

model of similarity. Features that are irrelevant to the learning task could then be omitted from the

model. Doing so would enable RCKL methods to learn more general models from fewer triplet

responses by leveraging the trends in the auxiliary information that generalize to unseen triplet

responses. In other words, by leveraging auxiliary information, we can increase the human efficiency

of RCKL methods by supplementing triplet feedback with readily available prior information that

describes the relationship among objects in a domain.

This chapter is broken down into two main sections. In Sec. 4.1, we begin by outlining

how traditional RCKL methods that learn non-parametric kernel matrices can be modified to

53

include auxiliary information without drastically increasing their time complexity, and maintaining

the convexity of their optimization problems. We then compare these new RCKL methods to

similar methods in metric learning, and highlight the benefits of learning within our framework,

as opposed to learning a metric. Finally, we experimentally evaluate RCKL methods that use

auxiliary information to ones that do not, as well as similar metric learning methods. In Sec. 4.2

we focus on the embedding-learning formulation of Crowd Kernel Learning (CKL), and show how

auxiliary information can be included in the models of similarity it produces. This formulation is

probabilistic, enabling the use of information-theoretic notions of uncertainty in the embedding of

objects. Because of this, we are able to formulate an active learning technique that selects triplet

queries that have the potential to reduce uncertainty in the learned embedding the most. By doing so,

we can further increase the human efficiency of learning a model of similarity from triplet feedback.

4.1 LEARNING A NON-PARAMETRIC KERNEL WITH AUXILIARY

INFORMATION

In general, if there are few triplet responses T relative to the number of objects in question n,

there are many different RCKL solutions. Without using information regarding how the objects

relate other than T , traditional RCKL methods may not generalize well to the many unobtained

triplet responses. This problem is present in any supervised learning setting: without sufficient

training data, learned models may not be general enough to model an acceptable number of

object relationships. However, as noted in previous chapters, triplet feedback is inherently human

inefficient, meaning this problem is intensified and many responses may be needed to completely

define object relationships.

Fortunately, objects can often be described by features drawn from data. Let xi ∈ Rd be a

d-dimensional feature vector for object xi ∈ X . Each feature represents a different characteristic

that describes the object. For instance, if X is clothing items, then xi can have features describing

the color, size, and material. To effectively use this form of auxiliary information, an RCKL method

should include features that in some sense reflect the same notion of similarity being conveyed in T .

Features that do not model T well, should not be included in the model. In the subsequent sections,

54

we outline how this form of auxiliary information can be included into RCKL methods.1

4.1.1 Multiple Kernel RCKL

Using features, one can construct A ∈ Z+ auxiliary kernels K1, ...,KA ∈ Rn×n using standard

kernel functions to model the relationship among objects. If one or more auxiliary kernels satisfy

many triplets in T , they may represent factors that influence how some of the unobtained triplets

would have been answered. We wish to identify which of these predefined auxiliary kernels, built

from data, model trends in T , and then combine them in a way to satisfy triplets in T . An approach

to combine multiple different kernels popularized by MKL methods is through a weighted sum:

K′ =
A∑
a=1

µaKa µ ∈ RA
≥0 (4.1)

Restricting the domain of µ as such makes K′ a conic combination of kernels. By construction each

Ka is PSD. Thus, (4.1) is also PSD [115]. K′ induces the mapping ΦK′ : X → RD [53]:

ΦK′(xi) = [
√
µ1Φ1(xi), ...,

√
µAΦA(xi)] (4.2)

Here Φa : X → Rda is a mapping from an object into the inner product space induced by

Ka ∈ Rn×n, and D =
∑A

a=1 da. In short, K′ induces a mapping of the objects into a space defined

by the weighted concatenation of the individual feature spaces. Consider, then, the following

optimization:

min
µ

L(K′, T) + λ‖µ‖1

s.t. µ ≥ 0
(4.3)

Here, L is a loss function indicating how poorly K′ models T . By learning the weight vector µ

through minimizing the loss L, (4.3) scales the individual concatenated feature spaces to emphasize

the auxiliary kernels that model the object relationships in T well, and reduce the influence of those

that do not.

Since the auxiliary kernels are fixed, regularizing them by their traces has no effect on their

rank nor the rank of K′. Instead, we choose to regularize µ by its `1-norm, a technique first made

popular for its use in the Least Absolute Shrinkage and Selection Operator (LASSO) [134]. For a

1The material presented in this section was originally published as [62].

55

proper setting of the hyperparameter λ, this has the effect of eliminating the contribution of kernels

that do not help in reducing the error by forcing their corresponding weights to be exactly zero.

Because of its relationship to multiple kernel learning, we call this formulation Multiple Kernel

RCKL (RCKL-MKL). Because RCKL-MKL learns only µ, it is linear program over A variables.

By limiting the optimization to only a conic combination of the predefined auxiliary kernels,

RCKL-MKL does not necessarily produce a kernel that satisfies any responses in T . To capture

the potential generalization power of using auxiliary information while retaining the ability to

satisfy responses in T , we propose to learn a combination of the auxiliary kernels and K0, a kernel

similar to the one in traditional RCKL whose elements are learned directly. By doing this, we

force traditional RCKL methods to prefer solutions similar to the auxiliary kernels, which could

satisfy unobtained triplets. We call this hybrid approach Relative Comparison Kernel Learning with

Auxiliary Kernels (RCKL-AK).

4.1.2 RCKL with Auxiliary Kernels

RCKL-AK learns the following kernel combination:

K′′ = K0 +
A∑
a=1

µaKa µ ∈ RA
≥0, K0 � 0 (4.4)

(4.4) is a conic combination of kernel matrices that induces the mapping:

ΦK′′(xi) = [Φ0(xi),
√
µ1Φ1(xi), ...,

√
µAΦA(xi)] (4.5)

The intuition behind this combination is that auxiliary kernels that satisfy many triplet responses are

emphasized by weighing them more, and K0, which is learned directly, can satisfy the responses

that cannot be satisfied by the conic combination of the auxiliary kernels. Consider, again, the

example of learning similarity over clothing items. A human may compare clothes by characteristics

such as color, size, and material, which can be represented by features used to build the auxiliary

kernels. However, other factors may influence how a person compares clothes, such as designer

or pattern, which may be omitted from the auxiliary kernels. In addition, the person providing

feedback may have a personal sense of style that is impossible to be gained from features alone. K0,

56

and thus features induced by the mapping Φ0, is learned to model factors a person uses to compare

clothes that are omitted from the auxiliary kernels or cannot be modeled by extracted features.

Using (4.4), we propose to solve the following optimization problem:

min
K0,µ

L(K′′, T) + λ1trace(K0) + λ2‖µ‖1

s.t. K0 � 0, µ ≥ 0
(4.6)

Here, the objective has two regularization terms: trace regulation on K0, and `1-norm regularization

on µ. Increasing λ1 limits the expressiveness of K0 by reducing its rank, while increasing λ2

reduces the influence of the auxiliary kernels by forcing the elements of µ towards zero. Thus,

λ1 and λ2 represent a trade-off between finding a kernel that is more influenced by K0 and one

more influenced by the auxiliary kernels. Like traditional RCKL, RCKL-AK is an SDP, but

with n2 + A optimization variables. For practical A, RCKL-AK can be solved with minimal

additional computational overhead to traditional RCKL methods, as the computational bottleneck is

in projecting K0 onto the PSD cone.

One desirable property of (4.6) is that under certain conditions, it is a convex optimization:

Proposition 1 If L is convex in both K0 and µ, then (4.6) is a convex optimization problem.

Proposition 1 is proven in Sec. A.1. While Prop. 1 may seem simple, it allows us to leverage

traditional RCKL methods that contain error functions that are convex in K0 and µ in order to find

globally optimal solutions using convex optimization techniques. For instance, if we use the STE

loss function in our framework, it becomes:

LSTE (K′′, T) = −
∑

(a,b,c)∈T

log(pK′′

abc) (4.7)

Where, pK
abc is defined in (3.13). We call the resulting method STE-AK. With this we can state:

Proposition 2 (4.7) is convex in both K0 and µ

Proposition 2 is proven in A.2. By Props. 1 and 2, STE-AK is a convex optimization problem.

Another option is the GNMDS loss function. When used in the RCKL-AK framework it becomes:

LGNMDS (K′′, T) =
∑

(a,b,c)∈T

[
d2

K′′(xa, xb)− d2
K′′(xa, xc) + 1

]
+

(4.8)

57

Algorithm 3 RCKL-AK Projected Gradient Descent
Input:

X = {x1, ..., xn},
T = {(a, b, c) |xa is more similar to xb than xc},
K1, ...,KA ∈ Rn×n, λ1 ∈ R+, λ2 ∈ R+, δ ∈ R+

Output:

K′′ ∈ Rn×n

1: i← 0

2: K0
0 ← In×n

3: µ0
1, ..., µ

0
A ← 1

A

4: K′′ ← K0
0 +

∑A
a=1 µ

0
aKa

5: repeat
6: Ki+1

0 ← Ki
0 − δ ∗

(
∇Ki

0
L(K′′, T

)
+ λ1 ∗ In×n)

7: µi+1 ← µi − δ ∗
(
∇µiL(K′′, T) + λ2

)
8: Ki+1

0 ← Π+

(
Ki+1

0

)
9: µi+1 ← Π≥0 (µi+1)

10: K′′ ← Ki+1
0 +

∑A
a=1 µ

i+1
a Ka

11: i← i+ 1

12: until convergence

We call our method with this error function GNMDS-AK, which is also a convex optimization

problem, due to Prop. 1 and the following:

Proposition 3 (4.8) is convex in both K0 and µ.

4.1.2.1 Projected Gradient Descent for RCKL-AK Methods We propose to solve methods

created within our framework via the projected gradient descent algorithm outlined in Alg. 3. After

initialization, the algorithm repeats the following steps until convergence:

1. Line 6: Take a gradient step for K0 (trace regularization included)

2. Line 7: Take a gradient step for µ (`1-norm regularization included)

3. Line 8: Project K0 onto the positive semidefinite cone

4. Line 9: Project the elements of µ to be non-negative

5. Line 10: Update K′′

58

Projection is onto the PSD cone is performed by (3.11), as is done in traditional RCKL methods.

Projection of the elements of µ to be non-negative is simply done by assigning all negative elements

to be zero. The `1-norm regularization in Alg. 3 is performed by adding λ2 = λ2 ∗ 1A to the

gradient (Line 7). Since µ is constrained to be non-negative, the subgradient of the `1-norm function

needs only to be over the non-negative orthant, thus λ2 is an acceptable subgradient. Moreover,

since we then project the elements of µ to be non-negative, we get the desired effect of the `1-norm

regularization: the reduction of some elements to be exactly zero.

4.1.3 Relationship to Metric Learning

Relative comparisons have also been considered metric learning [116, 34, 65]. Most relevant to the

work in this chapter are two recent methods that learn a Mahalanobis distance metric with multiple

kernels: Metric Learning with Multiple Kernels (ML-MKL) [149] and Multiple Kernel Partial

Order Embedding (MKPOE) [91], the latter focusing exclusively on relative distance constraints

similar to those considered in RCKL. The kernel learned by RCKL-AK induces a mapping that

is fundamentally different than those learned by these metric learning techniques. To show this,

consider the distance metric shown in Sec. 4.2 of [91] and Equation 5 of [149]:

d2
M,µ(xi, xj) =

A∑
a=1

(
Ki
a −Kj

a

)
µaM

A∑
b=1

µb
(
Ki
b −Kj

b

)T
(4.9)

This can be rewritten in terms of the feature mappings induced by each of the auxiliary kernels:

d2
M,µ(xi, xj) = (Φµ (xi)−Φµ (xj)) Φµ (X) MΦµ (X)T (Φµ (xi)−Φµ (xj))

T (4.10)

Where:

Φµ (x) = [
√
µ1Φ1 (x) , ...,

√
µAΦA (x)] (4.11)

X =
[
xT1 ,x

T
2 , ...,x

T
n

]T , and Φµ (X) =
[
Φµ (x1)T ,Φµ (x2)T , ...,Φµ (xn)T

]T
. By factoring the

matrix M = LLT and defining Ω = Φµ (X) L we can distribute Ω through (4.10), similar to what

is done in (2.6):

d2
M,µ(xi, xj) = (Φµ (xi)−Φµ (xj)) ΩΩT (Φµ (xi)−Φµ (xj))

T

= (Φµ (xi) Ω−Φµ (xj) Ω) (Φµ (xi) Ω−Φµ (xj) Ω)T

= d2
2 (Φµ (xi) Ω,Φµ (xj) Ω)

(4.12)

59

In this form and by (4.11), we can see that learning M in (4.9) is equivalent to learning a squared

Euclidean distance of points transformed by the following linear transformation:

Φµ,Ω(x) = Φµ (x) Ω = [
√
µ1Φ1(x), ...,

√
µAΦA(x)] Ω (4.13)

Here Ω ∈ RmxD produces a new feature space by transforming the feature spaces induced by

the auxiliary kernels. Without Ω, (4.13) learns a mapping similar to (4.2). The matrix Ω plays

a role similar to the one K0 plays in RCKL-AK: it is learned to satisfy triplets that the auxiliary

kernels alone cannot. Instead of linearly transforming the auxiliary kernel feature spaces, RCKL-AK

implicitly learns new features that are concatenated onto the concatenated auxiliary kernel feature

spaces. In doing so, RCKL-AK is not limited to a class of linear transformations of the original

features, but effectively learns additional features directly.

In both works, the authors propose non-convex optimizations to solve for their metrics, as well

as, different convex relaxations. A critical issue with the convex solutions is that they employ SDPs

over n2 ∗ A (MKPOE-Full) and n2 ∗ A2 (NR-ML-MKL) optimization variables, respectively. For

moderately sized problems these methods are impractical. To resolve this issue, [91] proposes a

method that imposes diagonal structure on the learned metric, reducing the number of optimization

variables to n ∗ A (MKPOE-Diag), but in the process, greatly limits the structure of the metric.

RCKL-AK is a convex SDP with n2 +A optimization variables that does not impose strict structure

on the learned kernel. Unfortunately, by learning the unique kernel K0 directly and not the mapping

Φ0 or a generating function of K′′, our method cannot be directly applied to out-of-sample objects.

However, the auxiliary kernel portion of models produced by RCKL-AK can be used to partially

incorporate new objects, and the model can be updated if feedback over new objects is obtained.

4.1.4 Experiments

In order to show that RCKL-AK can learn kernels that generalize well from few obtained triplet

responses, we perform two experiments: one using synthetic data, and one using real-world data.

More specifically, in both experiments, we train STE and GNMDS in their traditional RCKL

formulations (RCKL-T), but also in Multiple Kernel Learning RCKL (RCKL-MKL), and RCKL

with Auxiliary Kernels (RCKL-AK) variants. In addition, we evaluate non-convex and convex

60

variants of MKPOE. We wish to see how the number of obtained triplet responses to train each

model affect the ability of the models to generalize. As such, our experiments test each method’s

ability to learn models that satisfy held-out test triplet responses as a function of an increasing

number of training responses. More specifically, we evaluate a model M with respect to a set of

triplet responses T using triplet query prediction error (TQPE):

TQPE (M, T) =
| {t ∈ T : t is satisfied by M} |

|T |
(4.14)

In short, TQPE measures the number of responses in a set that are satisfied by a model, normalized

by the total number of responses in that set. For the kernel-learning methods, (3.8) defines when

a kernel satisfies a triplet response. For the MKPOE methods, we consider a triplet (a, b, c) to be

satisfied if dM (xa, xb) < dM (xa, xc), where dM is the distance function defined by the metric. The

STE and GNMDS implementations used are from [143], which are made publicly available on the

authors’ websites. The MKL and AK versions were extended from these. MKPOE implementations

were provided to us by their original authors. All auxiliary kernels are normalized to unit trace, and

all hyperparameters were validated via line or grid search using validation sets.

4.1.4.1 Synthetic Data To generate synthetic data we began by randomly generating 100 points

in seven, independent, two-dimensional feature spaces where both dimensions were over the interval

[0, 1]. Then, we created seven linear kernels, K0, ...,K6 from these seven spaces. We combined

four of the seven kernels:

K∗ =
1

2
K0 +

1

4
K1 +

1

6
K2 +

1

12
K3 (4.15)

We then used K∗ as the ground truth to answer all possible triplet queries over the 100 objects.

Following the experimental setup in [132], we divided the resulting triplet responses into 100

response “rounds”. A round is a set of responses where each object appears once as the head a

being compared to randomly chosen objects b and c. From the pool of rounds, 20 were chosen to be

the training set, 10 were chosen to be the validation set, and the remaining rounds were the test set.

This was repeated ten times to create ten different trials.

Next, each object in all seven feature spaces was perturbed with randomly generated Gaussian

noise. From these new spaces, we created seven new linear kernels K̂0, ..., K̂6, of which K̂1, ..., K̂6

61

2 4 6 8 10 12 14 16 18 20
0.275

0.3

0.325

0.35

0.375

0.4

0.425

0.45

0.475

0.5

Number of training triplet responses (x100)

T
es

t T
Q

P
E

STE
STE−MKL��
STE−AK

(a) STE Methods

2 4 6 8 10 12 14 16 18 20
0.275

0.3

0.325

0.35

0.375

0.4

0.425

0.45

0.475

0.5

Number of training triplet responses (x100)

T
es

t T
Q

P
E

GNMDS
GNMDS−MKL��
GNMDS−AK

(b) GNMDS Methods

2 4 6 8 10 12 14 16 18 20
0.29

0.31

0.33

0.35

0.37

Number of training triplet responses (x100)

T
es

t T
Q

P
E

STE−AK
GNMDS−AK
MKPOE−NC
MKPOE−Full
MKPOE−Diag��

(c) MKPOE and AK Methods

Figure 7: RCKL-AK synthetic data experiments: Test TQPE vs. number of training responses

(ten trials, 95% CI)

were used as the auxiliary kernels in the experiment. Here, K̂1, ..., K̂3 are kernels that represent

attributes that influence how the ground truth makes comparisons. K̂4, ..., K̂6 contain information

that is not considered when making comparisons, and K0 represents intuition about the objects that

was not or cannot be input as an auxiliary kernel.

Intuitively, the models produced by each method should generalize better as more responses

are used in training. To show this, and to compare the methods to one another, we performed

the following experiment. For each trial, the 20 training rounds are divided into ten subsets, each

62

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

Number of training triplet responses (x100)

L
ea

rn
ed

 v
al

ue
 o

f
w

ei
gh

t p
ar

am
et

er

(a) STE-AK

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

Number of training triplet responses (x100)

L
ea

rn
ed

 v
al

ue
 o

f
w

ei
gh

t p
ar

am
et

er

(b) GNMDS-AK

Figure 8: RCKL-AK synthetic data experiments: mean values of weight parameters

(µ1 (red), µ2 (blue), µ3 (green), µ4 (teal), µ5 (pink), µ6 (purple))

containing two training rounds. Starting with one of the subsets, each model is trained, setting the

hyperparameters through cross-validation on the validation set, and evaluated on the test set. Then,

another subset is added to the training set. We repeat this process until all ten subsets are included.

We evaluate all methods every time the training set increases in size. For all of the following figures,

error bars represent a 95% confidence interval.

Discussion: Figure 7 shows the mean test TQPE versus the number of triplet responses in the

training set for all ten trials and all methods tested. Figures 7a and 7b show the performance of

the STE and GNMDS methods, respectively. Both RCKL-MKL methods improve performance

initially, but achieve their approximate peak performance at around 600 training responses and

fail to improve as more were added. This supports the claim that RCKL-MKL is overly limited

by only being able to combine auxiliary kernels. Both traditional RCKL methods perform worse

than all other methods. Without the side information provided by the auxiliary kernels, they cannot

generalize to test responses given few training responses.

We believe this experiment demonstrates the utility of both K0 and the auxiliary kernels in

RCKL-AK. With very few training responses, the RCKL-AK methods relied on the auxiliary

kernels, thus the performance is similar to the RCKL-MKL methods. As more responses are given,

63

the RCKL-AK methods used K0 to satisfy the responses that a conic combination of the auxiliary

kernels could not. Further evidence for this is shown by the fact that the rank of K0 increased as the

number of training triplets increased. For example, for STE-AK, the mean rank of K0 was 85.6,

94.2, and 96.2 for 200, 400, and 600 responses in the training set, respectively. In other words, the

optimal settings of λ1 and λ2 made K0 more expressive as the number of responses increased.

Figure 7c shows the same STE-AK and GNMDS-AK error plots as in 7a and 7b, but also

includes three variations of MKPOE: A non-convex formulation (MKPOE-NC), and two convex

formulations (MKPOE-Full and MKPOE-Diag). All metric learning methods perform very similarly,

yet worse than the RCKL-AK methods. This shows the limitation of learning a linear function of

the inputs without being able to learn features directly as the RCKL-AK methods can.

Ideally, the RCKL-AK methods should eliminate K̂4, K̂5, and K̂6 from the model by reducing

their corresponding weights µ4, µ5, and µ6 to exactly zero. Figure 8 shows the values of the µ

parameter for STE-AK and GNMDS-AK as the number of training triplet responses increase. Each

line in the figure is a different learned weight. Both RCKL-AK methods correctly identify the three

auxiliary kernels from which the ground truth kernel was created by setting their corresponding

weight parameters to be non-zero. In addition, they assigned weights to the kernels roughly

proportional to the ground truth (i.e. µ1 is set higher than µ2, etc.). The three noise kernels were

assigned very low, and often zero weights. The RCKL-MKL methods learned similar values for

the elements of µ than those in Fig. 8. Since RCKL-MKL learned the relative importance of the

auxiliary kernels with only few responses, it had achieved approximately its peak performance and

could not improve further with the addition of more responses to train on.

4.1.4.2 Music Artist Data We also performed an experiment using comparisons among popular

music artists. The aset400 data set [40] contains 16,385 triplet responses over 412 music artists

gathered from a web survey, and [90] provides five kernels built from various features describing

each artist and their music. Two of the kernels were built from text descriptions of the artists, and

three were built by extracting acoustic features from songs by each artist. This data set provides a

challenge absent in the synthetic data: not all artists appear in the same number of responses. In fact,

some artists never appear as the head of a triplet response at all. As a result, this data set represents

a setting where feedback was gathered non-uniformly amongst the objects. In light of this, instead

64

2 4 6 8 10 12 14 16 18 20
0.25

0.275

0.3

0.325

0.35

0.375

0.4

0.425

Number of training triplet responses (x100)

T
es

t T
Q

P
E

STE
STE−MKL��
STE−AK

(a) STE Methods

2 4 6 8 10 12 14 16 18 20
0.25

0.275

0.3

0.325

0.35

0.375

0.4

0.425

Number of training triplet responses (x100)

T
es

t T
Q

P
E

GNMDS
GNMDS−MKL��
GNMDS−AK

(b) GNMDS Methods

2 4 6 8 10 12 14 16 18 20
0.25

0.275

0.3

0.325

0.35

0.375

0.4

0.425

0.45

0.475

Number of training triplet responses (x100)

T
es

t T
Q

P
E

STE−AK
GNMDS−AK
MKPOE−NC
MKPOE−Diag��

(c) MKPOE and AK Methods

Figure 9: RCKL-AK aset400 data experiment: Test TQPE vs. number of training responses (ten

trials, 90% CI)

of training the models in rounds, we randomly chose 2000 triplet responses as the development set;

the rest were used as the test set. As before, we broke the development set into ten subsets. Each

subset was progressively added to the working set for training, validation, and testing. Ten percent

of the working set was used for validation and 90 percent was used for training. The experiment

was performed ten times on different randomly chosen train/validation/test splits.

Discussion: The results, shown in Fig. 9, are similar to those for the synthetic data with a few

key differences. First, MKPOE-Full could not be included in this experiment due to its impractically

long run-time for an experiment of this size. Second, the RCKL-MKL methods did not perform

65

as well, relative to the traditional RCKL methods. This could be attributed to the fact that the

auxiliary kernels here did not reflect the triplet responses as well as those in the synthetic data.

Only one kernel was consistently used in every iteration (the kernel built from artist tags). The rest

were either given little weight or completely removed from the model. As with the synthetic data,

with 200 and 400 training responses the RCKL-AK methods performed as well as their respective

RCKL-MKL counterparts, but as more training responses were added, the RCKL-AK methods

began to perform much better. The traditional RCKL methods were more competitive in this

experiment than in the synthetic experiments, but were outperformed significantly by RCKL-AK

much of the time. This, again, could be because the auxiliary kernels were less useful than with

the synthetic data. Both MKPOE methods perform similarly. Though, they seem to suffer even

more than the RCKL-AK methods from the lack of many meaningful auxiliary kernels, and over all

experiments, have statistically significantly higher test error than both RCKL-AK methods.

4.2 ACTIVELY LEARNING AN OBJECT EMBEDDING WITH AUXILIARY

INFORMATION

In the previous section, we demonstrated that using auxiliary information can improve the human

efficiency of RCKL methods, resulting in more complete, effective models that require less feedback

to learn. However, no consideration was made as to what feedback is obtained, and it was assumed

that random queries were asked to the source of feedback. Previous work in active learning has

shown that if queries are chosen with some foresight, then the human efficiency of learning methods

can increase. Consider the case of learning perceptual similarity via crowdsourced triplet feedback.

Because crowdsourcing has real costs in both time and money, it is beneficial to reduce the number

of dispatched tasks in order to learn a perceptual model of similarity.

In this section, we introduce a novel active learning method for learning similarity from triplet

responses with auxiliary information. Our active learning method chooses triplet queries for which

our similarity learning method is able to quickly determine what auxiliary information is most

relevant to the learning task, but also queries that are informative for learning similarity that cannot

be modeled by the auxiliary information. As in the previous section, we learn such a model from

66

triplet responses, but instead of learning a non-parametric kernel, we create an embedding-learning

formulation that can utilize auxiliary information for the sake of computational efficiency. In our

embedding-learning method, one portion of the embedding is a parametric combination of auxiliary

features, while the other portion is non-parametric and is learned directly from triplet responses to

resolve remaining similarity details, similar to K0 in RCKL-AK methods. Because our formulation

is probabilistic in nature, we are able to use information-theoretic notions of uncertainty in the

solutions our method produces. Using this, we develop an active learning method to choose queries

that reduce this uncertainty in expectation. In doing so, our active learning method finds queries

which mutually benefit both the parametric component – quickly finding the relevant feature space

whose generalization matches human judgment – as well as the non-parametric component. 2

4.2.1 A Probabilistic Embedding-Learning Formulation with Auxiliary Features

For our similarity-learning method, we assume that the underlying perceptual similarity space from

which T is drawn can be modeled by embedding the objects in a d̂+ d-dimensional space. To

begin, consider the case without auxiliary information, where the goal is to learn a representation

of n objects in the form of an embedding X̂ = {x̂1, x̂2, ..., x̂n} ⊂ Rd̂. This is the goal of Crowd

Kernel Learning (CKL). CKL uses a probability that a triplet is satisfied, defined in (3.16), to learn

an embedding. This probability can be interpreted as the likelihood of a triplet response given an

embedding of the objects:

p
(

(a, b, c) |X̂
)

=
µ+ d2

2 (x̂a, x̂c)

2µ+ d2
2 (x̂a, x̂c) + d2

2 (x̂a, x̂b)
(4.16)

To find an embedding that models a set of responses T well, one can maximize the joint log-

likelihood over T :

max
X̂

∑
(a,b,c)∈T

log
(
p
(

(a, b, c) |X̂
))

(4.17)

The model produced by solving (4.17) is non-parametric in that each object is represented by a

unique point in the embedding space without rigid structure. Such a model enjoys the same level of

expressiveness as learning a non-parametric kernel matrix using similar RCKL formulations.

2The material presented in this section is currently under review.

67

A limitation of (4.17), much like RCKL methods that learn a kernel, is that in the presence of

few obtained triplet responses, it may not produce a model that generalizes well to the numerous

triplet responses yet to be provided. One way to address this is to include side information about

the objects. For this, we consider side information in the form of features that characterize each

object in some meaningful manner. Let X = {x1,x2, ...,xn} ⊂ Rd be auxiliary feature vectors for

each object. These features may represent important characteristics in the underlying perceptual

similarity space of objects. If they do, then incorporating them into a learned embedding of the

objects may allow it to not only model responses in T , but also generalize to triplet responses yet to

be obtained, creating a more complete model of similarity. To include this side information, we

propose to learn a model comprised of a parametric component to be learned over the auxiliary

features in conjunction with a non-parametric embedding. We define the parametric component of

our model to be X′ = {x′1,x′2, ...,x′n} ⊂ Rd, where:

x′i =
[
w1x1

i ,w
2x2

i , ..,w
dxdi
]

(4.18)

Here, w ∈ Rd is a learned weight parameter. Let Y = {y1,y2, ...yn} ⊂ Rd̂+d be the combination

of the parametric and non-parametric components, where each object yi is represented by a

concatenation of vectors:

yi =
[
w1x1

i ,w
2x2

i , ..,w
dxdi , x̂

1
i , x̂

2
i , ..., x̂

d̂
i

]
(4.19)

The first d elements of yi are the auxiliary features xi, each weighed by an element of the learned

parameter w, i.e. wi ◦ xi. A proper setting of w would emphasize auxiliary features that adhere to

the general trend in obtained triplet responses, while reducing the influence of features that do not.

The last d̂ elements of yi, x̂i, are free parameters to be learned in a non-parametric fashion similar

to traditional CKL.

To learn Y we propose a probabilistic formulation depicted graphically in Fig. 10. We assume

that each of the n objects have a true embedding y in a human-perceptual metric space. We treat y as

an intermediate variable that has two components: x′ ∈ Rd and x̂ ∈ Rd̂. A subset of the elements of

y, i.e a subset of the characteristics in the true perceptual similarity space, are modeled exclusively

by x′. The parametric component x′ is itself an intermediate variable that is defined by w and x.

The non-parametric component x̂ subsequently models the remaining perceptual characteristics

68

𝐰 𝐱

 𝐱𝐱′ 𝐲

𝑛

𝑛
𝑛 − 1

2𝑞

Figure 10: Plate diagram depicting TACKL variable relationships

not captured by x′. The likelihood of a triplet query over the n objects is then dependent on

the individual embeddings of objects. Which specific queries are dependent on a single object

embedding is shown in Fig. 11 (x1 and x2 indicate any two unique objects not including a).

Because X is given, the only model parameters needed to learn an embedding Y are w and

X̂. We choose to do so by maximizing their log-joint posterior given the input variables. We can

decompose the log-joint posterior into two terms:

log
(
p
(
w, X̂|X, T

))
= log (p (w|X, T)) + log

(
p
(
X̂|w,X, T

))
(4.20)

69

𝐲𝑎

𝑎, 𝑥1, 𝑥2 𝑥1, 𝑎, 𝑥2

Figure 11: Plate diagram depicting triplet query/object dependencies

This decomposition reflects the intuition behind the two components in our model. In the parametric

component, X contains features that model a portion of characteristics in Y, and w weighs them by

importance. The non-parametric component learned directly (X̂) models only the characteristics

not modeled by the parametric component, thus making it dependent on X and w. Intuitively, the

parametric component leverages auxiliary features to model as much of the perceptual space as

possible, while the non-parametric component effectively fills in the remaining gaps.

Following this same intuition, we choose to learn w and X̂ in two stages. First, we find w by

maximizing the log-posterior of w given the input variables. Then, we fix w to be the solution in

the first step and maximize the log-posterior of X̂ given all other variables. To learn w, note that

the log-posterior of w can be further decomposed:

log (p (w|X, T)) ∝ log (p (T |w,X)) + log (p (w,X))

=
∑

(a,b,c)∈T

log (p ((a, b, c) |w,X)) + log (p (w,X))
(4.21)

By maximizing the log-posterior of w, we maximize the sum of the log-likelihood of T and the

log-joint prior probability of w and X. The log-likelihood of the triplet responses is defined by the

sum of log-likelihoods of single responses:

p ((a, b, c) |w,X) = p ((a, b, c) |X′) =
µ+ d2

2 (x′a,x
′
c)

2µ+ d2
2 (x′a,x

′
c) + d2

2 (x′a,x
′
b)

(4.22)

70

These likelihoods are similar to (4.16) with objects represented as a weighing of their auxiliary

features. We assume w and X are independent, making log (p (w,X)) = log (p (w)) + log (p (X)).

Since X is given, it’s log-prior probability need not be considered when maximizing with respect to

w. Finally, we choose the prior on w to be uniform over Rd
+, effectively restricting w to be positive,

making our maximization problem:

max
w

∑
(a,b,c)∈T

log (p ((a, b, c) |w,X))

s.t. w ≥ 0.

(4.23)

which we solve via projected gradient descent.

As with w, the log-posterior of X̂ can be decomposed into the sum of the log-likelihood and

log-prior. In this case, the likelihoods over individual triplets are defined as:

p
(

(a, b, c) |w,X, X̂
)

= p ((a, b, c) |Y) =
µ+ d2

2 (ya,yc)

2µ+ d2
2 (ya,yc) + d2

2 (ya,yb)
(4.24)

We assume independence between the variables in the log-prior, thus we can rewrite it as:

log
(
p
(
w,X, X̂

))
= log (p (w)) + log (p (X)) + log

(
p
(
X̂
))

(4.25)

Here, w and X are given, making their priors inconsequential in maximizing with respect to X̂.

Furthermore,, we choose the prior on X̂ to be uniform over Rd̂. Thus, to learn the non-parametric

portion of our model, we solve the following maximization problem via gradient descent:

max
X̂

∑
(a,b,c)∈T

log
(
p
(

(a, b, c) |w,X, X̂
))

(4.26)

In solving (4.23) we learn the parametric portion of the model to fit to the given triplet responses.

Then, by solving (4.26) with fixed w, we learn the non-parametric component that complements

the parametric component. Because we use a Two step learning procedure that utilizes Auxiliary

features, based on CKL, we call our method TACKL.

In our formulation, we assume d and d̂ are sufficiently small to conform to the common assump-

tion that perceptual similarity is low-dimensional. For high-dimensional auxiliary features we can

apply standard dimensionality reduction techniques, such as PCA, and process this low-dimensional

representation. Another option is to process the high-dimensional data directly, employing regu-

larization techniques which promote feature sparsity such as `1-norm regularization [134]. Such

71

regularization terms may take the place of our prior probabilities; however, since different types of

priors are not the emphasis of our approach, we leave these directions as future work.

Formulating similarity learning from triplet responses in terms of probability distributions

allows us to reason about triplet queries in an information theoretic context. Specifically, we can

define concepts such as entropy and information gain. In the next section, we show how we use these

concepts to actively select the most informative queries to ask humans to learn a more complete

model with fewer responses.

4.2.2 Active Embedding-Learning with Auxiliary Features

The general strategy we employ for our active learning scheme is to reduce the uncertainty our

model has in the position of each object individually. As a result, our method works in rounds where

n queries are chosen, each with a different head object xa, and actively selected pairs of objects

xb and xc. Then, for a round t, the entire round of queries is posed to a source of feedback, whose

responses are then used to learn wt+1 and X̂t+1. We measure uncertainty in a head xa at round t by

the entropy of its learned variables:

H t (w, x̂a) =

∫
w

p
(
w|X, T ta

)
log
(
p
(
w|X, T ta

))
∗
∫

x̂a

p
(
X̂|w,X, T ta

)
log
(
p
(
X̂|w,X, T ta

))
dx̂adw

(4.27)

Here, T ta is all obtained triplet responses at round t with head xa. In round t+ 1 we wish to select

the query for which its response in expectation, when added to T ta , will reduce H t (w, x̂a) the most.

Thus, we choose the triplet query (a, {b, c}) with highest expected information gain:

H t (w, x̂a)− ptabc ∗H t
abc (w, x̂a)−

(
1− ptabc

)
∗H t

acb (w, x̂a) (4.28)

where H t
abc (w, x̂a) is H t (w, x̂a) evaluated over T ta ∪ (a, b, c) = T tabc, and ptabc is the probability

that a human will respond (a, b, c) when prompted with (a, {b, c}):

ptabc =

∫
w

p
(
w|X, T tabc

) ∫
x̂a

p
(
X̂|w,X, T tabc

)
dx̂adw (4.29)

72

Algorithm 4 Active TACKL
Input: X ⊂ Rd

1: T 0 ← ∅
2: for round t = 0, 1, 2, ... do
3: Qt ← ∅
4: for head a = 1, 2, 3..., n do
5: if t == 0 then
6: b′ ← Random draw from {1, ...n} − a
7: c′ ← Random draw from {1, ...n} − {a, b}
8: else
9: for all {b, c} ⊂ {1, ..., n} : b, c 6= a do

10: score (a, {b, c})← (4.30) using X̂t and T t
11: end for
12: {b′, c′} ← argminb,c score (a, {b, c})
13: end if
14: Qt ← Qt ∪ (a, {b′, c′})
15: end for
16: T t+1 ← T t ∪ responses ((Qt)
17: wt+1 ← solution of (4.23) using T t+1 and X

18: X̂t+1 ← solution of (4.26) using T t+1, X, and wt+1

19: end for
20: return

{
wt+1, X̂t+1

}

For a single head, the first term in the expected information gain is constant. Thus, our active

learning scheme scores pairs of objects given a head using expected query entropy:

ptabc ∗H t
abc (w, x̂a) +

(
1− ptabc

)
∗H t

acb (w, x̂a) (4.30)

and chooses the one with the lowest score. Note, that for finding the entropy, we fix the non-

parametric components of all objects besides xa to be their estimate at round t, making entropy a

function of only x̂a and w. A similar assumption is used for A-CKL (Sec. 3.4.2). If the prior on

their entirely non-parametric model is chosen to be uniform over the current positions of objects,

then their scoring criteria amounts to finding information gain if xa is randomly moved to the exact

position of one of the other objects. This intuition holds for the non-parametric component of

TACKL. However, the parametric component in our model couples all objects through w. Thus,

when scoring a query, the entropy calculation is based on randomly repositioning xa via w and

73

x̂a, and all other objects through w. In practice, we perform Monte Carlo integration in (4.30) by

uniformly sampling w and X̂ over domains restricted by the magnitudes of their estimates.

Algorithm 4 outlines the entire process of actively learning perceptual similarity using our

methods. The first round (round 0) of query selection is random to establish a basis for subsequent

rounds. For all rounds t > 0, for each head, all pairs of objects are scored. For learning similarity

over a large number of objects, scoring every triplet is prohibitively expensive. In practice, we

randomly choose a subset of pairs to score. The query that results in the lowest expected entropy

for each head is chosen and added to the set of queries for round t. Then, these queries are posed to

the source of feedback for responses, which are added to the running pool. The model parameters

are updated from the pool of responses, consequently driving the next round of active selection.

Querying for triplets in rounds has a practical application. Often to obtain large quantities of

human feedback crowdsourcing technologies are used. For crowdsourcing, human inference tasks

are typically deployed in batches so many different people can work on tasks at once. By selecting

n at a time, one could deploy batches of triplet queries, receive responses, learn a model, and then

select n more to repeat the process. In the next section, we evaluate TACKL and our active variant

A-TACKL on both synthetic data as well as real data gained from crowdsourcing triplet responses.

4.2.3 Experiments

To evaluate TACKL we compare it experimentally to CKL, using both random query selection and

their active schemes, A-TACKL and A-CKL. The goal is to show the advantage our method gains

from using auxiliary information for both random and active query selection schemes. As with

the RCKL-AK experiments, we measure the accuracy of a learned perceptual model by Triplet

Query Prediction Error (TQPE). We evaluate each method after each round of query selection to

show error as a function of training set size. In the interest of fairness, we allow the active learning

methods to score the same number of randomly selected pairs per head. Also, we fix the number of

samples in the Monte Carlo integration for A-CKL to be n
√
n, and for w and X̂ in A-TACKL to be

√
n and n. As a result, both active learning methods take the same number of samples. CKL and

TACKL are given the same randomly selected responses each round, and all methods are provided

the same random initial round of responses. We set d̂← d for the TACKL methods, d̂← 5 for the

74

5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of rounds

T
Q

P
E

 o
ve

r
al

l r
es

po
ns

es

CKL
TACKL
A−CKL
A−TACKL��

Figure 12: TACKL synthetic data experiments

(ten trials, 90% CI)

5 10 15 20 25 30

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of rounds

T
Q

P
E

 o
ve

r
al

l r
es

po
ns

es

CKL
TACKL
A−CKL
A−TACKL��

Figure 13: TACKL Yummly data experiments

(20 trials, 90% CI)

CKL methods (6 for synthetic experiment), and µ← 10−4 for all methods, as slight variations in

their settings did not significantly impact any method.

4.2.3.1 Synthetic Data The first experiment highlights the performance of TACKL in a con-

trolled and idealized synthetic setting. We generated 250 objects in six dimensions as the ground

truth perceptual space X∗, each dimension being drawn from a different distribution: half from

uniform distributions, and half from mixtures of normal distributions. From X∗ we generate an

exhaustive set of all triplet responses. All queries by the methods are answered by this pool, and the

entire pool is used to evaluate TQPE. As auxiliary features, the TACKL methods are given three

dimensions from the ground truth as well as three more randomly generated noise features. This

input coincides with our model assumptions: potentially only some auxiliary features represent

dimensions in the underlying perceptual similarity space.

Discussion: Figure 12 shows the mean TQPE versus number of rounds from running exper-

iments for the ten trials of different random initialization. As with all subsequent figures in this

chapter, error bars represent a 90% confidence interval. Note that both active learning methods

perform poorly in the first few rounds. With such few triplets in T ta , the information gain scores are

not meaningful and having variety among pairs seems to allow the random selection methods to

learn more accurate models. However, A-TACKL recovers from this cold start by round four and

75

subsequently has significantly less error than all other methods. Overall, the TACKL methods are

more accurate than their CKL equivalents because they are given auxiliary information that allows

for better generalization.

4.2.3.2 Yummly Food Data To test TACKL on real responses obtained from humans, we

performed two tests. First, we used a data set of triplet responses gathered over food images sourced

from Yummly recipes using Amazon Mechanical Turk (AMT) [155]. Of the 100 images, 73 have

annotations from Yummly measuring to what degree each food image has six taste properties: salty,

savory, sour, bitter, sweet, and spicy. We used these as auxiliary features in our experiment. To

obtain triplet responses, the authors showed AMT users various-sized grids of food images and

were asked to select the images that “taste most similar”. Selected images were deemed the xa and

xb objects and the rest were deemed xc for responses (a, b, c). Because their goal was to evaluate

grid-size versus accuracy of feedback, a certain amount of noise is present in the responses. For the

73 images with auxiliary features, the data set contains 66,497 unique responses, which is roughly

36% responses to all possible queries. To reconcile the lack of a full set of responses to all queries,

the active selection methods in our experiment simply chose to ask the highest scoring query for

which there was a response. We evaluate error for each method on the full set of responses.

Discussion: The results of our experiments on the Yummly data are shown in Fig. 13. As

with the synthetic experiments, the TACKL methods have consistently less error than their CKL

counterparts, often by a significant margin. In this case, however, the active methods do not suffer

from cold start. This may be due to the fact that the number of objects and responses to evaluate

each model is much less than in the synthetic responses. As a result, the active methods can hone

in on a satisfactory model to reason about with much fewer responses. Also in this experiment,

the active methods outperform the random methods by a much larger margin in the middle rounds,

indicating that the active methods especially benefited from asking informative queries in early

rounds. If just the taste features themselves are used as a similarity model, a TQPE of 0.4562 is

achieved. Despite this, the TACKL methods are able to perform well and find the relevant portions

of taste, giving large weight to the “sweet” feature and frequently assigning zero weight to “sour”

and “spicy”. Indeed, the data contains many varieties of sweet (pastries, fruits) and not sweet (rice,

pasta) foods, while few of the foods could be considered sour or spicy.

76

Figure 14: Example task deployed via AMT to collect Zappos triplet data

(three triplet queries per task)

4.2.3.3 Zappos Shoes Data To fully evaluate the performance of our active learning approach

and to provide a baseline for comparisons with future active triplet learning schemes, we sought

to create a data set containing responses to all possible triplet queries over a nontrivial number of

objects. By doing so, we could truly evaluate the active triplet query selection methods by allowing

them to choose any query and obtain a response from an actual human. To our knowledge, there

does not currently exist such a data set that is publicly available.

To this end, we chose a representative subset of 85 images of shoes from the Zappos50K

data set [158] by performing k-means clustering on the images represented by their AlexNet [73]

features. These images were used in the deployment of an AMT task consisting of all 296,310

triplet queries among images. A screen-shot of the deployed task is shown in Fig. 14. Each query

was dispatched to three different AMT users, and the ground truth response was determined by

majority vote. Approximately 1,020 different users provided responses to queries. Among them,

82% of the queries had full agreement among users, and 18% had 66% agreement. For auxiliary

features, we used the AlexNet feature representations of each image projected to three dimensions

using Principal Components Analysis.

Discussion: Figure 15 contains graphs depicting the results of our experiments on the Zappos

data. Figure 15a shows the mean TQPE of the learned models as in previous experiments. Not

77

5 10 15 20 25 30
0.2

0.25

0.3

0.35

0.4

Number of rounds

T
Q

P
E

 o
ve

r
al

l r
es

po
ns

es

CKL
TACKL
A−CKL
A−TACKL��

(a) TQPE over all responses
vs. number of rounds

5 10 15 20 25 30
0.55

0.6

0.65

0.7

Number of rounds

M
ea

n
lik

el
ih

oo
d

of
 tr

ue
 r

es
po

ns
e

CKL
TACKL
A−CKL
A−TACKL��

(b) Mean likelihood of true response
vs. number of rounds

Figure 15: TACKL Zappos data experiments (ten trials, 90% CI)

shown in the figure is that the full AlexNet features by themselves achieved error of 0.3882. Most

methods surpassed this after two rounds. The difference between the active and random methods is

much smaller. This could be attributed to the slight amount of noise in the large pool of responses,

which affects both learning model parameters and evaluation of the error. As with the Yummly data

experiments, A-TACKL does not suffer from cold start. However, this is not the case for A-CKL.

A-TACKL is able to rely on the auxiliary information when given few triplet responses and learn

a model for which active learning benefits. Overall, the TACKL methods outperform their CKL

counterparts.

Figure 15b shows the mean likelihood of all triples responses for all learned models. This metric

conveys the margin by which the models adhere to all responses. While TACKL has consistently

lower error than CKL, it is much less stable in terms of likelihood. This implies that TACKL

can consistently raise the likelihood of more correct responses above 0.5, but it sometimes does

so without raising it far beyond 0.5. Nevertheless, the TACKL methods perform relatively well

according to this metric. By the time A-TACKL is given 30 responses, on average, the distance

between xa and xc is more than twice than the distance between xa and xb for all responses (a, b, c).

Finally, Fig. 16 shows one of the embeddings learned by A-TACKL after 30 rounds, projected

to two dimensions. While the characteristics being displayed by this embedding are largely up to

78

Figure 16: Example two-dimensional embedding learned by A-TACKL on Zappos data

interpretation, some trends seem to be present. First, certain clusters of shoes seem to have formed.

High heels, athletic shoes, flats, and men’s dress shoes all form loose clusters. Also, the shoes in the

bottom half seem to be more formal than the top half. Note that much of the information is lost by

projecting from six dimensions to two. If the goal is to learn a visualization of perceptual similarity,

than a two-dimensional embedding can be learned. In our experience with embedding-learning

methods, when visualizing embeddings in 2D, explainable characteristics are more obvious when a

79

two-dimensional embedding is learned directly.

4.3 SUMMARY

In this chapter, we focused on the task of improving human efficiency in learning models of

similarity from triplet feedback. We did this in two ways. First, we introduced a novel RCKL

framework that allowed traditional RCKL methods to include auxiliary information in the form of

kernels built from features characterizing each object. When some of these features represent trends

in the triplet feedback, using their corresponding kernels in the process of learning a non-parametric

kernel matrix can allow the resulting similarity model to convey a more general, effective notion of

similarity between objects. Our framework, RCKL-AK, is able to identify and incorporate relevant

auxiliary information to include in the model without incurring significant overhead in learning a

kernel. Experimentally, we show on synthetic and real data sets that RCKL-AK is able to learn

kernels that satisfy more out of sample triplet responses than traditional RCKL methods, as well as

recent metric learning methods that use multiple kernels as a basis for learning.

To further increase human efficiency in learning a model of similarity from triplet feedback,

we also developed a novel active learning method. Here, we focused on the embedding-learning

formulation of CKL. Using CKL as a basis, we derive a novel method to learn an embedding of

objects that adheres to triplet feedback. Our method, called TACKL, learns an embedding with two

components: a parametric component consisting of a weighted concatenation of auxiliary features,

and a non-parametric component to model true object relationships not captured by the parametric

component, similar in spirit to RCKL-AK. TACKL is formulated probabilistically, allowing us

to create an active learning scheme based on information-theoretic notions of which queries are

most informative. In our experimental evaluation, we show that by leveraging auxiliary features

and actively selecting triplet queries, TACKL can learn more complete and accurate models of

perceptual similarity than methods that do not use side information and select queries at random.

80

5.0 ONLINE SIMILARITY LEARNING FROM TRIPLET RESPONSES

To this point, we have discussed RCKL methods in terms of learning a kernel by solving a

semidefinite program (SDP) in batch from a set of given triplet responses. However, in numerous

practical applications, a batch approach is not appropriate due to the online and dynamic nature

of how feedback is obtained. Consider the example of a users shopping on an online store. If the

product a user wants to buy is out of stock, the store may have an automated system in place that

suggests suitable replacement items. When a user considers replacements and chooses one, she is

implicitly providing feedback that can be used to model how humans view the relationships among

items. Thus, as users interact with the store, feedback is constantly being given. More specifically

in this case, the user is expressing that the item she selected is in some sense more similar to the

out of stock item than the other suggestions. This natural interaction with the online store can be

understood as triplet feedback, and RCKL methods can be used to learn models that reflect how

users view the relationships among products. Using a learned model, the store can suggest better

replacements, deliver more relevant product information, or provide advertisements informed by

product relationships. In this example, as well as others, it is important to quickly update the model

of similarity so that systems using it will have the most up-to-date information.

Such applications motivate the need for an efficient and online method for learning similarity

among a large number of objects from triplet feedback. Batch RCKL methods scale poorly for large

object collections because they must ensure their solutions are PSD. Without any prior assumptions

on the data this operation is of O(n3) time complexity for n objects. For large n, this is prohibitively

slow for the aforementioned online applications. In this chapter, we introduce a novel online

RCKL framework called Efficient online Relative comparison Kernel LEarning (ERKLE) that

achieves computational efficiency through the unique structure of RCKL gradients. First, ERKLE

sequentially updates a kernel one query response at a time in O(n2) complexity by employing a

81

stochastic gradient descent technique that takes advantage of the sparse and low-rank structure of the

RCKL gradient over a single comparison for efficient PSD projections. We show that the gradient

structure not only enables an efficient update that requires finding only the smallest eigenvalue

and eigenvector, but generalizes several well-known convex RCKL methods [4, 143]. Second, the

structure of the gradient also reveals a simple way to bound the smallest eigenvalue after each

gradient step, allowing certain updates to be performed in constant time. Third, motivated by

previous work in online learning [31], we also derive a passive-aggressive version of ERKLE to

ensure learned kernels model the most recently obtained relative comparisons without over-fitting.

The passive-aggressive scheme in conjunction with the smallest eigenvalue bound allows us to skip

many PSD projections, yielding a very efficient yet effective kernel learning method. 1

5.1 EFFICIENT ONLINE RELATIVE COMPARISON KERNEL LEARNING (ERKLE)

In our online RCKL problem setting, at each time step j a triplet response tj = (a, b, c) is obtained

from a source. The goal is to produce a kernel matrix Kj that satisfies not only tj , but all triplet

responses obtained in previous time steps, as well. One could apply any of the batch RCKL methods

outlined in Sec. 3.2.2.1 to this setting by simply running their optimization procedures over all

feedback Tj = {ti : i = 1, ...j} every time a new triplet response is obtained. The main issue with

applying batch RCKL methods in such a way is in ensuring the kernel matrices produced are PSD.

To do this, traditional batch RCKL methods project intermediate solutions after each gradient step

in their optimizations back onto the PSD cone (Π+ on line 4 of Alg. 1). In the absence of any

prior knowledge of its structure, a batch gradient step can produce intermediate solutions with an

unknown number of negative eigenvalues. Because of this, projection is commonly performed using

the procedure outlined in (3.11), which performs full eigendecomposition after a gradient step, an

O (n3) time procedure. In the online learning setting, this projection may be needed to be performed

multiple times each time new feedback is obtained. This renders batch methods computationally

prohibitive for learning the similarity of a large number of objects in an online manner for many

real-world tasks.

1The material presented in this chapter was originally published as [60].

82

5.1.1 Stochastic Gradient Step

To create an efficient and online framework for RCKL – ERKLE – we first leverage the form

of common RCKL loss functions to produce a stochastic update with respect to a single triplet

response. As shown in (3.10), many RCKL loss functions L naturally decompose into the sum over

losses l defined on individual units of obtained feedback (triplet responses in our case). From this

decomposition, ERKLE first performs the following stochastic gradient step:

K′j ← Kj−1 − δj∇l (Kj−1, tj) (5.1)

where triplets t1, ..., tj−1 have been observed, and Kj−1 is the online solution after observing the

j − 1 triplet. Note that our online formulation does not include trace regularization. Although this

may impact our method in generalizing to unseen triplets, our experiments show that our online

formulation achieves good generalization through carefully constructed, data-dependent step sizes

δj , as detailed in Sec. 5.1.3.

5.1.2 Efficient Projection

In order to retain positive semi-definiteness, after taking a stochastic gradient step, the resulting

matrix K′j must be projected onto the PSD cone. Following the procedure of Π+ is prohibitively

expensive for our online setting. Instead, for RCKL methods we can take advantage of the sparse

and low-rank nature of the gradient to devise an efficient projection scheme. To this end, we

introduce a canonical gradient matrix Gt over a triplet t = (a, b, c), where the entries are defined

as:

Gij
t =



−2 if i = a, j = b or i = b, j = a

2 if i = a, j = c or i = c, j = a

1 if i = b, j = b

−1 if i = c, j = c

0 otherwise.

(5.2)

Now, consider the following choice for the stochastic step:

∇l (K, t) = f (K, t) Gt (5.3)

83

Algorithm 5 Efficient PSD Projection
1: procedure Π1

+(K)
2: Find λ↓ and v↓ from K

3: if λ↓ < 0 then
4: return K− λ↓v↓vT↓
5: else
6: return K

7: end if
8: end procedure

where f is a real-valued function. With (5.3) as the gradient in (5.1), Kj−1 is updated by increasing

entries corresponding to the similarity between objects a and b and decreasing the similarity between

a and c by a factor of f(Kj−1, tj).

The function f can be defined such that we recover the gradients of l for different convex RCKL

formulations. The stochastic gradient for STE can be obtained by defining f as:

f (K, t = (a, b, c)) = 1− pK
abc (5.4)

Where pK
abc is the STE probability defined in (3.13). Similarly, by defining f to be:

f (K, t = (a, b, c)) =

 1 if d2
K(a, b) + 1 < d2

K(a, c)

0 otherwise
(5.5)

the stochastic gradient for GNMDS is obtained. Note, that this not only generalizes these two

methods for use in our online framework but also suggests a simple way to create new online RCKL

methods by designing a function f that weighs the contribution of individual triplets.

Decomposing the online updates in such a way reveals a key insight into how to perform

efficient projections onto the PSD cone after the stochastic step. Algorithm 5 outlines the procedure

for efficient projection in ERKLE. Here, λ↓ and v↓ are the smallest eigenvalue and eigenvector

of matrix K. Finding λ↓ and v↓ can be done in O (n2) time using iterative eigendecomposition

methods such as using a single power iteration [94]. As such, Alg. 5 has a time complexity of

O (n2). To show that Alg. 5 does indeed perform the correct projection, we prove the following

theorem:

84

Algorithm 6 Efficient online Relative comparison Kernel LEarning (ERKLE)
1: K0 ← I

2: λ̂0
0 ← 1

3: for j = 1, 2, ... do
4: γj ← δjf (Kj−1, tj)

5: K′j ← Kj−1 − γjGtj

6: λ̂0
j ← λ̂0

j − 3γj
7: if λ̂0

j < 0 then
8: Kj ← Π1

+

(
K′j
)

9: λ̂0
j ← max (0, λ↓)

10: end if
11: end for

Theorem 3 Algorithm 5 results in a PSD matrix Kj that is closest to K′j in terms of Frobenius

distance.

PROOF Let K0 ∈ Sn+ (e.g. identity). We use this as our base case and show inductively that after

each iteration of the main loop, Kj remains PSD. Let γj = δjf (Kj−1, tj) be the magnitude of an

update. By (5.3), the update in Equation (5.1) can be written as Kj−1 − γjGtj . The only nonzero

eigenvalues of −γjGtj are λ1 = 3γj and λ2 = −3γj . It follows from Weyl’s inequality that the

matrix K′j = Kj−1− γjGtj has at most one negative eigenvalue. If K′j has no negative eigenvalues,

then it is PSD (line 6 of Alg. (5)). If K′j has one negative eigenvalue, line 4 of Alg. 5 results in a

PSD matrix Kj that is closest to K′j in terms of Frobenius distance by Case 2 of Theorem 4 in [25].

The important implication of Thm. 3 is that ERKLE can incorporate a triplet into a kernel

in O(n2) time by performing the efficient projection outlined in Alg. 5. Furthermore, if a step is

sufficiently small, then no projection is needed at all. Let λ0
j be the smallest eigenvalue of Kj . By

Weyl’s inequality, if λ0
j − 3γj ≥ 0, then all eigenvalues of K′j+1 are greater than or equal to 0. This

can be used to skip the projection step when the update is known to result in a PSD matrix. In

our algorithm, we lower bound the smallest eigenvalue by maintaining a conservative estimate λ̂0
j .

Initially, λ̂0
0 ← λ0

0. It is updated each iteration with it’s lower bound λ̂0
j ← λ̂0

j−1 − 3γj . If λ̂0
j < 0,

then Alg. 5 is used to project onto the PSD cone and λ̂0
j ← max (0, λ↓). Otherwise, no projection is

performed. In the case where λ0
0 >> −3γj , this simple lower-bounding procedure can save many

eigenvalue/eigenvector computations.

85

Algorithm 6 outlines the ERKLE algorithm. Here, we assume that our kernel is initialized to

identity, but other initializations of the kernel and its smallest eigenvalue can be used. The for loop

iterates for each time a new response tj is obtained. First, the magnitude is found and used with

the canonical gradient matrix to update the kernel. Next, the conservative estimate of the smallest

eigenvalue is updated. If that estimate is negative, only then does ERKLE perform the efficient

projection procedure to ensure the solution this iteration is PSD. The estimate is then updated to be

the true smallest eigenvalue when projecting. Thus, after each iteration the kernel Kj is updated to

model tj and is PSD.

5.1.3 Passive-Aggressive Updates

A key difference between the batch and stochastic RCKL updates is the magnitude of the updates.

For both methods the magnitude of the updates with respect to a single triplet t is a function of a

learning rate and how well the previous solution satisfies t. In the batch setting, the same learning

rate δi is used for all triplets in a given step. In contrast, traditional stochastic methods use different

learning rates δj over data samples to accelerate convergence, where the δj are designed to satisfy

certain conditions. Early work [15] on the topic of learning rates suggest that δj should satisfy two

constraints:
∑∞

j=1 δ
2
j < ∞ and

∑∞
j=1 δj = ∞. For example δj = 1/j satisfies these constraints.

Later work [95] suggests a more aggressive setting of δj = 1/
√
j.

For our problem, however, we prefer to treat triplet responses equally: current responses should

not have more influence than preceding responses. On the other hand, we do not wish to over-fit

to the most recently obtained feedback. It is this observation that motivates our development of a

Passive-Aggressive (PA) variant of our online RCKL framework. In the RCKL setting, the general

idea of passive-aggressive learning is that if the previous solution Kj−1 satisfies a newly obtained

triplet response tj = (a, b, c) by a margin of 1, then do not update the kernel (passive). Otherwise,

update the kernel so that the kernel is changed the minimal amount, but tj is satisfied by a margin

of 1 (aggressive). A fortunate side effect of choosing minimally sized updates is that updates are

less likely to result in non-PSD matrices than larger steps, thus further reducing the number of

projections onto the PSD cone via our conservative eigenvalue estimate.

To derive a passive-aggressive update for ERKLE, we wish to learn a magnitude of a stochastic

86

step γj = δjf(Kj−1, tj) with passive-aggressive properties. f as defined by GNMDS in (5.5) is

inherently passive, but if Kj−1 does not satisfy the margin constraint, it takes a step independent

of how close the previous solution is to satisfying tj = (a, b, c). As such, we wish to find a δj that

takes an aggressive step. We do this by solving the following optimization problem:

min
δj

δ2
j

s.t. d2
K′j

(a, b) + 1 ≤ d2
K′j

(a, c), δj ≥ 0
(5.6)

By (5.3) and (5.5), the first constraint can be rewritten as:

d2
Kj−1

(a, b)− d2
Kj−1

(a, c)− 10δj + 1 ≤ 0 (5.7)

With the assumption that the triplet is not satisfied by a margin of one in Kj−1, no update is

required; otherwise, only a positive value of δj can satisfy (5.7), making the positive constraint on

δj redundant. Also, the smallest δj that satisfies (5.7) is the one that makes the left hand side exactly

zero. As a result, the inequality constraint can be handled as equality. To find the optimum we first

write the Lagrangian L (δj, α):

δ2
j + α

(
d2

Kj−1
(a, b)− d2

Kj−1
(a, c)− 10δj + 1

)
(5.8)

Taking the partial derivative of (5.8) with respect to δj , setting it to 0, and solving for δj results in

δj = 5α. Substituting this back into (5.8) makes the Lagrangian:

−25α2 + α
(
d2

Kj−1
(a, b)− d2

Kj−1
(a, c) + 1

)
(5.9)

Taking the partial derivative of (5.9) with respect to α, setting it to 0, solving for α and then

substituting this back into δj = 5α results in the minimum step size that satisfies the margin

constraint:

δj =
d2

Kj−1
(a, b)− d2

Kj−1
(a, c) + 1

10
(5.10)

A similar passive-aggressive update can be derived using the probability of a triplet being

satisfied in STE. Consider the following optimization:

min
δj

δ2
j

s.t. p
K′j
abc ≥ P, δj ≥ 0

(5.11)

87

Algorithm 7 ERKLE with Multiple Passes
Input: β : # of triplet responses stepped over each pass

1: K0 ← I

2: for j = 1, 2, ... do
3: K′j ← Kj−1 − δj∇l (Kj−1, tj)

4: Kj ← Π1
S+

(
K′j
)

5: if j > 2β then
6: for k = 1, 2, ..., β − 1 do
7: Randomly select t′ from {t1, t2, ..., tj}
8: K′j ← Kj − δj+k∇l (Kj−1, t

′)

9: Kj ← Π1
S+

(
K′j
)

10: end for
11: end if
12: end for

In (5.11) the minimal step size is chosen such that the probability that a triplet is satisfied after

the update is greater than or equal to a given probability P ∈ (0.5, 1). Using (5.11), we derive the

following step size:

δj =
d2

Kj−1
(a, b)− d2

Kj−1
(a, c) + κ

10
(5.12)

where κ = log (P) − log (1− P). The full derivation is given in Appendix B. Both derivations

reveal that passive-aggressive updates using STE and GNMDS are similar. Setting P = e
1+e

in

(5.12) recovers the GNMDS passive-aggressive step in (5.10), and changing the margin in (5.10)

recovers different settings of P .

Note that using (5.10) as a step size results in a K′j with the intended passive-aggressive property,

not necessarily Kj after the projection. We choose to find a passive-aggressive step size instead of a

full update for computational efficiency. Finding a true passive-aggressive step size with respect to

Kj would require iteratively projecting onto the PSD cone, which is computationally prohibitive in

the online setting. In practice, d2
K′j

is a good approximation to d2
Kj

, as their difference is dependent

on the magnitude of the (potentially) negative eigenvalue of K′j , which tends to be small.

88

5.1.4 ERKLE with Multiple Passes

Even for a proper setting of δj , it has been shown that stochastic methods perform best when

multiple rounds of updates or passes are performed on the observed samples as a form of averaging

[14, 109, 150]. For our problem setting, this indicates that ERKLE may benefit from revisiting

triplet responses that were previously used to update the kernel. In our experiments we perform a

simple multi-pass scheme where for each new triplet, ERKLE not only steps over the most recently

obtained triplet, but also a number of randomly sampled triplet responses from the set of previously

obtained responses.

Algorithm 7 outlines our multiple-pass version of ERKLE. We denote the number of “passes”

ERKLE performs each time a new triplet response is observed as β. For brevity, we omit the portion

of the algorithm that maintains and checks the estimate of the smallest eigenvalue, but it can be

inserted into lines 4 and 9 to skip unnecessary projections. Here, after a sufficient number of triplets

have been obtained (in our experiments, we chose 2β), β − 1 triplet responses are selected every

iteration from all previously observed responses (for a total of β updates per iteration). These triplet

responses are stepped over as done with original ERKLE algorithm. For our random selection used

in our experiments, we simply selected uniformly at random with replacement from the obtained

responses. More sophisticated random selection procedures may be used in order ensure triplet

responses obtained initially do not get selected drastically more times than those obtained later.

For instance, when a triplet response gets chosen on line 7, one could reduce the probability of

that response being chosen subsequently. Using this simple approach is sufficient for ERKLE to

maintain high accuracy while still ensuring computational efficiency.

5.2 EXPERIMENTS

In this section, we evaluate ERKLE by comparing it to batch RCKL methods. While batch methods

can be applied directly in the online learning setting, they more commonly use mini-batches when

dealing with continuously streaming data. In the mini-batch RCKL setting, every time a new batch

of m triplet responses are received, batch RCKL is trained over all responses obtained so far (e.g.

89

if m = 100 after two mini-batches are received, then the batch methods are trained using 200

responses). Thus, after all responses are received via mini-batches, the batch methods are trained on

the full training set, as in the true batch setting.

We evaluate each method on four different data sets. First, we start with a small-scale synthetic

experiment to evaluate how the methods perform in an idealized setting. Second, a large-scale

synthetic experiment is run to show how ERKLE and batch compare in terms of practical run time.

Third, a data set of triplet responses over popular music artists is used to evaluate how the methods

perform in a real-world setting with moderate response noise. Finally, ERKLE and batch RCKL

methods are evaluated on a data set of responses over scene images, which consist of a small number

of responses, thus focusing on the performance of these methods with very little feedback.

For these experiments, we wish to evaluate the model effectiveness of the solutions each method

finds as a function of the amount of feedback obtained. For RCKL, this is measured by how the

learned kernels generalize to held out triplet responses, as responses are obtained. This is important

in real-world applications where the goal is to accurately model many or even all the relationships

among objects, not just the observed ones. Because of this, we again use triplet query prediction

error (TQPE) (4.14), as it effectively measures how well each method can utilize the obtained

(training) responses to generalize to unseen (test) responses.

Unless otherwise noted, the experiments were run with the following specifications. Each

method started with an initial kernel set to identity in order to give no method an advantage (all

methods initially satisfy no triplet responses). All batch methods were terminated after a maximum

of 1000 iterations or when the change in objective between iterations was less than 10−7. We denote

the batch methods with the suffix “-Batch” (e.g. STE-Batch), the ERKLE variants with “-ERKLE”

(e.g. STE-ERKLE), and passive-aggressive ERKLE as PA-ERKLE. The mini-batch size is 100, and

all methods are evaluated every 100 observed responses.

We used the batch STE, GNMDS, and CKL (Crowd Kernel Learning [132]) MATLAB imple-

mentations specified by [143] in which the eig MATLAB function is used to perform eigdecompo-

sition for projection onto the PSD cone. ERKLE was also implemented in MATLAB, where the

eigs function is used to find a single eigenvalue/eigenvector pair with smallest eigenvalue. The λ

hyperparameter for STE and GNMDS, and µ for CKL was chosen to be the best performing setting

over ten varying options. The timed experiments were performed on an Intel Core i5-4670K CPU

90

1 2 3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45
T

es
t T

Q
PE

Number of training triplet responses (x1000)

STE (δ = 1/j)
GNMDS (δ = 1/j)

STE (δ = 1/
√

j)

GNMDS (δ = 1/
√

j)
STE (δ = 1)
PA

1 2 3 4 5 6 7 8 9 10
0.15

0.2

0.25

0.3

0.35

0.4

0.45

T
es

t T
Q

PE

Number of training triplet responses (x1000)

STE−ERKLE (β = 1, δ = 1)
STE−ERKLE (β = 10, δ = 1)��������
PA−ERKLE (β = 1))
PA−ERKLE (β = 10)
STE−Batch
GNMDS−Batch
CKL−Batch

1 2 3 4 5 6 7 8 9 10
0.15

0.2

0.25

0.3

0.35

T
es

t T
Q

PE

Number of effective passes on observed responses

STE−ERKLE (δ = 1)
PA−ERKLE
STE−Batch
GNMDS−Batch

Figure 17: ERKLE small-scale synthetic data experiments (ten trials, 95% CI)

91

@ 3.4 GHz with 16 GB of RAM on a single thread. Each experiment was performed with ten trials,

each with different, randomly chosen test, train and validation sets. The error bars in the graphs

represent the 95% confidence interval.

5.2.1 Small-Scale Synthetic Data

Our first experiment is to test each method on an ideal, small-scale, synthetic data set. We created

the synthetic data set by first generating 100 data points (n = 100) in R50 from N (0, 1). Using

the distances between points, we answered all possible triplet queries, resulting in 485,100 triplet

responses. 10,000 responses were used as the train set and the rest were used as the test set.

Discussion: Figure 17 shows three graphs depicting the results of our experiment on small-

scale synthetic data. The top figure shows the effect that the learning rate parameter δj has on the

performance of ERKLE as more triplet responses are observed in an online fashion. For a setting

of 1/j, the learning rate decays too rapidly to improve performance significantly after j = 3000.

The learning rate 1/
√
j performs better, but still levels off, faster than the final two methods. The

last two methods have learning rates that are independent of the number of observed responses.

STE-ERKLE with a constant learning rate and PA-ERKLE take steps solely based on how well the

current solution satisfies the observed responses, and vastly outperform the alternative learning rates

based on number of observations. This result indicates that reducing the influence of a response

because it was observed later has an adverse effect on the ability of a learned kernel to generalize to

unobserved responses.

The middle figure shows the performance of STE-ERKLE (with δj set to 1), and PA-ERKLE

compared to three batch RCKL methods. The batch hyperparameters were chosen by selecting the

best settings over choices as evaluated on the test set. With a single pass over the data (β = 1),

both ERKLE methods outperformed all batch methods slightly. With ten passes over the data, the

ERKLE methods outperformed the batch methods by a large margin. In addition, the batch methods

level off more quickly than the ERKLE methods, indicating that if more triplet responses were

obtained, the ERKLE methods would further outperform even the batch methods. We believe that

these results show that by minimizing the expected risk directly, ERKLE is able to learn a more

general kernel than batch methods that minimize empirical risk.

92

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

Number of training triplet responses (x1000)

R
un

 ti
m

e
(s

ec
on

ds
 x

10
00

)

 PA−ERKLE (β = 1)
GNMDS−Batch (1 step)
GNMDS−Batch (2 steps)

(a) Run time (seconds) vs. # of observed responses

1 2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

Number of training triplet responses (x1000)

T
es

t T
Q

P
E

 PA−ERKLE (β = 1)
GNMDS−Batch (1 step)
GNMDS−Batch (2 steps)��������

(b) Test TQPE vs. # of observed responses

Figure 18: ERKLE large-scale synthetic data experiments (five trials, 95% CI)

To compare the methods in an implementation-independent manner, we evaluate two ERKLE

methods and two batch RCKL methods as a function of how many effective “passes” each method

performed on the data. For ERKLE, this amounts to the setting of the β parameter. For the batch

RCKL methods, this is the number of full gradient steps it takes. Each method was run over all

training triplet responses with the step size δj validated on the test set for the batch methods. The

bottom figure shows the results, and clearly indicates that if only few passes through the data can be

performed, then ERKLE will outperform batch methods by a wide margin.

5.2.2 Large-Scale Synthetic Data

Next, we evaluated how PA-ERKLE compared to batch GNMDS in terms of practical run time on a

large scale experiment. For this experiment, we generated 5,000 data points in the same manner

as the small-scale synthetic data. For each of the five trials, 10,000 randomly generated triplet

responses were used as the train set and 50,000 were used as the test set. The batch methods were

run in mini-batches of 500 responses due to time constraints. The batch hyperparameters and the

step size δi in their optimizations were chosen as the settings that best performed on the test set.

Discussion: Figure 18a shows the cumulative run time of one pass of PA-ERKLE, and 1 and

2 steps of batch GNMDS. The times shown for the batch methods are for the best chosen λ and

93

1 2 3 4 5 6 7 8 9 10

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
T

es
t T

Q
PE

Number of training triplet responses (x1000)

STE−ERKLE (δ = 1 β = 1)
STE−ERKLE (δ = 1 β = 5)
PA−ERKLE (β = 1)
PA−ERKLE (β = 5)
STE−Batch
GNMDS−Batch

1 2 3 4 5 6 7 8 9 10

0.025

0.05

0.075

0.1

0.125

0.15

0.175

T
ra

in
 T

Q
PE

Number of training triplet responses (x1000)

STE−ERKLE (δ = 1 β = 1)
STE−ERKLE (δ = 1 β = 5)
PA−ERKLE (β = 1)
PA−ERKLE (β = 5)
STE−Batch
GNMDS−Batch

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

L
ea

rn
ed

 k
er

ne
l r

an
k

Number of training triplet responses (x1000)

 STE−Batch
GNMDS−Batch

Figure 19: Results from experiments on the aset400 data set (ten trials)

94

not for the total time it took to find it. The figure shows that a single pass of PA-ERKLE is often

significantly faster than a single gradient step of batch GNMDS. Two steps of GNMDS takes even

longer. ERKLE can perform online updates much faster due to the efficient projection procedure as

well as the ability to skip certain projections by estimating the lower bound. In this experiment, the

mean number of eigenvalue/eigenvector computations over the five trials was 724.2 with a standard

deviation of 3.7. Hence, PA-ERKLE was able to skip the projection step roughly 93% of the time.

Figure 18b depicts the test errors of each method. Initially, the batch methods perform better, but

at around 2,500 triplet responses, PA-ERKLE outperforms the batch methods. This indicates that

PA-ERKLE can produce truly online solutions in a single pass over the data, while maintaining

competitive results with batch methods in terms of generalization and having faster run time.

5.2.3 Music Artist Similarity

For the last two experiments we performed evaluations on real-world data sets. First, we performed

an experiment using triplet responses among popular music artists gathered from a web survey.

The aset400 data set [40] contains 16,385 responses over 412 artists. We randomly chose 10,000

responses as the train set, 1,000 as the validation set for the batch hyperparameters, and the rest

were used as the test set. The aset400 data set presents a challenge not present in the synthetic data:

It has a moderate amount of conflicting responses, thus methods used in the evaluation must deal

with noise within the data.

Discussion: Figure 19 shows the results of the aset400 data experiments. The top figure shows

how well ERKLE and batch RCKL methods generalize to the test set. STE-ERKLE performs

considerably worse than the other methods, most likely due to the noise in the observed triplet

responses. The probability pK
t used in STE-ERKLE decays rapidly. Thus, responses that are in

agreement with previously obtained responses do not influence the learned kernel greatly. However,

a conflicting responses will make STE-ERKLE perform a relatively more drastic update. PA-

ERKLE, however, is much more robust to noise due to the minimal step size taken to satisfy a triplet

response. Because of this, PA-ERKLE performs as well as the batch methods and often better when

multiple passes are taken.

The middle figure shows the training errors of each method. We use normalized training error

95

as an objective-independent measure of how well each method fits to the observed triplet responses.

The STE-ERKLE models are greatly effected by the presence of conflicts in that they do not learn a

kernel that fits to a large number of the observed responses. PA-ERKLE, on the other hand, is able

to fit better to the set of observed responses.

As previously discussed, dissimilar from batch methods ERKLE does not use trace regulariza-

tion. Experimentally, however, we nevertheless find that our method outperforms batch methods

that use trace regularization, in either producing low-rank or high-rank kernels. To demonstrate

this, in the bottom figure in Fig. 19 we plot the ranks of the kernels learned by the batch methods.

In our experiments, the range of potential λ values was set so that the batch methods never chose

either the upper or lower bound. We did this to ensure that the range of regularization options were

sufficiently strict or lenient. We observe that the batch methods generally produce low-rank kernels

under a small number of triplet responses, but as the number of responses are observed the rank

increases. Our method is able to better generalize without using trace regularization, regardless of

the preferred rank, due to the PA updates only satisfying responses to the necessary extent.

5.2.4 Outdoor Scene Similarity

Our final experiment used triplet responses over 200 randomly chosen images of scenes from the

Outdoor Scene Recognition (OSR) data set [99]. Triplet queries were posed to 20 people via an

online system. After an initial 1200 randomly chosen queries were answered , 20 “rounds” of 200

queries were chosen to be answered according to the adaptive selection criterion in [132], resulting

in 3,600 total responses. For each trial of this experiment, 1,000 responses were randomly chosen as

the test set, 1,000 as the train set, and 600 as the validation set for the batch hyperparameters. This

experiment is especially challenging for two reasons. First, this is the smallest experiment in terms

of responses, highlighting how the methods perform with little feedback. In addition, the adaptive

selection algorithm chooses queries with the highest information gain, hence, the responses are

intentionally chosen to give disparate information about how the objects relate.

Discussion: Figure 20a depicts test errors on each method. We observe that STE-ERKLE

consistently outperforms STE-Batch, and in particular STE-ERKLE performs well under a small

number of triplet responses relative to all other methods. PA-ERKLE is comparable or outperforms

96

1 2 3 4 5 6 7 8 9 10

0.45

0.475

0.5

0.525

0.55

0.575

Number of training triplet responses (x100)

T
es

t T
Q

P
E

STE−ERKLE (δ = 1 β = 1)
PA−ERKLE (β = 1)
STE−Batch
GNMDS−Batch

(a) Test error vs. # of observed responses

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

Number of training triplet responses (x100)

T
ra

in
 T

Q
P

E

STE−ERKLE (δ = 1 β = 1)
PA−ERKLE (β = 1)
STE−Batch
GNMDS−Batch

(b) Train error vs. # observed responses

Figure 20: Results from experiments on the OSR data set (ten trials)

its batch counterpart in GNMDS-Batch, given enough responses (at least 500). However, PA-

ERKLE performs quite well in training error compared to all other methods, indicating that even

in such a challenging scenario, the passive-aggressive update scheme minimally interferes with

previously obtained responses.

5.3 SUMMARY

In this chapter, we introduced a novel method to learn a PSD kernel matrix modeling the relationships

among objects from relative triplet comparisons given in an online fashion. This task, motivated by

real-world applications where feedback is obtained continuously, cannot practically be performed

by traditional batch RCKL methods due to their PSD projection procedures having time complexity

of O (n3). By taking advantage of the sparse and low-rank structure of the online formulation,

we show how to take stochastic gradient descent updates of complexity O (n2). We show how

passive-aggressive online learning benefits our method in terms of generalizing to unseen triplet

responses, and in conjunction with the stochastic gradient structure, enables us to perform a small

number of necessary PSD projections in practice. Experimentally, we show on synthetic and

97

real-world data that our method learns kernels that generalize as well and often better to held out

relative comparisons than batch methods, while demonstrating improved run-time performance.

Thus, our method, ERKLE, is able to achieve increased computational efficiency while maintaining

the model effectiveness of batch methods in the online RCKL setting.

98

6.0 METRIC LEARNING FROM AUXILIARY CONFIDENCE LABELS WITH

APPLICATION TO CLINICAL DECISION MODELING

While learning a perceptual model of similarity has practical use in many applications, certain

applications require a model tailored to the specific task trying to be accomplished. In this chapter,

we focus on an application in clinical medicine. Consider the application of developing a Clinical

Decision Support System (CDSS), a computer system that uses data to aid clinicians in making

treatment decisions. In their more basic forms, CDSSs simply act as a portal for clinicians to access

relevant information. However, CDSSs are often developed to perform much more sophisticated

tasks such as providing suggested treatment options or warning of dangerous drug interactions.

For a CDSS to accomplish such inference tasks, it requires a meaningful model of how previously

observed patients relate to new patients. To build such a model, data regarding previous patients

and task-specific supervision on those patients is required. Fortunately, Electronic Health Records

(EHRs) are being adopted by more and more health care providers [67, 24]. EHRs provide data that

uniquely characterizes different patients in an easily accessible form. For supervision, clinicians

themselves can provide quality feedback if explicitly prompted for it. By combining these two

sources of information, an insightful inference model of patients can be built using supervised

learning techniques.

Much of the previous work in creating patient models from supervision leverage standard

classification methods [55, 39, 41, 129]. Here, feedback appears in the form of class labels (e.g. the

patient is at risk for a condition or not), and the learned inference models output a predicted class

label when given an unseen patient. For CDSSs, these predictions can be used to alert clinicians

of important information that supports decision making. However, there are practical issues with

standard classification models for use in CDSSs. First, it is vital that a clinician is able to understand

how a CDSS comes to conclusions [12]. Otherwise, the clinician may not trust the model due to lack

99

of clear reasoning. Many standard classification methods focus solely on maximizing some measure

of classification accuracy without any focus on learning a model that can be easily interpreted by

humans. Consequently, clinicians may not be able to understand why they are being alerted, even

the classifier is accurate. For this task in particular, the model effectiveness of a learning method not

only means that classifiers it produces should be accurate, but also that they should be interpretable.

Another practical concern lies in the cost of obtaining sufficient feedback to learn an accurate

classification model. Because the expertise of a clinician is valuable, the cost of obtaining clinical

feedback is substantially more than obtaining feedback from the layman. Compounding this cost

is that clinicians must spend a substantial amount of time to consider multiple, interacting factors

before providing feedback. If standard classification methods are to be used, clinicians would be

prompted for only a single class label after considering a single patient. However, class labels

convey only a simple notion of how patients relate, despite the fact that clinicians have more in-depth

knowledge about the patient that they could provide. Thus, often a large amount of labeled instances

needed to learn accurate classifiers for more complex inference tasks. All of these factors together

motivate the need for a more human efficient way of learning a classifier.

In consideration of these issues, we propose a novel metric learning method called Confidence-

bAsed MEtric Learning (CAMEL). CAMEL was designed with a specific emphasis on learning

human-interpretable models of patients. Our method produces sparse models that use only the

relevant patient information when modeling disease. As a result, clinicians can easily identify which

features are used when making inferences. Also, metrics produced by CAMEL naturally induce

confidence scores that indicate how confident the model is when making inferences. Clinicians

can take these scores into consideration when making important treatment decisions. Finally, our

method learns a parametric metric that projects patients into multidimensional space of disease

where each dimension in the learned metric space is as a separate “factor” in how the model reasons

about patients. This contrasts with many standard classification methods that project data objects to

a single dimension. Clinicians can view what features influence these factors and interpret how the

model is making inferences.

To reduce the cost of obtaining expert supervision, we formulate a version of CAMEL that

can leverage confidence labels that indicate how sure a labeler is in a given class label. Our use of

confidence labels is motivated by the fact that when tasked with providing supervision, clinicians

100

spend their time mostly on considering the patient EHRs themselves. Once they learn what is needed

to produce a class label for a patient, providing a confidence label requires a relatively short amount

of additional time and effort. If this confidence information provides additional, useful insight into

how patients relate to classes, then our method that utilizes confidence labels, CAMEL-CL, is able

to learn more accurate classification models with fewer labeled patients. In doing so, CAMEL-CL

can be used to reduce the effort required from the labeler, and in turn, decrease the cost of obtaining

expert feedback. 1

6.1 PREVIOUS WORK USING AUXILIARY CONFIDENCE LABELS

Two previous works have considered auxiliary labels similar to the confidence labeled considered

in our problem setting. Both use probabilistic labels that indicate how likely an object belongs

to a class. The work that introduced this problem [97, 98] formulated various methods to solve it.

One of the more successful of these was one that leverages the popular Support Vector Machine

(SVM) framework. Their method learns linear classifier by solving an optimization problem that

balances two energies: standard SVM classification hinge loss and a function that encourages

the model to rank the objects by their probabilistic labels. By including the ranking energy, their

method can produce an SVM in which objects with high probabilistic labels are farther from the

decision hyperplane than those with low probabilistic labels. While our method uses a similar

ranking energy, it is based on an intuitive, explicitly defined confidence score. In addition, their

learned model is a linear transformation into a single dimension, and our model is a more expressive

multidimensional metric. Finally, our method induces sparsity in order to improve accuracy and

enhance interpretability, while their method learns a dense model. Both [97] and [98] contain

experimental evaluation on clinical data sets. However, they provide no analysis into what can

be interpreted from their model, opting only to show results pertaining to accuracy of inference.

Because this method is most similar to our work in both methodology and application, we compare

our methods to SVM-Combo from [98] in Sec. 4.1.4.

Later work [104] considers the probabilistic labels simply as regression labels, and applies

1The material presented in the chapter was originally published as [61].

101

Gaussian Process Regression [108]. For inference, they apply a threshold at 0.5 to predicted

regression labels to determine class membership. The authors were able to bound the error of

their probabilistic predictions as a function of a parameter meant to model noise in the given

probabilistic labels. In their experiments, they evaluate their method on synthetic and real-world

data sets. Unfortunately, none of these clearly matches our specific problem setting. Their real-world

experiment derives probabilistic labels from movie ratings for which there is no clear class label

associated with movie instances.

6.2 METHODOLOGY

We begin by more formally defining our problem setting. Let D = {(x1, y1, c1) , ..., (xn, yn, cn) ∈

(X ,Y , C)n} be a set of observed data. Let X = {x1, ...,xn ∈ Rm} be a collection of n data

objects represented by m-dimensional real vectors. Let Y = {y1, ..., yn ∈ {0, 1}} and C =

{c1, ..., cn ∈ [0, 1]} be binary and confidence labels, respectively, that correspond to data objects. In

our problem setting, each xi is a patient instance represented by features drawn from EHR data.

The corresponding yi is a class label gathered from a clinician (e.g. a positive or negative diagnosis),

and ci is a confidence label indicating how confident she is in yi. In this work, we consider binary

class labels and confidences in [0, 1], though much of the subsequent can easily be extended to other

settings.

We wish to learn a metric parameter L as in (2.6) from observed patient data so that the resulting

metric can be used to accurately predict the class labels of unobserved patient instances. To this

end, we begin by defining a measure of similarity between objects, given L:

kL (xi,xj) = exp
(
−d2

L (xi,xj)
)

(6.1)

Equation (6.1) is an application of the Gaussian kernel function as it appears in (2.11). Traditionally,

the Gaussian kernel function is parameterized by a bandwidth that influences how quickly similarities

decay towards zero. This parameter greatly affects the performance of the methods in which the

Gaussian kernel is used, and needs to be validated for use in traditional classification methods. In

(6.1), the bandwidth parameter is absorbed into the learned parameter L. As a result, our method

102

not only learns a transformation, but also the bandwidth of a Gaussian kernel, similar to what is

done in Metric Learning for Kernel Regression.

With this measure of similarity, we can define the relationship a patient instance has with others.

Most importantly, we can define how similar an patient is to those with class label y:

SyL (xi) =
1

|X y
xi |

∑
∀xj∈X y

xi

kL (xi,xj) (6.2)

Here, X y
xi

= {xj ∈ X : yj = y ∧ xj 6= xi}. In essence, (6.2) is the mean similarity xi has with all

observed objects with label y, excluding itself. This similarity score measures how similar a patient

is to observed patient instances of a single class. However, this score is independent of a object’s

relationship to other classes. For this, we formulate a confidence score:

Cy
L (xi) =

SyL (xi)

SyL (xi) + S ỹL (xi)
(6.3)

In the binary class case, ỹ is zero if y is one, and one if y is zero (the complement of y). In the

multi-class case, ỹ is all class labels other than y. Equation (6.3) can be interpreted as a class

conditional probability that an object is a member of a class given a metric parameter L. As such,

confidence scores define both a criteria for learning an L that fits to observed data, and a way

to predict class labels on unobserved patient instances once L is learned. Like other classifiers

that define conditional probability functions, inference can be done by putting a threshold on the

confidence score of an unobserved instance (e.g. if C1
L (xi) > 0.4, then the predicted label ŷi is one,

otherwise, it is zero). In addition, area under the Receiver Operating Characteristic curve (AUROC)

can be found using confidence scores on patient instances.

In order to find a metric that models class membership of observed patient instances well,

one could maximize Cyi
L (xi) directly for all observed patients. However, doing so leads to a

difficult non-convex optimization problem. To avoid this source of non-convexity, we maximize an

approximation of the confidence scores for the observed data:

max
L

n∑
i=1

SyiL (xi)− S ỹiL (xi) (6.4)

In (6.4) we maximize the similarity each observed data object has with its observed class label,

while minimizing the the similarity it has with the opposite class. The objective “pulls” all observed

103

objects of the same class towards each other, and “pushes” all objects of different classes away,

similar to Large Margin Nearest Neighbors. In doing so, (6.4) increases the numerator of (6.3),

while decreasing a term the denominator, and by doing so, approximates learning a metric where

the confidence scores of the observed data is high.

Unfortunately, (6.4) can result in solutions where observed objects of the same class are

projected to nearly the same point in the metric space, while observed objects of different classes

are infinitely far apart. This leads to models that can drastically over-fit to the observed data. To

combat this, we include `-1 norm regularization into the objective:

min
L

n∑
i=1

(
S ỹiL (xi)− SyiL (xi)

)
+ λ ‖L‖1 (6.5)

Note that (6.5) is a minimization problem, where (6.4) is a maximization problem. We simply

multiplied the objective in (6.4) by −1 to turn it into an equivalent minimization problem before

adding the regularization term. Here, the `-1 norm is taken element-wise on L, that is ‖L‖1 =∑m′

i=1

∑m
j=1 |Li,j|. Higher settings for the hyperparameter λ force elements of L to exactly zero,

preferring sparse solutions to more dense ones. More sparse solutions may then be found that fit less

to the observed data, thus reducing the risk of over-fitting. This also has a more practical benefit.

Tens, hundreds, even thousands of features can be extracted from EHR data. It can be difficult

to tell, a a priori, which are useful to model patient relationships. If many features are used to

represent patients (m is large) and the learned model is dense, then a clinician has to consider many,

potentially irrelevant, features to understand how the model is making decisions. If L consists of a

large number of zeros, then the learned metric only utilizes a few features, giving the clinician a

concise model to interpret. We call our gradient descent method to solve (6.5) CAMEL.

6.2.1 Incorporating Confidence Labels

CAMEL attempts to maximize the correct class confidence score for each training patient using

only class labels. As stated previously, we wish to also use confidence labels provided by clinicians

to reduce the overall cost of obtaining expert supervision. The most obvious way of incorporating

confidence labels would be to ensure that the confidence score for an observed patient matches the

confidence label the clinician provides. However, in practice, confidence labels tend to contain a

104

great deal of noise. It has been shown that humans tend to find it difficult to accurately produce exact

numerical assessments on objects and are much better suited to provide simpler forms of feedback

such as class labels or relative comparisons [135, 130]. Because of this, bolstering CAMEL with

the exact values of the confidence labels can introduce unwanted noise.

Instead, we choose to simplify the labels by assuming that, while the exact value of a confidence

label is noisy, its value compared to others of the same class is not (or at least reasonably less noisy).

For instance, if a clinician gives labels ca = 0.65 and cb = 0.95 we only take that to mean that the

labeler is more confident in yb than ya with no consideration into by how much. By this assumption,

we create a ranking RC of patients such that (xa,xb) ∈ RC if and only if ca > cb and ya = yb.

FromRC we can induce a set of constraints to be imposed on (6.5) that allows us to incorporate the

information contained in the confidence labels:

min
L

n∑
i=1

(
S ỹiL (xi)− SyiL (xi)

)
+ λ ‖L‖1

s.t ∀(xa,xb)∈RC

(
SyaL (xa)− S ỹaL (xa)

)
>
(
SybL (xb)− S ỹbL (xb)

) (6.6)

The added constraints ensure that the approximated confidence score for xa is greater than xb for all

(xa,xb) ∈ RC . In other words, it tries to ensure the confidence scores adhere toRC . In practice, it

is unlikely that all of the constraints can be satisfied, so we opt to solve a similar, unconstrained

optimization:

min
L

n∑
i=1

(
S ỹiL (xi)− SyiL (xi)

)
+ λ1 ‖L‖1

+ λ2

∑
(xa,xb)∈RC

[S ỹaL (xa)− SyaL (xa)− S ỹbL (xb) + SybL (xb)]+
(6.7)

The last term in (6.7) is zero when the corresponding constraint in (6.6) is satisfied and positive

when it is not. In short, if an observed object should have a higher confidence score than others

because the labeler is more confident in its class label, that object’s contribution to the objective is

increased by a factor of λ2 for each observed object its confidence score should be higher than. If

an observed object’s confidence score is too high, its contribution is similarly decreased by a factor

of λ2.

By introducing the ranking term into the objective, we also introduce an additional hyperpa-

rameter λ2. Much like higher values of λ1 increase the influence of regularization in the objective,

105

Expert # Pos # Neg Mean CL Pos (STD) Mean CL Neg (STD)

1 76 473 0.583 (0.151) 0.294 (0.089)

2 143 428 0.656 (0.377) 0.114 (0.202)

Table 1: Summary statistics for expert-labeled HIT data

higher values of λ2 put a heavier emphasis on ordering the confidence scores according to RC .

As such, care must be taken to properly set the hyperparameters to balance fit to the class labels,

fit to the confidence labels, and sparsity. We call our gradient descent method for solving (6.7)

CAMEL-CL.

6.3 EXPERIMENTS

To evaluate CAMEL and CAMEL-CL, we performed experiments on real-world clinical data, the

results of which we discuss in this section. We begin by first describing the data set used. Then,

we outline how the experiments were performed. Next, we present and discuss quantitative results

comparing both CAMEL methods to related, current methods. Finally, we qualitatively analyze the

models learned by CAMEL by looking at how it uses patient data to make inferences.

6.3.1 Data Set Description

Our experiments were performed on data extracted from the Post-Surgical Cardiac Patient (PCP)

Database in combination with supervision provided by clinicians indicating whether a patient is at

risk for Heparin-Induced Thrombocytopenia (HIT). A lengthy description of this data can be found

in [98] and further specifics can be found in [57, 142, 56]. Here, we provide a shorter summary

of our view of the data. From the PCP Database 4,486 unique EHRs were chosen. From these

over 51,000 patient-state instances were extracted using 24-hour segmentation. Uniformly random

sampling from the pool of patient instances would result in an overwhelmingly disproportionate

number of negative labels for HIT. Because there was a finite budget in obtaining supervision,

106

Name Supervision Hyperparameters Implementation Brief Description
Orig None None Our own Gaussian kernel (bandwidth = 1)

applied to original feature space
SVM Class Labels Weight on hinge-loss LIBLINEAR [43] Standard linear SVM classification
LMNN Class Labels Number of nearest neighbors From author’s Metric learning method for nearest neighbor

website classification
CAMEL Class Labels λ Our own Our algorithm for solving (6.5)
LASSO Confidence Labels Weight on `-1 norm MATLAB `-1 norm regularized linear regression

Stats & ML
MLKR Confidence Labels Dimension of metric From author’s Metric learning for kernel regression

projection website
SVM Class & Weight on classification loss Provided by Standard linear SVM classification with penalty that
-Combo Confidence Labels and weight ranking loss author enforces ranking of patients by confidence labels
CAMEL Class & λ1 and λ2 Our own Our algorithm for solving (6.7)
-CL Confidence Labels

Table 2: Methods used in CAMEL experimental evaluation

a stratification procedure was used to bias sampling towards patients that could be at risk for

HIT. Using this procedure, patient instances were chosen to be labeled by three experts in clinical

pharmacology.

The experts were asked two questions for each patient instance: “How strongly does the clinical

evidence indicate that the patient is at risk of HIT?” and “Assume you have received an HIT alert for

this patient. To what extent you agree/disagree with the alert?”. For the first question, the experts

were prompted for a number between 0 and 100, which we normalize to [0, 1] and use as confidence

labels. For the second question, the experts were prompted to for one of four ordinal categories

ranging from “strongly agree” to “strongly disagree” from which we derive binary class labels

between the “agree” and “disagree” categories. Both our experiments and the results reported in

[98] indicate that the confidence labels provided by the third expert are prohibitively noisy. To more

properly showcase the potential utility of confidence labeling, we omit lengthy discussion of results

from experiments using the third expert’s supervision, and note that all methods that utilize the third

expert’s confidence labels alone perform poorly. Furthermore, the two methods that utilize both

class labels and confidence labels gain no benefit from the confidence labels. Statistics summarizing

the two other experts’ feedback used in our evaluations (number of positively labeled patients, mean

confidence labels, etc.) can be found in Table 1.

From the EHRs of the selected patient instances, 50 features were extracted to form feature

vectors characterizing each patient. These features measure both trends and static measurements in

107

20 40 60 80 100

0.6

0.625

0.65

0.675

0.7

0.725

0.75

0.775

Number of Training Points

M
ea

n
A

U
R

O
C

Orig
SVM
LMNN
CAMEL

20 40 60 80 100

0.6

0.625

0.65

0.675

0.7

0.725

0.75

0.775

Number of Training Points

M
ea

n
A

U
R

O
C

LASSO
MLKR
SVM−Combo
CAMEL
CAMEL−CL

20 40 60 80 100

0.6

0.65

0.7

0.75

0.8

Number of Training Points

M
ea

n
A

U
R

O
C

Orig
SVM
LMNN
CAMEL

20 40 60 80 100

0.6

0.65

0.7

0.75

0.8

Number of Training Points

M
ea

n
A

U
R

O
C

LASSO
MLKR
SVM−Combo
CAMEL
CAMEL−CL

Figure 21: CAMEL HIT data experiments: number of training instances vs. AUROC on test set

(Row 1 = Expert 1, Row 2 = Expert 2, ten trials, 95% CI)

one of five attributes: Heparin administration record (features 1-4), hemoglobin count (5-18), white

blood cell count (19-31), platelet count (32-45), and major heart surgeries (46-49). For example,

platelet count features include: “latest platelet value taken”, “difference between last two platelet

values taken”, and “overall trend in platelet values”.

6.3.2 Experimental Methodology

The methods used in this evaluation are listed in Table 2. These methods were chosen as a sample

of current techniques that learn linear models or metrics from one or both forms of supervision

considered in this work. The “Orig” method uses no supervision and provides us with a rudimentary

baseline in our evaluation. All methods can produce confidence scores: The classification models

can be interpreted to have uncertainty measures in class predictions, and the real-valued predictions

108

from the regression models can be taken as confidences. Thus, we evaluate the accuracy of each

method using the AUROC of predictions on a held-out test set.

We performed separate but identical experiments on each experts’ supervision. From the pool

of selected patient instances we randomly selected 100 patients to be the train set, and split the

remaining patients randomly into evenly-sized test and validation sets. This was done 20 times to

form 20 trials. For each trial, an increasing number of the 100 training points were used to train

the models in the evaluation (10, 20,...100). We did this to assess each method as a function of

the amount of obtained supervision. For each training partition, hyperparameter settings for each

method were chosen to be those that maximized AUROC on the validation set.

6.3.3 Discussion

Figure 21 shows plots of the AUROC values on the test set as function of the number of training

points for all methods used in our experiments. The error bars represent a 95% confidence interval.

The top two plots are for Expert 1’s supervision, and the bottom two are for Expert 2’s. The left

plots show results for methods that do not use confidence labels and the right plots are methods that

do (with CAMEL in both for comparison between the plots). Overall, the results were similar for

both clinicians. All methods achieved better results using Expert 1’s labels when given few training

points. Although, as more training points were added, all methods were able to improve more using

Expert 2’s supervision.

In terms of classification accuracy, CAMEL and CAMEL-CL performed as well or better than

many of the competing methods, especially as more training instances were used. LMNN and

MLKR learn metrics like CAMEL, but do not include regularization in their optimizations. Because

of this, they are prone to over-fit to train sets, resulting in poor generalization, especially when there

are few training instances. LASSO includes sparsity-inducing regularization, but learns a simple

single-dimensional, linear model. Also, like MLKR, LASSO fits directly to the confidence labels.

Because the exact values of the confidence labels contain a great deal of noise, LASSO and MLKR

are unable to learn models that produce accurate confidence values on the test instances.

The most competitive models to CAMEL and CAMEL-CL, using the same supervision, were

SVM and SVM-Combo, respectively. The SVM methods learn dense, single-dimensional models,

109

Expert 1 Expert 2

Sparsity Rank Sparsity Rank

CAMEL 0.794(0.241) 34.195(18.884) 0.754(0.237) 38.734(16.311)

CAMEL-CL 0.896(0.286) 20.080(18.921) 0.883(0.203) 21.755(18.862)

Table 3: CAMEL HIT data experiments: Mean (STD) sparsity statistics over all experiments

so they provide a meaningful basis of comparison to our methods. CAMEL performed at least as

well and sometimes significantly better than SVM. The same is true for CAMEL-CL and SVM-

Combo, though SVM-Combo outperformed CAMEL-CL for 10 and 20 training instances using

Expert 2’s supervision. With only this exception, CAMEL and CAMEL-CL were able to achieve

AUROCs as high or higher than the SVM methods, given the same supervision. These results

indicate that to our sparse, multidimensional models are able to more accurately predict whether a

patient was at risk for HIT, than methods that learn dense and/or single-dimensional models.

This evaluation not only allowed us to compare our CAMEL methods to competing methods, but

also enabled us to see the effect the confidence labels had on CAMEL. The inclusion of confidence

labels only improved the AUROC of CAMEL for both experts, never hindered it. Using Expert 1’s

supervision, CAMEL-CL was able to achieve an AUROC with 10 training instances that could not

be matched by CAMEL until it received 60. Furthermore, the AUROC of the CAMEL-CL model

trained on 10 instances was statistically as high as any model trained on any number of instances

with a 95% confidence. This indicates that to learn an accurate predictive model, CAMEL-CL

requires substantially fewer labeled instances.

While prediction accuracy is important for a patient model, for it to be useful in a CDSS it

must also be interpretable. In the remainder of this section, we assess the metrics produced by

CAMEL and CAMEL-CL in terms of human-interpretability. In our experiments L is a 49 by 49

matrix that transforms the patient instances from their original space to a multidimensional metric

space by linearly combining their features. Each row is a transformation to a different dimension

in the metric space, and each column represents an individual feature’s contribution to the model.

In essence, each element of L corresponds to one of 49 weights on one of the features (e.g. the

110

32 1 17 46 16 34 44 43 40 15 18 14 42 13 2 4 3 45 7 49 48 37 39 47 5
0

0.5

1

1.5

2
M

ea
n

V
al

ue

Feature Number

Mean
Max

Figure 22: CAMEL HIT data experiments: feature weight statistics

(CAMEL-CL, Expert 2, ten trials)

49 values in column 1 weigh Heparin on feature). If not sufficiently sparse, L could be difficult

to interpret, as the model would use many of the features, multiple times, in numerous different

combinations. A sparse L that produces accurate inferences would use only a subset of the features

in few, useful combinations, which could be easier to interpret than many, complex combinations.

Table 3 shows the mean “sparsity” of the metric parameter L produced by CAMEL and CAMEL-

CL for all experiments. We define our sparsity statistic as the number of zero-valued elements of L

divided by the total number of elements. A higher value means that the fewer features are being used

fewer times in the model. We can see that models learned by CAMEL contain a very large number

of zero-valued elements, but CAMEL-CL is able to be even more selective in choosing features by

leveraging the confidence labels. Also in Tab. 3, we include the mean row rank of the L matrices.

The row rank of a matrix is the number of linearly independent rows. In our models, a lower rank

indicates there is a more simple, lower-dimensional space that describes how the CAMEL models

are making inferences. The table shows that our methods are able to project the 49 dimensional

patient instances into a lower-dimensional metric space in which accurate inferences can be made.

The low-rank property of L can be attributed to the fact that strict `-1 norm regularization often

made many of the rows contain all zeros. For some trials, our methods produced an L with as many

as 45 rows that contained solely zeros. While sparsity indicates the models are simple, it does not

reveal how the features are being used. More specifically, for a model to be interpretable, a clinician

111

1 10 20 30 40 49

1

10

20

30

40

49

1 10 20 30 40 49

1

10

20

30

40

49
0

0.2

0.4

0.6

0.8

1

Figure 23: CAMEL HIT data experiments: normalized absolute values of L entries

(left = CAMEL, right = CAMEL-CL)

should be able to tell which features are being used, how much, and whether they are important on

their own, or in tandem with others. Figure 22 shows the mean and maximum absolute weight put

on the top 25 features in the models produced by CAMEL-CL, averaged over all experiments done

using Expert 2’s supervision. In short, Fig. 22 displays the relative importance CAMEL-CL put on

each feature. The clear top two features chosen by CAMEL-CL were “last platelet value taken” (32)

and “Heparin on” (1). Clearly, whether a patient was given Heparin should influence whether they

are at risk for HIT. Thrombocytopenia is indeed the deficiency of platelets in blood [?], thus the

most recent value of platelet count intuitively should indicate risk of HIT. Other top features include

“difference between the last and first hemoglobin level taken” (17), and “time since last major heart

procedure” (46). A downward trend in hemoglobin level could indicate bleeding, leading to low

platelet counts, making feature 17 a potential indicator of HIT. The time from last heart procedure

could also be important as it indirectly measures how long the patient was on heparin. Note that

the top four features all come from different attributes/lab values. This indicates that CAMEL-CL

chooses which feature in a group is most informative and emphasizes it the most, as to not include

redundant information. Also note that no feature measuring white blood cell count was featured

prominently in the model. This model choice is supported by the convention that white blood cell

112

count is not commonly-used to indicate HIT.

Figure 23 displays two heat maps using the normalized absolute values of L. Deep blue

indicates a zero value, while deep red indicates the highest absolute value. The two maps depict

L for CAMEL (left) and CAMEL-CL (right) in one trial using the same 100 training instances.

Each row is a projection (weighing of the features) into a single dimension in the metric space.

Thus, each row defines a different “factor” in which the metrics compare patients. The left heat

map shows that the model produced by CAMEL is very sparse; it has mostly zero-valued elements

(deep blue), a small number of small-valued elements (light blue), and an even smaller number of

larger-valued elements (green, yellow, and red). In total, this matrix has 25 rows composed entirely

of zeros (i.e. the induced metric space is L is 24 dimensional). However, many of the non-zero rows

contribute very little to the overall model, as they contain only few, low-valued weights. Most likely,

these rows simply add noise, and detract from the interpretability of the model by unnecessarily

increasing the complexity. The heat map displaying the metric learned by CAMEL-CL, on the other

hand, has many more zero-valued elements. Most of the small-valued elements in the CAMEL

model were pushed to exactly zero in the CAMEL-CL model. In fact, every element of L learned

by CAMEL-CL after the tenth row contains a zero, resulting a simpler, rank ten matrix. Because

CAMEL-CL metric was given confidence labels in addition to the class labels, it was able to more

accurately determine the few feature combinations that modeled patients well.

6.4 SUMMARY

In this chapter, we introduced a method called Confidence-based MEtric Learning (CAMEL) that

produces sparse, multidimensional, classification models that can perform inference on patient

Electronic Health Records (EHRs) for use in Clinical Decision Support Systems (CDSSs). For

an inference model to be effective in a CDSS, it must be both accurate and able to convey more

information than simple predictions to clinicians. CAMEL was designed specifically with these

qualities in mind. In order to combat the necessarily high cost of obtaining expert clinical supervision

needed to learn an accurate model, we formulated a version CAMEL that can incorporate auxiliary

confidence labels. In our experiments, we showed that CAMEL can produce models at least as

113

accurate as others we tested. CAMEL bolstered with confidence labels can produce models as

accurate as any tested with using as few as 10% of the training instances as the other models, thus

showing the human efficiency of our method. The qualitative analysis that followed highlighted the

fact that CAMEL produces models that include few important “factors” composed of small subsets

of the EHR features. Because CAMEL induces sparsity, it is able produce simple, concise patient

models, potentially enabling clinicians to more clearly interpret how it makes decisions.

114

7.0 CONCLUSION AND FUTURE WORK

In this dissertation, we address the following thesis:

By defining and explicitly attending to the practical challenges in learning models of similarity from

human feedback, more efficient learning methods can be developed to learn more effective models

that can be used in machine learning and data mining methods.

To support this, in Chap. 1 we defined four challenge categories that similarity-learning methods

face when learning from human feedback. In Chap. 2, we surveyed models of similarity that can

be used as a basis for many machine learning methods. In addition, we reviewed common forms

of human feedback, comparing them according to the previously defined challenge categories. In

Chap. 3 we reviewed previous work in learning models of similarity. Among other topics, we

focused on a problem called Relative Comparison Kernel Learning (RCKL). RCKL methods learn

multidimensional models of similarity over a given set of objects from relative triplet feedback.

These methods tend to be both model and human effective, but computationally and human

inefficient. We also reviewed metric learning, highlighting two methods that learn metrics for

classification and regression. The subsequent chapters describe the main contributions of this

dissertation: addressing the challenges in RCKL, as well as those in a metric learning application.

7.1 CONTRIBUTIONS

In Chap. 4 we addressed the inherent human inefficiency of RCKL. Though relative triplet feed-

back is expressive enough to model multidimensional perceptual spaces, methods that learn

115

similarity from triplet feedback often require a large amount of feedback in order to produce

models that capture a complete notion of how objects relate. Traditional RCKL methods assume

no information is given about the objects for which similarity is to be learned, besides relative

triplet feedback. In practice, objects often have uniquely identifying characteristics that can be

captured by features drawn from data. If some or all of these features model trends in a given

set of triplet responses, then they could also model key latent factors in how humans perceive

object relationships. In turn, if features relevant to learning perceptual similarity are included

into the RCKL learning process, the models they produce could capture object relationships

not explicitly given, thus, modeling a more complete notion of similarity from fewer triplet

responses.

To utilize auxiliary features describing objects, we developed an RCKL framework called RCKL

with Auxiliary Kernels (RCKL-AK). Our framework extends traditional RCKL methods that

learn non-parametric kernel matrices to include multiple auxiliary kernels as input. These kernel

matrices can be built using standard kernel functions on the auxiliary features. RCKL-AK can

incorporate auxiliary kernels into traditional RCKL methods with little additional computational

overhead, and preserve the convex properties of the optimization problems some RCKL methods

solve. We include regularization terms that allow RCKL-AK to select only the auxiliary kernels

that are relevant to the similarity-learning task, and omit those that are not. Experimentally, we

show that RCKL-AK can increase the human efficiency of RCKL methods by learning more

complete models of similarity from fewer triplet responses. Also, we compare RCKL-AK to

similar methods in metric learning and show that because RCKL-AK is not limited to a linear

transformation of features as metric learning methods are, it can learn more general models.

To further increase the human efficiency of learning perceptual similarity from relative triplet

feedback, we also introduced a novel method to actively select triplet queries in order to get the

most informative responses. For this, we developed a method that learns an object embedding

from triplet feedback that is based on Crowd Kernel Learning (CKL). Our embedding-learning

method produces object embeddings that consists of two components: a parametric, weighted

concatenation of auxiliary features, and a non-parametric set of features whose values are

116

learned directly. We call this method TACKL. TACKL is formulated probabilistically. As a

result, we can define uncertainty of the positions of objects in the learned embedding using

information-theoretic concepts, such as Shannon entropy. With TACKL as a basis, we develop

an adaptive query selection scheme that selects triplet queries whose responses in expectation

will reduce the uncertainty in the object embeddings the most. Our scheme benefits both the

non-parametric component, quickly finding the appropriate feature weighing, as well as the

non-parametric component which models object relationships not covered in the parametric

component. We evaluate TACKL with our adaptive triplet selection scheme (A-TACKL)

experimentally on both synthetic and real-world triplet feedback. We show that A-TACKL

requires less feedback to learn more general models than methods that do not use auxiliary

information and/or select queries at random.

In Chap. 5 we addressed the computational inefficiency of RCKL methods in the online setting.

In practice, relative triplet feedback is often passively obtained in an online matter. If traditional

batch RCKL methods are used to update similarity models as feedback is obtained, they face

serious issues in terms of computational efficiency. To ensure the models they learn are valid

kernel matrices, batch RCKL methods must maintain that their solutions are positive semidefi-

nite (PSD). For this, RCKL methods typically employ projected gradient descent procedures,

which project intermediate solutions onto the cone of PSD matrices after each gradient step.

With no knowledge of the structure of the gradient, this is an O (n3) procedure that must be

performed multiple times, every time feedback is obtained. This necessitates the development

of efficient, online RCKL methods.

To this end, we develop a framework to learn a non-parametric kernel matrix from triplet

feedback that is given in an online manner. We call our framework Efficient online Relative

comparison Kernel LEarning (ERKLE). ERKLE updates a kernel using a stochastic gradient

step with respect to a single triplet response. We show that due to the structure of this gradient,

we can project onto the PSD cone in O (n2) time. Furthermore, if we maintain an estimate of

the smallest eigenvalue of the learned kernel, then we can often skip the projection step entirely.

To avoid as many projections as possible and to eliminate the need to manually set a step size,

we formulate a passive-aggressive version of ERKLE that steps the minimal amount needed to

117

satisfy a given response, but does not step at all if the response is already satisfied by the current

solution. In our experimental evaluation, we show that ERKLE is able to produce kernels that

are as accurate as those learned by batch solutions while taking only a fraction of the time to

learn.

In Chap. 6 we addressed the human efficiency and model effectiveness of learning a metric for

clinical decision support. Here, we focused on a specific application of learning a model of

similarity such that inference can be performed as part of a Clinical Decision Support System

(CDSS). More specifically, we consider the application of learning an inference model to alert a

clinician when a patient is at risk for a disease from patient Electronic Health Record (EHR)

data and expert provided class labels. In order for a clinician to trust its inferences, a CDSS

must be able to provide sufficient information to allow the clinician to understand the model. As

a result, in this problem setting, model effectiveness not only entails accuracy of inferences, but

also interpretability in the learned model. Most common supervised learning techniques that

can be applied to this setting, such as linear classifiers, are not sufficiently interpretable for this

case. In addition, learning an inference model from clinical feedback introduces an additional

challenge not common to other classification tasks. Because expert supervision is especially

costly, methods applied to this task must focus on being human efficient in order to reduce the

cost of obtaining feedback.

With these challenges in mind, we developed a method called Confidence-bAsed MEtric

Learning (CAMEL), which learns a Mahalanobis distance metric from which class predictions

can be made. CAMEL was developed with a specific focus on interpretability. CAMEL learns

a metric using well-defined confidence scores, which can be shown to clinicians to indicate

how sure CAMEL is in its predictions. This additional information can be used by clinicians to

motivate treatment decisions. Also, CAMEL is formulated to induce sparsity on the learned

metric. As a result, only a few small combinations of features are used in the model. Each

combination represents a different “factor” in how the metric models patient relationships

with respect to disease. These factors can be shown to clinicians to provide insight into the

model. To increase human efficiency, we prompt clinicians for auxiliary confidence labels that

indicate how sure they are in the class labels they provide. Because most of the time spent

118

labeling patients is in considering the EHRs themselves, giving confidence information requires

only a small amount of effort in addition to providing a class label. CAMEL is able to use

this inexpensive, extra information to learn accurate models from fewer labeled patient instances.

We performed an experimental evaluation of CAMEL on a real-world clinical data set where

experts indicated whether patient instances, represented by features drawn from EHRs, were

at risk for Heparin Induced Thrombocytopenia (HIT). Using this data, we show that CAMEL

is able to learn models as accurate as competing methods that use just the class labels, just

the confidence labels, or both, while using much fewer labeled instances. We also provided a

qualitative assessment of the interpretability of the models CAMEL produces. We show that

the features used most often in CAMEL models are ones commonly used to diagnosis HIT.

Furthermore, we showed the “factors” learned by CAMEL. CAMEL learned only a few key

combinations of small sets of features whose interaction may be interpreted by a clinician.

Through these contributions, we are able to support the thesis of this dissertation. Chapters 4,

5, and 6 introduce novel similarity-learning methods that improve on the state-of-the-art in one or

more challenge categories. These methods learn models of similarity commonly utilized by modern

machine learning methods. For these reasons, the methods therein enable similarity-methods to be

used in practical learning settings where human feedback is obtained.

7.2 FUTURE WORK

To conclude this dissertation, we discuss directions of future work, both in regards to the specific

methods introduced here, but also to the general problem of learning similarity from human

feedback.

7.2.1 Directions of Future Work Specific to Methods Introduced in this Dissertation

1. One shortcoming of RCKL methods is that they do not learn models that can generalize to out-

of-sample objects. While there are many practical applications that require a similarity model

119

defined only over a fixed set of object, the kernels learned by RCKL methods are not applicable

to inductive learning settings. RCKL is not unique in this regard. Other similarity-learning

methods, such as IsoMap [133] and Local Linear Embedding [111] learn models that cannot

be applied to out-of-sample objects. To correct this deficiency, out-of-sample extensions have

been developed for these methods [11]. Similar extensions may be possible for RCKL methods.

Another potential direction is mapping the object relationships learned by RCKL methods into

relative attribute spaces, which can be applied to out-of-sample objects. Doing so would benefit

both models of similarity: RCKL models would have a way to include include out-of-sample

objects and have nameable attributes associated with how humans perceive objects, while

relative attribute spaces can be refined to more specifically model the perceptual similarity that

certain tasks require.

2. With exception of Chap. 6, the work presented in this dissertation focused on the process of

learning models of similarity, and not on how they are used after they are learned. Recently,

there has been works in utilizing models that RCKL methods produce for fine-grained image

classification [148, 147]. However, many other transductive learning tasks could benefit from

a perceptual model of similarity such as those learned by RCKL methods. Furthermore, if

out-of-sample extensions for RCKL methods are developed, then the resulting models can be

used for a larger number of applications.

3. While adaptively selecting mini-batches of triplet queries is of practical use in crowdsourcing

for human perception, other applications may benefit from selecting single queries so that a

model may be updated in a true, online fashion. The adaptive selection schemes of A-CKL or

A-TACKL can be directly applied to online selection by iteratively updating a model as each

query in a round is answered. Intuitively, however, gains in human efficiency may be obtained

by adaptively choosing the best triplet query regardless of head object, instead of having each

object appear as a head once per round. We performed preliminary experiments where the

head of a triplet query could be any object when A-CKL chose a query in an online fashion.

Unfortunately, this lead to only a few objects being chosen as the head objects and the rest

being starved by the selection algorithm. As a result, the certainty in the positions of the starved

objects was never improved. More sophisticated adaptive selection schemes must be used if

truly online adaptive triplet query selections methods are to be developed.

120

4. A practical issue with both A-CKL and A-TACKL is the high run time of their adaptive selection

schemes. Both can be used in practice by sub-sampling at various steps in their respective

algorithms. Nevertheless, the inefficiency in these, and other potential query selection schemes

is largely due to the sizable pool of candidate queries from which they select. If this pool can be

reduced, then both adaptive selection methods can improve greatly in terms of computational

efficiency. We have performed preliminary experiments in reducing the pool of candidate queries

by assuming structure on the embedding of objects, but further experiments are necessary.

5. As mentioned in Chap. 5, ERKLE does not perform any form of regularization. Because of

this, users of PA-ERKLE need not manually set hyperparameters. The drawback is that the

kernels produced by ERKLE tend to be high rank, and could potentially benefit from some

form of rank-reducing regularization when the true perceptual similarity space being learned

is low-dimensional. We have experimented with incorporating a form of incremental singular

value decomposition [17] into ERKLE to add regularization. Unfortunately, doing so requires

finding at least one eigenvalue of the learned learned at each update, eliminating the possibility

to perform constant-time updates. In addition, we found this method somewhat unstable,

occasionally leading to inaccurate models. Further investigation is required to efficiently and

effectively include regularization into the ERKLE framework.

6. The metric learned by CAMEL is defined over the entire domain of patient instances. Often,

a single metric cannot accurately model the relationships over an entire domain. Indeed, this

seemed to be the case in the HIT data for which we evaluated CAMEL. Certain EHR features

were binary (e.g. “Patient was given Heparin”), which indicates clear sub-populations within

the data (e.g. patients who were given Heparin, and patients who were not). It is possible that

patients within the same sub-population cannot be modeled the same way as patients in different

sub-populations. This is the motivation behind local metric learning, where different metrics

are defined over separate subspaces in the domain of objects. Application of local metrics to

patient sub-populations could further improve the accuracy of CAMEL.

121

7.2.2 Directions of Future Work in Similarity Learning from Human Feedback

1. We discussed in Sec. 2.3 that different forms of feedback have different strengths, weaknesses,

roles, and applications. Relative triplet feedback is beneficial when trying to elicit multidimen-

sional relationships from humans, but is human inefficient. Pair-wise similarity/dissimilarity

assessment are more human efficient, but convey more simple, yet more strict object relation-

ships. Consider, again, the task of learning multi-dimensional perceptual similarity. Prompting

humans for a combination of the two forms could mitigate the weaknesses of both forms for

this task. For instance, one could pose pair-wise queries to humans to get gain cluster structure

in the set of object if it exists. Then, a few, carefully chosen triplet queries can be asked to refine

that structure. Other forms of feedback could even be used, if appropriate.

To learn perceptual similarity from multiple different forms of feedback, not only would novel

similarity-learning methods need to be developed, but certain new questions would need to be

answered. Active RCKL methods attempt to choose the best triplet query to learn accurate

similarity models with less feedback. If queries of different forms could be asked, what form the

query should take would also need to be considered. What defines a good query in this context

has yet to be studied. Intuitively, however, a good query should be easy for humans to provide,

but also result in responses that are accurate and informative. Furthermore, it remains to be

studied how different forms should interact if they contain conflicting information. Noise within

single forms of feedback has been previously considered. For example, in [91] the authors

develop a method to handle conflicting triplet responses. However, if a pair-wise assessment

conflicts with a triplet response, it is unclear how this, or other inter-form conflicts should be

resolved.

2. In Chap 4 we show that learned Mahalanobis distance metrics are limited in their ability to

express perceptual similarity spaces due to restricting solutions to a class of linear transforma-

tions. Recently, deep learning methods have gained immense popularity for their success in

numerous applications. While, the term “deep learning” is used to describe a wide variety of

techniques, what they have in common is that they learn complex functions to model high-level

abstractions of data. As such, they are able to express object relationships that a Mahalanobis

distance metric cannot. In fact, there has been recent work in developing deep metrics [64]

122

using convolutional neural networks for the application of face recognition. If these concepts

can be used in learning perceptual similarity, then they could produce more expressive metrics

that can be applied to inductive learning tasks.

3. Finally, throughout this work we have considered models of similarity that have the necessary

properties to define them as metrics. Recent work [114] has suggested that visual recognition, a

task for which perceptual similarity models are often applied, is non-metric. The author remarks

that work in cognitive psychology [138, 139] suggests that human’s perception of objects is

not symmetric and does not satisfy the triangle inequality. In essence, the context in which

objects are given to a human determines how she perceives them. In terms of triplet feedback,

this could mean what we consider a “conflict” between triplet responses is actually not noise,

but a result of perception being non-metric. From a modeling standpoint, this is inconvenient.

Many machine learning methods, including most similarity-learning methods, assume object

relationships are metric. If perception is to be modeled as cognitive psychology understands it,

then similarity-learning methods must be developed to model non-metric object relationships,

and machine learning methods must be adapted to use this kind of similarity model.

123

APPENDIX A

PROOFS OF CONVEXITY FOR RCKL-AK FORMULATIONS

The strategy employed throughout this section to prove the stated functions are convex is to build

each using convex combinations of convex functions. In order to use this strategy, we need to

establish the following Lems. (Above each Lemma is a reference to a source for each lemma,

respectively).

Section 3.2.1 of [16]:

Lemma 1 If f and g are both convex functions, then so is their sum f + g.

Section 2.3.2 of [16]:

Lemma 2 Affine functions of the form f(x) = Ax + b, where A ∈ Rmxn, x ∈ Rn, and b ∈ Rm

are convex in x

Section 3.2.3 of [16]:

Lemma 3 If f and g are convex functions, then their point-wise maximum, max (f(x), g(x)), is

also convex.

In addition, we will use the concept of logarithmic convexity:

Definition 1 A function f is logarithmically convex (log-convex) if f(x) > 0 for all x ∈ domf

and log f is convex.

Which we then use to state the following Lemma.

124

Section 3.5.2 of [16]:

Lemma 4 If f and g are both log-convex functions, then so is their sum f + g.

Finally, for the sake of notational brevity, let us define the following:

dabK = dK(xa, xb)

Dabc
K = dK(xa, xb)− dK(xa, xc)

These short-hand versions of our established notation will be used throughout this section.

A.1 PROOF OF PROPOSITION 1

PROOF

1. In order for (4.6) to be a convex optimization problem, it’s objective and constraints must be

convex in the optimization variables.

2. By Lem. 1, if E(K′′, T), λ1trace(K0), and λ2‖µ‖1 are convex, then the objective in (4.6) is

convex.

3. It is an assumption of the proposition that E(K′′, T) is convex.

4. λ1trace(K0) is defined as a constant times the sum of the diagonal elements of the matrix K0,

which is a sum of convex functions (Lem. 1).

5. λ2‖µ‖1 is defined as a constant times the the sum of the absolute values of the elements of µ,

which is a sum of convex functions (Lem. 1)

6. By lines 2, 3, 4, and 5, the objective in (4.6) is convex.

7. The positivity constraint on µ is trivially convex.

8. The positive semidefinite constraint is known to be convex [?].

9. By lines 7 and 8, both constraints of (4.6) are convex.

10. By lines 1, 6, and 9, (4.6) is a convex optimization problem.

125

A.2 PROOF OF PROPOSITION 2

PROOF

1. Moving the negation into the sum, (4.7) becomes the sum of terms of the following form:

− log
(
pK′′

abc

)
(A.1)

= − log

(
exp

(
−dabK′′

)
exp (−dacK′′) + exp

(
−dabK′′

))

= − log

(
1

1 + exp
(
Dabc

K′′

))
= − log(1) (A.2)

+ log
(
exp

(
Dabc

K′′

)
+ 1
)

(A.3)

2. By Lem. 1, if (A.1) is convex for all triplets (a, b, c), then (4.7) is convex.

3. By Lem. 1, (A.1) is convex if both (A.2) and (A.3) are convex.

4. (A.2) is a constant and trivially convex.

5. By Definition 1, if exp
(
Dabc

K′′

)
+ 1 is log-convex, then (A.3) is convex.

6. By Lem. 4 if exp
(
Dabc

K′′

)
and 1 are both log-convex, then exp

(
Dabc

K′′

)
+ 1 is log-convex.

7. 1 is a constant and trivially log-convex.

8. The codomain of the exponential function is R+, so exp
(
Dabc

K′′

)
> 0 for all K′′, which satisfies

the first condition for log-convexity.

9. To show log
(
exp

(
Dabc

K′′

))
is convex, thus satisfying the second condition of log-convexity, we

start by stating the following equivalence by using the definition of K′′ (4.4):

log
(
exp

(
Dabc

K′′

))
= Dabc

K′′

= Dabc
K0

+
A∑
i=1

µiD
abc
Ki

(A.4)

10. By Lem. 1 if Dabc
K0

and
∑A

i=1 µiD
abc
Ki

are convex, then (A.4) is convex.

11. Let kabc =
(
Dabc

K1
, ..., Dabc

KA

)
. Then,

∑A
i=1 µiD

abc
Ki

= kTabcµ.

12. kTabcµ is an affine function of µ that has the form f(µ) = Aµ + b where A = kTabc and b is 0.

126

13. By Lem. 2 and the previous step, kTabcµ is convex in µ.

14. Using the definition of kernel distance from (3.8) (Note the slight change in notation: Kab
0 refers

to the ath column and bth row of K0):

Dabc
K0

= Kbb
0 + 2Kac

0 −Kcc
0 − 2Kab

0 (A.5)

15. By Lem. 1, if the individual terms of (A.5) are convex then (A.5) is convex.

16. The individual terms of (A.5) are simply elements of K0 multiplied by scalers, which are convex

in K0.

17. By lines 3-16, (A.1) is convex.

18. By lines 1, 2, and 17, (4.7) is convex.

A.3 PROOF OF PROPOSITION 3

PROOF

1. By Lem. 1 if max(0, Dabc
K′′ + 1) is convex for any triplet (a, b, c), then (4.8) is convex.

2. By Lem. 3, if 0 and Dabc
K′′ + 1 are convex, then max(0, Dabc

K′′ + 1) is convex.

3. 0 is trivially convex.

4. By Lem. 1, if 1 and Dabc
K′′ are convex, then Dabc

K′′ + 1 is convex.

5. 1 is trivially convex.

6. Steps 9-16 of Section A.2 showed Dabc
K′′ is convex in the optimization variables.

7. By lines 2-6, max(0, Dabc
K′′ + 1) is convex for any triplet (a, b, c).

8. By line 1 and 6, (4.8) is convex

127

APPENDIX B

DERIVATION OF STE PASSIVE-AGGRESSIVE STEP SIZE

To derive the STE version of the passive-aggressive step size we wish to solve the following

optimization (5.11):

min
δj

δ2
j

s.t. p
K′j
tj ≥ P, δj ≥ 0

As with the GNMDS derivation with the assumption that the triplet is not satisfied by a probability

greater than or equal to P , only a positive value of δj can satisfy the first constraint, making the

positive constraint on δj redundant. In addition, the smallest δj that satisfies the remaining constraint

is the one that makes the left hand side exactly zero. As a result, the inequality constraint can be

handled as equality. Next, we take the Lagrangian:

δ2
j +α (log (P)− log (1− P))

+α
(
dKj−1

(a, b)− dKj−1
(a, c)

)
− 10δjα

Taking the partial derivative of the Lagrangian with respect to δj , setting it to 0, and solving for δj

results in δj = 5α. Substituting this back into the Lagrangian makes it:

−25α2 +α (log (P)− log (1− P))

+α
(
dKj−1

(a, b)− dKj−1
(a, c)

)
Taking the partial derivative of the Lagrangian with respect to α, setting it to 0, and solving for α

results in:

α =
log (P)− log (1− P) + dKj−1

(a, b)− dKj−1
(a, c)

50

128

Substituting this into the solution for δj gives us:

δj =
log (P)− log (1− P) + dKj−1

(a, b)− dKj−1
(a, c)

10

This is what is given in (5.12).

129

BIBLIOGRAPHY

[1] M. E. Abbasnejad, D. Ramachandram, and R. Mandava. A survey of the state of the art in
learning the kernels. Knowledge and information systems, 31(2):193–221, 2012.

[2] M. A. Acevedo, C. J. Corrada-Bravo, H. Corrada-Bravo, L. J. Villanueva-Rivera, and T. M.
Aide. Automated classification of bird and amphibian calls using machine learning: A
comparison of methods. Ecological Informatics, 4(4):206–214, 2009.

[3] A. Agarwal, M. J. Wainwright, P. L. Bartlett, and P. K. Ravikumar. Information-theoretic
lower bounds on the oracle complexity of convex optimization. In Advances in Neural
Information Processing Systems, pages 1–9, 2009.

[4] S. Agarwal, J. Wills, L. Cayton, G. Lanckriet, D. J. Kriegman, and S. Belongie. Generalized
non-metric multidimensional scaling. In International Conference on Artificial Intelligence
and Statistics, pages 11–18, 2007.

[5] E. Amid, A. Gionis, and A. Ukkonen. A kernel-learning approach to semi-supervised
clustering with relative distance comparisons. In Machine Learning and Knowledge Discovery
in Databases, pages 219–234. Springer, 2015.

[6] E. Amid and A. Ukkonen. Multiview triplet embedding: Learning attributes in multiple maps.
In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages
1472–1480, 2015.

[7] F. Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for
logistic regression. The Journal of Machine Learning Research, 15(1):595–627, 2014.

[8] F. R. Bach, G. R. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and
the smo algorithm. In Proceedings of the twenty-first international conference on Machine
learning, page 6. ACM, 2004.

[9] S. Basu, A. Banjeree, E. Mooney, A. Banerjee, and R. J. Mooney. Active semi-supervision for
pairwise constrained clustering. In In Proceedings of the 2004 SIAM International Conference
on Data Mining (SDM-04, 2004.

[10] A. Bellet, A. Habrard, and M. Sebban. A survey on metric learning for feature vectors and
structured data. arXiv preprint arXiv:1306.6709, 2013.

130

[11] Y. Bengio, J.-f. Paiement, P. Vincent, O. Delalleau, N. L. Roux, and M. Ouimet. Out-of-
sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering. In Advances in
Neural Information Processing Systems, pages 177–184, 2004.

[12] E. S. Berner. Clinical decision support systems: theory and practice. Springer Science &
Business Media, 2007.

[13] A. Biswas and D. Parikh. Simultaneous active learning of classifiers & attributes via relative
feedback. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on,
pages 644–651. IEEE, 2013.

[14] A. Bordes, N. Usunier, and L. Bottou. Sequence labelling svms trained in one pass. In
Machine Learning and Knowledge Discovery in Databases, pages 146–161. Springer, 2008.

[15] L. Bottou. Online learning and stochastic approximations. On-line learning in neural
networks, 17:9, 1998.

[16] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[17] M. Brand. Incremental singular value decomposition of uncertain data with missing values.
In Computer VisionECCV 2002, pages 707–720. Springer, 2002.

[18] S. Branson, C. Wah, F. Schroff, B. Babenko, P. Welinder, P. Perona, and S. Belongie. Visual
recognition with humans in the loop. In Computer Vision–ECCV 2010, pages 438–451.
Springer, 2010.

[19] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender.
Learning to rank using gradient descent. In Proceedings of the 22nd international conference
on Machine learning, pages 89–96. ACM, 2005.

[20] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon. Adapting ranking svm to document
retrieval. In Proceedings of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 186–193. ACM, 2006.

[21] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University
Press, 2006.

[22] O. Chapelle and V. Vapnik. Model selection for support vector machines. In Advances in
Neural Information Processing Systems, 2000.

[23] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for
support vector machines. Machine learning, 46(1-3):131–159, 2002.

[24] D. Charles. Adoption of electronic health record systems among US non-federal acute care
hospitals: 2008-2012. Office of the National Coordinator for Health Information Technology,
2013.

131

[25] J. Chen, T. Yang, and S. Zhu. Efficient low-rank stochastic gradient descent methods for
solving semidefinite programs. In Proceedings of the Seventeenth International Conference
on Artificial Intelligence and Statistics, pages 122–130, 2014.

[26] V. Cherkassky and Y. Ma. Practical selection of svm parameters and noise estimation for
svm regression. Neural networks, 17(1):113–126, 2004.

[27] W. Chu and Z. Ghahramani. Preference learning with gaussian processes. In Proceedings of
the 22nd international conference on Machine learning, pages 137–144. ACM, 2005.

[28] H. Cohen and C. Lefebvre. Handbook of categorization in cognitive science. Elsevier, 2005.

[29] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.

[30] A. Cotter, O. Shamir, N. Srebro, and K. Sridharan. Better mini-batch algorithms via ac-
celerated gradient methods. In Advances in neural information processing systems, pages
1647–1655, 2011.

[31] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive
algorithms. The Journal of Machine Learning Research, 7:551–585, 2006.

[32] K. Crammer and Y. Singer. Pranking with ranking. In Advances in Neural Information
Processing Systems 14. Citeseer, 2001.

[33] I. Dagan and S. P. Engelson. Committee-based sampling for training probabilistic classifiers.
In Proceedings of the Twelfth International Conference on Machine Learning, pages 150–157,
1995.

[34] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. Information-theoretic metric learning.
In Proceedings of the 24th international conference on Machine learning, pages 209–216.
ACM, 2007.

[35] C. D. Demiralp, M. S. Bernstein, and J. Heer. Learning perceptual kernels for visualization
design. Visualization and Computer Graphics, IEEE Transactions on, 20(12):1933–1942,
2014.

[36] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248–255. IEEE, 2009.

[37] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep
convolutional activation feature for generic visual recognition. In International Conference
on Machine Learning, pages 647–655, 2014.

[38] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John Wiley & Sons, 2012.

132

[39] I. El-Naqa, Y. Yang, M. N. Wernick, N. P. Galatsanos, and R. M. Nishikawa. A support vector
machine approach for detection of microcalcifications. Medical Imaging, IEEE Transactions
on, 21(12):1552–1563, 2002.

[40] D. Ellis, B. Whitman, A. Berenzweig, and S. Lawrence. The quest for ground truth in musical
artist similarity. In ISMIR, 2002.

[41] J.-H. Eom, S.-C. Kim, and B.-T. Zhang. Aptacdss-e: A classifier ensemble-based clinical
decision support system for cardiovascular disease level prediction. Expert Systems with
Applications, 34(4):2465–2479, 2008.

[42] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual
object classes (voc) challenge. International journal of computer vision, 88(2):303–338,
2010.

[43] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A library for
large linear classification. The Journal of Machine Learning Research, 9:1871–1874, 2008.

[44] X. Fan, Y. Liu, N. Cao, J. Hong, and J. Wang. Mindminer: A mixed-initiative interface
for interactive distance metric learning. In Human-Computer Interaction–INTERACT 2015,
pages 611–628. Springer, 2015.

[45] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by their attributes. In
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages
1778–1785. IEEE, 2009.

[46] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with
discriminatively trained part-based models. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 32(9):1627–1645, 2010.

[47] V. Ferrari and A. Zisserman. Learning visual attributes. In Advances in Neural Information
Processing Systems, pages 433–440, 2007.

[48] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics,
7(2):179–188, 1936.

[49] E. Frank and M. Hall. A simple approach to ordinal classification. In Proceedings of the 12th
European Conference on Machine Learning, pages 145–156. Springer-Verlag, 2001.

[50] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for
combining preferences. The Journal of machine learning research, 4:933–969, 2003.

[51] C. F. Gauss. Theoria motus corporum coelestium in sectionibus conicis solem ambientium
auctore Carolo Friderico Gauss. sumtibus Frid. Perthes et IH Besser, 1809.

[52] A. Globerson and S. T. Roweis. Metric learning by collapsing classes. In Advances in neural
information processing systems, pages 451–458, 2005.

133

[53] M. Gönen and E. Alpaydın. Multiple kernel learning algorithms. The Journal of Machine
Learning Research, 12:2211–2268, 2011.

[54] Y. Guo and R. Greiner. Optimistic active-learning using mutual information. In IJCAI,
volume 7, pages 823–829, 2007.

[55] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification
using support vector machines. Machine learning, 46(1-3):389–422, 2002.

[56] M. Hauskrecht, I. Batal, M. Valko, S. Visweswaran, G. F. Cooper, and G. Clermont. Outlier
detection for patient monitoring and alerting. Journal of biomedical informatics, 46(1):47–55,
2013.

[57] M. Hauskrecht, M. Valko, I. Batal, G. Clermont, S. Visweswaran, and G. F. Cooper. Condi-
tional outlier detection for clinical alerting. In AMIA annual symposium proceedings, volume
2010, page 286. American Medical Informatics Association, 2010.

[58] E. Hazan and S. Kale. Projection-free online learning. In Proceedings of the 30th International
Conference on Machine Learning, 2012.

[59] H. Heikinheimo and A. Ukkonen. The crowd-median algorithm. In First AAAI Conference
on Human Computation and Crowdsourcing, 2013.

[60] E. Heim, M. Berger, L. Seversky, and M. Hauskrecht. Efficient online relative comparison
kernel learning. Proceedings of the 2015 SIAM International Conference on Data Mining
(SDM15), 2015.

[61] E. Heim and M. Hauskrecht. Sparse multidimensional patient modeling using auxiliary
confidence labels. Proceedings of the 2015 IEEE International Conference on Bioinformatics
and Biomedicine, 2015.

[62] E. Heim, H. Valizadegan, and M. Hauskrecht. Relative comparison kernel learning with
auxiliary kernels. In T. Calders, F. Esposito, E. Hllermeier, and R. Meo, editors, Machine
Learning and Knowledge Discovery in Databases, volume 8724 of Lecture Notes in Artificial
Intelligence, pages 563–578. Springer Berlin Heidelberg, 2014.

[63] S. C. Hoi, R. Jin, and M. R. Lyu. Learning nonparametric kernel matrices from pairwise
constraints. In Proceedings of the 24th international conference on Machine learning, pages
361–368. ACM, 2007.

[64] J. Hu, J. Lu, and Y.-P. Tan. Discriminative deep metric learning for face verification in the
wild. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages
1875–1882. IEEE, 2014.

[65] K. Huang, Y. Ying, and C. Campbell. Generalized sparse metric learning with relative
comparisons. KAIS, 28(1):25–45, 2011.

134

[66] K. Jamieson and R. Nowak. Low-dimensional embedding using adaptively selected ordinal
data. In Allerton, 2011.

[67] A. K. Jha, M. F. Burke, C. DesRoches, M. S. Joshi, P. D. Kralovec, E. G. Campbell, and M. B.
Buntin. Progress toward meaningful use: hospitals’ adoption of electronic health records.
The American journal of managed care, 17, 2011.

[68] T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and data mining, pages
133–142. ACM, 2002.

[69] D. Kedem, S. Tyree, F. Sha, G. R. Lanckriet, and K. Q. Weinberger. Non-linear metric
learning. In Advances in Neural Information Processing Systems, pages 2573–2581, 2012.

[70] D. E. Knuth. The art of computer programming: sorting and searching, volume 3. Pearson
Education, 1998.

[71] I. Kononenko. Machine learning for medical diagnosis: history, state of the art and perspective.
Artificial Intelligence in medicine, 23(1):89–109, 2001.

[72] A. Kovashka, D. Parikh, and K. Grauman. Whittlesearch: Image search with relative attribute
feedback. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,
pages 2973–2980. IEEE, 2012.

[73] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105,
2012.

[74] J. B. Kruskal. Nonmetric multidimensional scaling: a numerical method. Psychometrika,
29(2):115–129, 1964.

[75] B. Kulis. Metric learning: A survey. Foundations & Trends in Machine Learning, 5.4:287–
364, 2012.

[76] B. Kulis, M. Sustik, and I. Dhillon. Learning low-rank kernel matrices. In Proceedings of the
23rd international conference on Machine learning, pages 505–512. ACM, 2006.

[77] N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. J. Kress, I. C. Lopez, and J. V.
Soares. Leafsnap: A computer vision system for automatic plant species identification. In
Computer Vision–ECCV 2012, pages 502–516. Springer, 2012.

[78] J. T. Kwok and I. W. Tsang. Learning with idealized kernels. In Proceedings of the 20th
International Conference on Machine Learning (ICML-03), pages 400–407, 2003.

[79] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by
between-class attribute transfer. In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 951–958. IEEE, 2009.

135

[80] G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan. Learning the
kernel matrix with semidefinite programming. The Journal of Machine Learning Research,
5:27–72, 2004.

[81] J. D. Lee, B. Recht, N. Srebro, J. Tropp, and R. R. Salakhutdinov. Practical large-scale
optimization for max-norm regularization. In Advances in Neural Information Processing
Systems, pages 1297–1305, 2010.

[82] A. M. Legendre. Nouvelles méthodes pour la détermination des orbites des comètes. Num-
ber 1. F. Didot, 1805.

[83] D. D. Lewis and J. Catlett. Heterogeneous uncertainty sampling for supervised learning. In
Proceedings of the eleventh international conference on machine learning, pages 148–156,
1994.

[84] D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In Proceed-
ings of the 17th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 3–12. Springer-Verlag New York, Inc., 1994.

[85] M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient mini-batch training for stochastic opti-
mization. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 661–670. ACM, 2014.

[86] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification
using string kernels. The Journal of Machine Learning Research, 2:419–444, 2002.

[87] M. Mahdavi, T. Yang, R. Jin, S. Zhu, and J. Yi. Stochastic gradient descent with only one
projection. In Advances in Neural Information Processing Systems, pages 494–502, 2012.

[88] A. K. McCallum and K. Nigamy. Employing em and pool-based active learning for text
classification. In Proceedings of the Fifteenth International Conference on Machine Learning
(ICML). Citeseer, 1998.

[89] P. McCullagh. Regression models for ordinal data. Journal of the royal statistical society.
Series B (Methodological), pages 109–142, 1980.

[90] B. McFee and G. Lanckriet. Heterogeneous embedding for subjective artist similarity. In
ISMIR, 2009.

[91] B. McFee and G. Lanckriet. Learning multi-modal similarity. The Journal of Machine
Learning Research, 12:491–523, 2011.

[92] C. A. Micchelli, Y. Xu, and H. Zhang. Universal kernels. The Journal of Machine Learning
Research, 7:2651–2667, 2006.

[93] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine learning, neural and statistical
classification. 1994.

136

[94] R. Mises and H. Pollaczek-Geiringer. Praktische verfahren der gleichungsauflösung. ZAMM-
Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und
Mechanik, 9(1):58–77, 1929.

[95] E. Moulines and F. R. Bach. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. In Advances in Neural Information Processing Systems, pages 451–459,
2011.

[96] Y. Nesterov and J.-P. Vial. Confidence level solutions for stochastic programming. Automatica,
44(6):1559–1568, 2008.

[97] Q. Nguyen, H. Valizadegan, and M. Hauskrecht. Learning classification with auxiliary
probabilistic information. In Data Mining (ICDM), 2011 IEEE 11th International Conference
on, pages 477–486. IEEE, 2011.

[98] Q. Nguyen, H. Valizadegan, and M. Hauskrecht. Learning classification models with soft-
label information. Journal of the American Medical Informatics Association, 21(3):501–508,
2014.

[99] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the
spatial envelope. International journal of computer vision, 42(3):145–175, 2001.

[100] V. Y. Pan and Z. Q. Chen. The complexity of the matrix eigenproblem. In Proceedings of the
thirty-first annual ACM symposium on Theory of computing, pages 507–516. ACM, 1999.

[101] S. Parameswaran and K. Q. Weinberger. Large margin multi-task metric learning. In Advances
in neural information processing systems, pages 1867–1875, 2010.

[102] D. Parikh and K. Grauman. Relative attributes. In Computer Vision (ICCV), 2011 IEEE
International Conference on, pages 503–510. IEEE, 2011.

[103] G. Patterson and J. Hays. Sun attribute database: Discovering, annotating, and recognizing
scene attributes. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, pages 2751–2758. IEEE, 2012.

[104] P. Peng, R. C.-W. Wong, and S. Y. Phillp. Learning on probabilistic labels. In Proceedings of
the 2014 SIAM International Conference on Data Mining (SDM14). SIAM, 2014.

[105] A. M. Qamar, E. Gaussier, J.-P. Chevallet, and J. H. Lim. Similarity learning for nearest neigh-
bor classification. In Data Mining, 2008. ICDM’08. Eighth IEEE International Conference
on, pages 983–988. IEEE, 2008.

[106] A. Rakotomamonjy, F. Bach, S. Canu, Y. Grandvalet, et al. Simplemkl. Journal of Machine
Learning Research, 9:2491–2521, 2008.

[107] S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee, C.-H. Yeang, M. Angelo, C. Ladd,
M. Reich, E. Latulippe, J. P. Mesirov, et al. Multiclass cancer diagnosis using tumor gene

137

expression signatures. Proceedings of the National Academy of Sciences, 98(26):15149–
15154, 2001.

[108] C. E. Rasmussen. Gaussian processes for machine learning. 2006.

[109] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In NIPS, 2011.

[110] H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951.

[111] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, 2000.

[112] N. Roy and A. McCallum. Toward optimal active learning through monte carlo estimation
of error reduction. In Proceedings of the Eighteenth International Conference on Machine
Learning, 2001.

[113] W. W. C. R. E. Schapire and Y. Singer. Learning to order things. In Advances in Neural
Information Processing Systems 10: Proceedings of the 1997 Conference, volume 10, page
451. MIT Press, 1998.

[114] W. J. Scheirer, M. J. Wilber, M. Eckmann, and T. E. Boult. Good recognition is non-metric.
Pattern Recognition, 47(8):2721–2731, 2014.

[115] B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regularization,
optimization, and beyond. MIT press, 2002.

[116] M. Schultz and T. Joachims. Learning a distance metric from relative comparisons. Advances
in neural information processing systems (NIPS), 41, 2004.

[117] B. Settles. Active learning literature survey. University of Wisconsin, Madison, 52:55–66,
2012.

[118] B. Settles, M. Craven, and S. Ray. Multiple-instance active learning. In Advances in neural
information processing systems, pages 1289–1296, 2008.

[119] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the
fifth annual workshop on Computational learning theory, pages 287–294. ACM, 1992.

[120] S. Shalev-Shwartz. Online learning: Theory, algorithms, and applications. PhD. Thesis,
2007.

[121] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimization.
In COLT, 2009.

138

[122] S. Shalev-Shwartz, Y. Singer, and A. Y. Ng. Online and batch learning of pseudo-metrics. In
Proceedings of the twenty-first international conference on Machine learning, page 94. ACM,
2004.

[123] U. Shalit, D. Weinshall, and G. Chechik. Online learning in the embedded manifold of
low-rank matrices. The Journal of Machine Learning Research, 13(1):429–458, 2012.

[124] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27:379–423, 1948.

[125] A. Shashua and A. Levin. Ranking with large margin principle: Two approaches. In Advances
in neural information processing systems, pages 937–944, 2002.

[126] R. N. Shepard. Metric structures in ordinal data. Journal of Mathematical Psychology,
3(2):287–315, 1966.

[127] M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C. Aguiar, M. Gaasenbeek,
M. Angelo, M. Reich, G. S. Pinkus, et al. Diffuse large b-cell lymphoma outcome prediction
by gene-expression profiling and supervised machine learning. Nature medicine, 8(1):68–74,
2002.

[128] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel learning.
The Journal of Machine Learning Research, 7:1531–1565, 2006.

[129] A. Statnikov, L. Wang, and C. F. Aliferis. A comprehensive comparison of random forests
and support vector machines for microarray-based cancer classification. BMC bioinformatics,
9(1):319, 2008.

[130] N. Stewart, G. D. Brown, and N. Chater. Absolute identification by relative judgment.
Psychological review, 112(4):881, 2005.

[131] M. Takac, A. Bijral, P. Richtarik, and N. Srebro. Mini-batch primal and dual methods for
svms. In Proceedings of The 30th International Conference on Machine Learning, pages
1022–1030, 2013.

[132] O. Tamuz, C. Liu, S. Belongie, O. Shamir, and A. Kalai. Adaptively learning the crowd
kernel. Proceedings of the 30th International Conference on Machine Learning, 2011.

[133] J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[134] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

[135] A. C. G. Title. Rank Correlation Methods. Kendall, Maurice and Gibbons, Jean D, 5th
edition, 1990.

139

[136] S. Tong and D. Koller. Support vector machine active learning with applications to text
classification. The Journal of Machine Learning Research, 2:45–66, 2002.

[137] G. Tsoumakas and I. Katakis. Multi-label classification: An overview. Dept. of Informatics,
Aristotle University of Thessaloniki, Greece, 2006.

[138] A. Tversky. Features of similarity. Psychological review, 84(4):327–352, 1977.

[139] A. Tversky and I. Gati. Similarity, separability, and the triangle inequality. Psychological
review, 89(2):123–154, 1982.

[140] G. Tzanetakis and P. Cook. Musical genre classification of audio signals. Speech and Audio
Processing, IEEE transactions on, 10(5):293–302, 2002.

[141] A. Ukkonen, B. Derakhshan, and H. Heikinheimo. Crowdsourced nonparametric density
estimation using relative distances. 2015.

[142] M. Valko and M. Hauskrecht. Feature importance analysis for patient management decisions.
Studies in health technology and informatics, 160(Pt 2):861, 2010.

[143] L. Van Der Maaten and K. Weinberger. Stochastic triplet embedding. In Machine Learning
for Signal Processing (MLSP), 2012 IEEE International Workshop on, pages 1–6. IEEE,
2012.

[144] V. Vapnik. The nature of statistical learning theory. Springer Science & Business Media,
2013.

[145] M. Varma and B. R. Babu. More generality in efficient multiple kernel learning. In Proceed-
ings of the 26th Annual International Conference on Machine Learning, pages 1065–1072.
ACM, 2009.

[146] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering with
background knowledge. In Proceedings of the Eighteenth International Conference on
Machine Learning, pages 577–584, 2001.

[147] C. Wah, S. Maji, and S. Belongie. Learning localized perceptual similarity metrics for
interactive categorization. In Applications of Computer Vision (WACV), 2015 IEEE Winter
Conference on, pages 502–509. IEEE, 2015.

[148] C. Wah, G. Van Horn, S. Branson, S. Maji, P. Perona, and S. Belongie. Similarity comparisons
for interactive fine-grained categorization. In Computer Vision and Pattern Recognition
(CVPR), 2014 IEEE Conference on, pages 859–866. IEEE, 2014.

[149] J. Wang, H. T. Do, A. Woznica, and A. Kalousis. Metric learning with multiple kernels. In
Advances in Neural Information Processing Systems, pages 1170–1178, 2011.

[150] Z. Wang, K. Crammer, and S. Vucetic. Breaking the curse of kernelization: Budgeted
stochastic gradient descent for large-scale svm training. JMLR, 13(1):3103–3131, 2012.

140

[151] K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric learning for large margin
nearest neighbor classification. In Advances in neural information processing systems, pages
1473–1480, 2005.

[152] K. Q. Weinberger and L. K. Saul. Fast solvers and efficient implementations for distance
metric learning. In Proceedings of the 25th international conference on Machine learning,
pages 1160–1167. ACM, 2008.

[153] K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor
classification. The Journal of Machine Learning Research, 10:207–244, 2009.

[154] K. Q. Weinberger and G. Tesauro. Metric learning for kernel regression. In International
Conference on Artificial Intelligence and Statistics, pages 612–619, 2007.

[155] M. J. Wilber, I. S. Kwak, and S. J. Belongie. Cost-effective hits for relative similarity
comparisons. In Second AAAI Conference on Human Computation and Crowdsourcing,
2014.

[156] E. P. Xing, M. I. Jordan, S. Russell, and A. Y. Ng. Distance metric learning with application
to clustering with side-information. In Advances in neural information processing systems,
pages 505–512, 2002.

[157] L. Yang and R. Jin. Distance metric learning: A comprehensive survey. Michigan State
Universiy, 2, 2006.

[158] A. Yu and K. Grauman. Fine-Grained Visual Comparisons with Local Learning. In Computer
Vision and Pattern Recognition (CVPR), June 2014.

[159] X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and semi-supervised
learning using gaussian fields and harmonic functions. In ICML 2003 workshop on the
continuum from labeled to unlabeled data in machine learning and data mining, pages 58–65,
2003.

[160] J. Zhuang, I. W. Tsang, and S. C. Hoi. Simplenpkl: simple non-parametric kernel learning.
In Proceedings of the 26th Annual International Conference on Machine Learning, pages
1273–1280. ACM, 2009.

141

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Summary statistics for expert-labeled HIT data
	2. Methods used in CAMEL experimental evaluation
	3. CAMEL HIT data experiments: Mean (STD) sparsity statistics over all experiments

	LIST OF FIGURES
	1. The four categories of challenges considered in this work
	2. Directed graph depictions of relative feedback
	3. Example object embeddings using different forms of feedback
	4. Direct quantitative query vs. relative query
	5. Batch, online, and mini-batch learning settings
	6. Random versus active query selection
	7. RCKL-AK synthetic data experiments: Test TQPE vs. number of training responses (ten trials, 95% CI)
	8. RCKL-AK synthetic data experiments: mean values of weight parameters (1 (red), 2 (blue), 3 (green), 4 (teal), 5 (pink), 6 (purple))
	9. RCKL-AK aset400 data experiment: Test TQPE vs. number of training responses (ten trials, 90% CI)
	10. Plate diagram depicting TACKL variable relationships
	11. Plate diagram depicting triplet query/object dependencies
	12. TACKL synthetic data experiments (ten trials, 90% CI)
	13. TACKL Yummly data experiments (20 trials, 90% CI)
	14. Example task deployed via AMT to collect Zappos triplet data (three triplet queries per task)
	15. TACKL Zappos data experiments (ten trials, 90% CI)
	16. Example two-dimensional embedding learned by A-TACKL on Zappos data
	17. ERKLE small-scale synthetic data experiments (ten trials, 95% CI)
	18. ERKLE large-scale synthetic data experiments (five trials, 95% CI)
	19. Results from experiments on the aset400 data set (ten trials)
	20. Results from experiments on the OSR data set (ten trials)
	21. CAMEL HIT data experiments: number of training instances vs. AUROC on test set (Row 1 = Expert 1, Row 2 = Expert 2, ten trials, 95% CI)
	22. CAMEL HIT data experiments: feature weight statistics (CAMEL-CL, Expert 2, ten trials)
	23. CAMEL HIT data experiments: normalized absolute values of L entries (left = CAMEL, right = CAMEL-CL)

	LIST OF ALGORITHMS
	1. A Prototypical Batch RCKL Learning Algorithm
	2. Active Sequential Triplet Query Selection
	3. RCKL-AK Projected Gradient Descent
	4. Active TACKL
	5. Efficient PSD Projection
	6. Efficient online Relative comparison Kernel LEarning (ERKLE)
	7. ERKLE with Multiple Passes

	1.0 INTRODUCTION
	1.1 Challenges
	1.2 Thesis Statement
	1.3 Contributions
	1.4 Outline

	2.0 PRELIMINARIES
	2.1 Notation
	2.2 Fundamental Models of Similarity
	2.2.1 Distance Metrics
	2.2.1.1 Generalized Mahalanobis Distance Metrics

	2.2.2 Kernels
	2.2.2.1 Kernel Matrices

	2.3 Forms of Human Feedback and Their Applications
	2.3.1 Labels
	2.3.2 Pair-wise Feedback
	2.3.3 Relative Triplet Feedback
	2.3.4 Comparison of Forms
	2.3.4.1 Model Effectiveness
	2.3.4.2 Human Efficiency
	2.3.4.3 Human Effectiveness
	2.3.4.4 Summary

	2.4 Similarity-Learning Settings
	2.4.1 Batch versus Online Learning
	2.4.1.1 Batch versus Stochastic Gradient Methods

	2.4.2 Random versus Active Learning

	3.0 RELATED WORK
	3.1 Metric Learning
	3.1.1 Large Margin Nearest Neighbors
	3.1.2 Metric Learning for Kernel Regression

	3.2 Kernel Learning
	3.2.1 Multiple Kernel Learning
	3.2.2 Non-Parametric Kernel Matrix Learning
	3.2.2.1 Relative Comparison Kernel Learning

	3.3 Online Learning
	3.4 Active Learning
	3.4.1 Active Sequential Triplet Query Selection
	3.4.2 Adaptive Crowd Kernel Learning

	4.0 SIMILARITY LEARNING FROM TRIPLET FEEDBACK WITH AUXILIARY INFORMATION
	4.1 Learning a Non-Parametric Kernel with Auxiliary Information
	4.1.1 Multiple Kernel RCKL
	4.1.2 RCKL with Auxiliary Kernels
	4.1.2.1 Projected Gradient Descent for RCKL-AK Methods

	4.1.3 Relationship to Metric Learning
	4.1.4 Experiments
	4.1.4.1 Synthetic Data
	4.1.4.2 Music Artist Data

	4.2 Actively Learning an Object Embedding with Auxiliary Information
	4.2.1 A Probabilistic Embedding-Learning Formulation with Auxiliary Features
	4.2.2 Active Embedding-Learning with Auxiliary Features
	4.2.3 Experiments
	4.2.3.1 Synthetic Data
	4.2.3.2 Yummly Food Data
	4.2.3.3 Zappos Shoes Data

	4.3 Summary

	5.0 ONLINE SIMILARITY LEARNING FROM TRIPLET RESPONSES
	5.1 Efficient Online Relative Comparison Kernel Learning (ERKLE)
	5.1.1 Stochastic Gradient Step
	5.1.2 Efficient Projection
	5.1.3 Passive-Aggressive Updates
	5.1.4 ERKLE with Multiple Passes

	5.2 Experiments
	5.2.1 Small-Scale Synthetic Data
	5.2.2 Large-Scale Synthetic Data
	5.2.3 Music Artist Similarity
	5.2.4 Outdoor Scene Similarity

	5.3 Summary

	6.0 METRIC LEARNING FROM AUXILIARY CONFIDENCE LABELS WITH APPLICATION TO CLINICAL DECISION MODELING
	6.1 Previous Work Using Auxiliary Confidence Labels
	6.2 Methodology
	6.2.1 Incorporating Confidence Labels

	6.3 Experiments
	6.3.1 Data Set Description
	6.3.2 Experimental Methodology
	6.3.3 Discussion

	6.4 Summary

	7.0 CONCLUSION AND FUTURE WORK
	7.1 Contributions
	7.2 Future Work
	7.2.1 Directions of Future Work Specific to Methods Introduced in this Dissertation
	7.2.2 Directions of Future Work in Similarity Learning from Human Feedback

	APPENDIX A. PROOFS OF CONVEXITY FOR RCKL-AK FORMULATIONS
	 A.1 Proof of Proposition 1
	 A.2 Proof of Proposition 2
	 A.3 Proof of Proposition 3

	APPENDIX B. DERIVATION OF STE PASSIVE-AGGRESSIVE STEP SIZE
	BIBLIOGRAPHY

