
Graph Analysis of Student Model Networks

Julio Guerra
School of Information Sciences

University of Pittsburgh
Pittsburgh, PA, USA
jdg60@pitt.edu

Yun Huang
Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA, USA
yuh43@pitt.edu

Roya Hosseini
Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA, USA
roh38@pitt.edu

Peter Brusilovsky
School of Information Sciences

University of Pittsburgh
Pittsburgh, PA, USA
peterb@pitt.edu

ABSTRACT
This paper explores the feasibility of a graph-based approach
to model student knowledge in the domain of programming.
The key idea of this approach is that programming concepts
are truly learned not in isolation, but rather in combina-
tion with other concepts. Following this idea, we represent
a student model as a graph where links are gradually added
when the student’s ability to work with connected pairs of
concepts in the same context is confirmed. We also hypothe-
size that with this graph-based approach a number of tradi-
tional graph metrics could be used to better measure student
knowledge than using more traditional scalar models of stu-
dent knowledge. To collect some early evidence in favor of
this idea, we used data from several classroom studies to
correlate graph metrics with various performance and moti-
vation metrics.

1. INTRODUCTION
Student modeling is widely used in adaptive educational sys-
tems and tutoring systems to keep track of student knowl-
edge, detect misconceptions, provide targeted support and
give feedback to the student [2]. The most typical overlay
student model dynamically represents the inferred knowl-
edge level of the student for each knowledge element (KE)
(also called knowledge component or KC) defined in a do-
main model. These knowledge levels are computed as the
student answers questions or solves problems that are mapped
to the domain KEs. Student models are frequently built over
networked domain models where KEs are connected by pre-
requisite, is-a, and other ontological relationships that are
used to propagate the knowledge levels and produce a more
accurate representation of the knowledge of the learner. Since
these connections belong to domain models, they stay the

same for all students and at all times. In this work we ex-
plore the idea that it might be beneficial for a student model
to include connections between domain KEs that represent
some aspects of individual student knowledge rather than
domain knowledge. This idea is motivated by the recogni-
tion that the mastery in many domains is reached as the
student practices connecting different KEs, i.e., each KE is
practiced in conjunction with other KEs. To address this, we
build a model represented as a network of KEs that get pro-
gressively connected as the student successfully works with
problems and assessment items containing multiple KEs. As
the student succeeds in more diverse items mapped to dif-
ferent KEs, her model gets better connected.

To explore the value of this graph-based representation of
student knowledge, we compute different graph metrics (e.g.,
density, diameter) for each student and analyze them in re-
lation to student performance metrics and attitudinal ori-
entations drawn from a motivational theory. This analysis
was performed using data collected from 3 cohorts of a Java
programming course using the same system and the same
content materials. In the remaining part of the paper, we
describe related work, introduce and illustrate the suggested
approach, describe graph and performance metrics, and re-
port the results of the correlation analysis.

2. RELATED WORK
Graph representation of student activity is not new. The
2014 version of the Graph-Based Educational Data Mining
Workshop 1 contains two broad types of related work: the
analysis of the networking interaction among students, for
example work on social capital [14] and social networking in
MOOCs [3, 12]; and analyses of learning paths over graph
representation of student traces while performing activities
in the system [1, 5]. Our work fits in the second type since
we model traces of each student interacting with the sys-
tem. However, our approach is different as it attempts to
combine an underlying conceptual model with the traces of
the student learning.

1http://ceur-ws.org/Vol-1183/gedm2014_proceedings.
pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/33563011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A considerable amount of work focused on graph repre-
sentation of domain models that serve as a basis for over-
lay student models. The majority of this work focused on
constructing the prerequisite relationships between domain
knowledge components (concept, skills) [6, 13]. In this case
links established between a pair of concepts represent prereq-
uisite - outcome relationship. Another considerable stream
of work explored the use of formal ontologies with such re-
lationships as is-a and part-of for connecting domain knowl-
edge components [7]. Ontological representation, in turn,
relates to another stream of work that applies graph tech-
niques to structural knowledge representation, for example
by analyzing the network properties of ontologies [9].

The research on graph-based domain models also leads to
a stream of work on using Bayesian networks to model the
relationships between domain concepts for knowledge prop-
agation in the process of student modeling [15, 4]. Yet, in
both cases mentioned above links between knowledge com-
ponents were not parts of individual student model, but ei-
ther parts of the domain model or student modeling pro-
cess and thus remain the same for all students. In con-
trast, the approach suggested in this paper adds links be-
tween knowledge components to individual student models
to express combinations of knowledge components that the
given student explored in a problem solving or assessment
process. This approach is motivated by our belief that in
the programming domain, student knowledge is more effec-
tively modeled by capturing student progress when students
needed to apply multiple concepts at the same time.

3. THE APPROACH
The idea behind our approach is that knowledge is likely to
be stronger for concepts which are practiced together with
a larger variety of other concepts. We hypothesize, for ex-
ample, that a student who solves exercises, in which the
concept for-loop is used with post-incremental operator and
post-decremental operator will have a better understanding
of for-loop than another student who practices (even the
same amount of times) the for loops concept in a more nar-
row context, i.e., only with post-incremental operator. To
represent our approach, for each student we build a graph-
based student model as a network of concepts where the
edges are created as the student succeeds in exercises con-
taining both concepts to be connected. The Domain Model
defining the concept space and the mapping between the
concepts and programming exercises is explained in the next
section. The weight of the edges in the graph is computed
as the overall success rate on exercises performed by the
student which contain the pair of concepts. Pairs of con-
cepts that do not co-occur in exercises succeeded by the stu-
dent are not connected in her graph. In this representation,
highly connected nodes are concepts successfully practiced
with different other concepts. We also compute a measure
of weight for each node by taking the average weight among
edges connecting the node. This measure of the success rate
on concepts favors exercises that connect more concepts be-
cause each exercise containing n concepts produce or affects
n(n−1)/2 edges. For example, a success on an exercise hav-
ing 10 concepts contributes to 45 edges, but a successful at-
tempt to an exercise connecting 5 concepts only contributes
to 10 edges. We hypothesize that in a graph built following
this approach, metrics like average degree, density, average

Figure 1: Exercise jwhile1

path length, and average node weight can be good indicators
of student knowledge compared to the amount of activities
done or overall measures of assessment like success rate on
exercises. We further explore these graph metrics in relation
with motivational factors drawn from a learning motivation
theory.

3.1 Domain Model and Content
Our content corpus is composed by a set of 112 interactive
parameterized exercises (i.e., questions or problems) in the
domain of Java programming from our system QuizJet [11].
Parameterized exercises are generated from a template by
substituting a parameter variable with a randomly generated
value. As a result each exercise can be attempted multiple
times. To answer the exercise the student has to mentally
execute a fragment of Java code to determine the value of a
specific variable or the content printed on a console. When
the student answers, the system evaluates the correctness,
reports to the student whether the answer was correct or
wrong, shows the correct response, and invites the student
to “try again”. As a result, students may still try the same
exercises even after several correct attempts. An example of
parameterized java exercise can be seen in Figure 1.

In order to find the concepts inside all of the exercises, we
used a parser [10] that extracts concepts from the exercise’s
template code, analyzes its abstract syntax tree (AST), and
maps the nodes of the AST (concepts extracted) to the nodes
in a Java ontology 2. This ontology is a hierarchy of pro-
gramming concepts in the java domain and the parser uses
only the concepts in the leaf nodes of the hierarchy.

In total there are 138 concepts extracted and mapped to
QuizJet exercises. Examples of concepts are: Int Data Type,
Less Expression, Return Statement, For Statement, Subtract
Expression, Constant, Constant Initialization Statement, If
Statement, Array Data Type, Constructor Definition, etc.
We excluded 8 concepts which appear in all exercise tem-
plates (for example “Class Definition” or “Public Class Spec-
ifier” appear in the first line of all exercises). Each concept
appears in one or more Java exercises. Each of the 112 ex-
ercises maps to 2 to 47 Java concepts. For example, the
exercise “jwhile1”, shown in Figure 1, is mapped to 5 con-
cepts: Int Data Type, Simple Assignment Expression, Less
Expression, While Statement, Post Increment Expression.

2http://www.sis.pitt.edu/~paws/ont/java.owl

3.2 Graph Metrics
To characterize the student knowledge graph we computed
standard graph metrics listed below.

• Graph Density (density): the ratio of the number of
edges and the number of possible edges.

• Graph Diameter (diameter): length of the longest
shortest path between every pair of nodes.

• Average Path Length (avg.path.len): average among
the shortest paths between all pairs of nodes.

• Average Degree (avg.degree): average among the
degree of all nodes in an undirected graph.

• Average Node Weight (avg.node.weight): the weight
of a node is the average of the weight of its edges. We
then average the weights of all nodes in the graph.

3.3 Measures of Activity
To measure student activity so that it could be correlated
with the graph metrics we collected and calculated the fol-
lowing success measures:

• Correct Attempts to Exercises (correct.attempts):
total number of correct attempts to exercises. It in-
cludes repetition of exercises as well.

• Distinct Correct Exercises (dist.correct.attempts):
number of distinct exercise attempted successfully.

• Overall Success Rate (success.rate): the number
of correct attempts to exercises divided by the total
number of attempts.

• Average Success Rate on Concepts
(avg.concept.succ.rate): we compute the success rate
of each concept as the average success rate of the ex-
ercises containing the concept. Then we average this
among all concepts in the domain model.

3.4 Motivational Factors
We use the revised Achievement-Goal Orientation question-
naire [8] which contains 12 questions in a 7-point Likert
scale. There are 3 questions for each of the 4 factors of
the Achievement-Goal Orientation framework : Mastery -
Approach, Mastery-Avoidance, Performance-Approach and
Performance-Avoidance. Mastery-Approach goal orien-
tation relates to intrinsic motivation: “I want to learn this
because it is interesting for me”, “I want to master this
subject”; Mastery-Avoidance relates to the attitude of
avoid to fail or avoid learning less than the minimum; Per-
formance -Approach goal orientation stresses the idea of
having a good performance and relates well with social com-
parison: “I want to perform good in this subject”, “I want to
be better than others here”; and Performance-Avoidance
oriented students avoid to get lower grades or avoid to per-
form worse than other students. The goal orientation of
a student helps to explain the behavior that the student
exposes when facing difficulty, but does not label the final
achievement of the student. For example, if a student is
Mastery-Approach oriented, it does not necessarily mean
that the student reached the mastery level of the skill or
knowledge. In our case, we believe the achievement-goal ori-
entation of the student can convey the tendency to pursue
(or avoid) to solve more diverse (and more difficult) exer-
cises, which contain more heterogeneous space of concepts,
thus contribute to form better connected graphs.

Table 1: Correlation between activity measures and grade
and between graph metrics and grade. * significance at 0.1,
** significance at 0.05.

Measure of Activity Corr. Coeff. Sig. (p)
Correct Attempts to Exercises .046 .553
Distinct Correct Exercises .114 .147
Overall Success Rate .298 .000**
Avg. Success Rate on Concepts .188 .016**

Graph Metric Corr. Coeff. Sig. (p)
Average Degree .150 .055*
Graph Density .102 .190
Graph Diameter .147 .081
Average Path Length .152 .052*
Average Node Weight .201 .010**

4. EXPERIMENTS AND RESULTS
4.1 Dataset
We collected student data over three terms of a Java Pro-
gramming course using the system: Fall 2013, Spring 2014,
and Fall 2014. Since the system usage was not mandatory,
we want to exclude students who just tried the system while
likely using other activities (not captured by the system)
for practicing Java programming. For this we looked at the
distribution of distinct exercises attempted and we exclude
all student below the 1st quartile (14.5 distinct exercises
attempted). This left 83 students for our analysis. In to-
tal these students made 8,915 attempts to exercises. On
average, students have attempted about 55 (Standard Devi-
ation=22) distinct exercises while performing an average of
107 (SD=92) exercises attempts. On average, students have
covered about 63 concepts with SD=25 (i.e., succeeded in at
least one exercise containing the concept), and have covered
about 773 concept pairs with SD=772 (i.e., succeeded in at
least one exercise covering the concept pair.) The average
success rate (#correct attempts

#total attempts
) across students is about 69%

(SD=11%).

4.2 Graph Metrics and Learning
We compare graph metrics (Avg. Degree, Graph Density,
Graph Diameter, Avg. Path Length and Avg Node Weight)
and measures of activity (Correct Attempts to Exercises,
Distinct Correct Exercises, Overall Success Rate and Avg.
Success Rate on Concepts) by computing the Kendall’s τB
correlation of these metrics with respect to the students’
grade on the programming course. Results are displayed in
Table 1.

Surprisingly, the plain Overall Success Rate (which does
not consider concepts disaggregation, nor graph informa-
tion) is better correlated with course grade than any other
measure. Students who succeed more frequently, get in gen-
eral better grades. Interestingly, both the Average Suc-
cess Rate on Concepts and the Average Node Weight
are both significantly correlated with grade. This last mea-
sure uses the graph information and presents a slightly bet-
ter correlation than the former, which does not consider the
graph information.

Among the other graph metrics, Average Degree and Av-
erage Path Length are marginally correlated with course

Figure 2: Graph representation of two students.

Table 2: Graph metrics, measures of activity and motiva-
tional scores of 2 students.

Student A Student B
Graph Density 0.077 0.094
Graph Diameter 2.85 2.00
Avg. Path Length 1.77 1.78
Avg. Degree 8.64 10.55
Avg. Node Weight 0.49 0.51
Correct Attempts 71 83
Dist. Correct Exercises 66 61
Overall Succ. Rate 0.82 0.76
Avg. Succ.Rate on Concepts 0.50 0.53
Mastery-Approach 0.83 0.78
Mastery-Avoidance 0.83 0.56
Performance-Approach 1.0 0.17
Performance-Avoidance 1.0 0.0
Grade (%) 100 97

grade (p values less than 0.1). Although this is a weak ev-
idence, we believe that we are in the good track. A higher
Average Degree means a better connected graph, thus it
follows our idea that highly connected nodes signal more
knowledge. Average Path Length is more difficult to in-
terpret. A higher Average Path Length means a less
connected graph (which contradicts our assumption), but
also, it can express students reaching more “rear” concepts
which appear in few more-difficult-exercises and generally
have longer shortest paths. We think that further explo-
ration of metrics among sub-graphs (e.g. a graph for an
specific topic), and further refinement of the approach to
build edges (e.g. connecting concepts that co-occur close to
each other in the exercise) could help to clarify these results

Figure 2 shows the graphs of 2 students who have similar
amount of distinct exercises solved correctly but present dif-
ferent graph metrics and motivational profile. See metrics in
Table 2. Student B has more edges, lower diameter, higher
density, higher degree, solved less questions more times. Stu-
dent A presents a less connected graph although she he/she
solved more distinct questions (66 compared to 61 on Stu-
dent B). Student B has lower Mastery-Avoidance orientation
score and lower Performance orientation scores than Student
A, which could explain why Student B work result in a bet-
ter connected graph. Analyses of Motivational factors are
described in the following section.

4.3 Metrics and Motivation
We now explore the relationship between motivational fac-
tors and the graphs of the students. The idea is to see to

which extent the motivational profile of the student explains
the graph’s shape. Step-wise regression models were used
where the dependent variables are the graph metrics and
the independent variables are the motivational factors. We
found a significant model of the diameter of the graph (R2 =
0.161, F = 6.523, p = 0.006) with the factors Mastery-
Avoidance (B = 0.952, p = 0.001) and Mastery-Approach
(B = −0.938, p = 0.006). Note the negative coefficient for
Mastery-Approach and the positive coefficient for Mastery-
Avoidance. As the Achievement-Goal Orientation frame-
work suggests, Mastery-Approach oriented students are mo-
tivated to learn more, tend to explore more content and do
not give up easily when facing difficulties; Mastery-Avoidance
students, in the other hand, do not cope well with diffi-
culties and tend to give up. Then, a possible explanation
of the results is that, in one hand, students with higher
Mastery-Approach orientation are more likely to solve diffi-
cult questions which connects more and more distant con-
cepts which decreases the graph diameter; and on the other
hand, Mastery-Avoidance students avoid difficult exercises
containing many concepts, thus making less connections and
producing graphs with higher diameters. Correlations be-
tween graph metrics and motivational factors confirmed the
relation between Mastery-Avoidance and Graph Diameter
(Kendall’s τB = 0.197, p = 0.030). Although these re-
sults are encouraging, they are not conclusive. For exam-
ple, Mastery-Approach students might just do more work,
not necessarily targeting difficult questions. More analysis
is needed to deeply explore these issues.

5. DISCUSSIONS AND CONCLUSIONS
In this paper we proposed a novel approach to represent stu-
dent model in the form of a dynamic graph of concepts that
become connected when the student succeed in assessment
item containing a pair of concepts to be connected. The
idea behind this approach is to strengthen the model for
those concepts that are applied in more different contexts,
i.e., in assessment items containing other different concepts.
We applied this approach to data of assessment items an-
swered by real students and analyzed the graph properties
comparing them to several performance measures such as
course grade as well as motivational factors. Results showed
that this idea is potentially a good indicator of knowledge
of the students, but further refinement of the approach is
needed. We used several measures of the built graphs as
descriptors of student knowledge level, and we found that a
metric aggregating the success rates of the edges to the level
of concepts (nodes) is highly correlated to course grade, al-
though it does not beat the plain overall success rate of the
student in assessment items.

In the future work, we plan to repeat our analysis using
more reliable approaches to construct the knowledge graph.
One idea is to use rich information provided by the parser
(mapping between exercises and concepts) to ensure that
each new link connects concepts that interact considerably
in the program code. This could be done by controlling
the concepts proximity in the question code (e.g. only con-
sider co-occurrence when concepts are close to each other
in the parser tree.) Another approach to keep more reliable
edges is to consider only a subset of important concepts
for each problem using feature selection techniques. Also
we plan to perform analyses of sub-graphs targeting specific

“zones” of knowledge. For example, a partial graph with
only concepts that belongs to a specific topic, or concepts
that are prerequisites of a specific concept. Another inter-
esting idea relates to recommendation of content: guide the
student to questions that will connect the isolated parts of
the knowledge graph or minimize the average path length of
the graph. Along the same lines, the analysis of the graph
shortest paths and overall connectivity can help in designing
assessment items that better connect distant concepts.

6. REFERENCES
[1] N. Belacel, G. Durand, and F. Laplante. A binary

integer programming model for global optimization of
learning path discovery. In Workshop on Graph-Based
Educational Data Mining.

[2] P. Brusilovsky and E. Millán. User models for
adaptive hypermedia and adaptive educational
systems. In P. Brusilovsky, A. Kobsa, and W. Nejdl,
editors, The Adaptive Web, volume 4321 of Lecture
Notes in Computer Science, chapter 1, pages 3–53.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[3] V. Cateté, D. Hicks, C. Lynch, and T. Barnes.
Snag’em: Graph data mining for a social networking
game. In Workshop on Graph-Based Educational Data
Mining, volume 6, page 10.

[4] C. Conati, A. Gertner, and K. Vanlehn. Using
bayesian networks to manage uncertainty in student
modeling. User modeling and user-adapted interaction,
12(4):371–417, 2002.

[5] R. Dekel and Y. Gal. On-line plan recognition in
exploratory learning environments. In Workshop on
Graph-Based Educational Data Mining.

[6] M. C. Desmarais and M. Gagnon. Bayesian student
models based on item to item knowledge structures.
Springer, 2006.

[7] P. Dolog, N. Henze, W. Nejdl, and M. Sintek. The
personal reader: Personalizing and enriching learning
resources using semantic web technologies. In
P. De Bra and W. Nejdl, editors, Adaptive Hypermedia
and Adaptive Web-Based Systems, volume 3137 of
Lecture Notes in Computer Science, pages 85–94.
Springer Berlin Heidelberg, 2004.

[8] A. J. Elliot and K. Murayama. On the measurement
of achievement goals: Critique, illustration, and
application. Journal of Educational Psychology,
100(3):613, 2008.

[9] B. Hoser, A. Hotho, R. Jäschke, C. Schmitz, and
G. Stumme. Semantic network analysis of ontologies.
Springer, 2006.

[10] R. Hosseini and P. Brusilovsky. Javaparser: A
fine-grain concept indexing tool for java exercises. In
The First Workshop on AI-supported Education for
Computer Science (AIEDCS 2013), pages 60–63, 2013.

[11] I.-H. Hsiao, S. Sosnovsky, and P. Brusilovsky. Guiding
students to the right questions: adaptive navigation
support in an e-learning system for java programming.
Journal of Computer Assisted Learning,
26(4):270–283, 2010.

[12] S. Jiang, S. M. Fitzhugh, and M. Warschauer. Social
positioning and performance in moocs. In Workshop
on Graph-Based Educational Data Mining, page 14.

[13] T. Käser, S. Klingler, A. G. Schwing, and M. Gross.
Beyond knowledge tracing: Modeling skill topologies
with bayesian networks. In Intelligent Tutoring
Systems, pages 188–198. Springer, 2014.

[14] V. Kovanovic, S. Joksimovic, D. Gasevic, and
M. Hatala. What is the source of social capital? the
association between social network position and social
presence in communities of inquiry. 2014.

[15] E. Millán, T. Loboda, and J. L. Pérez-de-la Cruz.
Bayesian networks for student model engineering.
Computers & Education, 55(4):1663–1683, 2010.

