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Pulmonary hypertension (PH) is a rare but deadly disease whose victims bear a 40% chance of 

mortality within the first five years of diagnosis. Although current treatment strategies have been 

successful at subduing symptoms of PH, they have done little to prolong the survival of those 

afflicted. PH is characterized histopathologically by, among other characteristics, hyperplasia 

and hypertrophy of the smooth muscle cells (SMCs) that constitute the medial layer of the 

pulmonary resistance arteries and which are thought to decrease the compliance and increase the 

resistance of the pulmonary vasculature. Over time, these changes increase the burden on the 

right heart and ultimately lead to its failure and patient death. While recent advances have greatly 

increased our understanding of pulmonary vascular remodeling, knowledge of these mechanisms 

is far from complete. Furthermore, the translation of putative mechanisms to animal models is 

hindered by inadequate tools to quantify medial thickening. Here we present a new method for 

the quantification of vascular remodeling. In addition, we describe a novel mechanism whereby a 

conserved 20 amino acid peptide (SR20) in the carboxyterminal domain (CTD) of macrophage 

elastase (MMP12) induces the expression of tumor necrosis factor-related apoptosis-inducing 

ligand (TRAIL). TRAIL is known to preferentially induce apoptosis in tumor cells, and we 

demonstrate the efficacy of SR20 and the MMP12 CTD in vitro and in vivo as a cytotoxic agent 

against tumor cells. TRAIL is also known to paradoxically increase the proliferation of vascular 

SMCs, and we present evidence that the MMP12 CTD increases the proliferation of pulmonary 

arterial SMCs through upregulation of TRAIL with potential links to PH. Finally, we present the 

results of a genome-wide association study in 36 inbred and wild-derived mouse strains exposed 

to a chronic high-fat diet-induced model of PH to uncover novel candidate genes linked to PH 

pathogenesis. The results of these studies should aid investigators in all areas of basic PH 

research through the provision of superior methods. Meanwhile, the identification of the MMP12 
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CTD as a mitogen for pulmonary SMCs, and the identification of genomic regions linked to PH 

development, will help improve our understanding of PH pathogenesis. 
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1.0  INTRODUCTION 

Pulmonary hypertension (PH) is a complex disease of the pulmonary circulation whose known 

therapies offer only symptomatic relief. PH is a rare disease, contributing to approximately 6.5 of 

every 100,000 deaths in the United States [1]; in a French national registry [2], PH had a 

prevalence of 15 cases per million adults and an annual incidence of 2.4 cases per million adults 

while disproportionately affecting women. While rare, PH is also deadly – in multiple national 

cohorts from France, the United Kingdom and Ireland [3], and the United States [4, 5], the 5-year 

mortality for PH is roughly 40%. 

Clinically, PH is defined on the basis of right-heart catheterization as a sustained mean 

pulmonary artery pressure (mPAP) of greater than or equal to 25 mmHg at rest [6]. PH can arise 

from a multitude of causes and is classified accordingly: the latest guidelines [7] categorize PH 

based upon the underlying mechanism as pulmonary arterial hypertension (PAH), PH due to left-

sided heart disease, PH due to lung disease and/or hypoxia, chronic thromboembolic pulmonary 

hypertension, and pulmonary hypertension with unclear multifactorial mechanisms (Table 1).   

Table 1. Classification of pulmonary hypertension. 

Group 1 Pulmonary arterial hypertension (PAH) 

Group 2 Pulmonary hypertension due to left heart disease 

Group 3 Pulmonary hypertension due to lung diseases and/or hypoxia 

Group 4 Chronic thromboembolic pulmonary hypertension (CTEPH) 

Group 5 Pulmonary hypertension with unclear multifactorial mechanisms 
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The subpopulation known as Group 1 PH (PAH) is defined as PH with an end-expiratory 

pulmonary artery wedge pressure (PAWP) of less than or equal to 15 mmHg, thereby excluding 

“backup” from elevated left-sided pressures as the source of PH, and pulmonary vascular 

resistance (PVR) greater than 3 wood units [6]. 

1.1 PATHOGENESIS OF PULMONARY HYPERTENSION 

The form and function of the pulmonary vascular system are closely intertwined: the system 

must rapidly deliver large quantities of blood – 4-6 L/min – to the 2-cell-thick capillary-alveolus 

barrier where gas exchange can occur. In order to accommodate the rapid delivery of large 

quantities of blood to such a fragile barrier without causing endothelial injury or pulmonary 

edema, the system is designed as a high-volume, low-pressure, and low-resistance circuit [8]. In 

PAH, this carefully-crafted system is disrupted by an effective narrowing of the pulmonary 

vessels – in short, a shift in the normal balance of vessel tone favoring vasoconstrictive factors 

over their vasodilatory counterparts. Among the earliest molecular studies in PH were those 

which observed upregulation of the secreted vasoconstrictor peptide endothelin-1 (ET-1) [9] and 

downregulation of the vasodilatory enzyme endothelial nitric oxide synthase (eNOS, also known 

as NOS3) [10] in patients with PH. Similarly, hypoxic vasoconstriction, which functions 

physiologically to divert pulmonary blood flow to oxygenated alveoli, contributes to the 

development of Group 3 PH in the setting of lung disease with global hypoxia [11]. From 

Pouseille’s Law, 𝑅 = 8𝐿𝜂 𝜋𝑟4⁄ , where R is resistance and r is radius, we see that even a small 

decrease in vessel radius can lead to a tremendous increase in PVR. 
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The natural history of PAH can perhaps be best understood in the context of a circulatory 

interpretation of Ohm’s Law 𝑄 = ∆𝑃 𝑅⁄ , where 𝑄 is the flow rate through the circuit, ∆𝑃 the 

pressure gradient across the circuit, and 𝑅 the resistance of the circuit [8]. In the case of the 

pulmonary vasculature, this equation becomes 

𝐶𝑂 =
𝑚𝑃𝐴𝑃 − 𝑃𝐴𝑊𝑃

𝑃𝑉𝑅
 

where CO is the cardiac output and PAWP is interpreted as the left atrial pressure. In PAH, the 

vessel radius is decreased and PVR is increased; hence, for CO to remain constant, mPAP must 

necessarily increase. In other words, the right ventricle of the heart (RV) must pump against an 

increasing afterload in order to maintain a constant flow-rate through the pulmonary vasculature. 

As PAH progresses, the normally thin-walled RV hypertrophies to compensate for the increased 

afterload, and its eventual failure is the direct cause of mortality in approximately half of PAH 

patients [12]. Therefore, an understanding of PAH morbidity and mortality requires knowledge 

of the precipitating events behind elevated PVR. 

1.2 HISTOPATHOLOGY OF PULMONARY HYPERTENSION 

Among the five clinical groupings of PH, all share similar morphologic findings: atheroma 

formation and thickening of the medial smooth muscle cell layer of the small (40-300 m) 

arteries [13, 14]. Meanwhile, PAH features prominent medial thickening – which involves both 

hypertrophy and hyperplasia of the smooth muscle fibers – as well as thickening of the intimal 

(endothelial cell) and adventitial (extracellular matrix) layers of the pulmonary arteries [13]. 

These changes, termed constrictive lesions when they infringe on the vessel lumen, are thought 



 4 

to play a significant role in the pathogenesis of PH by increasing vessel stiffness and physically 

intruding on the cross-sectional area of the lumen to increase PVR (Figure 1). 

 

Figure 1. Schematic of histopathological changes in the pulmonary vasculature during PAH. 

Importantly – despite its ubiquitous presence in the pulmonary arteries of PH patients – 

medial thickening is neither necessary nor sufficient for the development of PH. In human 

patients with chronic obstructive pulmonary disease (COPD), medial thickening has been 

observed in the absence of PH [15], perhaps because it involves predominantly outward 

thickening which does not infringe on the vessel lumen [16]. In contrast, treatment of chronically 

hypoxic rats with the angiotensin-converting enzyme (ACE) inhibitor cilazapril reversed medial 

thickening but did not affect PH [17]. Hence, it is likely that the type of vessel thickening, as 

well as the activities of endogenous vasodilatory and vasoconstrictive factors, determines the net 

relationship between wall thickness and PH. Nonetheless, the mechanisms behind medial 

thickening and, more generally, vascular remodeling, remain topics of vigorous investigation in 

the field of PH. 
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1.3 GENETICS OF PULMONARY ARTERIAL HYPERTENSION 

The genetic factors behind PAH have provided valuable insights into the overall pathogenesis of 

PH. Familial PAH (FPAH; also known as Hereditary PAH, or HPAH) accounts for 

approximately ~2-4% of PAH cases [2, 4], defined as PAH with either (1) two or more family 

members with documented PAH or (2) a rare genetic variant known to be associated with PAH, 

such as BMPR2 [7]. While approximately 80% of FPAH cases involve known mutations, most 

commonly related to Bone Morphogenic Protein Receptor 2 (BMPR2) signaling (Table 2), the 

causative factor behind ~20% of PAH cases remains unknown despite a clear autosomal 

dominant pattern of inheritance [18]. 

Table 2. Gene mutations associated with PAH 

Gene Symbol Synonyms Gene Name Ref. 

BMPR2 -- Bone morphogenic protein receptor, type 2 [19, 20] 

ACVRL1 ALK1 Activin A receptor type II-like 1 [21] 

ENG HHT1 Endoglin [21] 

SMAD9 -- SMAD family member 9 (encodes SMAD8 protein) [22] 

CAV1 -- Caveolin 1 [23] 

KCNK3 -- Potassium channel, two pore domain subfamily K, member 3 [24] 

EIF2AK4 GCN2 Eukaryotic translation initiation factor 2 alpha kinase 4 [25, 26] 

CBLN2 -- Cerebellin 2 precursor [27] 

 

 Coupling knowledge of the histopathologic findings from all of PH with genetic insights 

from FPAH, molecular biologists have begun to deduce the connections between the two with a 

seemingly simple question: how do genetic perturbations in the identified genes ultimately lead 

to the medial thickening and vascular remodeling observed in histological sections? 
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1.4 MECHANISMS OF PULMONARY VASCULAR REMODELING 

As mentioned, pulmonary vascular remodeling of the medial smooth muscle cells (SMCs) 

involves primarily: (1) excessive migration, chiefly involving activation of Rho kinase (ROCK) 

[28, 29], (2) increased proliferation, and (3) resistance to apoptosis of SMCs [30]. 

1.4.1 BMP Signaling 

BMPR2 is the most commonly mutated gene in FPAH, and understanding of its physiological 

role in bone morphogenic protein (BMP) signaling has offered significant insights into PAH 

pathogenesis. BMPs, the ligands for BMPR2, are members of the transforming growth factor-

beta (TGFB) superfamily of cytokines and signal through receptor serine/threonine kinases [31]. 

Upon BMP binding, BMPR2, a type II receptor of the TGFB receptor superfamily [32], recruits 

and phosphorylates a type I receptor, typically BMPR1A or BMPR1B. In the case of BMP9 

binding, it has recently been shown the BMPR2 also heterodimerizes with ALK1 [33], perhaps 

explaining its association with FPAH. The phosphorylated type I receptor then phosphorylates 

receptor-regulated R-SMADs – SMAD1, 5, or 8 – which bind to the co-SMAD, SMAD4, 

translocate to the nucleus, and promote apoptosis while inhibiting the proliferation of VSMCs 

(Figure 2) [34, 35]. Of the genes associated with FPAH, three genes (BMPR2, ALK1, and 

SMAD9) are also involved in BMP signaling, highlighting the importance of this pathway to 

PAH pathogenesis. However, while BMP signaling is commonly affected by mutation, several 

other pathways have been found to be significantly altered in patients with PH. 
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Figure 2. BMP-induced SMAD signaling in PH. 

BMP: Bone morphogenic protein. CaM: Calmodulin. SMURF: SMAD ubiquitination and regulatory factor. (*) 

denotes proteins mutated in FPAH. 

1.4.2 Intracellular cation concentrations 

Early observations showed that elevated intracellular concentrations of potassium drive 

membrane depolarization in VSMCs from human and rodent PH [36-38]. The relevance of 

intracellular K
+
 to PH pathology gained increased attention from a recent human study reporting 

an association between FPAH and mutations in the KCNK3 gene encoding TASK1, a pH-

sensitive potassium channel [24]. Intracellular K
+
 is a major contributor to cell volume, and 

increased K
+
 concentrations contribute to resistance from apoptosis by (i) prevention of apoptotic 

volume decrease, or AVD [39, 40], and (ii) inhibition of cytoplasmic apoptotic effector caspases 
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[41, 42]. In rodent models, treatment with dichloroacetate (DCA) [43, 44] or 

dehydroepiandrosterone (DHEA) [45], which potentiate K
+
 efflux through membrane channels, 

prevented and reversed experimental PH by promoting VSMC apoptosis.  

Intracellular K
+
 can also promote proliferation through cross-talk with Ca

2+
, an essential 

driver of VSMC proliferation [46, 47] whose concentration is increased in VSMCs from human 

PH patients [48]. In addition, the numerous ligands – including growth factors (EGF, FGF, 

PDGF), serotonin (5HT), endothelin (ET-1), interleukins, and others – that promote VSMC 

proliferation in PH [30, 35, 49] typically act through two pathways: (i) signaling through MAPK 

with nuclear translocation of pERK1/2 and activation of proliferative genes [35, 50], or (ii) 

increasing the intracellular concentration of calcium. In the setting of PH, cytosolic calcium 

concentrations are elevated primarily by (i) increased influx through transient receptor potential 

cation channels (TRPC) [51-53] and (ii) increased release from intracellular stores [30, 54]. 

Calcium influx may also be increased by opening of voltage-gated calcium channels in response 

to the depolarization that accompanies elevated intracellular potassium concentrations; however, 

these channels are not thought to play a significant role in PH [30, 35]. 

Elevated calcium concentrations have a multitude of downstream effects in pulmonary 

VSMCs, including antagonism of BMP2R/SMAD signaling (see Figure 2) and promotion of 

migration and proliferation [55]. Calcium signaling also leads to activation of the transcription 

factor NFAT, which represses transcription of the K
+
 channels and further exacerbates 

intracellular K
+
 concentrations [56]. Hence, increased cytosolic potassium and calcium 

concentrations are critical mediators of the proliferation and resistance to apoptosis observed in 

VSMCs in PH. 
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1.4.3 The role of hypoxia 

The cellular response to hypoxia is controlled by the hypoxia-inducible factors (HIFs), 

classically HIF1A [57]. Under normoxic conditions, oxygen-sensing proline residues on HIF1A 

are hydroxylated which allows binding of the E3 ubiquitin ligase von Hippel Lindau (VHL) and, 

ultimately, proteasomal degradation of HIF1A. Under hypoxia, however, HIF1A (and also 

HIF2A) accumulates, heterodimerizes with HIF1B, and translocates to the nucleus where it 

modulates the transcription of HIF-responsive genes [58, 59]. 

Given their roles as master regulators of the hypoxic response, it is perhaps unsurprising 

that mice with heterozygous gene deletions of Hif1a [60] or Hif2a [61] are protected against 

chronic hypoxia-induced vascular remodeling and PH. As with other transcription factors, 

HIF1A and HIF2A have wide-ranging effects on numerous cellular processes. However, their 

roles in PH are likely to involve calcium influx through upregulation of TRPC [62] as well as 

systems-level effects mediated through microRNAs [63, 64]. Hence, while PH secondary to 

hypoxic lung disease is in some ways very different from PAH, the cellular mechanisms driving 

cellular proliferation are also very similar. 
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2.0  QUANTIFICATION OF VASCULAR REMODELING 

2.1 INTRODUCTION 

Vessel remodeling is a hallmark of vascular disease [16, 65] exemplified in the medial 

hypertrophy and hyperplasia that accompany pulmonary arterial hypertension [66, 67]. In recent 

years, tremendous progress has been made in defining the migratory, proliferative, and anti-

apoptotic stimuli behind this morphologic finding [68]. Surprisingly, however, the geometric 

quantification of such features in histological sections still relies on a miscellany of outdated 

methods. 

Based on our survey of the literature, a plurality of research articles calculates medial 

thickness using discrete measurements along the vessel boundary [69]. After wall thickness 

calculation, measurements are typically normalized to some metric of vessel size ranging from 

lumen area [70] to discrete measurements of end-to-end distance [69]. As we will show, the 

choice of measurement methodology can lead to vastly different results which hinder the 

acquisition of reliable data and the comparison of measurements between research groups. 

The aim of this report is to combine old theories with new tools to establish the best 

method – in a way that is accessible to the majority of researchers in the field – for medial wall 

thickness measurement. With a focus on the pulmonary vasculature, we bring attention to the 

shortcomings of commonly-used techniques while presenting a novel and superior approach to 
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wall thickness measurement based on image skeletonization. In the process, we present a new, 

freely-available software tool to facilitate the simple and rapid calculation of wall thickness 

using this new approach. 

2.2 METHODS 

2.2.1 Animals 

All animal experiments were performed in accordance with the Institutional Animal Care and 

Use Committee (IACUC) of the University of Pittsburgh School of Medicine. Animals were 

housed within a pathogen-free barrier facility that maintained a 12-hour light/dark cycle in 

Plexiglas cages (one to two rats or one to four mice per cage) with free access to autoclaved 

water and irradiated pellet food. Animal health, weight, and overall behavior were monitored 

throughout the experiments. 

2.2.2 Sugen/hypoxia treatment 

Induction of pulmonary hypertension by Sugen/hypoxia was performed as described previously 

[71, 72]. Briefly, 6-8-week-old male C57BL/6J mice (Jackson Laboratories, Bar Harbor, ME, 

USA) were exposed to hypoxia (10% O2) for 35 days. At days 0, 7 and 14, mice were injected 

subcutaneously with SU5416 (20 mg/kg, Tocris BioScience, Bristol, UK).  6-8-week-old male 

Sprague-Dawley rats (Charles River Laboratories) received a single subcutaneous SU5416 

injection (20 mg/kg) and were then maintained under hypoxia (10% O2) for 3 weeks followed by 
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5 weeks at normoxia. During hypoxia exposure, the oxygen concentration was maintained using 

a ProOx Oxygen Controller (BioSpherix, Lacona, NY, USA); the forced circulation and instant 

homogenization of gases was provided by fan (BioSpherix). Negative controls included vehicle-

injected age- and gender-matched animals maintained under normoxia. 

2.2.3 Hemodynamics 

In vivo pressure-volume (PV) loop measurements of right ventricular (RV) function were 

performed by a PV catheter in anesthetized animals [73].  Briefly, animals were anesthetized 

with isoflurane (5% for induction, 2% during surgery, and 1% while performing PV loop 

measurements). A four-electrode PV catheter (Scisense, Inc., London, ON, Canada) attached to 

the data acquisition system (EMKA Instruments, Falls Church, VA, USA) was inserted into the 

apex of the RV. Data were acquired using the PowerLab data acquisition system and LabChart 

Pro software (AD Instruments, Colorado Springs, CO, USA). Lung tissue was collected upon the 

completion of data acquisition. 

2.2.4 Histology 

For images used in line integral estimates, Wistar rat lungs were saline-perfused via the right 

ventricle and inflated via tracheostomy with 2% paraformaldehyde at 25 cm H2O for 10 minutes, 

fixed for 2 hours at room temperature, then washed with 30% sucrose in phosphate-buffered 

saline (PBS) at 4°C for 16-24 hours. Snap-frozen sections (7m) were immunostained with a 

Cy3-conjugated antibody to SMA (Sigma, St. Louis, MO, USA), an antibody to PECAM 

(Abcam, Cambridge, UK) followed by incubation with a Cy5-conjugated secondary antibody, 
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and 4',6-diamidino-2-phenylindole (DAPI; Sigma) to mark nuclei. Images of pulmonary 

arterioles were captured at 40X magnification using an Olympus Provis fluorescence microscope 

digital camera system.   

For all other analyses, staining was performed using sections of rodent lung tissue which 

were snap-frozen in OCT embedding compound (Tissue-Tek, Tokyo, Japan) as described [74]. 

Briefly, lungs were saline-perfused via the right ventricle, inflated via tracheostomy with 80% 

OCT/20% saline solution at 25 cm H2O for 10 minutes, snap-frozen in OCT embedding 

compound, and sectioned into 7 m-thick slices followed by H&E and immuno-staining. Tissue 

sections were fixed with 3.7% paraformaldehyde in PBS at 4°C for 10 minutes and 

immunostained with anti-SMA FITC-conjugated antibody (Sigma).  H&E and SMA stains 

were visualized at 40X magnification using an Olympus Provis 1 fluorescent microscope and 

Olympus Fluoview 1000 confocal microscope, respectively. 

2.2.5 Literature survey 

Journal articles involving non-human organisms, published in the calendar year 2014, and 

containing the MeSH term “pulmonary hypertension” were included in the survey. Articles with 

an exclusive focus on cardiac remodeling were excluded. Articles were considered to 

qualitatively assess medial thickening if they measured the percentage of muscularized arteries 

or reported and discussed medial thickening using histological images but without quantification. 

Diameter ranges were only included if they were specifically reported as external vessel 

diameter. 
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2.2.6 Software 

All software was developed in MATLAB R2012a (MathWorks) using the Image Processing 

Toolbox and is available at http://www.vmi.pitt.edu/resources/VMIcalculator.html. 

2.2.6.1 Image input 

The VMI calculator takes RGB image formats and displays the color image in the left 

axes of the graphical user interface (GUI) while displaying a grayscale version of the selected 

color channel in the right axes of the GUI. If the selected color channel is “All”, the program 

converts the RGB image to HSV by rgb2hsv and displays a grayscale version of the V channel of 

the resulting image in the right axes. 

2.2.6.2 Contrast adjustment 

The “Adjust Contrast” button on the VMI calculator GUI allows the user to manually 

adjust the contrast of the right axes grayscale image using MATLAB’s imcontrast tool. 

2.2.6.3 Image binarization 

The VMI calculator binarizes images by thresholding via Otsu’s method (graythresh in 

MATLAB) or edge detection by Sobel’s method (edge in MATLAB). Alternatively, the GUI 

allows the user to draw regions by imfreehand which are interpreted as follows: “Encircle 

Vessels” sets boundary pixels of the region to 1 in the image binarization, “Fill Mask” sets pixels 

within the region to 1 in the binarization, and “Erase Mask” sets pixels within the region to 0 in 

the binarization. 

http://www.vmi.pitt.edu/resources/VMIcalculator.html
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2.2.6.4 Vessel identification 

8-connected holes in the black & white image with area less than the user-specified 

minimum lumen area are automatically filled. From the black & white image binarization, 8-

connected regions were considered candidate vessels. Candidate vessels are classified by bwlabel 

on the filled (imfill) image to account for the presence of multiple candidates in a single image; 

hence the labeled region consisted of the vessel wall and its lumen. A candidate is considered an 

actual vessel if it has an 8-connected hole (lumen) in the wall binarization and a wall area greater 

than the user-specified minimum wall area. 

2.2.6.5 Area calculation 

From the labeled image obtained by bwlabel, each labeled region (vessel) was considered 

separately. The number of wall pixels was counted as the number of non-zero pixels in the 

labeled region that were also non-zero in the wall binarization. The number of lumen pixels was 

counted as the number of non-zero pixels in the labeled region that were not part of the wall. The 

number of vessel pixels was the sum of the number of wall pixels and the number of lumen 

pixels. The area was calculated as the number of pixels in each segment: wall, lumen, or vessel. 

2.2.6.6 Boundary method 

The boundary method defines the outer boundary as the perimeter points of the vessel 

region after filling holes by imfill. The inner boundary is defined as the perimeter of points in the 

labeled black & white image that are not the lumen. The square of the Euclidean distance 

𝑑2 = (𝑥𝑜 − 𝑥𝑖)2+(𝑦𝑜 − 𝑦𝑖)
2 is computed for every outer boundary point (𝑥𝑜 , 𝑦𝑜) to every inner 
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boundary point (𝑥𝑖, 𝑦𝑖), and the square root of the minimum for each outer boundary point is 

considered the distance at that outer boundary point. Deselection of the GUI option “Include 

zero-width sections” omits points of overlap between the outer and inner boundaries. The wall 

thickness is considered the mean of the boundary method measurements. 

2.2.6.7 Rosette method 

The rosette method draws a series of lines by MATLAB’s imline tool at a user specified 

angle interval ranging from [90°, 450°) for wall thickness and [90°, 270°) for diameter. The line 

runs through the centroid (𝑥𝑐, 𝑦𝑐) of the lumen and runs to one image border for the wall 

thickness or two image borders for diameter. The method returns no result if the lumen centroid 

lies outside the lumen. The second point of the line at angle 𝜃 is (𝑥𝑐 + 100 cos 𝜃 , 𝑦𝑐 +

100 sin 𝜃). From the outer and inner boundaries defined in the boundary method, the wall 

thickness for each rosette segment is calculated as the Euclidean distance from the segment-

intersecting outer boundary point closest to the lumen centroid to the segment-intersecting inner 

boundary point closest to the lumen centroid. The segment is not included if it does not intersect 

an outer and inner wall point or if the distance from the centroid to the nearest inner boundary-

intersecting point is greater than the distance from the centroid to the nearest outer boundary-

intersecting point. Deselection of the GUI option “Include zero-width sections” omits segments 

of zero distance. The diameter is taken to be the distance between the opposing (opposite 

directions) outer-boundary points nearest to the centroid. The wall thickness and diameter are 

considered the means of their respective rosette method measurements. 
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2.2.6.8 Skeleton method 

The skeleton method identifies the minimum skeleton of the wall with the ‘thin’ 

command in bwmorph with pruning achieved by the ‘shrink’ command. To eliminate unwanted 

holes, we consider the minimum skeleton to be the perimeter points of the pruned skeleton after 

filling all holes. Skeleton length is determined by the bwdistgeodesic command using the ‘quasi-

euclidean’ metric. Wall thickness is calculated as wall area 𝐴𝑤 divided by skeleton length. 

External diameter is calculated as calculated as skeleton length divided by 𝜋 plus wall thickness. 

Deselection of the GUI option “Include zero-width sections” subtracts the lengths of segments of 

outer boundary and inner boundary overlap from the skeleton length for the purposes of wall 

thickness measurement; diameter calculations are unaffected. 

2.2.7 Method speed 

The time to completion of VMI calculator measurements was measured using the tic and toc 

functions in MATLAB; the timer was begun with loading of the image and stopped after the 

display of results. Time to completion of manual measurements in ImageJ was measured with a 

stopwatch that was started after the image was loaded and stopped after the completion of 

measurements. For both methods, diameter and wall thickness were measured at 90° intervals by 

the rosette method; the VMI calculator also calculated wall area, vessel area, wall thickness by 

the boundary and skeleton methods, and external diameter by the skeleton method. 
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2.2.8 Statistics 

Measurement repeatability and agreement were assessed according to the methods developed by 

Bland and Altman [75]. Correlation was measured by Pearson product-moment correlation and 

distance correlation [76]. Linear regressions were done in MATLAB R2012a (MathWorks). 

Method performance times were compared by Wilcoxon signed-rank test. Measurements 

between animal groups were compared by Student’s t-test. A p-value of less than 0.05 was 

considered statistically significant. 

2.3 RESULTS 

2.3.1 The problem of medial wall thickness quantification 

We began our study with the widely used Sugen/hypoxia rat model of pulmonary hypertension 

[71] and its recently developed mouse corollary [72, 77]. Male Sprague-Dawley rats and 

C57BL/6J mice were either vehicle-treated in room air (Naïve) or were maintained under 

hypoxia (10% O2) receiving subcutaneous injections of the kinase domain insert receptor (KDR, 

also known as VEGFR2) antagonist Sugen/SU5416 (SuHx). At the end of the treatment period, 

the presence of pronounced elevation in right ventricular systolic pressure (RVSP) was 

confirmed by terminal right heart catheterization (Figure 3A). After lung tissue fixation, 

histological sections were stained with hematoxylin and eosin (H&E) for general assessment of 

pulmonary arteriolar morphology or -smooth muscle actin (SMA) to visualize vascular 

smooth muscle (Figure 3B). With SuHx treatment, both stains appeared to show qualitative 
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medial thickening; but what is the appropriate method by which to accurately and reliably 

quantify this structural change? 

Fundamentally, we can think of a vessel’s medial wall cross-section as a doughnut-

shaped area surrounding the vessel’s intima and lumen (for the sake of simplicity, we will refer 

to the combination of the intima and lumen as the lumen). The wall’s inner boundary is defined 

as the set of wall points adjacent to the lumen, while the outer boundary constitutes all wall 

points adjacent to the exterior. From these boundaries, we can define the wall thickness 𝑇𝑤 at a 

given point as the distance from the outer boundary to the inner boundary along a line 

perpendicular to the wall’s “backbone” or minimum skeleton – the arc equidistant from the outer 

and inner wall boundaries [78]. While it would be ideal to calculate wall thickness directly from 

our definition, we do not know the equation for the minimum skeleton, and local fluctuations 

along its course can make estimates of the slope unreliable. Hence, we will describe three 

indirect methods of calculating wall thickness (Figure 3C): the rosette method, the boundary 

method, and the skeleton method. 

In first describing the methods for wall thickness calculation, it is simplest to think of the 

vessel wall as the area between concentric circles of radii 𝑟𝑜 and 𝑟𝑖, respectively, centered at the 

origin of a Cartesian x-y plane, with a minimum skeleton of radius 𝑟𝑠𝑘 = (𝑟𝑜 + 𝑟𝑖) 2⁄  and 

uniform wall thickness of 𝑇𝑤 = 𝑟𝑜 − 𝑟𝑖. In the rosette method, a series of lines is drawn from the 

center of the vessel lumen to the exterior vessel wall, and 𝑇𝑤 is calculated as the difference in 

distances at the line’s intersections with the outer boundary, by definition equal to 𝑟𝑜, and the 

inner boundary, which equals 𝑟𝑖. In the boundary method, we compute the minimum distance 

from the wall’s outer boundary to its inner boundary, and, in the case of boundaries of concentric 

circles, the minimum distance between the boundaries is 𝑇𝑤 = 𝑟𝑜 − 𝑟𝑖. Finally, in the skeleton 
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method, we utilize image skeletonization to yield a thinned, maximally pruned version of a 

region which is equidistant to its boundaries [78]. From the wall area 𝐴𝑤 and minimum skeleton 

length 𝐿𝑠𝑘, we calculate 𝑇𝑤 = 𝐴𝑤 𝐿𝑠𝑘⁄ , which is equivalent to the difference in outer and inner 

radii for concentric circular boundaries. 

To validate the methods for the case of concentric circular boundaries, we first show that 

the difference between 𝑟𝑜 and 𝑟𝑖 satisfies our definition for wall thickness: at any point along the 

skeleton defined by 𝑥2 + 𝑦2 = 𝑟𝑠𝑘
2 , we have 2𝑥 +  2𝑦 𝑑𝑦 𝑑𝑥⁄ = 0 and slope 𝑑𝑦 𝑑𝑥⁄ =  −𝑥 𝑦⁄ . 

Using the opposite inverse to find the slope of the perpendicular line, we obtain the linear 

equation 𝑦 = (𝑦0 𝑥0⁄ )𝑥 + 𝑏 where 𝑦0 and 𝑥0 correspond to the initial point on the skeleton and 𝑏 

represents the y-intercept of the perpendicular line. Substituting our initial values, we see that 

𝑏 = 0. Therefore, our perpendicular line passes through the origin, and its distance to the inner 

and outer boundaries is, by definition, equal to their respective radii. Hence, for concentric 

circular boundaries, we can define wall thickness as 𝑇𝑤 = 𝑟𝑜 − 𝑟𝑖, and we will use this definition 

to explain the following methods of wall thickness calculation. 

In the rosette method, a series of lines is drawn from the center of the vessel lumen to the 

exterior vessel wall, and 𝑇𝑤 is calculated as the difference in distances at the line’s intersections 

with the outer boundary, by definition equal to 𝑟𝑜, and the inner boundary, which equals  𝑟𝑖. 

In the boundary method, we compute the minimum distance from each point on the 

wall’s outer boundary to its inner boundary. In the case of boundaries of concentric circles, we 

express the Euclidean distance 𝑇 from an outer wall point (𝑥𝑜 , 𝑦𝑜) to an inner wall point (𝑥𝑖, 𝑦𝑖) 

in polar coordinates in terms of their angles, 𝜃𝑜 and  𝜃𝑖, respectively, from the center of the circle 
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𝑇 = √(𝑥𝑜 − 𝑥𝑖)2 + (𝑦𝑜 − 𝑦𝑖)
2

= √(𝑟𝑜 cos 𝜃𝑜 + 𝑟𝑖 cos 𝜃𝑖)2 + (𝑟𝑜 sin 𝜃𝑜 + 𝑟𝑖 sin 𝜃𝑖)2

= √𝑟𝑜
2 − 2𝑟𝑜𝑟𝑖 cos(𝜃𝑜 − 𝜃𝑖) + 𝑟𝑖

2
 

Substituting 𝜑 = 𝜃𝑜 − 𝜃𝑖, we have 

𝑑𝑇

𝑑𝜑
=

𝑟𝑜𝑟𝑖 sin 𝜑

√𝑟𝑜
2 − 2𝑟𝑜𝑟𝑖 cos 𝜑 +𝑟𝑖

2

 

from which we see that 𝑇 achieves a minimum at sin 𝜑 = 0, 𝜑 = 0, and 𝜃𝑜 = 𝜃𝑖. Substituting 

this back into our distance equation, we see 

𝑇𝜑=0 = √𝑟𝑜
2 − 2𝑟𝑜𝑟𝑖 + 𝑟𝑖

2

= √(𝑟𝑜 − 𝑟𝑖)2

= 𝑟𝑜 − 𝑟𝑖

= 𝑇𝑤 

In the skeleton method, we utilize image skeletonization to yield a thinned, maximally 

pruned – meaning no spurs – version of a region which is equidistant to its boundaries [78]. In 

the case of our hypothetical vessel wall, this results in a circle of radius 𝑟𝑠𝑘 = (𝑟𝑜 + 𝑟𝑖) 2⁄  and 

circumferential length 𝐿𝑠𝑘 = 𝜋(𝑟𝑜 + 𝑟𝑖). Because the wall area, 𝐴𝑤, is the difference in the areas 

enclosed by the outer and inner boundaries, we see 

𝐴𝑤 = 𝜋𝑟𝑜
2 − 𝜋𝑟𝑖

2

= 𝜋(𝑟𝑜
2 − 𝑟𝑖

2)

= 𝜋(𝑟𝑜 + 𝑟𝑖)(𝑟𝑜 − 𝑟𝑖)

= 𝐿𝑠𝑘 × 𝑇𝑤 

Hence, 𝑇𝑤 = 𝐴𝑤 𝐿𝑠𝑘⁄ . 
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We developed a free user-friendly tool, which we call the VMI calculator, that semi-

automatically binarizes images of vessel wall cross-sections and calculates wall thickness using 

these three methods as well as vessel component areas and diameters (Figure 3D).  

 

Figure 3. Quantification of vascular remodeling. 

Male Sprague-Dawley rats or C57BL/6J mice were treated under room air (Naïve) or received subcutaneous 

injections of Sugen/SU5416 with hypoxia (10% O2; SuHx). (A) Right ventricular end-systolic pressure (RVSP) was 

measured by terminal catheterization in Naïve (n=2 rats, 3 mice) and SuHx (n=3 rats, 6 mice) rodents. (B) 

Representative lung sections stained with hematoxylin and eosin (H&E) or an antibody to -smooth muscle actin 

(SMA) at 40x magnification (scale bars are 25 m). (C) Schematic representation of the rosette, boundary, and 

skeleton methods of wall thickness calculation. (D) Example of binarization and visual representation of wall 
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thickness measurements by the rosette, boundary, and skeleton methods using the VMI calculator. Data are mean + 

SD. *P<0.05, ***P<0.0005 by two-sided independent sample t-test. 

2.3.2 Validation of the VMI calculator 

The VMI calculator’s wall thickness measurements were compared to manual rosette-method-

measurements performed in ImageJ [79] using fifty immunofluorescent images of SMA-

stained vessels. To first verify that the VMI calculator’s measurements were in the correct 

vicinity, we quantified the agreement between the VMI calculator’s rosette method and manual 

measurements using ImageJ at sampling intervals of 90°, meaning 4 equally-spaced 

measurements per vessel, and 45°, with 8 measurements per vessel. The near-zero biases of -0.54 

m and -0.30 m for 90° and 45° sampling intervals, respectively (Figure 4A), imply that the 

two tools are indeed measuring the same quantity. However, the poor agreement between the two 

methods suggests a lack of precision.  

Using repeated measures of wall thickness to examine precision, we can see that the VMI 

calculator outperforms manual measurements, with a coefficient of repeatability of 1.14 m 

versus 2.29 m at a 90° sampling interval (Figure 4B). With a 5° sampling interval on the VMI 

calculator, the coefficient of repeatability for the rosette method decreases to 0.29 m (Figure 

4C), while the boundary method (Figure 4D) and skeleton method (Figure 4E) have coefficients 

of repeatability of 0.57 m and 0.29 m, respectively, well within acceptable limits of precision 

for the vessel sizes under consideration. In addition, the VMI calculator significantly reduced the 

time required for wall thickness calculation – measured as the time from image loading to the 

return of results – compared to manual measurements (Figure 4F) while returning vastly more 

information. In summary, the VMI calculator is both faster and more precise than manual 

measurements. 
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Figure 4. Validation of the VMI calculator. 

Bland-Altman plots of (A) difference in VMI calculator measurements and manual measurements by the rosette 

method at 90° (red) and 45° (black) sampling intervals, (B) difference in repeated measures using the VMI 

calculator (black) and manual measurements (red) with the rosette method at 90° intervals, and difference in 

repeated measures by (C) the rosette method at a 5° sampling interval, (D) the boundary method, and (E) the 

skeleton method (n=50 vessels per plot, dotted lines are mean ± 2SD). (F) Relative time from image loading to 

vessel quantitation and return of results using manual measurements or the VMI calculator (n=20 images). Data are 

mean + SD. ***P<0.0005 by Wilcoxon signed-rank test. 
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2.3.3 Existing approaches to wall thickness measurement 

In a survey of 141 journal articles involving animal models of pulmonary hypertension from the 

2014 calendar year, 52% of the studies attempted to quantify medial thickening in the pulmonary 

vasculature. The majority of quantitative studies reported medial wall thickness, in which the 

value was reported as a raw measurement or as a fraction of vessel diameter, while the remainder 

of studies utilized area-based approaches (Figure 5A). Furthermore, every wall thickness report 

that detailed its methods used the rosette method.  

Although suitable for vessel boundaries defined by concentric circles, the rosette 

method’s flaws become apparent when considering non-ideal circumstances. Perhaps the most 

obvious of these shortcomings is that the rosette method will miscalculate 𝑇𝑤 when its line 

segments intersect the wall at non-perpendicular angles, typically resulting in an overestimate of 

𝑇𝑤. The second major drawback of the rosette method involves sampling error; to explore this 

issue, we quantified wall thickness in fifty SMA-stained vessels by the rosette method at a 5° 

sampling interval. The issue of sampling error is evident in a comparison of each rosette segment 

measurement to its vessel’s average, which follows a normal distribution with standard deviation 

of 52% (Figure 5B). Finally, we would expect an ideal measurement system to be independent of 

a vessel’s angular orientation. However, consider the scenario in which the rosette method is 

applied at a 90° sampling interval, the most common in our literature survey (Figure 5C), and 

compared to the same measurement taken after rotating the vessel by a mere 5°. Analyzing 

measurement agreement by the method of Bland and Altman [75], we see limits of agreement 

(95% confidence interval) of -0.12 ± 1.81 m (Figure 5D), a range that is hardly suitable for wall 
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thicknesses of 1 to 12 m. Taken together, the rosette method – while widely used – is prone to 

systemic errors that may obscure real differences in medial wall thickness. 

 

Figure 5. Current approaches to quantification of vascular remodeling. 

Methods of wall thickness quantification were assessed in 141 journal articles related to pulmonary hypertension 

from the 2014 calendar year. (A) Relative frequency of reported measurements among articles quantifying medial 

thickening (pie chart shows percentage of all papers with quantitative, qualitative, or no assessment of medial 

thickening). (B) Histogram of the percent difference in wall thickness measurements of a single rosette segment 

versus its vessel average (n=50 vessels and 2917 segments). (C) Relative frequency of sampling intervals among 

journal articles which reported such in their methods (n=24 articles). (D) Bland-Altman plot of difference in wall 

thickness measurements sampled at 90° versus a 5° offset (n=50 vessels; dotted lines are mean ± 2SD). 

2.3.4 Accurate measurement of wall thickness 

The lack of a “gold standard” for wall thickness measurement necessitates the use of a 

theoretical approach to determining method accuracy. Before doing so, however, we can first 

think of the problem logically. As mentioned, based on the nature of the rosette method, we 

would expect it to overestimate the true wall thickness when a rosette segment intersects the wall 
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at an angle that is not perpendicular to the wall. In contrast, we would expect the boundary 

method to underestimate the true wall thickness, as the minimum distance from the outer wall 

boundary to the inner wall boundary will almost always (though not necessarily when gaps are 

present in the wall) be less than or equal to the true wall thickness. Therefore, we would expect 

the actual value of wall thickness to lie somewhere between the values obtained by the rosette 

and boundary methods. Plotting the agreement between the rosette and boundary methods and 

the skeleton method shows that the skeleton method possesses this intuitive characteristic of 

measuring wall thickness values less than those of the rosette method and greater than those of 

the boundary method (Figure 6A). 

With this in mind, we can adopt a more rigorous approach to capture the mathematically 

correct measure of wall thickness. First, we can envision “sweeping” a line of variable thickness 

𝑇(𝑥, 𝑦) to generate a closed loop in the form of a vessel cross section (Figure 6B). The path 

followed by the centroid (i.e. midpoint) of 𝑇(𝑥, 𝑦) is necessarily perpendicular to 𝑇(𝑥, 𝑦), and 

we can quantify the average wall thickness of the vessel, 𝑇𝑤, as the line integral of 𝑇(𝑥, 𝑦) over 

the centroid path divided by the arc length of the centroid path, or: 

𝑇𝑤 =
∮ 𝑇(𝑥,𝑦)𝑑𝑆𝑐

𝐿𝑐
. 

Next, utilizing the Centroid Theorem from 4
th

-century mathematician Pappus of 

Alexandria [80], we obtain the critical property that ∮ 𝑇(𝑥, 𝑦)𝑑𝑆
𝑐

 is equal to the area of the wall 

𝐴𝑤, which we can easily measure. Therefore, determination of the length of the centroid path 𝐿𝑐 

will allow us to obtain an accurate measure of 𝑇𝑤. 

 We hypothesized that the minimum skeleton provides an accurate estimate of the 

centroid path, which we can validate by estimating the line integral of 𝑇(𝑥, 𝑦) over the minimum 
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skeleton, ∮ 𝑇(𝑥, 𝑦)
𝑠𝑘

𝑑𝑆, and comparing it to 𝐴𝑤; from Pappus’ Centroid Theorem, the centroid 

path and minimum skeleton should be roughly equal if ∮ 𝑇(𝑥, 𝑦)𝑑𝑆 ≈ 𝐴𝑤𝑠𝑘
. To approximate 

∮ 𝑇(𝑥, 𝑦)𝑑𝑆
𝑠𝑘

, we made a series of wall-intersecting lines in the x-y plane at 1° intervals using 

the rosette method or an identical number of equally spaced measurements using the boundary 

method. We then set the z-value (height) of each point of intersection between the wall thickness 

lines and the skeleton to the length of the wall thickness line (Figure 6C). By summing the areas 

of the resulting quadrilaterals, we estimated the value of the line integral and compared it to the 

area of the wall. Estimates of the line integral based on the both the rosette and boundary 

methods correlated well (Pearson’s r > 0.98) with the wall area (Figure 6D). Additionally, the 

line integral estimates and area showed limits of agreement of 28% below to 88% above using 

the rosette method and 30% below to 28% above using the boundary method (Figure 6E), 

consistent with our expectation that they overestimate and underestimate the wall thickness, 

respectively. Hence, the skeleton method approximates the centroid path and provides an 

accurate measurement of wall thickness in histological sections. 
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Figure 6. Accuracy of the skeleton method for wall thickness calculation. 

(A) Bland-Altman plot of difference in rosette (black) and boundary (red) methods versus skeleton method (n=50 

vessels in duplicate; dotted lines are mean ± 2SD). (B) Schematic of vessel wall area generated by sweeping a line 

of length T(x,y) to form a closed loop. (C) Schematic of a line integral estimate using the rosette method where the 

Z-axis corresponds to the wall thickness at the rosette’s intersection with the skeleton. (D) Correlation of line 

integral estimates by the rosette (black) and boundary (red) methods with wall area (n=25 vessels; dashed lines are 

linear best-fits by least squares). (E) Bland-Altman plot of log10 difference in line integral estimate by the rosette 

(black) and boundary (red) method and wall area (n=25 vessels; dotted lines are mean ± 2SD). 
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2.3.5 Calculation of vessel diameter 

Medial wall thickness is often viewed in the context of the external diameter (𝑑𝑒𝑥𝑡) of its 

corresponding vessel (internal diameter, 𝑑𝑖𝑛𝑡, and mid-wall diameter, 𝑑𝑚𝑖𝑑, are frequently used, 

as well, but the distinction makes no difference for the current analyses). All calculations assume 

that the histological cross-section is perpendicular to the long axis of the vessel; while certainly 

not the case, we have no choice but to make this assumption. Typically, 𝑑𝑒𝑥𝑡 is measured using a 

corollary of the rosette method, whereby a series of lines is drawn through the center of the 

vessel’s lumen and the mean of their distances between opposing outer wall boundary points is 

taken to be the diameter, 𝑑𝑟𝑜𝑠 (see Figure 3C). We compared our semi-automated measurements 

to manual measurements made using ImageJ at 90° intervals and found a negative bias of the 

VMI calculator compared to manual measurements (Figure 7A), perhaps indicating a tendency 

for manual measurements to measure diameter at the widest point of the vessel instead of 

through its lumen’s centroid. 

We can very easily justify the accuracy of our semi-automated calculations of 𝑑𝑟𝑜𝑠. 

Notice that, in situations of suitable vessel concavity, if we were to integrate some continuous 

function 𝑑𝑟𝑜𝑠(𝜃) in a polar coordinate system with 𝜃 ranging from 0 to , we would simply have 

the area of the vessel, 𝐴𝑣 (Figure 7B); in other words, 𝑑𝑟𝑜𝑠 is the diameter of a circle of area 𝐴𝑣, 

so the mean of discrete measurements 𝑑𝑟𝑜𝑠 is merely a rough estimate of 2√𝐴𝑣 𝜋⁄ , and 

measurements taken at 5° intervals agree well with this approximation (Figure 7, C and D). 

Whether 𝑑𝑟𝑜𝑠 is an appropriate method for diameter measurement depends on whether 

the histological image under consideration is assumed to accurately reflect the cross-sectional 

vessel shape. Cross-sectional vessel shape is dynamic and not necessarily circular [81, 82], 



 31 

although it is often presumed to be so. However, in the case of the pulmonary vasculature, tissue 

fixatives are typically delivered to the airways at a positive pressure (often 25 cm H2O), thereby 

subjecting the vasculature to a negative transmural pressure and collapsing the vessel walls. In 

this case and perhaps others, it is appropriate to assume a circular vessel cross-section for the 

measurement of vessel diameter. The wall skeleton length 𝐿𝑠𝑘 is independent of vessel shape 

(although still subject to elastic properties of the vessel) and thus representative of the 

circumferential length of the vessel wall at half its thickness; hence, we can infer that the 

external diameter of a given vessel in its circular form 𝑑𝑠𝑘 is equal to 𝐿𝑠𝑘 𝜋⁄ + 𝑇𝑤. To 

demonstrate the dependence of the rosette method on vessel circularity, we can assess its 

measurement with respect to a given vessel’s index of circularity, 𝑍, which we express as the 

ratio of 4𝜋 times the vessel area, 𝐴𝑣, to the square of the vessel perimeter, or 

𝑍 =
4𝜋𝐴𝑣

(𝜋𝑑𝑠𝑘)2
 

where 𝑍 = 1 corresponds to a perfect circle. By our earlier result that 𝑑𝑟𝑜𝑠 ≈ 2√𝐴𝑣 𝜋⁄ , the ratio 

of 𝑑𝑟𝑜𝑠 to 𝑑𝑠𝑘 simplifies to 

𝑑𝑟𝑜𝑠

𝑑𝑠𝑘
≈ √𝑍 

and we see that as 𝑍 approaches 1, the ratio of the 𝑑𝑒𝑥𝑡 calculations by the rosette method (at 5° 

intervals) to the skeleton method approaches equivalence and closely follows the square root of 

𝑍 (Figure 7E). If the fifty vessels surveyed are representative of those measured in current 

practice, their mean circularity of 0.75 suggests that, under the assumption of circular vessel 

cross-sections, the rosette method underestimates 𝑑𝑒𝑥𝑡 by more than 13 percent. 
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Figure 7. Vessel size using the rosette and skeleton methods. 

(A) Bland-Altman plot of log10 difference in repeated 𝒅𝒓𝒐𝒔 measurements at 90° sampling interval using the VMI 

calculator or manual measurements (n=50 vessels; dotted lines are mean ± 2SD). (B) Schematic of relationship 

between 𝒅𝒓𝒐𝒔(𝜽) and vessel area, 𝑨𝒗. (C) Correlation of external diameter calculated by the rosette method (𝒅𝒓𝒐𝒔) 

and two times the square root of 𝟐√𝑨𝒗 𝝅⁄  (n=50 vessels). (D) Bland-Altman plot of log10 difference in 𝒅𝒓𝒐𝒔 and 

𝟐√𝑨𝒗/𝝅 (n=50 vessels; dotted lines are mean ± 2SD). (E) Ratio of external diameter calculated by the rosette 

method to that calculated by the skeleton method (𝒅𝒓𝒐𝒔 𝒅𝒔𝒌⁄ ) versus vessel circularity (n=50 vessels; dashed red line 

shows 𝒚 = √𝒙). 
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2.3.6 Relationship between wall thickness and vessel diameter 

Now that we have presented the best method for wall thickness measurement, we will discuss its 

interpretation in the context of data acquired from rat and mouse lungs after control or 

Sugen/hypoxia treatment. The most commonly reported metric of wall thickness is the so-called 

“medial index”, which expresses 𝑇𝑤 as a percentage of, typically, the external vessel diameter 

𝑑𝑒𝑥𝑡 (see Figure 5A). The medial index stems from the “Law of Laplace,” which relates 

transmural pressure 𝑃, wall thickness 𝑇𝑤, vessel diameter 𝑑, and circumferential stress, 𝜎𝜃, in 

thin-walled cylinders as 𝜎𝜃 = 𝑃𝑑 (2𝑇𝑤)⁄  [83, 84]. Then, based on the hypothesis that vessel wall 

thickness will change to maintain a constant circumferential stress, we have 

100 × 2𝑇𝑤 𝑑⁄ = 𝑃 𝑐⁄ , 

where 𝑐 is a constant, and medial index can be interpreted as a surrogate for pressure. 

However, as is widely known [85-87] although perhaps underappreciated, the 

relationship between medial index and mid-wall diameter is not flat, but rather has an initial 

phase of rapid decline followed by a plateau (Figure 8A). As may be deduced from data obtained 

through our literature survey, the shape of the medial index curve prompts researchers to limit 

their analyses to various ranges of vessel diameters (Figure 8A) and consequently abandon many 

data points. 

The logarithm (base 10) of the wall thickness, meanwhile, has a lower distance 

correlation [76] with external diameter than the medial index, suggesting reduced statistical 

interdependence (Table 3) with vessel diameter in the ranges observed (𝑑𝑒𝑥𝑡 < 125m) 

regardless of organism or treatment condition (Figure 8B). In addition, log10 𝑇𝑤 follows a 

normal distribution, meaning its values can be conveniently compared by Students t-test (Figure 
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8C). Finally, it should be appreciated that any measurement of 𝑑𝑒𝑥𝑡 is subject to error involving 

vessel shape and slice orientation; because 𝑑𝑒𝑥𝑡 is excluded from its computation, log10 𝑇𝑤 is 

therefore less susceptible to measurement errors and assumptions than the medial index. Hence, 

the numerous advantages of log10 𝑇𝑤 over medial index led us to use this measure in our 

reporting. 

Table 3. Distance correlation of medial index and log10(wall thickness) with external diameter. 

  

Medial index (%) log10(Tw) 

R
at

 Naïve 0.5282 0.4369 

SuHx 0.6376 0.3536 

M
o

u
se

 

Naïve 0.8051 0.3763 

SuHx 0.4308 0.4132 
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Figure 8. Relationship between wall thickness and vessel diameter. 

Wall thickness and external diameter were calculated in lungs from Naïve (n=2 rats with 13 vessels, n=5 mice with 

46 vessels) and SuHx-treated (n=3 rats with 53 vessels, n=6 mice with 54 vessels) animals. (A) Medial index (%) 

plotted versus external diameter. Upper panel shows external diameter ranges reported in 141 pulmonary 

hypertension journal articles from 2014. (B) 𝐥𝐨𝐠𝟏𝟎 𝑻𝒘 plotted versus external diameter. (C) Histogram of relative 

frequency of 𝐥𝐨𝐠𝟏𝟎 𝑻𝒘 values. 
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2.3.7 Assumptions of medial wall thickness measurements 

Any discussion of wall thickness measurement methodologies would be incomplete without an 

acknowledgement of its inherent limitations. Quantification of medial thickening in histological 

sections is limited by two obvious factors: (i) the slice of the section is not necessarily 

perpendicular to the long axis of the vessel, and (ii) the shape of the vessel on cross-section, 

particularly if the vessels are non-distended, is not necessarily reflective of the vessel’s in vivo 

shape. Historical studies have attempted to correct for offset angle [87] and vessel shape [88, 89]  

by applying various transformations with the assumption [82, 90] that vessels are circular in 

cross-section with uniform wall thickness. In essence, these methods trade one assumption for 

another. 

An alternative approach is to measure the medial wall thickness of the vessels as they 

appear, as is most commonly done, and to do so accurately, which is possible using the skeleton 

method. Meanwhile, the sources of error should be acknowledged and understood, but their 

effects will be limited if cases and controls are prepared and analyzed in identical fashion. 

In wall thickness measurements, the error comes from the offset angle 𝜃 of the vessel 

cross section with the plane perpendicular to the long axis of the vessel (Figure 9A). With the 

skeleton method, the percent error 𝛿𝑤 of the wall thickness measurement can be expressed as 

𝛿𝑤 = 100 × |1 −
cos 𝜃

𝑎(cos 𝜃 − 1) + 1
| 

where 𝑎 is the fraction of the skeleton’s length in the direction of the histological slice. With 𝑎 

ranging from 0 to 1, and 𝜃 ranging from 0 to 90°, we can see that 𝛿𝑤 ranges from 0 to 100% with 

an average of 25.2% if all combinations of 𝑎 and 𝜃 are considered equally likely (Figure 9B). 
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For comparison, let us consider the other major metric of medial thickening used in the 

pulmonary hypertension literature (see Figure 5A), the percentage ratio of the medial wall area 

𝐴𝑤 to the total vessel area 𝐴𝑣. In contrast to the medial wall thickness, the percent medial area is 

independent of 𝜃 but has error in its assumption of vessel shape. If we define the circularity 𝑧 as 

the ratio of 4𝜋𝐴𝑣 𝑃𝑣
2⁄ , where 𝑃𝑣 is the vessel perimeter, then the percent error of the area ratio 𝛿𝑎 

becomes 

𝛿𝑎 = 100 × |1 −
𝑧𝑖𝑚

𝑧𝑎𝑐𝑡
| 

where 𝑧𝑖𝑚 is the circularity observed in histological section and 𝑧𝑎𝑐𝑡 is the actual circularity of 

the vessel. With 𝑧𝑖𝑚 and 𝑧𝑎𝑐𝑡 ranging from 0.5 to 1, based on our observations in mice (Figure 

9C), 𝛿𝑎 ranges from 0 to 100%, with an average of 23.3% if all combinations of 𝑧𝑖𝑚 and 𝑧𝑎𝑐𝑡 are 

considered equally likely (Figure 9D). Because wall thickness and area have different sources of 

error, we recommend reporting each of their values, both of which are easily calculated in the 

VMI calculator. 
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Figure 9. Limitations of wall thickness and percent medial area measurements. 

(A) Schematic of histological section at offset angle 𝜽 from the slice perpendicular to the long axis. (B) Percent 

error of wall thickness measurements 𝜹𝒘 plotted versus the proportion of the skeleton length parallel to the direction 

of the histological slice, 𝒂, and the offset angle 𝜽 of the histological slice. (C) Relative frequency of circularities in 

sections from the lungs of naïve mice (n=46 vessels). (D) Percent error of percent medial area measurements 𝜹𝒂 

plotted versus the observed vessel circularity 𝒛𝒊𝒎 and the actual vessel circularity 𝒛𝒂𝒄𝒕. 

2.3.8 Method use in Sugen/hypoxia rat and mouse models of pulmonary hypertension 

Finally, we return to our original problem: the quantification medial thickening in the 

Sugen/hypoxia rat and mouse models of pulmonary hypertension (see Figure 3, A and B). After 

staining the medial component of lung sections with anti-SMA, wall thickness was calculated 

by the skeleton method. The log10 𝑇𝑤 was significantly increased after Sugen/hypoxia treatment 

in rats and mice (Figure 10A). Likewise, the percentage ratio of medial area to vessel area was 
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significantly increased after Sugen/hypoxia treatment in rats and mice (Figure 10B).  These data 

clearly demonstrate the utility of the VMI calculator in practice as an important complement to 

vascular research methodologies. 

 

Figure 10. Increased log10(wall thickness) and percent medial area in Sugen/hypoxia-exposed rodents. 

Wall thickness and percent medial area were calculated in lungs from Naïve (n=2 rats with 6-7 vessels/rat, n=5 mice 

with 5-14 vessels/mouse) and SuHx-treated (n=3 rats with 16-21 vessels/rat, n=6 mice with 6-11 vessels/mouse) 

animals. (A) Average log10(wall thickness) among all vessels calculated using the skeleton method. (B) Average 

percent medial area among all vessels. Data are mean + SD. *P<0.05, **P<0.005, ***P<0.0005 by two-sided 

independent sample t-test. 

2.4 DISCUSSION 

In this report, we describe and validate a novel method for wall thickness calculation, the 

skeleton method, and demonstrate its superiority over previous approaches to thickness 

measurement. In addition, we present a new semi-automated software program, the VMI 

calculator, which calculates vessel wall thickness in histological images using this improved 

technique. Finally, we propose utilizing two methods for the interpretation of wall thickness 

measurements, the the log10(wall thickness) and the percent medial area, while demonstrating 

their use in Sugen/hypoxia rodent models of pulmonary hypertension. 
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Although the majority of the work presented relies on long-known theories and 

relationships, the best methods for wall thickness measurement have never been rigorously 

analyzed with modern image analysis tools. We suspect that the ongoing use of inferior methods 

is not due to lack of awareness of their shortcomings, but rather due to the lack of a superior and 

accessible alternative. Hence, we developed the skeleton method and made it freely-availably in 

the VMI calculator to both improve and accelerate the process of medial wall thickness 

calculation. While the skeleton method is more accurate than the rosette and boundary methods, 

it does have a drawback in that it returns a single value of wall thickness without capturing any 

variability; hence, we also included the rosette and boundary methods in the VMI calculator to 

return maximum and minimum wall thickness values for each vessel. 

Based on the limitations and assumptions of various measurements, we proposed two 

quantities for comparisons: the log10(wall thickness) and the percent medial area. In our datasets, 

the log10(wall thickness) had three major advantages over the widely-used medial index in that 

(i) its values were normally distributed, (ii) they were relatively uncorrelated to external vessel 

diameter lengths ranging from 0 to 125 m, and (iii) its calculation was independent of external 

diameter measurement, which is itself prone to error. The log10(wall thickness) is limited in its 

assumption that the histological slice is perpendicular to the long axis of the vessel, yet it is 

independent of vessel shape. In contrast, the percent medial area is independent of cross-section 

angle but assumes the accuracy of the vessel shape in cross-section. Because of their non-

overlapping assumptions, we recommend the use of both metrics for the quantification of medial 

thickening.  

In this paper, we focused our attention on the measurement of medial wall thickness; 

however, there is no reason that the techniques described cannot be applied to other layers or 
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subsections of the vessel wall. The VMI calculator can easily be used to quantify intimal and 

adventitial thickness. With this point in mind, we designed the VMI calculator to allow manual 

tracing of wall regions for measurement by the various methods. Manual tracing enables users to 

quantify not only high-contrast immunofluorescent images, but also immunohistochemical or 

simply histochemical stains. 

While wall thickness calculations derived from histological sections are not a substitute 

for in vivo and myographic measurements, their ubiquity and persistence suggest that they will 

remain an integral part of vascular research. As such, it is crucial that they are measured 

appropriately; it is our hope and belief that the tools and analyses presented in this report will 

prompt investigators to uniformly adopt the best practices for vessel wall thickness calculation. 

2.5 CONCLUSIONS 

The skeleton method and the VMI calculator will be useful to investigators in the field studying 

medial thickening. Furthermore, they may assist with quantification of remodeling associated 

with dseases of the systemic circulation, airways, and more. 
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3.0  REGULATION OF TRAIL SIGNALING BY THE CARBOXYTERMINAL 

DOMAIN OF MACROPHAGE ELASTASE 

3.1 INTRODUCTION 

Lung cancer is the leading cause of cancer mortality in the United States, and despite recent 

progress in the management of many cancers, death rates among lung cancer patients remain 

alarmingly high [91]. Lung cancer is strongly correlated to a history of cigarette smoking [92], 

which is accompanied by damage and remodeling cycles that underlie the pathogeneses of other 

smoking-related diseases [93]. Matrix metalloproteinases (MMPs) are among the key 

endogenous mediators of these alterations in lung structure and function [94-96], and MMPs also 

play critical roles in tumor biology. While the overall effect of MMPs is to promote tumor 

progression [97], some MMPs – particularly MMP12 – appear to work for the host in inhibiting 

tumor progression [98, 99]. 

The MMPs constitute a family of 24 members with many common functional and 

structural characteristics, including an amino-terminal proenzyme domain and a zinc-containing 

catalytic domain. Most MMPs also contain a carboxy-terminal hemopexin-like domain, while 

some possess additional features such as a transmembrane domain [100]. In the context of 

malignancies, historical studies have focused on the MMPs’ abilities to penetrate basement 

membranes and clear routes for tumor invasion [101, 102]. More recent evidence has shown an 
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increasingly diverse role for MMPs in cancer progression encompassing the release of matrix-

bound growth factors [103], generation of chemotactic gradients [104], and modulation of tumor 

angiogenesis [98, 105, 106]. Hence, MMPs have garnered significant attention as potential 

targets for anti-cancer treatment [100, 107]. However, while MMP inhibitors showed therapeutic 

promise in murine models of cancer [108, 109], their efficacies in clinical trials have been 

surprisingly disappointing [110]. The failure of these drugs in human cancers is likely due to the 

diversity of MMPs, whereby certain MMPs consistently promote tumorigenesis, while others 

exhibit both pro- and anti-tumorigenic properties depending on the tumor type, disease stage, and 

cellular source [100, 111]. 

Macrophage elastase (MMP12) is one of the most highly upregulated genes in the lungs 

of cigarette smokers [112], yet its role in lung cancer remains controversial. Gene expression 

studies have shown significant associations between increased MMP12 expression and risk of 

local recurrence and metastasis in non-small cell lung cancer [113, 114]. In contrast, promoter 

polymorphisms causing increased MMP12 expression have been linked to prolonged survival in 

a cohort of lung cancer patients [115]. Meanwhile, murine models have shown a protective role 

for MMP12 against lung tumor growth [99] and metastasis [98] owing to its ability to generate 

the anti-angiogenic peptides endostatin (from type XVIII collagen) and angiostatin (from 

plasmin[ogen]) [116, 117]. Taken together, it is plausible that the anti-cancer effects of MMP12 

impede the development or progression of lung cancer in human smokers.  

We recently demonstrated a role for MMP12 that extends beyond its protein-cleaving 

function, as the conserved SR20 peptide in its C-terminal domain (CTD) directly enhances 

bacterial killing [118]. Hence, we hypothesized that MMP12 may also modulate cancer cell 

growth independent of its catalytic function. To explore the extra-proteolytic roles of MMP12 in 
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lung cancer, we subjected both lung cancer cells and primary lung cells to full-length MMP12 as 

well as fragments of both its catalytic domain and CTD. Through this in vitro model, we were 

able to delineate a novel mechanism by which the CTD of MMP12, through the activity of the 

SR20 peptide, suppresses tumor growth while sparing non-cancerous lung cells. Furthermore, we 

provide initial evidence supporting the efficacy of SR20 as a peptide chemotherapeutic in two 

murine models of lung cancer.  

3.2 METHODS 

3.2.1 Cell lines 

A549 (CCL-185), MLE (CRL-2110), and LL47 (CCL-135) cells were obtained from and 

authenticated by the ATCC. 91T cells were kindly provided by Dr. Jill Siegfried who 

characterized these cells at the University of Pittsburgh [119]. Murine KW-857 cells were a 

generous donation from Dr. Kwok Wong who generated these cells from primary mouse tissue at 

Dana Farber Cancer Institute [120]. Cells were frozen into individual aliquots after no more than 

three passages, and thawed aliquots were each passaged for less than 6 months.  Because the 

cells were obtained directly from the original source institutions and have undergone minimal 

passaging in order to eliminate the possibility of drift or contamination, these lines have not been 

re-authenticated. 
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3.2.2 Primary cells 

Human bronchial epithelial cells (BEC) were a kind donation from Dr. Michael Myerberg at the 

University of Pittsburgh. Primary murine fibroblasts (PMF) were isolated as described 

previously [121]. These cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM, 

Invitrogen) with L-glutamine supplementation, 10% fetal bovine serum (FBS, Hyclone), and 50 

U/mL of penicillin/streptomycin (Invitrogen). Human microvascular endothelial cells (HMVEC) 

were purchased from Lonza and grown in EGM2-MV culture media (Lonza). 

3.2.3 Peptides 

Human SR20 (sequence ARNQVFLFKDDKYWLISNLR) and SR20-GFP were synthesized at 

the University of Pittsburgh’s protein core as described [118]. Human [IgG1 Fc-FLAG]-MMP12 

C-terminal domain (CTD; sequence 

[MGWSCIILFLVATATGVHSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVV

DVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN

KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE

NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAAA

NSSIDLISVPVDSRRPACKIPNDLKQKVMNHDYKDDDDK]PALCDPNLSFDAVTTVGNKIFF

FKDRFFWLKVSERPKTSVNLISSLWPTLPSGIEAAYEIEARNQVFLFKDDKYWLISNLRPE

PNYPKSIHSFGFPNFVKKIDAAVFNPRFYRTYFFVDNQYWRYDERRQMMDPGYPKLITK

NFQGIGPKIDAVFYSKNKYYYFFQGSNQFEYDFLLQRITKTLKSNSWFGC) was 

synthesized by GenScript. Recombinant human MMP12 catalytic domain (CAT; sequence 

REMPGGPVWRKHYITYRINNYTPDMNREDVDYAIRKAFQVWSNVTPLKFSKINTGMAD
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ILVVFARGAHGDFHAFDGKGGILAHAFGPGSGIGGDAHFDEDEFWTTHSGGTNLFLTAV

HEIGHSLGLGHSSDPKAVMFPTYKYVDINTFRLSADDIRGIQSLYGDPKENQRLP) was 

synthesized as described previously [122]. 

3.2.4 Cell culture 

All cells were maintained in a humidified incubator at 37°C and 5% CO2. Cells were treated with 

20 g/mL SR20 (in 10% Dimethyl sulfoxide, Sigma), 50 g/mL CTD, or 100 g/mL CAT, or 

30-100 ng/mL recombinant human TRAIL (rhTRAIL, R&D Systems) for 1 hour in serum-free 

DMEM. After 1 hour, cells were washed in PBS and incubated in serum free media for 24-72 

hours. For inhibitor experiments, cells were pre-incubated with 20 M Z-IETD-FMK caspase-8 

blocking peptide (BD Pharmingen), 20 M Z-LEHD-FMK caspase-9 blocking peptide (BD 

Pharmingen), 3 ng/mL recombinant human TRAIL-R1 Fc chimera (rhDR4:Fc, R&D Systems), 

or 0.25 g/mL mouse monoclonal [2E5] anti-TRAIL antibody (Abcam) for 30 minutes prior to 

the addition of SR20/CTD/CAT/rhTRAIL and remained for the hour of treatment. The anti-

TRAIL antibody was reapplied to the media at 0.25 g/mL following the 1 hour treatment 

period. 

3.2.5 Thymidine incorporation 

Cells were plated at a density of 5x10
4
 cells/well in 24-well plates and treated with CTD as 

described. After 1 hour, cells were washed in PBS and incubated in serum free DMEM 

containing 1µCi/mL [
3
H] for 48 hours. Cells were washed with PBS, incubated with 5% 

trichloroacetic acid (Fisher Scientific) for 20 minutes and washed with deionized water. Cells 
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were dissolved in 200 mM of NaOH and transferred to scintillation vials. Disintegrations per 

minute (DPM) were measured on a Tri-carb 2100TR Liquid Scintillation Analyzer (Packard). 

3.2.6 In vitro TUNEL staining 

Cells were plated at a density of 5x10
4
 cells/well in 24-well plates and treated with CTD as 

described. After 48 hours, detached and adherent cells were collected, pooled, and transferred to 

glass slides by Cytospin (Thermo Fisher). TUNEL assays were performed on cells placed on 

slides using the ApopTag Plus Peroxidase Kit (Chemicon International) according to the 

manufacturer’s instructions. The percentage of TUNEL-positive cells was counted under light 

microscopy. 

3.2.7 Immunofluorescence 

A549 cells were plated on tissue culture treated coverslips (Thermo-Fisher) in 24-well plates 

(5x10
4
 cells/well), allowed to adhere for 16 hours, and transferred to serum fee media for 24 

hours. Cells were treated with CTD as described, fixed with 2% paraformaldehyde and 

permeabilized with 0.1% Triton X-100. Cells were co-stained with Rhodamine-Phalloidin 

(Invitrogen), rabbit anti-MMP-12 (H-300; Santa Cruz), and Alexa Fluor 488-conjugated donkey 

anti-Rabbit-IgG (Invitrogen). Coverslips were mounted on microscope slides using 

VECTASHIELD HardSet Mounting Media with DAPI (Vector Laboratories) and imaged at 

100X using an Olympus Fluoview 100 upright confocal microscope. 
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3.2.8 Luciferase assays 

pRL-CMV, pGL2-Basic, and pGL2-Control were purchased from Promega. pGL2-TRAIL, with 

the 1523 base pairs upstream of TNFSF10 cloned upstream of firefly luciferase, was a kind gift 

from Dr. B. Mark Evers[123]. A549 cells were plated in 96-well plates at a density of 2x10
4
 

cells/well. After 24 hours, cells were co-transfected with 10 ng of pRL-CMV and 400 ng of 

either pGL2-Basic, pGL2-Control, or pGL2-TRAIL in Lipofectamine LTX PLUS (Invitrogen) 

and 20% v/v OptiMEM (Invitrogen) according to the manufacturer’s protocol. 24 hrs after 

transfection, cells were treated with PBS or 50 g/mL CTD for 24 hrs and luciferase activity was 

measured using the Dual-Glo Luciferase Assay System (Promega) according to the 

manufacturer’s instructions. 

3.2.9 Macrophage co-culture 

Thioglycollate-stimulated peritoneal macrophages were resuspended in DMEM with 5% FBS 

and co-cultured with plated A549 cells at different concentrations ranging from 5x10
4
 - 15x10

4
 

cells/well for 1-72 hours. At the appropriate time point, cells were washed thoroughly to remove 

nonadherent cells and macrophages. 

3.2.10 Nuclear extraction 

The cytoplasmic and nuclear fractions were isolated using NE-PER-Nuclear and Cytoplamic 

Extraction Kit (Thermo Scientific) according to the manufacturer’s instructions. 
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3.2.11 Western blotting 

Cells were collected using 0.05% Trypsin-EDTA (Invitrogen) and centrifuged at 1500 rpm for 

10 minutes followed by 2 washes with PBS. Cell pellets were collected after centrifugation at 

3000 rpm for 10 minutes and were lysed in 2X Cell Lysis Buffer (Cell Signaling). Total protein 

was quantified using the Dc Protein Assay (BioRad) according to the manufacturer’s guidelines. 

10-35 µg total protein were loaded on 4-15% Tris-HCl SDS polyacrylamide gels (BioRad) 

followed by transfer of proteins onto a nitrocellulose membrane.  After blocking with 5% milk 

solution in TBS with 0.05% Tween 20, the blots were incubated with the primary antibody for 1 

hour. The following antibodies and dilutions were used. Antibodies to AKT, Caspase-3, -8, and -

9, Bad, phospho-Bad, Bcl-xL/Bcl-xS, NFB, p44/42 MAPK, TRAIL, XIAP, c-FLIP, Lamin B1, 

and -Tubulin were obtained from Cell Signaling Technologies. Antibodies to DR4, GAPDH, 

and Human IgG were obtained from Santa Cruz Biotechnology. After 3 washes with TBS plus 

tween 0.05% for 10 mins each, the blots were incubated with HRP-conjuguated secondary 

antibody (Santa Cruz Biotechnology) for 1 hr, followed by further washings. The signal was 

visualized using SuperSignal West Pico Chemiluminescent Substrate (Thermo Fisher). 

3.2.12 Quantitative real-time PCR 

Total RNA was isolated from cell lysates with the RNEasy Mini Kit (Qiagen) according to the 

manufacturer’s instructions. RNA concentration was quantified on an ND-1000 

spectrophotometer and 1.5 g total RNA was subjected to reverse transcription (RT) using the 

High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to the 

manufacturer’s protocol. Quantitative real-time PCR (qPCR) was performed using the ABI 7300 
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Real-Time PCR System (Applied Biosystems) and TaqMan primers specific to TRAIL 

(Hs00921974_m1), DR4 (Hs00269492_m1), and GAPDH (Hs99999905_m1). Relative mRNA 

quantity was calculated using the delta-delta CT method. 

3.2.13 ELISA 

Cells were plated in 6-well plates at a concentration of 2.4x10
5 

cells per well and the media was 

collected 48 hours after CTD treatment. The media was centrifuged at 1200xg for 10 minutes to 

pellet nonadherent cells, and the supernatant was analyzed for TRAIL using TRAIL ELISA kit 

(ab46117, Abcam) according to the manufacturer’s instructions. The results were expressed as 

pg/ml of growth medium blanked to DMEM. The experiment was performed in triplicates and 

repeated 3 times. 

3.2.14 Electrophoretic mobility shift assays (EMSA) 

Genomic DNA (gDNA) was extracted from A549 cells using DNeasy Blood and Tissue Kit 

(Qiagen) per the manufacturer’s protocol. gDNA was PCR-amplified on a BioRad C1000 

thermal cycler using 5’-biotinylated primers (Invitrogen). Forward (F) and reverse (R) primers 

were as follows: Primer Set 1 (F) 5’-AAGGGCAGGAAGTGATGGTG-3’, (R)  5’-

AGGCTGGACAGGTAGGAAGT-3’; Primer Set 2 (F) 5’-TGGGTCCTGAATCTGAGGGT-3’, 

(R) 5’-TGCACCCCTTATCTGCACTC-3’; Primer Set 3 (F) 5’-

TCCTACCTGTCCAGCCTAAC-3’, (R) 5’-TCAGGATCCATGCACCCCTT-3’; Primer Set 4 

(F) 5’GGCTTGAGGTGAGTGCAGAT-3’, (R) 5’-TTCTGGGTTCTGTGGCCTTG-3’. PCR 

products were separated by gel electrophoresis and purified using the QIAquick Gel Extraction 



 51 

Kit (QIAGEN) according to the manufacturer’s protocol. DNA binding was carried out with the 

LightShift Chemiluminescent EMSA Kit (Thermo Scientific) according to the manufacturer’s 

protocol using a reaction mixture containing 28 pg/L PCR product with or without 80 ng/L 

CTD or an equimolar concentration of IgG Fc (R&D Systems). After 20 minutes incubation at 

room temperature, the reaction mixture was separated by gel electrophoresis on a 6% Tris-

borate-EDTA (TBE) gel (Invitrogen), transferred to a Biodyne pre-cut modified nylon membrane 

(Thermo Scientific), and visualized using the Chemiluminescent Nucleic Acid Detection Module 

(Thermo Scientific).  

3.2.15 Mice 

C57BL/6J (WT) and NU/J mice were purchased from Jackson Laboratories and acclimated for 1 

week prior to use. MMP12-deficient (Mmp12
-/-

) mice on a C57BL/6J background (10 generation 

back-cross from 129/Sv) were generated in our laboratory as described [124]. Lox-Stop-Lox 

Kras
G12D

 (Kras
LSL/G12D

) mice were a generous gift from Dr. Tyler Jacks [125] and subsequently 

backcrossed onto a C57Bl/6J background for greater than ten generations. Mmp12
-/-

 and 

Kras
LSL/G12D

 were intercrossed to generate Kras
LSL/G12D

:Mmp12
-/-

 mice. All mice were housed in 

ventilated Plexiglas cages (one to four animals per cage) within a pathogen-free barrier facility 

that maintained a 12-hour light/dark cycle. Mice had free access to autoclaved water and 

irradiated pellet food. 
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3.2.16 Murine lung cancer models 

For orthotopic lung A549 xenografts, pathogen free NU/J mice were intratracheally 

xenotransplanted at age 7-9 weeks with 10
7
 A549 cells in 35 L DMEM with 0.01M EDTA. 35 

L of 20 g/L SR20 or PBS was intratracheally instilled twice weekly for 10 weeks. For 

oncogenic Kras induction, tumors were induced in 8-week old Kras
LSL/G12D

 and 

Kras
LSL/G12D

:Mmp12
-/-

 mice by administration of 5x10
6
 plaque forming units (pfu) adenoviral 

Cre recombinase (AdCre, University of Iowa). Seven weeks after tumor induction, mice received 

twice weekly dosing of 35 L of 20 g/L SR20 or PBS by intratracheal instillation for 10 

weeks. At the completion of treatment, mice were asphyxiated by CO2 inhalation and lungs were 

inflated with 10% buffered formalin (Sigma-Aldrich) at 25 cm H2O for 10 minutes. 

3.2.17 Immunohistochemistry 

Lungs were embedded in paraffin and 5 µm sections were cut and stained with hematoxylin and 

eosin (H&E). Tumor areas were expressed as a percentage of total lung areas on transverse 

sections from each lung lobe. TUNEL staining was performed using the Apoptag peroxidase in 

situ apoptosis detection kit (Millipore) according to the manufacturer’s protocol. Ki67 staining 

was performed using a rabbit polyclonal antibody to Ki67 (Abcam) and the Vectastain Elite 

ABC Kit Rabbit IgG with DAB peroxidase substrate (Vector Labs) according to the 

manufacturer’s protocol. TUNEL- and Ki67-stained sections were counterstained in 0.5% methyl 

green (Sigma). Images were captured at 10X or 60X on an Olympus Provis digital microscope 

system. Tumor areas and positive cells were quantified using NIS Elements BR3.0 (Nikon). 



 53 

3.2.18 Statistics 

Statistical analysis for all experiments was performed using GraphPad Prism 6 (GraphPad 

Software). Data are presented as mean ± SEM. Data were checked for normality by the Shapiro-

Wilk test with an alpha of 0.05. Statistical comparisons between groups were made using two-

sided independent-sample Student’s t test. P values less than 0.05 were considered statistically 

significant. 

3.3 RESULTS 

3.3.1 MMP12 suppresses the growth of tumor cells through the SR20 peptide in its CTD 

To examine whether MMP12 directly modulates cellular proliferation, we co-cultured A549 lung 

cancer cells with peritoneal macrophages from C57BL/6J wild-type (WT) or Mmp12 null mutant 

(Mmp12
-/-

) mice and measured proliferation by [
3
H]-thymidine incorporation. Co-culture with 

WT macrophages led to a dose-dependent reduction in A549 proliferation at early (1-3 hr) and 

late (72 hr) incubation periods (Figure 11A), likely corresponding to the release of preformed 

and newly synthesized mediators, respectively [126]. Meanwhile, A549s co-cultured with 

Mmp12
-/-

 macrophages proliferated normally (Figure 11B), suggesting that MMP12 is 

responsible for the reduced A549 proliferation seen in macrophage co-culture. 

MMP12 is translated as a 470 amino acid protein consisting of a 9 kDa amino-terminal 

pro-domain that is cleaved upon activation, a 22 kDa catalytic domain, and a 23 kDa carboxy-

terminal hemopexin-like domain (Figure 11C) [127]. To localize the anti-proliferative effects of 
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MMP12, we quantified the proliferation of A549 cells treated with either the catalytic (CAT) or 

carboxy-terminal domain (CTD) of recombinant human MMP12. While CAT had no effect on 

A549 proliferation, CTD caused a pronounced decrease in [
3
H]-thymidine uptake compared to 

vehicle-treated controls. Further, the anti-proliferative effect was mimicked with the highly 

conserved CTD fragment SR20 (Figure 11D) that has previously been shown to enhance 

bacterial killing by macrophages [118]. 

To examine the breadth of CTD’s anti-proliferative effects beyond A549 cells, we 

exposed a variety of primary and adenocarcinoma cells to CTD or SR20 and quantified 

proliferation by [
3
H]-thymidine uptake. Adenocarcinoma cell lines included human A549 and 

91T[119] cells as well as murine KW-857 cells [120], while non-transformed cells of both 

murine and human origin were considered, including primary murine fibroblasts (PMF), murine 

lung epithelial cells (MLE), human lung fibroblasts (LL47), human microvascular endothelial 

cells (HMVEC), and human bronchial epithelial cells (BEC). Consistently, CTD and SR20 

stunted the proliferation of tumor cells but had no effects on non-transformed cells (Figure 11, E 

and F). 
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Figure 11. MMP12 CTD blunts A549 cell proliferation. 
(A) A549 cells were cultured alone (control, N=4 replicates per time point) or co-cultured with 50-, 100-, and 150-

thousand peritoneal macrophages (N=3 replicates per group per time point) from WT mice for 1, 3, and 72 hours and 

proliferation was measured by [
3
H]-thymidine incorporation. (B) Time course from 1 to 72 hrs of [

3
H]-thymidine 

incorporation in A549 cells in the absence of macrophages (control) or co-incubated with 150,000 WT or Mmp12
-/-

 

macrophages (N=3 replicates per group per time point). P values are Mmp12
-/-

 versus control. (C) Primary structure 

of MMP12 consists of an N-terminal pro-domain, catalytic domain, and C-terminal domain containing a conserved 

SR20 peptide. (D) A549 cells were treated for one hour with 100 g/mL CAT, 50 g/mL CTD, or 20 g/mL SR20 

and proliferation was measured by [
3
H]-thymidine incorporation in the 48 hours after treatment (N=3-4 replicates 

per treatment). (E) BEC, LL47, and HMVEC non-cancer cells and A549 cancer cell lines were treated with 50 

g/mL CTD for one hour and proliferation was measured by [
3
H]-thymidine incorporation in the 48 hours after 

treatment (N=3-4 replicates per cell type per treatment). (F) PMF, HMVEC, and MLE non-cancer cells and A549, 

KW-857, and 91T cancer cell lines were treated with 20 g/mL SR20 for 1 hour and proliferation was measured by 

[
3
H]-thymidine incorporation in the 48 hours after treatment (N=3-4 replicates per cell type per treatment). Data are 

mean ± SEM. P values were calculated by two-sided independent sample t test. 
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3.3.2 MMP12 CTD traffics to the nucleus and initiates the transcription of TRAIL 

Because the anti-proliferative effects of CTD were limited to cancerous cells, we suspected that 

CTD exerts its effects on cell growth through tumor necrosis factor-related apoptosis-inducing 

ligand (TRAIL, also known as TNFSF10), which has also been shown to exert specific effects on 

cancer cell viability [128]. TRAIL exists as both a type II transmembrane [128] and soluble 

(sTRAIL) polypeptide [129] whose binding to death receptors 4 (DR4) or 5 (DR5) triggers 

apoptotic cell death [130, 131]. Incubation of A549 cells with CTD or SR20 led to a significant 

increase in TRAIL and DR4 mRNA (Figure 12A and Figure 13A) and protein (Figure 12B and 

Figure 13B) expression, as well as an 80-fold increase in sTRAIL protein (Figure 12, C and D) 

after 48 hours incubation. In agreement with a recent study [132], we found that CTD and SR20 

traffic to the nucleus of A549 cells (Figure 12, E and F, and Figure 13C), suggesting that CTD 

may activate an anti-proliferative transcriptional program much like the anti-viral response 

triggered by MMP12’s catalytic domain [132]. Indeed, CTD (Figure 12G), but not IgG Fc 

(Figure 13D) bound to multiple DNA fragments directly upstream of the TRAIL gene TNFSF10 

in electrophoretic mobility shift assays. To confirm the CTD-responsiveness of the TRAIL 

promoter, we transfected A549 cells with firefly luciferase-encoding plasmids pGL2-Basic, 

pGL2-Control, and pGL2-TRAIL, in which the luciferase gene is flanked at its 5’ end by no 

promoter, the CMV promoter, or the 1523 base-pair region upstream of the TNFSF10 gene 

[123], respectively.  CTD treatment significantly increased the luciferase activity of pGL2-

TRAIL-transfected cells while it had no effect on those transfected with either pGL2-Basic or 

pGL2-Control (Figure 12H).  
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Figure 12. CTD induces the expression of TRAIL and DR4. 

A549 cells were treated with 50 g/mL CTD for 1 hour. (A) Relative mRNA expression of TRAIL and DR4 

normalized to GAPDH control at 5 hours after CTD treatment (N=4 means of independent experiments). (B) 

Representative western blot of TRAIL, DR4, and GAPDH endogenous control protein 48 hours after CTD 

treatment. (C) Representative western blot and (D) quantitative ELISA for sTRAIL in culture media at 48 hours 

after CTD treatment (N=3 means of independent experiments). (E) Confocal microscopy of CTD-treated A549 cells 

stained with rhodamine-phalloidin (red), 4',6-diamidino-2-phenylindole (DAPI; blue), and anti-MMP12-CTD 

(green). Images are representative of 3 independent experiments. Images were captured at 100X; scale bars are 10 

m. (F) A549 cytoplasmic (C) and nuclear (N) extracts were prepared at 0, 30, and 60 minutes after 50 g/mL CTD 

treatment. (G) Representative EMSA of oligonucleotide fragments upstream of the TNFSF10 transcription start site 

after 30 mins incubation with CTD. (H) A549 cells were co-transfected with pRL-CMV encoding Renilla luciferase 

and either pGL2-Basic, pGL2-Control, or pGL2-TRAIL encoding firefly luciferase and treated with 50 g/mL CTD 

for 24 hours. Firefly luciferase activity was normalized to Renilla luciferase activity and expressed relative to 
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vehicle-treated controls (N=6 replicates per group). Western blots are representative of 3 independent experiments. 

Data are mean + SEM. P values were calculated by two-sided independent sample t test. 

 

 

Figure 13. SR20 induces the expression of TRAIL and DR4. 

A549 cells were treated with 20 g/mL SR20 for 1 hour. (A) Relative mRNA expression of TRAIL and DR4 

normalized to GAPDH control at 5 hours after SR20 treatment (N=3 means of independent experiments). (B) 

Representative western blot of TRAIL, DR4, and GAPDH endogenous control protein 48 hours after SR20 

treatment. (C) Confocal microscopy of SR20:GFP-treated (green) A549 cells stained with rhodamine-phalloidin 

(red) and 4',6-diamidino-2-phenylindole (DAPI; blue). Images were captured at 100X; scale bars are 10 m. (D) 

Representative EMSA of oligonucleotide fragments upstream of the TNFSF10 transcription start site after 30 mins 

incubation with IgG Fc. Western blots and EMSAs are representative of 3 independent experiments. Data are mean 

+ SEM. P values were calculated by two-sided independent sample t test. 

3.3.3 MMP12 CTD sensitizes tumor cells to TRAIL-mediated apoptosis 

To determine whether induction of the TRAIL-DR4 axis was responsible for the decreased A549 

proliferation following CTD treatment, we inhibited TRAIL signaling with a recombinant human 

DR4:IgG Fc chimera (rhDR4:Fc) during [
3
H]-thymidine incorporation assays. rhDR4:Fc 

completely abolished the anti-proliferative effect of CTD (Figure 14A), and we confirmed 

rhDR4:Fc also abolished the anti-proliferative effect of SR20 (Figure 15A). Because TRAIL 
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exerts its anti-proliferative effects by initiating apoptosis [130], we hypothesized that CTD 

activates the apoptotic machinery of tumor cells. As expected, treatment of A549 cells with CTD 

(Figure 14B) or SR20 (Figure 15B), but not CAT, led to cleavage and activation of the apoptotic 

effector caspase-3 (CASP3) which was inhibited by pre-treatment with a neutralizing antibody to 

TRAIL (Figure 3C). Likewise, CTD treatment increased the percentage of TUNEL-positive cells 

(Figure 14, D and E), further indicating that CTD causes A549 cell apoptosis. Mirroring its 

effects on A549 cell proliferation, rhDR4:Fc blunted CASP3 cleavage induced by CTD (Figure 

14F). TRAIL-bound DR4 initiates apoptotic cell death through caspase-8 (CASP8) [133], which 

can trigger apoptosis by direct cleavage of CASP3 [134]  or intrinsic pathway signaling leading 

to caspase-9 (CASP9) activation [135-137] and subsequent CASP3 cleavage [136]. Previous 

reports indicated that type II pneumocytes, which share many properties with A549 cells [138], 

require the activation of both pathways in order to overcome anti-apoptotic mechanisms [139]; 

similarly, we found that CASP3 cleavage in CTD-treated A549 cells was blunted by antagonistic 

blocking peptides to either CASP8 (CASP8 BP) or CASP9 (CASP 9 BP; Figure 14G). 

Resistance to TRAIL-mediated apoptosis has been a major obstacle in the therapeutic use 

of TRAIL, and A549 cells have been reported to be largely insensitive to recombinant human 

TRAIL (rhTRAIL) treatment [140]. To determine whether CTD treatment was modulating 

TRAIL-resistance pathways, we compared apoptotic mediators in A549 cells treated with either 

CTD alone, 100 ng/mL rhTRAIL alone, or CTD plus 30 ng/mL rhTRAIL. CTD treatment caused 

reduced levels of anti-apoptotic proteins phospho-Bcl-2-associated death promoter [141] 

(pBAD), B-cell lymphoma-extra large (BCL-XL), and X-linked inhibitor of apoptosis [142] 

(XIAP), along with increases in the pro-apoptotic proteins BAD and BCL-XS [143], all of which 

have been linked to TRAIL sensitivity [144-146] and were unaffected by rhTRAIL alone (Figure 
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14H). Likewise, CTD treatment decreased the levels of pro-survival proteins NFB, AKT, and 

p44/42 MAPK linked to alternative TRAIL signaling in resistant cells [140, 147], while their 

levels were unchanged by rhTRAIL (Figure 14I). Meanwhile, CTD treatment decreased the 

expression of c-FLIP in A549 cells (Figure 14J), which functions in both TRAIL-resistance and 

the acquisition of pro-survival TRAIL-signaling phenotypes [140]. Taken together, these data -- 

and the upregulation of DR4 by CTD -- suggest that CTD sensitizes A549 cells to TRAIL-

mediated apoptosis. 

 

Figure 14. CTD induces TRAIL-dependent apoptosis and TRAIL sensitization. 

A549 cells were treated with 50 mg/mL CTD for 1 hour and experiments were conducted 48 hours later. (A) A549 

cells were pre-incubated in the absence or presence of rhDR4:Fc for 30 mins continuing into CTD incubation and 

proliferation was measured by [
3
H]-thymidine incorporation (N=3-4 replicates per treatment). (B) A549 cells were 

treated with CTD or 100 g/mL CAT. Representative western blot of CASP3 and GAPDH. (C) A549 cells were 

pre-incubated with or without anti-TRAIL antibody continuing into CTD incubation. Representative western blot of 
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CASP3 and GAPDH. (D) Representative images of vehicle and CTD-treated cells stained for TUNEL (brown; scale 

bars are 100 m). (E) TUNEL-positive cells were quantified as a percentage of total cells (N=3 means of 

independent experiments). (F) Representative western blot for CASP3 and GAPDH in CTD-treated cells plus or 

minus rhDR4:Fc. (G) Representative western blot for caspase-3, -8, -9 and GAPDH protein in cells treated with 

CTD in the presence or absence of CASP8 BP or CASP9 BP. (H) A549 cells were treated with CTD, 100 ng/mL 

rhTRAIL, or CTD plus 30 ng/mL rhTRAIL. Representative western blot for phospho-BAD (pBAd), BAD, BCL-

XL, BCL-XS, XIAP, and GAPDH. (I) Representative western blot for AKT, NFkB p50, p44/42 MAPK, and 

GAPDH. (J) Representative western blot for c-FLIP and CASP3 in cells treated with CTD. Western blots are 

representative of 3-6 independent experiments. Data are mean + SEM. P values were calculated by two-sided 

independent sample t test. 

 

 

Figure 15. SR20 induces TRAIL-dependent apoptosis of A549 cells. 

(A) A549 cells were pre-incubated in the absence or presence of rhDR4:Fc for 30 mins continuing into a 1 hour 

incubation with 20 g/mL SR20 and proliferation was measured by [
3
H]-thymidine incorporation in the 48 hours 

following treatment (N=3-5 replicates per group). (B) A549 cells were treated with 20 g/mL SR20 protein was 

harvested 48 hrs after treatment. Representative western blot of CASP3 and ACTB endogenous control protein. 

Western blots are representative of 3 independent experiments. Data are mean + SEM. P values were calculated by 

two-sided independent sample t test. 

3.3.4 SR20 is therapeutic in vivo in murine models of lung cancer 

To confirm the importance of these findings in vivo and examine the feasibility of CTD as a 

chemotherapeutic, we instilled cancerous mice intratracheally with SR20, which contains the 

anti-tumor activity of CTD. The therapeutic efficacy of SR20 in vivo was first tested on an 

orthotopic A549 lung xenograft in athymic nude mice (NU/J). One week after A549 cell 

implantation, mice were given intratracheal instillations of SR20 or vehicle control 2 times per 

week for 10 weeks, and mice given SR20 experienced a 60% reduction in lung tumor area 

compared to vehicle-treated mice (Figure 16, A and B). In a second murine model of endogenous 

lung cancer (Kras
LSL/G12D

), tumors were induced by intratracheal delivery of an adenoviral vector 
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containing Cre recombinase (AdCre) to trigger oncogenic kras expression [125]. Seven weeks 

after AdCre delivery, mice were begun on a regimen of either SR20 or vehicle control by twice 

weekly intratracheal instillation for 10 weeks. Interestingly, we observed that concurrent deletion 

of Mmp12 (Kras
LSL/G12D

:Mmp12
-/-

) led to a significant increase tumor burden (Figure 16, C and 

D) adding to evidence of a physiological role for Mmp12 in tumor surveillance [98, 99]. 

Treatment of Kras
LSL/G12D

:Mmp12
-/-

 mice with SR20 significantly reduced the overall tumor area 

by greater than 80% (Figure 16, C and D). In addition, tumors in SR20-treated mice harbored a 

greater percentage of apoptotic cells, as measured by TUNEL staining (Figure 16, E and F), 

while having fewer dividing cells as measured by Ki67 positivity (Figure 16, G and H). In 

summary, these data suggest that SR20 is an important physiological inhibitor of tumorigenesis 

with therapeutic potential in lung cancer. 
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Figure 16. SR20 inhibits tumor growth. 

Athymic nude mouse (NU/J) lungs were instilled with 10
7
 cells 1 week later were instilled with vehicle control or 

SR20 twice weekly for 10 weeks. Mice were sacrificed at the end of the 10 week treatment period, lungs were 

inflated, and H&E sections were prepared. (A) Representative 10X H&E images of vehicle- and SR20-treated lungs. 

Boxes show inset area. Insets are 60X with scale bars of 20 m. (B) Tumor area was measured as a percentage of 

total lung area (N=8 mice per group). Tumorigenesis was initiated in Kras
LSL/G12D

 and Kras
LSL/G12D

:Mmp12
-/-

 by 

AdCre instillation. 7 weeks after tumor initiation, mice were treated intratracheally with vehicle control or SR20 

twice weekly for 10 weeks. Mice were sacrificed at the end of the 10 week treatment period, lungs were inflated, 

and H&E sections were prepared. (C) Representative 10X H&E images of vehicle- and SR-20 treated lungs. (D) 

Tumor area was calculated as a percentage of total lung area (N=7-14 mice per group). (E) Representative 60X 

images of apoptotic cells stained with TUNEL. (F) Apoptotic cells were quantified as the number of TUNEL(+) 

cells per mm
2
 of tumor area (N=3-5 mice per group). (E) Representative 60X images of dividing cells stained with 

Ki67. (F) Dividing cells were quantified as the number of Ki67(+) cells per mm
2
 of tumor area (N=3-5 mice per 

group). Data are mean + SEM. P values were calculated by two-sided independent sample t test. 
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3.4 DISCUSSION 

In this study, we present novel evidence for an endogenous mechanism of tumor defense. Using 

multiple lung cancer cell lines, we show that SR20, a conserved 20 amino acid region in the C-

terminal domain of MMP12, invokes a potent tumoricidal program. By upregulating DR4 and its 

ligand, TRAIL, SR20 initiates an autocrine signaling loop leading to in vitro apoptosis of several 

lung cancer cell lines. Moreover, as appears to be the case with TRAIL, SR20 is cytotoxic to the 

tumor cell lines only while leaving non-cancerous lung cells intact. SR20 is effective in 

inhibiting lung tumor growth in vivo hence raising the possibility of a novel – and greatly needed 

– therapeutic agent for lung cancer. 

Previously, studies from our laboratory [98] and others [99] showed that MMP12 inhibits 

tumor progression and metastasis through the generation of angiostatic peptides angiostatin and 

endostatin, this study elucidates a direct tumoricidal role for MMP12 via TRAIL-mediated 

apoptosis. This region has previously been shown to mediate intracellular killing of bacteria by 

macrophages via disruption of lipid membrane integrity [118], while full-length MMP12 has 

recently been shown to possess transcription-modulatory activity residing in its catalytic domain 

[132]. As we confirmed, the MMP12 CTD also traffics to the nucleus and binds DNA regions 

upstream of the TRAIL gene, TNFSF10. As CTD sensitizes TRAIL-resistant cells to its 

apoptotic signaling effects, it is likely that CTD regulates an entire set of target genes that may 

assist therapeutic efforts to overcome the characteristic resistance to TRAIL [140]. 

Our study is limited in that, although SR20 appears efficacious primary murine lung 

cancers, the efficacy of CTD and SR20 against primary human lung adenocarcinomas is not 

assessed. Human lung cancers are known to have varying sensitivities to TRAIL-mediated 

apoptosis which may include the activation of alternative pro-growth signaling pathways [148]. 
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However, the ability of CTD and SR20 to initiate cell death in A549 cells, which are known to 

be resistant to TRAIL-mediated apoptosis [140], is promising in that it may have similar effects 

on resistant primary tumor cells. Furthermore, in light of preliminary evidence suggesting a 

transcriptional role for the MMP12 CTD, further benchtop studies will be required to fully 

understand the gene networks whose expression is modulated by CTD – networks that may or 

may not work in synergy with the mechanism described in this paper. 

3.5 CONCLUSIONS 

Nearly 25 years ago, the discovery of TRAIL brought great hope owing to its ability to induce 

apoptosis in cancer cells while sparing primary non-transformed cells [149]. The discovery of 

CTD’s TRAIL-inducing and TRAIL-sensitizing effects suggests not only that TRAIL resistance 

can be overcome by endogenous mechanisms, but also that SR20 may represent an opportunity 

for a potent new chemotherapeutic agent. 
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4.0  THE CARBOXYTERMINAL DOMAIN OF MACROPHAGE ELASTASE IN 

PULMONARY VASCULAR REMODELING 

4.1 INTRODUCTION 

Vascular remodeling, as discussed (see 1.2), is a defining feature of pulmonary hypertension 

involving excessive proliferation and migration of vascular smooth muscle cells (SMCs) coupled 

with resistance to apoptosis [30].  

As described earlier (see 3.3.2), TNF-related apoptosis inducing ligand (TRAIL, also 

known as TNFSF10) is a type II transmembrane protein [128, 150] which also exists in a soluble 

form (sTRAIL) [129]. Historically, TRAIL gained significant attention in the field of cancer 

research because it specifically induced apoptosis in tumor cells while leaving non-transformed 

cells intact [128, 150, 151]. TRAIL exerts its apoptotic effects in humans by signaling through 

death receptors 4 (DR4, also known as TNFRSF10A) [131] and 5 (DR5, also known as 

TNFRSF10B) [131, 152-154], while the rodent genome contains only a single death receptor 

orthologue of DR5 [155]. Classical TRAIL signaling through the death-domain-containing DR4 

and DR5 [156] involves recruitment of the intracellular Fas-associated death domain (FADD) 

which, through its death-effector domain, recruits caspase-8 (Casp8) to initiate the assembly of 

the death-inducing signaling complex (DISC) [133]. 
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Meanwhile, TRAIL can also bind to the transmembrane decoy receptors DcR1 (also 

known as TNFRSF10C) [130, 157] and DcR2 (also known as TNFRSF10D) [158-160], as well 

as the soluble protein osteoprotegerin (OPG) [161]. DcR1 and DcR2, which contain an absent 

intracellular domain and truncated death domain [156, 162], respectively, and the soluble protein 

OPG [163] are thought to antagonize TRAIL signaling by competitively inhibiting DR4 and 

DR5. 

Although TRAIL is best known as an apoptosis-inducing ligand in transformed cells with 

little to no pro-apoptotic activity against non-transformed cells [128], a noteworthy exception 

was observed in systemic vascular smooth muscle cells (VSMCs), where TRAIL is expressed 

and appeared to induce VSMC apoptosis in vitro at high concentrations (≥100 ng/mL) [164, 

165]. However, later studies found that lower concentrations of TRAIL paradoxically induced 

the proliferation of systemic VSMCs through increased ERK1/2 activation [166] and NFB-

dependent induction of IGF1R expression [167], consistent with the in vivo observation that 

administration of recombinant human TRAIL in diabetic ApoE
-/-

 mice increased the stability and 

VSMC content of atherosclerotic plaques [168]. 

More recently, work by Lawrie et al. demonstrated that TRAIL is abundantly expressed 

in VSMCs of the characteristic plexiform lesions in human PAH [169] as well as in the media of 

remodeled pulmonary arteries in a Paigen diet-induced model of murine PH [170]. Mirroring its 

effects on systemic VSMCs, recombinant human TRAIL induced the proliferation and migration 

of human pulmonary VSMCs. Moreover, inhibition of TRAIL via gene deletion or neutralizing 

antibody prevented and reversed medial thickening in multiple rat and mouse models of PH 

[171]. Taken together, these studies demonstrate that TRAIL is an important effector of vascular 
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remodeling in PH; however, the upstream events responsible for induction of TRAIL in the 

setting of PH remain unknown. 

We recently described a novel mechanism (see 3.0 ) whereby the carboxyterminal 

domain (CTD) of macrophage elastase (MMP12) induces the expression of TRAIL in tumor 

cells through a conserved 20 amino acid peptide known as SR20. Meanwhile, macrophages, the 

predominant source of MMP12 [132], are required for the development of hypoxia-induced PH 

in rodent models [172] and localize to sites of vascular remodeling [49]. In this report, we 

present evidence suggesting that the MMP12 CTD may be responsible for TRAIL-dependent 

pulmonary VSMC proliferation in PH. 

4.2 METHODS 

4.2.1 Primary cells 

Primary human pulmonary artery smooth muscle cells (hPASMCs) were a kind gift from Dr. 

Elena Goncharova at the University of Pittsburgh School of Medicine. hPASMCs were grown in 

SmGM2 growth media (Lonza) supplemented with an Antibiotic-Antimycotic formulation of 

100 U/mL penicillin, 100 g/mL streptomycin, and 0.25 g/mL Fungizone (Life Technologies) 

for no more than six passages. 
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4.2.2 Cell lines 

RAW 264.7 (TIB-71) murine macrophages were purchased from the ATCC and grown in 

Dulbecco’s Modified Eagle Medium (DMEM; Life Technologies) supplemented with 10% fetal 

bovine serum (Hyclone), 100 U/mL penicillin, and 100 g/mL streptomycin (Life 

Technologies). Cells were frozen into individual aliquots after no more than three passages, and 

thawed aliquots were each passaged for less than 6 months.  Because the cells were obtained 

directly from the original source institutions and have undergone minimal passaging in order to 

eliminate the possibility of drift or contamination, these lines have not been re-authenticated. 

4.2.3 siRNA 

hPASMCs were seeded in 24-well tissue culture dishes at a density of 50,000 cells/well in 500 

mL SmGM containing antibiotic-antimycotic and incubated at 37°C for 3 hours. Silencer Select 

siRNA oligonucleotide to TNFSF10 (siTRAIL; s16663) and Silencer Select Negative Control #1 

(siCtl) were purchased from Life Technologies. Transfection was performed using HiPerfect 

transfection reagent (QIAGEN) at a final concentration of 30 nM according to the 

manufacturer’s protocol. After 24 hours, CTD treatment and [
3
H]-thymiding incorporation 

assays were performed as described (see 3.2.5). 
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4.2.4 Western blotting 

Western blotting was performed as described (see 3.2.11). Antibodies to TRAIL, phospho-AKT 

(S473), AKT, phospho-ERK1/2 (T202/Y204), ERK1/2, GAPDH, and HIF1A were purchased 

from Cell Signaling Technologies. 

4.2.5 Quantitative real-time PCR 

qPCR was performed as described (see 3.2.12). Mmp12 mRNA was quantified with a TaqMan 

primer (Mm00500554_m1, Life Technologies) and normalized to Gapdh mRNA 

(Mm99999915_g1, Life Technologies) by the delta delta CT method. 

4.2.6 Animals 

Male C57BL/6J (WT) and Mmp12
-/-

 mice were bred and raised as described (see 3.2.15). All 

animal experiments were performed in accordance with the Institutional Animal Care and Use 

Committee (IACUC) of the University of Pittsburgh School of Medicine. 

4.2.7 Intratracheal instillation of SR20 

Intratracheal instillation of SR20 was performed as described (see 3.2.16); briefly, male 

C57BL/6J mice received twice weekly dosing of 35 L of 20 g/L SR20 or PBS by 

intratracheal instillation for 9 weeks beginning at 8 weeks of age. 
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4.2.8 Models of pulmonary hypertension 

For high-fat diet-induced pulmonary hypertension, mice were fed an open diet consisting of 15% 

lipids/kcals (regular diet or RD) or 60% lipids/kcals (high-fat diet or HFD; Research Diets) for 

20 weeks beginning at 8-12 weeks of age. For hypoxia-induced pulmonary hypertension, mice 

were housed in cages exposed to room air (Normoxia) or 10% O2 (Hypoxia) for 9 weeks 

beginning at 8-12 weeks of age (see Table 4). 

Table 4. Summary of pulmonary hypertension experiments in WT and Mmp12
-/-

 mice. 

  

Normoxia 

(Room Air) 

Hypoxiax 

(10% O2) 

RD 

(15% Lipids) 

HFD 

(60% Lipids) 

(6 wks beginning 

@ 13 wks old) 

(6 wks beginning 

@ 13 wks old) 

(20 wks beginning 

@ 8 wks old) 

(20 wks beginning 

@ 8 wks old) 

  N N N N 

WT 8 8 8 8 

Mmp12
-/-

 8 5 9 8 

 

4.2.9 Hemodynamics 

Right-ventricular hemodynamics were measured as described (see 2.2.3). 

4.2.10 Histology 

Mice were sacrificed following hemodynamic assessment. Lungs were inflated and fixed in 2% 

paraformaldehyde at 25 cm H2O for 2 hours followed by 24 hours at 4°C in phosphate-buffered 

saline containing 30% sucrose (Sigma). Snap-frozen sections (7m) were immunostained with a 
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Cy3-conjugated antibody to SMA (Sigma, St. Louis, MO, USA) and 4',6-diamidino-2-

phenylindole (DAPI; Sigma) to mark nuclei. Images of pulmonary arterioles were captured at 

40X magnification using an Olympus Provis fluorescence microscope digital camera system. 

4.2.11 Statistics 

Statistical analysis for all experiments was performed using GraphPad Prism 6 (GraphPad 

Software). Data are presented as mean ± SD. Statistical comparisons between groups were made 

using two-sided independent-sample Student’s t test, two-way ANOVA, or multiple t-tests with a 

false discovery rate (FDR) of less than 1%. P values less than 0.05 were considered statistically 

significant. 

4.3 RESULTS 

4.3.1 MMP12 is upregulated in macrophages grown in hypoxia 

To determine the relevance of MMP12 in the context of pulmonary hypertension, we exposed 

RAW 264.7 murine macrophages to either normoxia (20% O2) or hypoxia (0.5% O2) for 48 

hours. The hypoxic response was validated by upregulation of hypoxia-inducible factor 1-alpha 

(HIF1A) protein expression (Figure 17A). Mmp12 mRNA expression was increased 

approximately two-fold by hypoxia exposure (Figure 17B), suggesting that it may play a role in 

the hypoxic environment associated with pulmonary hypertension. 
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Figure 17. Mmp12 is upregulated in murine macrophages exposed to hypoxia. 
RAW 264.7 murine macrophages were grown in normoxia (20% O2) or hypoxia (0.5% O2) for 24 hours. (A) 

Hypoxia was confirmed by protein expression of HIF1A on Western blot. (B) Mmp12 mRNA expression was 

measured by qRT-PCR and expressed relative to Gapdh endogenous control (N = 3/group). Data are mean + SD. P 

values were calculated by two-sided independent sample t-test. 

4.3.2 MMP12 CTD triggers a TRAIL-dependent increase in hPASMC proliferation 

To first examine whether the MMP12 CTD could upregulate the expression of TRAIL in 

pulmonary vascular smooth muscle – much like it does in A549 lung cancer cells – we exposed 

hPASMCs to CTD for 48 hours and measured TRAIL mRNA and protein expression by qPCR 

and western blot, respectively. CTD treatment led to a greater than two-fold increase in TRAIL 

mRNA expression (Figure 18A) and a corresponding increase in TRAIL protein expression 

(Figure 18B). 

 

Figure 18. MMP12 CTD induces the expression of TRAIL in hPASMCs. 

hPASMCs were treated with either PBS (Vehicle) or 50 g/mL CTD for 1 hour followed by incubation in basal 

media containing 0.1% BSA. (A) RNA was harvested 24 hours after CTD treatment and Tnfsf10 (Trail) and Gapdh 

mRNA were quantified by qRT-PCR (N = 3 means of independent experiments). (B) Representative western blot 

for TRAIL and GAPDH 48 hours after CTD treatment. Data are mean + SD. P values were calculated by two-sided 

independent sample t test. 
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Because TRAIL is known to increase the proliferation of vascular smooth muscle cells, 

we next measured hPASMC proliferation by [
3
H]-thymidine uptake after treatment with the 

MMP12 CTD. As expected, the MMP12 CTD increased [
3
H]-thymidine uptake by more than 

60% (Figure 19A). Moreover, the increase in proliferation was abolished by siRNA-mediated 

knockdown of TRAIL (Figure 19, A and B), implying that the increased proliferation caused by 

the MMP12 CTD is TRAIL-dependent. As evidenced by increased phosphorylation of AKT and 

ERK1/2 (p44/42 MAPK) on western blot (Figure 19C), CTD appears to act at least partially 

through the AKT and ERK signaling pathways. 

 

Figure 19. MMP12 CTD induces TRAIL-dependent proliferation of hPASMCs. 
Following incubation for 24 hours in growth media alone (No siRNA) or growth media containing a control (siCtl) 

or TRAIL (siTRAIL) silencing RNA, hPASMCs were treated with PBS (Vehicle) or 0.5 g/mL CTD for 1 hour. (A) 

hPASMC proliferation was measured by [3H]-thymidine incorporation in the 48 hours following CTD treatment 

(N=4-6 independent experiments/group). (B) Representative western blot of TRAIL and GAPDH protein at 48 hours 

after CTD treatment with siCtl or siTRAIL. (C) Representative western blot of phospho-AKT, AKT, phospho-

ERK1/2, ERK1/2, and GAPDH protein at 48 hours after CTD treatment. Data are mean + SD. P values were 

calculated by two-sided independent sample t-test or two-way ANOVA as appropriate. 

4.3.3 SR20 instillation may increase medial wall thickness in vivo but does not alter 

pulmonary vascular resistance 

To determine whether the increased SMC proliferation triggered by the MMP12 CTD translates 

to in vivo models, we instilled C57BL/6J mice intratracheally with SR20 – the bioactive peptide 
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responsible for TRAIL upregulation by the CTD – twice weekly for 9 weeks beginning at 8 

weeks of age. At the end of the treatment period, lungs were sectioned and stained for with an 

antibody to SMA. The percent medial wall area and medial wall thickness was calculated using 

the VMI calculator as described above (see Figure 3C). SR20 treatment caused a modest but 

statistically significant increase in the percent medial wall area but did not affect medial 

thickness (Figure 20, A and B).  In addition, instillation of SR20 had no effect on pulmonary 

vascular resistance (Figure 20B). Taken together, these data suggest that SR20 instillation may 

promote vascular remodeling in vivo. 

 

Figure 20. SR20 may induce medial thickening in vivo. 

Male C57BL/6J received twice weekly 35 L intratracheal instillations of PBS or 20 g/L SR20 for 9 weeks 

beginning at 8 weeks of age. (A) Representative images from PBS- or SR20-treated lungs stained for alpha-smooth 

muscle actin (SMA, red) and 4',6-diamidino-2-phenylindole (DAPI, blue). (B) Medial area as a percentage of total 

vessel area, log10(wall thickness), and peripheral vascular resistance were quantified in PBS- and SR20-treated 

animals (N=3-5 mice/group). P values were calculated by two-sided independent sample t-test. 
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4.3.4 MMP12 is protective in hypoxia-induced pulmonary hypertension 

Given the evidence that the MMP12 CTD induces pulmonary VSMC proliferation and, 

potentially, pulmonary vascular remodeling in vivo, we hypothesized that genetic deletion of 

Mmp12 protects against pulmonary hypertension in mice. In male WT and Mmp12
-/-

 mice, we 

utilized two murine models of pulmonary hypertension: (1) mice were fed either a regular (RD) 

or high-fat (HFD; 60% lipids/kcals) diet for 20 weeks or (2) mice were housed in room air 

(Normoxia) or 10% O2 (Hypoxia) for 9 weeks beginning at 8-12 weeks of age. Surprisingly, 

Mmp12
-/-

 mice were significantly more susceptible to chronic hypoxia-induced elevation in right 

ventricular systolic pressure (RVSP) than their WT counterparts (Figure 21A), and the two 

strains differed neither in the HFD-induced RVSP elevation (Figure 21A) nor in measures of 

body weight (Figure 21B), right ventricular hypertrophy (Fulton’s index, Figure 21C), or 

pulmonary vascular resistance (PVR, Figure 21D). 
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Figure 21. Mmp12 is protective in murine hypoxia-induced pulmonary hypertension. 
Male C57BL/6J (WT, black) or Mmp12

-/-
 (red) mice were fed a regular (RD) or high-fat (HFD) diet for 20 weeks 

beginning at 8-12 weeks of age (N=6-9 mice/group). Alternatively, mice were housed in room air (Normoxia) or 

10% O2 (Hypoxia) for 9 weeks beginning at 8-12 weeks of age (N=5-8 mice/group). Hemodynamic measurements 

were obtained by terminal right-heart catheterization. (A) Right ventricular systolic pressure (RVSP), (B) body 

weight, (C) RV remodeling as assessed by Fulton index, and (D) pulmonary vascular resistance (PVR) were 

recorded. Data are mean ± SD. P values were calculated by two-sided independent sample t-test with false discovery 

rate less than 1%. 

 

These data suggest that either (i) MMP12 CTD does not induce pulmonary VSMC 

proliferation in vivo in mice or (ii) the mitogenic effects of MMP12 on pulmonary VSMC 

proliferation are outweighed by other local or systemic effects in the HFD- and hypoxia-induced 

murine models of PH. 
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4.4 DISCUSSION 

In this section, we describe a novel role for the CTD of macrophage elastase (MMP12) as a 

mitogen for human pulmonary VSMCs. We show that MMP12 is upregulated in macrophages 

grown under hypoxic conditions seen in PH, and that its CTD induces TRAIL-dependent 

proliferation of hPASMCs. Unexpectedly, however, genetic deletion of Mmp12 in mice led to 

increased susceptibility to PH in a chronic hypoxia model, suggesting the MMP12 has a net 

protective effect on PH development. 

The possible mechanisms behind MMP12-mediated protection against PH are numerous 

yet speculative at this point. TRAIL appears to promote the proliferation of VSMCs [166, 167], 

yet it may trigger apoptosis in endothelial cells [164]. Hence, the MMP12 CTD may prevent 

intimal hypertrophy even while it promotes medial thickening. Simultaneously, the catalytic 

domain of MMP12 is known to cleave plasmin(ogen) and type XVIII collagen and generate the 

anti-angiogenic peptides angiostatin [117] and endostatin [116], respectively, which may further 

inhibit intimal thickening and concomitant elevations in pulmonary vascular resistance. 

The finding that Mmp12
-/-

 mice have increased susceptibility to hypoxia-induced PH is 

even more surprising given what is known about its classical substrate, elastin, in pulmonary 

hypertension. Based on early studies [173, 174], it has been hypothesized that elastin degradation 

precedes pulmonary vascular remodeling, in part through the release of matrix-bound growth 

factors bFGF and tenascin-C [175]. In fact, previous studies have shown that serine elastase 

inhibitors and broad-spectrum MMP inhibitors induce apoptosis of hypertrophied medial walls in 

isolated hypertensive pulmonary arteries from rats [176]; likewise, systemic serine elastase 

inhibition was curative in a monocrotaline-induced PH model in rats [177]. In this context, our 
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findings suggest that any detrimental activity stemming from MMP12-mediated elastolysis is 

outweighed by other factors in the chronic hypoxia mouse model.    

Mouse models are an additional factor complicating the study of MMP12 in PH; mouse 

models of PH, while attractive because of the wide availability of genetically-modified mice, do 

not develop the degree of vascular remodeling observed in rat models [30]; additionally, chronic 

hypoxia in the absence of Sugen (SU5416) is only thought to lead to minimal remodeling. 

Therefore, the relevance of MMP12 and the effect of its deletion/inhibition may be different in 

other models of PH [178]. 

In summary, MMP12 appears to be an attractive topic for further research in the context 

of PH. Its potentially conflicting roles – pathogenic elastin degradation and promotion of SMC 

proliferation versus speculated inhibition of intimal hypertrophy – may complicate its study, yet 

the use of multiple in vivo and in vitro models should help to clarify the role of MMP12 in PH.  

4.5 CONCLUSIONS 

From the above studies, it appears clear that MMP12 plays an important role in the pathogenesis 

of PH. However, the exact nature of this role remains unclear: the MMP12 CTD induces the 

TRAIL-dependent proliferation of hPASMCs, in contrast to its apoptosis-inducing activity 

against lung cancer cells (Figure 22). 
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Figure 22. Proposed effects of the MMP12 CTD on lung cancer cells and pulmonary vascular smooth 

muscle cells (VSMC). 

However, MMP12 has a net protective effect against chronic hypoxia-induced PH in 

mice. Further studies will be needed to elucidate the predominant PH-relevant mechanisms from 

MMP12’s numerous activities.   
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5.0  GENOME-WIDE ASSOCIATION STUDY OF PULMONARY HYPERTENSION 

SUSCEPTIBILITY IN MICE 

5.1 INTRODUCTION 

Knowledge of the molecular events leading to pulmonary arterial hypertension (PAH) 

pathogenesis has exploded in recent decades; however, our understanding remains far from 

complete, as evidenced by the absolute dearth of medical interventions to prolong the survival of 

patients suffering from this deadly disease [179]. 

Human genetics-based approaches have contributed a wealth of knowledge regarding the 

pathogenesis of PAH by studying the co-occurrence of PAH cases in families (Familial PAH, or 

FPAH) [18]. These studies led to the identification of mutations in BMPR2 as heritable disease 

genes [19, 20]. However, ~30% of FPAH cases lack pathogenic BMPR2 mutations [180], and, 

while inherited in an autosomal dominant fashion, FPAH has a penetrance of only ~27%. Hence, 

PAH is a complex disease which is incompletely explained by known genetic factors.  

Indeed, PAH cases with no clear heritable component (Idiopathic PAH, or IPAH) are 

approximately 15 times more common than FPAH [2, 181], and sporadic BMPR2 mutations are 

observed in only 6-40% of IPAH cases [18, 182]. A recent genome-wide association study 

(GWAS) in humans identified a promising candidate gene in PAH pathogenesis, CBLN2 [27], 

which induces vascular smooth muscle cells apoptosis and adds further evidence to the portrait 
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of PAH as a disease of excessive proliferation and diminished apoptosis of pulmonary vascular 

smooth muscle cells. However, PAH is also a systemic disease involving inflammatory cells, 

right ventricular dysfunction, and skeletal muscle abnormalities. In recent years, a new metabolic 

hypothesis has emerged to unite the multitude of abnormalities in the complex pathogenesis of 

PAH [183]. This theory has gained traction from, among others, observations in rodent models 

that (i) metabolic syndrome induces experimental PH [73, 170] and (ii) drugs that treat metabolic 

abnormalities also reverse experimental PH [64, 184]. 

In this study, we sought to leverage the power of GWAS with the feasibility of mouse 

models to identify novel candidate genes in PH pathogenesis as it relates to the metabolic 

syndrome. Murine GWAS have been employed to identify candidate genes associated with other 

pulmonary disorders including asthma [185] and lung cancer [186]. We hypothesized that a 

murine GWAS associating genomic single nucleotide polymorphisms (SNPs) with metabolic 

syndrome-induced PH would identify genes that are known to be involved in PH pathogenesis, 

as well as novel genes that may be related to PH. To induce disease, we utilized a high-fat diet-

induced mouse model which has been shown to produce a robust PH phenotype in mice [73]. 

Here we report the results of the association of genomic single nucleotide polymorphisms 

(SNPs) with high-fat diet-induced changes in right ventricular maximum pressure (RV MaxP) in 

36 inbred and wild-derived mouse strains. 
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5.2 METHODS 

5.2.1 Animals 

Male mice from 36 inbred and wild-derived strains (Table 5) were purchased from Jackson 

Laboratories (Bar Harbor, ME). All animal experiments were performed in accordance with the 

Institutional Animal Care and Use Committee (IACUC) of the University of Pittsburgh School 

of Medicine. Animals were housed within a pathogen-free barrier facility that maintained a 12-

hour light/dark cycle in Plexiglas cages (one to four mice per cage) with free access to 

autoclaved water and irradiated pellet food. Animal health, weight, and overall behavior were 

monitored throughout the experiments. 

Table 5. Mouse strains used in strain study 

129S1/SvImJ C57BL/10J DBA/2J NZB/BinJ 

A/J C57BL/6J FVB/NJ NZO/HiLtJ 

AKR/J C57BLKS/J KK/HlJ NZW/LacJ 

BALB/cByJ C57BR/cdJ LG/J PHK/PhJ 

BALB/cJ C57L/J Ln/J PL/J 

BPN/3J CAST/EiJ LP/J RIIIS/J 

BTBRT+tf/J CBA/J MRL/MpJ SJL/J 

BUB/BnJ CE/J NOD/ShiLtJ SWR/J 

C3H/HeJ DBA/1J NON/ShiLtJ WSB/EiJ 

 

5.2.2 High-fat feeding 

Male mice were fed an open regular (15% lipids/kcals) or high-fat (60% lipids/kcals; Research 

Diets), diet for 20 weeks beginning at 6-12 weeks of age. 



 84 

5.2.3 Hemodynamics 

Right-ventricular hemodynamics were measured as described (see 2.2.3). 

5.2.4 Genome-wide SNP association 

GWAS was performed as described previously [186]. Briefly, phenotypes were quantified as 

described and high-density mouse genotypes were obtained from the Center for Genome 

Dynamics at Jackson Laboratories [187, 188]. GWAS was performed using a univariate linear 

mixed model with Genome-wide Efficient Mixed Model Algorithm (GEMMA) [189, 190] where 

P-values reflected the strength of genotype-phenotype association. 

5.2.5 Region analysis 

Regions were constructed by beginning with a significant SNP (P < 10
-3

) and iteratively adding 

flanking significant SNPs within ± 1 Mb until there were no significant SNPs in the 1 Mb 

upstream or downstream of the region. 

Region P-values were calculated by the hypergeometric survival function based on the 

total number of SNPs, the number of SNPs in the region, the total number of significant SNPs (P 

< 10
-3

), and the number of significant SNPs in the region. Regions with hypergeometric P < 

2.5x10
-3

 were considered significant. Mouse genes with exons contained wholly or partially 

within a significant region were considered candidate genes. 
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5.2.6 Network analysis 

An interactome of human protein-protein interactions was kindly provided by Dr. Albert-László 

Barabási of Northeastern University [191]. Mouse-human orthologues were obtained from the 

Mouse Genome Database [192]. All network-based analyses were performed in the Python 

programming language. PH-related genes were curated as described previously [64, 193]. For a 

candidate node v, the (shortest path) betweenness centrality CB(v) was calculated in a subnetwork 

of the largest connected component V of PH-related genes with v added by 

𝐶𝐵(𝑣) = ∑
𝜎(𝑠, 𝑡|𝑣)

𝜎(𝑠, 𝑡)
𝑠,𝑡∈𝑉

 

where s and t are nodes in V, (s,t) is the number of shortest paths between s and t, and (s,t|v) is 

the number of shortest paths between s and t that pass through v [194]. Shortest paths were 

calculated by Dijkstra’s algorithm. Betweenness centrality was normalized to its theoretical 

maximum based on the number of nodes N in V as 𝐶𝐵(𝑣) (0.5(𝑁 − 1)(𝑁 − 2))⁄  [64]. 

5.3 RESULTS 

5.3.1 Interstrain differences in high-fat diet-induced PH susceptibility 

To quantify the effects of chronic high-fat feeding on pulmonary hemodynamics, we first 

stratified mice from 36 inbred or wild-derived strains into regular diet (15% lipids/kcals) or high-

fat diet (60% lipids/kcals) beginning at 6-12 weeks of age. In order to eliminate the confounding 

effects of gender [195], only male mice were used in this study. After 20 weeks on their 
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respective diets, body weights were recorded and left- and right-ventricular (Figure 23) pressures 

were measured by terminal cardiac catheterization. 

 

Figure 23. Fold change in RV maximum pressure. 
36 strains of inbred or wild-derived mice were fed with a regular (RD) or high-fat (HFD) diet for 20 weeks 

beginning at 6-12 weeks of age (N=3-8 mice/diet per strain). Left- (LV) and Right-ventricular (RV) hemodynamics 

were measured by terminal catheterization. Fold change in body weight, LV Maximum Pressure, and RV Maximum 

Pressure was calculated as the HFD value divided by the average RD value. Data are mean ± SD. 

5.3.2 Genome-wide SNP association identifies regions associated with right-ventricular 

hemodynamics 

Following data acquisition, we identified single nucleotide polymorphisms (SNPs) associated 

with each of 48 phenotypes – encompassing weight, ventricular remodeling, and left- and right-

sided hemodynamics – by Genome-wide Efficient Mixed Model Association (GEMMA; see 

Appendix A) [189, 190]. To account for the influence of baseline phenotypes on high-fat 

phenotypes, we expressed each quantitative phenotype on high-fat diet as a fold change from the 
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mean regular diet value of its strain. Reasoning that important SNPs were likely to cluster 

together in chromosomal regions, we constructed genomic regions of interest for each phenotype 

by combining 1 megabase (Mb) flanking segments of significant SNPs (P < 10
-3

). Significant 

regions were defined as regions that were enriched for significant SNPs by hypergeometric 

enrichment with P < 2.5x10
-3

. We then developed a list of candidate genes based upon their 

presence in a significant region. 

To filter our initial list of candidate 1,511 candidate genes associate with RV maximum 

pressure (RV MaxP) genes, we excluded genes that were associated with either body weight, LV 

MaxP, or LV end-systolic pressure (LV ESP), reasoning that these genes could function 

upstream of the molecular events of most interest to our study. Meanwhile, we excluded genes 

that were not also associated with RV ESP, reasoning that genes associated with both phenotypes 

were less likely to be false positives. Using this method, we were able to roughly halve our initial 

list to 880 candidate genes (Figure 24). 
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Figure 24. Region-based filtering of GWAS results. 
Genome wide SNP association P-values were calculated by GEMMA for fold change (HFD v. RD) in body weight 

(Weight), LV maximum pressure (LV MaxP), LV end-systolic pressure (LV ESP), RV maximum pressure (RV 

MaxP), and RV end-systolic pressure (RV ESP). Black and gray dots represent SNP P-values (left axis) for the 

respective phenotypes (right axis) at their chromosomal position (x axis). Colored strips represent chromosomes, 

and black bars show regions containing one enriched (hypergeometric P < 2.5x10
-3

) for significant SNPs (P < 10
-3

). 

Regions were filtered (Filt.) as chromosomal regions that were significant in RV MaxP and RV ESP phenotypes but 

neither Weight, LV MaxP, nor LV ESP phenotypes. 

5.3.3 Network analysis identifies candidate genes associated with human PH 

For the next step in our filtering process, we sought to identify genes that are closely related to 

what is currently known about pulmonary hypertension (PH). Protein interaction networks have 

been successfully used to gain novel insights into PH pathogenesis [64, 193], and we examined 

the PH-relatedness of the human orthologues [192] of our candidate genes based on their 
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connectedness to a subnetwork of known PH genes [193] within a curated global network of 

protein-protein interactions [191] (Figure 25). 

 

Figure 25. Pulmonary hypertension interactome with candidate genes. 

Graph showing known PH genes (blue) and their interactions with each other and PH candidate genes that are 

already known PH genes (pink) or neighbors of known PH genes (red). 

 

We scored the PH-relatedness of our candidate genes based on their shortest path 

betweenness centrality [194] in a subnetwork consisting of the candidate and known PH genes 

[64]. Shortest path betweenness centrality of a node v measures the fraction of shortest paths 

between two other network nodes, s and t, that pass through v; in essence, shortest path 

betweenness centrality measures the amount of network connectivity that would be lost of v were 

to be removed from the network. We normalized each value to its theoretical maximum for an 

undirected graph: one half times the subnetwork size minus one times the subnetwork size minus 

two (Table 6). 
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Table 6. Top fifteen candidate genes ranked by normalized betweenness centrality. 

Known PH-related genes are highlighted in yellow. 

Symbol Chrom. Start End 
Betweenness 

Centrality 

Gucy1b3 3 81835926 81878633 0.07256 

Egfr 11 16652206 16818161 0.07155 

Dok4 8 97387728 97400212 0.04940 

Ppp2ca 11 51912183 51941280 0.03848 

Sfpq 4 126698568 126714257 0.02890 

Hspa4 11 53073316 53113959 0.02625 

Irf1 11 53583516 53591876 0.02458 

Cdk2 10 128134995 128142107 0.02446 

Cdk4 10 126500590 126504976 0.02333 

Skp1a 11 52045497 52060360 0.02198 

Myl6 10 127927916 127930931 0.02167 

Mars 10 126733277 126748842 0.02105 

Stat6 10 127080042 127098013 0.02105 

Hnrnpc 14 52693055 52723703 0.02105 

Tbk1 10 120983511 121023850 0.02105 

 

5.4 DISCUSSION 

In this report, we present the results of a murine GWAS of right ventricular pressure phenotypes 

after chronic high-fat feeding. Through region-, phenotype-, and network-based filtering steps, 

we identified a group of candidate genes that may be related to murine and human pulmonary 

hypertension. 

Notable among these candidate genes is Ppp2ca, which encodes the catalytic subunit of 

protein phosphatase 2A (PP2A). In a recent RNA profiling study (GSE15197) [196] of human 

lung samples, its human orthologue PPP2CA was among the most downregulated transcripts in 

PAH lung tissue versus control. PP2A has diverse biological roles, including as a negative 
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regulator of cellular growth, proliferation, and cell cycle progression [197, 198]. Given the 

importance of these pathways in the pathogenesis of PH [30], Ppp2ca appears to be an ideal 

candidate for further study. 

Although the focus of this study was on the pulmonary circulation and right-ventricular 

hemodynamics, our results should be widely useful to other investigators. For example, it is 

well-known that hyperlipidemic states contribute to diseases of the systemic circulation, as well 

[199, 200]. Hence, the results of this comprehensive study may be of use to investigators 

interested in left-sided cardiovascular disease. In addition, the results of our strain survey should 

be useful to all investigators studying pulmonary hypertension, regardless of their application to 

GWAS. With the recent advent of simpler approaches to genome editing [201], the strain survey 

should provide useful insight into the ideal background strains for future genetic studies into PH 

susceptibility. 

5.5 CONCLUSIONS 

In summary, this report describes the results of a strain study that was used to identify Ppp2ca as 

a candidate gene in high-fat diet-induced PH susceptibility. Our findings and data will be useful 

to investigators in multiple fields examining the relationship between metabolism and right- and 

left-sided cardiovascular hemodynamics. 
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6.0  IMPACT AND FUTURE DIRECTIONS 

6.1 QUANTIFICATION OF VASCULAR REMODELING 

The quantification of wall thickness extends to numerous scenarios beyond medial thickening of 

the small arteries in the lungs. Of course, intimal and adventitial thickening of pulmonary artery 

walls are key histopathological features of PAH [13] and can also be quantified by the skeleton 

method. Likewise, the accuracy of the method also applies to their systemic counterparts in the 

setting of systemic vascular remodeling [16, 202].   

Meanwhile, one does not have to think very long to recognize the multiple other body 

conduits whose wall thicknesses could be measured using the skeleton method and the VMI 

calculator. For instance, bronchial smooth muscle growth is a notable feature of asthma [203] 

and its thickening is readily quantified by our approach. Hence, the breadth of its applicability 

should make the skeleton method of wall thickness quantification a useful and impactful 

resource for investigators in multiple fields. 

6.2 SR20 IN LUNG CANCER 

The beneficial angiostatic effects of MMP12 against lung cancer have long been known [98, 99]. 

However, the prospect of harnessing MMP12 activity to fight cancers has never gained traction, 
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presumably – at least in part – owing to its harmful elastolytic activity in the setting of 

emphysema [94, 204]. Here we show that SR20 offers the exciting prospect of harnessing some 

anti-tumor activity of MMP12 without the elastolytic side-effects. Of course, we still have much 

to learn about SR20 before it can be used in human populations, in particular its effects on other 

tissues such as the pulmonary vasculature where it may promote medial thickening and vascular 

remodeling. 

6.3 TRANSCRIPTIONAL MODULATION BY SR20 

The evidence presented suggests that SR20 mediates its tumor-apoptotic and vascular smooth 

muscle cell-proliferative effects through transcriptional upregulation of TRAIL. In the context of 

what is already known about MMP12, particularly that its catalytic and carboxyterminal domains 

traffic to the nucleus where the catalytic domain activates a gene transcription program [132], 

our explanation of a separate transcriptional role for SR20 appears plausible. However, it seems 

unlikely that SR20 and the MMP12 CTD would regulate TRAIL alone. Hence, further high-

throughput studies are needed to determine the exact nature of SR20’s transcriptional effects on 

multiple cell types. Using ChIP-Seq technology to identify genomic binding sites and gene 

expression arrays to identify transcriptomic responses will allow a better and more complete 

characterization of the true nature of SR20’s actions. 
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6.4 THE ROLE OF MMP12 IN PULMONARY HYPERTENSION 

In vitro, the MMP12 CTD appears to clearly induce TRAIL-dependent proliferation of 

hPASMCs. However, our murine models demonstrate that the exact nature of MMP12’s role in 

PH is far more complex, as genetic deletion of Mmp12 was associated with increased 

susceptibility to chronic hypoxia-induced PH. Future studies should first focus on the role of 

MMP12 in endothelial cell proliferation and intimal hypertrophy both in vivo and in vitro, as 

MMP12 and TRAIL are known to negatively regulate these processes and may therefore impede 

the development of PH [98, 164]. 

6.5 GWAS 

In this report, we present the results of a murine GWAS relating genomic regions to high-fat 

diet-induced changes in right-ventricular maximum pressure. These findings will be useful to 

other researchers in the field, who can use the results to guide in vitro and in vivo studies that 

will further advance the field. In addition, the tissues banked from the study will be useful in 

determining genetic associations to other quantitative phenotypes; for example, using the VMI 

calculator, it will be feasible to quantify vascular remodeling in lungs from the 36 strains and 

determine genetic loci associated with this phenotype. 
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APPENDIX A 

This section provides tables of the top 200 most significant single nucleotide polymorphisms 

(SNPs) from the genome-wide association study (see 5.0 ). Chromosomal positions are based 

upon NCBI genome build 37. 

A.1 BODY WEIGHT SNP ASSOCIATIONS 

Table 7 lists the top 200 SNPs associated with fold change in body weight (high-fat diet v. 

regular diet). 

Table 7. Top 200 SNPs associated with fold change in body weight. 

SNP Chrom Position P-value 

mm37-9-99229402:MAG18141024 9 99229402 1.73E-06 

mm37-3-42827940 3 42827940 1.02E-05 

NES15880954 3 32081078 1.10E-05 

mm37-12-55400491:NES17579563 12 55400491 1.18E-05 

NES15901144 3 42792364 1.27E-05 

NES15371855 12 30645627 1.56E-05 

NES15371686 12 30650567 1.56E-05 

NES17579804 12 55389730 1.68E-05 

NES17579626 12 55394467 1.68E-05 

NES17579557 12 55400161 1.68E-05 

NES13726835 6 97738622 3.17E-05 
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NES13725843 6 97771620 3.17E-05 

NES13725745 6 97774932 3.17E-05 

NES13725728 6 97775302 3.17E-05 

NES13725733 6 97775571 3.17E-05 

NES13725734 6 97775593 3.17E-05 

NES13725737 6 97775761 3.17E-05 

NES13725680 6 97781018 3.17E-05 

NES13725248 6 97788727 3.17E-05 

NES15143088 18 82453617 3.25E-05 

NES15142919 18 82460182 3.25E-05 

NES10276888 5 31360939 4.47E-05 

NES15880950 3 32080777 4.75E-05 

NES15880888 3 32082602 4.75E-05 

NES15880839 3 32084566 4.75E-05 

NES15880851 3 32084942 4.75E-05 

NES15880799 3 32086414 4.75E-05 

NES15880807 3 32086548 4.75E-05 

NES15880702 3 32093941 4.75E-05 

NES15880578 3 32107778 4.75E-05 

NES11238208 12 55232071 5.08E-05 

NES11241158 12 55174827 5.11E-05 

NES11240253 12 55195989 5.11E-05 

NES11239946 12 55198272 5.11E-05 

NES15901461 3 42739894 5.22E-05 

NES15901466 3 42740251 5.22E-05 

NES15901379 3 42748319 5.22E-05 

NES15901329 3 42756882 5.22E-05 

NES15901143 3 42792249 5.22E-05 

NES15901025 3 42810166 5.22E-05 

NES15900602 3 42859769 5.22E-05 

mm37-3-42860510:NES15900626 3 42860510 5.22E-05 

NES15900425 3 42869682 5.22E-05 

NES15900208 3 42878518 5.22E-05 

mm37-3-42879722 3 42879722 5.22E-05 

mm37-3-42965073:NES15899439 3 42965073 5.22E-05 

mm37-1-129839661:NES16469524 1 129839661 5.25E-05 

NES15371568 12 30654863 6.29E-05 

NES17437016 18 82440722 7.03E-05 

NES17437018 18 82440771 7.03E-05 
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NES17437020 18 82440804 7.03E-05 

NES17437022 18 82440826 7.03E-05 

NES17437024 18 82440838 7.03E-05 

NES17437026 18 82440878 7.03E-05 

NES17437030 18 82440940 7.03E-05 

NES15143082 18 82452999 7.03E-05 

NES15143083 18 82453483 7.03E-05 

NES15143031 18 82455469 7.03E-05 

NES15142894 18 82459542 7.03E-05 

NES14696377 3 44600162 7.15E-05 

NES11240781 12 55184153 7.37E-05 

NES11240245 12 55195579 7.37E-05 

NES11240050 12 55197289 7.37E-05 

NES11240056 12 55197535 7.37E-05 

NES11239985 12 55197772 7.37E-05 

NES11239953 12 55198345 7.37E-05 

NES11239838 12 55199738 7.37E-05 

NES11239766 12 55200533 7.37E-05 

mm37-5-31562956:rs6254142:NES10269394 5 31562956 7.59E-05 

mm37-5-31564892 5 31564892 7.59E-05 

NES15379173 12 30356570 7.72E-05 

NES15379104 12 30362510 7.72E-05 

NES15379105 12 30362538 7.72E-05 

NES15378959 12 30374371 7.72E-05 

NES15378929 12 30384888 7.72E-05 

NES17549880 12 35349978 7.96E-05 

NES16414654 1 115558525 8.46E-05 

mm37-1-115561430 1 115561430 8.46E-05 

NES16430769 1 115630623 8.46E-05 

mm37-1-115663964:NES12799491 1 115663964 8.46E-05 

NES16825034 9 99235831 8.79E-05 

NES16825000 9 99236398 8.79E-05 

NES16824899 9 99243583 8.79E-05 

mm37-3-119623628:NES13912687 3 119623628 9.28E-05 

mm37-3-42832136 3 42832136 9.30E-05 

mm37-2-161205958:rs3664408:NES08878410 2 161205958 1.01E-04 

mm37-2-161217352:NES08878182 2 161217352 1.01E-04 

NES14158944 10 98725936 1.07E-04 

NES14158962 10 98730683 1.07E-04 
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mm37-3-42924601 3 42924601 1.08E-04 

NES15899392 3 42972986 1.08E-04 

NES17542492 12 36597790 1.12E-04 

NES17542329 12 36606064 1.12E-04 

NES17542284 12 36606711 1.12E-04 

mm37-3-44787487 3 44787487 1.12E-04 

NES14693391 3 44800612 1.12E-04 

NES14693392 3 44800710 1.12E-04 

NES14693393 3 44800770 1.12E-04 

mm37-3-44804863:NES14693357 3 44804863 1.12E-04 

mm37-3-44805008 3 44805008 1.12E-04 

mm37-9-103536855 9 103536855 1.25E-04 

NES16825183 9 99228170 1.28E-04 

NES16825185 9 99228308 1.28E-04 

mm37-9-103305949 9 103305949 1.30E-04 

mm37-9-103336198 9 103336198 1.30E-04 

NES13013045 1 115314482 1.40E-04 

NES10249433 5 31236455 1.41E-04 

NES08879080 2 161167058 1.43E-04 

NES08878978 2 161175327 1.43E-04 

mm37-3-43003681:NES15899143 3 43003681 1.45E-04 

NES14696800 3 44572702 1.45E-04 

NES14696801 3 44572843 1.45E-04 

mm37-3-44575652 3 44575652 1.45E-04 

mm37-3-44592340 3 44592340 1.45E-04 

mm37-3-44598954:NES14696366 3 44598954 1.45E-04 

mm37-1-115415827:NES13011163 1 115415827 1.55E-04 

mm37-1-115415905:NES13011166 1 115415905 1.55E-04 

mm37-1-115441025:NES13010741 1 115441025 1.55E-04 

NES13010687 1 115442030 1.55E-04 

NES15901469 3 42740444 1.56E-04 

mm37-3-42745130:NES15901402 3 42745130 1.56E-04 

mm37-3-42745634:NES15901406 3 42745634 1.56E-04 

mm37-3-42749006 3 42749006 1.56E-04 

NES15901315 3 42761563 1.56E-04 

NES15901131 3 42792895 1.56E-04 

NES15901074 3 42805653 1.56E-04 

mm37-3-42821843:NES15900958 3 42821843 1.56E-04 

mm37-3-42837665 3 42837665 1.56E-04 
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mm37-5-31370225:NES10276507 5 31370225 1.60E-04 

mm37-18-60815124 18 60815124 1.60E-04 

NES11298223 9 90690527 1.61E-04 

NES11298226 9 90690567 1.61E-04 

NES11297573 9 90720450 1.61E-04 

NES11297585 9 90721482 1.61E-04 

NES11297473 9 90724593 1.61E-04 

NES11297476 9 90724625 1.61E-04 

NES11297480 9 90724778 1.61E-04 

NES17437150 18 82424698 1.63E-04 

mm37-3-32086003:rs3702402:NES15880869 3 32086003 1.70E-04 

mm37-12-55120751:NES11242905 12 55120751 1.74E-04 

mm37-18-67352668:NES13445857 18 67352668 1.74E-04 

mm37-1-115424544:rs3662693 1 115424544 1.81E-04 

mm37-12-55448035 12 55448035 1.90E-04 

NES15371584 12 30655324 1.91E-04 

NES15371480 12 30658515 1.91E-04 

NES15371436 12 30659810 1.91E-04 

NES15371437 12 30659823 1.91E-04 

NES17549576 12 35363535 1.93E-04 

NES13877203 5 28992569 2.01E-04 

NES13877204 5 28992604 2.01E-04 

NES16253271 8 116779495 2.04E-04 

NES16253251 8 116780539 2.04E-04 

mm37-12-30708434 12 30708434 2.06E-04 

NES12617240 15 30208893 2.10E-04 

mm37-3-42832943 3 42832943 2.15E-04 

NES08873225 2 161381064 2.17E-04 

NES14218431 9 94676111 2.20E-04 

NES14218433 9 94676182 2.20E-04 

NES14216699 9 94781578 2.20E-04 

NES16987314 15 28836899 2.23E-04 

NES16986784 15 28869241 2.23E-04 

NES12608137 15 44045164 2.23E-04 

NES13912487 3 119638490 2.27E-04 

NES13912456 3 119644146 2.27E-04 

NES15372105 12 30639193 2.28E-04 

NES15371825 12 30645179 2.28E-04 

NES15371718 12 30649544 2.28E-04 
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NES15371698 12 30651055 2.28E-04 

NES15371701 12 30651361 2.28E-04 

NES15371576 12 30655047 2.28E-04 

NES15371514 12 30656615 2.28E-04 

NES15371519 12 30656770 2.28E-04 

NES15371479 12 30658511 2.28E-04 

NES15371435 12 30659794 2.28E-04 

NES15371446 12 30660314 2.28E-04 

NES15371447 12 30660331 2.28E-04 

NES15371448 12 30660482 2.28E-04 

NES15371450 12 30660684 2.28E-04 

NES15371396 12 30662688 2.28E-04 

NES17541314 12 30669866 2.28E-04 

NES17541329 12 30670292 2.28E-04 

NES17541344 12 30671371 2.28E-04 

NES17541346 12 30671674 2.28E-04 

NES17541352 12 30671861 2.28E-04 

NES17541369 12 30672732 2.28E-04 

NES17541101 12 30677011 2.28E-04 

NES17541033 12 30678354 2.28E-04 

NES17541057 12 30679419 2.28E-04 

NES17541071 12 30680026 2.28E-04 

NES17540971 12 30680982 2.28E-04 

mm37-9-90819248:NES11299217 9 90819248 2.29E-04 

mm37-3-123129477 3 123129477 2.38E-04 

NES12101074 15 70147859 2.40E-04 

NES17540538 12 30707366 2.41E-04 

NES17540556 12 30708157 2.41E-04 

NES17540490 12 30709210 2.41E-04 

NES17540494 12 30709905 2.41E-04 

NES17540496 12 30709989 2.41E-04 

NES17540498 12 30710044 2.41E-04 

NES11265794 9 100464827 2.43E-04 
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A.2 LV MAXIMUM PRESSURE SNP ASSOCIATIONS 

Table 8 lists the top 200 SNPs associated with fold change in LV maximum pressure (high-fat 

diet v. regular diet). 

Table 8. Top 200 SNPs associated with fold change in LV maximum pressure. 

SNP Chrom Position P-value 

mm37-4-119476429 4 119476429 9.37E-07 

MAG9211909:NES09211909 4 118947139 1.34E-05 

NES09622860 4 72939446 1.74E-05 

mm37-4-74654892 4 74654892 2.39E-05 

NES09606991 4 74671307 2.39E-05 

mm37-4-74687915 4 74687915 2.39E-05 

NES09605939 4 74711331 2.39E-05 

NES09605453 4 74735628 2.39E-05 

NES09605456 4 74735831 2.39E-05 

NES09605459 4 74736427 2.39E-05 

NES09605461 4 74736652 2.39E-05 

NES09605463 4 74736936 2.39E-05 

NES09605465 4 74737505 2.39E-05 

NES09605129 4 74738351 2.39E-05 

NES09605130 4 74738493 2.39E-05 

NES09605133 4 74739529 2.39E-05 

NES09604863 4 74759538 2.39E-05 

mm37-4-74761420:NES09604634 4 74761420 2.39E-05 

mm37-4-74767015:NES09604391 4 74767015 2.39E-05 

NES09603971 4 74776152 2.39E-05 

NES09603884 4 74777048 2.39E-05 

NES09603885 4 74777122 2.39E-05 

NES09603759 4 74790472 2.39E-05 

NES09603761 4 74790509 2.39E-05 

NES09603682 4 74793720 2.39E-05 

NES09603683 4 74793987 2.39E-05 

NES09603688 4 74794520 2.39E-05 

mm37-4-74795775 4 74795775 2.39E-05 

mm37-4-74861893 4 74861893 2.39E-05 

NES09601316 4 74862082 2.39E-05 
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NES09206772 4 118339108 5.27E-05 

NES09206589 4 118346220 5.27E-05 

NES09206448 4 118352188 5.27E-05 

NES09206449 4 118352279 5.27E-05 

NES09206468 4 118352838 5.27E-05 

NES09206338 4 118354949 5.27E-05 

NES08890892 2 158148931 6.00E-05 

NES08890578 2 158159601 6.00E-05 

NES08890579 2 158159745 6.00E-05 

NES08890540 2 158160423 6.00E-05 

NES15555324 14 33754104 6.94E-05 

NES15555326 14 33754179 6.94E-05 

NES15555137 14 33761073 6.94E-05 

NES15555105 14 33764593 6.94E-05 

NES09207536 4 118300793 6.98E-05 

NES09206764 4 118338691 6.98E-05 

mm37-4-118425231:NES09204632 4 118425231 6.98E-05 

NES14382140 12 110096209 7.47E-05 

NES14382061 12 110096640 7.47E-05 

NES14382027 12 110097481 7.47E-05 

NES14382029 12 110097696 7.47E-05 

NES14382030 12 110097733 7.47E-05 

NES14382043 12 110098599 7.47E-05 

NES14382050 12 110098747 7.47E-05 

NES14382001 12 110099353 7.47E-05 

NES14382005 12 110099640 7.47E-05 

NES14381942 12 110100273 7.47E-05 

NES14381953 12 110100731 7.47E-05 

NES14381931 12 110101028 7.47E-05 

NES14381934 12 110101241 7.47E-05 

NES14381886 12 110103133 7.47E-05 

NES14381900 12 110103490 7.47E-05 

NES14381910 12 110103695 7.47E-05 

NES14381702 12 110112646 7.47E-05 

NES14381697 12 110113520 7.47E-05 

NES14381652 12 110117222 7.47E-05 

NES14381643 12 110119105 7.47E-05 

NES14381647 12 110119534 7.47E-05 

NES14381634 12 110120172 7.47E-05 
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NES14381631 12 110121517 7.47E-05 

NES14381624 12 110122266 7.47E-05 

NES14381606 12 110124597 7.47E-05 

mm37-12-110136561:rs13481642:NES14381397 12 110136561 7.47E-05 

NES14381182 12 110148475 7.47E-05 

NES14381147 12 110149602 7.47E-05 

mm37-12-113149691 12 113149691 7.47E-05 

mm37-14-101290805:NES17292559 14 101290805 8.19E-05 

NES08986261 2 131070746 9.38E-05 

mm37-2-131372744:rs6206689 2 131372744 9.38E-05 

NES09578155 4 89111651 9.38E-05 

NES14380456 12 112372895 1.08E-04 

NES14380392 12 112374448 1.08E-04 

NES15325486 10 114306516 1.08E-04 

NES15325492 10 114307088 1.08E-04 

mm37-17-15897639 17 15897639 1.17E-04 

mm37-14-33742812 14 33742812 1.27E-04 

mm37-14-33748914 14 33748914 1.27E-04 

NES15555388 14 33752836 1.27E-04 

NES15555389 14 33752865 1.27E-04 

NES15555390 14 33752882 1.27E-04 

NES15555392 14 33753021 1.27E-04 

NES15555393 14 33753096 1.27E-04 

NES15555396 14 33753285 1.27E-04 

NES15555398 14 33753411 1.27E-04 

NES15555319 14 33753616 1.27E-04 

NES15555320 14 33753638 1.27E-04 

NES15555321 14 33753726 1.27E-04 

NES15555322 14 33753774 1.27E-04 

NES09620643 4 73588854 1.29E-04 

NES09578806 4 89098525 1.34E-04 

NES09578581 4 89100112 1.34E-04 

NES09578590 4 89100570 1.34E-04 

NES09578594 4 89101023 1.34E-04 

NES09578597 4 89101144 1.34E-04 

NES09578598 4 89101266 1.34E-04 

NES09578599 4 89101331 1.34E-04 

NES09578600 4 89101396 1.34E-04 

NES09578601 4 89101463 1.34E-04 
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NES09578502 4 89101815 1.34E-04 

NES09578515 4 89102282 1.34E-04 

NES09578518 4 89102339 1.34E-04 

NES09578387 4 89103796 1.34E-04 

NES09578388 4 89103973 1.34E-04 

NES09165205 4 133732760 1.46E-04 

NES09164769 4 133752474 1.46E-04 

NES09164669 4 133756839 1.46E-04 

NES09164653 4 133757585 1.46E-04 

NES09164636 4 133757816 1.46E-04 

mm37-4-73666375:NES09619921 4 73666375 1.51E-04 

NES17508375 4 73669661 1.51E-04 

NES17508344 4 73672937 1.51E-04 

NES17508345 4 73672956 1.51E-04 

NES17508347 4 73673090 1.51E-04 

mm37-4-74431635:NES09597900 4 74431635 1.51E-04 

NES15556586 14 33650999 1.53E-04 

NES15556588 14 33651114 1.53E-04 

NES15556590 14 33651224 1.53E-04 

NES15556591 14 33651241 1.53E-04 

NES15556593 14 33651499 1.53E-04 

NES15556488 14 33666202 1.53E-04 

NES15556364 14 33681131 1.53E-04 

NES15556350 14 33682366 1.53E-04 

NES15556322 14 33682946 1.53E-04 

NES15556325 14 33682972 1.53E-04 

NES15556329 14 33683043 1.53E-04 

NES15556222 14 33688466 1.53E-04 

NES15556227 14 33688753 1.53E-04 

NES15556228 14 33688818 1.53E-04 

NES15556235 14 33689010 1.53E-04 

NES15556200 14 33689687 1.53E-04 

NES15556087 14 33697398 1.53E-04 

NES15556041 14 33698784 1.53E-04 

NES15556014 14 33700678 1.53E-04 

NES15555957 14 33701907 1.53E-04 

NES15555964 14 33702438 1.53E-04 

NES15555977 14 33703621 1.53E-04 

NES15555848 14 33711433 1.53E-04 
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NES15555590 14 33730600 1.53E-04 

NES15555595 14 33731160 1.53E-04 

NES15555613 14 33732324 1.53E-04 

NES15555549 14 33735902 1.53E-04 

NES15555519 14 33739563 1.53E-04 

NES13041746 1 168034034 1.56E-04 

NES09132218 4 140617089 1.57E-04 

mm37-11-7316060:NES08405904 11 7316060 1.69E-04 

NES16857407 9 124036804 1.77E-04 

NES16857412 9 124037070 1.77E-04 

NES16857219 9 124038619 1.77E-04 

NES16857221 9 124038646 1.77E-04 

NES16857226 9 124038721 1.77E-04 

NES12204093 16 89361587 1.80E-04 

NES12198104 16 89508178 1.80E-04 

NES08904471 2 158333971 1.85E-04 

NES08904261 2 158343066 1.85E-04 

NES08904262 2 158343244 1.85E-04 

NES08904265 2 158343285 1.85E-04 

NES08904192 2 158344228 1.85E-04 

NES08904218 2 158345265 1.85E-04 

NES08904112 2 158348489 1.85E-04 

NES08986258 2 131070195 1.93E-04 

NES14451111 1 168909119 2.12E-04 

NES14451114 1 168909224 2.12E-04 

NES09616523 4 72359781 2.14E-04 

NES12530568 14 76589485 2.14E-04 

mm37-14-76591940:NES12530477 14 76591940 2.14E-04 

NES12530308 14 76596545 2.14E-04 

mm37-14-76605080:NES12530055 14 76605080 2.14E-04 

mm37-16-86640905 16 86640905 2.14E-04 

mm37-17-41425478:gnf17.041.719:NES12214197 17 41425478 2.28E-04 

NES08889329 2 158210048 2.36E-04 

NES08889332 2 158210212 2.36E-04 

NES08889335 2 158210323 2.36E-04 

NES08889317 2 158211579 2.36E-04 

NES17204253 14 34816108 2.36E-04 

NES17202918 14 34881395 2.36E-04 

NES17198117 14 35080473 2.36E-04 
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NES17196428 14 35139619 2.36E-04 

NES17196320 14 35143150 2.36E-04 

NES17195945 14 35149557 2.36E-04 

NES10806469 3 53038243 2.47E-04 

NES10806474 3 53038311 2.47E-04 

NES10806400 3 53038979 2.47E-04 

NES10806406 3 53039268 2.47E-04 

NES10806407 3 53039294 2.47E-04 

NES10806408 3 53039329 2.47E-04 

NES10806281 3 53040433 2.47E-04 

NES10806285 3 53040867 2.47E-04 

NES10805570 3 53051821 2.47E-04 

NES17198120 14 35080850 2.55E-04 

NES17196595 14 35132522 2.55E-04 

 

A.3 LV END-SYSTOLIC PRESSURE SNP ASSOCIATIONS 

Table 9 lists the top 200 SNPs associated with fold change in LV end-systolic pressure (high-fat 

diet v. regular diet). 

Table 9. Top 200 SNPs associated with fold change in LV end-systolic pressure. 

SNP Chrom Position P-value 

mm37-4-119476429 4 119476429 3.73E-07 

MAG9211909:NES09211909 4 118947139 9.35E-06 

NES09622860 4 72939446 1.02E-05 

mm37-4-74654892 4 74654892 1.42E-05 

NES09606991 4 74671307 1.42E-05 

mm37-4-74687915 4 74687915 1.42E-05 

NES09605939 4 74711331 1.42E-05 

NES09605453 4 74735628 1.42E-05 

NES09605456 4 74735831 1.42E-05 

NES09605459 4 74736427 1.42E-05 

NES09605461 4 74736652 1.42E-05 
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NES09605463 4 74736936 1.42E-05 

NES09605465 4 74737505 1.42E-05 

NES09605129 4 74738351 1.42E-05 

NES09605130 4 74738493 1.42E-05 

NES09605133 4 74739529 1.42E-05 

NES09604863 4 74759538 1.42E-05 

mm37-4-74761420:NES09604634 4 74761420 1.42E-05 

mm37-4-74767015:NES09604391 4 74767015 1.42E-05 

NES09603971 4 74776152 1.42E-05 

NES09603884 4 74777048 1.42E-05 

NES09603885 4 74777122 1.42E-05 

NES09603759 4 74790472 1.42E-05 

NES09603761 4 74790509 1.42E-05 

NES09603682 4 74793720 1.42E-05 

NES09603683 4 74793987 1.42E-05 

NES09603688 4 74794520 1.42E-05 

mm37-4-74795775 4 74795775 1.42E-05 

mm37-4-74861893 4 74861893 1.42E-05 

NES09601316 4 74862082 1.42E-05 

NES09207536 4 118300793 2.66E-05 

NES09206764 4 118338691 2.66E-05 

mm37-4-118425231:NES09204632 4 118425231 2.66E-05 

NES09206772 4 118339108 2.85E-05 

NES09206589 4 118346220 2.85E-05 

NES09206448 4 118352188 2.85E-05 

NES09206449 4 118352279 2.85E-05 

NES09206468 4 118352838 2.85E-05 

NES09206338 4 118354949 2.85E-05 

NES15555324 14 33754104 4.20E-05 

NES15555326 14 33754179 4.20E-05 

NES15555137 14 33761073 4.20E-05 

NES15555105 14 33764593 4.20E-05 

NES08890892 2 158148931 4.44E-05 

NES08890578 2 158159601 4.44E-05 

NES08890579 2 158159745 4.44E-05 

NES08890540 2 158160423 4.44E-05 

NES14382140 12 110096209 5.56E-05 

NES14382061 12 110096640 5.56E-05 

NES14382027 12 110097481 5.56E-05 
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NES14382029 12 110097696 5.56E-05 

NES14382030 12 110097733 5.56E-05 

NES14382043 12 110098599 5.56E-05 

NES14382050 12 110098747 5.56E-05 

NES14382001 12 110099353 5.56E-05 

NES14382005 12 110099640 5.56E-05 

NES14381942 12 110100273 5.56E-05 

NES14381953 12 110100731 5.56E-05 

NES14381931 12 110101028 5.56E-05 

NES14381934 12 110101241 5.56E-05 

NES14381886 12 110103133 5.56E-05 

NES14381900 12 110103490 5.56E-05 

NES14381910 12 110103695 5.56E-05 

NES14381702 12 110112646 5.56E-05 

NES14381697 12 110113520 5.56E-05 

NES14381652 12 110117222 5.56E-05 

NES14381643 12 110119105 5.56E-05 

NES14381647 12 110119534 5.56E-05 

NES14381634 12 110120172 5.56E-05 

NES14381631 12 110121517 5.56E-05 

NES14381624 12 110122266 5.56E-05 

NES14381606 12 110124597 5.56E-05 

mm37-12-110136561:rs13481642:NES14381397 12 110136561 5.56E-05 

NES14381182 12 110148475 5.56E-05 

NES14381147 12 110149602 5.56E-05 

mm37-12-113149691 12 113149691 5.56E-05 

NES16857407 9 124036804 7.58E-05 

NES16857412 9 124037070 7.58E-05 

NES16857219 9 124038619 7.58E-05 

NES16857221 9 124038646 7.58E-05 

NES16857226 9 124038721 7.58E-05 

NES14380456 12 112372895 7.60E-05 

NES14380392 12 112374448 7.60E-05 

mm37-14-33742812 14 33742812 8.69E-05 

mm37-14-33748914 14 33748914 8.69E-05 

NES15555388 14 33752836 8.69E-05 

NES15555389 14 33752865 8.69E-05 

NES15555390 14 33752882 8.69E-05 

NES15555392 14 33753021 8.69E-05 
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NES15555393 14 33753096 8.69E-05 

NES15555396 14 33753285 8.69E-05 

NES15555398 14 33753411 8.69E-05 

NES15555319 14 33753616 8.69E-05 

NES15555320 14 33753638 8.69E-05 

NES15555321 14 33753726 8.69E-05 

NES15555322 14 33753774 8.69E-05 

NES08986261 2 131070746 9.06E-05 

mm37-2-131372744:rs6206689 2 131372744 9.06E-05 

NES09578155 4 89111651 9.06E-05 

mm37-14-101290805:NES17292559 14 101290805 1.01E-04 

NES15556586 14 33650999 1.08E-04 

NES15556588 14 33651114 1.08E-04 

NES15556590 14 33651224 1.08E-04 

NES15556591 14 33651241 1.08E-04 

NES15556593 14 33651499 1.08E-04 

NES15556488 14 33666202 1.08E-04 

NES15556364 14 33681131 1.08E-04 

NES15556350 14 33682366 1.08E-04 

NES15556322 14 33682946 1.08E-04 

NES15556325 14 33682972 1.08E-04 

NES15556329 14 33683043 1.08E-04 

NES15556222 14 33688466 1.08E-04 

NES15556227 14 33688753 1.08E-04 

NES15556228 14 33688818 1.08E-04 

NES15556235 14 33689010 1.08E-04 

NES15556200 14 33689687 1.08E-04 

NES15556087 14 33697398 1.08E-04 

NES15556041 14 33698784 1.08E-04 

NES15556014 14 33700678 1.08E-04 

NES15555957 14 33701907 1.08E-04 

NES15555964 14 33702438 1.08E-04 

NES15555977 14 33703621 1.08E-04 

NES15555848 14 33711433 1.08E-04 

NES15555590 14 33730600 1.08E-04 

NES15555595 14 33731160 1.08E-04 

NES15555613 14 33732324 1.08E-04 

NES15555549 14 33735902 1.08E-04 

NES15555519 14 33739563 1.08E-04 
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NES17198120 14 35080850 1.15E-04 

NES17196595 14 35132522 1.15E-04 

NES09165205 4 133732760 1.16E-04 

NES09164769 4 133752474 1.16E-04 

NES09164669 4 133756839 1.16E-04 

NES09164653 4 133757585 1.16E-04 

NES09164636 4 133757816 1.16E-04 

NES11223031 12 81752212 1.21E-04 

NES11222962 12 81752728 1.21E-04 

NES11222965 12 81752891 1.21E-04 

NES11222858 12 81754828 1.21E-04 

NES11222742 12 81756236 1.21E-04 

NES11222600 12 81759772 1.21E-04 

NES11222400 12 81763590 1.21E-04 

NES11222402 12 81763618 1.21E-04 

NES11222406 12 81763768 1.21E-04 

NES13041746 1 168034034 1.22E-04 

NES09578806 4 89098525 1.22E-04 

NES09578581 4 89100112 1.22E-04 

NES09578590 4 89100570 1.22E-04 

NES09578594 4 89101023 1.22E-04 

NES09578597 4 89101144 1.22E-04 

NES09578598 4 89101266 1.22E-04 

NES09578599 4 89101331 1.22E-04 

NES09578600 4 89101396 1.22E-04 

NES09578601 4 89101463 1.22E-04 

NES09578502 4 89101815 1.22E-04 

NES09578515 4 89102282 1.22E-04 

NES09578518 4 89102339 1.22E-04 

NES09578387 4 89103796 1.22E-04 

NES09578388 4 89103973 1.22E-04 

NES16858033 9 123994045 1.22E-04 

NES16857400 9 124036436 1.22E-04 

NES16857401 9 124036565 1.22E-04 

NES16857244 9 124039043 1.22E-04 

mm37-11-7316060:NES08405904 11 7316060 1.38E-04 

NES09620643 4 73588854 1.38E-04 

NES08904471 2 158333971 1.39E-04 

NES08904261 2 158343066 1.39E-04 
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NES08904262 2 158343244 1.39E-04 

NES08904265 2 158343285 1.39E-04 

NES08904192 2 158344228 1.39E-04 

NES08904218 2 158345265 1.39E-04 

NES08904112 2 158348489 1.39E-04 

NES12204093 16 89361587 1.43E-04 

NES12198104 16 89508178 1.43E-04 

mm37-4-73666375:NES09619921 4 73666375 1.48E-04 

NES17508375 4 73669661 1.48E-04 

NES17508344 4 73672937 1.48E-04 

NES17508345 4 73672956 1.48E-04 

NES17508347 4 73673090 1.48E-04 

mm37-4-74431635:NES09597900 4 74431635 1.48E-04 

NES09132218 4 140617089 1.49E-04 

mm37-4-73858188 4 73858188 1.61E-04 

NES14451111 1 168909119 1.63E-04 

NES14451114 1 168909224 1.63E-04 

mm37-17-15897639 17 15897639 1.69E-04 

NES15325486 10 114306516 1.70E-04 

NES15325492 10 114307088 1.70E-04 

mm37-14-109924888:NES12548985 14 109924888 1.72E-04 

NES09616523 4 72359781 1.74E-04 

NES12530568 14 76589485 1.74E-04 

mm37-14-76591940:NES12530477 14 76591940 1.74E-04 

NES12530308 14 76596545 1.74E-04 

mm37-14-76605080:NES12530055 14 76605080 1.74E-04 

mm37-16-86640905 16 86640905 1.74E-04 

NES08986258 2 131070195 1.75E-04 

mm37-12-81746815:NES11223291 12 81746815 1.75E-04 

mm37-12-81746910:NES11223293 12 81746910 1.75E-04 

NES11223106 12 81749778 1.75E-04 

NES11223108 12 81749986 1.75E-04 

NES11223112 12 81750129 1.75E-04 
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A.4 RV MAXIMUM PRESSURE SNP ASSOCIATIONS 

Table 10 lists the top 200 SNPs associated with fold change in RV maximum pressure (high-fat 

diet v. regular diet). 

 

Table 10. Top 200 SNPs associated with fold change in RV maximum pressure. 

SNP Chrom Position P-value 

NES14421225 12 34348982 6.72E-06 

mm37-12-34367760:NES14421066 12 34367760 6.72E-06 

NES14420774 12 34394368 6.72E-06 

NES08383993 11 16688981 8.18E-06 

mm37-12-10580142:rs6209157:NES14428743 12 10580142 1.50E-05 

NES08383985 11 16688806 1.80E-05 

NES08383987 11 16688901 1.80E-05 

NES08383996 11 16689319 1.80E-05 

NES08384006 11 16689824 1.88E-05 

mm37-6-93865234:NES13736033 6 93865234 1.99E-05 

NES08383994 11 16689147 2.50E-05 

NES08384007 11 16690201 2.50E-05 

NES08384013 11 16690515 2.50E-05 

NES08384117 11 16685717 2.51E-05 

NES08384120 11 16685917 2.51E-05 

NES08384100 11 16686440 2.51E-05 

NES08384102 11 16686785 2.51E-05 

mm37-6-94065571 6 94065571 3.00E-05 

mm37-11-16690559:NES08384017 11 16690559 3.54E-05 

NES09185662 4 127744586 4.04E-05 

NES09185523 4 127748136 4.04E-05 

NES15851806 1 178917666 4.35E-05 

NES15851754 1 178921819 4.35E-05 

NES15851706 1 178922738 4.35E-05 

NES15851678 1 178923061 4.35E-05 

NES15851697 1 178924544 4.35E-05 

NES15851700 1 178924690 4.35E-05 

NES14366459 13 19750561 5.39E-05 

NES14366409 13 19751818 5.39E-05 

NES14366412 13 19752054 5.39E-05 
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NES14366414 13 19752097 5.39E-05 

NES14366415 13 19752115 5.39E-05 

NES14366416 13 19752284 5.39E-05 

NES15519226 13 19181316 6.00E-05 

NES15518974 13 19197798 6.00E-05 

NES14817172 6 73101326 6.00E-05 

NES15851740 1 178921101 6.89E-05 

NES15851750 1 178921643 6.89E-05 

NES15851764 1 178922460 6.89E-05 

NES15851690 1 178923747 6.89E-05 

NES16938219 10 121657770 6.97E-05 

NES16938220 10 121657799 6.97E-05 

NES16938223 10 121657900 6.97E-05 

NES16938225 10 121658060 6.97E-05 

NES16937101 10 121714570 6.97E-05 

NES16937008 10 121720102 6.97E-05 

mm37-10-121721932 10 121721932 6.97E-05 

mm37-4-18793387 4 18793387 7.17E-05 

mm37-4-127954923:NES09178224 4 127954923 8.11E-05 

mm37-11-16303153 11 16303153 8.14E-05 

NES08379433 11 16311919 8.14E-05 

mm37-11-16314885:NES08379472 11 16314885 8.14E-05 

NES09185013 4 127758583 8.14E-05 

NES09184977 4 127758889 8.14E-05 

NES09184979 4 127758909 8.14E-05 

NES17183667 14 29099282 8.32E-05 

NES17183670 14 29100658 8.32E-05 

MAG9169696:NES09169696 4 126883887 8.60E-05 

NES11178924 8 117382015 1.02E-04 

NES11165321 8 117624341 1.02E-04 

NES15346540 10 121764304 1.13E-04 

mm37-10-121655426 10 121655426 1.22E-04 

NES16938276 10 121656518 1.22E-04 

NES16938226 10 121658235 1.22E-04 

NES16938228 10 121658365 1.22E-04 

mm37-10-121661260 10 121661260 1.22E-04 

mm37-10-121661350 10 121661350 1.22E-04 

NES16937186 10 121711611 1.22E-04 

NES16937036 10 121716297 1.22E-04 

NES16936889 10 121724596 1.22E-04 

mm37-10-121728125:NES16936780 10 121728125 1.22E-04 
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NES16936788 10 121728718 1.22E-04 

NES16936693 10 121733018 1.22E-04 

NES16936616 10 121736411 1.22E-04 

mm37-10-121749980 10 121749980 1.22E-04 

mm37-10-121759261:NES15346697 10 121759261 1.22E-04 

NES15346666 10 121759840 1.22E-04 

NES15346642 10 121761075 1.22E-04 

NES15346630 10 121761850 1.22E-04 

NES15346472 10 121764883 1.22E-04 

NES15346369 10 121768577 1.22E-04 

NES15346380 10 121768965 1.22E-04 

mm37-14-47879937:NES17232878 14 47879937 1.27E-04 

mm37-14-48011506:NES17231909 14 48011506 1.27E-04 

mm37-11-16328794:mCV23871121:NES08379183 11 16328794 1.30E-04 

NES17232950 14 47865038 1.46E-04 

NES14817162 6 73101162 1.49E-04 

NES14817169 6 73101303 1.49E-04 

NES14817190 6 73102386 1.49E-04 

NES14816956 6 73107036 1.49E-04 

NES14425710 12 11099565 1.54E-04 

NES10674752 1 178545461 1.57E-04 

NES10674638 1 178546743 1.57E-04 

mm37-6-93813955:gnf06.092.758 6 93813955 1.66E-04 

mm37-13-22028735:NES11359412 13 22028735 1.75E-04 

mm37-13-22316310 13 22316310 1.75E-04 

NES09178582 4 127940749 1.77E-04 

NES15515106 13 18348576 1.77E-04 

NES15514887 13 17176833 1.82E-04 

mm37-16-76655762:NES15743146 16 76655762 1.94E-04 

NES16492812 1 153101216 1.95E-04 

NES16492814 1 153101306 1.95E-04 

NES16492827 1 153101709 1.95E-04 

NES16492787 1 153102530 1.95E-04 

NES17305693 14 119582336 1.96E-04 

NES09185675 4 127745558 1.98E-04 

NES09185676 4 127745584 1.98E-04 

mm37-13-22327855 13 22327855 2.02E-04 

NES09185081 4 127758009 2.05E-04 

NES09184983 4 127759127 2.05E-04 

NES09184930 4 127759882 2.07E-04 

NES09184944 4 127760080 2.07E-04 
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NES09184947 4 127760123 2.07E-04 

NES09184847 4 127760370 2.07E-04 

NES09184858 4 127760963 2.07E-04 

NES09184862 4 127761251 2.07E-04 

NES09184864 4 127761415 2.07E-04 

NES09184867 4 127761586 2.07E-04 

NES09184868 4 127761631 2.07E-04 

NES09184871 4 127762005 2.07E-04 

NES09184879 4 127762771 2.07E-04 

NES14816673 6 73125480 2.11E-04 

NES14815774 6 73186532 2.11E-04 

NES14815777 6 73186662 2.11E-04 

NES14815780 6 73186693 2.11E-04 

NES14815782 6 73186743 2.11E-04 

NES14815784 6 73186759 2.11E-04 

NES14815787 6 73186839 2.11E-04 

NES14815761 6 73187840 2.11E-04 

NES14815763 6 73187868 2.11E-04 

NES14815723 6 73188775 2.11E-04 

NES14815724 6 73188895 2.11E-04 

NES14815727 6 73188962 2.11E-04 

NES14815734 6 73189129 2.11E-04 

NES14815735 6 73189286 2.11E-04 

NES14815736 6 73189318 2.11E-04 

mm37-13-64937956 13 64937956 2.12E-04 

NES11360250 13 22017129 2.13E-04 

NES11364725 13 22345864 2.13E-04 

mm37-13-22347935 13 22347935 2.13E-04 

mm37-13-22348024 13 22348024 2.13E-04 

mm37-8-117367834:NES11179508 8 117367834 2.14E-04 

mm37-13-22144343 13 22144343 2.15E-04 

mm37-8-98286283 8 98286283 2.33E-04 

mm37-8-98292310:NES11420353 8 98292310 2.33E-04 

NES17183692 14 29102941 2.43E-04 

NES17183694 14 29103321 2.43E-04 

NES17183698 14 29104227 2.43E-04 

NES17183121 14 29126119 2.43E-04 

NES17182824 14 29139319 2.43E-04 

mm37-4-19656120 4 19656120 2.52E-04 

mm37-13-17160425 13 17160425 2.62E-04 

mm37-13-17168396:NES15514934 13 17168396 2.62E-04 
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NES17691934 13 17190071 2.62E-04 

NES17691939 13 17190587 2.62E-04 

NES17691966 13 17192040 2.62E-04 

mm37-13-17201190:NES17691691 13 17201190 2.62E-04 

NES17691586 13 17206560 2.62E-04 

mm37-11-13365940 11 13365940 2.64E-04 

NES16760927 9 34667711 2.66E-04 

mm37-9-34669650:NES16760952 9 34669650 2.66E-04 

NES16760953 9 34669675 2.66E-04 

mm37-9-34670792 9 34670792 2.66E-04 

NES10661807 1 178116420 2.73E-04 

NES10661756 1 178117136 2.73E-04 

NES10661758 1 178117260 2.73E-04 

NES10661761 1 178117374 2.73E-04 

NES10661766 1 178117639 2.73E-04 

NES17186296 14 28984219 2.75E-04 

NES15513977 13 19476538 2.90E-04 

NES14360451 13 20075225 2.90E-04 

NES15520038 13 18836939 2.91E-04 

NES15512931 13 19542562 2.91E-04 

NES17690748 13 19625576 2.91E-04 

NES17690739 13 19627925 2.91E-04 

NES14816610 6 73131741 2.92E-04 

MAG14261638:NES14261638 9 57571327 2.97E-04 

NES14366411 13 19751998 2.97E-04 

NES14360324 13 20088740 2.97E-04 

NES14420865 12 34384374 3.04E-04 

NES14420866 12 34384424 3.04E-04 

NES14420867 12 34384517 3.04E-04 

NES14420869 12 34384591 3.04E-04 

NES13074723 1 153877595 3.06E-04 

NES13073998 1 153901847 3.06E-04 

NES13073940 1 153904045 3.06E-04 

NES13073917 1 153905005 3.06E-04 

NES13073867 1 153906913 3.06E-04 

NES13073829 1 153907167 3.06E-04 

NES13073830 1 153907283 3.06E-04 

NES13073832 1 153907395 3.06E-04 

NES13073833 1 153907423 3.06E-04 

NES13073834 1 153907525 3.06E-04 

NES13073837 1 153907807 3.06E-04 
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NES13073842 1 153908142 3.06E-04 

NES13073621 1 153911923 3.06E-04 

NES13073175 1 153925670 3.06E-04 

NES13073159 1 153926358 3.06E-04 

NES13073123 1 153926942 3.06E-04 

NES13073117 1 153927594 3.06E-04 

 

A.5 RV END-SYSTOLIC PRESSURE SNP ASSOCIATIONS 

Table 11 lists the top 200 SNPs associated with fold change in RV end-systolic pressure (high-

fat diet v. regular diet). 

 

Table 11. Top 200 SNPs associated with fold change in RV end-systolic pressure. 

SNP Chrom Position P-value 

NES08383993 11 16688981 5.66E-06 

NES14421225 12 34348982 9.70E-06 

mm37-12-34367760:NES14421066 12 34367760 9.70E-06 

NES14420774 12 34394368 9.70E-06 

NES09185662 4 1.28E+08 1.29E-05 

NES09185523 4 1.28E+08 1.29E-05 

NES08384006 11 16689824 1.61E-05 

mm37-12-10580142:rs6209157:NES14428743 12 10580142 1.77E-05 

NES09185013 4 1.28E+08 1.90E-05 

NES09184977 4 1.28E+08 1.90E-05 

NES09184979 4 1.28E+08 1.90E-05 

MAG9169696:NES09169696 4 1.27E+08 1.94E-05 

NES08383985 11 16688806 2.24E-05 

NES08383987 11 16688901 2.24E-05 

NES08383996 11 16689319 2.24E-05 

NES17305693 14 1.2E+08 2.29E-05 

NES09185081 4 1.28E+08 2.62E-05 

NES09184983 4 1.28E+08 2.62E-05 

mm37-4-127954923:NES09178224 4 1.28E+08 3.15E-05 
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NES09184930 4 1.28E+08 3.28E-05 

NES09184944 4 1.28E+08 3.28E-05 

NES09184947 4 1.28E+08 3.28E-05 

NES09184847 4 1.28E+08 3.28E-05 

NES09184858 4 1.28E+08 3.28E-05 

NES09184862 4 1.28E+08 3.28E-05 

NES09184864 4 1.28E+08 3.28E-05 

NES09184867 4 1.28E+08 3.28E-05 

NES09184868 4 1.28E+08 3.28E-05 

NES09184871 4 1.28E+08 3.28E-05 

NES09184879 4 1.28E+08 3.28E-05 

NES15851806 1 1.79E+08 3.29E-05 

NES15851754 1 1.79E+08 3.29E-05 

NES15851706 1 1.79E+08 3.29E-05 

NES15851678 1 1.79E+08 3.29E-05 

NES15851697 1 1.79E+08 3.29E-05 

NES15851700 1 1.79E+08 3.29E-05 

NES08383994 11 16689147 3.43E-05 

NES08384007 11 16690201 3.43E-05 

NES08384013 11 16690515 3.43E-05 

NES11178924 8 1.17E+08 4.10E-05 

NES11165321 8 1.18E+08 4.10E-05 

NES09185675 4 1.28E+08 4.11E-05 

NES09185676 4 1.28E+08 4.11E-05 

mm37-6-94065571 6 94065571 4.29E-05 

mm37-6-93865234:NES13736033 6 93865234 4.53E-05 

NES14366459 13 19750561 4.91E-05 

NES14366409 13 19751818 4.91E-05 

NES14366412 13 19752054 4.91E-05 

NES14366414 13 19752097 4.91E-05 

NES14366415 13 19752115 4.91E-05 

NES14366416 13 19752284 4.91E-05 

NES16938219 10 1.22E+08 4.94E-05 

NES16938220 10 1.22E+08 4.94E-05 

NES16938223 10 1.22E+08 4.94E-05 

NES16938225 10 1.22E+08 4.94E-05 

NES16937101 10 1.22E+08 4.94E-05 

NES16937008 10 1.22E+08 4.94E-05 

mm37-10-121721932 10 1.22E+08 4.94E-05 

NES08384117 11 16685717 5.04E-05 

NES08384120 11 16685917 5.04E-05 
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NES08384100 11 16686440 5.04E-05 

NES08384102 11 16686785 5.04E-05 

mm37-8-98286283 8 98286283 5.33E-05 

mm37-8-98292310:NES11420353 8 98292310 5.33E-05 

NES14817172 6 73101326 5.39E-05 

NES15514887 13 17176833 5.55E-05 

mm37-13-22028735:NES11359412 13 22028735 5.65E-05 

mm37-13-22316310 13 22316310 5.65E-05 

NES16492812 1 1.53E+08 5.70E-05 

NES16492814 1 1.53E+08 5.70E-05 

NES16492827 1 1.53E+08 5.70E-05 

NES16492787 1 1.53E+08 5.70E-05 

NES15519226 13 19181316 6.00E-05 

NES15518974 13 19197798 6.00E-05 

NES09178582 4 1.28E+08 6.16E-05 

NES17183667 14 29099282 6.17E-05 

NES17183670 14 29100658 6.17E-05 

mm37-13-22327855 13 22327855 7.11E-05 

NES11419812 8 99211368 7.13E-05 

mm37-11-16690559:NES08384017 11 16690559 7.46E-05 

mm37-16-76655762:NES15743146 16 76655762 7.60E-05 

NES11360250 13 22017129 7.81E-05 

NES11364725 13 22345864 7.81E-05 

mm37-13-22347935 13 22347935 7.81E-05 

mm37-13-22348024 13 22348024 7.81E-05 

mm37-13-22144343 13 22144343 7.90E-05 

NES17691474 13 37065600 8.30E-05 

NES15520038 13 18836939 8.33E-05 

NES15512931 13 19542562 8.33E-05 

NES17690748 13 19625576 8.33E-05 

NES17690739 13 19627925 8.33E-05 

NES08439654 11 52956630 8.44E-05 

NES09187852 4 1.28E+08 8.77E-05 

NES09187859 4 1.28E+08 8.77E-05 

NES09187735 4 1.28E+08 8.77E-05 

NES09187590 4 1.28E+08 8.77E-05 

NES09187592 4 1.28E+08 8.77E-05 

NES09187285 4 1.28E+08 8.77E-05 

NES09187139 4 1.28E+08 8.77E-05 

NES09187099 4 1.28E+08 8.77E-05 

NES08439704 11 52954210 8.84E-05 
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NES08439705 11 52954359 8.84E-05 

NES08439683 11 52955060 8.84E-05 

NES08439660 11 52955682 8.84E-05 

NES08439616 11 52958722 8.84E-05 

NES08439618 11 52958844 8.84E-05 

NES08439321 11 52987026 8.84E-05 

NES08439123 11 52999509 8.84E-05 

mm37-4-18793387 4 18793387 8.84E-05 

NES08442698 11 52798580 9.08E-05 

NES08441723 11 52861291 9.08E-05 

NES08441652 11 52865375 9.08E-05 

NES08441665 11 52865937 9.08E-05 

NES08440934 11 52897170 9.08E-05 

NES15514295 13 17267731 9.12E-05 

NES15514301 13 17267902 9.12E-05 

NES15514071 13 17275014 9.12E-05 

NES15514041 13 17278967 9.12E-05 

NES15513953 13 17280725 9.12E-05 

NES15513869 13 17286287 9.12E-05 

NES15513456 13 17324957 9.12E-05 

NES15512972 13 18463915 9.12E-05 

mm37-13-18471100:NES15512895 13 18471100 9.12E-05 

NES15512768 13 18472898 9.12E-05 

NES15512307 13 18490811 9.12E-05 

NES15512261 13 18492987 9.12E-05 

NES15512187 13 18494508 9.12E-05 

NES17685103 13 18853315 9.12E-05 

NES17685110 13 18854268 9.12E-05 

NES17685111 13 18854453 9.12E-05 

NES17685071 13 18856438 9.12E-05 

NES15513977 13 19476538 9.13E-05 

NES14360451 13 20075225 9.13E-05 

NES15514199 13 17269782 9.17E-05 

NES15513015 13 18461851 9.17E-05 

NES11359217 13 22032386 9.57E-05 

NES15515106 13 18348576 9.86E-05 

NES13074723 1 1.54E+08 1.02E-04 

NES13073998 1 1.54E+08 1.02E-04 

NES13073940 1 1.54E+08 1.02E-04 

NES13073917 1 1.54E+08 1.02E-04 

NES13073867 1 1.54E+08 1.02E-04 
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NES13073829 1 1.54E+08 1.02E-04 

NES13073830 1 1.54E+08 1.02E-04 

NES13073832 1 1.54E+08 1.02E-04 

NES13073833 1 1.54E+08 1.02E-04 

NES13073834 1 1.54E+08 1.02E-04 

NES13073837 1 1.54E+08 1.02E-04 

NES13073842 1 1.54E+08 1.02E-04 

NES13073621 1 1.54E+08 1.02E-04 

NES13073175 1 1.54E+08 1.02E-04 

NES13073159 1 1.54E+08 1.02E-04 

NES13073123 1 1.54E+08 1.02E-04 

NES13073117 1 1.54E+08 1.02E-04 

NES13073067 1 1.54E+08 1.02E-04 

NES13073073 1 1.54E+08 1.02E-04 

NES13072951 1 1.54E+08 1.02E-04 

NES13072170 1 1.54E+08 1.02E-04 

NES13072176 1 1.54E+08 1.02E-04 

NES13072095 1 1.54E+08 1.02E-04 

NES13071844 1 1.54E+08 1.02E-04 

NES13067163 1 1.54E+08 1.02E-04 

NES15851740 1 1.79E+08 1.07E-04 

NES15851750 1 1.79E+08 1.07E-04 

NES15851764 1 1.79E+08 1.07E-04 

NES15851690 1 1.79E+08 1.07E-04 

NES09184985 4 1.28E+08 1.13E-04 

NES09184989 4 1.28E+08 1.13E-04 

NES09184932 4 1.28E+08 1.13E-04 

NES09184936 4 1.28E+08 1.13E-04 

NES09184852 4 1.28E+08 1.13E-04 

NES09184863 4 1.28E+08 1.13E-04 

NES09184872 4 1.28E+08 1.13E-04 

NES15346540 10 1.22E+08 1.13E-04 

mm37-13-17160425 13 17160425 1.17E-04 

mm37-13-17168396:NES15514934 13 17168396 1.17E-04 

NES17691934 13 17190071 1.17E-04 

NES17691939 13 17190587 1.17E-04 

NES17691966 13 17192040 1.17E-04 

mm37-13-17201190:NES17691691 13 17201190 1.17E-04 

NES17691586 13 17206560 1.17E-04 

NES11419814 8 99211450 1.19E-04 

NES11419822 8 99211690 1.19E-04 
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mm37-8-117367834:NES11179508 8 1.17E+08 1.20E-04 

mm37-11-16303153 11 16303153 1.26E-04 

NES08379433 11 16311919 1.26E-04 

mm37-11-16314885:NES08379472 11 16314885 1.26E-04 

mm37-4-127784232 4 1.28E+08 1.39E-04 

NES15512252 13 18492314 1.44E-04 

NES15512276 13 18493445 1.44E-04 

NES15512164 13 18493732 1.44E-04 

mm37-13-18494573:NES15512190 13 18494573 1.44E-04 

NES15511111 13 18557054 1.44E-04 

mm37-13-19488036:rs6345767 13 19488036 1.48E-04 

mm37-13-19545618 13 19545618 1.48E-04 

mm37-13-19546769:NES15512873 13 19546769 1.48E-04 

mm37-13-18862634 13 18862634 1.50E-04 

NES16796293 9 67422344 1.59E-04 

NES14816673 6 73125480 1.63E-04 

NES14815774 6 73186532 1.63E-04 
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