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AN ADAPTIVE ECC SCHEME FOR RUNTIME WRITE FAILURE

SUPPRESSION OF STT-RAM CACHE

Xue Wang, M.S.

University of Pittsburgh, 2015

Spin-transfer torque random access memory (STT-RAM) features many attractive charac-

teristics, including near-zero standby power, nanosecond access time, small footprint, etc.

These properties make STT-RAM perfectly suitable for the applications that are subject to

limited power and area budgets, i.e., on-chip cache. Write reliability is one of the major

challenges in design of STT-RAM caches. To ensure design quality, error correction code

(ECC) scheme is usually adopted in STT-RAM caches. However, it incurs significant hard-

ware overhead. In observance of the dynamic error correcting requirements, in this work, we

propose an adaptive ECC scheme to suppress the runtime write failures of STT-RAM cache

with minimized hardware cost, in which the cache is partitioned into regions protected by

different ECCs. The error rate of a data is speculated on-the-fly and the data is allocated

to a partition that provides the needed error correcting capability. Moreover, to accom-

modate the time-varying error correcting requirements of runtime data, the thresholds that

determine data’s destination cache partition will be adaptively adjusted. Our experimental

results show that compared to conventional ECC schemes, our scheme can save up to 80.2%

ECC bit overhead with slightly degraded write reliability of the STT-RAM cache. Moreover,

the detailed analysis shows that through simultaneous optimization in cache access patterns

and reducing STT cell programming workload, our method outperforms conventional ECC

design in power and energy consumptions.

Keywords: NVM, STT-RAM, cache, write error, ECC.
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1.0 INTRODUCTION

1.1 EMERGING MEMORY TECHNOLOGIES

To meet the exponentially increasing data processing capability in modern computer system,

the emerging memory technologies (EMTs) Phase-change memory (PCM), Resistive random-

access memory (RRAM), like spin-transfer torque random access memory (STT-RAM) are

proposed to as candidates to replace conventional memories, such as SRAM and DRAM.

PCM leverages a phase change material such as Ge2Sb2Te5 (GST), which can switch

states with significantly different resistance [1]. RRAM is a type of non-volatile memory,

which stores information by changing the resistance across the dielectric solid-state material.

Chua et all. proposed memristor, which is a 2-terminal non-volatile memory cell storing

information by switching resistance [3]. STT-RAM stores information as the resistance states

of magnetic tunneling junction (MTJ) devices. It offers nanosecond access time comparable

to SRAM, high integration density close to DRAM, and zero standby power like Flash

memory. STT-RAM is considered a promising candidate to replace SRAM, by providing

solutions to the severe challenges like the prominent leakage power consumption and the

significant degradation in device reliability.

Among these EMTs, STT-RAM features many attractive characteristics, including near-

zero standby power, nanosecond access time, small footprint, etc. These properties make

STT-RAM perfectly suitable for the applications that are subject to limited power and area

budgets, like on-chip cache [4].
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1.2 RELIABILITY CHALLENGES

A major challenge in STT-RAM design is the access reliability issue, e.g., high write error

rate. A write error in an STT-RAM cell occurs as the write pulse is removed before the

completion of the resistance switching of its data storage device – magnetic tunneling junction

(MTJ) [5]. The parametric variability of MOS transistor and MTJ [6] as well as the thermal-

induced randomness in MTJ switching process [7] induce a large variation of MTJ switching

property, making the write reliability control very difficult. Process variations, for example,

induce deviations of the electrical characteristics of MOS transistors and MTJs from their

nominal values, leading to read and write errors of memory [8, 9].

1.3 RELATED WORKS

Error correction code (ECC) has been widely adopted in STT-RAM to ensure the access

reliability. The high error rate in STT-RAM designs (which indeed relies on the storage

patterns) demands for a strong ECC scheme. However, a strong ECC usually implies large bit

overhead and long data encoding and decoding time, which is against the requirement of the

high-density and delay-sensitive on-chip cache applications. Popular ECC schemes, such as

SEC-DED [10], BCH [11, 12, 13], i.e. Hi-ECC [14], ECP[15], etc., are designed by assuming

the error rates of the stored data with different values are always identical. These ECC

schemes, however, are not suitable for STT-RAM designs because they are generally designed

for the worst-case that rarely happens and often neglect the unique structure and asymmetric

characteristics of STT-RAM and lose in efficiency. For example,considering the asymmetric

erroneous probabilities of programming 1 and 0, Wu et al. developed an asymmetric ECC

scheme that strengthens the protection for ‘0→1’ switchings [16]. Nonetheless, these ECC

schemes were designed for the worst-case scenario that rarely happens in real applications,

e.g., ignoring the variability of data error rate across different memory blocks and program

segments. Such pessimistic designs require to reserve considerable design margin, introducing

significant hardware cost and performance overheads.
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1.4 SUMMARY OF PROPOSED METHOD

In light of the dynamic error correcting requirement in the application of STT-RAM caches,

in this work, we propose Sliding Basket – an adaptive ECC scheme to suppress runtime

write failures. In Sliding Basket, the cache is partitioned into regions (baskets) protected by

different ECCs. The error rate of a data is speculated on-the-fly and the data is allocated to a

partition that provides the needed error correcting capability. Moreover, to accommodate the

time-varying error correcting requirements of runtime data, the thresholds that determine

data’s destination cache partition will be adaptively adjusted. Our experimental results

show that compared to conventional ECC scheme, Sliding Basket can save up to 80.2% ECC

bit overhead with slightly degraded write reliability of the STT-RAM cache. Moreover, the

detailed analysis shows that through simultaneous optimization in cache access patterns and

reducing STT cell programming workload, Sliding Basket outperforms conventional ECC

design in power and energy consumptions.
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2.0 PRELIMINARY

2.1 STT-RAM BASICS

MgO

BL

WL

SL

Free

Reference
MgO

BL

WL

SL

Free

Reference

(a)

(b)

Figure 1: (a) STT-RAM basics; (b) The currents applied to write to STT-RAM.

In an STT-RAM cell, data is represented by the resistance state of its MTJ device. As

illustrated in Figure. 1(a), an MTJ is composed of two ferromagnetic layers (i.e., reference

and free layers) and an oxide insulator. The magnetization direction of the reference layer

is fixed while that of the free layer is switchable under a polarized write current [5]. When

the magnetization directions of the two layers are in parallel (anti-parallel), the MTJ is in

low (high) resistance state, representing logic ‘0’ (‘1’). The write current through the MTJ

is supplied by a NMOS transistor. Such an STT-RAM cell is denoted as ‘1T1J’ structure.
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As shown in Figure. 1(b), a current from VDD to ground is programming the two ferro-

magnetic layers in the MTJ into parallel, resulting a logic ‘0’ state. On the other hand, if

the write current is applied from the opposite direction, the two ferromagnetic layers in the

MTJ are programmed into anti-parallel, resulting a logic ‘1’ state.

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
Cache Area

6
8

10
12
14
16
18
20
22
24

Sw
itc

h 
Ti

m
e(

ns
)

NoECC
ECC

Figure 2: The tradeoff between MTJ switching time and transistor size for a fixed block

error rate of 3.64× 10−12 at 22nm. The block size is 512-bit.

In an STT-RAM cell, a write error happens when the write current is removed before

the MTJ resistance switching process completes [17][18]. Due to the relatively lower driving

strength of the NMOS transistor and the higher switching current of the MTJ, the ‘0→1’

switching demonstrates a much higher probability of write errors than the ‘1→0’ switch-

ing [17].

We note that due to the intrinsic randomness in process variations and thermal fluctua-

tions, write errors of STT-RAM cannot be completely eliminated. Raising the amplitude of

write current (by increasing NMOS transistor size) and prolonging write pulse width (i.e.,

MTJ switching time) can reduce the write error rate. Figure. 2 compares the STT-RAM

switch time and cache area for 8MB L2 STT-RAM cache without ECC (“NoECC”) and

with (72, 64) single bit ECC (“ECC”) while maintaining the same block write error rate of
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3.64 × 10−12 for 8MB L2 STT-RAM cache. These results are simulated with NVSIM [19]

with 22nm technology node. The “ECC” schemes reduced the area from 6.01mm to 4.52mm

by 24.8% compared to the “NoECC” cache at the same switch time of 10ns.

Thus we conclude that a tradeoff exists between the applied write current amplitude

and write pulse width under a fixed write error rate target [6]. However, the circuit-level

solutions introduce extra area overhead and/or performance penalty, not even mentioning

the increase in write energy consumption.

2.2 STT-RAM WRITE ERROR MODEL

As aforementioned, the write reliability of an STT-RAM cell is mainly determined by the

failure rate of ‘0→1’ switching rather than that of ‘1→0’ switching. The write failure rate

of an STT-RAM cache block, i.e., the probability of having no more than t erroneous bits,

can be approximated by [18]:

P (ne ≤ t) =
t∑

i=0

Ci
FLIPBERi(1− BER)FLIP−i, (2.1)

where FLIP denotes the number of the bits flipping from 0 to 1, which includes the flipping

in ECC bits if ECC is applied; ne is the number of error bits; and BER is the write error

rate of a single bit.

STT-RAM is often adopted in latency-sensitive scenarios, so the application of ECC is

usually constrained to SECDED (single error correction, double error detection) schemes. A

cache block can be divided into several data segments, each of which is separately protected

by a set of ECC check bits. In such a case, the BLER (BLock Error Rate) of the cache block

can be approximated by:

P ecc
err,blk = 1−

SegNum∏
i=1

Pi(ne ≤ 1). (2.2)

Here, SegNum represents the number of the divided segments in the cache block and BLER

denotes the probability of having uncorrectable error(s) in the cache block.
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Figure 3: Distribution of the FLIP of 512-bit cache blocks in some representative bench-

marks.

Fig. 3(a) summarizes the distribution of average FLIP of the 512-bit cache blocks in

some representative SPEC2006 benchmarks. As the value of FLIP increases, the occurrence

probability reduces rapidly. In other words, it is very rare that many bits are flipping from 0

to 1 simultaneously. Here we assume the read-before-write scheme [20] is applied, i.e., write

operation is performed only when the data being written is different from the one stored in

the targeted memory cell.

Figure. 4 shows how the BLER varies with FLIP under several ECC schemes. Here we

use (w, k) to denote an ECC with w codeword length and k ECC bits, with which the data

bits are protected with 1 bit error correction and 2 bits error detection capability. Utilizing

a strong ECC, i.e., (72, 64), effectively suppresses the write failures but increases the ECC

bit overhead. When the target failure rate, i.e. BLER, is set, the normal attempt in the

application of STT-RAM caches is to select ECC based on the maximum possible FLIP.

However this approach induces significant design pessimism in the case of smaller FLIPs.
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3.0 TECHNICALMOTIVATIONS

3.1 OBSERVATION AND FACTS

Applying ECC can enhance the write reliability of STT-RAM, which can be further trans-

lated to memory cell arFigure.ea reduction and/or write performance improvement as shown

in Figure. 2. In conventional designs, all the cache blocks are equipped with the same ECC

scheme. The STT-RAM write reliability can be roughly measured by the worst BLER, which

corresponds to the maximum FLIP under the protection of the strongest ECC available to

the design. As shown in Figure. 2 the maximum BLER is 3.64× 10−12, which occurs when

FLIP = 512 under the protection of (72, 64). If the FLIP of the cache block is smaller than

the maximum FLIP, we may apply a weaker ECC to protect the block while still ensure the

BLER not higher than the maximum BLER. In general, such a scheme can be represented as

a pair of [ECC1, ..., ECCn] and [TH1, ..., THn], where ECCi, i = 1, ..., n, are different ECCs

from the weakest to the strongest; and THj, j = 1, ..., n, are the maximum FLIP that can

be protected by ECCj. Here THn = S, which is the cache block size. Here we assume the

error correcting strength of ECCi increases monotonically when i increases. For illustration

purpose, Figure. 4 compares the failure rates when applying a mixed ECC scheme of [(523,

512), (266, 256), (137, 128), (72, 64)] and [180, 256, 360, 512]. The failure rates correspond-

ing to different FLIPs are bounded by the maximum BLER at FLIP = 512. The ECC bit

overhead of every single ECC scheme is also presented in the figure for comparison purpose.

The above observation motivates us to propose Sliding Basket scheme that aims at

reducing the ECC bit overhead by fully utilizing the error correcting strength of ECC schemes

to satisfy the ever-changing needs of the cache block data.

9



3.2 SPATIAL AND TEMPORAL VARIABILITY’S OF ECC

REQUIREMENT

Figure 5: Spatial and temporal variabilities of ECC strength requirement in a L2 STT-RAM

cache.

Figure. 5 shows the required ECC strength of cache block that is mainly decided by the

FLIP of data, varies across the 32 ways in a L2 STT-RAM cache. This property is referred to

as the spatial variability of the ECC requirement. Also, the required ECC strength of every

cache block changes over time, representing the temporal variability. In the following three

subsections, we will show: 1) how to leverage the spatial variability of the ECC requirement

to reduce the ECC bit overhead by configuring the ECC schemes of cache blocks at way level

10



and guiding data to be stored at the corresponding cache block with proper ECC protection;

and 2) managing the temporal variability of the ECC requirement through dynamically

adjusting the thresholds to guide the data allocation during program execution.

11



4.0 METHOD

4.1 BASIC CONCEPT OF SLIDING BASKET

For simplicity, we assume two ECC schemes with different error correcting strengths available

to our design, i.e., strong and weak. All the cache blocks belonging to the same set are

partitioned into two groups: Group H and Group L, which belong to the different cache

ways. The cache blocks in Group H and Group L are protected by the strong ECC and the

weak ECC, respectively.

Figure. 6 illustrates the overhead of ECC bits for Group H and Group L, in which the

gray area denotes the ECC coding bits for every block respectively.

Figure 6: Cache set compositions of proposed scheme.
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Figure 7: Handle blocks when write hits.

When a data is scheduled to be written into the STT-RAM cache, its required ECC

strength can be first estimated based on its FLIP, as discussed in Section 2.2. Because

only two ECC schemes are available in the presented example, only one FLIP threshold is

needed to categorize the data into two types, say, High Flip Data (HFD) and Low Flip Data

(LFD). Once the estimated required ECC strength is obtained, the following data allocation

procedure will be applied to guarantee the reliability of the data:

In a write miss, the HFD and the LFD are placed into Group H and Group L, respectively,

by following LRU policy within each group. In a write hit, if the hit Block B belongs to

a group which has the ECC exactly matching the need of the data, B is updated with the

new data directly, as shown in Figure. 7(a). Otherwise, a block in the group with the ECC

exactly matching the need of the data, say B′, will be selected to store the data based on

LRU policy. If Block B′ is invalid or clean or belongs to the group with an ECC strength

weaker than that of the group containing Block B (e.g., in Group L as shown in Figure. 7(b)),

the original data in Block B′ is evicted and replaced with the new data. If Block B′ belongs

to a group with an ECC strength stronger (e.g., Group H in Figure. 7(c)) than that of the

group containing Block B, the data in Block B′ is first moved to Block B and then the new

data is written to Block B′. An error check and correction will be performed on the original

data of Block B′ before writing it to Block B. The whole procedure is depicted in Figure. 8.
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procedure Data allocation flow of Sliding Basket(1)

Select Group based on ECC requirement

data← incoming data

B ← hit block if hit

B′ ← lru block from selected group

dataorg ← data original in B’

Write miss :

Find LRU block B’ in selected group

Write data to B’

Write hit :

if B matches ECC requirement then

Update data to B, see Figure. 4(a)

else

Find LRU Block B’ in selected group

if B’ is clean or ∈ weaker ECC group then

Evict data in B, see Figure. 4(b)

else

Perform error check for dataorg in B’

Move dataorg to B, see Figure. 4(c)

Write data to B’

14
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Figure 8: Flow chart of writing data into a block.

The rationales of the above flow are the follows: as the majority of the data have low

FLIPs during program execution, the capacity of the groups with weak ECC, i.e., Group L,

shall be larger than that of the groups with strong ECC, i.e., Group H. Hence, if the block

to be replaced (i.e., B′, which is the least recently used block in the group) is in Group L,

replacing Block B′ with the new data imposes minimum impact on system performance due

to the large capacity of Group L (see Figure. 7(b)). However, if the block to be replaced (i.e.,

B′) is in Group H, directly overwriting the original dataorg in Block B′ may greatly affect

system performance, because miss rate may be caused by frequent access to Group H due

15



to its limited capacity and small associativity. Thus for both consideration in performance

and reliability, we need to move the original data in B′ to the originally hit Block B (see

Figure. 7(c)).

There exists a small probability that the weak ECC associated with Block B in Group L

may not be able to provide sufficient protection to the data moved from Block B′. Adding an

error check and correction step in moving the data from Block B′ into Block B can effectively

reduce the possibility of writing an erroneous data. In fact, as Block B′ is identified in Group

H based on LRU policy, the possibility of continuing to use the data moving from Block B′

is already very low.

4.2 ECC REQUIREMENT DRIVEN CACHE PARTITION

By assuming the data can be perfectly allocated to the cache group with exactly matched

ECC strength, at a specific time, an ideal partition of the Sliding Basket cache is:

Ni =


d

S∑
j=THi−1+1

Pj × Ae, i = n

d
S∑

j=THi−1+1

Pj × Ae −
n∑

j=i+1

Nj, i < n

. (4.1)

Here S denotes the size of cache block; A is the associativity of the cache; Pj is the occurrence

probability when FLIP = j; Ni is the number of ways protected by the ECCi; TH0 = 0. The

case of i = n, in which the strongest ECC is needed, is handled separately to make sure to

cover the worst-case. The above “ideal” partition guarantees to provide the least necessary

ECC protection to the data with minimum ECC bit overheads, which can be calculated by:

Overhead
ECC =

n∑
i=1

Ni ×Overhead
ECCi

. (4.2)

Here Overhead
ECCi

denotes the bit overhead of ECCi to cover one block in the corresponding data

group.

TABLE 1 summarizes the bit overheads of the four concerned ECC schemes and their

FLIP thresholds for the 512-bit cache block. The average occurrence probability of the FLIPs
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between two adjacent thresholds over all the benchmarks are also depicted in the 5th line of

the table. The corresponding “ideal” cache partition of this FLIP distribution is shown in

the bottom line of the table. Based on Eq. (4.1), the data with the required ECCs of (266,

256) and (137, 128) are covered by (72, 64). Thus, no cache ways are assigned to these two

ECC schemes in the cache partition in TABLE 1. This partition incurs a 2.47% ECC bit

overhead as calculated by Eq. (4.2).

To accommodate the temporal variability of the ECC requirement, we introduce some

margins to the cache partition by raising the number of cache ways assigned to the strong

ECC from the average case. More details on the design tradeoff between the cache partition

and system performance/reliability will be discussed in Section 6.

Table 1: Bit overheads of different ECC schemes.

Data bits 512 256 128 64

ECC bits 11 10 9 8

Overhead 2.15% 3.91% 7.03% 12.5%

THi 180 256 360 512
THi∑

j=THi−1+1

Pj 99.16% 0.74% 0.06% 0.04%

Navg
i 31 0 0 1

Obtaining FLIP of a cache block needs to compare both the incoming data and the data

originally stored in the cache block. In the Sliding Basket flow presented in Algorithm ??,

however, deciding the destination cache block also requires to know FLIP. To solve this

“chicken-and-egg” problem, we propose using HW (Hamming Weight), which denotes the

number of ‘1’s in the data, to approximate the FLIP of the destination cache block to guide

the operation of Sliding Basket. In [6], Bi et al. proved that there is a strong correlation

between HW and FLIP of the data. Indeed, HW is a good pessimistic approximation (upper

bound) of FLIP. Hence, the basic Sliding Basket scheme presented in Section 4.1 can be

safely modified by using HW (instead of FLIP) as the threshold to allocate the data into

different cache groups.
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4.3 DYNAMIC SLIDING

Obviously a fixed cache partition (even with margin to the group with strong ECC) can-

not perfectly accommodate the temporal variability of the ECC requirement. Besides the

possible write failures caused by temporarily inadequate capacity of the groups with the

needed ECC strength, the inflexibility of the fixed cache partition could also harm system

performance by over- or under-utilizing some particular cache groups. To solve this issue, we

propose to dynamically adjust the thresholds that are used to allocate the data to overcome

the shortcoming of the fixed cache partition: a miss rate counter is added to monitor the

usage pattern of each group. The TH of a group will be reduced (raised) when a significant

miss rate increase (decrease) is detected.
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5.0 EXPERIMENT

5.1 SIMULATION PLATFORM

TABLE 2 summarizes the baseline system configuration used in our experiments. The timing

and energy parameters of the STT-RAM cache are extracted from NVSim [19] at 22nm

technology. Here the baseline access latency of the STT-RAM cache has already taken into

account the ECC encoding and decoding latency of (72, 64), which is set to be 1 clock cycle

according to [21]. To be conservative, we assume that the ECC encoding and decoding

of (523, 512) take one more cycle to finish than that of (72, 64). All the simulations are

performed on GEM5 simulator [22] with 64-bit Alpha instruction set.

Table 2: System configurations.

Core
4GHz, OOO 8-width, 64-energy LSQ,
64-entry instruction queue, 192-enrty ROB

Caches

32KB L1I, 2-way, 2-cycle, 64B line
32 KB L1D, 4-way, 2-cycle, 64B line, write back
8MB STT-RAM L2 cache, single-core, 32-way,
16 banks, 1 port, 64B line, write back, 20 MSHRs
Read energy 0.241nJ, Read delay 12 Cycles,
Write energy 0.882nJ, Write delay 30 Cycles

Main memory DDR3-1600, 2-channel, open-page, FR-FCFS [23]
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Table 3: Scheme configurations.

Scheme Configuration ECC bits∗ Overhead Cache Area

No ECC 0 0 6.02 mm2

SECDED(72, 64) 64 12.5% 4.53 mm2

SECDED(523, 512) 11 2.15% 4.14 mm2

Opt 1: 26(523, 512)+6(72, 64) 20.93 4.09% 4.22 mm2

Opt 2: 27(523, 512)+5(72, 64) 19.28 3.76% 4.20 mm2

Opt 3: 28(523, 512)+4(72, 64) 17.62 3.44% 4.19 mm2

Opt 4: 31(523, 512)+1(72, 64) 12.65 2.47% 4.16 mm2

∗ECC bits denote the average ECC bits number for a 64B line in a 32-way cache set.

5.2 SCHEME CONFIGURATION.

We select 15 representative benchmarks from SPEC CPU 2006 suite [24] in our evaluations.

SimPoints [25] is used to extract a single simulation point of benchmarks. Each simulation

point contains 500 million instructions. The caches and memory system are warmed up with

100 million instructions before jumping into a simulation point.

To evaluate the impact of cache partitioning on the system performance and reliability,

we include not only the cache partition of the average case (“Opt 4” in TABLE 3) but also

some partitions with larger Group H (“Opt 1-3”) in our simulations. Since the occurrence

probability of the data with high FLIP/HW is very low (refer TABLE. 1), only two ECC

schemes – (523, 512) and (72, 64), are adopted in Sliding Basket scheme. A threshold TH1

is used to guide the data allocation between the two groups and set to 180 at beginning of

execution. The miss rate counter is checked every one million cycles and TH1 changes by 10

if the variation of the miss rate is larger than 5%. This optimal setup is selected based on

the exhausted simulations, which are found to be the optimal configurations based on our

experimental observation.
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6.0 RESULT

6.1 ECC OVERHEADS

For comparison purpose, the bit overheads of SECDED (523, 512) and (72, 64) are also

included in TABLE 3, representing the best and the worst design overheads of conventional

ECC schemes, respectively. Also, the areas of the L2 caches with and without ECC protec-

tions extracted from NVSim [19] are listed in TABLE 3 including different cache partitions

of Sliding Basket. The BER of STT-RAM cells is set to 1.5× 10−8, which leads to a BLER

of 3.64×10−12 when (72, 64) is applied. The write pulse width is set to 10ns. To achieve the

same BLER without applying ECC, the size of NMOS transistor in the STT-RAM cell must

be increased to supply a larger write current, resulting in 32.9% more cache area compared

to that of (72, 64) (i.e., 6.02mm2 vs. 4.53mm2).

The ECC bit overheads for Sliding Basket configurations “Opt 1-4” vary between 2.47%

and 4.41%, which are only 17.8% to 32.7% of that (12.5%) of (72, 64). Note that the area

estimations have included the contribution of ECC logic and other support circuits of these

schemes.
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6.2 RELIABILITY ENHANCEMENT
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Figure 9: Comparison of Mean Time Between Failure.

Fig. 9 compares the Mean Time Between Failure (MTBF) of all the ECC schemes and cache

configurations. A larger MTBF implies a better system reliability. On average, the MTBF

achieved by Sliding Basket is 20.0% (“Opt 4”) ∼ 32.9% (“Opt 2”) of the one of (72, 64),

that is, 5.67× ∼ 9.35× of that of (523, 512). All the data are normalized to the one of (72,

64). The results show that raising the size of Group H from the cache partition based on the

average case (“Opt 4”) can effectively enhance the system reliability, reaching the highest

MTBF at “Opt 2”. Continuing to increase the size of Group H, however, does not further

enhance the system reliability.

Interestingly, we found that in some benchmarks, such as astar, omnetpp, lib, and

zeusmp, the highest MTBFs achieved by Sliding Basket are even 1.13× ∼ 6.81× better than

that of the strongest ECC scheme (72, 64)! A detailed analysis on this interesting observation

shall be given in the next subsection.
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6.3 BIT MATCHING EFFECT IN SLIDING BASKET

The principle of Sliding Basket is allocating the data with similar ECC requirement (indexed

by Hamming Weight) to the group with the matched ECC strength. Besides, an important

byproduct of Sliding Basket – the potential reduction of FLIP that naturally enhances the

write reliability of STT-RAM cache – can be observed.

0 0 1 0 0 0 1

1 1 0 0 1 1 1 1

1 1 0 1 1 1 0

1 1 1 0 1 1 1

1

(b)

Stored data

New data

(a)

Figure 10: Illustration of bit matching for reducing FLIP.

Fig. 10 explains the reason for the FLIP reduction. In Sliding Basket, the data with

similar HW (i.e., the number of ‘1’s) are allocated to the same group. Considering the

locality of the cache data, such an operation potentially increases the probability for these

‘1’s to show up at the same location of the new data and the stored data. Since read-

before-write scheme is applied, the overlapped bits with the same value will not be updated

during the write operation. In fact, in Group H, since the data are all with very high HW

(more ‘1’s), the overlapping rate of ‘1’s between the new data and the stored data is even

more prominent. Thus, compared to the data allocation in conventional cache design, a

smaller average FLIP can be expected in Sliding Basket and a better write reliability may

be achieved.
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Figure 11: Comparison of average FLIP.
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Figure 13: Comparison of energy consumption.

To verify our hypothesis, we compared the average FLIP of the cache data (not including

the ECC bits) under different ECC schemes and cache partitions, as shown in Fig. 11.

Compared to the level of (72, 64), Sliding Basket can reduce the FLIP up to 21.5% (“Opt

2”) across all 15 benchmarks. The highest FLIP reduction (80.2%) is observed at bzip2.

6.4 PERFORMANCE AND ENERGY

Fig. 12 compares the performance of all the simulated ECC schemes and cache partitions.

Our results show that Sliding Basket achieves a system performance generally comparable

to the conventional ECC scheme across the 15 benchmarks. The largest performance degra-

dation of Sliding Basket (merely 0.16%) occurs at gromacs with the configuration of “Opt

4” due to the increased miss rate in Group H. In fact, except for “Opt 4”, the IPCs (Instruc-

tions Per Cycle) of “Opt 1-3” are all improved from the (72, 64) baseline by 0.28%, 0.51%

and 0.57%, respectively, even the 1-cycle extra ECC encoding/decodeing latency has been
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included in the simulations. Our detailed analysis shows that in these configurations, their

L2 cache miss rates all decrease from the baseline. A possible reason is that the HW based

data allocation flow improves the data eviction effectiveness by the enhancing the correlation

of the new data and the data stored in the cache block.

The results in Fig. 12 also show that raising the capacity of Group H effectively improves

the system performance and reaches the highest performance at “Opt 3”. Continuing to

increase the capacity of Group H, however, does not offer a better performance.

An energy consumption lower than the one of conventional ECC schemes is achieved

in almost every Sliding Basket configurations in the 15 benchmarks, as shown in Fig. 13.

Among all cache partitions, the largest average energy saving is obtained by “Opt 4” because

of its largest capacity of (523, 512) among all partitions. For “Opt 4”, the largest energy

saving is achieved at gromacs, or 13.6% lower than that of (72, 64). Besides the slightly

improved IPC, such a wide energy saving achieved by Sliding Basket is mainly due to the

reduction of flipping bits caused by: 1) the bit matching effect discussed in Section 6.3; and

2) the smaller number of bits that actually needs to be written by applying weak ECC (and

hence, less ECC bits) to the majority of the cache blocks.

6.5 HAMMING BASED REPLACEMENT POLICY

To further study the influence of hamming based replacement policy, the following experi-

ments are performed. In the experiments, instead of considering temporal locality measured

by LRU information, the correlation of data, measured by the hamming distance of old data

and new data in a cache block, is also considered when replacing a block on a cache miss.
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6.5.1 Influence of FLIP reduction
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Figure 14: Comparison of average FLIP.

Figure. 14 shows the FLIP reduction when integrating hamming weight based replacement

with LRU replacement policy. “FLIPLRU” indicates the average FLIP of LRU replacement,

“FLIPHwLRURelax4” indicates the average FLIP when replacing the cache block with the

minimal hamming distance for the first 4 least recent used blocks, assuming the LRU range

is 4.

As shown in Figure. 14, FLIP can be reduced by replacing blocks with minimal hamming

weighted or the least recent used blocks. By relaxing LRU from 4 to 32, that is, replacing the

block with the minimal hamming weight among the first 4 to 32 LRU blocks, the FLIP can

be reduced monotonically for most benchmarks, i.e. mcf, zeusmp, etc. Except for soplex,

h264ref, FLIP increases when relaxing the LRU ranges.
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6.5.2 Influence on missrate
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Figure 15: Comparison of average missrate.

To study the influence on performance, Figure. 15 plots how the miss rate varies with Ham-

ming Weight and LRU mixed replace policy and difference LRU ranges. Figure. 15 compares
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the miss rate of LRU replacement policy (the first bar) and LRU mixed with Hamming weight

replacement, with LRU relax range from 2 to 32, (from the second bar to the last bar). We

can see that relaxing the LRU to the first few least recent used block with minimal hamming

weight does not bring too much performance loss. More interestingly, relaxing the LRU

range can reduce the miss rage for some benchmarks like mcf, astar, libquantum, etc.

Such a results reveals the data correlation represented by the hamming weight of the

old data and new data written to the same cache location(block), indicating that the LRU

might not be the ideal replacement policy for some benchmarks and to maximize the temporal

locality of cached data. Previous works by Belady, Sanchez, et all[26, 27] also proved that

there exists replacement policy better than the widely accepted LRU replacement policy in

terms of the temporal and spacial locality.

6.5.3 Hamming First Replacement

Figure. 16 illustrates the miss rate of another design of mixing LRU and Hamming weight

based replacement. In this design, we sort the blocks within a set with its hamming weight

with the new coming data. The replacement of a block is arbitrary by the sum of hamming

weight ranking and LRU rankings.

As shown in Figure. 16, the miss rate degraded significantly when replacing with this

scheme. This may be because the overweighted of hamming weight in the replacement harms

the data temporal locality.
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Figure 16: Comparison of average missrate.
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7.0 CONCLUSIONS

In this work, we examine the dynamic needs of STT-RAM cache for ECC protections across

different data blocks and program segments and propose Sliding Basket. It is an adaptive

ECC scheme that can allocate every data to a cache group with the just needed ECC strength.

As such, the associated hardware cost can be minimized. Our simulations show that Sliding

Basket can save up to 80.2% ECC bit overheads with slightly degraded runtime reliability,

compared to conventional ECC schemes. System performance and cache energy efficiency

are also improved, benefiting from the enhanced data eviction effectiveness and the reduced

bit flipping rate.

31



BIBLIOGRAPHY

[1] Y. Chen, C. Rettner, S. Raoux, G. Burr, S. Chen, R. Shelby, M. Salinga, W. Risk,
T. Happ, G. McClelland, et al., “Ultra-thin phase-change bridge memory device using
gesb,” in International Electron Devices Meeting, pp. 777–780, Citeseer, 2006.

[2] Y. N. Joglekar and S. J. Wolf, “The elusive memristor: properties of basic electrical
circuits,” European Journal of Physics, vol. 30, no. 4, p. 661, 2009.

[3] L. O. Chua, “Memristor-the missing circuit element,” Circuit Theory, IEEE Transac-
tions on, vol. 18, no. 5, pp. 507–519, 1971.

[4] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, and C. R. Das, “Cache
revive: architecting volatile stt-ram caches for enhanced performance in cmps,” in DAC,
2012.

[5] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada,
M. Shoji, H. Hachino, C. Fukumoto, et al., “A novel nonvolatile memory with spin
torque transfer magnetization switching: Spin-ram,” in IEDM Technical Digest, 2005.

[6] X. Bi, Z. Sun, H. Li, and W. Wu, “Probabilistic design methodology to improve run-time
stability and performance of stt-ram caches,” in ICCAD, 2012.

[7] X. Bi, H. Li, and J.-J. Kim, “Analysis and optimization of thermal effect on stt-ram
based 3-d stacked cache design,” in VLSI, 2012.

[8] Y. Zhang, L. Zhang, W. Wen, G. Sun, and Y. Chen, “Multi-level cell stt-ram: Is it
realistic or just a dream?,” in Proceedings of the International Conference on Computer-
Aided Design, pp. 526–532, ACM, 2012.

[9] Y. Zhang, W. Wen, and Y. Chen, “The prospect of stt-ram scaling from readability
perspective,” Magnetics, IEEE Transactions on, vol. 48, no. 11, pp. 3035–3038, 2012.

[10] M.-Y. Hsiao, “A class of optimal minimum odd-weight-column sec-ded codes,” IBM
Journal of Research and Development, vol. 14, no. 4, pp. 395–401, 1970.

[11] C.-L. Chen and M. Hsiao, “Error-correcting codes for semiconductor memory applica-
tions: A state-of-the-art review,” IBM Journal of Research and Development, vol. 28,
no. 2, pp. 124–134, 1984.

32



[12] W. Xu, Y. Chen, X. Wang, and T. Zhang, “Improving stt mram storage density through
smaller-than-worst-case transistor sizing,” in DAC, 2009.

[13] T. K. Moon, “Error correction coding,” Mathematical Methods and Algorithms. Jhon
Wiley and Son, 2005.

[14] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar, and S.-l. Lu, “Re-
ducing cache power with low-cost, multi-bit error-correcting codes,” ACM SIGARCH
Computer Architecture News, vol. 38, no. 3, pp. 83–93, 2010.

[15] S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Use ecp, not ecc, for hard failures
in resistive memories,” in SIGARCH, 2010.

[16] W. Wen, M. Mao, X. Zhu, S. H. Kang, D. Wang, and Y. Chen, “Cd-ecc: content-
dependent error correction codes for combating asymmetric nonvolatile memory opera-
tion errors,” in ICCAD, 2013.

[17] Y. Zhang, X. Wang, Y. Li, A. K. Jones, and Y. Chen, “Asymmetry of mtj switching
and its implication to stt-ram designs,” in DATE, 2012.

[18] W. Wen, Y. Zhang, Y. Chen, Y. Wang, and Y. Xie, “Ps3-ram: a fast portable and
scalable statistical stt-ram reliability analysis method,” in DAC, 2012.

[19] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level performance, energy,
and area model for emerging nonvolatile memory,” TCAD, 2012.

[20] K.-J. Lee, B.-H. Cho, W.-Y. Cho, S. Kang, B.-G. Choi, H.-R. Oh, C.-S. Lee, H.-J. Kim,
J.-M. Park, Q. Wang, et al., “A 90 nm 1.8 v 512 mb diode-switch pram with 266 mb/s
read throughput,” IEEE Journal of Solid-State Circuits, 2008.

[21] B. Zimmer and M. Zimmer, “Maximizing energy-efficiency through joint optimization
of l1 write policy, sram design, and error protection,” 2012.

[22] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5 simulator,” SIGARCH, 2011.

[23] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, Memory access
scheduling. 2000.

[24] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH, 2006.

[25] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and B. Calder, “Using
simpoint for accurate and efficient simulation,” in SIGMETRICS, 2003.

[26] L. A. Belady, “A study of replacement algorithms for a virtual-storage computer,” IBM
Systems journal, vol. 5, no. 2, pp. 78–101, 1966.

33



[27] D. Sanchez and C. Kozyrakis, “The zcache: Decoupling ways and associativity,” in
Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM International Symposium
on, pp. 187–198, IEEE, 2010.

34


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Bit overheads of different ECC schemes.
	2. System configurations.
	3. Scheme configurations.

	LIST OF FIGURES
	1. (a) STT-RAM basics; (b) The currents applied to write to STT-RAM.
	2. The tradeoff between MTJ switching time and transistor size for a fixed block error rate of 3.6410-12 at 22nm. The block size is 512-bit.
	3. Distribution of the FLIP of 512-bit cache blocks in some representative benchmarks. 
	4. BLER and bit overhead when applying different ECC schemes.
	5. Spatial and temporal variabilities of ECC strength requirement in a L2 STT-RAM cache.
	6. Cache set compositions of proposed scheme.
	7. Handle blocks when write hits.
	8. Flow chart of writing data into a block.
	9. Comparison of Mean Time Between Failure.
	10. Illustration of bit matching for reducing FLIP.
	11. Comparison of average FLIP.
	12. Comparison of Instruction Per Cycle (IPC).
	13. Comparison of energy consumption.
	14. Comparison of average FLIP.
	15. Comparison of average missrate.
	16. Comparison of average missrate.

	PREFACE
	1.0 INTRODUCTION
	1.1 Emerging Memory Technologies
	1.2 Reliability Challenges
	1.3 Related works
	1.4 Summary of proposed method

	2.0 PRELIMINARY
	2.1 STT-RAM basics
	2.2 STT-RAM Write Error Model

	3.0 TECHNICALMOTIVATIONS
	3.1 Observation and facts
	3.2 Spatial and Temporal Variability's of ECC Requirement

	4.0 METHOD
	4.1 Basic Concept of Sliding Basket
	4.2 ECC Requirement Driven Cache Partition
	4.3 Dynamic Sliding

	5.0 EXPERIMENT
	5.1 Simulation Platform
	5.2 Scheme configuration.

	6.0 RESULT
	6.1 ECC Overheads
	6.2 Reliability Enhancement
	6.3 Bit Matching Effect in Sliding Basket
	6.4 Performance and Energy
	6.5 Hamming Based replacement policy
	6.5.1 Influence of FLIP reduction
	6.5.2 Influence on missrate
	6.5.3 Hamming First Replacement


	7.0 CONCLUSIONS
	BIBLIOGRAPHY

