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a b s t r a c t

The large-scale outbreak of disease across Northern Europe caused by a new orthobunyavirus known as

Schmallenberg virus has caused considerable disruption to lambing and calving. Although advances in

technology and collaboration between veterinary diagnostic and research institutes have enabled rapid

identification of the causative agent and the development and deployment of tests, much remains

unknown about this virus and its epidemiology that make predictions of its future impact difficult to

assess. This review outlines current knowledge of the virus, drawing comparisons with related viruses,

then explores possible scenarios of its impact in the near future, and highlights some of the urgent

research questions that need to be addressed to allow the development of appropriate control strategies.

� 2012 Elsevier Ltd. All rights reserved.

Introduction

The first record of the town of Schmallenberg in the state of

North Rhine-Westphalia, Germany dates from 1243. Over

700 years later, its name is now linked with the latest vector-borne

viral disease to pose a threat to livestock in Northern Europe. Sch-

mallenberg virus (SBV) was originally identified in clinical samples

from cattle in Germany presenting with fever and milk drop syn-

drome (with occasional reports and diarrhoea and abortion), that

were submitted for investigation to the Friedrich Loeffler Institute

(FLI) in October 2011.

Following elimination of the usual causes of such clinical signs

in cattle, blood samples from three cattle were subjected to the

new technology of deep sequencing known as metagenomic anal-

ysis, which allows the sequencing of all nucleic acid present in a

sample. As is typical with this approach, a large amount of host

genomic and known bacterial sequences were identified, the latter

most likely as a consequence of prolonged sample storage. How-

ever, present within the samples were genetic sequences from a

novel Bunyavirus of the genus Orthobunyavirus which were most

similar to viruses of the Simbu serogroup including Akabane and

Shamonda virus (Hoffmann et al., 2012). This group of viruses pro-

duce a syndrome in ruminants referred to as arthrogryposis

hydranencephaly syndrome (AHS), resulting in abortions, still-

births and congenital defects in neonatal cattle, sheep and goats

following infection during pregnancy.

Outbreaks of diarrhoea, fever and milk drop syndrome had also

been reported in The Netherlands over the late summer and early

autumn of 2011. Retrospective testing of blood samples from these

cases at the Central Veterinary Laboratories, Lelystad demon-

strated SBV RNA in 36% of animals indicating that the same caus-

ative agent was responsible for the disease outbreaks in both

countries (Muskens et al., 2012).

This review describes what is currently known about SBV

(based on published data up to 19th June 2012) compared with

related Bunyaviridae. Our knowledge of this virus is rapidly

expanding as many research groups are actively working in this

area, and the situation changes as the outbreak progresses. Useful

websites that provide the most up-to-date information are listed

in Table 1.

Schmallenberg virus: What is currently known?

Following its initial detection using molecular methods, it was

not clear whether SBV was anything more than an incidental find-

ing. However, the teratogenic nature of genetically similar viruses,

and the fact that orthobunyaviruses of the Simbu serogroup had

not previously been reported in Europe, was enough to warrant in-

creased vigilance for malformed ruminant fetuses and neonates

and the development of a primer- and probe-based reverse-

transcriptase quantitative PCR (qRT-PCR) test for the ‘S’ segment

of the virus by the FLI (Hoffmann et al., 2012). These steps proved

prudent, as large numbers of malformed lambs were reported from

the start of the 2011–2012 lambing season in continental Europe.

The first clinical report described lambs born in The Netherlands

during November and December 2011 with malformations consis-

tent with the AHS syndrome (van den Brom et al., 2012). Twenty-

two of 54 lambs with such distinct malformations tested positive

by qRT-PCR for SBV RNA (van den Brom et al., 2012).
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The initial publication by Hoffmann et al. (2012) described the

genetic identification of SBV, its culture in the laboratory, and

the experimental infection of cattle with the virus. Blood samples

from a cow with milk drop and fever were ultrasonically disrupted

and incubated for 10 days on a mosquito cell line (KC cells), before

being passaged onto a baby hamster kidney cell line (BHK21).

Cytopathic effects were visible after 5 days of incubation and viral

RNA was detected in the supernatant by qRT-PCR. Reproduction of

the acute disease in cattle was demonstrated by IV and/or SC inoc-

ulation of the isolated virus into three 9-month old calves. Viral ge-

netic material was detected in the blood of all three animals

between days 2 and 5 post infection: one calf developed fever on

day 4 post infection and a further animal developed diarrhoea.

All animals had seroconverted to the virus by 3 weeks post infec-

tion. This study went some way towards satisfying Koch’s postu-

lates as to SBV being the causative agent of the disease, although

Table 1

A selection of useful websites providing information on Schmallenberg virus (SBV) infection in Europe.

Website Comment

http://www.fli.bund.de/en/startseite/current-news/animal-disease-

situation/new-orthobunyavirus-detected-in-cattle-in-germany.html

Friedrich Loeffler Institute, Germany: current distribution and publications listed

http://agriculture.gouv.fr/maladies-animales,11003 Ministry of Agriculture, France

http://www.izs.it/IZS/Engine/RAServePG.php/P/357410010300/M/

250010010303

Istituto Giuseppe Caporale, Italy

http://www.vwa.nl/onderwerpen/dierziekten/dossier/

schmallenbergvirus

Food and Consumer Product Safety Authority, The Netherlands

http://www.defra.gov.uk/animal-diseases/a-z/schmallenberg-virus Department for the Environment Food and Rural Affairs (DEFRA) provides official statements

on current UK status of SBV

http://www.defra.gov.uk/ahvla/tag/Schmallenberg/ Animal Health and Veterinary Laboratories Agency (AHVLA) lists UK outbreaks of SBV

chronologically

http://www.oie.int/for-the-media/press-releases/detail/article/oie-

scientists-review-knowledge-on-schmallenberg-virus/

World Animal Health Organisation (OIE). Includes link to ‘Technical Factsheet’ on SBV

http://www.promedmail.org/?p=2400:1000: Internet-based reporting system of the International Society for Infectious Diseases

dedicated to the rapid dissemination of information on outbreaks of infectious diseases

occurring worldwide

Fig. 1. (a) To facilitate the identification of potential cases of Schmallenberg virus infection, the European Food Safety Authority (EFSA) produced this checklist of clinical

features for fetuses and neonates. (b) Photograph of a lamb exhibiting kyphosis.
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demonstration of congenital malformations following experimen-

tal infection during pregnancy has yet to be confirmed.

In order to facilitate identification of potential cases of SBV

infection, the European Food Safety Authority (EFSA) has issued a

‘case definition’ for fetuses and neonates as evidence of AHS

(Fig. 1).

Structure of Schmallenberg virus

Electron microscopy confirms that the morphology of SBV is

typical of the Bunyaviridae (Table 1). These viruses are approxi-

mately 100 nm in diameter, with surface glycoproteins projecting

from an outer envelope. The genetic structure of the virus is also

typical for Bunyaviridae, containing three segments of single-

stranded negative-sense RNA, called the large (L; 6865 nucleo-

tides), medium (M; 4415 nucleotides) and small (S; 830 nucleo-

tides) segments (Fig. 2; Hoffmann et al., 2012). On the basis of

phylogenetic analysis of the S segment (Fig. 3a), SBV is most like

Shamonda virus (Hoffmann et al., 2012).

The segmented genome of Bunyaviridae creates a potential for

re-assortment, which can lead to rapid genetic change in the virus

population. This is the process by which new subtypes of influenza

A viruses may emerge through the exchange of gene segments, in a

host simultaneously infected with viruses of more than one sub-

type, and is the major mechanism underlying the generation of

new pandemic influenza viruses. Indeed, several examples of re-

assortment in orthobunyaviruses have been reported (Yanase

et al., 2010; Aguilar et al., 2011; Blitvich et al., 2012). There has

been some suggestion that SBV is a ‘re-assortant’ (Fig. 3b and c;

Hoffmann et al., 2012). Recent work re-sequencing Japanese iso-

lates of Sathuperi and Shamonda virus and the Douglas isolate of

Sathuperi virus from Australia support this idea, with the S and L

segments of SBV most closely related to Shamonda virus isolates

and the M segment most similar to that of Sathuperi virus, respec-

tively (Yanase et al., 2012).

What can we infer from our knowledge of similar viruses?

Host range

Viruses of the genus Orthobunyavirus are divided into 18 sero-

groups (International Committee on Taxonomy of Viruses, 2011),

of which the Simbu serogroup is one of the largest. Most of these

viruses have not been well characterised. Some are associated with

cattle and transmitted by biting midges (Culicoides spp.), though

this may merely reflect bias in the sentinel monitoring pro-

grammes that have detected these viruses. Shamonda virus was

initially identified in Nigeria in the 1960s, and was subsequently

identified in Japan in 2002, indicating that this virus probably

has an extensive geographic range (Causey et al., 1972; Yanase

et al., 2005).

Viruses from these serogroups have also been found in other

ruminants, pigs and horses (Kessell et al., 2011) with a recent re-

port of Shuni virus in horses with encephalitis (van Eeden et al.,

2012) and reports of Akabane virus in horses (Yang et al., 2008),

pigs (Huang et al., 2003) and adult cattle (Lee et al., 2002; Kono

et al., 2008) with neurological disease.

While none of the Simbu serocomplex of viruses has been dem-

onstrated to cause disease in humans, the wider Simbu serogroup

includes Oropouche and Iquito viruses, which cause a severe feb-

rile syndrome in humans in South America (Aguilar et al., 2011).

As the most closely related viruses do not cause disease in humans,

most authorities have concluded that the likelihood of SBV being

zoonotic is minimal, though the potential for rare infections cannot

be ruled out.

The Robert Koch Institute in Germany issued a questionnaire to

sheep farmers in North Rhine Westphalia which raised no suspi-

cion of human disease as a result of SBV and all farmers were sero-

negative for antibodies against SBV as monitored by an

immunofluorescence antibody test (IFAT) or virus neutralisation

(VN) assay. Furthermore, no viral RNA was detected when sera

from these farmers were tested using qRT-PCR. A similar serologi-

cal survey of 301 farmers and veterinarians with known exposure

to SBV-affected herds in The Netherlands, using a VN assay, also

found no antibodies against SBV (European Centre for Disease Pre-

vention and Control, 2012), leading The European Centre for Dis-

ease Prevention and Control to declare the zoonotic risk of SBV

as ‘very unlikely’.

Pathogenesis of viral infection

Although a full description of the pathogenesis of Akabane virus

infection is likely to be provided in a forthcoming review of the

Simbu viruses (P.D. Kirkland and D.S. Finlaison, unpublished data),

several points of interest in comparison with SBV are highlighted

here. Clinical studies have identified a pattern of malformations

in Akabane outbreaks in cattle which suggest that the lesions in fe-

tuses are dependent on the developmental stage of the fetus at the

time of infection. Fetuses aborted at around 4–6 months of gesta-

tion are often the first indication of an outbreak, followed by dead,

full-term fetuses with severe arthrogryposis (infected between 103

and 174 days of gestation), then live-born animals with less severe

arthrogryposis but with neurological deficits due to hydranen-

cephaly (infected between 79 and 104 days of gestation) (Kirkland

et al., 1988).

Histopathological lesions also vary depending on the age of fe-

tus when infected. Calves infected late in gestation are born at the

start of an outbreak and may have non-suppurative encephalomy-

elitis accompanying their neurological deficits. Calves born

mid-outbreak show varying degrees of neurological deficits and

arthrogryposis with encephalitis, and Wallerian-type degeneration

of the spinal cord with degeneration and loss of the ventral horn

neurones and spinal nerves. Calves born towards the end of

outbreaks (i.e. those infected in early gestation) tend to display

hydranencephaly, with or without arthrogryposis, and very few

other lesions, with occasional calves exhibiting spinal cord hypo-

plasia (Hartley et al., 1977).

The incidence of lesions in affected herds can be very high with

up to 50% of calves and 80% of lambs malformed, respectively

(Kirkland, 2002). In addition, recent outbreaks in Japan and Korea

have demonstrated that some strains of Akabane virus cause

encephalitis in adult cattle (Kamata et al., 2009; Oem et al.,

2012). The disease can have considerable economic impact: an

Fig. 2. Schematic diagram illustrating a Schmallenberg virus particle with glyco-

proteins (Gn and Gc) projecting from the lipid bilayer as heterodimers and the three

segments of RNA (small, S; medium, M; and large, L) in circular form in association

with nucleoprotein and the ‘L’ polymerase protein.
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estimated 42,000 abnormal calves were born during the 1972–

1975 disease outbreak in Japan (Kono et al., 2008).

Experimental infection of pregnant sheep with Akabane virus

(Parsonson et al., 1977, 1988) suggests that a ‘time-window’ exists

during which infection results in fetal abnormalities, with abnor-

malities less frequently seen when infection occurs after day 40

of gestation. Lesions in affected ovine fetuses include hydranen-

cephaly, porencephaly, hypoplasia of the spinal cord and lungs,

arthrogryposis, brachygnathia, and scoliosis. Histopathological

changes described include skeletal muscle degeneration and oede-

ma and perivascular cuffing, gliosis and mineralised plaques in the

brain and spinal cord (Parsonson et al., 1981b). Due to the shorter

gestation period in sheep and goats, infected fetuses of these spe-

cies do not display as distinct a pattern of malformations as de-

scribed in bovine fetuses.

In comparison to Akabane virus, initial pathology reports indi-

cated that SBV typically caused hydranencephaly, porencephaly,

hydrocephalus, cerebellar hypoplasia and micromyelia (shortening

of the spinal cord). Micromyelia particularly affected the ventral

horn of the spinal cord in calves. Histologically, affected animals

displayed a lymphohistiocytic meningo-encephalomyelitis with

glial nodules in lambs and goats and neuronal degeneration and

necrosis in the brain-stem of calves. Additional lesions included

arthrogryposis, vertebral malformations and brachygnathia infe-

rior, with myofibrillar hypoplasia of skeletal muscle in both calves

and lambs (Herder et al., 2012). Other pathological features in full-

Fig. 3. Phylogenetic trees illustrating the: (a) small; (b) medium; and (c) large segments of the Simbu serogroup viruses along with representatives from the Bunyamwera

and California serogroups. Trees were generated by maximum likelihood (DNAML) in PHYLIP. Bootstrap values > 50% (1000 replicates) are given. Scale bar indicates the

estimated number of nucleotide substitutions/site.
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term calves include severe hydranencephaly (Garigiany et al.,

2012), and non-suppurative meningoencephalitis and poliomyeli-

tis with neuronophagia (Peperkamp et al., 2012). These lesions

are very similar to those of AHS in Akabane-infected animals.

The distinct timescale of occurrence of the different lesions in cat-

tle has not been reported in the current SBV outbreak, but this may

be because of the low numbers of affected cattle to date, and pos-

sibly, the protracted period of transmission.

One critical difference between the SBV outbreak and historical

Akabane virus outbreaks is that a large number of affected full-

term fetuses contain ‘PCR detectable’ SBV RNA (Bilk et al., 2012;

van den Brom et al., 2012). However, the sensitive qRT-PCR based

methods of detection were not available when much of the histor-

ical work on Akabane virus was performed, and there have been

few reports of the isolation of this virus from full-term lambs

and calves (Levin et al., 2008). However, Akabane virus was suc-

cessfully isolated from a variety of tissues from ovine fetuses at

an earlier stage of gestation (up to 70 days) as well as from placent-

omes and chorioallantoic membranes up to 100 days of gestation

(Parsonson et al., 1981a) in the face of virus neutralising antibody

in both dam and fetus. These findings are consistent with reports

that SBV RNA can be detected in a variety of tissues from affected

lambs and calves, particularly the cerebrum, spinal cord, external

placental fluid and umbilical cord (Bilk et al., 2012).

Epidemiology of virus infection

The epidemiology of Akabane and Aino viruses has been best

described following outbreaks in Australia and Japan. In Australia,

Akabane is known to be present in the northern (tropical and sub-

tropical) areas of the country, limited by the range of the primary

vector, Culicoides brevitarsis (Bishop et al., 2000). In these regions,

virus circulates annually, most animals become infected pre-pub-

erty and develop immunity which is thought to be long-lasting.

In these endemic zones, fetal malformations are rare. Virus trans-

mission in endemic zones is heavily dependent on midge abun-

dance, with transmission beginning in summer and reaching a

peak in autumn. There is also usually a lag phase between the ini-

tial detection of the vector and the circulation of the virus. The on-

set of frosts typically ends viral transmission.

Large-scale outbreaks occur where unusual climatic conditions

substantially alter the host vector range, either carrying the virus

to new areas populated by naive hosts or back into previously af-

fected areas populated by young, naïve and older, previously ex-

posed hosts (Kirkland, 2002). These situations result in large

numbers of naïve animals becoming exposed and attendant

large-scale outbreaks of fetal malformation. It is worth noting that

this can occur over a large geographical area: outbreaks were re-

ported in Northern Victoria, almost 1000 km from the recognised

endemic zone (Della-Porta et al., 1976; Bishop et al., 2000), with

seroconversion rates as high as 80–100% (Della-Porta et al.,

1976). Infection returning to a previously endemic area results in

a typical pattern of malformation in the offspring of young cows

and heifers, while older animals with pre-existing immunity give

birth to unaffected calves (Kirkland, 2002).

The situation in Japan and Korea is slightly different as the Aka-

bane virus does not appear to be endemic in these temperate cli-

mates. In Japan, the virus is typically detected in the south of the

country in spring and summer before spreading northward. It is

thought that the virus is probably endemic in China and that out-

breaks in Japan are due to wind-borne spread of the main vector

Culicoides oxystoma (Yanase et al., 2010).

Issues requiring research

Origins and transmission

It is unclear where SBV originated. One theory is that it may

have come with insects imported with an infected animal or with

‘cut flowers’ from Africa. It is also possible that the virus was circu-

lating latently, perhaps in a reservoir host, and only causing dis-

ease when expansion of its vectors’ range gave rise to infection

of fully susceptible hosts. It is worth considering in this context

that Akabane outbreaks spread by Culicoides imicola have been re-

corded in Israel in 2002–2003 (Brenner et al., 2004; Stram et al.,

Fig. 3. continued
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2004) as well as in Turkey and Cyprus in 1980 (Taylor and Mellor,

1994). Thus Simbu serocomplex viruses have been present histor-

ically in the Mediterranean basin.

As of June 19th 2012, there had only been sporadic reports of

SBV infection in Southern European countries (one herd in Italy

and one in Spain, respectively) compared to the large numbers re-

ported in Northern Europe. This may indicate either that the virus

is spreading southwards after being introduced into Northern Eur-

ope, or that it has been an endemic, subclinical infection in South-

ern Europe for some time. Initial serological surveys in Germany,

France and The Netherlands suggest a decreasing incidence of

infection spreading out from a point near the Dutch–German bor-

der, a finding that corresponds with the initial reports of milk-drop

and fever syndrome in adult cattle (European Commission, 2012).

It is presumed, as for the other viruses in the Simbu serogroup,

that the insect vector for SBV is biting midges (Culicoides spp.),

however work to identify the actual vector species is ongoing. Data

from the Antwerp Institute of Tropical Medicine would appear to

confirm this assumption (ProMED-mail, 2012b). Midges have been

trapped at several locations in Belgium as part of an ongoing blue

tongue virus (BTV) surveillance programme. Returning to stored

samples, SBV genetic material has been detected in three species

of midge (C. obsoletus, C. dewulfi and C. pulicaris) trapped in Sep-

tember and October of 2011. There are similar reports of SBV ge-

netic material in C. obseletus collected in September–November

2011 in Italy and in Culicoides spp. in Denmark in October 2011

(ProMED-mail, 2012c,d): both countries have only reported single

herds affected by SBV infection to date.

Although these findings do not prove these midges are the pri-

mary vectors, all three species are associated with the transmission

of BTV and, in the Belgian study, only the heads of these insects

were tested for the presence of virus in order to minimise the pos-

sibility of detecting virus ingested in a blood meal from an infected

animal (suggesting that virus is present in the midge salivary

glands). Studies are on-going to determine whether SBV replicates

in midges, i.e. to demonstrate their ‘vector capacity’. It is notewor-

thy that funding for the BTV surveillance programme carried out in

Antwerp is due to end soon and without this kind of monitoring,

the swift resolution of such critical questions in any future emerg-

ing disease outbreak will be difficult.

Knowledge of the ecology of the vector species is important in

predicting the likelihood of the virus continuing to circulate. As

orthobunyaviruses do not replicate well at temperatures <15 �C,

over-wintering strategies are important, particularly in temperate

countries. Survival of some of the proposed vector species indoors

during periods of low temperatures in Europe has been demon-

strated and is thought to contribute to the over-wintering of BTV

(Napp et al., 2011). Lambing times in Europe vary from December

through to late April which does overlap with the ‘midge season’ in

the UK (April to October). However midge numbers are generally

low until the warmer months of June –September, so that most

pregnant sheep will have lambed before the midge numbers rise

substantially (assuming no prolonged, unseasonably warm peri-

ods), and it is unlikely that the disease would be perpetuated by

midges feeding on surviving viraemic lambs or their placental

fluid.

However, calving occurs throughout the year including during

the peak vector season, providing a potential mechanism by which

the virus may persist from year to year. SBV RNA was detected in

lambs and calves born ‘at-term’ in 2012 (Bilk et al., 2012; van

den Brom et al., 2012) but, as yet, attempts to isolate infectious

virus have been unsuccessful. One recent report of a full-term calf

with polioencephalomyelitis and detectable SBV RNA and Simbu

group viral proteins (Peperkamp et al., 2012), as well as reports

of affected lambs since April 2012 (indicating infection in early

2012) (DEFRA, 2012) suggest SBV was circulating in cattle and

sheep in Europe in the spring of 2012.

The mechanism by which SBV arrived and became dissemi-

nated within the UK remains unknown. Both the pattern of farms

affected by SBV in the UK to date (Fig. 4) and the modelling of

midge ‘plumes’ using weather data from the UK Meteorological Of-

fice support the theory that the virus first arrived in southern

counties, with infected midges blown over from continental Eur-

ope by prevailing winds. The very high density of cases on individ-

ual farms infers either local spread or that a high proportion of

midges were infected. It is unknown whether SBV can be transmit-

ted via contact with infected fomites, although this seems unlikely

based on the evidence to date.

If dissemination is due to large numbers of infected vectors, this

may result in efficient de novo infection of large numbers of naïve

cattle and sheep, which would be in keeping with data from out-

breaks of other Simbu virus infections (P.D. Kirkland and D.S. Finl-

aison, unpublished data). This is in marked contrast to the infection

of UK livestock with BTV, which caused infection of a smaller pro-

portion of animals.

To address the question of whether SBV had been previously

circulating in some European countries, it would be useful to com-

pare the density of cases occurring in the UK with that on mainland

Europe, and the ages of the mothers of affected lambs and calves.

There is some anecdotal evidence from Germany that younger ani-

mals are more likely to have affected fetuses than older animals

(ProMED-mail, 2012a), though initial serological surveys in The

Netherlands have not found any evidence to support this (Euro-

pean Commission, 2012).

Fig. 4. Map of England and Wales indicating the initial spread of Schmallenberg virus. Figures represent numbers of cases reported by the UK Animal Health Veterinary

Laboratories Agency as of 26th of March 2012.
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Unfortunately, these data may be difficult to acquire. Typically

in the UK, samples from a single case may be submitted to confirm

SBV on the farm, so there is relatively little information as to the

exact proportion of infected animals. There is also debate as to

whether it is better to encourage reporting by offering free testing

or alternatively to make the disease notifiable, and different ap-

proaches have been adopted in different countries across Europe

(e.g. SBV is notifiable in The Netherlands but not in the UK).

Current epidemiological data

The EFSA has produced a summary of the current epidemiolog-

ical data up to the 19th of March 2012 (European Food Safety

Authority, 2012). This report lists SBV cases confirmed in Germany,

Holland, Belgium, France, Luxembourg, Italy, Spain and England.

Denmark was added to this list in June 2012 (ProMED-mail,

2012e). The distribution follows that of BTV-8 outbreaks in North-

ern Europe in 2006–2008. Affected animals include cattle, sheep,

goats and one bison, with the recent addition of roe deer and lla-

mas (ProMED-mail, 2012f; Jack et al., 2012), although clinical diar-

rhoea syndrome has only been confirmed in eight cattle. The vast

bulk of the reported cases in the early part of the outbreak was

in sheep, partly because cattle have a much longer gestation period

and calves infected in utero at the same time as lambs are born la-

ter. Most of the cases born later in the outbreak (after April) were

in cattle.

Several countries have declared the current SBV outbreak re-

solved with the total number of affected premises in Europe as of

31st May, 2012 standing at 2062 cattle, 2482 sheep and 77 goat

farms (ProMED-mail, 2012g). Extrapolation of the estimated date

of infection of lamb fetuses from their birth date would indicate

that the virus circulated from May to November 2011 with the

peak of viral circulation occurring in October 2011. This would

indicate that virus was circulating in sheep well before the initial

disease outbreak was reported in cattle in August. These dates

are also significant in that lambs and calves born in spring and

summer 2012 have qRT-PCR detectable viral RNA at a time when

potential vectors are becoming active.

Given that some of the midge species identified to date are

present over most of Northern Europe, this makes further viral

transmission in 2012 and the establishment of endemic infection

a real possibility. The total number of herds affected compared

with the total number of herds in the reporting countries is low

with morbidity and mortality estimates of <3% in affected coun-

tries (ProMED-mail, 2012g). However, as the EFSA report indicates,

there is likely to be serious under-reporting of cases, and few EU

countries have provided morbidity rates for individual herds.

Prevention and control

Management of outbreaks of Akabane and Aino viral disease in

Japan and Australia is largely dependent on sentinel monitoring of

vectors and cattle. In Japan, strategic deployment of vaccines is ap-

plied if it is apparent that virus is circulating (vaccines are not cur-

rently available in Australia). Suggestions have been made that

restricting the timing of mating in cattle and sheep to outside of

the vector season may be an option to reduce SBV cases in future

years (Anon, 2012). However, the distinctive seasonality of the

reproductive cycle in sheep in Europe renders this strategy eco-

nomically impractical in most instances. Although delaying the

insemination of cattle may be a management option, such a change

may be problematic, necessitating significant changes in hus-

bandry and potentially resulting in substantial economic losses.

Recommendations for control of bunyavirus infections in hu-

mans include avoidance of mosquito exposure by staying indoors

at dusk, the peak mosquito biting period, and through the use of

mosquito nets and insecticides. Such an approach remains imprac-

tical for all but very valuable livestock. Clearly transporting naïve

animals to endemic areas for mating or during pregnancy is to be

avoided.

Discussions about the testing of animals, semen and embryos

for trading purposes are complicated by the fact that serological

tests do not indicate when an animal was infected so do not indi-

cate the likelihood that that animal will give birth to an affected fe-

tus. There has also not yet been time to assess the risk of infection

via semen, although this seems unlikely as experimental infection

of bulls with Akabane virus results in viraemia, but does not pro-

duce detectable virus in semen (Parsonson et al., 1981c). Infection

of embryos recovered from subclinically infected animals is an un-

known risk at present.

Several non-European countries have placed movement bans on

EU livestock due to the risk of SBV transfer, although the Chief Vet-

erinary Officers within the EU have issued a joint statement indi-

cating that SBV-affected animals and regions should only be

subject to the same controls that apply to other viruses of the Sim-

bu group (European Commission, 2012). The widespread nature of

the potential vector species for SBV within Europe and the speed

and range over which Simbu viruses can spread probably renders

vector control, or the placement of movement restrictions on ani-

mals, relatively futile. From a pragmatic perspective, until a vac-

cine becomes available there is little that can currently be done

to reduce the impact of SBV.

Diagnostic assays

The qRT-PCR developed by the FLI is the primary diagnostic as-

say used by laboratories in affected countries, and it is currently

recommended that brain, blood, spleen and placental samples

are tested. This assay does have limitations in detecting infected

individuals based on blood samples, as it only detects viral RNA

when the animal is viraemic. The report by van den Brom et al.

(2012) indicated that only 40.7% of lambs with typical malforma-

tions from known affected flocks tested positive for viral RNA in

brain tissue. A high proportion of calves have SBV antibodies ‘at

term’ and serum or pericardial fluid may be used for the detection

of antibodies by ELISA or VNT (P.D. Kirkland, personal communica-

tion). Serology is a reliable method of detecting Akabane virus

infection in non-endemic areas in the dams of affected calves,

and this approach is beginning to be used in Europe to detect

SBV (Jack et al., 2012). There is currently a critical need for serolog-

ical testing of adult animals to establish what proportion of na-

tional flocks and herds remain susceptible should SBV continue

to circulate.

Use of a VN assay in The Netherlands indicates that 70% of the

dairy cattle in the country have seroconverted with a higher prev-

alence in the east of the country and a within-flock/herd seropre-

valences of 70–95% (sheep) and 70–100% (dairy cattle),

respectively. Initial results using an IFAT test in Germany indicate

that there is a higher prevalence in the north-west than in the

south-east of the country. Initial VN assays in some French herds

indicate 32–100% seropositivity in affected herds in the north of

the country, compared with only 7.5% on an affected farm in the

central region (European Commission, 2012). Ongoing research is

focused on developing SBV-specific serological tests for high-

throughput screening, with the first commercial ELISA made avail-

able by French company IDvet.

Vaccine development

Research is also directed at developing a SBV vaccine. Numer-

ous vaccination strategies have been deployed against zoonotic

bunyaviruses such as Rift Valley fever virus (Ikegami and Makino,
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2009), and a number of these have been proposed in the context of

developing a SBV vaccine. Regulatory approval is more likely to be

obtained for a non-replicating vaccine, as one of the major risks of

a live virus vaccine is the potential teratogenic effects in livestock

accidentally inoculated while pregnant.

Several Akabane vaccines have been deployed in Australia and

Japan. Inoculation with formalin-inactivated aluminium phos-

phate-adjuvanted viral preparations resulted in the production of

VN antibody in animals following two doses given 4 weeks apart

(Kurogi et al., 1978). In Japan, live attenuated and killed adjuvanted

vaccines against Akabane virus are currently registered for use in

cattle. To date, there are no reported trials assessing if there is cross

protection by these vaccines against SBV infection. Furthermore,

the situation pertaining with SBV is quite different to that of the re-

cent BTV-8 outbreak in Europe, where rapid deployment of a

monovalent inactivated vaccine was facilitated by the availability

of existing efficacy and safety data for this vaccine from countries

where BTV-8 is endemic.

Conclusions

The outcome of the emergence of SBV in Europe remains hard to

predict. However, with the UK being the largest producer of sheep

meat in Europe, and the fifth largest producer worldwide, there is

the potential for a considerable economic impact on farmers, the

meat industry and food supply, both in the UK and on mainland

Europe. Yet there remains reason for optimism. The experience

gleaned from the study of closely related viruses may result in

more rapid progress towards the control of SBV infection, and it

is clear that through the expeditious research of many groups,

the next 12 months will provide a further wealth of information

about this previously unknown disease. Forging and strengthening

international collaborations will enable existing expertise on re-

lated viruses to be used constructively and decisions about how

to proceed to be evidence-based.

At the time of its initial isolation, it was not clear if SBV was a

coincidental finding or the cause of this novel disease. The early

sharing of information about the virus by the FLI via a press release

on 21st November 2011 proved vital to the rapid identification of

the first malformed lambs and calves in the spring of 2012. The

FLI also facilitated the rapid establishment of a diagnostic capabil-

ity in the veterinary laboratories of other EU states by making the

details of their qRT-PCR test available. On occasions in the past,

researchers have delayed announcing new findings until they

had sufficient data for submission to a high impact journal. The

timely release of information regarding SBV has not only facilitated

its rapid diagnosis but has also promoted healthy competition to

develop new diagnostic assays and vaccines. This provides an

exemplar of a coordinated international response to future emer-

gent disease threats.

Unfortunately, given factors such as climate change and in-

creased globalisation, SBV is unlikely to be the last ‘exotic’ vec-

tor-borne disease to affect European livestock. However, the

experience of this outbreak of SBV infection should assist in the

development of systems that facilitate the rapid identification

and notification of emerging diseases and streamline government

responses in areas such as disease control and reactive research

funding.
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