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CATECHOLAMINERGIC DEPLETION WITHIN THE PRELIMBIC MEDIAL
PREFRONTAL CORTEX ENHANCES LATENT INHIBITION

A. J. D. NELSON,* K. E. THUR, C. A. MARSDEN AND
H. J. CASSADAY

Schools of Psychology and Biomedical Sciences, University of Not-
tingham, Nottingham NG7 2RD, UK

Abstract—Latent inhibition (LI) refers to the reduction in con-
ditioning to a stimulus that has received repeated non-rein-
forced pre-exposure. Investigations into the neural sub-
strates of LI have focused on the nucleus accumbens (NAc)
and its inputs from the hippocampal formation and adjacent
cortical areas. Previous work has suggested that lesions to
the medial prefrontal cortex (mPFC), another major source of
input to the NAc, do not disrupt LI. However, a failure to
observe disrupted LI does not preclude the possibility that a
particular brain region is involved in the expression of LI.
Moreover, the mPFC is a heterogeneous structure and there
has been no investigation of a possible role of different re-
gions within the mPFC in regulating LI under conditions that
prevent LI in controls. Here, we tested whether 6-hydroxydo-
pamine (6-OHDA)-induced lesions of dopamine (DA) termi-
nals within the prelimbic (PL) and infralimbic (IL) mPFC
would lead to the emergence of LI under conditions that do
produce LI in controls (weak pre-exposure). LI was measured
in a thirst motivated conditioned emotional response proce-
dure with 10 pre-exposures to a noise conditioned stimulus
(CS) and two conditioning trials. Sham-operated and IL-le-
sioned animals did not show LI and conditioned to the pre-
exposed CS at comparable levels to the non-pre-exposed
controls. 6-OHDA lesions to the PL, however, produced po-
tentiation of LI. These results provide the first demonstration
that the PL mPFC is a component of the neural circuitry
underpinning LI. © 2010 IBRO. Published by Elsevier Ltd. All
rights reserved.

Key words: latent inhibition, prelimbic cortex, infralimbic cor-
tex, dopamine, schizophrenia.

Latent inhibition (LI) manifests as poorer conditioning to a
stimulus that has been previously presented without con-
sequence (Lubow and Moore, 1959). In terms of the psy-
chological processes underlying LI, it is believed that re-
duced salience of the stimulus in consequence of the
previous exposure without consequence interferes with
learning and/or performance of the conditioned response
(Lubow and Weiner, 2010). As salience processing and

*Corresponding author. Tel: +44-(0)1158468578; fax: +44-(0)1159515324.
E-mail address: andrew.nelson@nottingham.ac.uk (A. J. D. Nelson).
Abbreviations: BLA, basolateral amygdala; CPu, caudate putamen;
CS, conditioned stimulus; DA, dopamine; HPLC-ECD, high perfor-
mance liquid chromatography with electrochemical detection; IL, in-
fralimbic cortex; LI, latent inhibition; mPFC, medial prefrontal cortex;
NA, noradrenaline; NAc, nucleus accumbens; NPE, non-pre-exposed;
OFC, orbitofrontal cortex; PE, pre-exposed; PL, prelimbic cortex; UCS,
unconditioned stimulus; 5-HT, serotonin; 6-OHDA, 6-hydroxydopa-
mine.

attentional processes are dysfunctional in schizophrenia,
the neural substrates of LI have received considerable
attention in the last two decades.

LI is disrupted by amphetamine in both rats (Solomon
et al., 1981; Weiner et al., 1984) and humans (Gray et al.,
1992; Kumari et al.,, 1999) and is absent in acutely il
schizophrenia patients (Baruch et al., 1988) but is poten-
tiated by antipsychotics (APD) in both rats (Weiner and
Feldon, 1987; Shadach et al., 2000) and humans (Williams
et al., 1997). Consequently, LI has received attention as a
putative animal model of cognitive deficits in schizophrenia
(e.g. Weiner, 1990, 2003; Gray et al., 1991; Weiner and
Arad, 2009; for discussion of alternative models see, e.g.
Lipska and Weinberger, 2000; Geyer and Moghaddam,
2002).

Investigations into the neuroanatomical substrates of
LI have shown that the nucleus accumbens (NAc) and
regions with afferent connections to NAc—entorhinal cor-
tex, hippocampus, orbitofrontal cortex (OFC) and basolat-
eral amygdala (BLA)—play a key role in regulating the
expression of LI (e.g. Honey and Good, 1993; Tai et al.,
1995; Coutureau et al., 1999; Schiller and Weiner, 2004;
Gal et al., 2005). However, both electrolytic lesions to the
medial prefrontal cortex (MPFC) and its subregions as well
as excitotoxic lesions to the entire mPFC have been shown
to spare LI (Joel et al., 1997; Lacroix et al., 1998, 2000a).
The failure to observe effects on LI after manipulations to
the mPFC is surprising in view of considerable evidence
implicating frontal dysfunction in the psychopathophysiol-
ogy of schizophrenia (e.g. Andreasen et al., 1992; Good-
man et al., 1999; Barch et al., 2001; MacDonald et al.,
2005).

However, the failure of mPFC lesions to disrupt LI does
not preclude the possibility that the mPFC is involved in the
expression of LI as the role of a specific brain region in LI
may only emerge under conditions that do not produce LI
in controls (Weiner and Arad, 2009). For example, lesions
to the BLA or entire NAc do not disrupt LI under conditions
that produce LI in sham-operated controls (low number of
conditioning trials and high number of stimulus pre-expo-
sures) but lead to the emergence of LI under conditions
(high number of conditioning trials or low number of stim-
ulus pre-exposures) that do not yield LI in controls (e.g. Gal
et al., 2005; Schiller and Weiner, 2005). One previous
study has examined the potential involvement of the mPFC
in the expression of LI under conditions that do not yield LI
in controls (high number of conditioning trials) and found
no effects of mPFC lesions (Schiller and Weiner, 2004).
However, the mPFC is both anatomically and functionally
heterogeneous and there has been no investigation of the
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involvement of the prelimbic (PL) and infralimbic (IL) sub-
regions of the mPFC in mediating the expression of LI
using experimental parameters that do not lead to the
emergence of LI in controls.

Thus to dissociate the potential role of different neuro-
anatomical systems within the mPFC, we tested the effects
of 6-hydroxydopamine (6-OHDA) lesions to dopaminergic
fibres within the PL and IL cortices on LI using experimen-
tal parameters explicitly designed not to produce LI in
controls (low number of stimulus pre-exposure).

EXPERIMENTAL PROCEDURES
Subjects

The subjects were 60 adult male Wistar rats (Charles River, UK)
and were caged in pairs on a 12:12 h light/dark cycle with food and
water ad libitum. Rats were handled for approximately 10 min per
day for 1 week and then at mean weight 265 g (range 225-307 g)
underwent surgery. Twenty rats were randomly allocated to each
of the PL and IL groups and a total of 20 rats were allocated to the
sham condition (10 rats were sham operated at the PL coordi-
nates and 10 rats were sham operated at the IL coordinates).

All procedures were carried out in accordance with the United
Kingdom (UK) Animals Scientific Procedures Act 1986, Project
Licence number: PPL 40/3163. The UK Act ensures full compli-
ance with the “Principles of laboratory animal care” (NIH publica-
tion No. 86-23, revised 1985).

Stereotaxic infusion of 6-OHDA

In order to protect noradrenergic terminals, animals received sub-
cutaneous administration of the noradrenaline (NA) reuptake in-
hibitor desipramine (20 mg/kg) 40 min prior to surgery. Anaesthe-
sia was induced by isoflurane (4%) in a N,O/O, (1:2, v/v) mixture
and maintained thereafter with isoflurane (1-2%). Stereotaxic sur-
gery was conducted with the incisor bar set at —3.3 mm below the
intra-aural line. The bone above the mPFC was removed and the
dura was cut to expose the cortex. Rats received bilateral infu-
sions of 6-OHDA or vehicle into either PL or IL mPFC at the
following stereotaxic coordinates prelimbic: AP +3.8 mm; ML
+0.6 mm; DV —3.8 mm; AP +3.2 mm; ML =0.6 mm; DV —3.6
mm; AP +2.5 mm; ML 0.6 mm; DV —3.4 mm; infralimbic: AP
+3.0 mm; ML =0.7 mm; DV —5.4 mm (Paxinos and Watson,
2005). DV coordinates were taken from dura. Infusions were
made via a 31 gauge stainless steel injector attached by polythene
tubing to a 1 ul Hamilton syringe. 6-OHDA hydrobromide (24
mg/mL as salt dissolved in vehicle; Sigma, UK) or vehicle (0.9%
saline/ascorbic acid 0.01% w/v) was infused manually over 2 min
bilaterally in a volume of 0.2 ul per injection site. The injectors
were left in situ for 5 min to allow absorption of the bolus and to
minimize spread of the toxin. Rimadyl (0.03 ml s.c.) provided
post-operative analgesia. Animals were allowed a minimum of 7
days recovery before the commencement of behavioral testing.

Quantification of 6-OHDA lesion by HPLC-ECD

In order to quantify the degree of dopaminergic deafferentation,
we used micropunch to take samples from the target structures
(PL and IL) and other brain regions core NAc, shell NAc, OFC,
caudate putamen (CPu), amygdala for subsequent assessment of
neurotransmitter levels dopamine (DA), noradrenaline (NA) and
serotonin (5-HT) by high pressure liquid chromatography with
electrochemical detection (HPLC-ECD). These control regions
were selected on the basis of their known connectivity with the
mPFC (e.g. Sesack et al., 1989; Takagishi and Chiba, 1991) and
demonstrated involvement in LI (Weiner, 2003).

Following the completion of behavioral testing, the rats were
humanely killed by dislocation of the neck and decapitated. The
dissection and micropunch technique used was as described by
Peleg-Raibstein et al. (2004). The brains were removed rapidly
and were placed ventral side up in an ice-chilled rat brain matrix
(Harvard Instruments, USA). Using ice-chilled razor blades, three
2-mm coronal brain sections were cut. The posterior side of the
slices corresponded to approximately +3, +1 and —3 from
Bregma according to the atlas of Paxinos and Watson (2005). The
brain samples were then immediately frozen on dry ice and stored
at —80 °C. Subsequently, the three 2 mm coronal sections were
placed posterior side up onto an ice-chilled plate. From the first
section (+3 mm bregma) a 0.84 mm diameter stainless steel
micropunch was used to remove the PL, ILF and OFC. From the
second section (+1 bregma), the 0.84 mm diameter stainless
steel micropunch was also used to remove samples of tissue from
core NAc and medial shell NAc and a 1.6 mm diameter stainless
steel micropunch was used to remove sample tissue from the
CPu. From the third section (—3 mm bregma) a 1.6 mm diameter
stainless steel micropunch was used to remove the amygdala. In
each case, one punch was used per brain hemisphere. Tissue
punch samples were stored in 1.5 ml Eppendorf tubes and frozen
at —80 °C.

Neurotransmitter levels in the samples were determined by
HPLC-ECD. The tissue samples were homogenized in 0.1 M PCA
solution by sonication and centrifuged at 17400 g for 20 min at
4 °C. Neurotransmitter levels were detected using a glassy carbon
flow cell (VT-03 Antec) with an Ag/AgCI reference electrode. An
external standard consisting of DA, NA, 5-HT and metabolites in
concentrations of 1077, 0.5x10~7 and 108 M was injected at a
volume of 4 ul for calibration. Samples were injected onto the
column at 4 ul volumes, except for PL, IL, OFC and amygdala
samples which were injected at 8 ul because of the higher detec-
tion thresholds in these regions.

Results were analysed using Alexys software data system.
Bradford assay was used to adjust for protein content using the
pellet remaining after sample centrifugation.

Latent inhibition

Apparatus.  Six identical fully automated conditioning cham-
bers, housed within sound-attenuating cases containing ventila-
tion fans (Cambridge Cognition, Cambridge, UK), were used.
Each of the inner conditioning chambers consisted of a plain steel
box (25 cmx25 cmx22 cm high) with a Plexiglas door (19 cmXx27
cm) at the front. The floor was a shock grid with steel bars 1 cm
apart and 1 cm above the lip of a 7 cm deep sawdust tray. A
waterspout was mounted on one wall. The spout was 5 cm above
the floor and connected to a lickometer supplied by a pump. Licks
were registered a break in the photo beam within the spout, which
also triggered water delivery of 0.05 ml per lick. The waterspout
was illuminated when water was available. A loudspeaker for the
presentation of auditory stimuli was set in the roof. A 5 s mixed
frequency noise set at 85 dB (including background) served as the
conditioned stimulus (CS). Footshock of 1 s duration and 1 mA
intensity provided the unconditioned stimulus (UCS). This was
delivered through the grid floor by a constant current shock gen-
erator (pulsed voltage: output square wave 10 ms on, 80 ms off,
370 V peak under no load conditions, MISAC Systems, Newbury,
UK). Stimulus control and data collection was by an Acorn
Archimedes RISC computer programmed in Basic with additional
interfacing using an Arachnid extension (Cambridge Cogpnition).

Procedure. Water deprivation was introduced 1 day prior to
shaping. Thereafter, the animals received 1 h and 15 min of ad
libitum access to water in their home cage in addition to water in
the experimental chambers. The stages of the conditioned emo-
tional response (CER) procedure used in Experiment 1 were as
follows:
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Pre-training.  In order to initiate licking behavior, rats were
placed in the experimental chambers with their respective cage
mate and were shaped for 1 day until all drank from the water-
spout. No data were recorded. Thereafter, animals were individ-
ually assigned to a conditioning box for the duration of the exper-
iment (counterbalanced by experimental group).

There then followed 5 days of pre-training, in which rats drank
in the experimental chamber for 15 min each day (timed from first
lick). The drinking spout was illuminated throughout, but no other
stimuli were presented in this phase. Latency to first lick and total
number of licks were recorded to assess any pre-existing differ-
ences in drinking (prior to conditioning).

Pre-exposure.  Animals were placed in the chambers where
the pre-exposed animals received 10 5 s CS presentations with an
average inter-stimulus interval of 60 s. The non-pre-exposed con-
trol animals were confined to the chambers for an identical period
of time (10 min) without receiving the CS presentations. Water
was not available within the chamber and the waterspout was not
illuminated during the pre-exposure session.

Conditioning.  Conditioning was conducted on the day fol-
lowing pre-exposure. No water was available within the chamber
and the waterspout was not illuminated. There were two condi-
tioning trials in which the UCS footshock was delivered following
termination of the CS. The first pairing of CS and UCS was
presented after 5 min had elapsed, and the second pairing was 5
min after the first, followed by a further 5 min left in the apparatus.
In the absence of drinking, there were no behavioral measures to
record.

Reshaping. On the day following conditioning, animals
were reshaped following the same procedure as in pre-training
sessions. This was in order to re-establish drinking after
conditioning.

Test. On the day following reshaping, the animals were
placed in the conditioning chambers and underwent an extinction
test to the CS. Water was available throughout the test and the
waterspout was illuminated. Once the animals had made 50 licks,
the CS was presented for 15 min. The latency to make 50 licks in
the absence of the CS (the A period) provided a measure of any
individual variation in baseline lick responding. This was com-
pared with the time taken to complete 50 licks following CS onset
(B period) in a suppression ratio (A/(A+B)) to assess the level of
conditioning to the CS, adjusted for any individual variation in drink
rate.

Design and analysis. There were six experimental groups
run in a 3X2 independent factorial design with lesion placement
(at levels sham, PL or IL) and pre-exposure (levels of non-pre-
exposed (NPE), and pre-exposed (PE)) as between subject fac-
tors. Statistical analysis was performed using analysis of variance
(ANOVA) with alpha set at P<0.05 for the rejection of the null
hypothesis. In cases of statistically significant main effects and
simple effects, LSD post hoc comparisons were performed to
assess differences between groups. T-tests were used to explore
differences between groups in neurotransmitter levels. The de-
pendent variables were lick latencies and totals for the pre-training
and reshaping tests and the A period and suppression ratio for the
test of conditioning.

RESULTS
Neurochemical

Quantification of the selectivity of the lesions by HPLC
revealed that six animals (3 IL and 3 PL operated animals)
showed suboptimal levels of dopaminergic depletion
(<40%) and consequently these animals were excluded

from subsequent behavioral and neurochemical analysis.
Thus after these exclusions, there were 20 sham-operated
animals (10 PE, 10 NPE), 17 IL-lesioned animals (8 PE, 9
NPE) and 17 PL-lesioned animals (8 PE, 9 NPE).

Table 1 displays the levels (pmoles/ug protein) of DA,
NA and 5-HT in the seven brain regions from which sam-
ples were taken as (A) absolute levels and (B) as the
percentage depletion relative to sham levels. As is clear
from this table, 6-OHDA infusions into the PL cortex were
neuroanatomically selective as they produced significant
depletion in DA levels in the target structure (~71%) but
spared DA terminals in the more ventral IL cortex. Infusion
of 6-OHDA into the IL cortex depleted DA in the IL cortex
(~75%) but also to a lesser extent produced DA cell loss in
the PL cortex (~52%), suggesting some spread of the
toxin to more dorsal regions. Desipramine pre-treatment
did afford some neurochemical selectivity but there was
some NA loss in the PL cortex following both lesions. 5-HT
levels in the mPFC were unaffected by the 6-OHDA infu-
sions. Neither the PL nor IL 6-OHDA lesion had any effect
on striatal DA function as there were no significant
changes in DA levels in the CPu or in either accumbal
subterritory. Similarly, the lesions did not result in any
significant changes in DA levels in the OFC or amygdala.

Behavioral

Pre-training. Lesioned rats drank with similar laten-
cies and in similar volumes to the sham operated controls
(Mean latency to lick (s) (=S.E.M): shams=12.1 (*=1.8);
PL=14.4 (+2.6); IL=15.0 (*=1.8). Mean total licks
(*+S.E.M): shams=1583.2 (£82.9); PL=1624.4 (+119.3);
IL=1433.2 (£83.8). Statistically, there was no difference
between the groups at this stage. This was confirmed by
analysis of both time (s) to first lick (max F 4g,=1.95,
P=0.17) and total amount drunk (max F 45,=1.65,
P=0.2).

Reshaping. Analysis of the times (s) to first lick in the
reshaping session following conditioning revealed no ef-
fects of group, lesion or an interaction between these
factors (max Fq 46=1.4, P=0.24). Nor were there any
differences between the groups in the total number of licks
in the reshaping session (max F; 4g,=1.96, P=0.15).

Test. None of the experimental groups differed in the
time to make the first lick in the absence of the noise (A
period) in the test (max F; 45,=1.65, P=0.2).

The mean suppression ratios to the CS in the extinc-
tion test are presented in Fig. 1. Inspection of the figure
reveals that, as expected under conditions of weak pre-
exposure, there was no evidence of LI (i.e. reduced learn-
ing about the pre-exposed CS) in sham-operated animals.
Similarly, the IL-lesioned group failed to show LI. However,
there was a clear LI effect in the PL lesion group as there
was markedly less suppression in the PE compared to the
NPE group. This description of the data was supported by
ANOVA which revealed a main effect of pre-exposure
(F(1,48)=6.28, P<0.05), lesion (F, 45,=3.77, P<<0.05) but
also a pre-exposure by lesion (F, 46,=4.56, P<0.05) in-
teraction. This interaction arose because there was no
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Table 1A. Mean absolute levels (+S.E.M) of DA, NA and 5-HT (pmoles/ug protein) of sham (pooled), PL- and IL-lesioned animals in PL, IL, OFC, NAc core and shell, CPu and amygdala

5-HT

NA

DA

IL lesion Sham PL lesion IL lesion Sham PL lesion IL lesion

PL lesion

Sham

+0.028)
+0.111)
+0.011)
+0.06)

+0.082)
+0.033)
+0.03)
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—_—— — — — — —

0.118

0.103 (+0.015)
0.215 (+0.036)
0.118 (+0.012)
0.284 (+0.038)
0.442 (+0.056)
0.129 (+0.018)
0.324 (+0.045)

+0.014)
+0.05)

0.401

0.108
0.379

0.554

0.174
0.295

~ e~~~ ~

—_—— — — — — —

0.126
0.349
0.128
0.352
0.452

0.083 (+0.029)
0.366 (+0.229)

n.d.
n.d.

0.065 (+0.011)

0.179 (+0.018)
0.378 (+0.039)

n.d.
n.d.

0.031 (+0.007)
0.028 (0.007)

0.021 (+0.004)
0.102 (+0.024)
0.617 (+0.169)
7.75 (20.96)
3.81 (+0.59)
6.58 (20.82)

0.07 (20.011)

PL sample
IL sample

0.369 (+0.181)

n.d.
n.d.

0.115 (+0.016)
0.784 (+0.203)

9.22 (=1.01)

0.693 (+0.183)
9.71 (£1.24)
5.17 (£0.66)
7.04 (£0.61)

OFC sample

Core sample

1.20 (+0.164)

n.d.

1.35 (+0.18)

n.d.

1.02 (+0.159)

n.d.

4.07 (£0.53)
7.17 (+£0.44)

Shell sample
CPu sample

0.168
0.323

0.393 (+0.097)  0.366 (=0.055)  0.319(£0.066)  0.226 (+0.018)  0.226(+0.024)  0.201 (+0.019)

Amyg sample

effect of stimulus pre-exposure in either sham- or IL-le-
sioned animals (both F's<<1) but robust LI in the PL group
(F1,48y=14.71, P<0.001). However, there were no differ-
ences between the lesion groups in terms of conditioning
to the CS in the NPE condition (F<1).

DISCUSSION

The current experiment investigated the effects of DA de-
pletion within the PL and IL mPFC on LI under experimen-
tal parameters (10 pre-exposures) designed to prevent the
emergence of LI in sham-operated controls. Consistent
with previous reports, under these experimental conditions
sham-operated controls did not show LI and conditioned to
the PE stimulus at equivalent levels to the NPE stimulus.
However, 6-OHDA lesions to PL but not IL mPFC ap-
peared to impair rats’ ability to shift responding to the
changed stimulus-reinforcement contingency at condition-
ing as these rats continued to respond according to the
stimulus-no event acquired at pre-exposure. These results
provide the first empirical demonstration of PL involvement
in LI

Neuroanatomical and neurochemical specificity of
the lesion

The 6-OHDA lesions to the PL were anatomically highly
selective and produced no significant changes in DA in the
more ventral IL cortex. In line with previous reports (e.g.
Naneix et al., 2009), infusion of 6-OHDA into the IL led to
DA denervation in both the target structure and more dor-
sally in the PL. Neither the PL nor IL 6-OHDA lesion had
any effect on striatal DA as there were no significant
changes in DA levels in the CPu or in either accumbal
subterritory. This may at first seem surprising in view of
evidence suggesting that mPFC lesions can increase the
responsiveness of NAc DA (e.g. Deutch et al., 1990) but
the current results are consistent with previous findings
demonstrating that 6-OHDA lesions do not result in signif-
icant alterations in basal DA function within the ventral
striatum (Rosin et al., 1992). Moreover, a lesion-induced
increase in the responsiveness of NAc DA would be pre-
dicted to abolish rather than enhance LI (Joseph et al.,
2000). Similarly, catecholamine functioning was also unaf-
fected in the amygdala and OFC. This is important as the
amygdala and OFC have both been implicated in the neu-
ral circuitry underpinning LI (e.g. Weiner, 2003) and hence
the lack of changes in DA levels within these structures
suggests that the behavioral effects seen at test are me-
diated by actions in the PL rather than in these structures.
Despite desipramine pre-treatment, there was some evi-
dence of changes in NA levels within the PL following
lesions to both subregions. There is emerging evidence of
interactive effects between DA and NA within the mPFC,
and in particular the PL, which may account for this finding
(Heidbreder and Groenewegen, 2003; Pan et al., 2004).
Importantly, there was no evidence of non-specific neuro-
nal damage as there were no significant changes in 5-HT
levels in either prefrontal subregion.
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Table 1B. Mean percentage difference (=S.E.M) in DA, NA and 5-HT levels of PL- and IL-lesioned animals compared to PL and IL vehicle-infused

sham animals in the seven brain regions assayed

DA NA 5-HT

PL lesion IL lesion PL lesion IL lesion PL lesion IL lesion
PL sample —71.3%* (+6.5) —52.3%* (£11.5) —66.9%" (£6.7) —55.7%* (+16.5) —16.3% (=11.9) —7.9% (=21.9)
IL sample —10.5%" (+21.2) —75.4%"T (+6.5) —7.5% (+44.6) —0.9% (+62.7) —25.2% (£13.4) +6.7% (=26.6)
OFC sample —12.2% (£24.8) —13.9% (£23.7) n.d. n.d. —9.9% (+9.5) —9.6% (*=8.7)
Core sample —13.1% (+=10.6) +1.3% (+8.7) n.d. n.d. —29.2% (£10.2) +13.4% (+£22.3)
Shell sample +3.8% (+33.7) +24.9% (+£36.0) +30.1% (+£21.1) +23.4% (£16.4) —-0.7% (=12.4) +21.3% (£17.8)
CPu sample —4.1% (=10.4) +0.9% (*+8.6) n.d. n.d. —28.8% (£9.9) —4.1% (=18.1)

Amyg. sample —7.1% (=13.9) —19.0% (*=16.8)

+0.1% (+10.6)

—11.3% (+8.9) +0.5% (+13.9) —8.2% (+9.4)

* Significant difference from sham, T significant difference from other lesion group, P<0.05, t-test.

Comparisons to previous findings with mPFC
lesions

Previously, excitotoxic lesions to the mPFC as well as local
infusions of dopaminergic drugs have been found to be
without effect on LI in paradigms designed to test for
abolition of LI (e.g. Ellenbroek et al., 1996; Joel et al.,
1997; Lacroix et al., 1998, 2000a,b). We would similarly
expect the current lesions to spare LI using standard LI
paradigms (i.e. high number of pre-exposures, low number
of conditioning trials). However, in contrast to Schiller and
Weiner (2004) lesions in the current study did lead to the
emergence of LI under conditions that do not yield LI in
controls. There are several potential explanations for the
discrepancy between our findings and this previous report.
Firstly the current study employed focal lesions that tar-
geted the two main subregions of the mPFC, whereas the
previous study was not anatomically selective. It is note-
worthy in this respect that IL lesions in the current study,
which depleted DA in both the IL and PL, were without
effect on LI. Thus the results of the IL (plus PL) group here
are consistent with findings that excitotoxic lesions of the
entire mPFC do not potentiate LI (Schiller and Weiner,
2004). Such dissociable effects of anatomically selective
and non-selective lesions within the mPFC mirror the dem-
onstration that entire and subregionally-selective NAc le-
sions have dissociable and even opposing effects on LI
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Fig. 1. Mean suppression ratio (+S.EM) to the CS for non-preex-
posed (NPE) (white bars) and preexposed (PE) (light grey) groups
following sham or 6-OHDA lesions to either the prelimbic or infralimbic
mPFC.

(e.g. Gal et al., 2005). It remains to be seen what effect
selective IL cortical lesions have on LI under conditions
that do produce the phenomenon in sham-lesioned rats.
Secondly, the current study employed lesions that targeted
DA terminals within mPFC, while previously excitotoxic
lesions that were not neurochemically selective were used.
There is evidence that different neurochemical systems
within the frontal cortex may regulate different aspects of
cognitive control (e.g. Robbins and Roberts, 2007) and
consequently the sensitivity of LI to manipulations to pre-
frontal function may depend on the neurochemical selec-
tivity of the lesion.

Furthermore, there is evidence that the capacity of
lesions to produce persistent LI depends on the experi-
mental manipulation used to disrupt LI in shams (weak
pre-exposure, context change, extended conditioning). For
example, BLA lesions enhance LI with weak pre-exposure
and extended conditioning but not with change in context
(Schiller and Weiner, 2004, 2005). Hippocampal lesions,
on the other hand, produce persistent LI with context
change but not extended conditioning (Weiner, 2003). This
dissociation has been attributed to the distinct roles played
by the BLA and the hippocampus in reinforcement and
contextual processes, respectively (Weiner, 2003). Such
paradigm-dependent effects on LI may therefore account
for the discrepancy between the results reported here and
elsewhere. Indeed, the current results would suggest that
PL involvement in LI is restricted to conditions of weak
pre-exposure as previously mPFC lesions have been
shown to be without effect on LI when the number of
conditioning trials is increased (Schiller and Weiner, 2004).
It remains to be established whether PL-lesioned animals
are sensitive to changes in context between pre-exposure
and conditioning. Taken together, the results from various
lesion studies suggest that the involvement of particular
brain structures (hippocampus, PL, OFC, BLA) in prevent-
ing the emergence of LI is specific to certain experimental
conditions.

PL involvement in LI

Since LI involves several processes (e.g. Lubow and
Weiner, 2010), PL lesions could potentiate LI through a
variety of mechanisms. Indeed, as the PL lesions in the



104 A. J. D. Nelson et al. / Neuroscience 170 (2010) 99-106

current study were performed prior to behavioral training it
is unclear whether PL function is critical to processes at
pre-exposure, conditioning or test. According to the switch-
ing model of LI, LI involves the acquisition of two indepen-
dent and competing associations at pre-exposure (CS-no
event) and conditioning (CS-reinforcement) that compete
to achieve behavioral expression (Weiner, 1990, 2003).
The extent to which behavior is controlled by these two
competing associations depends in part on the impact of
conditioning, the strength of pre-exposure or the context.
The absence of LI indicates switching of behavior to the
CS-reinforcement association acquired at conditioning
(Weiner, 2003; Weiner and Arad, 2009). The demonstra-
tion that lesions to the mPFC do not potentiate LI with
extended conditioning (Schiller and Weiner, 2004) but
mPFC and specifically PL lesions do enhance LI under
conditions of weak pre-exposure suggests that the PL is
not involved in modulating the impact of reinforcement on
the expression of LI, a function that appears to be sub-
served by OFC and BLA (Schiller and Weiner, 2004).
Rather, the emergence of LI despite limited pre-exposure
indicates a failure to switch responding to the previously
irrelevant but now relevant pre-exposed stimulus. This
would suggest a role for the PL in integrating information
about current stimulus-reinforcement contingencies and
responding flexibly to changes in such contingencies. Thus
in the intact brain and with limited CS pre-exposure, the PL
may act to prevent the expression of LI by switching be-
havioral response strategies to the new reinforcement con-
tingencies acquired at conditioning. However, as the
strength of pre-exposure is increased by manipulating the
number of pre-exposures, the role of the PL in re-attending
behavioral responding to previously irrelevant stimuli that
become relevant at conditioning may be overridden to
allow the emergence of LI.

This proposition fits with considerable evidence dem-
onstrating that lesions to mPFC cause cognitive inflexibility
in a variety of behavioral paradigms (e.g. Ragozzino,
2007). In particular it appears that lesions to the mPFC
disrupt animals’ ability to respond adaptively when rein-
forcement contingencies are changed (e.g. Aggleton et al.,
1995; Birrell and Brown, 2000; Bussey et al., 1997; de
Bruin et al.,, 1994; Killcross and Coutureau, 2003;
Ragozzino et al., 1999). This deficit tends to manifest as
perseverative behavior as animals continue to respond
according to previously acquired contingencies. These im-
pairments reflect in part an inability to attend to cues that
were previously irrelevant and to ignore previously salient
cues that are no longer informative. Such a deficit would be
predicted to produce LI under conditions that do not yield
the phenomenon in controls, as PL lesioned-animals
would fail to switch responding when the previously irrel-
evant (pre-exposed) stimulus becomes informative at con-
ditioning. Moreover, there is good evidence for both DA
and NA modulation of these processes. For example,
blockade of D, receptors (Ragozzino, 2002) and NA deaf-
ferentation (McGaughy et al., 2008) within the mPFC has
been shown to disrupt rule shifting and prefrontal DA ac-
tivity is increased during reversal learning (van der Meulen

et al., 2007). Thus, the demonstration here that catechol-
amine depletion within the PL produces LI under condi-
tions that do not yield it in controls is consistent with a role
of prefrontal catecholamines in the regulation of adaptive
and flexible behavior (Kehagia et al., 2010).

Enhanced LI and schizophrenia

The current results highlight the importance of the use of
appropriate experimental parameters in LI studies, as le-
sion effects on LI can be masked by procedures that are
not suited to revealing potentiated (or abolished) LI (see
Weiner and Arad, 2009). The demonstration of the disrup-
tive effects of amphetamine on LI and the related DA
hypothesis of the positive symptoms of schizophrenia has
aroused considerable interest in the neural circuitry under-
pinning abolished LI as a model of the inability of schizo-
phrenics to ignore irrelevant stimuli. However, it is becom-
ing increasingly recognized that abnormally persistent LI
under conditions that do not produce the phenomenon in
controls may model certain aspects of the negative symp-
tomology of schizophrenia as persistent LI may render the
effect inflexible and unresponsive to situational demands
(for reviews see Weiner, 2003; Weiner and Arad, 2009).
The negative symptoms of schizophrenia are character-
ized by cognitive inflexibility and are associated with fron-
tal-striatal dysfunction (e.g. Eisenberg and Berman, 2010).
Significantly, it has recently been shown that LI is en-
hanced in chronic schizophrenic patients (Gal et al., 2009).
The current findings suggest a modulatory role of cat-
echolamines within the PL in the regulation of these pro-
cesses.
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