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Atomistic simulation refers to a set of simulation methods that model the materials on the

atomistic scale. These simulation methods are faster and cheaper alternative approaches

to investigate thermodynamics and kinetics of materials compared to experiments. In this

dissertation, atomistic simulation methods have been used to study the thermodynamic and

kinetic properties of two material systems, i.e. the entropy of Al-containing high entropy

alloys (HEAs) and the vacancy migration energy of thermally grown aluminum oxide.

In the first case study of the dissertation, a computational scheme for evaluating the

entropy of HEAs has been developed. Entropy is a key factor for the phase stability of

HEAs. However, it has not been well understood yet. In this study, atomistic simulation

methods have been used to quantify the configurational and vibrational entropy of HEAs

for the first time. Modified embedded atom method was used to describe the interatomic

interactions in HEAs. Monte Carlo simulation and thermodynamic integration method were

used to calculate the thermodynamic properties such as entropy and free energy. This scheme

has been tested on AlxCoCrFeNi HEAs. The results show that a reasonable evaluation of

the entropy of AlxCoCrFeNi HEAs can be obtained by the developed scheme. The FCC

to BCC phase transition in this alloy system has also been captured by the calculated free

energy. Importantly, it is found that atomic vibrations have an important effect on the

quantitative prediction of the compositional boundary of the FCC-BCC duplex region in the

AlxCoCrFeNi HEA system. The calculated entropy has been validated by comparing the
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atomic ordering in the simulated HEAs to the HEAs in experiments. The good agreement

between the simulations and experiments indicates that the developed computational scheme

captured the non-ideality in HEAs which is the key to understand the entropy of HEAs.

In the second case study of this dissertation, the charge effect on the vacancy diffusion

in α-Al2O3 has been investigated. It has been known that the charge state has an effect

on the formation energy of vacancies. However, the relation between the charge state and

the migration energy of vacancies is unknown yet. In this study, density functional theory

calculations have been used to investigate the charge effect on the vacancy migration energy.

It is found that the vacancy migration energy depends strongly on the charge state of the

vacancy. This dependency is explained by the shift of the defect levels associated with the

vacancy and the electron occupancy on the defect levels. These findings for the first time

built a link between the electronic structure and the migration of vacancy in metal oxides.

This information indicates a novel approach to tune the diffusion kinetics by modifying the

electronic structure of metal oxides.

Keywords: atomistic simulations, Monte Carlo, density functional theory, modified em-

bedded atom method, thermodynamic integration, high entropy alloy, configurational

entropy, vibrational entropy, α-Al2O3, vacancy migration energy, charge effect, defet

level.
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1.0 OVERVIEW

The ultimate goal of materials science is to develop materials that satisfy the needs of people.

By controlling the chemical composition, crystal structure and microstructure of materials,

material scientists produce materials with all kinds of properties. The thermodynamics and

kinetics of materials are the two most important factors which tells us how to realize desir-

able compositions and structures of materials during processing. The former determines the

processing conditions, while the latter determines the time table of processing. Tradition-

ally, the thermodynamics and kinetics of materials are investigated by extensive experiments,

which are usually time-consuming and costly. The fast development of computational ma-

terials science in the past two decades, however, provides us a faster and cheaper approach

to explore the thermodynamics and kinetics of materials. In this dissertation, atomistic

simulation methods have been used to investigate the thermodynamic and kinetic properties

of materials. Two different material systems, i.e. high-entropy alloy (HEA) and aluminum

oxide, were investigated separately. This chapter begins with a brief introduction of the re-

search problems in these two case studies. Then the hypotheses, objectives and significances

of these two case studies have been discussed.

1.1 INTRODUCTION

This dissertation is composed of two case studies, each one focusing on applying atomistic

simulation methods to explore certain properties of a material system. The subject of the

first case study is the entropy of HEAs. High entropy alloys (HEAs, also known as multi-

principle element or compositionally complex alloys) refer to single phase alloys with five
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or more principle elements in equiatomic or near-equiatomic ratios [1]. The solid solution

phase has been stabilized by the large mixing entropy of HEAs [2]. However, the only current

model to calculate the mixing entropy of HEAs is the model of ideal solutions. This model is

successful in predicting the mixing entropy of dilute solutions, but it fails for HEAs at near-

equiatomic concentrations due to the complex interactions between different components. It

has already been found that the model of ideal solutions overestimated the stability of the

solid solution phase in HEAs [3]. Therefore, a new model to incorporate the non-ideality and

non-configurational effects into the evaluation of the mixing entropy of HEAs needs to be

developed. The first case study is focused on developing such a new model. In addition, the

results of the developed model has been benchmarked on an experimentally well characterized

HEA, i.e. AlxCoCrFeNi alloy. Its FCC to BCC phase transition and atomic ordering have

been investigated and compared to experimental results.

The subject of the second case study is the vacancy migration in α-Al2O3. α-Al2O3 is

commonly used as a diffusion barrier on the surface of superalloys to prevent the internal

alloy from being oxidized. Its performance is largely determined by the vacancy diffusivity

in it. The vacancy diffusivity depends on the formation energy and the migration energy of

a vacancy. Previous studies showed that the vacancy formation energy, hence the vacancy

concentration, is sensitive to the charge state and the electronic structure of a vacancy [4, 5].

However, whether there is such a charge effect on the vacancy migration energy is still

unknown. Moreover, current theoretical predictions of the activation energy for vacancy

diffusion [6, 7] are inconsistent with experimental measurements [8]. In these simulations,

only neutral vacancies have been investigated. But it is believed that the charged vacancies

are the diffusion species in α-Al2O3. Therefore, the diffusion of the charged vacancies in

α-Al2O3 should be investigated. The second case study focuses on the diffusion of charged

vacancies in α-Al2O3. The charge effect on the vacancy migration energy and its relation

with the electronic structure have been discussed.
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1.2 HYPOTHESES OF THE STUDY

In the first case study of the entropy of HEAs, following hypotheses have been tested:

• Al addition reduces the configurational entropy of AlxCoCrFeNi alloys. It has been

found that the chemical long-range order is absent in CoCrFeNi alloy [9]. But in BCC

AlxCoCrFeNi alloy, the B2-type long-range order has been found [10, 11]. Therefore, Al

addition enhanced the ordering effect, hence the non-ideality, in AlxCoCrFeNi alloys. It

is believed that the non-ideality in an alloy reduces its configurational entropy. So, it is

hypothesized that Al addition will reduce the configurational entropy of AlxCoCrFeNi

alloys.

• Considering the atomic vibration effect will improve the prediction of the compositional

boundary of the FCC-BCC duplex region in the AlxCoCrFeNi HEA system. Current

theoretical predictions [12, 13] of the upper compositional boundary of the FCC-BCC

duplex region in the AlxCoCrFeNi HEA system are all much greater than the exper-

imental result [14]. Only configurational entropy has been considered in these works.

It is suspected that non-configurational entropy may have an effect on the quantitative

prediction of the compositional boundary of this FCC-BCC duplex region. Vibrational

entropy, as an example of non-configurational entropy, has been found to be important to

the FCC-BCC phase transition of pure metals [15, 16]. Therefore, it is hypothesized that

considering the atomic vibration effect will improve the prediction of the compositional

boundary of the FCC-BCC duplex region in the AlxCoCrFeNi HEA system.

In the second case study of the vacancy diffusion in α-Al2O3, following hypotheses have

been tested:

• The greater the charge of a vacancy in α-Al2O3, the lower its migration energy. The

formation energy and the migration energy of the neutral vacancies in α-Al2O3 have been

found to be extremely large [6, 7]. The calculated migration energy itself is comparable

to the experimental activation energy which should be the sum of the formation energy

and the migration energy. However, the charged vacancies are usually considered as

the diffusion species in α-Al2O3. It has been found that the charged vacancy has a
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lower migration energy than the neutral vacancy in GaN [17] and ZnO [18]. It is highly

possible that such charge effect on the vacancy migration energy also exists in α-Al2O3.

Therefore, it is hypothesized that the greater the charge of a vacancy in α-Al2O3, the

lower its migration energy.

• The greater the defect level shift during the vacancy migration, the greater the difference in

the migration energy between the vacancies in different charge states. Vacancies introduce

defect levels in the band gap of metal oxides [19, 20, 21]. There are different numbers

of electrons filled in these defect levels of the vacancies in different charge states. Due

to the change in structure during the diffusion, these defect levels may shift. This shift

will contribute to the vacancy migration energy if there are electrons in the defect levels.

Therefore, it is hypothesized that the greater the defect level shift during the vacancy

migration, the greater the difference in the migration energy between the vacancies in

different charge states.

1.3 OBJECTIVES OF THE STUDY

The major objective of the first case study is to develop and test a computational scheme

for evaluating the entropy of HEAs. To achieve such an objective, an empirical potential for

energy calculation needs to be developed and the algorithm of thermodynamic integration

needs to be implemented. The AlxCoCrFeNi HEA system was chosen as the testing sys-

tem. Its phase stability and the atomic ordering in it have been extensively investigated in

experiments [10, 22, 23, 11, 24, 25]. Therefore, these two properties of AlxCoCrFeNi HEAs

were modelled for testing purpose. To test the two hypotheses of this case study, the config-

urational and vibrational entropy of AlxCoCrFeNi HEAs have been calculated. The effect

of Al addition on the configurational entropy has been investigated, and its relation to the

atomic ordering effect in the alloys has been inspected. The compositional boundary of the

FCC-BCC duplex region has been predicted by using only the configurational entropy and

both the configurational and vibrational entropy. The results have been compared with each

other to check the effect of the vibrational entropy.
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For the second case study, the major objective is to build a link between the electronic

structure and the diffusion kinetics of the vacancies in α-Al2O3. This objective requires the

employment of atomistic simulation methods based on quantum mechanics which provide

the information of electronic structures. It also requires identification of the possible charge

states and the diffusive paths of the vacancies in α-Al2O3. Moreover, the impurity atom

effect on the electronic structure of vacancies was investigated as a potential way to control

the diffusion kinetics of point defects. To test the two hypotheses of this case study, the

migration energy of the vacancies in different charge states has been calculated. The defect

level shift during the diffusion has also been investigated by checking the density of states

of electrons. The relation between the defect level shift and the migration energy of the

vacancies in different charge states has been discussed.

1.4 SIGNIFICANCES OF THE STUDY

The study is significant in following ways:

1. The entropy evaluation scheme is the first attempt to quantify the mixing entropy of a

non-ideal solid solution. Though mixing entropy is an important thermodynamic variable

for alloy design, the only model before this study for mixing entropy evaluation is the

ideal solution model. This study, however, emphasized on the effect of the non-ideality

in alloys. It essentially challenged materials scientists to revisit the concept of mixing

entropy.

2. HEAs such as AlxCoCrFeNi alloy have an extremely large configurational space. The

study on HEAs shows that Monte Carlo simulation is an efficient tool to sample such a

large configurational space. It reveals that the thermodynamic properties of HEAs can

be obtained by averaging over a manageable number of possible atomic configurations.

The developed method is worth to be further extended to other HEAs and materials.

3. The study on the vacancy diffusion in alumina for the first time established a link between

the electronic structure and the diffusion kinetics of the point defects in metal oxides.

It is already known that the defect concentration can be tuned by adjusting the Fermi
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energy of metal oxides [4]. But the link built in this study provides a new possibility

to tune the point defect diffusivity by modifying the behavior of the electronic structure

during the diffusion. This is a new degree of freedom for defect engineering that can be

further explored.

4. Linking diffusion kinetics to defect electronic structure offers a new perspective to un-

derstand the reactive element effect which reduces the diffusivity of Al in alumina. Con-

ventionally, the reactive element effect is explained by geometric blockage. However, this

study shows that the reactive element effect could be partially a result of the electronic

structure modification. This reveals the importance of the electronic structure to the

properties of materials that are not electromagnetic properties.
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2.0 LITERATURE REVIEW

2.1 ENTROPY OF HIGH ENTROPY ALLOYS

2.1.1 Entropy in alloys

In general, there are two types of entropy in an alloy system, namely, the configurational

entropy and the non-configurational entropy. The configurational entropy originated from

the mixing of different atoms. It is a measure of possible atomic arrangements in a certain

lattice structure. Thus for pure metals or intermetallic compounds without defects, which

have a unique arrangement of atoms, the configurational entropy is 0. Only solid solutions

with many possible atomic arrangements have a positive configurational entropy. So, the

configurational entropy is considered as the major driving force of solid solution formation

in HEAs [1]. On the contrary, non-configurational entropy is non-zero for all the solids.

Several aspects of the solid can contribute to the non-configurational entropy. For example,

the thermal vibrations of atoms around its equilibrium position produces the vibrational

entropy [26], while the different arrangements of local magnetic moment on the magnetic

atoms in an alloys brings about the magnetic entropy [27]. Moreover, the partial occupancy

of electrons on the electronic bands near the Fermi energy of an alloy introduces the electronic

entropy [28]. Non-configurational entropies were ignored in most studies of HEAs. However,

the vibrational entropy of disordered Ni3Al alloy is found to be about 0.3 R greater than

that of L12 phase [29]. This value is less than the 0.56 R of the configurational entropy but

is large enough to affect the relative stability between the disordered and L12 Ni3Al alloy.
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Therefore, it is also important to evaluate the non-configurational entropy of HEAs. In this

study, vibrational entropy is investigated in this work as an example of non-configurational

entropy in HEAs.

Current model for evaluating the configurational entropy of HEAs is the model of ideal

solution [12, 30, 31]. In the ideal solution model, the configurational entropy is calculated by

Sc = R ln Ω, (2.1)

where R is the gas constant and Ω is the total number of possible atomic configurations for

a given lattice structure. The underlying assumption of this model is that all the atomic

arrangements has an equal probability to occur in the alloy. However, this assumption is

hardly true in any real alloy, in which some atomic arrangements are usually more probable

to occur than others [32, 33, 34, 35]. This, in some cases, are caused by the size mismatch

between atoms of different element, which effect on the configuration entropy has been

considered by Ye et al [36]. But, mostly, the different bonding energy between different

element pairs is a more important factor than atomic size [37, 3]. Otto et al investigated the

element effect on the mixing entropy by substituting elements in CoCrFeMnNi alloy, which

is a single phase alloy in FCC structure [3]. By substituting one element in CoCrFeMnNi

by another element with same crystal structure, similar size and similar electronegativity,

five new quinary alloys have been synthesized. None of these new alloys were found to be

in single phase of solid-solution as for CoCrFeMnNi. This shows clearly the importance

of element effect. Therefore, a model that incorporates the interaction between different

elements is needed for evaluating the entropy of HEAs, which, unfortunately, has not been

developed yet.

The most commonly used method in vibrational entropy calculation is based on harmonic

approximation of atomic vibrations. Under this approximation, atomic vibrations in the alloy

can be decomposed into vibrations of 3N independent harmonic oscillators (phonons), where

N is the number of atoms in an alloy. Knowing the vibrational frequency of these phonons,

the vibrational entropy of the alloy is calculated by [38]

Sv = kB

3N∑
i

{
h̄νi

2kBT
coth

[
h̄νi

2kBT

]
− ln

[
2 sinh

(
h̄νi

2kBT

)]}
(2.2)
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where kB is the Boltzmann constant, h̄ is the reduced Planck constant and νi is the vibra-

tional frequency of the i-th phonon. This method can provide predictions of thermodynamic

properties of alloys in good agreement with experimental results at low temperature [16, 39].

But it fails to capture the anharmonic vibrational effect which becomes important at high

temperature [40, 41]. Moreover, current method for phonon frequency calculations relies

on the crystal symmetry to reduce the essential numbers of calculations [42, 43]. But the

absent long-range chemical ordering in HEAs makes this type of calculations intractable.

Therefore, a method to evaluate the vibrational entropy in HEAs is also lacking just as that

for configurational entropy.

In summary, the method to calculate the configurational and vibrational entropy of HEAs

is needed to be developed. In this work, an entropy evaluating scheme to calculate both

the configurational and vibrational entropy in HEAs has been developed. In this method,

empirical potential was used as the energy calculator and a set of MC simulations was used

to evaluate the thermodynamic properties of HEAs. The configurational and vibrational

entropy of AlxCoCrFeNi alloys were investigated by this method.

2.1.2 Ordering effect in alloys

The investigation of atomic ordering effect in alloys is an important tool to understand the

thermodynamic properties of HEAs. The ordering effect in alloys often indicates an enthalpy

effect which makes the alloy deviate from an ideal solution [44, 45, 46]. Therefore, it provides

information on the origin of the non-ideality in HEAs, which explains the reduction of the

entropy from the entropy of ideal solution. Moreover, the atomic ordering in alloys can be

extracted from the experimental structure factor obtained by diffraction experiments using

X-ray [9, 47], electron [48, 49] or neutron [50, 47]. Hence, the analysis of atomic ordering in

HEAs can be used to connect the experiments with theoretical works, thus offering evidences

to validate and improve current theory.

In general, three types of ordering effect can be found in an alloy, namely, long-range-

order (LRO), short-range-order (SRO) and medium-range-order(MRO). LRO is the repeti-

tion of a certain pattern of atomic structure over a large distance compared to interatomic
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distance. It can be found in the ordered alloys such as Cu3Au (L12 structure) [51], NiAl (B2

structure) [52] and NiPt (L10 structure) [53]. In these alloys, a group of atoms is arranged

in a three dimensional (3D) lattice structure, which makes the atomistic structure of these

alloys invariant under the translation by any integer linear combination of lattice vectors.

Because of this 3D periodic arrangement, the structure factor of these alloys is also a 3D

lattice in the reciprocal space. Thus, in the diffraction pattern of these alloys, a set of dis-

crete peaks can be observed. It is commonly believed that the chemical LRO is absent in

HEAs [9]. X-ray and neutron scattering investigation of CoCrFeNi HEA shows that, though

the discrete peaks of FCC phase can be observed in the diffraction pattern, the superlattice

peaks indicative of chemical ordering are lacking in CoCrFeNi HEA. This shows that the

topological LRO of FCC lattice has been kept in this HEA but the chemical LRO is missing

in it. However, the X-ray diffraction pattern of AlxCoCrFeNi and AlxCoCrCuFeNi alloy

shows clear evidence of ordered B2 phase [10, 11, 37]. The atomic structure of this B2 phase

is identified to be Al and small fraction of Fe in one sublattice while Ni and Co in another

sublattice [37, 54]. Therefore, there could still be partial chemical LRO existed in HEAs.

Contrary to the LRO, SRO is the atomic ordering over the distance comparable to the

interatomic distance. It has been found in amorphous alloys, e.g. Zr62−xTixAl10Cu20Ni8 [55]

and Zr66.7Ni33.3 [48] and disordered alloys, e.g. FeCr alloy [34]. In these alloys, a certain

local structure, e.g. icosahedral cluster [32, 33] or typical occupancies in the first and second

nearest neighbor of atoms of an element [34, 35], can be found to be dominant. But these

structures are packed in a random way so that no LRO was detected. The structure factor

of alloys with SRO usually has one or two peaks near the origin of the reciprocal space and

a flat tail oscillating around unity [56, 57, 55]. Though there has been a lack of experiments,

the SRO in Al1.3CoCrCuFeNi alloy has been investigated by ab initio MD [37]. It is found

that the bonds of Al-Ni, Fe-Cr and Cu-Cu are largely preferred in the alloy while Al-Al and

Cr-Ni bonds are unfavored. Moreover, there are also evidences from both DFT calculations

and MC simulations which show that Cr brings SRO in CoCrFeNi alloy [46, 58, 59]. These

studies show that chemical SRO can cause non-ideality in HEA even if the chemical LRO

is lacking.
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MRO is the atomic ordering over the range between, roughly speaking, 5 Å and 20 Å [60].

It is related to SRO for that it usually depicts a certain packing method of the SRO clusters.

For example, in Ni81B19, Ni80P20 and Zr84Pt16 alloys, the solute center SRO clusters are

found to packed with icosahedral topological order due to the correlation between solute

atoms [32]. Percolated network of fivefold SRO clusters has also been found in Al75Cu25

liquid alloys [61]. Experimentally, a prepeak in the structure factor is a typical feature of

an alloy with MRO [56, 57, 62]. At present, the investigations of MRO in HEAs are still

lacking. Studies, either experimental or theoretical, are needed to identify the existence of

MRO in HEAs.

In summary, LRO, SRO and MRO can all exist in HEAs and may cause the reduction of

entropy from that of ideal solutions. In this work, the atomic ordering effect in AlxCoCrFeNi

alloys were investigated. This information of atomic ordering provides a description of the

non-ideality in AlxCoCrFeNi, which can be validated by experiments.

2.1.3 Al Effect on the FCC-BCC phase transition in AlxCoCrFeNi HEA system

It is known that Al stabilizes BCC phase in HEAs. Al has been found to stabilize the

BCC phase in AlxCoCrCuFeNi, AlxCoCrFeNi, AlxCrFe1.5MnNi0.5, AlxCoCrFeNiTi, and

AlxCrCuFeNi2 alloys [25]. With the addition of Al content, these alloys transit from FCC

phase into BCC phase and B2 phase. In the binary phase diagram of Al-Ni [52], Al-Fe [63]

and Al-Co [64], all alloys form intermetallic compound in B2 structure at equiatomic con-

centration. Therefore, it is not surprising that Al stabilizes BCC structure in HEA systems

containing Ni, Fe and Co.

The interactions between Al and transition metals are different from the interactions

between transition metals. Unlike transition metals the bonds between whom are usually

s-s or s-d bonds, Al forms bonds with transition metals through s-p or p-d bonds. These

p-orbital related bonds are usually stronger than bonds between transition metals and shows

strong directionality. Therefore, Al usually forms intermetallic compounds, which stays in an

ordered crystal structure such as BCC related B2 phase [52, 63, 64], with transition metals.
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The BCC stabilizing effect of Al in AlxCoCrFeNi alloys has been extensively explored

in experiments. Kao et al [10] investigated the FCC to BCC transition in AlxCoCrFeNi

(0 ≤ x ≤ 2) alloys which have been annealed at 1373 K for 24 hours. The X-ray diffraction

(XRD) pattern reveals that the FCC phase is stable when x ≤ 0.375 while the BCC phase is

stable when x ≥ 1.25 for as-homogenized alloy. It is found that the BCC phase is composed

of Ni-Al enriched B2 phase and Fe-Cr enriched BCC phase [24] and the phase transition is

mainly caused by the precipitates of B2 phase [10]. The temperature effect on the phase

stability of AlxCoCrFeNi (0 ≤ x ≤ 1.8) has been studied by Wang et al [11] as well. It is

found that when x ≤ 0.3, the alloy was kept in FCC structure for the whole temperature

range between room temperature and 1373 K. When x ≥ 1.5, the alloy was in BCC structure

in the whole temperature range but has a transition from disordered phase to ordered phase

following temperature increases. Moreover, σ phase was found in the alloy when x is between

0.9 and 1.2 in the temperature range from 873 K to 1173 K. The existence of σ phase is

not surprising for that it has been found in binary alloy of Fe-Cr and Co-Cr alloys, but a

transition from disordered phase to ordered phase with increasing temperature is unusual,

for that entropy has a larger effect at higher temperature, which favors the formation of

disordered phase.

Other than experiments, theoretical method has also been used to predict the phase

stability of AlxCoCrFeNi alloys. Tian et al [12] investigated the FCC to BCC transition

of AlxCoCrFeNi by DFT calculations. The range of Al concentration when FCC and BCC

coexisting was determined to be 0.597 ≤ x ≤ 1.229 at 300 K. CALPHAD approach using

the database of binary and ternary alloys was also used to build the phase diagram of

AlxCoCrFeNi alloys [13]. The FCC-BCC duplex region at 1100 ◦C is predicted to be between

x = 0.35 and x = 1.65. Though the stabilization of BCC phase by Al addition has been

captured, none of the methods provides a satisfied prediction of the boundary of the FCC-

BCC duplex region as compared to the latest experimental range of 0.3 ≤ x ≤ 0.7 [14]. The

reason for this discrepancy may come from the ignorance of non-configurational entropy in

these simulations. In this work, vibrational entropy has been evaluated as an example of

non-configurational entropy. It is found that atomic vibration has an strong effect on the

relative stability between the FCC and BCC phase.
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2.2 VACANCY DIFFUSION IN α-Al2O3

2.2.1 Diffusion of Al and O in α-Al2O3

The diffusivity of oxygen anions and aluminum cations in α-Al2O3 have been extensively

measured in experiments [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75]. Oxygen diffusion in

undoped α-Al2O3 single crystals and polycrystals have been measured by several research

groups using either secondary ion mass spectroscopy (SIMS) or nuclear reaction analysis

(NRA) techniques to determine the 18O depth profiles following high temperature exchange

with 18O-enriched oxygen gas. From Arrhenius plots of diffusion coefficient data with respect

to reciprocal temperature, the activation energy for O diffusion in α-Al2O3 could be obtained

in these measurements. The currently available experimental results indicated that the

activation energy for O lattice diffusion fell into the range between 531 kJ/mol (i.e., 5.50

eV) [72] and 787 kJ/mol (i.e., 8.15 eV) [67] while the activation energy for O grain-boundary

diffusion varied from 294 kJ/mol (i.e., 3.05 eV) [69] to 896 kJ/mol (i.e., 9.29 eV) [70]. It is

notable above that the measured activation energy for O grain-boundary diffusion could be

even higher than that for O lattice diffusion. Indeed, Prot et al found the activation energy

for O lattice diffusion to be 636 kJ/mol (i.e., 6.59 eV) while that for O grain-boundary

diffusion to be 896 kJ/mol (i.e., 9.29 eV) in their measurement [70]. Moreover, Nakagawa

et al reported their measured activation energy for O grain-boundary diffusion to be 627

kJ/mol (i.e., 6.50 eV) [73] which was also higher than their own value (531 kJ/mol) [72] for

O lattice diffusion. This finding in α-Al2O3 is contrary to what is normally found in metals.

Furthermore, recent experimental data revealed that the O diffusion coefficients could vary

up to 103 times along different grain boundaries (GBs) in α-Al2O3 and were closely related

to the local arrangement of atoms on the GBs [75].

As compared to O diffusion, the experimental studies on Al diffusion in alumina are rela-

tively scarce. So far, there are only two measurements of Al diffusion processes by analyzing

the attained profiles of 26Al tracers in undoped α-Al2O3 samples at elevated temperatures.

It was found that the activation energy for Al diffusion was 477 kJ/mol (i.e., 4.94 eV) [66]

in polycrystal alumina and 510 kJ/mol (i.e., 5.29 eV) [68] in single crystal alumina. These
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results suggested that the Al lattice diffusion (with activation energy of 5.29 eV) would be

faster than the O lattice diffusion (with activation energy of at least 5.50 eV) in α-Al2O3.

In addition, Ref. [68] reported that the Al grain-boundary diffusion could also have higher

activation energy [850 kJ/mol (i.e., 8.81 eV)] than the Al lattice diffusion in alumina.

Complementary to experimental measurements, computer simulation techniques have

already been employed to elucidate the mechanism of diffusion processes in alumina at an

atomistic scale [6, 76, 77, 7, 78]. Jacobs et al calculated the activation energy for O vacancy

migration in α-Al2O3 lattice to be about 1 to 2.5 eV using both the semi-empirical model

and pair-wise Buckingham empirical potentials [79]. As compared with experimental data

(i.e., 5.50 to 8.15 eV), these theoretical predictions were obviously too low. Achieving an

improved agreement between theory and experiment, Aschauer et al extracted the activation

energy for O lattice diffusion to be 510.83 kJ/mol (i.e., 5.29 eV) from their empirical pair

potential based metadynamics and the kinetic Monte Carlo simulations [7]. Both studies

(Refs. [6] and [7]) pointed out that there were multiple elementary routes contributing to the

overall O diffusion processes in alumina. Regarding the short-circuit diffusion mechanisms

in alumina, Harding et al [76] calculated the activation energies for Al vacancy migration

along various GBs using the same empirical pair potential employed in Ref. [7]. They found

that not only the metal vacancy diffusion behavior varied greatly from one GB to another

but also the individual hops within the same GB differed considerably. Relevantly, Milas

et al investigated the diffusion of Al and O atoms on the (0001) surface of α-Al2O3 DFT

calculations [78]. It was predicted that Al surface diffusion would be facile with activation

energy of 0.73 eV but O surface diffusion would involve intermediate metastable state with

an overall energy barrier of 1.67 eV.

The difference between the theoretical and experimental activation energy reveals that

some aspects are missing in present theoretical models. Charge state of the vacancy could be

the missing piece. It has been found that the migration energy of N in GaN can be changed

by tuning the charge state of N vacancy [17]. Similar charge state dependence of vacancy

migration energy has also been found in ZnO [18]. It is also known that the formation

energy of vacancy in α-Al2O3 depends on the charge state [5]. Therefore, the charge state of

vacancy is worth to be considered. A recent work by Yang et al [80] shows that the migration
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energy of O vacancy has a strong dependence on the charge state of it. However, whether

the migration of Al vacancy has the same dependence is not explore. More importantly,

no explanation of this charge effect has been provided yet. Therefore, it is interesting to

investigate the dependence of migration energy on the charge state of vacancy in α-Al2O3.

2.2.2 Electronic structure of vacancies in insulating metal oxides

Most metal oxides are insulating [81]. For an ideal insulating metal oxides without defects,

an energy gap exists in the band structure which separates the fully occupied valence band

(VB) and the empty conduction band (CB). Usually, for binary metal oxides, the VB edge

consists mostly of 2p orbital of oxygen while the CB edge is dominated by the empty valence

orbitals of metal atoms [82, 83, 84]. When vacancies exist in metal oxides, however, defect

energy levels will be introduced in the band gap or near the band edges [19, 20, 21]. These

defect levels could be donors, acceptors or traps of electrons, which modify the electronic

and optical properties of metal oxides, e.g. change the electric conductivity and the color

of TiO2 [85].

The physical reason for the formation of defect levels can be understood by a simple idea

from the hydrogenic effective-mass theory [21, 20]. In a perfect crystal of metal oxides at

0 K, when an extra electron is introduced in, it will fill the CB edge for that the CB edge

is the lowest available energy state. However, when an anion is removed from the lattice

site, extra positive charges are introduced around the vacancy as compared to the perfect

crystal. In this case, when an extra electron is added to metal oxides, it will be attracted to

the anion vacancy and form a bounded state whose energy is lower than the CB edge. Only

when more electrons are introduced in so that the positive charges near the anion vacancy

are neutralized, the excess electrons will start to occupy the CB edge. Therefore, anion

vacancies introduce defect levels, which can accommodate number of electrons equal to the

positive charges of the vacancy, below the CB edge. For the cation vacancy, on the contrary,

there are extra negative charges near it. So the electrons are repelled from and the holes
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are attracted to the vacancy. Therefore, bounded states of holes above the VB edge will be

introduced by cation vacancies. These levels can accommodate holes with the same number

as the negative charges of the vacancy.

These defect levels play an important role in controlling the properties of metal oxides.

When the defect levels are close to the VB or CB edge, which means that the energy difference

between the defect levels and the VB or CB edge is comparable to kBT , electrons can be

easily moved to or removed from the defect levels by thermal excitations. This allows the

controlling of the electric conductivity of metal oxides [19]. On the contrary, when the

defect levels are far away from the VB and CB edge, which means that the energy difference

between the defect levels and the VB and CB edge is much greater than kBT , electrons and

holes are trapped in the defect levels so that they do not have much effect on the electric

conductivity. However, these deep levels are recombination centers of electrons and holes

that can change the adsorption and emission spectrum of metal oxides [86]. Moreover, the

position of these defect levels also have an impact on the relative stability of the vacancies

in different charge states [5].

Because of their importance, extensive simulation works have been done to investigate

the defect levels of vacancy in metal oxides using DFT simulations [5, 19, 84, 87]. In these

works, the relative stability of the vacancies in different charge states and the position of

defect levels in the band gap of metal oxides have been studied. However, these works

only focused on the relation between the electronic structure and the equilibrium state of

vacancies. In this study, on the contrary, DFT calculations have been used to investigate

the motion of defect levels during the vacancy migration. During the migration process, the

charged vacancy moved from one site to another site. This must correspond to a charge

redistribution near the vacancy which could lead to a shift of the defect levels. If there are

electrons in the defect levels, this shift may have an effect on the vacancy migration energy.

DFT calculation is known to underestimate the band gap of metal oxides. This prevents

the accurate prediction of the defect level position. However, a qualitative inspection of

the electronic structure change during the vacancy migration can still be obtained by DFT

calculations. This information can be used as a starting point for future simulations using

more advanced techniques such as quantum Monte Carlo method [88].
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3.0 METHODOLOGY: ATOMISTIC SIMULATIONS

3.1 OVERVIEW

Atomistic simulations refer to a set of simulation methods that model the materials on the

atomistic scale. Starting from the most basic ideal that materials are made of atoms, the

properties of materials are calculated by applying fundamental physical laws such as New-

ton’s second law, Schrödinger equation and statistic mechanics. Thus, atomistic simulation is

considered to be a research method which is independent of experiments. Usually, it requires

very few inputs from experimental data. This independence makes atomistic simulation a

good complement to experiments in material science.

Atomistic simulations complement experiments in several ways. First, all conditions in

atomistic simulation are controllable. Thus, by comparing experimental results to simulation

results, whether there is any uncontrollable factor can be detected and how large these factors

influence the experimental results can be determined. Traditionally, uncontrollable factor

in experiments can only be ruled out by largely repeating of experiments. With the help of

atomistic simulations, the number of repeated experiments can be reduced to a small number.

Second, atomistic simulations provide information of materials that are hard to, or some-

times cannot, be measured in experiments. Restricted by the spatial and temporal resolution

of experimental equipment, certain information, such as vacancy concentration in materials,

nucleation mechanism of dislocations and changing in electronic structure during diffusion,

can rarely be measured in experiments. On the contrary, this information can be obtained by

several runs of atomistic simulations. This detailed information offers better understanding

of material behavior, sometimes can be used as guidance for developing of new materials [89].
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Third, atomistic simulation can be used in researching material behavior under extreme

conditions, e.g. high temperature, high pressure and/or under nuclear radiations. Experi-

ments in these conditions are difficult either because of a lack of experimental equipment or

simply because it is too dangerous. Atomistic simulations, however, can always be done for

that these conditions are just numbers stored in computer memory. Properties of materials

working in nuclear reactor have been long investigated by atomistic simulations. For in-

stance, atomistic simulations has been done to investigate the defect production in collision

cascade in Zr [90]. The primary damage due to α-decay self-radiation in UO2 is also studied

by atomistic simulations [91].

Atomistic simulation methods link the microscopic properties of atoms and the macro-

scopic properties of materials following the rules of statistic mechanics. Therefore, there

are two levels of atomistic simulation methods, i.e. energy calculators which describe the

interaction between atoms and modelling methods which model the behavior of a large num-

ber of atoms. Energy calculators can be based on quantum mechanics or empirical models.

Modelling methods can be deterministic or stochastic.

The most commonly used energy calculator for solid-state system is the density func-

tional theory (DFT) [92, 93] which originated from quantum mechanics. Compared to other

quantum-mechanics-based energy calculators such as Hartree-Fock method [94] and Quan-

tum Monte Carlo [88], DFT has the advantage of relatively low computational cost but still

reasonable accuracy. Therefore, it has been widely used in calculating materials properties

such as the formation energy of alloys [46, 95], the vacancy formation and migration energy

in metal oxides [5, 77], and the electronic structure and magnetic properties of nanopar-

ticles [96, 97]. Rooted in quantum mechanics, DFT requires almost no experimental data

as input. So DFT calculation is sometimes also referred to as ab initio or first principle

calculation in computational materials science.

Another commonly used energy calculator is the empirical potential, such as modified

embedded atom method (MEAM) [98] and reaction force field [99]. Instead of simulating the

interaction between atoms on the electronic structure level, empirical potentials describe the

interatomic interactions by model functions. In these model functions, there are adjustable

parameters which need to be determined for a specific material system. These parameters are
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usually fitted to materials properties from experimental measurements or DFT calculations.

Compared to quantum-mechanics-based energy calculator such as DFT, the computational

cost of empirical potentials is much lower. Therefore, they have been extensively used in large

scale simulations with millions of atoms. However, one empirical potential cannot accurately

reproduce all the properties of a material at the same time. The parameters may need to be

tuned for each specific problem. Moreover, without the information of electrons, empirical

potentials can only be used in simulations of mechanical and thermodynamic properties.

Quantum-mechanics-based energy calculators are necessary for simulations of electronic,

magnetic and optical properties of materials.

Molecular dynamic (MD) [100] simulation models the behavior of a group of atoms in

a deterministic way. The ideal of MD simulation is considering atoms as mass points in

classical mechanics, then solving the equations of motion for given initial and boundary con-

ditions. The energies and forces used in the equations of motion need to be generated by an

energy calculator either based on quantum mechanics or model functions. The deterministic

trajectories of all the atoms are traced during the simulation. The macroscopic properties

of materials can be calculated by the time average of the microscopic properties of atoms

over the simulation process. The deterministic nature of MD simulation makes it a very

good tool for investigations of the dynamic and kinetic processes in materials. Large amount

of works have been done by MD simulations on the deformation mechanism of metals and

alloys [101, 102], the diffusion of atoms in grain boundary and triple junction [103, 104], the

motion of proteins [105, 106], etc.

Monte Carlo (MC) [107] simulation, on the contrary, models the behavior of a group

of atoms in a stochastic way. It is a sampling method which generates configurations of

atoms from a certain probability distribution. Then the macroscopic properties of mate-

rials can be calculated by averaging the microscopic properties of atoms over the sampled

configurations. This stochasticity makes MC simulations efficient in evaluating the equilib-

rium properties of a material. Several varieties of MC simulations, e.g. Metropolis algo-

rithm [108], Wang-Landau Sampling [109] and thermodynamic integration [110], have been

developed for the purpose of evaluating equilibrium properties of materials. These methods

19



have been used to investigate materials properties such as the equilibrium concentration on

segregated surface [111], the free energy of alloys [112] and the equilibrium concentration of

hydrogen adsorption [113].

Though they have been widely used in studies of materials properties, there are two

common limitations of all atomistic simulation methods, i.e. the small spatial and temporal

scales. Despite the rapid development of the computing power of modern supercomputers,

usually no more than millions of atoms can be simulated by atomistic simulation methods.

For three dimensional bulk materials, this corresponds to a grain with a diameter less than

one micron. Moreover, the temporal scale that can be treated by atomistic simulations is at

most several nanoseconds. Clearly the manageable spatial and temporal scale of atomistic

simulations are way too small compared to that of real material systems. This usually leads to

unrealistic conditions such as extremely large defect concentration, high strain rate and small

correlation length in atomistic simulations. Moreover, the approximations used in energy

calculators and modelling methods also introduce errors in the simulation results. In this

sense, atomistic simulations should be considered more as tools for qualitative analyses than

quantitative predictions. Cautions are needed when interpreting the meaning of simulation

results. Detailed discussions of the limitations of each study in this dissertation are given in

the corresponding chapters.

3.2 ENTROPY OF OF HIGH ENTROPY ALLOYS

In the developed computational scheme for entropy evaluation, modified embedded atom

method potential [98, 114] has been used to describe the interatomic interactions in HEAs.

Then Monte Carlo simulation with conventional Metropolis algorithm [108] has been used

to calculate the equilibrium configuration and energy, and thermodynamic integration [110,

115] has been used to evaluate the free energy and entropy. When testing this scheme on

AlxCoCrFeNi alloys, several assumptions have been made during the simulations. First, the

configurational and vibrational entropy were calculated separately for practical calculation

issue, as discussed in section 3.2.3. It has been assumed that the cross effect between these

20



two entropies is small and will not qualitatively change the whole picture of the FCC to BCC

phase transition. Second, the BCC phase was treated as a whole despite that two phases, i.e.

Ni-Al enriched B2 phase and Fe-Cr enriched BCC phase, were found in experiments. It has

been assumed that the phase separation between these two phases could be captured in MC

simulations. Third, only the FCC and BCC phase related structures were used to develop the

MEAM potential of Al-Co-Cr-Fe-Ni alloy system. All the simulations are performed at 1373

K, at which temperature only FCC and BCC phase are found in AlxCoCrFeNi alloys [11]. It

has been assumed that the ignorance of other phases, such as σ phase, does not have large

effect on the accuracy of the potential.

3.2.1 Modified-embedded-atom-method potential developing

Modified embedded atom method [98, 114] potential is the most successful empirical potential

for metal and alloy systems. Within the frame of MEAM, the energy of an alloy system is

expressed as

E =
∑
i

[
F (ρ̄i) +

1

2

∑
j 6=i

φ (rij)

]
(3.1)

where ρ̄i is the electron density at the position of atom i, rij is the separation between two

atoms i and j, F (ρ) is the energy of an atom embedded in the electron background ρ at

its site, and φ(r) is the pair potential between two atoms with a separation of length r.

The formula of both the embedded function and the pair potential depends on a predefined

reference crystal structure. In this work, the reference structure for the potential of the pure

metals is chosen to be the most stable crystal structure of each element, i.e. FCC for Al

and Ni, BCC for Cr and Fe, and HCP for Co. For the cross potentials between all pairs of

elements, the reference structure was chosen to be B2 structure.

The embedding function is defined by

F (ρ̄i) = AiE
c
i (ρ̄i) ln (ρ̄i) (3.2)

Here ρ̄i is the electron density at the site of atom i, Ai is a parameter which needs to be

fitted, and Ec
i is the cohesive energy of the reference structure of atom i. For each element,

there is a unique set of Ai and Ec
i , which needs to be determined for the potential.
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Four terms contributed to the electron density ρ̄i in MEAM potential, i.e. a spherically

symmetric partial electron density ρ
(0)
i and the angular contributions ρ

(1)
i , ρ

(2)
i , and ρ

(3)
i .

These electron densities are calculated from equations listed below:

(ρ
(0)
i )2 =

[∑
j 6=i

ρ
a(0)
j (Rij)

]2

, (3.3)

(ρ
(1)
i )2 =

∑
α

[∑
j 6=i

Rα
ij

Rij

ρ
a(1)
j (Rij)

]2

, (3.4)

(ρ
(2)
i )2 =

∑
α,β

[∑
j 6=i

Rα
ijR

β
ij

R2
ij

ρ
a(2)
j (Rij)

]2

− 1

3

[∑
j 6=i

ρ
a(2)
j (Rij)

]2

, (3.5)

(ρ
(3)
i )2 =

∑
α,β,γ

[∑
j 6=i

Rα
ijR

β
ijR

γ
ij

R3
ij

ρ
a(3)
j (Rij)

]2

− 3

5

∑
α

[∑
j 6=i

Rα
ij

Rij

ρ
a(3)
j (Rij)

]2

. (3.6)

Here, ρ
a(h)
j (Rij) (h = 0, 1, 2, 3) is the atomic electron density contributed by atom j at the

position of atom i. Rα
ij and Rij are the α (α = x, y, z) components and norm, respectively,

of the vector pointing from atoms j to atom i. These electron densities are combined by the

following equation:

ρ̄i = ρ
(0)
i

2

1 + e−Γi
, (3.7)

where

Γi =
3∑

h=1

t
(h)
i

[
ρ

(h)
i

ρ
(0)
i

]2

(3.8)

and t
(h)
i (h = 0, 1, 2, 3) are parameters that need to be fitted. The atomic electron density

is given by

ρ
a(h)
j (R) = ρ̄0

je
−β(h)

j ( R
re
j
−1)
, (3.9)

where β
(h)
j (h = 0, 1, 2, 3) are again adjustable parameters, rej is the nearest-neighbor

distance of the reference structure of atom j, and ρ̄0
j is the density scaling factor of atom j.

Similar to Ai and Ec
i , t

(h)
i , β

(h)
j , rej and ρ̄0

j are the parameters of the potential which has a

unique value for each element.

Different from the embedded function, the pair potential φ(Rij) in MEAM is not explicitly

defined. It is calculated from the embedding function and a universal equation of state

proposed by Rose et al [116]. The Rose equation of state for a reference structure is a
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function of nearest-neighbor (NN) distance R, i.e.

Eu(R) = −Ec(1 + a∗)e−a
∗
, (3.10)

where

a∗ = α(
R

re
− 1) (3.11)

and

α =

√
9BΩ

Ec
(3.12)

Here, Eu(R) is the energy per atom of the reference structure with a NN distance of R, Ec

and re are the equilibrium cohesive energy and NN distance of the reference structure, and

B and Ω are the bulk modulus and the equilibrium atomic volume of the reference structure.

In the original MEAM [98] potential, only interactions between the NN atoms are con-

sidered. In this case, the energy per atom of the reference structure with the NN distance

of R is

Eu(R) = F [ρ̄0(R)] +
Z

2
φ(R) (3.13)

Here, Z is the number of NN atoms and ρ̄0(R) is the background electron density for the

reference structure when the NN distance is R, which is calculated by

ρ̄0(R) =


Zρa(0)(R) for FCC and BCC

Zρa(0)(R)

√
1 + t(3)

3Z2

[
ρa(3)(R)

ρa(0)(R)

]2

for HCP
(3.14)

Then the pair potential for pure element is

φ(R) =
2

Z

{
Eu(R)− F [ρ̄0(R)]

}
(3.15)

When interactions between the second nearest-neighbor (2NN) atoms are also considered,

Eq. 3.15 is still valid. However, in 2NN MEAM, the background density ρ̄0(R) becomes [114]

ρ̄0(R) =


Zρa(0)(R) + Zbρa(0)(aR) for FCC and BCC

Zρa(0)(R)

√
1 + t(3)

3Z2

[
ρa(3)(R)

ρa(0)(R)

]2

+ Zbρa(0)(aR) for HCP
(3.16)

where b is the ratio between the number of 2NN and NN atoms and a is the ratio between

2NN and NN distance in the reference structure.
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In the cross potential, the pair potential φAB(R) takes a different form. In B2 structure,

there are two atoms in a cubic unit cell, with element A occupies the corner and element B

occupies the body center. Each atom has 8 NN atoms with different element type. Therefore,

the energy per unit cell is

2Eu(R) = F
[
ρ̄0
A(R)

]
+ F

[
ρ̄0
B(R)

]
+ 8φAB(R) (3.17)

where

ρ̄0
A = 8ρ

a(0)
B (R), (3.18)

ρ̄0
B = 8ρ

a(0)
A (R), (3.19)

(3.20)

Therefore, for B2 reference structure, the pair potential φAB(R) is

φAB(R) =
1

8

{
2Eu(R)− F

[
ρ̄0
A(R)

]
− F

[
ρ̄0
B(R)

]}
(3.21)

In current form of MEAM potential, only the pair interactions up to 2NN are considered.

However, in the electron density calculations, the density contributions from farther atoms

are also counted in. Therefore, a screen function is introduced to eliminate these contribu-

tions. The many-body screen function Sij between two atom i and j is defined by [98, 114]

Sij =
∏
k 6=i,j

Sikj (3.22)

where Sikj is the screening factor of atom k to the interaction between atom i and j. The

screen factor Sikj is calculated by

Sikj = fc

(
C − Cmin

Cmax − Cmin

)
(3.23)

where Cmax and Cmin are adjustable parameters, fc(x) is a smooth function, which is given by

fc(x) =


1 x ≥ 1

[1− (1− x)2]
2

0 < x < 1

0 x ≤ 0

(3.24)
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and C is calculated by

C =
2(Xik +Xkj)− (Xik −Xkj)

2 − 1

1− (Xik −Xkj)2
(3.25)

where Xik = (Rik/Rij)
2 and Xkj = (Rkj/Rij)

2 with Rij the separation between atom i and j.

Figure 3.1: The unit cell of (a) NiCo (B2), (b) AlCr (L10) and (c) Al3Fe (L12), which are

used in potential developing.

In this work, the parameters of the MEAM potential for Al, Co, Cr, Fe and Ni were

obtained from literature [117, 118, 119, 120], while the cross potentials for each element pair

were developed by fitting the MEAM predictions of physical properties to DFT calculation

results. All the DFT calculations were carried out using Vienna Ab initio Simulation Package

(VASP) [121, 122]. In all DFT calculations, the projector augmented wave [123] method

and Perdew-Burke-Ernzerhof (PBE) [124] exchange-correlation functional were used. The

energy cutoff was set to 600 eV, and the density of Monkhorst-Pack k-point mesh [125] was

11×11×11. The physical properties that has been used in the fitting process were the lattice

parameters and formation enthalpy of ordered AB (B2 structure as shown in Figure 3.1(a)),

AB (L10 structure as shown in Figure 3.1(b)), A3B (L12 structure as shown in Figure 3.1(c))

and AB3 (L12 structure) phases for all element pairs.
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3.2.2 Monte Carlo simulation method

In order to evaluate the thermodynamic properties and to obtain the equilibrium atomic

structure of HEAs, Metropolis-type MC simulations algorithm [108] was used to sample the

possible atomic configurations. In a system with constant number of atoms, volume and

temperature, the probability of finding the system stay in an atomic configuration is the

canonical distribution, i.e.

p(E) = exp

(
− E

kBT

)
(3.26)

where E is the energy of the configuration, T is the temperature and kB is the Boltzmann

constant. The macroscopic property of the system is the average of the microscopic physical

quantity over all atomic configurations weighted by this probability distribution. Using

Metropolis algorithm, a sample of atomic configurations can be generated from the desired

probability distribution. Then the average properties of these sample configurations can

used be an approximation of the properties of an alloy.

To model the equilibrium AlxCoCrFeNi alloys by MC simulations, a 8× 8× 8 supercell

of FCC crystal structure (2048 lattice points) and a 10 × 10 × 10 supercell of BCC crystal

structure (2000 lattice points) were built at first. In each model, Al atoms were filled in the

lattice points randomly with a mole ratio of x/(x+ 4). Then Co, Cr, Fe and Ni atoms were

filled in the rest lattice points randomly with equimolar concentrations. Starting from this

random structure, one of two trial motions were chosen to be done in each MC iterations.

The first one is swapping two atoms with different element type. This swapping can happen

between any two atoms regardless of the distance between them, once they have different

element types. Therefore, every swapping generates a new configuration. The second one

is displacing an atom by a small amount. This trial motion kicks the atom away from

the equilibrium position thus induced the effect of vibration into the simulations. At every

MC iteration, the energy difference ∆E of the alloy after and before the trial motion was

calculated, and the new configuration was retained with a probability of

p = min

[
1, exp

(
−∆E

kBT

)]
(3.27)
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After several MC iterations, the models of AlxCoCrFeNi evolved into a state in which the

energy of the system was oscillating around a constant value. This state is the equilibrium

state and the alloy properties can be extracted from the atomic configurations in this state.

In this work, two types of MC simulations have been done for the purpose of separating

the configurational and vibrational entropy. In the simulations of configurational entropy,

only swapping of atoms was performed at each iterations. It has been found that the models

entered the equilibrium state in 100 thousands MC iterations. Therefore, 2 million iterations

in total were used in this MC simulations and the thermodynamic and structural properties

of the alloy were obtained by averaging the corresponding properties over the configurations

generated every 1000 MC iterations in the last 1 million iterations. In the simulations of

vibrational entropy, only displacing of atoms was performed. In this case, the system needs

2 million iterations to reach equilibrium. Hence, 5 million iterations were used and the

properties of the alloy were averaged over the configurations generated very 1000 iterations

in the last 2 million iterations. The simulation temperature was set to 1373 K, which is

the experimental annealing temperature of AlxCoCrFeNi alloys [10]. Periodic boundary

condition was assumed in all MC simulations.

3.2.3 Free energy and entropy evaluation method

In this study, thermodynamic integration (TI) [110, 115] was used to evaluate the free energy

of HEAs. TI starts from the observation that the free energy difference of two systems can

be evaluated by an adiabatic integration. Suppose there are two systems, 0 and 1, with same

number of atoms, whose potential energy are V0 and V1 respectively. Then the Hamiltonian

of these two systems are H0 = T + V0 and H1 = T + V1 respectively, where T is the kinetic

energy of the system. Considering a system whose Hamiltonian is

H(λ) = T + λV1 + (1− λ)V0 (3.28)

the free energy of this system is

F (λ) = −kBT ln

[∫
exp

(
−H(λ)

kBT

)
d~pd~q

]
(3.29)
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where ~p and ~q are the momentums and the positions of all the atoms. Using the identity

F (1)− F (0) =

∫ 1

0

∂F

∂λ
dλ, (3.30)

and noticing that F (1) and F (0) are the free energy of system 1 and 0 respectively, one can

obtain a formula to calculate the free energy difference of these two systems, i.e.

∆F = F (1)− F (0) =

∫
〈V0 − V1〉λ dλ, (3.31)

where 〈V0 − V1〉λ is the equilibrium ensemble average of the potential difference at a certain

value of λ. Thus, if the free energy of one system is known, the free energy of the other

system can be obtained.

However, to calculate the free energy difference by Eq. 3.31, one has to do MC or MD

simulations at different λ to obtain the ensemble average of the potential difference. This

can be very time consuming for that a large number of different λs are needed to get an

accurate integration result. This problem can be solved by employing a time dependent

λ [115]. Using a continuous function changing from 0 to 1, the free energy difference can be

calculated by

∆F =

∫ t1

t0

[V0(λ(t))− V1(λ(t))]
∂λ(t)

∂t
dt. (3.32)

This formula allows the calculation of the free energy difference in one simulation without

large error once the time step dt is small enough.

In order to use TI to calculate the free energy of HEA, a reference state with already

known free energy is needed. If only configurational entropy is considered, it is natural to

use the ideal solid solution whose potential energy is a constant

V =
N∑
i

Ei (3.33)

and free energy is

F =
N∑
i

Ei − TSideal (3.34)

28



where N is the number of atoms, Ei is the energy of each atom in their standard state,

e.g. energy of Ni atom in FCC lattice, and Sideal is the entropy of ideal solution, which is

calculated by

Sideal = −kB
∑
i

xi lnxi (3.35)

If vibrational configuration is also considered, an Einstein crystal [126] of ideal solution can

be used as the reference state. The potential and free energy of this system are

V =
N∑
i

Ei +
1

2
K

3N∑
i

(∆xi)
2 (3.36)

F =
N∑
i

Ei − TSideal +
3Nh̄ν

2
+ 3NkBT ln

[
1− exp

(
− h̄ν

kBT

)]
(3.37)

where, K and ν are the stiffness and vibrational frequency of all oscillators, which are

related by

ν =

√
K

m̄
(3.38)

Here, m̄ is the average mass weighted by the mole fraction of each element. Once the free

energy of a system is obtained, the entropy of the system can be calculated by

S =
F − U
T

(3.39)

where U is the internal energy of the alloy, which can be evaluated by an independent

Metropolis MC simulation.

Ideally, the total free energy and entropy including both configurational and vibrational

contribution can be obtained in one TI simulation. Practically, however, the required number

for MC iterations to achieve a converged estimation of free energy and entropy is too large, if

the configurational and vibrational effect are considered together. Moreover, to understand

the individual effect of configurational and vibrational entropy respectively, it is better to

evaluate them separately. Fortunately, the cross effect between the configurational and

vibrational effect on the free energy is small, for that the difference in the vibrational free

energy calculated on 10 different atomic configurations of the same alloy has been found to

be less than 0.1%. Therefore, two types of TI simulations were performed to evaluate the

configurational and vibrational free energy separately. In the simulation of configurational
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entropy, the vibrations of atoms were switched off. 2 million MC iterations was used in this

type of simulations, which is long enough to obtain a converged estimation of the free energy.

For the vibrational entropy simulations, the atom swapping was turned off. This type of

simulations requires 10 million MC iterations to get a converged value of free energy. The

stiffness constant K of the Einstein crystal was set to 2 eV/Å2 for all simulations. Periodic

boundary condition was assumed in all MC simulations.

3.3 VACANCY DIFFUSION IN α-Al2O3

3.3.1 Density functional theory simulations

Density functional theory [92, 93] is a modelling method which is used to investigate the

ground state properties of a many electron system. Using electron density as the variable

which uniquely determines the energy of the system, Kohn et al [92, 93] prove that a many-

electron Schrödinger equation can be reduce to a set of effective single-electron equations,

i.e. the famous Kohn-Sham equations,

{
− h̄2

2m
∇2 + vext(~r) + e2

∫
n(~r′)

|~r − ~r′|
d~r′ + vXC[n(~r)]

}
φi(~r) = εiφi(~r) (3.40)

with

n(~r) =
∑
i

|φi(~r)|2 (3.41)

where φi(~r) is the effective single-electron wave function of the i-th electron, n(~r) is the

electron density, vext(~r) is the external potential, e.g. Coulomb potential between nuclei

and electrons, at position ~r, and vXC[n(~r)] = δEXC[n(~r)]/δn(~r) is the exchange-correlation

potential, which describes the exchange energy of electrons caused by the Pauli exclusion

principle and the energy difference, i.e. the correlation energy, between a set of interacting

and non-interacting electrons. It is noteworthy that the term e2
∫ n(~r′)
|~r−~r′|d~r

′, which describes

the interaction between electrons, is also implicitly depends on the effective single-electron

wave functions. Therefore, these equations have to be solved in a self-consistent way.
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To solve Kohn-Sham equation numerically, it is necessary to discretize it into a matrix

equation. This is done by choosing a set of basis functions so that the wave function and

the Hamiltonian are represented by vectors and matrices in the linear space spanned by

these basis functions. There are three types of basis functions commonly used in DFT

simulations [127], namely, localized orbitals, plane waves and augmented functions. For

crystals, which are translationally invariant, plane waves are the natural choice. Using

plane-wave basis-set, all the components of the wave function and Hamiltonian can be easily

calculated by fast Fourier transformation. Then the Kohn-Sham equation is solved in the

Fourier space. In most plane-wave basis-set DFT codes, the number of plane waves used

in one calculation is determined by an energy cutoff Ecut =
h̄2G2

cut

2m
, where m is the mass of

electron and Gcut is the length of the largest wave vector of the plane wave. This energy

cutoff needs to be large enough to obtain accurate results of energy and wave functions.

With an appropriate energy cutoff, the ground state energy of a many-electron system can

be calculated once the external potential and the exchange-correlation potential are known.

The most trivial form of the external potential is simply the summation of Coulomb

potential centered on each nucleus. In this case all electrons in the system were treated

explicitly. However, most properties of materials are determined by the valence electrons,

while the core electrons are in most cases chemically inert. Therefore, it is reasonable to

approximate the nucleus together with the core electrons of an atom as an ionic core and

use an effective potential (pseudopotential) to describe the interaction between the core and

valence electrons. In this way, the number of single-electron wave function that needs to

be solved in a system can be largely reduced. Moreover, the orthonormality between the

wave functions of core and valence electrons causes wiggles in the wave function of valence

electrons near the core region. Using pseudopotential smooths out the wiggles and reduces

the number of plane waves required to expand the wave function. Therefore, pseudopo-

tentials are largely used in plane-wave basis-set DFT codes to accelerate the calculations.

Three types of pseudopotentials were commonly used in plane-wave basis-set DFT calcu-

lations, i.e. norm-conserving pseudopotential (NCPP) [128, 129], ultrasoft pseudopotential

(USPP) [130, 131, 132] and projector augmented wave method (PAW) [133, 134]. Both

three pseudopotentials can provide accurate predictions of materials properties once they
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have been carefully tuned [134, 135]. However, USPP are the fastest for that its energy

cutoff is only a third to a half of the energy cutoff of other pseudopotentials, while PAW

method provide the most accurate predictions in systems with strong magnetic moments

or large difference in electronegativity. So a suitable pseudopotential needs to be chosen to

balance the computational cost and accuracy.

The only term that is unknown in the Kohn-Sham equation is the exchange-correlation

potential. Though the exact exchange energy between the electrons can be calculated from

the exchange term in Hartree-Fock theory, i.e.

EX [n] = −1

2

∑
i,j

∫
φ∗i (~r)φ

∗
j(~r
′)φj(~r)φi(~r

′)

|~r − ~r′|
d~rd~r′ (3.42)

the exact form of correlation energy remains unknown. Even for the exchange energy in

Eq. 3.42, the form of its variation with respect to the electron density n is too complicated

to be implemented in an efficient way. Therefore, several approximations have been proposed

to provide a simple but reasonably accurate description of the exchange-correlation energy.

The first level approximation is the local density approximation (LDA), which approximates

the exchange energy by

ELDA
X [n] = −3

4

(
3

π

) 1
3
∫
n(~r

4
3 )d~r (3.43)

and parametrizes the correlation energy from quantum Monte Carlo simulations [136]. Be-

ing a rough approximation, the cohesive energy of molecules and crystals are usually over-

estimated by 10%-20% in LDA. However, LDA provides surprisingly accurate prediction of

lattice parameters and bond lengths (within 1%) [137]. The generalized gradient approxima-

tion (GGA) take one step further to add the dependence of the gradient of electron density

into the exchange-correlation functional. Several forms of GGA has been proposed such

as Becke-Lee-Yang-Parr (BLYP) [138, 139], Perdew-Wang 1991 (PW91) [140] and Perdew-

Burke-Ernzerhof (PBE) [124]. These exchange-correlation functionals provide more accurate

predictions of cohesive energy compared to LDA. However, the lattice parameters are usually

overestimated by GGA [141]. Moreover, both LDA and GGA severely underestimates the

band gap of semiconductors and insulators. This band gap problem in DFT calculations is

largely due to the self-interaction error (SIE) [19, 142, 143] which arises from the factor that

32



the Coulomb interaction of an electron with itself is not totally cancelled by the approximated

exchange-correlation energy in the Kohn-Sham Hamiltonian. There is no universal scheme

to completely correct SIE in DFT currently. However, it is found that SIE in Hartree-Fock

exchange energy and LDA/GGA exchange-correlation energy have opposite behaviors [142].

Therefore it is expected that the band gap prediction from DFT can be improved due to

the SIE cancellation if Hartree-Fock exchange energy and LDA/GGA exchange-correlation

energy are mixed. This leads to the hybrid functional such as PBE0 [144] and Heyd-Scuseria-

Ernzerhof (HSE) [145]. In these functionals, the mixing coefficients are either predefined

or fitted to experimental results. Hybrid functionals can partially improve the prediction

of band gap [146], but are much more expensive than calculations using LDA and GGA.

Therefore, just like pseudopotentials, a trade off between computational cost and accuracy

has to be made when choosing exchange-correlation functional.

In this work, the plane-wave basis-set pseudopotential DFT calculations have been per-

formed on VASP [121, 122] to investigate the charge effect on the vacancy migration energy

in α-Al2O3. The PAW method [123] and PBE exchange-correlation functional were used

in all calculations. The energy cutoff was set to 500 eV and the Monkhorst-Pack k-point

mesh [125] with a density of 3×3×2 was used for k-space integration. All the crystal struc-

tures were optimized under constant-volume restriction until the Hellman-Feynman force

exerted on each ion is less than 0.01 eV/Å.

3.3.2 Evaluation of vacancy formation energy

The vacancy formation energy ∆Ef is calculated by

∆Ef = Eq
v − Eperf + µi + qµe (3.44)

where Eq
v and Eperf are the energies of the simulation cell with and without a vacancy whose

charge is q, µi (i=Al or O) is the chemical potential of Al or O and µe is the chemical

potential of electrons. µe can be defined as a Fermi level εF relative to the valence-band

maximum (VBM) of the perfect crystal, i.e. µe = Eperf
V BM + εF . According to this definition,
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the type of majority charge carriers in Al2O3 can be characterized by εF . If εF is close to

zero, then Al2O3 is p-type. On the contrary, if εF is close to the conduction-band minimum

(CBM), then Al2O3 is n-type .

The vacancies investigated in this work are oxygen vacancies with a charge of 0 (V 0
O), +1

(V 1+
O ) and +2 (V 2+

O ) and aluminum vacancies with a charge of 0 (V 0
Al), −1 (V 1−

Al ), −2 (V 2−
Al )

and −3 (V 3−
Al ). These vacancies in different charge states were modelled by changing the total

number of electrons in the simulation cell. The calculations of charged defects with periodic

boundary condition introduces a spurious interaction between the defect and its periodic

copies. Hence a correction of the defect-defect interaction is needed. Here, this spurious

interaction has been corrected by using the scheme proposed by Makov and Payne [147] and

Neugebauer et al [148]. The finite size errors estimated in this study are 0.72 eV for V 2+
O

and 1.63 eV for V 3−
Al . These values are found to be within the 0.2 eV uncertainty range, as

compared to the predictions from improved fitting method for finite size corrections. In the

hexagonal structure, the dielectric constant of alumina varies in the direction perpendicular

(9.5) and parallel (11.6) to c axis [149]. Therefore, an average value of 10.6 is used to estimate

the correction.

The chemical potential of Al and O has been determined following the method suggested

by Finnis et al [150]. The chemical potential of oxygen µO at temperature T and oxygen

partial pressure pO2 is

µO = µ0
O + ∆µO(T ) +

kBT

2
ln
pO2

p0
(3.45)

where µ0
O is the chemical potential of oxygen at a standard state with temperature T 0=298.15

K and pressure p0=1 atm. and ∆µO(T ) is the chemical potential difference of oxygen be-

tween temperature T and T 0 at the standard pressure p0. The latter can be obtained from

thermodynamic tables [151], while the former can be determined by a combination of DFT

and experimental results. For the reaction 2Al + 3
2
O2 = Al2O3, the standard Gibbs free

energy change is

∆G0
Al2O3

= µ0
Al2O3

− 2µ0
Al − 3µ0

O (3.46)

where µ0
Al2O3

and µ0
Al are the chemical potential of Al2O3 and Al at standard state respec-

tively. For a solid, the Gibbs free energy change is small between 0 K and 298.15 K [150].

Therefore, µ0
Al2O3

and µ0
Al can be approximated by the energy at 0 K from DFT calculations.
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Meanwhile, ∆G0
Al2O3

can be obtained from thermodynamic tables [151]. So the chemical

potential of oxygen at standard state is calculated by

µ0
O =

1

3

(
EAl2O3 − 2EAl −∆G0

Al2O3

)
(3.47)

where EAl2O3 and EAl are the energy of Al2O3 and Al which are again from DFT calculations.

With Eq. 3.46 and 3.47, the chemical potential of oxygen can be determined. Then at

equilibrium condition, the chemical potential of aluminum is calculated by µAl = 1
2
(µAl2O3 −

3µO) with µAl2O3 approximated by EAl2O3 .

The Fermi energy εF of intrinsic Al2O3 can be determined by enforcing the charge of

the whole crystal to be zero. For a certain εF , the formation energy of each vacancy can be

determined by Eq. 3.44. Then the net charge introduced by all the vacancies is

Qvac(εF ) =
∑
i

qiNi exp

(
−

∆Ei
f (εF )

kBT

)
(3.48)

where qi and Ni are the charge and number of possible sites of defect i (i=V 0
O, V 1+

O , V 2+
O ,

V 0
Al, V

1−
Al , V 2−

Al , V 3−
Al ). Meanwhile, εF also determines the number of electrons in conduction

band and holes in valence band. The net charge of electrons and holes is calculated by

Qeh(εF ) =

∫ εF

−∞
[1− f(E; εF , T )]g(E)dE −

∫ ∞
εF

f(E; εF , T )g(E)dE (3.49)

where f(E; εF , T ) = 1/
[
1 + exp

(
−E−εF

T

)]
is the Fermi-Dirac distribution and g(E) is the

density of states of electrons in Al2O3. Then the total charge in Al2O3 can be determined

at a specific εF by Qtot(εF ) = Qvac(εF ) +Qeh(εF ). The intrinsic crystal should be electrically

neutral, so the Fermi energy εF is determined by solving the equation Qtot(εF ) = 0.
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3.3.3 Calculations of vacancy migration energy

The migration energy of vacancies was calculated using the nudged elastic band (NEB)

method [152]. The ideal of NEB method is based on the concept of potential energy surface

(PES). PES is a hypersurface in 3N -dimensional space (N is the number of atoms) defined by

y = E(~R). Here ~R is a vector in the 3N -dimensional whose components are the coordinates

of atoms. On the PES, each stable structure corresponds to a local minimum, and the path

from local minimum A to local minimum B with the lowest energy is called the minimum

energy path (MEP) between A and B. The point with the highest energy on a MEP is called

the saddle point. The structure corresponds to the saddle point is the transition state, which

determines the rate for the system transiting between A and B. NEB method is designed

to find the MEP between two fixed local minima. At first step, several images are created

to represent an initial guess of the MEP. Linear interpolation is commonly used to generate

these images. Then, the force defined by ~F = −∇~RE(~R) was calculated for each image.

Next, the force is decomposed into two components, i.e. one parallel ~F‖ and the other

perpendicular ~F⊥ to the tangent direction ~τi defined by

~τi =
~Ri − ~Ri−1∣∣∣~Ri − ~Ri−1

∣∣∣ +
~Ri+1 − ~Ri∣∣∣~Ri+1 − ~Ri

∣∣∣ , (3.50)

where ~Ri is the position of the i-th image. After this, the force exerted on the i-th image is

replaced by

~FNEB = ~F⊥ + k
(∣∣∣~Ri+1 − ~Ri

∣∣∣− ∣∣∣~Ri − ~Ri−1

∣∣∣)~τi (3.51)

The second term on the right hand side is a spring force with stiffness k which tries to keep

the distances between any two neighboring images equal. This force prevents all the images

from falling into one of the two local minima. Then the MEP is obtained by minimizing

~FNEB for each image.

The original NEB method provides an efficient way to calculate the MEP. However, a

rigorous convergence to a transition state cannot be obtained for that there is no guarantee

that one of the images will fall onto the saddle point. This can be solved by a simple

modification called climb image NEB (CI-NEB) [152]. In CI-NEB, the NEB force ~FNEB was

ignored on the image with the highest energy after several iterations. Instead, the parallel
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component ~F‖ was inverted in direction and minimized so that the image climbs to the saddle

point. With this modification, both the MEP and transition state between two structures

can be obtained at the same time.

In this work, CI-NEB method with 5 images (including two local minima) was used to

search for MEP and transition state of vacancy migration in α-Al2O3. The force exerted on

each image is minimized to be less than 0.05 eV/Å. The migration energy is calculated by

the energy difference between the transition state and the vacancy state.
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4.0 RESULTS AND DISCUSSIONS: ENTROPY OF HIGH ENTROPY

ALLOYS

4.1 MEAM POTENTIAL FOR Al-Co-Cr-Fe-Ni ALLOY SYSTEM

The parameters of the MEAM potential for Al-Co-Cr-Fe-Ni alloy system used in this work

are given in the appendix. The comparison between the MEAM and DFT predictions of the

formation enthalpy and lattice parameter of ordered AB (B2) alloy for all element pairs are

given in Table 4.1 as an example. The same comparison for AB (L10), AB3 (L12) and A3B

(L12) phase are shown in the appendix. The difference in enthalpy of formation predicted

by MEAM and DFT are in most cases less than 0.03 eV/atom. More importantly, the sign

of the formation enthalpy, which indicates the stability of B2 phase, was correctly predict in

all cases. In addition, the discrepancies in the predicted lattice parameter between MEAM

and DFT are all less than 3%. This consistency between MEAM and DFT predictions shows

that this potential can provide reasonable description of the properties of binary alloys.
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Table 4.1: The formation enthalpy ∆H and lattice parameter a of ordered AB (B2) alloy

predicted by MEAM potential and DFT calculations.

AlCo AlCr AlFe AlNi CoCr

∆H (eV/atom)
MEAM −0.602 −0.035 −0.387 −0.644 0.180

DFT −0.603 −0.035 −0.330 −0.664 0.180

a (Å)
MEAM 2.853 3.037 2.977 2.916 2.846

DFT 2.853 3.037 2.882 2.893 2.846

CoFe CoNi CrFe CrNi FeNi

∆H (eV/atom)
MEAM −0.054 0.134 0.091 0.267 0.179

DFT −0.054 0.157 0.198 0.264 0.073

a (Å)
MEAM 2.843 2.878 2.834 2.956 2.882

DFT 2.843 2.881 2.823 2.896 2.846

This potential was also tested on quaternary alloys. The formation enthalpies of ordered

AlCoCrFe, AlCoCrNi, AlCoFeNi, AlCrFeNi and CoCrFeNi alloy in both FCC (as shown in

Figure 4.1(a)) and BCC (as shown in Figure 4.1(b)) structure were calculated and compared

to the prediction of DFT calculations. The results are given in Table 4.2. For FCC structure,

the MEAM and DFT results match well with each other. For BCC structure, MEAM

predictions is in general higher than DFT predictions. But the difference is less than 0.1

eV with only one exception. In addition, two method gave the same prediction of the

relative stability between the BCC and FCC structure. In general, this potential provides

a reasonable description of Al-Co-Cr-Fe-Ni alloy system as compared to DFT calculations

but with a much shorter simulation time. Therefore, it can be utilized as energy calculator

in large-scale atomic simulation, e.g. MC and TI simulations, whose spatial and temporal

scale are too large to use DFT.
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Figure 4.1: (a) The unit cell of FCC AlCoCrFe alloy and (b) the 2× 2× 2 spuercell of BCC

CoCrFeNi alloy with ordered arrangement of atoms used for potential developing.

Table 4.2: The formation enthalpy (in eV/atom) of ordered AlCoCrFe, AlCoCrNi, Al-

CoFeNi, AlCrFeNi and CoCrFeNi alloy in both BCC and FCC structure predicted by MEAM

potential and DFT calculations.

AlCoCrFe AlCoCrNi AlCoFeNi AlCrFeNi CoCrFeNi

FCC
MEAM −0.088 −0.168 −0.227 −0.053 −0.011

DFT −0.016 −0.122 −0.256 −0.063 0.066

BCC
MEAM 0.100 0.064 −0.112 0.148 0.205

DFT 0.001 −0.018 −0.147 −0.019 0.156
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4.2 ENTROPY AND ENTHALPY OF AlXCoCrFeNi ALLOYS

The entropy and enthalpy of AlxCoCrFeNi alloys were evaluated by the combination of MC

and TI simulations. The lattice parameter of AlxCoCrFeNi alloys was determined at each

x by enforcing the averaged pressure of the modelled alloy to be zero. In this case, the

enthalpy and the Gibbs free energy are equal to the internal energy and the free energy of

the alloy respectively. The sampled values of x and the equilibrium lattice parameters were

given in Table 4.3. It shows that the Al addition increased the lattice parameter of FCC

phase by 5.4%, but has a much smaller effect on the lattice parameter of BCC phase, i.e.

less than 1.3%.

Table 4.3: The lattice parameter (in Å) of AlxCoCrFeNi alloys in both FCC and BCC

phase. The mole fraction of Al is calculated by cAl = x/(x+ 4).

x 0.000 0.100 0.200 0.300 0.400 0.500 1.000 1.200

cAl 0.000 0.024 0.048 0.070 0.091 0.111 0.200 0.231

FCC 3.621 3.621 3.622 3.632 3.633 3.639 3.661 3.665

BCC 2.916 2.913 2.908 2.904 2.889 2.892 2.893 2.896

x 1.300 1.400 1.500 1.600 1.700 2.000 2.500 4.000

cAl 0.245 0.259 0.273 0.286 0.298 0.333 0.385 0.500

FCC 3.675 3.678 3.688 3.689 3.699 3.726 3.760 3.830

BCC 2.897 2.899 2.900 2.901 2.902 2.906 2.913 2.956

The configurational and vibrational entropy are given in Figure 4.2(a) and 4.2(b) sepa-

rately. The configurational entropy of all the alloys is always less than the entropy of ideal

solution. So none of the AlxCoCrFeNi alloys is an ideal solution. The configurational en-

tropy of CoCrFeNi alloy in FCC phase is 1.301 R, which is only slightly lower than the

1.386 R of the ideal solution. This indicates that the FCC CoCrFeNi alloy is a near ideal

solution, which is consistent with the experiments finding that chemical LRO is absent in

this alloy [9]. However, with the addition of Al, the configurational entropy of FCC phase
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decreased from ∼ 1.3 R to ∼ 1.0 R and the configurational entropy of BCC phase decreased

from ∼ 0.85 R to ∼ 0.65 R. It shows clearly that Al addition introduced chemical orderings

in AlxCoCrFeNi alloys.

The calculated vibrational entropies are in the range of 5 ∼ 8 R, which are comparable

to vibrational entropy of 3d transition metals measured in experiments [153]. Unlike the

configurational entropy, the vibrational entropy of FCC and BCC phase show different de-

pendences on Al content. For the FCC phase, the vibrational entropy first decreased then

increased as Al content increased. But for BCC phase, the vibrational entropy decreased

monotonically as Al content increased. The different behavior in vibrational entropy shows

different effect of Al addition on atomic vibrations in FCC and BCC structure. It can be

proved that the harmonic vibrational entropy defined in Eq. 2.2 is negatively correlated to

each vibrational frequency νi. Therefore, the decrease in vibrational entropy of BCC phase

indicates that Al increased the vibrational frequency, i.e. stiffened the bonds between atoms.

However, in FCC phase, this stiffening effect is only valid when cAl < 0.2 (x < 1.0). Further

addition in Al softened the bonds in AlxCoCrFeNi instead of stiffening them.

Figure 4.2: The (a) configurational and (b) vibrational entropy of AlxCoCrFeNi alloys. The

mole fraction of Al is calculated by cAl = x/(x+ 4).

42



Figure 4.3: (a) The configurational enthalpy of mixing and (b) the vibrational enthalpy of

AlxCoCrFeNi alloys. The mole fraction of Al is calculated by cAl = x/(x+ 4).

Both the configurational and vibrational entropy of FCC phase are greater than that of

BCC phase. Thus the entropy of AlxCoCrFeNi alloys tends to stabilize the FCC phase. The

enthalpy, however, has a different effect. Figure 4.3 shows that the configurational enthalpy

of mixing and the vibrational enthalpy of AlxCoCrFeNi alloys. The configurational enthalpy

of mixing reduced as Al content increased. The reducing effect is much stronger in BCC

phase so that the BCC phase is stabilized at Al-rich end. For the vibrational part, the

enthalpy of BCC phase is always lower than that of FCC phase by ∼ 0.1 eV. It seems that

the thermal motion of atoms destabilizes a close-packed structure, such as FCC structure,

more than an open structure, such as BCC structure.
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4.3 FCC TO BCC PHASE TRANSITION OF AlXCoCrFeNi ALLOYS

With the calculated enthalpy and entropy, the FCC to BCC phase transition in AlxCoCrFeNi

alloys has been investigated. An excess free energy of AlxCoCrFeNi alloys was defined as

suggested in Ref. [12], i.e.

∆G = G(cAl)− (1− 2cAl)G
FCC(0)− 2cAlG

BCC(0.5) (4.1)

where cAl is the mole fraction of Al, and GFCC(0) and GBCC(0.5) are the free energy of FCC

CoCrFeNi alloy and BCC Al4.0CoCrFeNi alloy respectively. The curve of this excess free

energy for AlxCoCrFeNi alloys in both BCC and FCC phases were plotted in Figure 4.4, and

the common tangent was used to determine the boundary of the FCC-BCC duplex region in

which FCC and BCC are in equilibrium with each other. In the case shown in Figure 4.4(a),

only the configurational effect was considered. The FCC-BCC duplex region was found to

be between x = 0.36 and x = 2.11. This range is similar to what has been found in DFT [12]

and CALPHAD [13] calculations, whose lower bound is close to, but the upper bound is

much higher than the experimental value [14]. However, in the case shown in Figure 4.4(b),

the vibrational effect has been added in. The boundary of the FCC-BCC duplex region

becomes x = 0.21 and x = 1.08. The upper boundary is largely reduced and is much closer

to the experimental value of 0.7. This shows that the vibrational effect is important to

determining the relative phase stability of AlxCoCrFeNi and cannot be ignored.
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Figure 4.4: The excess free energy (a) with configurational effect and (b) with both config-

urational and vibrational effect of AlxCoCrFeNi alloys. The mole fraction of Al is calculated

by cAl = x/(x+ 4).

This dramatic change in the upper boundary of the FCC-BCC duplex region is a re-

sult of the destabilization of FCC phase caused by the atomic vibration. As discussed in

section 4.2, FCC phase is stabilized by the vibrational entropy but destabilized by the vi-

brational enthalpy. In the interested FCC-BCC duplex region (0 < x < 2), the vibrational

entropy of FCC phase is in general greater than that of BCC phase by ∼ 0.3 R. At 1373

K, this difference downshifted the free energy curve of FCC phase by ∼ 0.03 eV. However,

the vibrational enthalpy of FCC is in general greater than that of BCC phase by ∼ 0.1 eV.

Therefore, the net effect of vibration is to upshift the free energy curve of FCC phase by

∼ 0.06 eV, which moves the upper boundary from x = 2.11 to x = 1.08.

It has been mentioned in section 4.1 that the prediction of quaternary BCC alloys from

the MEAM potential is higher than the prediction from DFT calculations. Moreover, two

phases have been found in the BCC model as discussed in section 4.4. The interface between

these two phases may not be fully relaxed due to the limited size of the simulation cell.

Therefore, it is expected that the free energy of real BCC alloys should be lower than the

value presented in Figure 4.4, which may further decrease the upper boundary of the FCC-

BCC duplex region. These errors will quantitatively change the compositional boundary of

the FCC-BCC duplex region. However, the qualitative picture that FCC is stable at low Al
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concentration, and BCC is stable at high Al concentration will not be changed. These results

show that the FCC to BCC phase transition caused by Al addition is mainly controlled by

the configurational enthalpy and entropy. But the non-configurational enthalpy and entropy

also have an important effect on the compositional boundary of the FCC-BCC duplex region.

4.4 ORDERING EFFECT IN AlXCoCrFeNi ALLOYS

As mentioned in section 2.1.2, atomic ordering can be used to validate the entropy evaluation

scheme developed in this study. Therefore, the atomic ordering effect in AlxCoCrFeNi alloys

has been investigated and compared them to experiments. The ordering effects in four

example alloys have been investigated, namely, FCC Al0.1CoCrFeNi alloy for FCC region,

BCC Al2.0CoCrFeNi alloy for BCC region, and FCC Al0.3CoCrFeNi and BCC Al1.0CoCrFeNi

alloy for the FCC-BCC duplex region. These four alloys can all be found in experiments.

The simulated XRD pattern of these four alloys are given in Figure 4.5. These patterns are

calculated by assuming the atomic structure of the alloys to be the periodic repetition of

the equilibrium supercell obtained by MC simulations. The full width at half maximum was

set to 0.1◦ for each peak. The XRD pattern of Ni, Cr and ordered AlNi3 (L12) and AlCo

(B2) alloy are given as references. It is clear that no L12 type LRO can be detected in FCC

alloys of Al0.1CoCrFeNi and Al0.3CoCrFeNi, while a B2 type ordering exists in BCC alloys of

Al1.0CoCrFeNi and Al2.0CoCrFeNi. This is consistent with experiments that AlxCoCrFeNi

alloys in FCC phase are solid solutions while AlNi enriched B2 precipitates are found in BCC

phase [10, 24, 11]. In addition, the equilibrium atomic structure of FCC Al0.1CoCrFeNi and

BCC Al1.0CoCrFeNi alloy are given in Figure 4.6. Similar to the XRD pattern, no LRO

can be seen in the atomic structure of FCC Al0.1CoCrFeNi alloy. However, the ordered B2

structure with Al and Fe on one sublattice and Ni and Co on the other is dominating in the

atomic structure of BCC Al1.0CoCrFeNi alloy. Besides, a Cr and Fe enriched phase can also

be seen in Figure 4.6(b), which is also consistent with experiments [24, 37].
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Figure 4.5: The simulated XRD pattern of FCC Al0.1CoCrFeNi, FCC Al0.3CoCrFeNi, BCC

Al1.0CoCrFeNi and BCC Al2.0CoCrFeNi alloy. The simulated XRD pattern of Ni, Cr, AlNi3

(L12) and AlCo (B2) are given as references.

Figure 4.6: The equilibrium atomic structure of (a) FCC Al0.1CoCrFeNi and (b) BCC

Al1.0CoCrFeNi alloy. For the visualization purpose, the structures without thermal motion

are given here.
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The B2 phase in stable BCC AlxCoCrFeNi (x ≥ 1.0) alloy was investigated by checking

the element distribution in the 1NN and 2NN sites of Al. Figure 4.7 shows the average

occupation possibility of each element in the 1NN sites of Al as a function of Al content. It

shows that the 1NN sites of Al in Al1.0CoCrFeNi alloy were occupied by Ni (∼ 55%) and Co

(∼ 45%), while the 2NN sites were occupied by Al (∼ 60%) and Fe (∼ 40%). This agrees

with the experimental finding that the atomic structure of this B2 phase is that Al and Fe on

one sublattice and Ni and Co on the other. [37, 54] Clearly, this partially ordered structure

explains the low configurational entropy of BCC AlxCoCrFeNi alloys. With the increasing of

Al content, Fe moved from the 2NN site to the 1NN site of Al. Then in Al4.0CoCrFeNi alloy,

the Cr-Fe enriched phase was absorbed into the B2 phase, and a B2 type structure with Al

on one sublattice and Co, Cr, Fe and Ni on the other is formed. This trend is consistent

with the phase diagram and calculated enthalpy of formation of B2 phase for Al-containing

binary alloys. B2 phase can be found in the phase diagram of Al-Ni [52], Al-Co [64] and

Al-Fe [63], while equiatomic Al-Cr alloy separates into Al8Cr5 intermetallic compound and

BCC Cr-Al solid solution at 1373 K [154]. In addition, Table 4.1 shows that the B2 phase of

AlNi and AlCo has large negative enthalpy of formation, while the enthalpy of formation of

AlFe in B2 phase is about a half of that of AlNi and AlCo. On the contrary, the enthalpy of

formation of AlCr alloy in B2 phase is close to 0. Thus when Al added to CoCrFeNi alloy,

Ni and Co were first attracted by Al to form B2 phase, while the left Fe and Cr form BCC

solid solution. With the addition of Al content, all the Ni and Co atoms formed B2 phase

with Al. Then Fe start to form B2 phase with excess Al atoms. Finally, when all the Fe

atoms formed B2 phase with Al, the excess Al atoms start to form bonds with Cr atoms. A

pseudo binary B2 compound is formed between Al and (Co, Cr, Fe, Ni).

Similar Al-induced ordering has also been found in the stable FCC AlxCoCrFeNi (x ≤

0.3) alloy. Figure 4.8 shows the average possibility of a first-nearest-neighboring lattice site

of an atom occupied by a specified element in CoCrFeNi and Al0.3CoCrFeNi alloy in their

equilibrium state. For CoCrFeNi alloy, the near 25% occupancy probability for each element

pair is an indication of near-ideal solution. Meanwhile, the formation of excess Co-Cr and

Ni-Fe nearest-neighboring pairs were also found in Figure 4.8(a), which explains the 0.085

R discrepancy in configurational entropy between CoCrFeNi alloy and ideal solution. This
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Figure 4.7: The average occupation possibility of Al, Co, Cr, Fe and Ni at the first-nearest-

neighboring sites of Al in AlxCoCrFeNi (x ≥ 1.0) alloys. The mole fraction of Al is calculated

by cAl = x/(x+ 4).

Figure 4.8: The average possibility of a first-nearest-neighboring lattice site of an atom

occupied by a specified element in the equilibrium CoCrFeNi and Al0.3CoCrFeNi alloy in

FCC phase.
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discrepancy becomes greater when Al was added into the alloy. Large number of Ni atoms

was attracted to Al in Al0.3CoCrFeNi alloy as shown in Figure 4.8(b), which can be viewed

as a precursor for nucleating Al-Ni enriched phase.

Furthermore, the lattice mismatch in AlxCoCrFeNi alloys was studied by calculating the

average bond length between each element pair. In FCC CoCrFeNi alloy, the shortest and

longest bond were found to be the Co-Fe and Co-Cr bond, which have an average length of

2.448 Å and 2.547 Å respectively. When Al is added in, e.g. in Al0.3CoCrFeNi, the shortest

bond was found to be still the Co-Fe bond with the same bond length. But the longest

bond became the Al-Co bond with an average bond length of 2.617 Å. This corresponds to

an enhancement of the lattice mismatch from 4.0% to 6.9%. In BCC phase, however, Al

addition reduced the lattice mismatch from 7.4% of Al1.0CoCrFeNi to 2.8% of Al4.0CoCrFeNi

alloy. This is because that the shortest bond length increased from 2.467 Å of the Fe-Cr bond

in Al1.0CoCrFeNi alloy to 2.543 Å of the Al-Fe bond in Al4.0CoCrFeNi alloy. Therefore, the

formation of B2 type structure not only lowered the configurational entropy, but also reduced

the lattice mismatch by minimizing the Al-Al bond and the bonds between transition metals.
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5.0 RESULTS AND DISCUSSIONS: VACANCY DIFFUSION IN α-Al2O3

5.1 CRYSTAL STRUCTURE OF α-Al2O3

In α-Al2O3, as shown Figure 5.1, O atoms are arranged in a HCP lattice while Al atoms

occupy 2/3 of the possible octahedral sites. The DFT calculations gave the optimized lat-

tice parameters for the hexagonal unit cell of α-Al2O3 to be a=4.81 Å and c=13.31 Å, the

optimized internal parameter of Al atoms to be u=0.352, and the optimized internal pa-

rameter of O atoms to be v=0.306. These results are consistent with previous theoretical

predictions [155] and experimental measurements [156].

It has been well-recognized that the energetics of atomic diffusion processes is closely

related to local atomic structures. So the local atomic structures of bulk alumina crystal

has been examined. In bulk α-Al2O3 (shown in Figure 5.2), the O atom lies at the center

of a tetrahedron whose four vertices are Al atoms and the Al atom lies at the center of an

octahedron whose six vertices are occupied by O atoms. It notes that the distance between

the central O (or Al) atoms to their neighboring Al (or O) atoms are not always equal in

alumina crystal. The DFT calculations showed that the half of the Al-O bonds have bond

length of 1.87 Å and the other half have slightly longer bond length of 1.99 Å in α-Al2O3.

Moreover, the adjacent Al-O bonds form an angle of about 110◦ around the O atom and

form an angle of about 90◦ around the Al atom.
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Figure 5.1: (a) Primitive unit cell and (b) conventional hexagonal unit cell of the crystal

structure of α-Al2O3. In the figure, gray balls represent Al atoms and red balls represent

O atoms.

Figure 5.2: Local atomic structures showing the relative positions of the central O (or Al)

lattice site and its nearest-neighboring Al (or O) lattice sites in the relaxed bulk α-Al2O3.

Blue balls represent Al lattice sites and green balls represent O lattice sites.
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5.2 VACANCY FORMATION ENERGY IN BULK ALUMINA

The formation energy of all the vacancies is presented in Table 5.1. The dependence of the

formation energy on the Fermi energy and the chemical potential change of oxygen is given

explicitly. It shows that the vacancy formation energy is a linear function of ∆µO since

only mono-vacancies are considered here. It is suggested that the partial pressure of oxygen

through out the protective alumina scale changed from 0.2 atm at the gas-oxide interface to

10−31 atm at the oxide-metal interface [157]. This corresponds to a change of about −3.9

eV in ∆µO. Therefore, the concentration of O vacancy is much greater near the oxide-metal

interface than the gas-oxide interface while the concentration of Al vacancy has an opposite

trend. It is anticipated that the O diffusion is dominating near the oxide-metal interface

while Al diffusion is dominating near the gas-oxide interface. So the dominating diffusion

mechanism must have switched somewhere in the middle of the alumina scale, at which the

partial pressure of oxygen has an intermediate value.

Table 5.1: Calculated formation energy (in eV) of the vacancies in different charge states.

The dependence on the chemical potential change of oxygen ∆µO and the Fermi energy εF

is given explicitly. ∆µO is calculated by 1
2

[
∆µO2(g)(T ) + kBT ln

pO2

p0

]
and εF is taken VBM

as zero.

O vacancy Al vacancy

Charge ∆Ef (eV ) Charge ∆Ef (eV )

0 7.33 + ∆µO 0 7.33− 1.5∆µO

+1 4.88 + ∆µO + εF −1 4.00− 1.5∆µO − εF
+2 2.19 + ∆µO + 2εF −2 4.82− 1.5∆µO − 2εF

−3 6.31− 1.5∆µO − 3εF

Table 5.1 also shows that the vacancy formation energy is linearly dependent on the

Fermi energy εF with the slope equal to the charge of the vacancy. Figure 5.3 shows the

most stable charge state of vacancies when εF changes from VBM to CBM. Here the chemical
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potential of oxygen is set to −5.69 eV, which corresponds to T = 1300 K and pO2 = 0.2 atm.

For O vacancies, V 0
O and V 2+

O are stable when εF is greater and less than 2.58 eV respectively.

V 0
Al, V

1−
Al , V 2−

Al and V 3−
Al are stable when εF is from 0.0 eV (i.e VBM) to 0.25 eV, from 0.25 eV

to 0.82 eV, from 0.82 eV to 1.49 eV, and greater than 1.49 eV, respectively. The dependence

of the vacancy formation energy on εF reflects the influence of the charge carrier type in

alumina on the charge state of the vacancies. If electrons are the majority charge carrier,

V 0
O and V 3−

Al are the most favored vacancies. Otherwise, if holes are dominating, V 2−
Al , V 0

Al

and V 1−
Al are more likely to occur.

Figure 5.3: Formation energy of the most stable vacancy as a function of chemical potential

of electron, µe. The dashed green line shows the formation energy of the unstable V 1+
O .

The chemical potential of oxygen is chosen to be −5.69 eV, which corresponds to T = 1300

K and pO2 = 0.2 atm. The vertical line denotes the Fermi energy of intrinsic α-Al2O3 at

this condition.

It should be pointed out that the calculated stable range for each vacancy has only

qualitative meaning. Because of the SIE in DFT calculations, the predicted band gap of α-

Al2O3 (∼ 6 eV) is much smaller than the experimental range (8.5 ∼ 10 eV) [158, 159, 160].
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This large band gap error leads to an underestimation of the position of the defect levels

locating in the band gap. Therefore, the formation energy of V 0
O, V 1+

O , V 1−
Al , V 2−

Al and V 3−
Al is

underestimated for that there are electrons filled in the defect levels of these vacancies (see

section 5.3). It is anticipated that V 2+
O is stable in a wider range of εF while the stable range

of V 3−
Al is narrower than the reported value.

As mentioned in section 3.3.2, the Fermi energy of intrinsic α-Al2O3 can be determined

at a certain temperature and oxygen partial pressure. At an example condition of T=1300

K and pO2=0.2 atm, the Fermi energy is determined to be 1.93 eV above VBM. Under this

condition, V 3−
Al is the most stable Al vacancy with a formation energy of 2.24 eV while the

most stable O vacancy is V 2+
O with a formation energy of 4.91 eV.

5.3 MIGRATION ENERGY FOR VACANCY DIFFUSION IN BULK

ALUMINA

Referencing to the equilibrium structure of α-Al2O3 crystal (show in Figure 5.1), Multiple

elementary diffusive jumps have been identified for O and Al atoms to diffuse in bulk alumina

through vacancy-atom exchange mechanism. As shown in Figure 5.4(a), there are two types

of O elementary diffusive jumps (jump O1-O2 and jump O3-O4) in the (0001) plane and two

types of elementary diffusive jumps (jump O1-O3 and jump O1-O4) connecting the two (0001)

planes (i.e. along [0001] direction). All the other long-range diffusive paths for O atom in

alumina can be attained by combining these four elementary jumps. In Figure 5.4(b)-(e),

the minimum energy path (marked in arrows) and transition state (denoted with a red ball)

of O lattice diffusion along the four elementary diffusive jumps were plotted, respectively.

In all the starting and ending positions of the four jumps, the O atom has four nearest

neighboring Al atoms and thus be four-fold coordinated. However, the migrating O atom

would be four-fold coordinated in the transition state of jump O1-O2, three-fold coordinated

in the transition state of jump O1-O3, and two-fold coordinated in the transition state of

jump O1-O4 and O3-O4. Compared to the migration energy in Table 5.2, it appears that
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Figure 5.4: (a) Schematics of four elementary O diffusive jumps in bulk α-Al2O3 on the

(12̄10) projection of the crystal lattice. Gray balls represent Al atoms, red balls represent O

atoms, and black arrows delineate various vacancy-O atom exchange. Local atomic structures

of the migrating O atom are depicted in (b) for jump O1-O2, in (c) for jump O1-O3, in (d) for

jump O1-O4 and in (e) for jump O3-O4. In (b)-(e), yellow balls are used to mark the initial

and final positions of the migrating O atom, red balls mark the location of the migrating O

atom in the transition states, red arrows indicate the direction of the diffusive jumps, and

blue balls represent surrounding Al lattice sites.
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the coordination number of the migrating O atom in the transition state is correlated with

the calculated migration energy of the diffusive jumps. Namely, the higher the coordination

number of O in the transition state, the lower the migration energy of the diffusive jump.

Table 5.2: Calculated migration energy (in eV) for charged O and Al vacancy diffusion in

α-Al2O3 lattice. For the Al2-Al4 and Al3-Al4 diffusion paths, the migration energies for two

diffusion segments are present separately.

O vacancies O1-O2 O1-O3 O1-O4 O3-O4

V 0
O 3.58 4.11 4.67 5.03

V 1+
O 2.07 2.82 3.07 3.66

V 2+
O 0.90 1.81 1.73 2.65

Al vacancies Al1-Al2 Al1-Al3 Al2-Al4 Al3-Al4

Step 1 Step 2 Step 1 Step 2

V 0
Al 1.80 2.05 1.56 1.61 1.93 0.32

V 1−
Al 1.73 2.04 1.49 1.65 1.87 0.31

V 2−
Al 1.66 1.96 1.30 1.68 1.74 0.27

V 3−
Al 1.55 1.76 1.02 1.77 1.56 0.25

For Al lattice diffusion in α-Al2O3, there are also four elementary diffusive jumps as

shown in Figure 5.5(a): jump Al1-Al2 is a jump between the two Al atoms locating in the

two neighboring (0001) layers; jump Al1-Al3 is a jump along [0001] direction between the

two Al atoms locating in the (0001) layers separated by one O layer; jump Al3-Al4 is a jump

tilted away from [0001] direction and between the two Al atoms locating in the (0001) layers

separated by one O layer; and jump Al2-Al4 is a jump along [0001] direction between the

two Al atoms locating in the (0001) layers separated by two O layers. The minimum energy

pathway of these four Al elementary diffusive jumps is presented in Figure 5.5(b)-(e). DFT

calculations indicated that both Al1-Al2 and Al1-Al3 diffusive jumps could be completed with

one simple jump of Al atom from the starting position to the final position. However, jumps

Al2-Al4 and Al3-Al4 involved an intermediate stable position and two simple jumps. It could
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Figure 5.5: (a) Schematics of four elementary Al diffusive jumps in bulk α-Al2O3 on the

(12̄10) projection of the crystal lattice. In the figure, gray balls represent Al atoms, red balls

represent O atoms, and black arrows delineate various vacancy-Al atom exchange paths.

Local atomic structures of the migrating Al atom are depicted in (b) for jump Al1-Al2, in (c)

for jump Al1-Al3, in (d) for jump Al3-Al4, and in (e) for jump Al2-Al4. In (b)-(e), yellow balls

are used to mark the initial, intermediate (marked with symbol m), and final positions of the

migrating Al atom, red balls mark the location of the migrating Al atom in the transition

states, and red arrows indicate the direction of the diffusive jumps, green balls represent

surrounding O lattice sites. Also, in (d) and (e), the calculated minimum energy path for

the Al atom diffusion through jumps Al3-Al4 and Al2-Al4 have been plotted, respectively.
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be seen in Figure 5.5(d) and 5.5(e) that there was a locally minimum-energy position (marked

as m) between the two facing triangular facets of the two O octahedrons for the migrating

Al atom to stay. Consequently, it involved two simple jumps (Al3-m (or Al2-m) and m-Al4),

whose transition state was the migrating Al atom lying at the center of the triangular facet of

the O octahedron, to complete these two jumps. The coordination number of the transition

state of jump Al1-Al2 is two, while for all the other jumps, the moving Al atom in transition

state is three-fold coordinated. Unlike O vacancies, the migration energy of Al vacancies in

Table 5.2 shows no dependence on the coordination number of Al in the transition state.

It is worth noting that the migration energy in Table 5.2 shows a clear dependence on

the charge state of vacancies. For the four diffusive paths studied, the average migration

energy for diffusion of V 0
O was computed to be 4.35 eV as compared to 1.77 eV for diffusion

V 2+
O . Consequently, a significant enhancement (average diffusion migration energy reduced

by 2.58 eV) has been predicted in O vacancy mobility when the charge of the O vacancy

changes from 0 to +2 . The variation of the diffusion migration energy with the charge of

the Al vacancy was found to be relatively small. Compared to the value of 1.55 eV for V 0
Al,

the average diffusion migration energy was predicted to decrease by 0.03 eV for V 1−
Al , 0.11

eV for V 2−
Al , and 0.23 eV for V 3−

Al . Nevertheless, the vacancy diffusion in alumina crystal is

strongly depends on the charge state of the vacancy involved.

This charge dependency can be explained by checking the electronic structure of α-Al2O3.

The valence band of perfect alumina is just the O 2p band near the VBM whereas the con-

duction band is mainly composed of Al 3s and 3p bands. When vacancies are introduced

to alumina, extra defect states could be observed inside the band gap. The defect state

associated to O vacancy was located at 2.41 eV above VBM and composed of the 3s and 3p

orbitals from the nearest-neighboring Al atoms (illustrated in Figure 5.6(a)-(b)). The defect

state associated to Al vacancy was found to posit at 0.58 eV above VBM and composed

of the 2p orbitals from the nearest-neighboring O atoms (illustrated in Figure 5.7(a)-(b)).

Comparing the electronic structures of the O vacancy at its relaxed state (Figure 5.6(a)-

(b)) and its transition state of jump O1-O2 (Figure 5.6(c)-(d)), it is noticed that the energy

level of the defect state shifted up by 1.51 eV at the transition state accompanying to the

spreading of defect electron density from one local Al tetrahedron to the two neighboring Al
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Figure 5.6: Isosurface (isovalue of 0.015) of electron density and calculated densities of

states (DOS) associated to the defect state of O vacancy in α-Al2O3 at (a), (b) the relaxed

state and (c), (d) the transition state of diffusive path O1-O2. The DOSs of Al, AlI, and AlII

are those from all the six surrounding Al atoms, the two Al atoms adjacent to the relaxed

O vacancy, and the two Al atoms farther away from the relaxed O vacancy.
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Figure 5.7: Isosurface (isovalue of 0.05) of electron density and calculated densities of states

(DOS) associated to the defect state of Al vacancy in α-Al2O3 at (a), (b) the relaxed state

and (c), (d) the transition state of diffusive path Al1-Al2. The DOSs of Al, OI, and OII are

those from all the ten surrounding O atoms, the four O atoms adjacent to the relaxed Al

vacancy, and the four O atoms farther away from the relaxed Al vacancy.

61



tetrahedrons. Examination of the other O vacancy diffusion paths yields similar results. It

is apparent that the O vacancy diffusion through alumina crystal involves an upshift of the

energy level of the defect state (composted of Al 3s and 3p bands) toward the conduction

band of the crystal. Regarding to Al vacancy diffusion in α-Al2O3, Figure 5.7 shows that

the energy level of the defect state (composted of O 2p band) actually shift down toward

the valence band of the crystal at the transition state in which the defect electron density is

evenly distributed between the two neighboring O octahedrons.

Figure 5.8: The calculated difference in migration energy for (a) O vacancies and (b) Al

vacancies with different charges as a function of the energy shift (∆EV) of the defect state

(with a single electron occupancy) for the corresponding diffusive paths. The dashed lines

shows the theoretical prediction of the migration energy difference calculated by the product

of the electron occupancy difference and the energy shift.

The migration energy for vacancy diffusion can be considered as the sum of the energy

changes of the electrons occupying the valence band of the crystal and those of the electrons

occupying the vacancy defect states in the diffusion process. For O vacancy, the charge

induced relaxation happened mainly on nearest neighbor Al atoms, hence has limited effect

on the valence band which is mainly contributed by O atoms. For Al vacancy, this relaxation

is found to be small. Both of these imply that the energy change related to valence electrons
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of the crystal could be small. However, the electron occupancy on defect states would vary

greatly with variations of the vacancy charge. For the O vacancy in alumina, the defect state

is unoccupied for V 2+
O , singly occupied for V 1+

O and doubly occupied for V 0
O (as marked in

Figure 5.6 (b),(d)). For the Al vacancy in alumina, the defect state contains no electron for

V 0
Al, one electron for V 1−

Al , two electrons for V 2−
Al , and three electrons for V 3−

Al (as marked in

Figure 5.7(b),(d)). Hence, the calculated migration energy difference between the vacancies

with different charges should be approximately equal to a product of the electron occupancy

difference in the defect state and the energy shift of the defect state for the same diffusive

path. In Figure 5.8, the change in diffusion migration energy due the vacancy charge against

the change in defect state energy level during the vacancy diffusion has been plotted. The

dashed lines are the theoretical prediction of the migration energy difference calculated by

the product of the electron occupancy difference and the energy shift. It shows that these

two sets of data agree well with each other. Therefore, it has been uncovered in this study

that the energy shift in the electronic defect state during diffusion is responsible for the

observed charge-dependent vacancy migration energy in alumina.

Just as in the vacancy formation energy, SIE in DFT calculations also causes an error in

the vacancy migration energy. However, this error has not been well understood yet. Indeed,

the position of defect levels in the band gap has been underestimated. But this underesti-

mation occurs both in the electronic structure of the transition state and the vacancy state.

Therefore, it is expected that the error in the vacancy migration energy and the defect level

shift is partially cancelled. In addition, there is another error in the evaluation of the defect

level shift. This error is caused by the artificial dispersion of the defect levels which is a result

of the limited size of the simulation cell [19]. The dispersion causes a trouble in locating

the exact position of the defect levels. This dispersion effect is strong in the defect levels

of Al vacancy. It could partially be the reason of the discrepancy between the calculated

migration energy difference of the Al vacancies in different charge states and the theoretical

prediction in Figure 5.8(b).

However, none of these errors would qualitatively change the picture of that, for most

cases, the migration energy of the charged vacancy is lower than that of the neutral vacancy.

This is because that the energy shift is a result of the charge redistribution around the
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vacancy site. As discussed in section 2.2.2, defect levels are introduced by the localized

charges which distributed around the vacancy. When vacancy diffuses from one site to

another, these extra charges redistributed. It can be seen in Figure 5.6 and 5.7 that these

extra charges equally distributed near the original site and the destiny site at the transition

state. This will cause a reduction in the depth of the potential well which is localized

near the vacancy site. Therefore, it is anticipated that the defect level of oxygen vacancies

moves up toward CB and the defect levels of aluminum vacancies move down toward VB

during the migration. That is what has been found in most cases. However, this analysis

is only valid if two vacancy sites of a diffusive path are located next to each other. When

an intermediate state exists in the diffusive path such as Al2-Al4 and Al3-Al4, these extra

charges near the vacancy are localized around neither the original site nor the destiny site

in both the intermediate state and the transition state. Therefore, to which band edge

the defect levels will shift during the vacancy migration from the intermediate state to the

transition state is unknown. This explains the exception occurs in the second segment of the

diffusive path Al2-Al4.
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5.4 KINETIC MONTE CARLO SIMULATION OF DIFFUSIVITY

With the migration energy of individual diffusion paths, the diffusivity of O and Al in

Al2O3 has been determined by performing Kinetic Monte Carlo (KMC) simulations [161].

Vibrational frequencies of both the vacancies and the transition states were used to provide

the rates of each diffusion path. The rate of one diffusion path is determined by the harmonic

approximation, i.e.

r =

∏
i νi∏
i ν
′
i

exp

(
−∆E

kBT

)
(5.1)

where νi and ν ′i are the vibration frequencies of vacancies and transition states respectively,

while ∆E is the migration energy of one single jump. As mentioned in section 5.3, there

are two diffusion paths of Al vacancies, i.e. Al2-Al4 and Al3-Al4, in which an intermediate

stable state exists. An effective diffusion rate was defined for these paths, i.e.

1

reff
=

1

r1

+
1

r2

(5.2)

where r1 and r2 are the diffusion rate of the first and the second segment of the diffusion

path. The mean square displacements of atoms are used to evaluate the diffusivity in KMC

simulations and this diffusivity is scaled by the equilibrium vacancy concentration to get

the real diffusivity. The diffusivity of O and Al atoms through exchanging with charged

vacancies in Al2O3 crystal in the temperature range of 1300 K to 1800 K were calculated.

Then the relation between the diffusivity and the temperature was fitted to the Arrhenius’

law to obtain the activation energy of diffusion. The activation energy for the O diffusion

through exchanges with V 0
O, V 1+

O and V 2+
O were predicted to be 11.91 eV, 9.49 eV, and 7.21

eV, respectively. The activation energy for the Al diffusion through exchanges with V 0
Al, V

1−
Al ,

V 2−
Al and V 3−

Al were determined to be 4.76 eV, 3.57 eV, 2.98 eV, and 2.99 eV, respectively.

In addition, the results indicated that the prefactor of the O diffusion through V 2+
O had a

smaller value than through other possible charged O vacancies whereas the prefactor of the

Al diffusion through V 3−
Al had the largest value among all the possible charged Al vacancies.

In summary, it has been found that V +2
O and V 3−

Al vacancies respectively led to the fastest
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diffusion of O and Al in alumina. In particular, our predicted activation energy (7.21 eV)

and prefactor (3.27 × 10−4 m2/s) for O diffusion through V 2+
O fall well into the range of

experimental values summarized in Ref. [8]

5.5 Hf EFFECT ON Al VACANCY DIFFUSION IN BULK

The charge-dependent vacancy migration energy discussed in section 5.3 shows that the

diffusivity of vacancies in α-Al2O3 can be tuned by changing the charge state of vacancy.

However, the band gap of α-Al2O3 is very large, which makes it hard to change the charge

state of a vacancy. Fortunately, there is another possible way to tune the migration energy

of vacancies, that is, modifying the defect level shift during the vacancy migration.

The interaction between Al vacancy and substitution Hf atoms in bulk has also been

investigated. As Hf is doped in Al2O3, V 3−
Al will be introduced to keep the charge neutrality

by following equation [162]

2HfO2 + 4Al0Al ↔ 3Hf1+
Al + V 3−

Al + Al2O3 (5.3)

Therefore, the number of Hf1+
Al is about 3 times of V 3−

Al . So one V 3−
Al has been put at the

nearest neighbor site of Hf1+
Al . It is found that the Al vacancy next to Hf1+

Al is still V 3−
Al and

the binding energy is −1.70 eV, which indicates a strong binding between these two point

defects. The binding energy is calculated by

∆Eb = EHf1+Al +V 3−
Al

+ Eperf − EHf1+Al
− EV 3−

Al
(5.4)

where EHf1+Al +V 3−
Al

, EHf1+Al
and EV 3−

Al
are the energy of the model contains the defect pair, single

Hf1+
Al , and single V 3−

Al , respectively, and Eperf is the energy of the model without any defect.

Moreover, the migration energy of diffuse away from along the path Al1-Al2 is calculated.

The migration energy is 1.93 eV comparing to the 1.55 eV without Hf. A detailed analysis

of DOS shows that the energy shift of the defect states of the Hf doped model is 0.04 eV less

than the energy shift without Hf. Since the energy shift of the defect states of Al vacancy is

downward, this corresponds to an increasing in migration energy by 0.12 eV, which is 32%
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of the total increasing in migration energy. Therefore, Hf not only modified the diffusion

path of V 3−
Al geometrically, but also changed the electronic structure to make V 3−

Al harder to

diffuse away. It is possible that this electronic structure modification also happens at the

grain boundary of α-Al2O3 which slows down the diffusion of Al.

5.6 STRUCTURE OF NEAR Σ11 GRAIN BOUNDARY OF α-Al2O3

The Al vacancy diffusion in the near Σ11 grain boundary (GB) was investigated. This GB

was modelled by Kenway model [163, 164, 165] with 180 atoms. In the Kenway model, the

(101̄1̄) plane of one grain is parallel to the (101̄1) plane of the other. Therefore, the two

axes of the surface supercell have been chosen to be along [1̄21̄0] and [21̄1̄1] direction for one

grain and along [1̄21̄0] and [21̄1̄1̄] direction for the other. With [21̄1̄1] direction of the former

grain parallel to [21̄1̄1̄] direction of the later grain, the GB model can be built without lattice

mismatch. In the direction perpendicular to the GB plane, each grain has a thickness of

11.9 Å, which results in 90 atoms for each grain. The out most 12 atoms for each grain were

kept in bulk structure during the relaxation and a vacuum layer of around 10 Å was added

into the supercell to eliminate the interaction between the periodic images of the slab. The

density of the k-point mesh used in all the GB calculations is 5× 5× 1.

Though crystal orientation between two grains has been defined, there are still several

internal degrees of freedom to be determined in the model. First is the possible termination

of the (101̄1̄) and (101̄1) plane. Here, the most stable termination of these two surfaces

reported in Ref. [165] has been used. The surface energy is calculated to be 2.10 J/m2 for

(101̄1̄) plane and 2.02 J/m2 for (101̄1) plane. The former is very close to the 2.08 J/m2

reported in Ref. [165], but the later is greater than the reported 1.81 J/m2 by 0.21 J/m2,

which is a result of the different energy cutoff used in two calculations.

The second internal degree of freedom is the relative displacement between two grains

in the GB plane. To determine the relative displacement corresponding to the most stable

structure, The energy of the GB with the relative displacement satisfying ~R = x~a + y~b has

been calculated, where ~a and ~b are the two axes (along [1̄21̄0] and [21̄1̄1]/[21̄1̄1̄] direction
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respectively) of the supercell in the GB plane and x and y are running through 0, 0.25, 0.5

and 0.75. During the calculations, the atoms are only allowed to move in the normal direction

of the GB plane. The resulting energy surface is given in Figure 5.9. By interpolating within

Figure 5.9: The energy of the GB as a function of the relative displacement between two

grains. The distance between the two grains in the normal direction of the GB plane is 1

Å. The data points are marked by black dot and the global minimum was marked by the

red cross.

these data points, the global minimum of this energy surface can be obtained. Then the

energy of the global minimum can be used as new data point to refine the energy surface.

The most stable structure was obtained when the global minimum determined by the new

data set is the same as the one determined by the old data set. In this way, the displacement

corresponding to the most stable structure was found at x = 0.7 and y = 0.76.

The third internal degree of freedom is the distance between the two grains in the normal

direction of the GB plane. It has been found that the energy surface of relative displace-

ment in the GB plane is insensitive to the distance between the two grains. Therefore, the
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equilibrium distance is determined by sampling different distances at the fixed displacement

in the GB plane, i.e. 0.7~a+0.76~b. In these calculations, the atoms are allowed to move in

all directions and the equilibrium distance is found to be 0.86 Å between the two grains.

The most stable structure of the near Σ11 GB is given in Figure 5.10. The formation

energy of GB is calculated by

∆EGB
f =

EGB − nEbulk

A
− σunrel101̄1̄ − σ

unrel
101̄1 (5.5)

where EGB is the total energy of the GB slab, n is the number of atoms in the GB slab,

i.e. 180, Ebulk is the energy per atom in bulk α-Al2O3, A is the area of GB and σunrel101̄1̄ and

σunrel101̄1 are the surface energy of the unrelaxed (101̄1̄) and (101̄1) surface respectively. The

formation energy of the most stable structure of the near Σ11 GB is calculated to be 2.13

J/m2. This formation energy is 0.58 J/m2 lower than the GB formation energy reported in

Ref. [165] calculated in the same sense.

Figure 5.10: The equilibrium structure of the near Σ11 GB. The Al and O atoms are

represented by the gray and red balls respectively.
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5.7 Hf EFFECT ON Al VACANCY DIFFUSION IN GRAIN BOUNDARY

OF α-Al2O3

With the stable structure, the vacancy formation energy at the near Σ11 GB of α-Al2O3

has been investigated. 12 Al atoms has been identified near the GB plane, as shown in

Figure 5.11. These Al atoms were removed one by one and the formation energy of the

vacancy was calculated by

∆Ef = Ev − Eslab + µAl (5.6)

where Ev and Eslab is the energy of the GB model with and without an Al vacancy and

µAl is the chemical potential of Al. Here, only the formation energy of neutral vacancy was

considered for that the energy of charged slab is divergent respect to the vacuum thickness 1.

The formation energy of neutral Al vacancy at the example condition of T = 1300 K and

pO2 = 0.2 atm is given in Table 5.3. It shows that the most stable site of neutral Al vacancy

is site 4.

Site 4 has two nearest GB sites, i.e. site 3 (2.99 Å) and 5 (2.96 Å). The segregation

energy of Hf, which was calculated by the energy difference between the models with Hf at

GB site and bulk site as denoted in Figure 5.11, was determined to be 0.11 eV and −0.16 eV

for site 3 and 5 respectively. This shows that Hf tends to segregate to site 5 rather than site

3. Therefore, the migration energy of neutral Al vacancy from site 4 to site 3 was studied

with and without Hf segregated to site 5.

The migration energy of neutral Al vacancy between site 4 and 3 was calculated to be

1.17 eV and 1.05 eV for forward (4 to 3) and backward (3 to 4) diffusion respectively. With

Hf segregation, the migration energy for the forward and backward diffusion becomes 1.08 eV

and 1.30 eV. Thus, when Al vacancy diffuse away from Hf, the migration energy is lowered

by 0.09 eV. But when Al vacancy diffuse toward Hf, the migration energy is risen by 0.25

eV. This is a result of destabilizing of Al vacancy near Hf. With Hf occupying site 5, the

energy difference between the vacancy at site 3 and site 4 changed from 0.12 eV to −0.22

eV. Therefore, unlike in the bulk where Al vacancies are attracted to Hf atoms, Al vacancies

in GB are repelled from Hf atoms.

1VASP manual : http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html
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Figure 5.11: The 12 GB sites (green balls) used in vacancy calculations. The blue ball

marks the bulk site used in calculations of Hf segregation.

Table 5.3: The formation energy (in eV) of Al vacancy to the 12 GB sites shown in Fig-

ure 5.11. The chemical potential of Al is chosen to be −4.30 eV at the example condition of

T = 1300 K and pO2 = 0.2 atm.

Site 1 2 3 4 5 6

∆Ef 9.91 8.75 9.33 7.87 8.29 9.17

Site 7 8 9 10 11 12

∆Ef 10.01 9.65 9.20 9.58 9.12 11.08
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However, these results are valid for the neutral vacancy only. For intrinsic α-Al2O3, V 3−
Al

is more likely to be the diffusion species. Though the charged slab cannot be handled by

VASP, the correlation between the defect level shift and migration energy difference can be

used to evaluate the migration energy of V 3−
Al . By defining the position of the defect levels

to be the energy to which the integration of the density of states from the highest occupied

energy is half of the total number of states in the defect levels, the level shift was determined

to be −0.08 eV and −0.01 eV for the forward and backward vacancy diffusion without Hf

segregation. With Hf segregation, the defect level shift was −0.04 eV (forward) and 0.03 eV

(backward). For the vacancy diffusion without Hf, the defect levels were empty. But when

Hf is added in, the defect levels were occupied by one electron for that Hf is tetravalent.

Therefore, when the Al vacancy is V 3−
Al , the forward and backward migration energy become

0.93 eV and 1.02 eV without Hf segregation and 1.00 eV and 1.36 eV with Hf segregation.

This indicate that Hf in GB can tune the defect level shift during the diffusion of V 3−
Al , which

slows down the Al diffusion in α-Al2O3.

Again, the SIE and the dispersion error mentioned in section 5.3 could be important to

the evaluation of the defect level shift during the vacancy migration. Moreover, there are

d-electrons in Hf, whose behavior is not accurately described in DFT-GGA calculations [19].

Therefore, the Hf effect on the migration energy and the defect level shift of the bulk and

grain boundary diffusion of Al vacancy still need more investigations. Nevertheless, these

results show that doping in α-Al2O3 may change the diffusivity of Al vacancies through

modifying the electronic structure during the vacancy migration.
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6.0 CONCLUDING REMARKS

6.1 CONCLUSIONS

In this dissertation, atomistic simulation methods have been used to investigate the proper-

ties of two material systems, i.e. AlxCoCrFeNi HEAs and α-Al2O3. These two case studies

demonstrated that atomistic simulation methods are efficient tools for materials researches.

They can provide information, such as configurational and vibrational entropy, short range

order in alloys and defect level shift during vacancy migration, that are hard to be mea-

sured in experiments. This information complements experimental results and improves our

understanding in materials systems.

The specific conclusions of each case study are given below:

In the first case study, an atomistic simulation method has been developed for calculating

the configurational and vibrational entropy of HEAs. This method combines the power of

MEAM potential, MC simulation and TI method to calculate the thermodynamic properties

of HEAs. For the testing purpose, the thermodynamic properties of AlxCoCrFeNi HEAs

have been investigated. The results show that the developed method provides a reasonable

estimation of the entropy in this quinary alloy system. The calculated free energy captured

the FCC to BCC phase transition caused by Al addition in AlxCoCrFeNi HEAs. Particularly,

it has been found that the FCC-BCC duplex region lies between x = 0.36 and x = 2.11 when

only configurational entropy is considered. But with atomic vibrations included in, the region

becomes between x = 0.21 and x = 1.08, which is much closer to the experimental range of

0.3 < x < 0.7 [14]. This reveals that the configurational enthalpy and entropy determine the

overall picture of the FCC to BCC transition caused by Al addition in AlxCoCrFeNi HEA

system. But the vibrational enthalpy and entropy are also important to the quantitative
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prediction of the compositional boundary of the FCC-BCC duplex region. This effect of

atomic vibrations may not be important at low temperature for that the vibrational entropy

is small compared to the configurational entropy in this case. However, it is significant and

cannot be ignored at high temperature such as 1373 K. In addition, there is still a gap in the

upper boundary of the FCC-BCC duplex region between the improved theoretical prediction

and the experimental result. This indicates that other non-configurational entropy, such as

magnetic entropy, may also contribute to the quantitative prediction of the compositional

boundary of the FCC-BCC duplex region.

Moreover, the ordering effect in AlxCoCrFeNi alloys has been investigated to validate

the calculated configurational entropy. The LRO of the simulated atomic structure of

AlxCoCrFeNi alloys agrees well with experiments, which supported the developed scheme

for entropy evaluation. Specifically, it has been found that the FCC CoCrFeNi alloy is a

near-ideal solution, with a configurational entropy of 1.301 R. The discrepancy between

the calculated value and the prediction of the ideal solution model (1.386 R) is a result of

the formation of Co-Cr and Ni-Fe nearest neighboring pairs. It has also been found that

Al addition enhanced the ordering effect in AlxCoCrFeNi alloys. In FCC phase, SRO was

enhanced by the enrichment of Ni around Al. In BCC phase, LRO was introduced by the

formation of the Al-Ni enriched B2 phase and the Fe-Cr enriched BCC phase. The structure

of the B2 phase was found to be that Al and Fe on one sublattice while Co and Ni on the

other. This B2 phase not only lowered the configurational entropy but also reduced the

lattice mismatch in AlxCoCrFeNi alloys.

The two hypotheses mentioned in section 1.2 have been tested. It has been found that

Al enhanced the atomic ordering effect by forming Al-Ni bonds in FCC phase and the B2

type ordering in BCC phase. These ordering effects reduced the configurational entropy

of AlxCoCrFeNi alloy in both FCC and BCC phase. Therefore, the hypothesis that Al

addition reduces the configurational entropy of AlxCoCrFeNi alloys is valid. It has also been

found that the vibrational effect destabilized FCC phase and improved the prediction of the

compositional boundary of the FCC-BCC duplex region in AlxCoCrFeNi HEA system. This
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destabilization is mainly contributed by the vibrational enthalpy. Therefore, the hypothesis

that considering the atomic vibration effect will improve the prediction of the compositional

boundary of the FCC-BCC duplex region in the AlxCoCrFeNi HEA system is valid.

In the second case study, the vacancy migration in α-Al2O3 has been investigated using

DFT calculations. It has been found that the migration energy of vacancies in α-Al2O3

has a strong dependence on the charge state of the vacancy. It has also been found that

the observed charge-dependent vacancy migration energy is the result of the defect level

shift during the migration and the different electron occupancies on the defect levels of the

vacancies in different charge states. These findings for the first time build the link between

the electronic structure and the vacancy migration energy. It suggests a novel route for

engineering the diffusion kinetics by changing the charge state of vacancy or tuning the

defect level shift during vacancy migration. Moreover, the calculations of Hf effect on Al

vacancy diffusion in bulk and near Σ11 grain boundary of α-Al2O3 show that Hf doping can

tune the defect level shift, which slows down the Al vacancy diffusion in α-Al2O3. It provides

a new perspective of the reactive element effect in α-Al2O3, that is, the reduced diffusivity of

Al could be partially attributed to the modification in the defect levels of Al vacancy caused

by reactive elements.

The two hypotheses mentioned in section 1.2 have also been tested. The results in

Table 5.2 show that in most cases, the greater the charge of a vacancy, the lower its migration

energy. However, there is one exception, i.e. the second segment of Al2-Al4 diffusive path.

This is because that the vacancy migration energy is not only determined by the charge state

of the vacancy but also determined by the defect level shift during the vacancy migration.

Therefore, the hypothesis that the greater the charge of a vacancy in α-Al2O3, the lower its

migration energy is invalid. However, the data points in Figure 5.8 show that the migration

energy difference between two vacancies in different charge states increased as the defect

level shift increased. Therefore, the second hypothesis that the greater the defect level shift

during the vacancy migration, the greater the difference in the migration energy between the

vacancies in different charge states is valid.
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6.2 REMAINING PROBLEMS

Despite these findings, there are several problems remaining in this study which should be

investigated in future works:

1. The configurational and vibrational free energy are treated separately in this study.

One needs to bear in mind that the cross effect between these two free energies can be

important. Because of the size mismatch between the atoms, the equilibrium position

of each atom may not be exactly on the lattice site. This may lead to a reduction in

configurational entropy for that the local strain of each atom is no longer the same. Thus,

the configurational entropy may still be overestimated in this study. This cross effect

needs to be investigated in future works.

2. The empirical potential used in this study is fitted to mostly the properties of binary

alloys. Though tested on five ordered quaternary alloys, there are still many parameters

in the potential that have not been fine tuned. Hence the interactions between the atoms

in AlxCoCrFeNi HEAs may not be described as accurately as in binary alloys. The inter-

actions between Al and transition metals are qualitatively different from the interactions

between transition metals. So the results related to the Al induced phase transition and

atomic ordering should be reliable. But the SRO formed between transition metals needs

further investigation.

3. Magnetic interactions between transition metals are not fully included in the framework

of MEAM potential. Despite that they may not qualitatively change the general pic-

ture at high temperature such as 1373 K, their effect on the enthalpy and entropy of

AlxCoCrFeNi HEAs could quantitatively change the SRO and phase stability of this

alloy system. Therefore, future works need to be done to incorporate the magnetic

interactions, e.g. using micromagnetic model, into the computational scheme.

4. The Al induced phase transition in AlxCoCrFeNi HEAs is treated as a two-phase equilib-

rium in this study. However, BCC phase is composed of the Ni-Al enriched B2 phase and

the Fe-Cr enriched solid solution. Therefore, there should be a three-phase equilibrium
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in the FCC-BCC duplex region. The phase equilibrium between FCC and B2 phase,

FCC and BCC phase and B2 and BCC phase should be investigated in future works to

provide a complete description of the phase transition in AlxCoCrFeNi HEA system.

5. It has been found that the defect levels of Al vacancy is very close to the VBM. Therefore

there are not much room left for them to shift during the vacancy migration. However,

the self-interaction error in DFT calculations tends to underestimate the position of

energy levels in the band gap. Therefore, the real position of the Al vacancy associated

defect levels could be deeper in the band gap than what has been found in this study.

So the migration energy difference between the Al vacancies in different charge states

could be greater than the reported values. It is interesting to investigate the position of

the Al vacancy associated defect levels and their shift during the vacancy migration by

more accurate methods, e.g. quantum Monte Carlo method, which may provide better

estimation of the migration energy difference.

6. The charged vacancy in the GB of alumina has not been directly simulated in this

work. Because of the uncertainty in evaluating the position of the defect levels, the

evaluated migration energy of V 3−
Al may not be reliable. The simulation of the charged

system with periodic boundary conditions has been long a problem for computational

materials science. Other DFT code with different implementations of charge correction,

e.g. SeqQuest 1, should be tested and compared to VASP. New method for the calculation

of charged systems may need to be developed.

7. Only vacancies have been considered in this study. However, interstitials can also play an

important role in the atomic diffusion in metal oxides. Similar study should be conducted

to investigate the formation and migration energy of interstitials in α-Al2O3. Combining

the study of interstitials and vacancies will provide a complete picture of intrinsic point

defects which is invaluable to the defect engineering in α-Al2O3.

8. The DFT results show that the diffusivity of vacancy in α-Al2O3 can be tuned by changing

the charge state of vacancies. It is hard to be done in alumina due to the large band

gap. However, this dependence of the migration energy on the charge state of a vacancy

is not unique in α-Al2O3. It has been found in ZnO [18] and GaN [17] as well. Thus it

1http://dft.sandia.gov/Quest/
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could be expected that this charge effect on vacancy migration energy can also exist in

other metal oxides or even nitrides. It is interesting to check the charge dependence of

the vacancy migration energy in the metal oxide which has a much narrower band gap.

In these systems, changing the charge state of vacancy may be a promising way to tune

the diffusivity of vacancies.
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APPENDIX

MEAM POTENTIAL FOR Al-Co-Cr-Fe-Ni ALLOY SYSTEM

All the fitted parameters of the MEAM potential for Al-Co-Cr-Fe-Ni alloy are given in Ta-

ble A1, A2 and A3. The comparison between MEAM and DFT predictions of the formation

enthalpy and lattice parameters of AB (L10), AB3 (L12) and A3B (L12) phase are given in

Table A4
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Table A1: Parameters of the MEAM potentials for pure metals, i.e. the cohesive energy Ec

(eV), the equilibrium NN distance re (Å), the decaying exponential factor of the universal

energy α, the scaling factor of the embedded function A, four decaying exponential factors

of the atomic charge density β(i), four weighting factors of the atomic charge density t(i) (t(0)

is always 1), the screening parameters Cmin (Cmax is 2.80 for all element), and the scaling

factor of the atomic charge density ρ̄0.

Al Co Cr Fe Ni

Ec 3.353 4.410 4.100 4.290 4.450

re 2.864 2.500 2.495 2.480 2.490

α 4.640 5.120 5.820 5.067 4.990

A 1.040 1.050 0.420 0.560 1.100

β(0) 2.040 2.100 6.810 4.150 2.450

β(1) 1.500 0.000 1.000 1.000 1.500

β(2) 6.000 1.000 1.000 1.000 6.000

β(3) 1.500 6.000 1.000 1.000 1.500

t(1) 4.000 9.000 0.300 2.600 5.790

t(2) -2.300 -1.000 5.900 1.800 1.600

t(3) 8.010 -1.000 -10.400 -7.200 3.700

Cmin 0.800 0.8000 0.780 0.360 0.800

ρ̄0 1.000 1.0000 1.000 1.1000 1.000
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Table A2: Parameters of the MEAM cross potentials for element pairs, i.e. the cohesive

energy Ec (eV), the equilibrium NN distance re (Å), the decaying exponential factor of the

universal energy α, and the screening parameters Cmax and Cmin.

X Al Al Al Al Co Co Co Cr Cr Fe

Y Co Cr Fe Ni Cr Fe Ni Fe Ni Ni

Ec 4.485 3.762 4.152 4.566 4.075 4.404 4.273 3.997 4.011 4.297

re 2.471 2.630 2.496 2.525 2.465 2.462 2.495 2.448 2.508 2.465

α 4.000 5.000 4.280 4.600 5.950 5.370 5.000 5.370 5.160 5.000

CXYX
min 1.680 1.800 1.000 1.550 1.800 1.800 1.210 1.000 1.200 1.600

CY XY
min 1.630 2.330 2.000 1.360 2.000 1.800 1.420 1.000 0.000 1.170

CXXY
min 1.780 1.810 2.000 1.940 1.900 2.000 1.590 0.000 0.800 1.800

CXY Y
min 1.900 0.200 0.600 1.380 0.700 2.000 1.620 0.000 1.900 1.110

CXYX
max 3.530 4.200 2.000 3.590 3.800 3.800 3.510 4.200 4.000 4.000

CY XY
max 3.300 4.060 4.000 3.270 4.000 3.800 3.560 4.200 2.000 2.500

CXXY
max 4.100 4.140 4.000 4.000 3.900 4.000 4.140 5.000 2.800 4.000

CXY Y
max 4.210 3.300 2.800 3.460 2.800 4.000 4.150 5.200 3.800 2.470
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Table A3: The screen parameters Cmax and Cmin of MEAM potential for ternary system.

X Al Al Al Al Al Al Co Co Co Cr

Y Co Co Co Cr Cr Fe Cr Cr Fe Fe

Z Cr Fe Ni Fe Ni Ni Fe Ni Ni Ni

CXY Z
min 1.800 2.000 2.000 2.000 2.000 2.000 2.000 1.400 1.400 2.000

CXZY
min 2.000 2.000 2.000 1.800 1.800 2.000 1.400 1.400 2.000 2.000

CY XZ
min 2.000 2.000 1.400 2.000 2.000 1.400 2.000 2.000 2.000 2.000

CXY Z
max 3.800 4.000 4.000 4.000 4.000 4.000 3.850 3.400 3.400 3.850

CXZY
max 4.000 4.000 4.000 3.800 3.800 4.000 3.400 3.400 3.850 3.850

CY XZ
max 4.000 4.000 3.400 4.000 4.000 3.400 3.850 3.850 4.000 4.000
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Table A4: The MEAM and DFT predictions of formation enthalpy and lattice parameter of

the ordered AB (L10), AB3 (L12) and A3B (L12) phase for all element pairs. The AB (L10)

phase was enforced to be in cubic lattice so that only one lattice parameter is given.

A B AB (L10) AB3 (L12) A3B (L12)

Enthalpy of formation in eV/atom

MEAM DFT MEAM DFT MEAM DFT

Al Co −0.322 −0.363 −0.182 −0.178 −0.244 −0.214

Al Cr 0.007 0.065 0.077 0.175 −0.019 −0.102

Al Fe −0.247 −0.267 −0.329 −0.201 −0.079 −0.115

Al Ni −0.550 −0.516 −0.528 −0.432 −0.293 −0.214

Co Cr 0.036 0.048 0.036 0.194 0.024 0.069

Co Fe 0.097 0.048 0.091 0.140 0.033 0.015

Co Ni 0.015 0.010 0.014 0.014 0.005 0.006

Cr Fe 0.017 0.130 0.011 0.048 0.035 0.257

Cr Ni −0.001 0.093 −0.008 −0.003 0.003 0.155

Fe Ni −0.095 −0.071 −0.183 −0.097 0.060 0.042

Lattice parameter in Å

MEAM DFT MEAM DFT MEAM DFT

Al Co 3.551 3.642 3.492 3.577 3.773 3.794

Al Cr 3.761 3.773 3.767 3.665 3.858 3.898

Al Fe 3.661 3.694 3.619 3.652 3.822 3.802

Al Ni 3.657 3.664 3.609 3.571 3.785 3.846

Co Cr 3.547 3.510 3.605 3.556 3.524 3.478

Co Fe 3.460 3.569 3.491 3.488 3.490 3.548

Co Ni 3.533 3.522 3.526 3.524 3.541 3.522

Cr Fe 3.543 3.529 3.552 3.565 3.581 3.652

Cr Ni 3.637 3.534 3.591 3.555 3.682 3.564

Fe Ni 3.553 3.576 3.578 3.556 3.517 3.575
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