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The purpose of this study was to contribute to the existing body of evidence on vertically scaling 

mixed format tests by examining the impact of item format effect in conjunction with specific 

configurations of common item sets on two of the most popular calibration methods under test 

specification and scaling scenarios likely to exist in practice. In addition to advice for practical 

application provided by the investigation, this study also explored the impact of explicitly 

modeling the vertical scale factor when simulating data compared to a traditional model for in 

which the underlying vertical scale is implied. 

Using a CINEG data collection design, six grade level tests, consisting of 61 items, were 

created with a 9:1 ratio of multiple-choice to constructed-response items and two different sets of 

14 mixed format items designated as common items. Ability distributions for 2000 students per 

grade level were generated with the mean ability for successive grade levels increasing at 

varying increments to simulate grade level separation along with four covariance structures that 

reflected varying degrees of correlation to simulate item format effects.  

Under a 3PL-GRM model combination, expected scores were calculated with recovery of 

expected score used as evaluation criteria. Ability and item parameters were estimated using the 

MLE proficiency estimator in MULTILOG and transformation constants were calculated in 

UNIDIMENSIONAL VERTICAL SCALING OF MIXED FORMAT TESTS  
 

IN THE PRESENCE OF ITEM FORMAT EFFECT 
 

Debra White Moore, PhD 

University of Pittsburgh, 2015

 



 v 

STUIRT using the Stocking-Lord linking method. The performance of separate and pairwise 

concurrent calibration was then examined by calculating average BIAS and average RMSE 

values across 100 replications. 

While the results of the study provided evidence that item format effects, vertical scaling 

method, and separation between grade levels significantly impacted the vertical scales, influence 

of these variables was often in combination with one another. The major findings were (1) 

pairwise concurrent calibration holistically performed better compared to separate calibration; 

(2) moderate to large item format effects were more likely to bias resultant vertical scales; (3) a 

large separation between grade levels resulted in a more biased vertical scale; and (4) explicitly 

modeling the vertical scaling factor during data generation influenced mean RMSE values more 

significantly than mean BIAS values.  
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1.0  INTRODUCTION 

1.1 STATEMENT OF THE PROBLEM 

1.1.1 Background 

In educational contexts, it is often desirable to examine growth in student achievement across 

time, particularly within large-scale assessment programs. However, students learn so much from 

one year to the next, even within the same domain, that a single test designed to evaluate growth 

over time would be inappropriate since items covering early grade content would be too easy for 

upper grade students and items covering upper grade content would be too difficult for early 

grade students (Kolen & Brennan, 2004). Typically, to accommodate this, a series of tests are 

constructed where each test is appropriate for a specific grade level and all tests are linked to the 

same score scale in a process known as vertical scaling (Kolen & Brennan, 2004).   

As pressure mounts in large scale assessment programs to measure higher-level thinking 

processes, the use of mixed item format tests is increasing (Li, Lissitz, & Yang, 1999; Muraki, 

Hombo, & Lee, 2000; Sykes & Yen, 2000; Lane & Stone, 2006). Mixed item format tests are 

characterized by the use of different item types on the same test. Typically, this is a series of 

multiple-choice items which are dichotomously scored and a set of constructed-response items 

that are polytomously scored. Multiple-choice items can sample a broad range of the content 
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domain being measured while constructed-response items can elicit more complex cognitive 

processes related to the content domain (Linn, 1995; Martinez, 1999) with scoring of answers 

based on the quality of the answer rather than simply whether the answer is correct or incorrect 

(Muraki, Hombo, & Lee, 2000). The use of both item formats on the same test allows the test 

developer to combine the strengths of each item format while compensating for the weaknesses 

inherent in each item type (Martinez, 1999). 

Vertical scaling of a dichotomously scored test is a complex process in which different 

choices can lead to different outcomes and, consequently, different interpretations of student 

growth (Tong & Kolen, 2007). No single combination of methodologies has been found to be 

better than another and inconsistencies abound in the literature (Harris, 2007). While some of the 

issues surrounding the use of vertical scales with tests that consist exclusively of dichotomously 

scored items are applicable to all tests regardless of item type, vertically scaling mixed format 

tests poses its own set of concerns (Meng, 2007; Cao, 2008; Kim, Walker, & McHale, 2010). It 

is clear that with the increased use of vertically scaled tests in large scale assessment and 

accountability programs, as well as value-added systems, and the stakes attached to the results of 

these endeavors, scaling decisions need to be carefully considered (Kolen & Tong, 2010). 

However, research is needed that examines the use of mixed item format tests in a vertical scale.  

1.1.2 The Value of Mixed Format Tests  

The cognitive and psychometric investigation of comparisons between multiple-choice and 

constructed-response item formats have centered on three major areas; practical concerns such as 

time and cost, content coverage, and cognitive processes being tapped (Cao, 2008). In general, 

scoring multiple-choice items is inexpensive compared to the time and cost of scoring 
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constructed-response items and multiple-choice items can cover a broad range of content 

quickly, especially compared to the amount of time students must invest in answering 

constructed-response items (Linn, 1995; Ercikan, Schwarz, Julian, Burket, Weber, & Link, 

1998). In addition, the scoring of constructed-response items relies on the development of 

extensive scoring rubrics and use of raters who must be trained (Lane & Stone, 2006). Even with 

training, scoring of constructed-response items still has some degree of subjectivity and 

measurement error (Tate, 1999; Tate, 2000). Also, due to the time required to construct an 

answer, only a small number of constructed-response items can be used during any single test 

administration. However, an assessment consisting of only a limited number of constructed-

response items often leads to inadequate domain sampling (Linn, 1995; Dunbar, Koretz, & 

Hoover, 1991).  

While multiple-choice items can be written in such a way as to elicit divergent thinking, 

constructed-response items are capable of eliciting a broader range of complex cognitive 

processes (Martinez, 1999). In some cases, not using constructed-response items can lead to 

content under-representation as some higher order cognitive processes cannot be tapped with 

multiple-choice items (Messick, 1995). Additionally, test taking skills help students eliminate 

improbable answer choices to multiple-choice items potentially leading to construct-irrelevance 

and inflated scores (Burton, 2001).Thus, combining both item formats into the same test makes 

use of the strengths of both item types while offsetting the weaknesses, potentially offering a 

better understanding of student learning and growth (Martinez, 1999; Cao, 2008).  
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1.1.3 Attractiveness of IRT for Scoring Mixed Format Tests  

Combining both item formats on a single test, however, necessarily brings into question how the 

test will be scored. Weighting polytomously scored items equally with dichotomously scored 

items on the same test may not represent their importance in the overall test specification plan 

(Li, Lissitz, & Yang, 1999). The potential weighting options; weighting by time required for 

each item type, equally weighting each item type, and weighting by raw score points for each 

item type, all have substantial limitations (Ercikan, Schwarz, Julian, Burket, Weber, & Link, 

1998). Weighting by the amount of time a student takes to complete each item results in 

constructed-response items having greater weight than multiple-choice items and, consequently, 

unpredictable results in total score for individual students depending on their relative 

performance on the different item types (Wainer & Thissen, 1993).  

The lower reliabilities typically associated with constructed-response items place 

limitations on the use of equal weighting and weighting by raw score points (Wainer & Thissen, 

1993). In the case of equal weighting, the process inefficiently makes use of the measurement 

accuracy offered by the different item types in that the procedure treats each point as if it were 

equal, even though multiple-choice items can involve guessing (Ercikan, Schwarz, Julian, 

Burket, Weber, & Link, 1998). Item response theory (IRT) solves the weighting issue by creating 

a single scale from pattern scoring while providing statistically optimal weights (Ercikan, 

Schwarz, Julian, Burket, Weber, & Link, 1998). This eliminates the need to calculate and justify 

separate weights for the multiple-choice and constructed-response items when reporting a total 

score (Thissen, Wainer, & Wang, 1994; Sykes & Yen, 2000; Kim & Lee, 2006). 
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1.1.4 Choosing an IRT Model 

Item Response Theory (IRT) has become a popular scaling approach in the educational 

measurement field (Kim & Lee, 2006). IRT is a method of modeling an examinee’s performance 

on a given test item as a function of the characteristics of that item and the examinee’s latent 

ability (Hambleton & Swaminathan, 1985). It specifies the relationship between the latent ability 

and observed performance on an item and represents it mathematically as an item characteristic 

function (Hambleton & Swaminathan, 1985).  Those examinees with a higher latent ability are 

expected to have a higher probability of answering a given item correctly when compared to 

examinees with a lower latent ability (Hambleton & Swaminathan, 1985). The use of IRT in 

large-scale educational assessment programs began with application to dichotomously scored 

items, was extended to include polytomously scored options, and now, is being applied to mixed 

item format tests (Kim & Lee, 2006). Several different models exist within the IRT paradigm. 

Briggs and Weeks (2009) suggest that choice of IRT model can be statistical, philosophical, or 

pragmatic. Statistically, they note that more complex models will fit the data better and provide 

more precise estimates of examinees ability.  

Within the context of vertically scaling tests consisting of dichotomously scored items 

under the assumption of essential unidimensionality, there are three applicable IRT models; a 

one parameter logistic (1PL) or Rasch model, a two parameter logistic (2PL) model, and a three 

parameter logistic (3PL) model (Hambleton & Swaminathan, 1985). These models differ in the 

number of item parameters (difficulty, discrimination, guessing) estimated (Hambleton & 

Swaminathan, 1985). Historically, the Rasch model has not performed well in vertical scaling 

contexts. Slinde and Linn (1979), using artificially created groups based on ability level, found 

that the Rasch model did not perform well.  They proposed that the poor performance was due to 
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the lack of a guessing parameter, especially since the results were better when the low ability 

group was not involved in cross-validation studies. Using a more traditional methodology, Loyd 

and Hoover (1980) found similar results. Specifically, they noted that the results of the vertical 

equating were not independent of the ability group used in the equating. They concluded that the 

1PL model probably did not meet one or more of the underlying IRT model’s assumptions. 

Holmes (1982), using data from two adjacent grade levels of the Comprehensive Test of Basic 

Skills (CTBS), found that the Rasch model did not perform equally well across all ability levels; 

performing poorly for low ability examinees. The author attributed this to not taking guessing 

into account when low ability examinees are linked based on difficult items. Becker and 

Forsythe (1992), using data from three subtests of the Iowa Test of Educational Development 

(ITED) for grades 9 through 12, found that grade-to-grade variability increased as grade level 

increased, especially with the Rasch scaling method.  After a comprehensive literature review of 

these studies and others, Skaggs and Lissitz (1986) recommended using a 3PL model for vertical 

scaling dichotomously scored tests. 

From a constructed-response item perspective and also under the assumption of essential 

unidimensionality, there are several possible models; the partial credit model (PCM), the 

generalized partial credit model (GPCM), the graded response model (GRM), and the nominal 

model (NM) (Ostini & Nering, 2006). The use of IRT to scale mixed format tests requires 

selecting a model for the multiple-choice items as well as selecting a model for the constructed-

response items (Baker & Kim, 2004; Kim & Lee, 2006). In studies that examined the equating of 

mixed format tests, the 1PL model typically was paired with the PCM while the 2PL and 3PL 

models typically were paired with the GRM or the GPCM (Bastardi, 2000). Fitzpatrick, Link, 

Yen, Burket, Ito, and Sykes (1996), using data from several state assessment programs, applied 
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the 1PL-PCM combination and the 3PL-GPCM combination to several mixed format tests and 

found the GPCM alone or the 3PL-GPCM combination fit the data better. The authors attributed 

this to the differing discrimination estimates (slopes) between the multiple-choice and 

constructed-response items as well as the inclusion of a guessing parameter in the 3PL model. 

Sykes and Yen (2000) used data from two mixed format state proficiency tests to compare the 

1PL-PCM combination and the 3PL-GPCM combination. They found the 1PL-PCM 

combination could spuriously inflate item information for the constructed-response items which 

led to underestimated standard errors. They concluded the poor model fit of the 1PL-PCM 

combination was due to the lack of guessing parameter and the assumption of equal 

discrimination parameters across multiple-choice and constructed-response items. Since the 

Rasch model pairing has been found to be insufficient except in certain circumstances (Sykes & 

Yen, 2000), the 3PL model paired with the GPCM or GRM appears to be the most promising 

combination for a vertical scale (Bastardi, 2000).  

1.1.5 Dimensionality 

These IRT models, however, come with several strong underlying assumptions including the 

assumption of unidimensionality. In other words, the instrument in question is measuring only 

one underlying latent trait (Hambleton & Swaminathan, 1985). Unfortunately, evidence suggests 

that multidimensionality may exist within mixed format tests due to differences in item formats 

(Kim & Kolen, 2006; Yao, 2008) or between content dimensions within tests (Reckase & 

Martineau, 2004) and between tests of different grade levels due to subtle (and not so subtle) 

shifts in content domain across years (Reckase & Martineau, 2004; Yen, 1995; Yen, 1996).  This 
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leads to several ways multidimensionality potentially can impact results when vertically scaling 

mixed item format tests within the test and across grade levels.  

Evidence indicates that there is the potential for multidimensionality to exist within and 

across tests. Less clear, however, is how to deal with that dimensionality in practice. Evidence 

exists showing that using a unidimensional IRT model to estimate data that are multidimensional 

can result in biased vertical scales (Béguin, Hanson, & Glas, 2000; Béguin, & Hanson, 2002). 

However, multidimensional vertical scaling procedures developed thus far are difficult to 

implement and often lead to results that are difficult to interpret (Eastwood, 2014). On the other 

hand, some studies have shown that using a multidimensional scaling method leads to smaller 

bias in the resultant scale than a unidimensional procedure specifically when the 

multidimensional model is the bifactor model (Li, 2006: Li & Lissitz, 2012; Gibbons et al., 

2007).   

1.1.6 Characteristics of Common Items 

The method of data collection for vertical scaling tests has the potential to impact results as well. 

While there are three basic designs used to collect data for use in IRT vertical scaling, the 

common items non-equivalent group (CINEG) design, or some variation of it, is the most widely 

used design to collect data for large-scale assessment programs (Muraki, Hombo, & Lee, 2000; 

Peterson, 2010). In the CINEG design, an appropriate test is designed for each grade level with a 

predetermined number of common items overlapping adjacent grades. Each test is administered 

to the appropriate grade level and the scores on the common items between adjacent grade levels 

are used to place all items on a common score scale (Kolen & Brennan, 2004). Using the CINEG 

design requires the construction of a set of items common for adjacent grade levels, but the 
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specifications for creation of the common item set is not clear.  Research into the construction of 

the common items for a test with dichotomously scored items has shown that the composition of 

the item set affects equating and scaling results (Yao, 2008).   

In the case of horizontal equating, the current recommendation is for the set of common 

items to be representative of the content and statistical characteristics of the overall test (Kolen & 

Brennan, 2004). In addition, it is recommended that the items be placed in the same position on 

the tests being equated (Hagee & Kolen, 2011). However, in a vertical scaling context, adjacent 

tests are deliberately designed to be more difficult as the grade levels increase (Chin, Kim, & 

Nering, 2006). Thus, finding a set of items that are common to adjacent grade levels can be 

difficult (Kolen, 2007). Therefore, for vertical scaling, a recommendation for determining 

common items is to select items that provide a good representation of the domain overlap 

between the adjacent grades levels (Tong & Kolen, 2011). In any case, the argument has been 

made that the scaling results will be determined by the particular set of items chosen as common 

items, so the choice of common items is an important consideration when vertically scaling with 

the CINEG design (Patz & Yao, 2007; Kolen, 2007).  

One challenge when constructing a representative common item set for a mixed format 

test is that there will be few constructed-response items compared to the number of multiple-

choice items on the test, so there will be fewer constructed-response options to contribute to the 

set of common items (Muraki, Hombo, & Lee, 2000). Additionally, since constructed-response 

items tend to be more memorable because of their uniqueness compared to a large set of 

multiple-choice items, test security becomes an issue; particularly when laws require periodic 

release of test forms (Muraki, Hombo, & Lee, 2000). As a result, a common item set consisting 

solely of multiple-choice items often is used in practice when equating and scaling mixed format 
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tests (Kim & Lee, 2006). This practice, however, is not consistent with the current 

recommendations on representativeness.  

A second challenge to constructing a set of common items for a vertical scaling scenario 

is deciding which of the adjacent grade levels should be used to supply the common items. As 

Tong and Kolen (2011) note, common items can be chosen from both of the adjacent grade 

levels, just the upper grade level, or just the lower level. Choosing from only the upper grade 

level means that students may not have had instruction on the content covered by the items while 

choosing from only the lower level means that students in the upper grade could find the items 

too basic (Tong & Kolen, 2011, Peterson, 2010).  

Most of the research into characteristics of common item sets that could potentially 

impact equating results of mixed format tests has focused on the length of the common item set, 

the proportion of format types of the items used to construct the set, and differences in 

proficiency level between groups (Cao, 2008; Hagee & Kolen, 2011). However, the results are 

inconsistent and there is no clear recommendation for how to select items for the common item 

set within a vertical scaling scenario (Chin, Kim, & Nering, 2006).  

1.1.7 IRT Scaling 

The set of common items referenced above are then used to relate each examinee’s score to the 

base score scale by some method of calibration (Kolen & Brennan, 2004).  IRT item and ability 

parameters can be estimated using separate runs for each grade level or in one single 

simultaneous run for all grade levels (Kolen & Brennan, 2004). These processes are known as 

separate calibration and concurrent calibration, respectively.  
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When using separate calibration, item parameters and ability distributions are estimated 

individually for each grade level or group (Kolen, 2006). The resultant IRT parameter estimates 

from each separate run are within a linear transformation of each other because of the invariance 

property of IRT modeling (Lord, 1980; Kim & Lee, 2006). After choosing one grade level as the 

base grade level, linking coefficients are estimated for the parameters and used to perform a 

series of chained linear scale transformations (Kolen & Brennan, 2004). The linking coefficients 

can be estimated by one of several methods that are divided into two classes; moment methods 

and test characteristic curve (TCC) methods. The moment methods include the mean/mean 

(Loyd & Hoover, 1980) and the mean/sigma (Marco, 1977) methods and the TCC methods 

include the Stocking-Lord method (Stocking & Lord, 1983) and the Haebara method (Haebara, 

1980).  

When concurrent calibration is used, all item and ability parameters for all grade levels 

are estimated in one simultaneous run (Kolen & Brennan, 2004). Once the simultaneous run is 

complete, the parameter estimates are on the same scale across all grades and do not require 

further transformation (Kolen & Brennan, 2004).  

More recently, a hybrid of the two calibration methods has been proposed; pairwise 

concurrent calibration (Karkee, Lewis, Hoskens, Yao, Huang, 2003; Meng, 2007). In pairwise 

concurrent calibration, adjacent non-overlapping grade levels are concurrently calibrated and the 

resulting estimates are then placed on the same scale by one of the linking methods used with 

separate calibration (Karkee et al, 2003). Because pairwise concurrent calibration uses 

concurrent calibration along with separate calibration but with fewer linkings, it is believed that 

the procedure will perform comparably to or better than either concurrent or separate calibration 
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in the presence of multidimensionality (Meng, 2007).  However, evidence of this has been 

contradictory (Meng, 2007; Karkee et al, 2003). 

Much research has been done comparing separate calibration and concurrent calibration 

in equating and scaling. Generally, concurrent calibration results in more stable estimates, 

presumably because this process makes use of as much of the available data as possible (Kolen 

& Brennan, 2004; Kim & Cohen, 1998). From a logistic standpoint, in the case of 

unidimensional IRT (UIRT), Kolen and Brennan (2004) have made the point that concurrent 

estimation is easier to implement than separate estimation because only one computer run is 

required, but suggest that a computer program capable of estimating parameters for multiple 

groups should be used to guard against biased estimates.  Additionally, they note that due to a 

large number of ‘not reached’ items in examinee response strings, there can be convergent 

problems with this method of calibration.  

However, some empirical evidence suggests that separate calibration could be more 

appropriate in certain situations, specifically when substantial multidimensionality exists 

between grade level tests (Béguin, Hanson, & Glas, 2000; Yao & Mao, 2008). Additionally, 

Kolen (2006) proposed that separate calibration allows the researcher to examine item parameter 

estimates for individual items so as to identify items that are behaving differently for adjacent 

grade levels. Prevailing opinion is that separate calibration has the potential to ameliorate the 

effect of the violation of the assumption of unidimensionality because each grade level is 

calibrated separately and then linked (Kolen & Tong, 2010). When using separate calibration, 

empirical evidence suggests that the test characteristic curve linking methods perform better than 

the moment linking methods (Béguin & Hanson, 2002; Kim & Cohen, 1998). 
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1.1.8 Grade Level Separation 

Kolen and Brennan (2004) have made the argument that the characteristics of the groups used in 

horizontal equating of test forms can impact the results. When the groups used in the horizontal 

equating scenario are randomly equivalent and representative; the equating relationship seems to 

be group invariant (Cook, 2010). However, when there are large differences in mean ability level 

between groups, the equating relationship can fail (Harris & Hoover, 1987; Kolen & Brennan, 

2004; Hanson & Béguin, 1999). In vertical scaling, the expectation is that mean ability levels 

will be different across grade levels (Chin, Kim, & Nering, 2006; Kolen, 2007). Therefore, it is 

reasonable that when large differences in mean ability levels between grades exist, vertical 

scaling results could be less accurate (Chin, Kim & Nering, 2006). 

1.1.9 Summary 

Tracking student achievement over time is one way schools can provide accountability data to 

relevant stakeholders. As the pressure mounts to measure complex thinking skills, schools are 

turning to mixed format tests because of their ability to sample a broad range of content quickly 

with multiple-choice items while capturing higher order thinking skills with constructed-

response items. IRT-based vertical scaling is an attractive procedure for examining growth in 

student achievement over time and is accommodating of mixed format tests.  However, there are 

practical issues, some within the practitioner’s control and some not, which can cause the 

resultant vertical scales to be biased. Biased results can lead to incorrect inferences about student 

growth at the aggregate or individual level. Despite considerable research into vertical scaling, 
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inconsistencies exist in the literature and no single combination of methodologies has been 

emerged as best practice.  

1.2 PURPOSE 

The purpose of this simulation study is to examine the performance of calibration methods under 

different conditions of format effect and common item characteristics when vertically scaling 

mixed format tests under the assumption of unidimensionality. Using a 3PL-GRM UIRT model 

combination, the CINEG data collection design, different conditions of grade level separation 

and item format effect as reflected in the covariance structure of the ability parameter generation, 

the performance of separate calibration and pairwise concurrent calibration will be examined 

with two configurations of common item sets. In addition, data will be generated in the 

traditional way by assuming the existence of a vertical scale underlying the test data and in a 

non-traditional way in which the underlying vertical scale is explicitly modeled during the ability 

generation process. 

1.3 RESEARCH QUESTIONS 

There are five main research questions that will be addressed by this study: 

Research Question #1: Does item format effect impact the resultant vertical scale when  
    scaling mixed format tests if unidimensionality is assumed? 
 
Research Question #2: Does the range in difficulty of the common items impact the  
     resultant vertical scale when scaling mixed format tests in the  
     presence of multidimensionality? 
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Research Question #3: Does the degree of separation in ability level between different  
     grade levels impact the resultant vertical scale when scaling  
     mixed format tests in the presence of item format effect? 
 
Research Question #4: Which vertical scaling method (separate or pairwise concurrent)  
       produces the most accurate vertical scale in the presence of item 

 format when unidimensionality is assumed?  
 
Research Question #5: Does explicitly modeling the otherwise assumed vertical scale  
                                      underlying the test data influence the simulation? 

1.4 SIGNIFICANCE OF STUDY 

Beginning with No Child Left Behind (NCLB: U.S. Department of Education, 2001) and 

continuing with the Race to the Top program (RTT: U.S. Department of Education, 2009), a 

spotlight was focused on accountability in education. Under NCLB and continuing with RTT, 

the focus shifted from accountability based on static proficiency classifications to accountability 

through examining student growth in achievement (U.S. Department of Education, 2009). Within 

this context of assessment and accountability, mixed format tests offer advantages over single 

format tests with their ability to tap higher level thinking skills while still covering a broad range 

of content in a reasonable time frame. Additionally, IRT-based vertical scaling offers one 

method of examining such growth in student achievement over time and is appropriate for mixed 

format tests.  

However, some characteristics unique to mixed format tests, groups being scaled, and 

techniques used to generate the scales can result in less than desirable vertical scales. For 

instance, when constructing vertical scales, assessment programs tend to assume 

unidimensionality within tests. Evidence, however, suggests that this is an unlikely scenario. 
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Simulation studies in which item format effects are manipulated within the context of vertical 

scaling have not been done despite the possibility that both of these effects may be present in 

operational tests currently being used. Additionally, how the most popular calibration methods 

will perform within the same context in the presence of item format effect is not certain.  

Further, despite research already done on equating and scaling mixed format tests, there 

are still outstanding questions about how to choose common items when using a CINEG design. 

While the use of multiple-choice items only as common items when scaling a mixed format test 

is typical in practice, whether or not this is best practice is still in question. Additionally, 

research is inconsistent concerning how to construct the set of common items used for linking 

purposes and if large differences in mean ability level between grades will result in less desirable 

vertical scales. 

As part of RTT, the Race to the Top Assessment (RTTA) initiative was founded with the 

intent to grant federal funding to groups willing to design assessments based on the Common 

Core State Standards (CCSS) that could be used to examine growth in student achievement from 

year to year (U.S. Department of Education, 2010). Two multi-state consortiums, The 

SMARTER Balanced Assessment Consortium (SMARTER, 2012) and the Partnership for 

Assessment of Readiness for College and Careers (PARCC, 2013), secured federal funding to 

develop assessments based on the CCSS.  Both of these consortiums have designed assessments 

that use performance-based components (constructed-response) in addition to multiple-choice 

items (PARCC, 2013). In addition, SMARTER plans to use a vertical scale to measure student 

growth (SMARTER, 2012) and PARCC is considering the use of a vertical scale, as well (Kolen, 

2011; Briggs, 2011).  
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While some research exists to guide these and other practitioners concerning best 

practices in vertical scaling, most of the research takes place in the context of horizontal equating 

or in vertical scaling of single format tests. The dearth of research pertaining to the vertical 

scaling of mixed format tests in general, as well as the impact of item format effect, degree of 

grade level separation, and the need to know the necessary characteristics for common items, call 

for additional research. This study will add to the existing body of evidence on vertically scaling 

mixed format tests by examining the impact of item format effect in conjunction with specific 

configurations of common item sets on the most popular calibration methods used for creating 

vertical scales. In addition to these practical applications, this study will also explore the explicit 

modeling of the vertical scale factor compared to the traditional model for generating data in 

which the underlying vertical scale is implied when simulating data for this type of study. 
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2.0  LITERATURE REVIEW 

In this chapter, the literature on IRT-based vertical scaling is reviewed with an emphasis on the 

studies pertaining to mixed format tests.  The section begins with a review of the literature 

specific to vertically scaling mixed format tests (Karkee, Lewis, Hoskens, Yao, and Haug, 2003; 

Yao & Mao, 2004; Meng, 2007). Given the small number of studies conducted in this area, the 

section will then review studies concerning equating of mixed format tests as they relate to the 

aspects highlighted previously and supplemented with studies concerning equating of single 

format tests when necessary, providing a rationale for the choice of factors of investigation in 

this study.  

2.1 VERTICALLY SCALING MIXED FORMAT TESTS 

Few studies have been done examining the vertical scaling of mixed format tests. Most of these 

studies have focused on the performance of the most popular calibration methods traditionally 

used for single format tests applied to the mixed format context. Karkee, Hoskens, Yao, and 

Haug (2003) examined the performance of separate, concurrent, and pairwise concurrent 

calibration using operational data from a statewide mathematics mixed format test administered 

to grades 5 through 10. The grade 5 test consisted of 69 items, 54 multiple-choice items and 15 

constructed-response items, while the grade 6 through 10 tests consisted of 60 items in which 45 



19 

 

were multiple-choice items and 15 were constructed-response items. The authors randomly 

selected 10,000 responses from a possible 54,000 responses with 5,000 of those responses used 

for the calibration study and the other 5,000 responses used for a cross-validation study. A 

CINEG design, in which at least 20 common items of a mixed format nature, was used to create 

the vertical scale. Researchers chose ten of the common items from the core grade level test and 

the other 10 common items from the test for the grade level below the core test. The 3PL model 

was used to estimate the multiple-choice items, the 2-parameter partial credit was used to 

estimate the constructed-response items, and grade 7 (grade 7/8 for the pairwise concurrent 

calibration) was used as the base grade level.  

Results were compared for non-convergence, model fit, differential item functioning 

(DIF), grade-to-grade growth, grade-to-grade variation, separation of grade level distribution, 

and expected versus observed performance. The authors found that separate calibration using the 

Stocking-Lord linking method produced consistently better results when compared to concurrent 

calibration and pairwise concurrent calibration in terms of model fit, convergence, and DIF. For 

grades 6 through 10, pairwise concurrent calibration performed better than concurrent 

calibration. Also, when parameter and ability estimates were compared, results were similar to 

those outlined above were reported across calibration methods. Grade-to-grade growth was 

similar across methods although differences did exist between methods for the end grade levels. 

Grade-to-grade variability was relatively flat for separate and concurrent calibration while 

pairwise concurrent calibration showed greater variability in grades 5 and 6.  

Jodoin, Keller and Swaminathan (2003) investigated the impact of calibration method 

and proficiency estimator (ML, EAP, and raw scores) on ability estimates and classification 

consistency (4 levels) for a mixed format statewide mathematics test. The authors used real data 
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from three different years of the test that resulted in a matrix-sample external anchor equating 

design in which 5000 examinees took one of 12 difference external item blocks. Using the 3PL 

model for the multiple-choice items, the 2PL model for short answer items, and the GRM for 

open response items, vertical scales were generated by concurrent calibration, separate 

calibration and the mean/sigma linking method, and fixed common item parameter method 

(FCIP). The lowest year was used as the base level for all conditions.   

To examine differences between calibration methods and estimators, three ability 

estimates were generated for each examinee; raw score, ML, and EAP. In addition, each 

examinee was classified into one of four ‘proficiency categories’ for each of the three different 

ability estimates. Cross-tabulations were performed to assess consistency of classification 

between the methods. ML ability estimates showed greater mean growth than EAP ability 

estimates. Also, the proportion of examinees classified as ‘below proficient’ by ML ability 

estimates decreases more quickly than the proportion of examinees classified in the same 

category by EAP ability estimates. With regard to calibration method, separate calibration with 

mean/sigma linking showed less growth in student achievement across years when compared 

with concurrent and FCIP calibration. Classification consistency for all calibration methods were 

highly correlated (> 0.94). When differences occurred between separate calibration and FCIP 

calibration, FCIP calibration consistently classified students in the next highest category 

comparatively. When differences occurred between concurrent calibration and FCIP calibration, 

concurrent calibration consistently classified students in the next highest category as well.  

While ability estimates regardless of proficiency estimator were highly correlated with 

each other across calibration methods (< 0.091), concurrent and FCIP calibration classified more 

students in the middle categories when compared to separate calibration which classified more 



21 

 

students in the extreme categories (highest and lowest). This pattern of results was found for both 

EAP and LM estimators.  

Yao and Mao (2004) investigated the performance of different calibration methods in the 

presence of multidimensionality when vertically scaling a mixed format test across five grade 

levels under the assumption of unidimensionality. Using item parameters from a large-scale 

mixed format writing assessment, they simulated multidimensional data with a set of 13-18 

common items consisting of multiple-choice items only. Then, they compared the performance 

of concurrent, separate, and pairwise concurrent calibration in terms of accuracy of proficiency 

scores distributions using mean squared error of frequency over replications. Results showed that 

when data were simulated to be two dimensional, a unidimensional solution was sufficient and 

produced more stable proficiency score distributions over time; however, the two dimensional 

solution produced the smallest mean bias. Results for the three dimensional condition were 

similar. Although the three dimensional solution produced the smallest mean bias, the two 

dimensional solution produced comparable results and the one dimensional solution produced 

the largest mean bias. In terms of accuracy of calibration method, when the data was 

unidimensional, separate calibration was more accurate than concurrent calibration. However, 

when the data was multidimensional, concurrent calibration was more accurate than separate 

calibration; but the score distributions that resulted from the three different dimensional 

estimations varied little regardless of calibration method. The authors propose that this was due 

to the high correlation between items of different formats. 

Meng (2007) examined the performance of separate, concurrent, semi-concurrent, and 

pairwise concurrent calibration methods when vertical scaling unidimensional data from a mixed 

format test across grades 3 through 8. Sample size, number of common items, format of the 
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common items, and the ratio of polytomously scored items to dichotomously scored items on the 

test were varied. Using item parameters from a large-scale reading assessment, eight 60-item 

study tests were created with different numbers of multiple-choice and constructed-response 

items for the entire test and for the common item sets. Multiple-choice items were estimated 

using the 3PL model and constructed-response items were estimated using the GPCM model. 

Grade 5 was used as the base grade level. 

Results of each condition were evaluated using the root mean squared error (RMSE), 

standard error, and absolute bias for estimation of four criterion; proficiency score means, 

proficiency score standard deviations, patterns of student growth (effect sizes), and classification 

proportions across replications. Pairwise concurrent and semi-concurrent calibration were most 

accurate in estimating proficiency score means. Likewise, pairwise concurrent or semi-

concurrent calibration methods were more accurate and stable in terms of recovering patterns of 

student growth, as measured by effect size, when compared to separate or concurrent calibration. 

For classification proportions, results were dependent on the classification level. For the lowest 

level, concurrent calibration was most accurate in reproducing proportion of classification, while 

pairwise concurrent calibration was most accurate for classification levels 2 and 4. Semi-

concurrent calibration resulted in the most accurate estimates of the third classification level. 

Concurrent calibration produced the lowest error when recovering proficiency score standard 

deviations. 

For all calibration methods, increasing sample size decreased error in estimating 

proficiency score means and standard deviations, effect sizes, and classification proportions. 

Additionally, using a mixed format common item set increased the accuracy of pairwise 

concurrent, semi-concurrent, and concurrent calibration methods across the four parameters of 
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evaluation. When using only multiple-choice items as common items, the smaller number of 

common items resulted in better estimates of proficiency score means and effect sizes across 

calibration methods, while the larger number of common items resulted in more accurate 

estimates of proficiency score standard deviations and classification proportions for the lowest 

two classification levels. The accuracy of classification proportions for the top two levels was 

dependent on calibration method used. While generally pairwise concurrent or semi-concurrent 

calibration resulted in more accurate estimates proficiency score means, standard deviations, 

effect sizes, and classification proportions, the author noted that increasing sample size, 

increasing the number of common items, using a mixed format common item set, and increasing 

the number of constructed-response items produced more accurate and stable results when 

vertically scaling a mixed item format test. Given that some of these parameters are out of the 

practitioner’s hands, the author suggests using a mixed format common item set to produce the 

most accurate vertical scales. 

2.1.1 Summary 

Four published studies have examined the vertical scaling of mixed format tests. Making 

generalizations from these studies is difficult because overlap between them is small. All four 

studies used real item parameters from tests used in statewide large scale assessments and three 

of the four studies used the ‘lowest’ grade level as the base grade level to examine the 

performance of the most popular calibration methods for creating vertical scales. However, the 

number of common items, sample size, number of grade levels scaled, and the format of the 

common items differed between them. Results suggest that the number of common items, as well 

as the format of the common items, impacts the resultant vertical scale and that dimensionality 
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can make a difference under certain conditions. Additionally, performance of the different 

calibration methods was inconsistent across the studies and conditions. 

2.2 DIMENSIONALITY  

A chief concern when scaling mixed format tests is the potential for multidimensionality to bias 

results, especially since it is common practice to assume unidimensionality. Past research has 

shown IRT ability and item parameter estimation to be somewhat robust to violations of the 

assumption of unidimensionality under certain conditions. Simulating different conditions, 

Reckase (1979) investigated the impact of multidimensionality introduced when more than one 

underlying trait was being measured. Using 50-item tests, 5 of which were operational data sets 

and 5 were data sets simulated to represent specific factor structures and ability parameter 

distributions, he investigated the relative performance of the 1PL and 3PL model when 

estimating multidimensional data. In general, he found that the 3PL model picks one factor and 

discriminates among the ability continuum while ignoring the other factors. On the other hand, 

the 1PL model estimates ability parameters based on a sum of the factors. For the 3PL model, 

whether there was one dominant latent trait with a series of weakly correlated latent traits or two 

independent latent traits; the resulting ability parameter estimates were relatively stable as long 

as the first factor accounted for at least 10% of the total test variance. However, item parameter 

estimates were unstable under these conditions unless the dominant factor accounted for at least 

20% of the total test variance. In addition, under the 3PL model, the discrimination factor was 

related to the size of the factor loadings on the dominant factor and the shape of the item 

difficulty parameter distribution. 
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Drasgow and Parsons (1983) conducted a simulation in which they used a higher order 

latent trait with a series of lower level factors that were correlated to varying degrees. They 

found that as long as the dominant trait was large enough (intercorrelations 0.46 or higher), item 

parameter estimates were unbiased. Likewise, Harrison (1986) found IRT item parameter 

estimation to be robust to violations of the unidimensionality assumption. Harrison manipulated 

several factors including; test length, number of common factors, distribution of item factor 

loadings, and the strength of the factor loadings on the common factor. Results showed that test 

developers can improve item and ability parameter estimation by increasing the number of 

relevant test items, increasing the number of common factors, and balancing the influences of the 

common factors.  

Using GRE verbal scores, Dorans and Kingston (1985) examined the robustness of IRT 

equating to violations of the unidimensionality assumption. Factor analysis of GRE verbal scores 

found that two distinct verbal abilities were present; discrete verbal ability and reading 

comprehension ability. Calibrating all items together or calibrating based on item content, ability 

parameters and item discrimination parameters were estimated and compared. Also, IRT 

equating was performed across six conditions; equivalent group versus anchor-test, concurrent 

calibration or separate calibration then linking with the Stocking-Lord procedure, and how the 

old form was calibrated compared to how the new form was calibrated (both separate, both 

concurrent, old-concurrent with new-separate). Ability parameter estimates, item discrimination 

parameters, and raw-scores from the equating conditions were compared.  

Correlations between the overall verbal ability estimates and the discrete verbal ability 

estimates ranged from .86 to .89 while correlations between the overall verbal ability estimates 

with the reading comprehension ability estimates ranged from .73 to .77. The authors concluded 
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that the test measured two distinct, but highly correlated abilities. Comparison of item 

discrimination parameter estimates showed similar results. Calibration by content resulted in a 

higher mean discrimination estimate than calibrating all items together and reading 

comprehension items had a greater difference in mean item discrimination parameter when 

compared to the simultaneous calibration of all items together. Raw-score to raw-score 

comparisons found that results of the equatings differed by no more than 10 scale points. The 

greatest differences in scale score comparisons occurred at the extremes of the scale score range. 

The authors concluded that dimensionality exerts its effect on equating through its impact on the 

estimation of the item discrimination parameter and that since the equatings were similar, that 

IRT equating may be robust to violations of unidimensionality like found in this dataset.  

All of these studies examined the impact of within-grade multidimensionality that may 

exist when a test measures more than a single underlying ability. These studies also suggest that 

when one underlying dimension accounts for a substantial portion of the overall test variance or 

if the underlying dimensions being measured are strongly correlated, IRT equating is somewhat 

robust to violations of the unidimensionality assumption.  

2.2.1 Item Format Effects  

There is evidence that adding additional item formats increases the dimensional complexity of a 

test (Kim & Kolen, 2006; Yao, 2008). Several studies have investigated the dimensionality of 

mixed format tests with inconsistent results depending on the content and structure of the test.  

Evidence suggests that the extent to which the constructed-response and multiple-choice portions 

of tests measure the same content and skills, tests can be essentially unidimensional (Yao, 2008).  
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Bennett and colleagues (1990, 1991) investigated the dimensionality of the College 

Board’s Advanced Placement (AP) Computer Science exam using factor analysis in two 

different studies. In the first study (Bennett, Rock, Braun, Frye, Spohrer, & Soloway, 1990), they 

fit four different factor models to two sets of dichotomously scored items, polytomously scored 

items, and constrained polytomously scored items. They found a one factor solution was 

sufficient for one set of items, but the second set of items required a two factor, albeit highly 

correlated, solution. In the second study (Bennet, Rock, & Wang, 1991), the authors compared 

model fit indices for a one factor and a two factor solution. The two factor structure investigated 

was a one factor multiple-choice item and one factor constructed-response item solution. In order 

to analyze the entire test, they parceled the 50 multiple-choice items into five 10-item bundles 

creating a summed score from 0-10 for each bundle. While the one factor model did not fit 

particularly well according to the goodness-of-fit measure, it was the more parsimonious 

solution. 

Thissen, Wainer, and Wang (1994) re-examined the same Advanced Placement 

Computer Science test data, but used a bifactor solution. In the bifactor model, a general 

multiple-choice factor and two associated constructed-response factors that were uncorrelated 

with the multiple-choice factor was fit to the data. The results suggested that the constructed-

response items measured something unique compared to the multiple-choice items based on the 

small but significant loadings on the constructed-response factors. However, since the multiple-

choice and constructed-response items loaded more heavily on the general factor than the single 

factors, the authors concluded that the structure was essentially unidimensional in that the 

different item types measured the same construct for most of the test. The authors then 

completed the same analysis for the Advanced Placement Chemistry examination and found 
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similar results. As the authors note, however, these tests were designed specifically to measure 

the same construct. 

Perkhounkova and Dunbar (1999) applied DIMTEST to the language arts and 

mathematics tests of the ITBS and the Constructed-Response Supplement (CRS) to the ITBS for 

seventh and eighth graders. They investigated the structure of three researcher-created tests; 

multiple-choice items only test, constructed-response items only test, and a test that was a 

combination of both item types. On the language arts tests, the researchers found the constructed-

response and mixed format test to be essentially unidimensional. While the multiple-choice test 

was considered to be essentially unidimensional, it was noteworthy that it was not ‘strictly’ 

unidimensional due to nuisance factors associated with content and item format. This 

phenomenon, however, was not consistent across the grade levels examined. For the 

mathematics test, the multiple-choice and mixed format tests were not found to be essentially 

unidimensional. Again, the results were not consistent across grade levels and differences were 

attributed to item format, content, and location of the item within the test. Additionally, the 

constructed-response test was determined to be dimensionally distinct from the multiple-choice 

test. Overall, the researchers concluded that using multiple-choice and constructed-response 

items on a single test may introduce complexity into the dimensional structure of the resultant 

mixed format test. Sykes, Hou, Hanson, & Wang (2002), using 35 multiple-choice and 10 

constructed-response items from a field test of a mathematics state assessment for fifth graders, 

determined the structure to be multidimensional across item format with constructed-response 

items loading on two dimensions and multiple-choice items loading primarily on the second of 

two dimensions. 
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2.2.2 Multidimensional IRT Models 

Despite evidence that unidimensional IRT (UIRT) models are somewhat robust to violations of 

the dimensionality assumption, continued concerns over the impact of multidimensionality on 

the estimation of item and ability parameters within educational assessment by UIRT models 

have led to the proposal of several multidimensional IRT (MIRT) models (Yon, 2006). Three 

MIRT models have been proposed; partially (or non) compensatory, compensatory, and, more 

recently, the bifactor model. Compensatory and partially compensatory models differ in the way 

that information from the underlying latent abilities is combined with the item characteristics to 

calculate the probability of a correct response (Reckase, 2009; Yon, 2006).  

In a partially compensatory, sometimes called noncompensatory, MIRT model, a task is 

broken into component parts and a unidimensional model is used to estimate each component 

with the resultant probability of a correct response for the task being the product of these 

separate unidimensional probabilities (Reckase, 2009). The multiplicative nature of this model 

means that a low ability estimate on one dimension is partially compensated for by a higher 

ability estimate on another dimension (Yon, 2006). However, because of estimation difficulties 

associated with partially compensatory MIRT models and the fact that they have not been 

extended to polytomously scored items, most research into MIRT equating has been done with 

compensatory MIRT models (Reckase, 2009; Yon, 2006).  

In a compensatory MIRT model, a linear combination of latent abilities is used with a 

logistic (or normal ogive) model to specify the probability of a correct response (Reckase, 2009). 

The linear combination approach allows for different combinations of ability estimates to 

combine for the same overall sum (Reckase, 2009). This means that a high ability in one domain 

can ‘compensate’ for a lower ability in another domain (Yon, 2006). As with UIRT, MIRT 
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comprises a series of models that mathematically express the interaction between persons and 

items (Reckase, 2009). For dichotomously-scored items, the compensatory MIRT model has 

been mathematically expressed as an extension of the 1PL UIRT model (Adams, Wilson, & 

Wang, 1997), the 2PL UIRT model (McKinley & Reckase, 1983) and the 3PL UIRT model 

(Reckase, 2009).  Additionally, for polytomously-scored items, Muraki and Carlson (1995) 

extended the GRM to multidimensional space while Yao and Schwarz (2006) extended the 

GPCM and Adams, Wilson, and Wang (1997) extended the PCM. 

Just as with UIRT models, results from MIRT model estimation need to be linked to 

create a vertical scale. Li and Lissitz (2000) argue that three indeterminacies must be resolved in 

order to equate MIRT data; rotational, unit, and origin. This means that axes of the new form 

need to be rotated to match the axes of the base form, units of identified dimensions on the new 

form need to be compressed or expanded to match the units of the base form, and origins of 

identified dimensions on the new form translated to match the origins of the base form (Yao, 

2006). Several linking methods have been proposed in conjunction with compensatory MIRT 

models. While some equating methods are multidimensional extensions of UIRT equating 

methods, newer MIRT equating methods have been proposed that differentially address how to 

resolve these indeterminacies (Yon, 2006).  

Recent years have seen a rediscovery of the bifactor model as a way of modeling 

multidimensionality in educational contexts (Reise, 2012). The bifactor model is characterized 

by a single general factor that accounts for common variance across all items and one or more 

group factors that account for common variance above and beyond the general factor among 

these groups of items (Reise, 2012). To apply a bifactor model to an educational assessment, 

each test item would be an indicator for both the general factor and one additional group factor 
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(Li & Lissitz, 2012). In the same educational assessment scenario from a covariance structure 

perspective, the covariance of the set of all items is explained by the general factor and the 

additional variance of sets of items within the overall set of items is explained by group factors 

(Reise, 2012). This requires that each item have a nonzero loading on the general factor and only 

one nonzero loading on the group factors and that the group factors be orthogonal to the general 

factor and to the other group factors in the model (Gibbons & Hedeker, 1992). Extending the 

bifactor model into the context of vertical scaling, the general factor, then, would reflect the 

overall vertical scale across all grade levels while the group factors would represent individual 

grade level dimensions (Li & Lissitz, 2012). Since items can load only on the general factor and 

only one additional grade level factor, regardless of how many grade levels are being scaled, 

estimating the bifactor model is no more computationally complex than estimating a two-

dimensional MIRT model (Li & Lissitz, 2012). Also, the orthogonal nature of the relationship 

between the general factor and the grade level factors as well as the orthogonal relationship 

among grade level dimensions eases interpretation of the model, especially when compared to 

high-dimension MIRT models (Li & Lissitz, 2012). 

In addition to the advantages of computational simplicity and ease of interpretation, 

bifactor models have been applied successfully to student achievement data in a variety of 

contexts; unidimensional data (Li & Lissitz, 2012; Gibbons & Hedecker, 1992), 

multidimensional data (Li & Lissitz, 2012; Reise, Morizot, & Hays, 2007, Gibbons & Hedecker, 

1992), testlet applications (Rijmen, 2010), vertical scaling (Li & Lissitz, 2012), vertical scaling 

with construct shift (Li & Lissitz, 2012), and differential item functioning (Fukuhara & Kamata, 

2011). The bifactor model also has been extended to the graded response model to accommodate 
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polytomously scored items (Gibbons, Bock, Hedecker, Weiss, Segawa, Bhaumik, Kupfer, Frank, 

Grochocinski, Stover, 2007).  

Any of these MIRT models, theoretically, can account for the effects of both item format 

effects and shifts in content across grade levels if the correct model can be specified. However, 

in practice, assessment systems continue to rely on unidimensional IRT models for vertical 

scaling procedures for several reasons (Yon, 2006; Li & Lissitz, 2012). First, some MIRT 

models, (i.e., high-dimension, partially compensatory, partially compensatory polytomously 

score items) are difficult or not possible to estimate at this time (Reckase, 2009, Yon, 2006). 

Additionally, there are outstanding questions about how different multidimensional linking 

methods will behave within the context of vertical scaling and, as yet, no single 

multidimensional linking method has emerged as preferable in all situations (Yon, 2006). Also, 

despite the advantages of the bifactor model, not all researchers are convinced of its applicability 

to item response data. Chiefly, the underlying premise of the model that all items load on the 

general factor and only one grade level factor and that these factors are orthogonal to one another 

may not accurately reflect real-world item response data (Reise, 2012). While research continues 

in these areas, applicability of these MIRT models to state assessment programs currently is 

limited. 

2.3 CHARACTERISTICS OF THE COMMON ITEMS 

When scaling tests, performance on the common items is used to estimate the average amount of 

growth from year to year (Tong & Kolen, 2010). This places a considerable burden on the 

selection of common items. Evidence based on research in horizontally equating single and 



33 

 

mixed format tests suggests that common items at least be statistically and content representative 

of the entire test (Cao, 2008; Tong & Kolen, 2010). This presents a challenge when common 

items must span adjacent grade levels, especially since common items that are too hard or too 

easy for the intended population can result in skewed distributions and biased results (Peterson, 

2010). Most research into the necessary characteristics of common item sets for mixed format 

tests have focused on whether it is necessary to include both item types or if a multiple-choice 

only common item block is sufficient. A few additional studies have examined the impact of 

varying ranges of difficulty levels for the common item set. 

2.3.1 Characteristics of Common Items for Mixed Format Tests in Horizontal Equating 

Using simulated and real data for both a horizontal and vertical scaling scenario, Li, Lissitz, and 

Yang (1999) investigated the effect of the proportion of score points from different item types 

when the proportion of dichotomously scored items was less than, equal to, or more than the 

polytomously scores items in the set of common items when linking a mixed format test. Using 

the item parameters from a fourth grade reading and writing assessment, the 3PL model for 

dichotomously scored items, and the GPCM for the polytomously scored items; the authors 

found that increasing the proportion of multiple-choice items in the common item set did not 

lead to less (or more) error in recovery of equating coefficients across all research conditions. 

The authors concluded that the characteristics of the item parameters for the common items may 

be more influential than the total number of common items in the set on the equating accuracy. 

 Tate (2000) simulated data designed to mimic a writing examination by correlating the 

multiple-choice items and constructed-response items at 0.6. He investigated the performance of 

the moment methods and the Stocking-Lord method when the common items were multiple-
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choice only or mixed-format. The test consisted of 30 multiple-choice items and 10 constructed-

response items with either a multiple-choice only common item set or a 2 constructed-response 

and 6 multiple-choice mixed item format set of common items. Using the 2PL and GRM models 

for estimation, he found that using multiple-choice only items as common items was satisfactory 

when the test was strictly unidimensional. However, linking performance was better when the 

proportion of constructed-response items to multiple-choice items within the common item set 

mimicked the proportion of item types in the overall test regardless of the presence of 

multidimensionality. 

Using simulated data, Bastardi (2000) investigated the impact of test length, proportion of 

each item type on the test, anchor test length, sample size, and differences in ability distributions 

on the performance of concurrent and separate calibration. The 3PL model was used to estimate 

dichotomous items and the GRM model was used to estimate the polytomous items. Anchor tests 

were mixed format with two conditions of anchor test length, 10% and 20% of total test length, 

examined. The calculated RMSE across 50 replications between the estimated and true test 

curves for both the multiple-choice items and the constructed-response items were analyzed with 

an ANOVA. Results indicated that anchor test length had no effect on the accuracy of the 

linkings for multiple-choice items, but that longer anchor tests resulted in less bias in the 

accuracy of linkings for constructed-response items.  

Sykes, Hou, Hanson, and Wang (2002) investigated the effect of multidimensional 

anchor item sets on resulting student scores. Using real data from a statewide fifth grade 

mathematics test, the authors modified the operational form of the test to contain the same set of 

items, but different items designated as anchor items. Four anchor item sets were designed to be 

content and statistically representative of the original test form with an average item difficulty 
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similar to the average item difficulty of the overall test form. Two sets were considered baseline 

common item sets and had items which loaded approximately equally on two factors (balanced). 

The other two common item sets had factor loadings which showed the items loading more 

heavily on one factor compared to the other factor (unbalanced). Using a 3PL model for the 

multiple-choice items, the GPCM for the polytomously scored items, and the Stocking-Lord 

linking method; the authors found that the balanced anchor item sets resulted in lower standard 

errors of equating than either unbalanced common item sets. Additionally, the authors caution 

that designing an anchor test to be a ‘miniature version’ of the overall test is not sufficient unless 

the dimensional structure of the test is also taken into account as well. 

Kim and Lee (2006) also investigated the effect of the ratio of multiple-choice to 

constructed-response items in the common item set on horizontal equating results. The authors 

created three different types of mixed format tests in which the proportion of multiple-choice 

items to constructed-response items was varied. In addition, they also varied the proportion of 

multiple-choice items to constructed-response items in the common set. The tests and common 

item sets were identified as ‘dichotomously scored dominant’ or ‘polytomously scored 

dominant’ depending on which item type contributed the larger number of response categories. 

The calculated absolute bias and RMSE across 100 replications between the estimated and true 

test curves were compared. The authors determined that when linking tests, using common item 

sets that were the same ‘dominant type’ as the test resulted in smaller bias and mean squared 

error in item parameter estimation regardless of linking method performed. 

Cao (2008) systematically investigated the effect of representative and non-representative 

common item sets on horizontal equating results. The author created a 54-item mixed format test 

with 18 common items and used the 3PL/GRM combination to examine the effect of 
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dimensionality and various conditions of statistical, format, and content representativeness when 

assuming unidimensionality. Two conditions of format representativeness were investigated; 8:1 

ratio of multiple-choice to constructed-response item format with a 2:1 score point ratio anchor 

test and an all multiple-choice item anchor test. Three conditions of content representativeness 

were investigated; equally balanced between content areas, one content area under-represented, 

and one content area missing. Two conditions of statistical representativeness were investigated; 

average item difficulty similar to the test and average item difficulty set to 0.3 mean different 

from test. Absolute bias, RMSE, and classification consistency for expected score over 100 

replications were calculated and analyzed with an ANOVA. Results from the unidimensional 

condition showed that anchor tests that were statistically representative of the overall test had 

equating bias closer to zero, smaller RMSE, and higher classification consistency. There were no 

significant differences in equating bias, RMSE, or classification consistency among the 

conditions of content representativeness and format representativeness. In the presence of 

multidimensionality, again, content representativeness had no significant impact on the equating 

bias, RMSEs, or classification consistency. However, under the multidimensional condition, 

statistical representativeness and format representativeness did impact the accuracy of equating 

results. Specifically, anchor tests that were statistically representative resulted in lower equating 

bias, RMSEs, and higher classification consistency. Additionally, as the degree of 

multidimensionality increased, format representativeness played a more influential role in 

producing more accurate equating results in terms of lower bias, RMSEs, and higher 

classification consistency.  
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2.4 CALIBRATION METHOD 

The linking methods described in the introduction were developed within a dichotomous IRT 

framework (Muraki, Hombo, & Lee, 2000). As polytomous IRT models increased in popularity, 

these linking methods were extended to these models as well (Baker, 1992; Baker 1993, Kim & 

Cohen, 1995; Cohen & Kim, 1998). Recently, Kim and Lee (2006) systematically extended all 

four of the popular linking methods to a mixed item format context and examined the 

performance of each of them. Research investigating the relative performance of these linking 

methods, whether in a single format or a mixed format context, have yielded mixed results. 

2.4.1 Horizontal Equating of Single Format Tests 

Kim and Cohen (1998) compared separate calibration, concurrent calibration using marginal 

maximum likelihood estimation (MLE), and concurrent calibration using marginal maximum a 

posteriori estimation (EAP) with simulated data varying the number of common items (5, 10, 20, 

and 50) and the mean ability level between groups (N(0,1) and N(1,1)). Results of the 

calibrations were evaluated by examining the root mean square differences for item 

discriminations and item difficulties and the mean Eucledian distances between the estimated 

item parameters and the item parameters from the generating model. They found concurrent 

calibration produced more accurate item discrimination and item difficulty parameter estimates, 

except when the number of common items was very small. In this case, separate calibration 

produced more accurate item parameter estimates. In general, however, it was noted that the 

larger the number of common items, the more accurate the results regardless of estimation 

method used. When using separate calibration, they found the test characteristic methods 
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outperformed the mean/sigma method when the number of linking items was small, but all 

methods produced similar results when the number of linking items was large. 

 Béguin, Hanson, and Glas (2000), using a simulated two-dimensional test model, 

performed a concurrent and a separate estimation of parameters using a unidimensional 3PL 

model. The covariance and variance of the second dimension for each model (covariance of .5, 

.7, and .9 with a variance of 1.25, 1.49 and 1.81) and the mean proficiency level for the first 

dimension of Form B (0 or 1) were varied. The mean proficiency for all forms was 0 for the 

second dimension.  Results of the calibrations were evaluated using the difference between the 

score distribution for Form B and the score distribution of the generating model and the 

difference equivalent score points from the observed score equating function compared to the 

equivalent scores points for the generating model. They concluded that under the equivalent 

groups design, separate calibration was more accurate than the concurrent estimation procedure. 

Additionally, the error was very large for concurrent and separate estimation under the 

nonequivalent groups design and the researchers concluded that the method was not appropriate 

for this design.  

Hanson and Béguin (2002) conducted another study using the common item design in 

which the number of common items (10 or 20), sample size (1000 or 3000), and mean 

proficiency of the second test form were varied. In addition to comparing concurrent and 

separate calibration, the authors compared the performance of all four popular linking methods 

(mean/mean, mean/sigma, Stocking-Lord, and Haebara) used with separate calibration. Items 

from two forms of the ACT mathematics exam were used to create two 100-item exams with 20 

common items. Mean squared errors and bias were calculated based on differences in the true 

score equating functions between form B and form A and in the estimated item characteristic 
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curves between form B and the true item characteristic curves. Results showed that concurrent 

estimation produced equating functions and text characteristic curves that were less biased 

compared to separate estimation. In addition, when using separate calibration, test characteristic 

curve methods performed better in regards to bias and mean squared error than the moment 

methods, but little difference in bias or mean squared error was found between the Stocking-

Lord (SL) method and the Haebara method. 

Kim and Cohen (2002) investigated calibration method in a polytomously scored only 

test under the graded response model using simulated data. Item parameters from a mathematics 

test were used to generate scores for a 30-item, 5 ordered category polytomously scored test. In 

addition to calibration method, sample size (300, 1000), group ability level (N(0,1) and N(1,1)), 

and length of common item set (5, 10, 30) were varied. RMSDs for item difficulty, item 

discrimination, and ability parameters were calculated. As an overall index of accuracy of item 

parameter recovery, the mean distance measure was also calculated. Across all conditions for 

item difficulty, item discrimination, and ability parameter estimates; concurrent calibration 

resulted in smaller RMSDs and MDMs than the same parameters estimates from the separate 

calibration runs. However, regardless of calibration method, RMSDs and MDMs decreased as 

the number of common items increased.  Also, regardless of calibration method, RMSDs and 

MDMs increased for item difficulty parameters that were farther from the mean of the ability 

distribution.  

2.4.2 Vertical Scaling of Single Format Tests 

Chin, Kim, and Nering (2006) conducted a simulation study in which they examined factors that 

can affect the results of vertically scaling dichotomously scored tests; degree of grade level 
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overlap (effect size 0.5 or 1.0), number of grade levels being scaled (3, 4, or 5), length of the set 

of common items (20%, 30%, or 40%), difficulty range of the linking items (narrow or wide) and 

calibration method (concurrent, separate with mean/sigma). To perform the simulation, item 

parameters for 60 dichotomously scored items per test per grade level and ability parameters for 

10,000 examinees per grade level were generated. Using the 3PL model for estimation and the 

lowest grade level as the base grade level, sixty replications across all conditions were 

performed. Root mean squared errors and bias were calculated for each item and ability 

parameter to evaluate estimation accuracy. While no method or design consistently performed 

better across all conditions of the study, in terms of calibration method, concurrent calibration 

appeared to be less affected by restriction of common item difficulty range and number of 

common items in terms of RMSE and bias of item and ability parameter recovery. This 

observation was consistent across conditions except when there was a large difference in mean 

ability level between grades, especially as the number of grade levels being calibrated together 

increased and the number of common items decreased. When the difficulty range of the common 

items was restricted, separate calibration with mean/sigma linking performed poorly in terms of 

item and ability parameter recovery.  

Ito, Sykes, and Yao (2008) used real data from a dichotomous item only reading and a 

dichotomous item only mathematics test for grades K-9 to compare the relative performance of 

concurrent and grouped-concurrent calibration. Approximately 1700 students were chosen 

randomly from all students taking the operational tests. To perform grouped-concurrent 

calibration, they concurrently calibrated grade groupings (K1, 23, 456, 789) and then linked 

them using the Stocking-Lord procedure. This reduced the number of linkings necessary to put 

all grades on the same score scale. Using grade 4 or grade grouping 456 as the base grade level, 
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item parameters and ability parameters were estimated using a maximum likelihood estimator. 

Ability estimates were then transformed onto a common score scale to allow comparisons 

between calibration methods. Correlations between item parameter and transformed scale scores 

for concurrent versus grouped-concurrent calibrations were compared. Correlations for item 

difficulty parameters between scaling methods were greater than 0.97, but were more similar at 

the base grade level than at the extremes. Also, item difficulty parameters between scaling 

methods for reading were more comparable than item difficulty estimates between methods for 

mathematics. Likewise, a similar pattern of results were found when comparing item 

discrimination parameters between scaling methods. Scale score means were also comparable 

between scaling methods although it was noted that deviations between methods became more 

pronounced when moving away from the base grade level with an increase in variance in scale 

scores at the upper and lower grade levels when using concurrent calibration. The authors 

concluded that scaling method may matter more in mathematics than in reading.  

Using simulated data, Smith, Finkelman, Nering, and Kim (2008) examined the impact of 

multidimensionality on linking methods for an all multiple-choice item test. With grade 5 as the 

base grade level, they vertically scaled grades 3 through 8 using a test consisting of 60 items with 

45 operational items and 15 common items. To evaluate results, summed square differences 

between estimated test characteristic curves and true test characteristic curves, RMSEs between 

ability estimates and true ability parameters, and percent of correctly ordered examinees were 

calculated and compared across 10 replications. The authors found the performance of the 

linking methods to suffer in the presence of multidimensionality with the Haebara method 

having more error than the other methods examined. Compared to the unidimensional results, 

summed square differences were larger in the presence of multidimensionality, especially for the 
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Stocking-Lord and Haebara linking methods at the extreme grade levels. RMSEs appeared to be 

very similar for all linking methods, but were higher for the multidimensional case. In terms of 

percent of correctly ordered examinees, all methods produced similar results (roughly 88%). 

Overall the authors concluded that all linking methods perform more poorly the further the 

transformation from the base grade level and that multidimensionality impacts vertical scaling 

results. 

2.4.3 Horizontal Equating of Mixed Format Tests 

Kim and Lee (2006) extended the four most popular linking methods (mean/mean, mean/sigma, 

Stocking-Lord, Haebara) to a set of mixed format scenarios within the context of horizontal 

equating. They used simulated data (abilities and items) in which the ability levels between 

groups (equivalent or nonequivalent), sample size (500, 3000), and the proportion of multiple-

choice items to constructed-response items in the common item set (10/10, 20/5, 30/2) were 

varied. The 3PL model was used to estimate the parameters for the multiple-choice items and the 

GPC model was used to estimate the constructed-response items. The average mean squared 

error (MSE) and average bias between the estimated category characteristic curve and the true 

category characteristic curve across 100 replications was used as evaluation criterion. With 

regard to calibration method, concurrent calibration was preferable to separate calibration 

regardless of linking method due to smaller bias and MSEs. Additionally, across linking 

methods, test characteristic curve methods produced lower MSEs and bias than the moment 

methods.  They note, however, that when using separate calibration; linking through the 

dominant item type (determined through number of response categories and reliability of the 

parameters estimates for that item type) resulted in smaller MSEs. Further, results using the 
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Haebara method usually had the lowest MSEs of the four linking methods. The authors also note 

that the Haebara method can handle any mixture of IRT models, while the Stocking-Lord 

method cannot handle the nominal response model.  

In addition, several studies described previously have investigated the efficacy of 

concurrent versus separate calibration with mixed format tests also within the context of 

horizontal equating. In Li, Lissitz, and Yang (1999), the authors found concurrent calibration to 

be an unbiased estimator for mixed format tests, but results were substantially impacted by the 

proportion of different item types included in the common item set. Likewise, Tate’s simulation 

study (2000) examined both horizontal and vertical equating and found that the moment methods 

and the Stocking-Lord method performed similarly with regard to recovery of true linking 

coefficients, but the performance of all linking methods suffered when the proportion of 

multiple-choice items to constructed-response items was not similar to the overall test in the 

presence of multidimensionality. Bastardi’s study (2000), also found concurrent calibration 

resulted in smaller RMSEs compared to separate calibration and linking with the Stocking-Lord 

method. However, in Cao’s (2008) simulation study, concurrent calibration was found to be 

influenced by the presence of multidimensionality. Specifically, bias and RMSE of the expected 

score increased with increasing multidimensionality.  

Kim and Kolen (2006) investigated the impact of item format effects on the performance 

of linking methods. Simulating data to mimic different item formats effects, they compared 

concurrent calibration to separate calibration using both the TCC and moment linking methods. 

They simulated two conditions of item format effect (small and large), two types of mixed 

format tests (narrow and wide) as determined by the information functions, and three conditions 

of differing ability levels between groups (0, .5, and 1). The authors found concurrent calibration 
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outperformed separate calibration regardless of linking method, however, the differences in 

accuracy and robustness to the multidimensionality introduced by format effects was small. They 

also noted that the TCC linking methods produced more consistent and stable results when 

separate calibration was used. 

2.5 GRADE LEVEL SEPARATION 

Harris and Hoover (1987), using data from an administration of the ITBS for grade 3 through 8, 

determined that IRT vertical scaling within their specific context was not person-free, but rather 

was dependent on the ability level of the groups. This is problematic because in vertical scaling, 

it is assumed that the ability level will increase across grade levels (Chin, Kim, & Nering, 2006). 

Studies examining this aspect of vertical scaling within the context of mixed format tests are few, 

but several of the studies described previously have examined the impact of group ability 

distribution on horizontal equating and vertical scaling. 

Within the context of a dichotomously scored test, Chin, Kim, and Nering (2006) 

determined that the degree of grade level ability overlap impacted the performance of calibration 

method. As the separation between grade levels increased, accuracy of recovery of item 

difficulty, item discrimination, and ability parameter decreased, regardless of whether separate or 

concurrent calibration was used. Using a polytomous item only test, Kim and Cohen (2002) 

examined the effect of differences in mean ability distributions on concurrent and separate 

calibration methods. In general, regardless of calibration method, RMSDs and bias were smaller 

when the ability distributions of both groups were well- matched to the distribution of the item 

difficulty parameters.  
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Within the context of horizontal equating of mixed format tests, Kim and Lee (2006) 

determined that bias and MSE between the observed category characteristic curve and the true 

category characteristic curve increased when linking non-equivalent groups as compared to 

linking equivalent groups. Likewise, Cao (2008) found that group ability distribution was the 

most influential of the factors investigated in their simulation study. Specifically, the equivalent 

groups condition outperformed the non-equivalent groups condition in estimation of the expected 

score consistently across all conditions of common item configuration. In the non-equivalent 

groups condition, the differences in mean ability level for the two groups was 0.5, which is the 

typical mean grade level separation for simulated vertical scaling studies.  

 

2.6 OTHER CONSIDERATIONS 

There are four additional factors that potentially can impact the results of the vertical scaling 

process; choice of base grade level, number of grade levels being vertically scaled, the 

proficiency estimator used, and the presence of construct shift. While not of particular 

importance in this study because they will be held constant during the simulation, a brief review 

of the literature investigating these aspects is given as justification for choices made. 

2.6.1 Base Grade Level 

When using the CINEG design and separate or pairwise concurrent calibration, one grade level 

must be designated the base grade level (Kolen & Brennan, 2004). Tong and Kolen (2007) 
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examined the effect of choosing a base grade level other than grade 3 for some of the replications 

(common items design with Stocking and Lord linking method) of their simulated data. The 

authors saw little effect of changing the base grade level. Hendrickson, Cao, Chin, and Li (2006) 

also found little effect in choice of base grade level for the scaling test design. However, Kim, 

Lee, and Kim (2008) found that the further the transformed grade level was from the base grade 

level, the more error was introduced with the estimation of the linking constants and thus, more 

bias is introduced into the vertical scale. Smith, Finkelman, Nering, and Kim (2008) found 

similar results when using the equivalent groups design and five popular linking methods. 

2.6.2 Number of Grade Levels being Vertically Scaled 

In practice, it is typical to link six grade levels (Karkee et al., 2008; Briggs & Weeks, 2009). 

However, Chin, Kim, and Nering (2006) note that as the number of grade levels being vertically 

scaled increases, additional error can be introduced. This can be either due to the long chain of 

linkings needed when using separate calibration or the number of parameters that must be 

estimated simultaneously when using concurrent calibration. Additionally, when using 

concurrent calibration, the potential for construct shift to introduce bias increases because of the 

change in content and complexity of operations between the elementary grades and the 

secondary grades (Yen, 1986).  

2.6.3 Proficiency Estimation in Vertical Scaling 

When performing IRT vertical scaling, a decision must be made about how to estimate ability 

(Kolen, 2006). In general, there are three common methods used to estimate proficiency 
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parameters, maximum likelihood (ML), maximum a posteriori (MAP), and expected (EAP) a 

posteriori (Briggs & Weeks, 2009; Tong & Kolen, 2007). The ML method maximizes the 

likelihood function of the examinee’s response pattern to estimate ability level (Tong & Kolen, 

2007). The MAP and EAP use a Bayesian approach to estimate ability with MAP being the 

mode and EAP being the mean of the posterior proficiency distribution (Tong & Kolen, 2007).  

Jodoin, Keller and Swaminathan (2003), reviewed previously, found differences in 

resultant vertical scales based on choice of proficiency estimator. They found that MLE ability 

estimates consistently show larger mean growth than EAP ability estimates or raw scores. Also, 

the proportion of students classified as below proficient reduced more quickly across years when 

using ME ability estimates as compared to EAP ability estimates or raw scores. The authors 

concluded that choice of proficiency estimator made a difference in making inferences about 

student growth over time and in proficiency classification.  

Tong and Kolen (2007) investigated the three IRT proficiency estimators mentioned 

above, as well as quadrature distribution (QD) estimation, in their study. They used real data 

from 4 content areas (vocabulary, reading, math, language) from a standardized test for grades 3 

to 8 and 9 simulated datasets across 3 sample sizes (500, 2000, 8000) and three within-grade 

variability conditions (increasing, decreasing, constant). Concurrent calibration under the 3PL 

model was compared to Thurstone scaling for the scaling test design and the common item 

scaling design. Grade 3 was used as the base grade level for all scaling procedures and the grade 

level separation for the simulated study was set to the grade level separation found for the 

vocabulary test. In addition, EAP estimates were generated using both pattern scoring and 

summed scores (EAP_PS, EAP_SS). Mean and standard deviation estimates for the ability 

parameters, as well as Yen’s effect size and horizontal distance (percentile differences on scale 
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scores for the same percentage between two distributions) were used to evaluate results of the 

scalings.  

With regard to IRT scaling using the common item design, they found all estimators 

tended to produce similar ability estimates under the simulated data condition when the 

underlying assumptions of the IRT model were met. However, when the underlying assumptions 

of the IRT model were not met, EAP_PS, EAP_SS, and QD estimators tended to produce the 

most accurate ability estimates. For real data, all proficiency estimators and scoring methods 

produced mean ability estimates within 1 scale score point. Differences, however, were observed 

for standard deviation estimates and effect sizes with ML estimates producing somewhat 

different ability estimates from the other estimators; specifically, overestimated within-grade 

standard deviations and underestimated effect sizes. 

In another study, Kolen and Tong (2010) investigated the performance of ML estimator, 

EAP estimation, summed score EAP (EAP_SS) estimation, and the test characteristic curve 

function (TCF) for four real data situations. The vertical scale used for this investigation was 

created using concurrent calibration of all items from a multiple-choice only vocabulary scaling 

test for grades 3 to 8 with the grade 3 set as the base grade level. Comparing the resultant 

proficiency estimates from each estimator, within-grade standard deviations for the ML and TCF 

estimators were greater than 1 for grade 3 while the standard deviations for the EAP and 

EAP_SS estimators were smaller than 1. Since this was not unexpected due to the behavior of 

Bayesian proficiency estimators, effect sizes were calculated as a measure of the magnitude of 

group differences. The Bayesian estimators consistently produced larger effect sizes, but all 

effect sizes decreased with increasing grade level regardless of estimator. As Kolen and Tong 

(2010) note, however, no estimator seems to be superior to the others, but it is clear that choice 
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of proficiency estimator effects vertical scale results and must be carefully considered and is 

most likely dependent on the content of the tests being vertically scaled. 

2.6.4 Construct Shift 

Yen (1986) raised the concern that as content changes across grades to include increasingly more 

complex operations and thought processes, multidimensionality will be introduced. This 

increasing complexity has been labeled construct shift in the vertical scaling literature and is of 

predominate concern in subject areas such as mathematics and science where substantial changes 

in content occur across grade levels (Yen 1986; Reckase & Martineau, 2004; Yon, 2006) or in 

cases where a large span of grade levels are being scaled (Yen, 1986). In fact, most research to 

date suggests that multidimensionality is the most likely reason for the variability in vertical 

scaling studies (Yon, 2006) and that practitioners should always assume that construct shift is 

present when vertically scaling achievement tests (Li & Lissitz, 2012).  

Yen (1985) simulated data for a 30-item unidimensional and a 30-item multidimensional 

test to investigate the plausibility that when unidimensional models are applied to 

multidimensional data the resulting ability estimates would be a weighted combination of the 

two (or more) underlying traits. Additionally, Yen wanted to determine if the weights would be 

proportional to the relative representation of the traits on the test. She proposed that the scale 

shrinkage observed in previous vertical scaling studies was due to an increase in item complexity 

and, in fact, results of the simulation were successful in predicting the amount of scale shrinkage 

observed. From these results, Yen concluded that certain types of complex items introduce 

multidimensionality as a function of increasing item complexity and that some content areas are 

particularly susceptible to this type of bias. An example of this type of item complexity is a 
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mathematics test in which the lower grade level test focuses on the mathematical operation of 

addition while the upper grade level test focuses on using addition to solve multiplication 

problems.  

Harris and Hoover (1987) re-examined data used by Loyd and Hoover (1980) from the 

Iowa Test of Basic Skills (ITBS) to investigate the accuracy of IRT vertical scaling methods for 

achievement data. They found the equatings to be dependent on group ability. One possible 

explanation given for this finding was the multidimensionality of the data since a factor analysis 

found the data was not unidimensional. Skaggs and Lissitz (1986) reviewed results from research 

on IRT test equating in an attempt to summarize existing evidence and provide direction for 

future research. When reviewing research related to IRT vertical scaling, they noted that the 

studies used a wide variety of tests and that when factor analyses were included, many of these 

studies showed more than one substantial dimension. While they acknowledge that 

interpretations across studies are often difficult because of the use of different tests, different 

samples, and different methods of judging the accuracy of results, they concluded that 

dimensionality has an impact on vertical scaling results and they recommend that a 

dimensionality analysis be done prior to performing vertical scaling.   

Lin, Wei, and Lissitz (2007) used multi-group confirmatory factor analysis to investigate 

construct invariance across six grade levels of a state-wide mathematics assessment. Even 

though all grade-level tests covered the same five content strands and those content strands were 

uniformly represented in the tests, it was determined that construct shift existed across grade 

levels as shown by disparate factor loadings. More recently, Li and Lissitz (2012) compared the 

performance of multi-group concurrent calibration using a bifactor model and traditional UIRT 

estimation for data simulating various degrees of construct shift. The process was then applied to 
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real data from a statewide mathematics assessment. In the simulation study, item discrimination 

parameters were underestimated and person parameters and group mean parameter estimates 

were less accurate for the UIRT model compared to the bifactor model. In the real data study, 

minimal construct shift was detected and ability estimates from the best-fitting bifactor model 

and the corresponding UIRT model were highly correlated. The authors concluded that the 

degree of construct shift significantly affects the stability of parameter estimates from the 

vertical scaling process and that construct shift should always be assumed and investigated 

within vertical scaling contexts. 

2.7 SUMMARY 

Vertically scaling is a complex process with different methodological decisions (i.e., calibration 

method, characteristics of common items) often leading to different conceptualizations of student 

growth even when using the same data (Tong & Kolen, 2007). These procedural decisions are 

separate from characteristics inherent in achievement tests that are beyond the control of the 

practitioner (i.e., construct shift, item format effects, grade level separation) which have been 

shown to impact vertical scaling results. Evidence from studies on horizontal equating of single 

and mixed format tests and vertical scaling of single-format tests suggests that several factors can 

impact the resultant vertical scales: dimensionality, characteristics of the common items, format 

of the common items, calibration method, degree of grade level separation, base grade level, 

number of grade levels scaled, and proficiency estimator used. The impact of these 

methodological decisions and test characteristics are more uncertain in the context of vertically 

scaling mixed format tests. 
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The performance of calibration method is the most researched methodological issue in 

the vertical scaling literature. The results, while inconsistent, suggest that multidimensionality 

may play a role in the accuracy of these methods (Béguin, Hanson, & Glas, 2000; Béguin, & 

Hanson, 2002). Evidence suggests that unless mixed format tests are carefully designed, item 

format effects can exist (Kim & Kolen, 2006; Yao, 2008). Therefore, it is probable that this type 

of multidimensionality can interact with calibration method to produce less than desirable 

vertical scales. In addition to dimensionality, evidence also suggests grade level separation will 

affect the performance of calibration method in that the more disparate the mean ability level 

between grades, the less accurate the performance of calibration method (Chin, Kim, & Nering, 

2006). 

The choice of common items is important in vertical scaling because they allow 

differences in grade levels to be disentangled (Tong & Kolen, 2010). This, in turn, determines 

the inferences concerning the average amount of growth for the year. Evidence suggests that 

statistical representativeness is the most important factor in determining common items (Cao, 

2008). However, in the context of vertical scaling; whether the upper grade level, the lower grade 

level or both adjacent grade levels should be statistically represented is uncertain (Peterson, 

2010). The choice of common items will most likely be confounded by grade level separation in 

that the larger the grade level separation the more difficult to find statistically representative 

common items (Chin, Kim, and Nering, 2006). Also in question is the need for format 

representativeness in the common items when vertically scaling mixed format tests. The 

evidence on this topic is inconsistent, but is most likely related to the dimensionality present in 

the overall test. When the test is essentially unidimensional, the format representativeness of the 



53 

 

common items compared to the test seems irrelevant, but in the presence of multidimensionality, 

it becomes important. 

Few published studies examine vertically scaling mixed format tests. Due to the different 

factors investigated and models used, generalizations across the studies are difficult. Karkee, et 

al., (2003) found separate calibration performed best in regards to model fit, convergence, and 

DIF with pairwise concurrent calibration also out performing concurrent calibration. However, 

grade-to-grade growth was similar across calibration methods even though grade-to-grade 

variability was greater for a subset of grade levels when pairwise calibration was used. Jodoin, 

Keller, and Swaminathan (2003) found that even though classifications of student proficiency 

were highly correlated regardless of calibration method, the use of proficiency estimators did 

impact the classification of students. Yao and Mao (2004) determined that if the underlying 

dimensions are highly correlated, unidimensional calibration methods with multidimensional 

data are sufficient and result in stable proficiency estimates, but result in larger mean bias. 

Finally, Meng (2007) found pairwise concurrent and semi-concurrent calibration to be most 

accurate in estimating proficiency score means, standard deviations, and classification 

proportions and recovering student growth patterns. However, using common items that included 

both formats increased accuracy for all calibration methods except separate calibration. In 

addition, classification consistency was calibration method dependent, but also seemed to be 

dependent on the number of common items, the format of the common items, and the number of 

constructed-response items on the overall test. 

This study will extend the existing evidence by examining the performance of popular 

calibration methods in the presence of item format effects across six grade levels. In addition, it 

will also add to the body of evidence concerning the choice of the common items and the impact 



54 

 

of different disparate mean ability levels between grades in the context of mixed format test 

vertical scaling. Finally, this study will examine differences in data generation that occur due to 

explicit inclusion, rather than implicit assumption, of a separate factor representing the vertical 

scale (Table 1).  
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Table 1. Summary of factors of investigation for the most closely related studies

Study Equating/ 
Scaling 

Test 
Format 

Model 
Used Calibration Format 

Effect 

Ability 
Generation 

Model 

Ability 
Level 

Difference 

Common 
Item 

Base 
Grade 
Level 

Number 
of  

Levels 
Karkee, 

Hoskins, Yao, & 
Haug (2003) 

Scaling Mixed 3PL/ 
PCM 

Con/Sep/ 
Pair    MF Middle 6 

Jodoin, Keller, 
& Swaminathan 

(2003) 
Scaling Mixed 

3PL/ 
2PL/ 
GRM 

Con/Sep/ 
FCIP     Lowest 3 

Yao & Mao 
(2004) Scaling Mixed 3PL/ 

GPCM 
Con/Sep/ 

Pair  2-dim 
3-dim  MC  Lowest 5 

Meng (2007) Scaling Mixed 3PL/ 
GPCM 

Con/Sep/ 
Pair/Semi-

Con 
   MF/MC  Lowest 6 

           
Kim & Kolen 

(2006) Equating Mixed  Con/Sep X 2-dim X MF/MC N/A N/A 

Chin, Kim, & 
Nering (2006) Scaling Single 3PL Con/Sep   X MC Lowest 3,4,5 

Cao (2008) Equating Mixed 3PL/ 
GRM Con/Sep   X MF/MC N/A N/A 

Li & Lissitz 
(2012) Scaling Single 2PL Con/ 

Bifactor  Bifactor  MC Lowest 3 

           

Current Study Scaling Mixed 3PL/ 
GRM Sep/Pair X 2-dim 

3-dim X MF Middle 6 
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3.0  METHODOLOGY 

The main purpose of this study is to examine the performance of two popular calibration 

methods to vertically scale a series of 6 mixed item format tests under different conditions of 

format effect and common item configurations. The design of this study is meant to imitate a 

situation in which the operational test is complex dimensionally; however, the vertical scaling is 

done under the assumption of unidimensionality.  

This chapter is divided into six sections; general test configuration, factors of 

investigation, ability parameter generation, item parameter description, student response 

generation, and evaluation criteria. The general test configuration section outlines the factors that 

remain constant for this study while the factors of investigation section provides an overview of 

the manipulated factors in this study and rationale for the levels chosen. The ability parameter 

section outlines the models for generating item format effects within a grade level test that will 

be simulated in this study. Presented here are the general formulas for the covariance structure 

needed to accomplish this, as well as the method for simulating different mean grade level 

separation conditions. The item parameter section gives item parameter specifications for each 

grade level test, as well as the different common item configurations. Next, the student response 

generation section gives the process of using the simulated ability and item parameters to create 

the student response data. The process by which the vertical scales are generated across 
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conditions by the two different calibration methods is described next. Finally, the evaluation 

criteria are discussed. 

3.1 TEST CONFIGURATION 

Response data for 2000 students per grade level was generated for a series of tests across six 

grade levels. This sample size was determined based on studies performed by Hanson and 

Béguin (2002) and Kim and Lee (2004) showing this to be an adequate sample size to produce 

stable estimates of equating coefficients within a unidimensional situation. Each test was 

constructed to include a total of 61 items divided into two format groups; 54 multiple-choice 

items and 7 four-ordered category constructed-response items. This gives an overall item ratio 

between dichotomously scored items to polytomously scored items of approximately 9:1, a score 

point ratio between item formats of approximately 2:1, and a possible total score of 75.  The 

ratios are consistent with studies examining the equating and scaling of mixed format tests as 

well as mixed format tests currently used for some state assessment programs (Cao, 2008).  

Item parameters were generated using specific criteria based on prior simulation studies 

and guidelines determined while validating response files. Since the nonequivalent groups 

common item design (CINEG) is the data collection method most commonly used in vertical 

scaling, it was the data collection method simulated in this study. Toward that end, common 

items between adjacent grade levels were established. The number of common items was 14 

(23%  of total number of  items) which was intended to mirror the same proportion of 

dichotomous items to polytomous items as the overall test and was based on the current 

recommendation made by Kolen and Brennan (2004) for the minimum number of common items 
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for vertical scaling (see Figure 1). In addition, the mean item difficulty level of the common 

items and overall test were preserved for the tests constructed. For simplicity, base grade level, 

proficiency estimator, format of the common item set, and number of grade levels being scaled 

remained constant throughout the study and construct shift was assumed to be negligible across 

grade levels. 

Figure 1. Vertical scaling test design 
Grade MC CR MC CR MC CR MC CR MC CR MC CR 

5 42 5       
C56 12 2 12 2 

6  30 3 
C67 12 2 12 2 

7  30 3 
C78 12 2 12 2 

8  30 3 
C89 12 2 12 2 

9  30 3 
C910 12 2 12 2 

10  42 5 
Total  54 7 54 7 54 7 54 7 54 7 54 7 

 61 61 61 61 61 61 

3.2 FACTORS OF INVESTIGATION 

Literature examining the vertical scaling of mixed format tests is small and results concerning 

performance of the most popular calibration methods are inconsistent. Evidence from these 

studies and others investigating calibration method when scaling single format tests (e.g. Béguin, 

Hanson, & Glas, 2000) suggests that calibration method is impacted by item format effects, 

characteristics of the common items used for linking, and differences in ability levels between 

adjacent grade levels. The two most widely used calibration methods for single format tests are 

concurrent calibration and separate calibration (Kolen & Brennan, 2004).  
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There is evidence, however, that concurrent calibration can have convergence problems 

when the number of grade levels being scaled is large and/or the separation between grade level 

distributions is large (Chin, Kim, & Nering, 2008). On the other hand, separate calibration has 

been theorized to perform better in the presence of some types of multidimensionality because it 

does not simultaneously calibrate all grade levels (Kolen & Brennan, 2004). However, separate 

calibration is often associated with larger linking error because the number of linkings, and 

potential for error, increases as the number of grade levels being scaled increases (Kolen & 

Brennan, 2004). A compromise calibration method is the pairwise concurrent method that 

simultaneously calibrates adjacent grade level pairs and then links the pairs. Theoretically, this 

calibration method could decrease linking error compared to separate calibration because of the 

decrease in the number of linkings performed (Karkee, et al. 2003). In addition, the method 

theoretically could increase precision by using more than one grade level of information, similar 

to concurrent calibration (Kolen & Brennan, 2004). In both the Meng (2007) and Karkee et al. 

(2003) studies separate and/or pairwise concurrent calibration was found to produce more 

accurate parameter estimates or more stable proficiency scores within the context of vertical 

scaling mixed format tests. Given the degree of multidimensionality that will be introduced into 

the data and the number of grade levels being scaled, only separate and pairwise concurrent 

calibration methods with the Stocking-Lord linking method will be examined in this study. 

Secondly, evidence suggests that multidimensionality can be introduced when vertically 

scaling mixed format tests because of the inclusion of different item formats on a single test (e.g. 

Kim & Kolen, 2006). While high correlations between item format dimensions produce bias 

similar to that found in a unidimensional context, lower correlations between these item format 

dimensions seem to introduce bias in the vertical scale. Additionally, relatively high or low 
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correlations between these format factors tended to be subject specific. Four levels of item 

format effect were investigated ranging from none to large. The correlation values associated 

with the small and moderate item format effect conditions have been shown to exist in 

operational tests while the largest item format effect value was chosen as an extreme contrast.  

Third, a review of the literature also suggests that construction of the set of common 

items used in the CINEG scaling design is an important consideration in vertical scaling. From 

research done in horizontal equating of tests, it has been found that the common items need to be 

statistically and content representative of the overall test (Tong & Kolen, 2010). How to 

construct a set of common items that are statistically representative of a set of tests being scaled 

when the tests are from adjacent grade levels with the expectation that the upper grade level test 

will be more difficult than the lower grade level test is still in question (Peterson, 2010). To 

explore this question of common item construction, two sets of common items were created that 

differed in boundary of item difficulty level. For the narrow condition, the item difficulty was 

bounded by the mean ability level of the lower grade level and the mean ability level of the upper 

grade level. In essence, a selection of the hardest of the lower grade level items combined with a 

selection of the easiest of the upper grade level items. For the expanded condition, item difficulty 

was bounded by 0.5 standard deviations lower than the mean of the lower grade level and 0.5 

standard deviations higher than the mean ability level for the upper grade level. These conditions 

are based on the study done by Chin, Kim, and Nering (2006) in which they found that 

performance of the calibration methods can be confounded by restriction of item difficulty range.  

Fourth, in the context of vertical scaling it is expected that the mean ability level of 

successive grade levels will increase as grade level increases. Studies examining horizontal 

equating with groups of different mean ability levels have found equating results to be negatively 
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impacted by these differences (e.g. Hanson & Béguin, 1999). In addition, Chin, Kim and Nering 

(2006) found vertical scales resulting from different calibration methods with a single format test 

to be impacted by grade level separation. For this reason, two conditions of grade level 

simulation based on work by Chin, Kim and Nering (2006) are examined in this study; small and 

large. 

Finally, simulation studies investigating vertical scaling have traditionally generated data 

in which the vertical scale underlying the process is assumed. In other words, the vertical scale 

hypothesized to exist underlying the test scores is not explicitly modeled in the data generation 

process. More recent studies investigating the bifactor model as a potential method of estimating 

a vertical scale have explicitly modeled the vertical scale in the data generation process (Li & 

Lissitz, 2013; Koepfler, 2012). In these studies, the error values produced under the bifactor 

model have been smaller than those produced under the traditional method. However, the data 

was generated and scaled under the same kind of model; not generated under the 

multidimensional model and scaled under the assumption of unidimensionality.  

In summary, five factors were manipulated in this study: 1) degree of 

multidimensionality between item formats within test ‒ 4 levels,  2) range of item difficulty 

values for the common item set ‒ 2 levels, 3) amount of separation between grade levels ‒ 2 

levels, 4) calibration method ‒ 2 levels  and 5) method of data generation – 2 levels (Table 2). 

The four conditions of degree of format effect were crossed with the two conditions of common 

item difficulty range and the two conditions of grade level separation to create 16 different 

vertical scaling scenarios. Each scenario utilized data generated using a 2-dimensional matrix 

and a 3- dimensional matrix and then scaled by both calibration methods for a total of 64 vertical 

scaling scenarios. Likewise, the unidimensional data was scaled with both calibration methods 
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using both common item sets and grade level separation conditions for an additional 6 

conditions. Therefore, this study examines a total of 70 vertical scaling scenarios. 

Table 2. Fixed versus manipulated factors 
Fixed Manipulated 

Number of grade levels scaled - 6 Degree of item format effect – none (0.95), small 
(0.80), moderate (0.50), large (0.20) Base grade level - 7 or 7/8 

Sample size – 2000 per grade  Degree of grade separation – small (0.2), large (0.5) 
Test length - 61 items Calibration method - separate, pairwise 
Percent MC to CR items – 90/10 Range in item difficulty level of common items – 

narrow (mean of adjacent grades), expanded (0.5 
SD of mean of adjacent grades) 

Data collection design - CINEG 
Number of common items - 14 
Format of common items - mixed  Method of data generation – 2-dimensional, 3-

dimensional IRT model - 3PL and GRM 
Linking method – Stocking-Lord  
Proficiency estimator - MLE  

3.3 ABILITY PARAMETER GENERATION 

Two different ability generation models were used; one in which the underlying vertical scale 

was assumed and one in which it was explicitly modeled (Figure 2). For both data generation 

models, two separate factors were needed to represent multiple choice items and constructed-

response items. For the traditional data generation model, these two dimensions were all that 

were needed and the creation of covariance matrices was straight-forward. In order to model the 

underlying vertical scale, a 3-factor model was needed: one to model the underlying vertical 

scale, one to model the multiple-choice items, and one to model the constructed-response items.  
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Figure 2. Data generation models  

 

3.3.1 Simulation of Item Format Effects 

Item format effects were simulated through manipulation of the covariance structure during the 

ability parameter generation process. To produce item format effects, it was presumed that two 

separate ability parameters influenced a student’s responses to items on the mixed format test 

(Kim & Kolen, 2006). One of these abilities was specific to responses for only multiple-choice 
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items and the other was specific to responses for only constructed-response items. So, two grade 

level item format ability factors were generated for each grade level, a multiple-choice ability 

factor (𝜃𝜃𝑀𝑀𝑀𝑀) and a constructed-response ability factor (𝜃𝜃𝐶𝐶𝐶𝐶). The covariance value between the 

ultiple-choice item format factor and the constructed-response item format factor was determined 

by varying the correlation between these two ability factors while maintaining a variance of 1 for 

both of the item format factors. 

To simulate the four conditions of item format effects, these two item format ability 

dimensions were correlated at 0.95 (no item format effect), 0.80 (small item format effect), or 

0.50 (moderate item format effect) based on research by Traub (1993) and used in Kim and 

Kolen (2006). An additional level, 0.20 (large item format effect), was included to provide 

extreme contrast. The item format effect was assumed to be constant across all six grade levels 

for each respective condition. 

3.3.2 Simulation of Unidimensional Ability Distribution 

The unidimensional ability distribution was generated using the RANDNORMAL call in SAS 

using a mean outlined for the grade level separation conditions and a variance of 1. The seed 

value used to generate these unidimensional ability distributions also was used across the 

multidimensional data generation models. 
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3.3.3 Simulation of Two – and Three-Dimensional Ability Distributions 

The following general covariance structures were established to be used in the generation of the 

ability distributions, Σ𝜃𝜃𝑠𝑠 =  �
𝜎𝜎𝜃𝜃𝑀𝑀𝑀𝑀
2 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝐹𝐹

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝐹𝐹 𝜎𝜎𝜃𝜃𝐶𝐶𝐶𝐶
2 � or Σ𝜃𝜃𝑠𝑠 =  �

𝜎𝜎𝜃𝜃𝑉𝑉𝑉𝑉
2 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝜎𝜎𝜃𝜃𝑀𝑀𝑀𝑀
2 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝐹𝐹

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝐹𝐹 𝜎𝜎𝜃𝜃𝐶𝐶𝐶𝐶
2

�, where 

𝜎𝜎𝜃𝜃𝑉𝑉𝑉𝑉
2  is the grade level vertical scale ability variance, 𝜎𝜎𝜃𝜃𝑀𝑀𝑀𝑀

2  is the grade specific multiple-choice  

ability variance, 𝜎𝜎𝜃𝜃𝐶𝐶𝐶𝐶
2  is the grade specific constructed-response ability variance, 𝑐𝑐𝑜𝑜𝑣𝑣𝜃𝜃𝐹𝐹 is the 

covariance between the item format abilities, and 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  and 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  are the covariances 

between the respective item format ability and the vertical scale ability. Then, eight covariance 

matrices were constructed in which the two conditions of data generation were crossed with the 

four conditions of item format effects (Table 3). Covariance parameters were calculated using 

the formula, 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝐹𝐹 = 𝑟𝑟 ∗ 𝜎𝜎𝜃𝜃𝐹𝐹𝜎𝜎𝜃𝜃𝐹𝐹.  

Table 3. Covariance structures used for ability parameter generation 
 2 - Dimensional  3 - Dimensional 

Essentially 
Unidimensional ∑𝜃𝜃𝑆𝑆 = � 1 0.95

0.95 1 � ∑𝜃𝜃𝑆𝑆 = �
1 0.95 0.95

0.95 1 0.95
0.95 0.95 1

� 

Small 
Format Effect ∑𝜃𝜃𝑆𝑆 =  � 1 0.80

0.80 1 � ∑𝜃𝜃𝑆𝑆 =  �
1 0.80 0.80

0.80 1 0.80
0.80 0.80 1

� 

Moderate 
Format Effect  ∑𝜃𝜃𝑆𝑆 =  � 1 0.50

0.50 1 �  ∑𝜃𝜃𝑆𝑆 =  �
1 0.50 0.50

0.50 1 0.50
0.50 0.50 1

� 

Large Format 
Effect ∑𝜃𝜃𝑆𝑆 = � 1 0.20

0.20 1 � ∑𝜃𝜃𝑆𝑆 = �
1 0.20 0.20

0.20 1 0.20
0.20 0.20 1

� 
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3.3.4 Simulation of Grade Level Separation 

The two conditions of grade level separation were specified by varying the effect size difference 

between the mean of the ability distributions of adjacent grade levels (Chin, Kim, & Nering, 

2006). A small grade level separation was defined as a Cohen’s d = 0.2 and a large grade level 

separation was defined as a Cohen’s d = 0.5 (Chin, Kim, & Nering, 2006). The degree of grade 

level separation was assumed to be constant across the six grade levels. Individual vertical scale 

and item format ability levels
 
were drawn from a multivariate normal distribution with a mean 

equal to the grade level separation condition assuming the following format, 𝜇𝜇𝜃𝜃𝑆𝑆 =  �
𝜇𝜇𝜃𝜃𝑀𝑀𝑀𝑀
𝜇𝜇𝜃𝜃𝐶𝐶𝐶𝐶

� or 

𝜇𝜇𝜃𝜃𝑆𝑆 =  �
𝜇𝜇𝜃𝜃𝑉𝑉𝑉𝑉
𝜇𝜇𝜃𝜃𝑀𝑀𝑀𝑀
𝜇𝜇𝜃𝜃𝐶𝐶𝐶𝐶

� where 𝜇𝜇𝜃𝜃𝑉𝑉𝑉𝑉  is the mean of the grade level vertical scale ability factor, 𝜇𝜇𝜃𝜃𝑀𝑀𝑀𝑀 is the 

mean of the grade level multiple-choice ability factor and 𝜇𝜇𝜃𝜃𝐶𝐶𝐶𝐶 is the mean of the grade level 

constructed-response ability with s = 5, 6, 7, 8, 9, or 10 depending on the grade level. The mean 

structure for the vertical scale and the grade specific ability factors for the small grade level 

separation condition were increased by 0.20 while the means for the large grade level separation 

were increased by 0.50 (Table 4). 

Table 4: Mean structure by grade level separation and data generation model 
 Grade 5 Grade 6 Grade 7 Grade 8 Grade 9 Grade 10 
2-dimensional 
Small separation 

�−0.4
−0.4� �−0.2

−0.2� �00� �0.2
0.2� �0.4

0.4� �0.6
0.6� 

3-dimensional  
Small separation �

−0.4
−0.4
−0.4

� �
−0.2
−0.2
−0.2

� �
0
0
0
� �

0.2
0.2
0.2

� �
0.4
0.4
0.4

� �
0.6
0.6
0.6

� 

2-dimensional  
Large separation 

�−1
−1� �−0.5

−0.5� 
�00� �0.5

0.5� 
�11� �1.5

1.5� 

3-dimensional  
Large separation �

−1
−1
−1

� �
−0.5
−0.5
−0.5

� �
0
0
0
� �

0.5
0.5
0.5

� �
1
1
1
� �

1.5
1.5
1.5

� 
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For the 2-dimensional ability generation, both means needed to be equal since each 

ability was used to calculate the probability of a correct response for its respective item type. For 

the 3-dimensional ability generation, this was not necessarily the case. However, in order for the 

data generation models to be as comparable as possible, the means were kept equivalent across 

all three factors. Also, as outlined above, grade level separation was assumed to be constant 

across the span of grade levels being vertically scaled. 

3.3.5 Generation and Validation of Ability Parameters 

Ability parameters then were drawn from a multivariate normal distribution,  𝑁𝑁2 ∼  �𝜇𝜇𝜃𝜃𝑆𝑆 , Σ𝜃𝜃𝑆𝑆� or 

𝑁𝑁3 ∼  �𝜇𝜇𝜃𝜃𝑆𝑆 , Σ𝜃𝜃𝑆𝑆�, with a mean corresponding to the grade level separation condition for each 

respective grade and a covariance structure outlined above for each item format effect and data 

generation model. Ability distributions were generated within PROC IML in SAS. These ability 

distributions were validated through factor analysis to confirm the multidimensional structure 

and the calculation of means and variances of and correlations between latent abilities.   

3.4 ITEM PARAMETER GENERATION 

Originally, item parameters from a large statewide mathematics assessment were manipulated to 

construct the grade level tests needed for this study. After attempting to validate the student 

response files generated using these created tests, it was determined that the item discrimination 

parameters needed to be within a more restricted range to ensure the simulated student response 
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files would behave as predicted. As a result, item parameters for fifty-four multiple-choice items 

and seven four-category constructed-response items were simulated for each grade level test.  

3.4.1 Generation of Multiple-Choice Items 

For the 3-dimensional data generation model, item discrimination parameters for 54 items, 

designated for the vertical scale factor, were sampled from a uniform distribution between the 

values of 1.2 and 2.2. This created a set of item discrimination parameters that was used as the 

item discrimination parameters across all grade levels. For simplicity, item discriminations 

parameters for item format specific factor in the 3-dimensional ability generation for all multiple 

choice items were set to 1. This value was chosen because it was believed to be sufficiently high 

in discrimination, but lower than the lowest possible value for an item discrimination factor for 

the vertical scale factor.  This second set of item discrimination parameters were not used in the 

2-dimensional ability generation. Additionally, the guessing parameters for each multiple-choice 

item were set to 0.25 for all grade levels for simplicity.  

Item difficulty parameters for the 42-48 (depending on grade level) multiple-choice items 

were sampled from a normal distribution with a mean approximately equal to the grade level 

mean ability for the small grade level separation (see Table 4 for means) and a standard deviation 

of 1 (Li & Lissitz, 2012). In addition, the item difficulty parameters were restricted to a range 

between -2.00 and 2.00 and adjusted for the mean of the ability distribution for the small grade 

level separation for each grade level. For example, for grade 5, item difficulty values were 

sampled from a normal distribution with a mean of approximately -0.40, a standard deviation of 

1, and restricted to a range approximately from -2.4 to 1.6. The additional items needed to 

complete the test for each grade level were drawn from the adjacent grade level test and were of 
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appropriate difficulty to serve as common items. Item parameters for all multiple-choice items 

for each test by grade level are listed in Tables A1 – A12. 

3.4.2 Generation of Constructed-Response Items  

Each grade level test required 7 four-category constructed response items. As with the multiple-

choice items, item discrimination parameters for 7 constructed response items for the vertical 

scale factor was sampled from a uniform distribution between the values of 1.2 and 2.2. This set 

of item discrimination parameters were used for all grade levels. Again, for simplicity, item 

discriminations parameters for the item format factor in the 3-dimensional ability generation 

were set to 1. Next, three category threshold values were generated for five constructed-response 

items. First, the range of difficulty values determined for the multiple-choice items was divided 

into three approximately equal segments. Then, from within each segment, 5 item category 

thresholds were drawn from a uniform distribution bounded by the segment values.  For 

example, for grade 5, the range from -2.4 to 1.6 was divided into 3 approximately equal 

segments (-2.4 to -1.1, -1.1 to 0.25, and 0.25 to 1.6). Then, 5 category thresholds were drawn 

from the first region, 7 category thresholds were drawn from the second region, and 5 category 

thresholds were drawn from the last region. The additional threshold values needed to complete 

the entire set of 7 constructed-response items were drawn from adjacent grade levels and 

designated as common items. Item parameters for the constructed-response items for each grade 

level are listed in Tables A1 – A12.  
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3.4.3 Selection of Common Items 

With respect to the studies investigating the necessary characteristics of the common items when 

multidimensionality is present (e.g. Cao, 2008), two sets of mixed format common items were 

chosen from the simulated items used to design the grade level tests as outlined in sections 

3.4.1.and 3.4.2. The two sets of common items were chosen to investigate the importance of 

statistical representativeness of the common item set compared to the overall test. Two 

conditions of statistical representativeness were used; narrow and expanded. These conditions 

differed in the range of difficulty level for the items. The narrow range condition contained items 

with item difficulty values bounded by the mean ability level of the lower adjacent grade level 

and the mean ability level of the upper adjacent grade level. The expanded range condition 

contained items with item difficulty values bounded by 0.5 standard deviations below the mean 

ability level of the lower adjacent grade level and 0.5 standard deviations above the mean ability 

level of the upper adjacent grade level. For example, for grade 5/6 common items, the narrow 

condition consisted of items with difficulty values ranging from -0.40 to -0.20 while the 

expanded condition consisted of items with difficulty values ranging from -0.90 to 0.30. These 

conditions were chosen to help explore the issue of how to choose common items that are 

statistically representative of adjacent grade levels which are necessarily of differing ability 

levels (Chin, Kim & Nering, 2006; Tong & Kolen, 2010; Peterson, 2010). Finally, both common 

item sets were compared for overall mean difficulty level to ensure they were as comparable as 

possible. The anchor item set conditions are summarized below. 

The narrow condition consisted of both multiple-choice and constructed-response items 

and had an item difficulty range bounded by the mean difficulty level of the upper adjacent grade 

level and the lower adjacent grade level. To construct this common item set, six multiple-choice 
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items and one constructed-response item from each grade level in the appropriate item difficulty 

range were chosen. The category threshold parameter for the middle score value possible was 

used to determine whether or not the item fell within the necessary item difficulty range. 

The expanded condition had an item difficulty range bounded by 0.50 standard deviations 

above the mean difficulty level for the upper adjacent grade level and 0.50 standard deviations 

below the mean difficulty level for the lower adjacent grade level. To construct this common 

item set, three multiple-choice items from each adjacent grade level were removed and replaced 

with the three multiple-choice items in the appropriate expanded item difficulty range being 

careful to add three additional items from the lower expanded region and three additional items 

from the expanded upper region. The same constructed-response items as used in the narrow 

condition were used in both common item sets.  

3.4.4 Creation of Grade Level Tests 

Using an iterative process, sets of multiple-choice items, constructed-response items, and 

common items for all conditions were combined into a complete grade level test such that the 

mean item difficulty levels matched the condition of the small grade level separation in the study 

design and the mean item difficulty levels of the common item sets were approximately equal 

across conditions (Table 4). Additionally, common items were placed in the same position across 

the grade level tests for which they were used to scale to ameliorate any potential item location 

effects. A list of items for each grade level test and common item set is included in Tables A1-

A12. 
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Table 5. Summary of means for each grade level test and common item set 
 Grade 

5 5/6 Grade 
6 6/7 Grade 

7 7/8 Grade 
8 8/9 Grade 

9 9/10 Grade 
10 

Narrow -0.65  -0.21  0.06  0.30  0.64  0.83 
 -0.36  -0.14  0.14  0.44  0.64  

Expanded -0.65  -0.21  0.06  0.30  0.64  0.83 
 -0.30  -0.16  0.15  0.43  0.66  

3.5 GENERATION OF STUDENT RESPONSES 

The ability parameter distributions generated in section 3.3.6 were applied to the grade level tests 

constructed in section 3.4 to generate probabilities of a correct response. The decision rules 

outlined below were then applied to the individual probabilities and student responses were 

generated and expected scores were calculated for each of the 2000 participants per grade level 

per condition. 

3.5.1 Generating Student Responses for Uni- and Two-Dimensional Models  

3.5.1.1 Multiple-Choice Items 

Even though some ability distributions were generated under what is termed a 2-dimensional 

model, there is only one dimension associated with each item format type. Therefore, student 

responses for both the unidimensional and two-dimensional multiple-choice items are simulated 

under the unidimensional case.  Under this 3PL unidimensional model, the probability of a 

correct response for person i to multiple choice item j is (Hambleton & Swaminathan, 1985): 

𝑃𝑃𝑖𝑖𝑖𝑖  =  𝑃𝑃𝑗𝑗  (𝜃𝜃𝑖𝑖) = 𝑃𝑃(𝜃𝜃𝑖𝑖 |𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑗𝑗 , 𝑐𝑐𝑗𝑗  ) =  𝑐𝑐𝑗𝑗  + �1 + 𝑐𝑐𝑗𝑗  �
exp�𝐷𝐷𝐷𝐷𝑗𝑗 �𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑗𝑗 ��

1 + exp�𝐷𝐷𝐷𝐷𝑗𝑗 �𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑗𝑗 ��
                          (𝐸𝐸𝐸𝐸. 1) 
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where θiMC is the grade specific ability or grade specific multiple-choice ability generated under 

the uni- or two-dimensional model, ajVS is the item discrimination parameter associated with the 

vertical scale factor, and bj is the item difficulty parameter. 

Student responses were generated for multiple-choice items by applying equation 1 to the 

multiple-choice item parameters appropriate for each grade level test and ability parameters 

generated under either the unidimensional or 2-dimensioanl models to determine the probability 

(Pij) that examinee i with ability θiMC would correctly answer item j. These probabilities were 

compared to a uniform random number (R) in the range [0, 1] and student responses (Uij) for 

each item j were coded according to the following rule (Kim & Kolen, 2008), 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 = �
0,𝑃𝑃𝑖𝑖𝑖𝑖 ≤ 𝑅𝑅
1,𝑃𝑃𝑖𝑖𝑖𝑖 > 𝑅𝑅. 

3.5.1.2 Constructed-Response Items 

Under the GRM unidimensional model, the probability that examinee i will score at or above  

category k on item j is (Samejima, 1969): 

𝑃𝑃∗𝑖𝑖𝑖𝑖𝑖𝑖  =  𝑃𝑃∗(𝜃𝜃𝑖𝑖 |𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑗𝑗𝑗𝑗  ) =  

⎩
⎨

⎧
1

exp⁡[𝐷𝐷𝐷𝐷𝑗𝑗 �𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑗𝑗𝑗𝑗 �]
1 + exp⁡[𝐷𝐷𝐷𝐷𝑗𝑗 �𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑗𝑗𝑗𝑗 �]

0

 
   𝑘𝑘 = 1

                2 < 𝑘𝑘 ≤  𝐾𝐾𝑗𝑗
      𝑘𝑘 >  𝐾𝐾𝑗𝑗

                       (𝐸𝐸𝐸𝐸. 2) 

where category k = 1, 2,…K, θiCR is the grade specific constructed-response ability, and ajVS is the 

item discrimination parameter associated the vertical scale factor. 

To generate student responses for constructed-response items, equation 2 was applied to 

the constructed-response item parameters appropriate for each grade level test and ability 

parameters generated under either the unidimensional or 2-dimensional models to calculate the 

conditional probability (P*
ijk) that a response from examinee i with θiCR would fall within or above 

category k. This conditional probability (P*ijk) was compared to a uniform random number (R) in 
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the range [0, 1] and student responses (Uijk) were coded by comparing P*
ijk to R with the 

following rule (Kim & Kolen, 2008; Cao, 2008), 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 =

⎩
⎨

⎧
0,       𝑃𝑃𝑖𝑖1∗ ≤ 𝑅𝑅 < 1
1,   𝑃𝑃𝑖𝑖2∗ ≤ 𝑅𝑅 < 𝑃𝑃𝑖𝑖1∗

2,   𝑃𝑃𝑖𝑖3∗ ≤ 𝑅𝑅 < 𝑃𝑃𝑖𝑖2∗

3,      0 ≤ 𝑅𝑅 < 𝑃𝑃𝑖𝑖3∗
.  

 Calculating the expected score for a constructed-response item requires two steps. The 

first is calculating the conditional probability of a correct response for each threshold and then 

calculating a category response function, which is the difference between two adjacent 

categories. The category response function, Pijk, was calculated using the following formula 

(Cao, 2008):  

                                          𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖  =  𝑃𝑃𝑗𝑗𝑗𝑗  (𝜃𝜃𝑖𝑖) =  𝑃𝑃∗𝑗𝑗𝑗𝑗 (𝜃𝜃𝑖𝑖) −  𝑃𝑃∗𝑗𝑗 (𝑘𝑘+1)(𝜃𝜃𝑖𝑖)                                   (𝐸𝐸𝐸𝐸. 3) 
 

                                                       

3.5.2 Generating Student Responses for Three-Dimensional Model 

3.5.2.1 Multiple-Choice Items 

For the three-dimensional model, the vertical scale ability and item discrimination parameter as 

well as the item format specific ability and item discrimination parameter both contribute to the 

probability of a correct response. Therefore, a multidimensional probability of a correct response 

is needed to estimate the 3-dimensional model. Under the 3PL multidimensional model, the 

probability of a correct response for person i to multiple choice item j is (Gibbon & Hedeker, 

1992):  

𝑃𝑃�𝑋𝑋𝑗𝑗  = 1 � 𝜃𝜃𝑖𝑖𝑎𝑎𝑗𝑗𝐵𝐵𝑗𝑗  𝑐𝑐𝑗𝑗 ) =  𝑐𝑐𝑗𝑗 +  
1 − 𝑐𝑐𝑗𝑗

1 + exp⁡[−�𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑗𝑗�]
                            (𝐸𝐸𝐸𝐸. 4) 
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where θiVS is the grade specific vertical scale ability, θiMC is the grade specific multiple-choice 

ability, ajVS is the item discrimination parameter associated with the vertical scale factor, ajMC is 

the item discrimination parameter associated with the grade specific multiple-choice factor, and 

Bj is the scalar parameter related to multidimensional difficulty. Bj was calculated using the 

following formula (Reckase, 2009):     

                                                             𝐵𝐵𝑗𝑗 =  −𝑏𝑏𝑗𝑗  �𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗2 +  𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗2                                                     (𝐸𝐸𝐸𝐸. 5) 

 

Student responses were generated for multiple-choice items by applying equation 4 to the 

multiple-choice item parameters appropriate for each grade level test and ability parameters 

generated under the 3-dimensional model to determine the probability (Pij) that examinee i with 

ability θiMC would correctly answer item j. These probabilities were compared to a uniform 

random number (R) in the range [0, 1] and student responses (Uij) for each item j were coded 

according to the following rule (Kim & Kolen, 2008), 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 = �
0,𝑃𝑃𝑖𝑖𝑖𝑖 ≤ 𝑅𝑅
1,𝑃𝑃𝑖𝑖𝑖𝑖 > 𝑅𝑅. 

3.5.2.2 Constructed-Response Items 

Under the GRM multidimensional model, the probability that examinee i will score at or above 

category k on item j is (Samejima, 1969; Gibbons et. al, 2010):  

𝑃𝑃∗�𝑋𝑋𝑗𝑗  ≥ 𝑘𝑘 � 𝜃𝜃𝑖𝑖𝑎𝑎𝑗𝑗𝐵𝐵𝑗𝑗𝑗𝑗  ) =  �

1
1

1 + exp⁡[−�𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 +  𝑎𝑎𝑗𝑗𝑗𝑗 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑗𝑗𝑗𝑗 �]
0

 
𝑘𝑘 = 1

     2 < 𝑘𝑘 ≤  𝐾𝐾𝑗𝑗
 𝑘𝑘 > 𝐾𝐾𝑗𝑗

         (𝐸𝐸𝐸𝐸. 6) 

 

where category k = 1, 2,…K, θiVS is the vertical scale ability, θiCR is the grade specific 

constructed-response ability, ajVS is the item discrimination parameter associated with the vertical 

scale factor, ajCR is the item discrimination parameter associated with the grade specific item 
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format factor, and Bjk is the scalar parameter related to multidimensional difficulty and is 

calculated using the following formula (Reckase, 2009):                                                                                                                                                             

                                                    𝐵𝐵𝑗𝑗𝑗𝑗 =  −𝑏𝑏𝑗𝑗𝑗𝑗  �𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗2 +  𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗2                                                          (Eq. 7) 

 To generate student responses for constructed-response items, equation 6 was applied to 

the chosen constructed-response item parameters appropriate for each grade level test and ability 

parameters generated to calculate the conditional probability (P*
ijk) that a response from 

examinee i with θiCR would fall within or above category k. This conditional probability (P*ijk) 

was compared to a uniform random number (R) in the range [0, 1] and student responses (Uijk) 

were coded by comparing P*
ijk to R with the following rule (Kim & Kolen, 2008; Cao, 2008), 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 =

⎩
⎨

⎧
0,       𝑃𝑃𝑖𝑖1∗ ≤ 𝑅𝑅 < 1
1,   𝑃𝑃𝑖𝑖2∗ ≤ 𝑅𝑅 < 𝑃𝑃𝑖𝑖1∗

2,   𝑃𝑃𝑖𝑖3∗ ≤ 𝑅𝑅 < 𝑃𝑃𝑖𝑖2∗

3,      0 ≤ 𝑅𝑅 < 𝑃𝑃𝑖𝑖3∗
. Again, the category response function, 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖, was calculated using 

the following formula (Cao, 2008) for the multidimensional case: 

 
                                          𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖  =  𝑃𝑃𝑗𝑗𝑗𝑗  (𝜃𝜃𝑖𝑖) =  𝑃𝑃∗𝑗𝑗𝑗𝑗 (𝜃𝜃𝑖𝑖) −  𝑃𝑃∗𝑗𝑗 (𝑘𝑘+1)(𝜃𝜃𝑖𝑖)                                         (𝐸𝐸𝐸𝐸. 8) 
   

3.5.3 Validation of Student Response Files 

Student response files were validated using factor analysis and through parameter recovery. A 

factor analysis was used to confirm the multidimensional structure and correlations between 

latent abilities of grade level response files. In order to assess parameter recovery, an additional 

response file using an orthogonal covariance structure consistent with the bifactor model was 

created. Parameters estimated using this response file were compared to the original test 

parameters for accuracy. 
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3.6 GENERATING THE VERTICAL SCALES  

Student responses generated in section 3.5.1 and 3.5.2 for each grade level test constructed in 

section 3.4, were vertically scaled using each of two different calibration methods. (Figure 3) 

Calibrations were performed with MULTILOG (Thissen, 1991). Separate calibration and 

pairwise concurrent calibration both required an additional linking step to complete the scaling 

process. In these cases, the Stocking-Lord linking method was performed using STUIRT (Kim & 

Kolen, 2004).  

Figure 3. Graphic representation of calibration methods used in study 

 

3.6.1 Separate Calibration  

To perform separate calibration, item parameters and ability parameters were estimated for 

student response data for each grade individually using the default settings in MULTILOG 

(Thissen, 1991). After the separate calibration for each grade level was complete, Stocking-Lord 

transformation constants were calculated using STUIRT (Kim & Kolen, 2004) for the narrow 

common item set. Item parameters and ability estimates were transformed to the grade 7 scale. 

Then, this procedure was repeated for the expanded common item set condition.  Each anchor 

item set condition was replicated 100 times. 
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3.6.2 Pairwise Concurrent Calibration  

To perform pairwise concurrent calibration, response files for adjacent grade level pairs (5-6, 7-

8, 9-10) were combined. Items not taken by a grade level were coded as missing. For each 

adjacent grade level pair, one grade level was designated as the base grade level for the 

concurrent calibration. In the 5-6 grade level, grade 6 was designated the base grade level; in the 

7-8 grade level pair, grade 7 was designated as the base grade level; and in the 9-10 grade level 

pair, grade 9 was designated as the base grade level. Item and ability parameters were estimated 

for each grade level pair using concurrent calibration in MULTILOG (Thissen, 1991). Once the 

three concurrent calibrations were complete, transformation constants to place the 5-6 grade 

level pair and the 9-10 grade level pair for the narrow common item set condition were 

calculated using STUIRT (Kim & Kolen, 2004). These two grade level pairs then were placed on 

the 7-8 grade level pair scale. This procedure was repeated for the expanded common item set 

condition and each anchor item set condition was replicated 100 times. 

3.7 EVALUATION CRITERIA 

While vertical scaling is used to evaluate growth over time, there is no generally accepted growth 

model or definition of growth (Tong & Kolen, 2007). Camilli (1993) makes the point that linear 

growth is dependent on the meaning assigned to the intervals along the scale based on the 

transformation that is chosen.  So, instead of being able to compare the results of vertical scaling 

to an absolute criterion, results from vertical scales are often compared to each other and 

themselves as a means of determining their appropriateness (Becker & Forsythe, 1992). In a 



79 

 

simulation study, however, an absolute criterion does exist because the true parameters are 

known (Harris & Crouse, 1993). Thus, the criterion for evaluating scaling results in simulation 

studies can focus on the accuracy of the recovery of true parameters (Harris & Crouse, 1993).                                      

3.7.1 Determining the Accuracy of Scaling Results 

Because the results of each scaling method produce unique vertical scales, comparison of 

expected scores was chosen to preclude the additional transformation necessary to make direct 

comparisons of ability estimates across vertical scaling techniques. Therefore, to determine the 

accuracy of the scaling results, examinee expected total scores were calculated using the 

population parameters (Cao, 2008, p. 58), 

                                  𝐸𝐸(𝑋𝑋𝑘𝑘  |𝜃𝜃𝑘𝑘  ) =  �𝑃𝑃𝑖𝑖  (𝜃𝜃𝑘𝑘  )
𝑛𝑛𝑀𝑀𝑀𝑀

𝑖𝑖=1

+  ��𝑢𝑢𝑖𝑖𝑖𝑖  

𝐽𝐽

𝑗𝑗=1

𝑛𝑛𝐶𝐶𝐶𝐶

𝑖𝑖=1

𝑃𝑃𝑖𝑖𝑖𝑖 (𝜃𝜃𝑘𝑘  )                                        (𝐸𝐸𝐸𝐸. 9) 

 
 
and compared to the expected total scores calculated using the estimated and transformed 

parameters (Cao, 2008, p. 58),   

 

                                𝐸𝐸(𝑋𝑋𝑘𝑘  |𝜃𝜃�𝑘𝑘  ) =  �𝑃𝑃𝑖𝑖   �𝜃𝜃�𝑘𝑘  �
𝑛𝑛𝑀𝑀𝑀𝑀

𝑖𝑖=1

+ ��𝑢𝑢𝑖𝑖𝑖𝑖  

𝐽𝐽

𝑗𝑗=1

𝑛𝑛𝐶𝐶𝐶𝐶

𝑖𝑖=1

𝑃𝑃𝑖𝑖𝑖𝑖 �𝜃𝜃�𝑘𝑘  �                                       (𝐸𝐸𝐸𝐸. 10) 

 
                                             
where 𝜃𝜃𝑘𝑘 is the true expected score for individual k,  𝜃𝜃�𝑘𝑘 is the estimated expected score for 

individual k,   and  are calculated using equation 1 or 4 using true ability 

parameters and observed ability parameters, respectively,  uij is the category score and  

and  𝑃𝑃𝑖𝑖𝑖𝑖𝜃𝜃�𝑘𝑘  are calculated using equation 2 or 5 using the true ability parameters and the observed 

ability parameters, respectively.   
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Two summary statistics were calculated, by grade level, to evaluate the accuracy of the 

expected scores from the scaling results; BIAS and root mean squared error (RMSE). Each 

summary statistic was calculated and averaged across the 100 replications. 

BIAS reflects the average difference between the estimated parameter value and the true 

parameter value over replications and gives an indication of the accuracy and direction of the 

scaling results (Cao, 2008; Li & Lissitz, 2012). Thus, the smaller the bias, the more accurate the 

method was in recovering the true expected scores. BIAS was calculated using the following 

formula (Cao, 2008): 

                           𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑟𝑟(𝐸𝐸(𝑋𝑋𝑘𝑘  |𝜃𝜃�𝑘𝑘  )) =  
∑ 𝐸𝐸(𝑋𝑋𝑘𝑘  |𝜃𝜃�𝑘𝑘  )𝑟𝑟 −  𝐸𝐸(𝑋𝑋𝑘𝑘| 𝜃𝜃𝑘𝑘)𝑅𝑅
𝑟𝑟=1

2000
                                 (𝐸𝐸𝐸𝐸. 11) 

 
 

                                           𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟(𝐸𝐸(𝑋𝑋𝑘𝑘  |𝜃𝜃�𝑘𝑘  )) =  
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟
𝑅𝑅

                                             (𝐸𝐸𝐸𝐸. 12) 
 
   
where R is the number of replications, r is the replication,  is the true expected score 

for individual k, and  is the estimated expected score for individual at the rth 

replication.  
   
 RMSE reflects the overall accuracy in estimating parameters with smaller RMSEs 

indicating the calibration method was more accurate in recovering the expected score (Meng, 

2007). RMSE was calculated using the following formula (Cao, 2008): 

                    𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟  (𝐸𝐸(𝑋𝑋𝑘𝑘  |𝜃𝜃�𝑘𝑘  )) =  �
1
𝑅𝑅
��𝐸𝐸(𝑋𝑋𝑘𝑘  |𝜃𝜃�𝑘𝑘  )𝑟𝑟 − 𝐸𝐸(𝑋𝑋𝑘𝑘 | 𝜃𝜃𝑘𝑘)�

2
𝑅𝑅

𝑟𝑟=1

                             (𝐸𝐸𝐸𝐸. 13) 

 

  

                                              𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟(𝐸𝐸(𝑋𝑋𝑘𝑘  |𝜃𝜃�𝑘𝑘  )) =  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟
𝑅𝑅

                                      (𝐸𝐸𝐸𝐸. 14) 
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where R is the number of replications, r is the replication,  is the true expected score or 

individual k, and  is the estimated expected score for individual at the rth replication.  

3.7.1 Comparing Results 

First, tables and plots for average BIAS and average RMSE values were created to summarize 

differences in conditions of interest. Then, to determine if any one condition was more influential 

than another, two five-way mixed model ANOVAs were performed using the PROC MIXED 

procedure in SAS, by grade level, using the 100 replications as observations and mean BIAS and 

mean RMSE values as dependent variables. Since the same dataset was scaled using both 

calibration methods, vertical scaling method was treated as a within-subjects factor while all 

other variables were treated as between-subject factors. All factors were assumed to be fixed. 

Next, all main effects and two-, three-, four-way, and five-way interactions in the model were 

estimated. All possible pairwise comparisons were tested using the LSMEANS command with a 

Scheffé adjustment. Finally, Cohen’s d was calculated for each comparison from the t-values and 

df in the LSMEANS output using the following formula (Rosenthal & Rosnow, 1991), 2𝑡𝑡 �𝑑𝑑𝑑𝑑⁄ . 

Only significant results with at least a small effect size (0.20) were examined (Cohen, 1998). 
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4.0  RESULTS 

This chapter describes the results of the simulation study outlined in Chapter 3. Seventy vertical 

scales were simulated for grades 5, 6, 7, 8, 9, and 10. BIAS and RMSE were calculated for each 

of the conditions with respect to recovery of the expected score. In addition to tables and graphs 

which explore the descriptive characteristics of the mean BIAS and mean RMSE results for the 

simulation, two mixed ANOVAs were performed using the PROC MIXED procedure in SAS for 

each grade level. Using the 100 replications as observations and mean BIAS and mean RMSE 

values as dependent variables; two levels of vertical scaling method (separate, pairwise 

concurrent), two levels of common item set configuration (narrow, expanded), four levels of 

format effect (FE: none, small, moderate, large), two levels of grade level separation (small, 

large), two data generation methods (2-dimensional, 3-dimensional), and the traditional 

unidimensional case served as the independent variables. All factors were assumed to be fixed 

with calibration method treated as a within-subjects factor and all other variables treated as 

between-subject factors. All main effects and interactions were estimated and all pairwise 

comparisons were tested with a Scheffé adjustment. Cohen’s d was calculated for each 

comparison based on values from the LSMEANS output and only significant results with an 

effect size of 0.20 or greater were reported. 

The results chapter describes grade level results by trends in performance of the vertical 

scaling configurations by condition. Next, ANOVA test results are discussed followed by a 
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comparison of significant differences in the four calibration and common item set configurations. 

Finally, a summary of results for each grade level as well as an overall summary of results is 

presented. Supporting tables for all results are found in Appendix B and Appendix C. 

4.1 GRADE LEVEL RESULTS 

4.1.1 Grade 5 Results 

4.1.1.1 Trends by Condition 

Average BIAS  

Generally, mean BIAS values increased as degree of item format effect increased regardless of 

common item set, grade level separation, or data generation method for separate calibration 

(Table 5). For pairwise concurrent calibration, trends were less obvious because of 

inconsistencies between replications for the mean estimated expected score. In general, mean 

BIAS values for all item format effect conditions that resulted from data generated under the 3-

dimensional model tended to be similar to one another. Additionally, scores resulting from the 

small grade level separation condition tended to be smaller than those resulting from the large 

grade level separation values regardless of common item set, vertical scaling method, item 

format effect condition, or data generation method. Scores from data generated under the 3-

dimensional model generally resulted in smaller mean values than those from data generated 

under the 2-dimensional model or unidimensional model for the small grade level separation 

condition. The pattern was reversed somewhat for the large grade level separation condition 

under the narrow common item set condition. Of note, however, is that scores resulting under the 



84 

 

2-dimensional data generation procedure for the small grade level separation tended to be 

underestimated, however, as format effect increased, mean BIAS values became increasingly 

more positive. This means that for the no and small format effect conditions, mean BIAS scores 

were more evenly split between replications that tended to be over- and underestimated resulting 

in values that could be spuriously low. For the 3-dimensional data generation condition, 

however, the opposite was true. Scores tended to be overestimated, but as format effect 

increased, mean BIAS values for each replication became increasingly more positive. This 

means that for this data generation condition, values for the moderate and large format effect 

conditions could be spuriously low. However, this phenomenon was not observed for the large 

grade level condition for which mean BIAS values per replication were consistently negative for 

all conditions. This phenomenon also did not impact the mean RMSE values (Figures 4 and 5). 

Trends in vertical scaling method and common item set were more difficult to 

characterize because scores were not consistently over- or under-estimated across methods. For 

the large grade level separation condition, scores were consistently overestimated regardless of 

common item set, vertical scaling method, item format condition, or data generation method.   

This was not the case for the small grade level separation. For this condition, separate calibration 

underestimated the expected score for all vertical scaling, item format effect, common item set, 

and data generation conditions. Pairwise concurrent calibration, on the other hand, overestimated 

scores generated with the 3-dimensional and unidimensional models as well as the small item 

format effect condition under the 2-dimensional model regardless of common item set or degree 

of item format effect. However, other scores for the 2-dimensional model (no, moderate, and 

large item format effect), regardless of common item set, were overestimated.  
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Average RMSE 

Mean RMSE values increased as degree of item format effect increased, regardless of common 

item set, grade level separation, vertical scaling method, or data generation method. 

Additionally, scores from the small grade level separation condition resulted in smaller mean 

RMSE values compared to scores from the large grade level separation condition, regardless of 

common item set, vertical scaling method, item format effect condition, or data generation 

method. Data generated under the 3-dimensional model generally resulted in smaller mean 

values than those resulting from data generated under the 2-dimensional or unidimensional 

models regardless of condition. Also, pairwise concurrent calibration produced smaller average 

RMSE values than separate calibration, regardless of common item set and data generation 

method. Finally, mean values for common item set were similar regardless of vertical scaling 

method, grade level separation, item format effect condition, and data generation method except 

those resulting from data generated under the 3-dimensional model for separate calibration with 

the expanded common item set which tended to be slightly smaller (Figures 6 and 7). 
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Table 6. Grade 5 mean BIAS and RMSE by condition 

Scaling 
Method 

Common 
Item Set  Model Format 

Effect 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 

Separate  

Narrow 

Unidim None 0.53 -1.57 4.04 7.70 

2-Dim 

None 0.54 -1.56 4.04 7.52 
Small 0.53 -1.68 4.20 7.68 

Moderate 1.16 -2.02 5.19 9.23 
Large 4.52 -2.58 7.91 9.89 

3-Dim 

None 0.02 -1.72 3.52 5.41 
Small  0.04 -1.88 3.57 5.63 

Moderate 0.08 -2.62 3.77 6.61 
Large 0.16 -3.63 4.10 7.79 

Expanded 

Unidim None 0.59 -1.56 4.07 7.75 

2-Dim 

None 0.51 -1.53 4.00 7.55 
Small 0.58 -1.70 4.26 7.78 

Moderate 1.15 -2.02 5.18 9.18 
Large 4.54 -2.70 7.97 10.13 

3-Dim 

None 0.03 -1.54 3.49 5.34 
Small 0.07 -1.94 3.66 5.75 

Moderate 0.09 -2.55 3.75 6.50 
Large 0.15 -3.39 4.08 7.41 

Pairwise  

Narrow 

Unidim None 0.16 -0.75 3.56 4.60 

2-Dim 

None 0.13 -0.76 3.55 4.53 
Small 0.14 -0.79 3.79 4.63 

Moderate 0.29 -0.99 4.52 5.43 
Large 1.88 -1.16 5.88 6.81 

3-Dim 

None -0.08 -0.69 3.26 3.77 
Small -0.06 -0.84 3.30 3.84 

Moderate -0.07 -1.08 3.45 4.05 
Large -0.06 -1.37 3.66 4.31 

Expanded 

Unidim None 0.15 -0.75 3.61 4.60 

2-Dim 

None 0.13 -0.74 3.60 4.54 
Small 0.11 -0.81 3.77 4.62 

Moderate 0.33 -0.99 4.55 5.44 
Large 1.93 -1.16 5.92 6.83 

3-Dim 

None -0.08 -0.73 3.27 3.67 
Small -0.08 -0.84 3.38 3.78 

Moderate -0.06 -0.97 3.46 3.95 
Large -0.08 -1.30 3.67 4.24 
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Figure 4. Grade 5 average BIAS for small grade level 
separation 

 
 
Figure 5. Grade 5 average BIAS for large grade level 
separation 

 
 

Figure 6. Grade 5 average RMSE for small grade level 
separation 

 
 
Figure 7. Grade 5 average RMSE for large grade level 
separation 
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4.1.1.2  ANOVA Results 

Two separate five-way mixed ANOVAs using mean BIAS and mean RMSE values as the 

dependent variable were performed on the results of the 100 replications for grade 5. Most 

interactions and main effects were significant for these models (Table B1 and B2).  Using the 

LSMEANS command in SAS, pairwise comparisons were examined and effect sizes were 

calculated. Additionally, the difference matrix produced was used to examine relevant 

comparisons between vertical scaling configurations by condition to determine the scaling 

method(s) that resulted in the most accurate vertical scales for each condition. 

Item Format Effect  

Scaling results for item format effect conditions were dependent on grade level separation, 

vertical scaling method, and data generation method (Table C1). Effect sizes for mean BIAS 

values ranged from 0.37 to 2.59 and effect sizes for mean RMSE values ranged from 0.36 to 

1.51.  

Under the 2-dimensional model for the small grade level separation, regardless of 

common item set and vertical scaling method, the large item format effect produced significantly 

larger mean BIAS values than any other item format effect and the moderate item format effect 

produced significantly larger values compared to the small format effect condition. In addition, 

under separate calibration, the moderate item format effect condition was significantly larger 

than the no item format effect condition. Under the large grade level separation, results depended 

upon vertical scaling method also. Mean BIAS values under separate calibration were 

significantly larger for the large item format effect condition compared to the no, small, and 

moderate item format effect conditions. However, there was no significant difference in mean 

BIAS values under pairwise concurrent calibration. Under the 3-dimensional model for the small 
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grade level separation condition, there were no significant differences among levels of item 

format effect regardless of vertical scaling method and common item set. For the large grade 

level separation condition, however, regardless of common item set, mean BIAS values for the 

large item format effect condition were significantly larger than both the no and small item 

format effect conditions and values for the moderate item format effect condition were 

significantly larger than both the no and small item format effect conditions.  

Under the 2-dimensional model for the large grade level separation condition, regardless 

of common item set, grade level separation, and vertical scaling method, the large item format 

effect produced significantly larger mean RMSE values when compared to the no, small, and 

moderate format effect conditions and the moderate item format effect produced significantly 

larger values compared to the no item format conditions. Additionally, under separate 

calibration, the moderate item format effect condition was significantly larger than the small item 

format effect condition. Again, under the 3-dimensional model for the small grade level 

separation condition, there was no significant item format effect regardless of vertical scaling 

method and common item set. For the large grade level separation, the large item effect 

condition was significantly larger than the no, small, and moderate item format effect conditions 

and the moderate item format effect condition was significantly larger than the no item format 

effect condition, but only under separate calibration. 

Vertical Scaling Method  

Significant differences in average BIAS values were dependent on item format effect, grade level 

separation, and data generation model. Average BIAS and average RMSE values were 

significantly larger for separate calibration compared to pairwise concurrent calibration under the 

large grade level separation condition regardless of item format effect, common item set, or data 
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generation method (Table C2). Effect sizes for mean BIAS values ranged from 0.53 to 1.69 

while effect sizes for mean RMSE values ranged from 0.90 to 1.55. 

Under the small grade level separation condition, results depended on the method of data 

generation. There was no significant difference between separate and pairwise concurrent 

calibration when the data was generated under the 3-dimensional or unidimensional data 

generation model. Under the 2-dimensional data generation model, however, average BIAS 

values were significantly larger than those for pairwise concurrent calibration for the small, 

moderate, and large item format effect conditions regardless of common item set configuration. 

Likewise, average RMSE values for the large grade level separation were significantly larger for 

separate calibration compared to pairwise concurrent calibration, regardless of item format effect 

condition. For the small grade level separation condition, the only significant difference in 

average RMSE values was for the large item format effect condition. 

Common Item Set Configuration  

There was no significant difference between average BIAS or average RMSE values for the 

narrow and expended common item sets regardless of item format condition, vertical scaling 

method, grade level separation condition, or data generation method (Table C3). 

Grade Level Separation 

Average BIAS and average RMSE values were significantly larger for the large grade level 

separation condition under the separate calibration condition for all item format effect conditions 

and common item set configuration regardless of how the data was generated (Table C4). Effect 

sizes for mean BIAS values ranged from 0.80 to 4.65 and effect sizes for mean RMSE values 

ranged from 0.35 to 1.57. 
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Under pairwise concurrent calibration, average BIAS and RMSE values for the large 

grade level separation condition were significantly larger than the small grade level separation 

values for all item format effect conditions when data was generated under the unidimensional 

and 2-dimensional models. Additionally, average BIAS values were significantly larger for the 

large grade level separation condition for the large and moderate item format effect conditions 

under pairwise concurrent calibration for data generated under the 3-dimensional model while 

for the same was true for mean RMSE values for data generated under the 2-dimensional model.  

For data generated under the 3-dimensional and unidimensional models, there was no significant 

difference in average RMSE values between grade level separation conditions for pairwise 

concurrent calibration. 

Data Generation Method 

Significant differences in data generation methods were dependent upon item format effect and 

grade level separation. In general, including the vertical scale factor in the data generation 

process resulted in lower mean BIAS and mean RMSE values for most conditions (Table C5). 

Effect sizes for mean BIAS values ranged from 0.34 to 2.82 and for mean RMSE values ranged 

from 0.82 to 1.51. 

For data generated under the unidimensional and 2-dimensional models, average BIAS 

values for separate calibration were significantly larger than those resulting from data generated 

under the 3-dimensional model, but only for the moderate and large item format effect conditions 

regardless of common item set configuration. There was, however, no significant difference in 

average BIAS values among data generation models for pairwise concurrent calibration under 

the large grade level separation condition. In addition, there was no significant difference in 
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average BIAS values for the no item format effect condition regardless of grade level separation, 

vertical scaling method, and common item set. 

 Significant differences in average RMSE values were dependent on item format effect 

and grade level separation. In general, average RMSE values were larger for traditional data 

generation methods compared to results generated under the 3-dimensional model. For the small 

grade level separation, mean RMSE values were significantly larger for the moderate and large 

item format effect conditions regardless of common item set configuration. However, for the 

large grade level separation, this was true for all item format effect conditions. In addition, the 

mean RMSE values were significantly smaller under the 3-dimensional data generation model 

compared to the unidimensional model, but mean RMSE values were not significantly different 

between the 2-dimensional and unidimensional data generation models. 

4.1.1.3 Performance of Vertical Scaling Configurations 

Of more practical importance, perhaps, is which vertical scaling configuration performs best 

under the different conditions of format effect simulated in this study. Using the pairwise 

comparisons matrix produced by the LSMEANS procedure in SAS, a table was constructed to 

summarize the overall performance of each of the four vertical scaling configurations; separate 

calibration with narrow common item set (sn), separate calibration with expanded common item 

set (se), pairwise concurrent calibration with narrow common item set (pn), and pairwise 

concurrent calibration with expanded common item set (pe) (Table 6). For the small grade level 

separation condition, few significant differences between vertical scaling configurations exist. Of 

those, all but one favored pairwise concurrent calibration over separate calibration. Even though 

the common item set configuration was rarely significant, the narrow common item set produced 

smaller average values. For the large grade level separation, pairwise concurrent calibration 
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produced the smallest average values for all conditions. Additionally, average BIAS values were 

smallest when using the expanded common item set, however, no common item set 

configuration consistently produced the smallest average RMSE values. 

Table 7.  Grade 5 vertical scaling methods by accuracy 

 Data Generation Format Effect Small Separation Large Separation 

BIAS 

Unidim None pn=sn=se=pe pe=pn<se<sn 

2-Dim 

None pe=pn<se=sn pe=pn<se=sn 
Small pe<sn=se<pn pe=pn<se=sn 

Moderate pn=pe<se=sn pn=pe<sn=se 
Large pn<pe<sn=se pe=pn<sn=se 

3-Dim 

None sn=se=pe=pn pe=pn<se=sn 
Small  sn=se<pn=pe pe<pn<sn=se 

Moderate pe=pn=sn=se pe=pn<se=sn 
Large pn=pe<se=sn pe=pn<se=sn 

RMSE 

Unidim None pn=pe=sn=se pe=pn<sn=se 

2-Dim 

None pe=pn=se=sn pn=pe<sn=se 
Small pn=sn=se=pe pn=pe<sn=se 

Moderate pn=pe=se=sn pn=pe<se=sn 
Large pn=pe<sn=se pn=pe<sn=se 

3-Dim 

None pn=pe=se=sn pn=pe<sn=se 
Small  pn=pe=sn=se pe=pn<sn=se 

Moderate pn=pe=se=sn pe=pn<se=sn 
Large pn=pe=se=sn pe=pn<se=sn 

sn=separate - narrow; se=separate - expanded; pn=pairwise – narrow; pe=pairwise - expanded 
< significantly smaller        = not significantly different 

4.1.1.4 Summary of Grade 5 Results 

Based on the ANOVA results; item format effect, vertical scaling method, and grade level 

separation had a statistically significant impact on the scaling results for this grade level. 

Common item set configuration did not have a significant impact on the scaling results. In 

general, a large separation between grade levels when using separate calibration resulted in the 

largest mean BIAS and mean RMSE values, especially for the largest item format effect 

conditions. In cases where significant differences between vertical scaling configurations 

resulted, pairwise concurrent produced smaller average values. There was rarely a significant 
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difference for common item set, however, the narrow common item set produced smaller 

average values for the small grade level separation while the expanded common item set 

produced smaller average values for the large grade level separation.  

Important to note is the relative proportion of replications with positive and negative 

mean BIAS values. For this grade level, there was a large proportion of replications with positive 

mean BIAS values. This resulted in an overall positive average BIAS, regardless of grade level 

separation or item format effect condition. This relative proportion of positive replications 

increased as item format effect increased and resulted in spuriously small average BIAS values 

when the relative proportions were essentially equal. This phenomenon was particularly evident 

for the 3-dimensional model, regardless of calibration method, and for the 2-dimensional model 

under pairwise concurrent calibration as well as for the small and/or moderate item format effect 

conditions for separate calibration. However, this phenomenon was eliminated for mean RMSE 

values because the calculation and these values revealed a more expected pattern and magnitude. 

Finally, significant differences were found between data generation methods. Including 

the vertical scale factor in the data generation model resulted in smaller average RMSE values 

for all conditions, although not always significant, and smaller average BIAS values for the small 

grade level separation conditions. On the other hand, values for average BIAS under the large 

grade level separation condition, when significant, favored the traditional data generation 

method.   
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4.1.2 Grade 6 Results 

4.1.2.1 Trends by Condition 

 

Average BIAS  

Mean BIAS values generally increased as degree of item format effect increased, regardless of 

common item set, grade level separation, and vertical scaling method (Table 8). As with grade 5, 

however, trends for the small grade level separation were less clear because of the inconsistent 

estimation of the observed expected score. For separate calibration, scores were estimated such 

that the resulting mean BIAS values were both under- and overestimated, however, the 

proportion of under- to overestimated values differed by item format effect condition. This 

resulted in mean values for the no and small item format effect conditions being predominately 

underestimated (as expected) while values for the large item format effect condition were 

consistently overestimated. However, for the moderate item format effect, replications were split 

roughly 50/50 resulting in spuriously low mean BIAS values. This inconsistent estimation was 

observed for values generate under the 3-dimensional model and for the large grade level 

separation, but the mean BIAS value for each replication was predominately negative for both. 

Mean RMSE values were not impacted by this phenomenon.  

Additionally, in general, mean BIAS values for all item format effect conditions tended 

to be similar to one another rather than following a particular pattern when using data generated 

under the 3-dimensional model. Additionally, small grade level separation values were smaller 

than large grade level separation values for most common item set, vertical scaling, item format 

effect, and data generation conditions. However, scores produced for the large item format effect 

condition under the small grade level separation condition for the 2-dimensional model 
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generation resulted in larger mean BIAS values compared to the large grade level separation 

condition for that same data generation model (Figures 8 and 9).  

Average RMSE  

Mean RMSE values increased as degree of item format effect increased, regardless of common 

item set, grade level separation, vertical scaling method, or data generation method. 

Additionally, values from the small grade level separation condition were smaller than those 

form the large grade level separation values regardless of common item set, vertical scaling 

method, item format effect condition, and data generation method. Scores from data generated 

under the 3-dimensional model were smaller than scores generated from data under the 2-

dimensional or unidimensional models. In general, however, both calibration methods produced 

scores with similar average RMSE values regardless of common item set under the 3-

dimensional model generation; but smaller values than resulted from the data generated under 

the 2-dimensional model. Values resulting from scores generated under the traditional 

unidimensional and 2-dimensional essentially unidimensional model generation were, in general, 

comparable while the essentially unidimensional values resulting from the 3-dimensional model 

generation were smaller comparatively (Figures 10 and 11). 
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Table 8. Grade 6 mean BIAS and RMSE by condition 

Scaling 
Method 

Common 
Item Set Model Format 

Effect 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 

Separate  

Narrow 

Unidim None -0.03 -0.53 3.73 4.53 

2-Dim 

None -0.03 -0.54 3.73 4.52 
Small -0.11 -0.59 3.90 4.54 

Moderate -0.03 -0.67 4.70 5.54 
Large 0.86 -0.65 5.71 6.84 

3-Dim 

None -0.13 -0.47 3.32 3.69 
Small  -0.14 -0.54 3.38 3.82 

Moderate -0.16 -0.72 3.51 4.12 
Large -0.17 -0.92 3.80 4.71 

Expanded 

Unidim None -0.02 -0.51 3.73 4.51 

2-Dim 

None -0.06 -0.56 3.72 4.53 
Small -0.07 -0.62 3.94 4.63 

Moderate -0.01 -0.67 4.60 5.85 
Large 0.87 -0.59 5.75 6.87 

3-Dim 

None -0.13 -0.50 3.31 3.74 
Small -0.14 -0.54 3.42 3.83 

Moderate -0.15 -0.68 3.54 4.03 
Large -0.17 -0.86 3.83 4.95 

Pairwise  

Narrow 

Unidim None -0.03 -0.55 3.74 4.65 

2-Dim 

None -0.07 -0.54 3.68 4.54 
Small -0.10 -0.59 3.88 4.62 

Moderate 0.01 -0.62 4.56 5.39 
Large 0.88 -0.79 5.72 6.73 

3-Dim 

None -0.07 -0.49 3.32 3.82 
Small -0.11 -0.54 3.35 3.92 

Moderate -0.15 -0.70 3.51 4.10 
Large -0.16 -0.89 3.84 4.36 

Expanded 

Unidim None -0.03 -0.55 3.71 4.65 

2-Dim 

None -0.05 -0.57 3.71 4.59 
Small -0.06 -0.58 3.88 4.60 

Moderate 0.04 -0.62 4.66 5.61 
Large 0.88 -0.76 5.75 6.73 

3-Dim 

None -0.14 -0.52 3.31 3.83 
Small -0.11 -0.52 3.44 3.89 

Moderate -0.15 -0.64 3.51 4.00 
Large -0.18 -0.84 3.89 4.42 
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Figure 8. Grade 6 average BIAS for small grade level 
separation 

 
 
Figure 9. Grade 6 average BIAS for large grade level 
separation 

 

Figure 10. Grade 6 average RMSE for small grade level 
separation 

 

Figure 11. Grade 6 average RMSE for large grade level 
separation 
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4.1.2.2 ANOVA Results 

Again, two separate five-way mixed ANOVAs using BIAS and RMSE values as the dependent 

variable were performed on the results of the 100 replications for this grade level. Most 

interactions and main effects were significant for the model (Table B3 and B4).  Using the 

LSMEANS command in SAS, pairwise comparisons for the two- and three-way interactions 

were examined and effect sizes were calculated. Additionally, the difference matrix produced 

was used to examine relevant comparisons between vertical scaling configurations by condition 

to determine the scaling method(s) that resulted in the most accurate vertical scales for each 

condition. 

Item Format Effect  

Mean BIAS values for item format effect were dependent on grade level separation, vertical 

scaling method, and data generation method (Table C6). Effect sizes for mean BIAS values 

ranged from 0.47 to 2.05 while effect sizes for mean RMSE values ranged from 0.33 to 0.76. 

For the 2-dimensional data generation model, mean BIAS values were significantly larger 

for the large item format effect condition compared to the no, small, and moderate item format 

effect conditions under the small grade level separation condition regardless of scaling method. 

For the large grade level separation condition there was no significant difference in mean BIAS 

values. For the 3-dimensional generation model, there was no significant difference in mean 

BIAS values between item format effect conditions when using either vertical scaling method for 

the small grade level separation condition. However, for the large grade level separation 

condition, the large item format effect condition had mean BIAS values significantly larger than 

the no and small item format effect conditions.  
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Average RMSE values for the 2-dimensional data generation model under the small 

grade level separation were significantly higher for the large item format effect compared to the 

other item format effect conditions. Under the large grade level separation condition, while the 

large item format effect was, again, significantly larger than the other item format effect 

conditions, additionally, the moderate item format effect conditions had significantly higher 

mean RMSE values than the no and small item format effect condition under the expanded 

common item set configuration while under the narrow common item set configuration the 

moderate item format effect condition was larger than only the no item format effect condition. 

For the 3-dimensional model data generation, there was no significant difference in mean RMSE 

values for any item format effect conditions under the small grade level separation condition. 

Under the large grade level separation condition, regardless of common item set, the large item 

format effect condition had higher mean values than the no item format effect condition, but with 

the expanded common item set, the large item format effect condition was also larger than the 

small item format effect condition. For pairwise concurrent calibration under the large grade 

level separation there was no significant difference in mean RMSE values between item format 

effect conditions.  

Vertical Scaling Method 

There was also no significant difference in mean BIAS or mean RMSE values for any study 

conditions for this grade level (Table C7).   

Common Item Set Configuration 

There was no significant difference in mean BIAS or mean RMSE values between the narrow 

and expanded common item set configurations regardless of item format effect, vertical scaling 

method, grade level separation, and data generation method (Table C8).  
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Grade Level Separation 

Regardless of how scores were scaled, average BIAS values were significantly larger for the 

large grade level separation condition for all item format effect conditions for all common item 

set configuration and data generation methods (Table C9). Effect sizes for these values ranged 

from 0.50 to 2.44. 

Average RMSE values were significantly larger for the large grade level separation 

condition compared to the small grade level separation condition only for the large item format 

effect condition under the 2-dimensional data generation model and for separate calibration 

conditions under the 3-dimensional data generation model. Effect sizes for these values were 

small and ranged from 0.33 to 0.41. 

Data Generation Method 

Average BIAS values were significantly larger under the 2-dimensional model for the large item 

format effect condition regardless of grade level separation or common item set configuration 

when using separate calibration. (Table C10). While this was also true when using pairwise 

concurrent calibration under the small grade level separation conditions, under the large grade 

level separation condition, it was not true. Effect sizes for these values ranged from 0.39 to 1.53. 

However, average RMSE values were significantly larger under the traditional data generation 

model for both the moderate and large item format effect conditions regardless of grade level 

separation, scaling method, and common item set configuration. Effect sizes for mean RMSE 

values ranged from 0.34 to 0.77. 

4.1.2.3 Performance of Vertical Scaling Configurations 

Using the pairwise comparisons matrix produced by the LSMEANS procedure, a table was 

constructed to summarize the overall performance of each of the four vertical scaling 
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configurations to determine which vertical scaling method produced the most accurate results 

(Table 9). For the small grade level separation, mean BIAS values tended to be smallest when 

using separate calibration regardless of common item set while mean RMSE values tended to be 

smallest when using pairwise concurrent calibration; although these differences were rarely 

significant. For the large grade level separation, whether examining mean BIAS or mean RMSE, 

pairwise concurrent calibration tended to produce the smallest values although, again, 

differences were rarely significant. Concerning the common item set configuration, mean BIAS 

values tended to be smallest when using the expanded common item set while mean RMSE 

values tended to be smallest when using the narrow common item set. These differences, 

however, were not significant. 

Table 9. Grade 6 vertical scaling methods by accuracy 

 Data Generation Format Effect Small Separation Large Separation 

BIAS 

Unidim None se=sn<pn=pe pe<pn<se=sn 

2-Dim 

None sn=se=pn=pe sn=se=pn=pe 
Small se=sn<pe<pn pe<pn<sn=se 

Moderate pn=se=pe=sn pe=pn=se=sn 
Large sn=se=pe=pn se=sn=pe=pn 

3-Dim 

None se=pn=sn=pe sn=se=pn=pe 
Small  se=sn=pn=pe pe<pn<sn=se 

Moderate pe=se=pn=sn pe=se=pn=sn 
Large pe=pn=sn=se pe=se=pn=sn 

RMSE 

Unidim None pn=sn=se=pe pe=pn=se=sn 

2-Dim 

None pe=pn=se=sn sn=se=pn=pe 
Small       sn=se=pn=pe sn=se=pn=pe 

Moderate pn=se=pe-sn pn=sn=pe=se 
Large sn=se=pn=pe pn=pe=sn=se 

3-Dim 

None pe=pn=se=sn sn=se=pn=pe 
Small  pn=sn=se=pe pe=pn=sn=se 

Moderate pe=se=sn=pn pe=pn=se=sn 
Large sn=se=pn=pe pn=pe=sn=se 

sn=separate - narrow; se=separate - expanded; pn=pairwise – narrow; pe=pairwise - expanded 
< significantly smaller        = not significantly different 
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4.1.2.4 Summary of Grade 6 Results 

Based on the ANOVA results item format effect, vertical scaling method and grade level 

separation had a statistically significant impact on the scaling results for this grade level. As with 

grade 5, common item set configuration did not have a significant impact on the scaling results 

for this grade level. In general, a large separation between grade levels resulted in the largest 

mean BIAS and mean RMSE values, especially for the moderate and large item format effect 

conditions. However, average BIAS values were less impacted by item format effect when using 

pairwise concurrent calibration when a large separation in grade levels was present. Significant 

differences between vertical scaling configurations were rare, but grade level separation had a 

significant impact on mean BIAS values with a large separation producing larger mean values. 

Mean RMSE values were less impacted by grade level separation except for the largest item 

format effect conditions. 

The same phenomenon observed for grade 5 in which the relative proportion of 

replications with positive and negative mean BIAS values changed across item format effect 

conditions was also observed for grade 6. While the average BIAS values for grade 6 overall 

were negative, the relatively equal proportions of negative and positive replications was 

observed for the 2-dimensional condition regardless of scaling method and resulted in spuriously 

low mean BIAS values, especially for the moderate item format effect condition.  Again, the 

mean RMSE values were not affected by this issue and revealed a more expected pattern and 

magnitude. 

Few statistically significant differences were found between data generation methods. 

Where significant differences existed, they were generally for the moderate and/or large item 

format effect conditions with the 3-dimensional data generation model producing smaller values. 
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Including the vertical scale factor in the data generation model resulted in smaller average RMSE 

values for all conditions, although not always significant, and smaller average BIAS values for 

the small grade level separation conditions. Smaller average BIAS values under the large grade 

level separation condition, when significant, favored the traditional data generation method.   

4.1.3 Grade 7 Results 

4.1.3.1 Trends by Condition 

Average BIAS 

Mean BIAS values generally increased as degree of item format effect increased, regardless of 

common item set, grade level separation, or vertical scaling method (Table 10). Scores resulting 

from data generated under the 2-dimensional and 3-dimensional models were similar across 

vertical scaling methods, common item sets, and grade level separation. In addition, all methods 

of scaling and data generation consistently overestimated the expected scores. All data 

generation models resulted in similar average BIAS values regardless of condition (Figures 12 

and 13).  

Average RMSE 

Likewise, mean RMSE values generally increased as degree of item format effect increased, 

regardless of common item set, grade level separation, or vertical scaling method for both grade 

level separation conditions. While both calibration methods produced similar results, scores 

resulting from the 3-dimensional model generation had smaller mean RMSE values than those 

resulting from data generated under the 2-dimensional model. Also, the essentially 

unidimensional scores generated with the 3-dimensional model resulted in comparatively smaller 
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mean values compared to the scores generated under the traditional unidimensional and 2-

dimensional essentially unidimensional models (Figure 14 and 15).  

Table 10. Grade 7 mean BIAS and mean RMSE by condition 

Scaling 
Method 

Common 
Item Set Model Format 

Effect 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 

Separate  

Narrow 

Unidim None -0.18 -0.18 3.65 3.65 

2-Dim 

None -0.18 -0.19 3.66 3.66 
Small -0.23 -0.23 3.82 3.82 

Moderate -0.32 -0.32 4.55 4.54 
Large -0.29 -0.29 5.47 5.46 

3-Dim 

None -0.17 -0.18 3.25 3.25 
Small  -0.19 -0.18 3.30 3.29 

Moderate -0.20 -0.20 3.42 3.42 
Large -0.25 -0.24 3.63 3.62 

Expanded 

Unidim None -0.18 -0.17 3.63 3.64 

2-Dim 

None -0.18 -0.18 3.66 3.64 
Small -0.24 -0.26 3.81 3.80 

Moderate -0.31 -0.31 4.55 4.52 
Large -0.28 -0.28 5.46 5.47 

3-Dim 

None -0.18 -0.17 3.25 3.24 
Small -0.18 -0.19 3.29 3.30 

Moderate -0.23 -0.21 3.44 3.43 
Large -0.22 -0.25 3.61 3.63 

Pairwise  

Narrow 

Unidim None -0.18 -0.18 3.64 3.65 

2-Dim 

None -0.18 -0.20 3.65 3.66 
Small -0.24 -0.26 3.81 3.82 

Moderate -0.36 -0.42 4.61 4.54 
Large -0.38 -0.50 5.47 5.45 

3-Dim 

None -0.15 -0.18 3.25 3.25 
Small -0.18 -0.18 3.29 3.29 

Moderate -0.21 -0.21 3.41 3.42 
Large -0.26 -0.27 3.63 3.62 

Expanded 

Unidim None -0.17 -0.17 3.63 3.64 

2-Dim 

None -0.18 -0.18 3.66 3.64 
Small -0.25 -0.28 3.81 3.80 

Moderate -0.35 -0.41 4.55 4.51 
Large -0.37 -0.49 5.46 5.45 

3-Dim 

None -0.17 -0.16 3.24 3.24 
Small -0.17 -0.19 3.29 3.30 

Moderate -0.21 -0.22 3.42 3.43 
Large -0.24 -0.28 3.61 3.63 
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Figure 12. Grade 7 average BIAS for small grade level 
separation 

 
 
Figure 13. Grade 7 average BIAS for large grade level 
separation 

 
 

Figure 14. Grade 7 average RMSE for small grade level 
separation 

 
 

Figure 15. Grade 7 average RMSE for large grade level 
separation 
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4.1.3.2 ANOVA Results 

Again, two separate five-way mixed ANOVAs using BIAS and RMSE values as the dependent 

variable were performed on the 100 replications for grade 7. While only about half of the 

interactions and main effects were significant for the BIAS model, only a handful of interactions 

and main effects were significant for the RMSE model (Table B5 and B6). Using the LSMEANS 

command in SAS, pairwise comparisons were examined and effect sizes were calculated. 

Additionally, the difference matrix produced was used to examine relevant comparisons between 

vertical scaling configurations by condition to determine the scaling method(s) that resulted in 

the most accurate vertical scales for each condition. 

Item Format Effect 

Mean BIAS values for the item format effect were dependent on vertical scaling method and data 

generation method (Table C11). Effect sizes for these values ranged from 0.37 to 0,81. Under the 

2-dimensional data generation model, regardless of grade level separation or common item set 

configuration, there was no significant difference among item format effect condition when 

using separate calibration. When using pairwise concurrent calibration, mean BIAS values for 

the large and moderate item format effect conditions were significantly larger than the no item 

format effect condition as well as the small item format effect condition under the large grade 

level separation. However, there was no significant difference in mean BIAS values among item 

format effect conditions regardless of scaling method, grade level separation, or common item 

set configuration under the 3-dimensional data generation model. 

Mean RMSE values were significantly larger for the large item format effect condition 

compared to the no, small, and moderate item format effect conditions and were larger for the 

moderate item format effect compared to the no and small item format effect conditions for all 
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vertical scaling methods, common item set configurations, grade level separation conditions, and 

data generation models. In addition, for the 2-dimensional data generation method, the moderate 

item format effect condition was significantly larger than the small item format effect condition 

regardless of any other condition as well. Effect sizes for these values ranged from 0.36 to 4.33. 

Vertical Scaling Method 

There was no significant difference in mean BIAS and mean RMSE values between scaling 

methods regardless of item format effect, grade level separation, common item set configuration, 

or data generation method except for the large grade level separation condition under the 2-

dimensional generation model for which the large item format effect condition with pairwise 

concurrent calibration was significantly smaller (Table C12). Effect size for these two significant 

results was 0.57. 

Common Item Set Configuration 

There was no significant difference in mean BIAS or mean RMSE values between common item 

set configurations regardless of item format effect, scaling method, grade level separation, or 

data generation model (Table C13). 

Grade Level Separation 

There was also no significant difference in mean BIAS or mean RMSE values between the small 

and large grade level separation conditions regardless of item format effect, scaling method, 

common item set, or data generation model (Table C14). 

Data Generation Method 

There was no significant difference in mean BIAS values among the data generation models for 

the small grade level separation and the large grade level separation with separate calibration 

regardless of item format effect condition, common item set configuration, or grade level 



109 

 

separation (Table C15). However, for the large grade level separation with pairwise concurrent 

calibration, the 3-dimensional model produced significantly smaller mean BIAS values 

comparatively for the moderate and large item format effect conditions regardless of common 

item set and grade level separation condition. Effect sizes for mean BIAS values ranged from 

0.48 to 0.61. 

The 3-dimensional data generation model produced significantly smaller mean RMSE 

values compared to both the 2-dimensional and unidimensional data generation models 

regardless of item format effect condition, vertical scaling method, common item set 

configuration, and grade level separation condition, but values produced under the 

unidimensional model were not significantly different from those generated under the 2-

dimensional model. Effect sizes for these differences ranged from 0.93 to 4.39. 

4.1.3.3 Performance of Vertical Scaling Configurations 

Using the pairwise comparisons matrix, a summary table was produced (Table 11). Mean BIAS 

values tended to be smaller under the large grade level separation when using separate 

calibration, although differences were not significant. On the other hand, mean RMSE values 

tended to be smaller, although not significant, when using pairwise concurrent calibration with 

the expanded common item set regardless of item format effect condition, grade level separation 

and data generation model. Also, the expanded common item set tended to produce the smallest 

mean BIAS and mean RMSE values for the unidimensional data generation model. Again, there 

was no significant difference between vertical scaling configurations. 
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Table 11. Grade 7 vertical scaling methods by accuracy 

 Data Generation Format Effect Small Separation Large Separation 

BIAS 

Unidim None pe=se=pn=sn se=pe=sn=pn 

2-Dim 

None pe=pn=se=sn se=pe=sn=pn 
Small sn=se=pn=pe sn=pn=se=pe 

Moderate se=sn=pe=pn se=sn=pe=pn 
Large se=sn=pe=pn se=sn<pe=pn 

3-Dim 

None pn=sn=pe=se pe=se=pn=sn 
Small  pe=pn=se=sn sn=pn=se=pe 

Moderate sn=pn=pe=se sn=pn=se=pe 
Large se=pe=sn=pn sn=se=pn=pe 

RMSE 

Unidim None pe=se=pn=sn pe=se=pn=sn 

2-Dim 

None pn=sn=pe=se pe=se=pn=sn 
Small pe=se=pn=sn pe=se=pn=sn 

Moderate pe=sn=se=pn pe=se=pn=sn 
Large pe=se=pn=sn pe=pn=sn=se 

3-Dim 

None pe=se=pn=sn pe=pn=sn=se 
Small  pe=se=pn=sn pn=sn=pe=se 

Moderate pn=sn=pe=se pn=sn=pe=se 
Large pe=se=pn=sn pn=sn=pe=se 

sn=separate - narrow; se=separate - expanded; pn=pairwise – narrow; pe=pairwise - expanded 
< significantly smaller        = not significantly different 

4.1.3.4 Summary of Grade 7 Results 

Based on the ANOVA results, item format effect had a statistically significant impact on the 

vertical scaling results for this grade level. Item format effect, common item set, and vertical 

scaling method did not have a significant impact on grade 7 results. In general, mean RMSE 

values were significantly larger for the moderate and/or large item format effect condition.  

Mean BIAS values, on the other hand, were less likely to be impacted by item format effect. 

Significant differences between vertical scaling configurations did not really exist, but mean 

RMSE values were smaller when using pairwise concurrent calibration with the expanded 

common item set.  

However, significant differences were found between data generation methods. Including 

the vertical scale factor in the data generation model resulted in significantly smaller average 
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RMSE values for most conditions and significantly smaller average BIAS values for the largest 

item format effect conditions. 

4.1.4 Grade 8 Results 

4.1.4.1 Trends by Condition 

Average BIAS 

Mean BIAS values generally increased as degree of item format effect increased, regardless of 

common item set, grade level separation, and vertical scaling method. However, the large item 

format effect condition under the 2-dimensional data generation model for pairwise concurrent 

calibration had smaller than expected mean BIAS values (Table 12). Mean BIAS values 

produced from separate calibration were smaller for the small grade level separation condition 

compared to the large grade level separation condition regardless of common item set and data 

generation method. However, under pairwise concurrent calibration, mean BIAS values were 

similar across data generation methods and common item set; but values for the large grade level 

separation condition tended to be slightly smaller than the mean values resulting from the small 

grade level separation condition. In addition, all methods of scaling and data generation 

consistently produced average scores that were predominately overestimated. As with grade 6, 

smaller item format effect conditions produced replications with negative BIAS values while the 

larger item format effect conditions produced replications in which the mean BIAS values were 

increasingly positive. This was especially true for the large item format effect condition and 

produced average BIAS scores across replications that were spuriously low. This phenomenon, 

however, did not impact the mean RMSE values. 
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 The unidimensional as well as the essentially unidimensional conditions for both the 2-

dimensional and 3-dimensional model data generation resulted in similar average BIAS values 

regardless of condition (Figures 16 and 17).  

Average RMSE 

Likewise, mean RMSE values generally increased as degree of item format effect increased, 

regardless of common item set, grade level separation, and vertical scaling method. While values 

across common item sets, scaling methods, and data generation methods were similar; pairwise 

concurrent calibration tended to produce smaller mean values, especially for the large item 

format effect conditions, and mean values resulting from the 3-dimensional model generation 

were smaller than those resulting from data generated under the 2-dimensional model. Again, 

scores from the essentially unidimensional condition generated under the 3-dimensional model 

resulted in comparatively smaller mean RMSE values compared to those generated under the 

traditional unidimensional and 2-dimensional essentially unidimensional models (Figures18 and 

19). 
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Table 12. Grade 8 mean BIAS and mean RMSE by condition 

Scaling 
Method 

Common 
Item Set Model Format 

Effect 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 

Separate  

Narrow 

Unidim None -0.20 -0.66 3.74 4.03 

2-Dim 

None -0.21 -0.69 3.78 4.04 
Small -0.27 -0.73 3.93 4.21 

Moderate -0.32 -0.87 4.71 4.93 
Large -0.30 -1.47 5.69 6.08 

3-Dim 

None -0.20 -0.50 3.32 3.40 
Small  -0.22 -0.52 3.38 3.46 

Moderate -0.24 -0.57 3.51 3.58 
Large -0.26 -0.79 3.74 3.87 

Expanded 

None None -0.19 -0.68 3.76 4.01 

2-Dim 

None -0.22 -0.72 3.76 4.07 
Small -0.25 -0.74 3.92 4.20 

Moderate -0.30 -0.89 4.72 4.95 
Large -0.30 -1.36 5.67 6.02 

3-Dim 

None -0.20 -0.50 3.31 3.41 
Small -0.19 -0.51 3.38 3.45 

Moderate -0.24 -0.61 3.53 3.62 
Large -0.26 -0.77 3.73 3.86 

Pairwise  

Narrow 

Unidim None -0.18 -0.15 3.64 3.57 

2-Dim 

None -0.19 -0.17 3.69 3.59 
Small -0.26 -0.17 3.86 3.78 

Moderate -0.28 -0.16 4.62 4.54 
Large -0.20 -0.02 5.55 5.45 

3-Dim 

None -0.18 -0.17 3.26 3.15 
Small -0.19 -0.16 3.31 3.20 

Moderate -0.20 -0.16 3.45 3.34 
Large -0.21 -0.15 3.66 3.52 

Expanded 

Unidim None -0.17 -0.17 3.65 3.57 

2-Dim 

None -0.21 -0.18 3.67 3.59 
Small -0.24 -0.20 3.85 3.79 

Moderate -0.27 -0.15 4.63 4.55 
Large -0.20 -0.02 5.55 5.46 

3-Dim 

None -0.18 -0.16 3.25 3.15 
Small -0.18 -0.16 3.32 3.19 

Moderate -0.20 -0.15 3.46 3.32 
Large -0.21 -0.15 3.66 3.52 
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Figure 16. Grade 8 average BIAS for small grade level 
separation 

 

Figure 17. Grade 8 average BIAS for large grade level 
separation 

 
 

Figure 18. Grade 8 average RMSE for small grade level 
separation 

 

Figure 19. Grade 8 average RMSE for large grade level 
separation 
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4.1.4.2 ANOVA Results 

Two separate five-way mixed ANOVAs using BIAS and RMSE values as the dependent variable 

were performed on the results of the 100 replications for this grade level. For this grade level, 

most interactions and main effects were significant for the BIAS model, while only a handful of 

inteactions and main effects were significant for the RMSE values (Table B7 and B8). Again, 

pairwise comparisons were examined using the LSMEANS command in SAS and effect sizes 

were calculated. The difference matrix produced was used to examine relevant comparisons 

between scaling configurations to determine the scaling method(s) that resulted in the most 

accurate vertical scales for each condition. 

Item Format Effect 

Mean BIAS values were influenced by grade level separation, vertical scaling method, and data 

generation model, however, values were not significantly different for any item format effect 

conditions under the small grade level separation condition (Table C16). Effect sizes ranged 

from 0.28 to 1.52 for significant results. For the large grade level separation under separate 

calibration regardless of data generation model and common item set configuration, the large 

item format effect was significantly larger than the no, small, and moderate item format effect 

conditions. Additionally, the moderate item format effect condition was significantly larger than 

the no and small item format effect conditions under the 2-dimensional data generation model. 

For pairwise concurrent calibration, the large item format effect condition produced larger mean 

values than the no and small item format effect conditions, but only under the 2-dimensional data 

generation model. There was no significant difference among item format effect conditions for 

pairwise concurrent calibration under the 3-dimensional model.  
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Mean RMSE values under the 2-dimensional data generation model were significantly 

larger for both the moderate and large item format effect conditions compared to the no and 

small item format effect conditions and for the larger item format effect condition compared to 

the moderate item format effect condition. Values under the 3-dimensional data generation, 

however, were only significantly larger for the large item format effect compared to the no and 

small item format effect conditions. Effect sizes for these values ranged from 0.68 to 4.34. 

Vertical Scaling Method 

There was no significant difference in mean BIAS or mean RMSE values between separate and 

pairwise concurrent for any conditions under the small grade level separation calibration (Table 

C17). Under the large grade level separation condition, however, pairwise concurrent calibration 

produced significantly smaller mean values compared to those produced with separate 

calibration for all conditions regardless of item format effect, common item set configuration, 

and data generation model. Effect sizes for mean BIAS values ranged from 0.98 to 2.28 while 

effect sizes for mean RMSE values ranged from 0.52 to 1.33. 

Common Item Set Configuration 

There was no significant difference in mean BIAS or mean RMSE values between common item 

set configurations regardless of item format effect, scaling method, grade level separation, or 

data generation model (Table C18).  

Grade Level Separation 

Mean BIAS values were influenced by vertical scaling method with significantly larger values 

for the large grade level separation condition for separate calibration regardless of item format 

effect, common item set, and data generation conditions (Table C19). Effect sizes for mean 

BIAS values ranged from 0.58 to 2.28. Likewise, mean RMSE values were significantly larger 



117 

 

for the large grade level separation condition under separate calibration regardless of item format 

effect and common item set condition, but only for the 2-dimensional and unidimensional data 

generation models. Effect sizes for these values ranged from 0.48 to 0.82. There was no 

significant difference in mean values between grade level separation conditions for pairwise 

concurrent calibration condition and for separate calibration under the 3-dimensional data 

generation model regardless of condition.  

Data Generation Method 

Mean BIAS values were significantly larger for data generated under the traditional models for 

separate calibration with a large grade level separation condition for all item format effect and 

common item set conditions (Table C20). Mean RMSE values, on the other hand, were 

significantly larger under the traditional generation models for all scaling, item format effect, 

grade level separation, and common item set conditions. Effect sizes for mean BIAS values 

ranged from 0.33 to 1.33 and effect sizes for mean RMSE values ranged from 0.82 to 4.70. 

4.1.4.3 Performance of Vertical Scaling Configurations 

Based on the pairwise comparisons matrix, the overall performance of each scaling 

configurations was examined (Table 13). Significant differences in performance of vertical 

scaling configurations existed for the large grade level separation condition for this grade. In all 

cases, pairwise concurrent calibration produced significantly smaller mean BIAS and mean 

RMSE values. Even though not significant, pairwise concurrent calibration also produced the 

smallest mean BIAS and mean RMSE values for the small grade level separation.  
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Table 13. Grade 8 vertical scaling methods by accuracy 

 Data Generation Format Effect Small Separation Large Separation 

BIAS 

Unidim None pe=pn=se=sn pn=pe<sn=se 

2-Dim 

None pn=pe=sn=se pn=pe<sn=se 
Small pe=se=pn=sn pn=pe<sn=se 

Moderate pe=pn=se=sn pe=pn<sn=se 
Large pe=pn=se=sn pe=pn<se=sn 

3-Dim 

None pn=pe=se=sn pn=pe<se=sn 
Small  pe=pn=se=sn pn=pe<se=sn 

Moderate pn=pe=se=sn pe=pn<sn=se 
Large pn=pe=se=sn pe=pn<se=sn 

RMSE 

Unidim None pn=pe=sn=se pe=pn=se=sn 

2-Dim 

None pe=pn=se=sn pn=pe<sn=se 
Small pe=pn=se=sn pn=pe<se=sn 

Moderate pn=pe=sn=se pn=pe<sn=se 
Large pn=pe=se=sn pn=pe<se=sn 

3-Dim 

None pe=pn=se=sn pn=pe<sn=se 
Small  pn=pe=sn=se pe=pn<se=sn 

Moderate pn=pe=sn=se pe=pn<sn=se 
Large pn=pe=se=sn pn=pe<se=sn 

sn=separate - narrow; se=separate - expanded; pn=pairwise – narrow; pe=pairwise - expanded 
< significantly smaller        = not significantly different 
   

4.1.4.4 Summary of Grade 8 Results 

Based on the ANOVA results, item format effect, vertical scaling method, and grade level 

separation had a statistically significant impact on the scaling results for this grade level. 

Common item set had no impact on the scaling results. In general, mean BIAS and mean RMSE 

values were significantly larger for the large grade level separation especially when using 

separate calibration. Also, mean BIAS and mean RMSE values increased as item format effect 

condition increased with significant differences between conditions for the largest item format 

effects. As observed for grades 5 and 6, under pairwise concurrent calibration, a large enough 

proportion of replications resulted in positive mean BIAS values compared to negative such that 

some item format effect conditions had spuriously small values. Mean RMSE values for these 

conditions, however, were more aligned with the expected pattern and magnitude. 
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Additionally, significant differences were found between data generation methods. 

Including the vertical scale factor in the data generation model resulted in significantly smaller 

average BIAS and RMSE values for most conditions, especially the large grade level separation 

and separate calibration conditions. 

4.1.5 Grade 9 Results 

4.1.5.1 Trends by Condition 

Average BIAS 

Mean BIAS values generally increased as degree of item format effect increased for the small 

grade level separation condition regardless of common item set or vertical scaling method. 

However, for the large grade level separation condition, the moderate item format effect 

condition under the 3-dimensional data generation model and the small item format effect 

condition under the 2-dimensional data generation model had smaller than expected mean BIAS 

values when scaled with pairwise concurrent calibration (Table 14). This grade level was also 

impacted by the phenomenon observed for grades 5 and 6 except it occurred for the large grade 

level separation. Under this condition for pairwise concurrent calibration, mean BIAS values fell 

into two (unidimensional and 2-dimensional) or three (3-dimensional) ‘distributions’ for each 

item format effect condition; one positive and one negative along with a third centered at zero 

when applicable. For the smaller item format effect conditions, each replication tended to 

produce distributions with BIAS values with large proportions of both negative and positive 

values. As item format effect increased, the proportion of replications with negative BIAS values 

increased. This means that the smaller item format effect conditions could be spuriously high 

with the larger item format effect conditions more accurately portrayed, however, due to the 
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presence of the more neutral distribution for the 3-dimensional model, the larger item format 

effect conditions could still be spuriously high. Again, average RMSE values were not impacted 

by this phenomenon. 

Average values produced by both calibration methods were smaller for the small grade 

level separation condition compared to the large grade level separation condition regardless of 

common item set and data generation method. However, for the large grade level separation 

condition, mean BIAS values resulting from the 3-dimensional model generation tended to be 

slightly smaller than those resulting from the 2-dimensional model generation. Although all 

methods of scaling and data generation consistently overestimated the expected score, pairwise 

concurrent calibration produced smaller average BIAS values for the large grade level separation 

condition while values were similar across scaling methods for the small grade level separation 

condition. Finally, the traditional unidimensional and the essentially unidimensional condition 

under the 2-dimensional model resulted in similar average values regardless of condition. 

However, mean values resulting from data generated under the 3-dimensional model tended to be 

smaller (Figures 20 and 21).  

Average RMSE 

Mean RMSE values generally increased as degree of item format effect increased, regardless of 

common item set, grade level separation, vertical scaling method, and data generation method. 

While average values across common item sets, vertical scaling methods, and data generation 

methods are similar; those resulting from data generated under the 3-dimensional model 

generation were smaller than those resulting from the 2-dimensional model generation and mean 

values under the small grade level separation condition were smaller than those under the large 

grade level separation condition. Again, scores generated under the essentially unidimensional 
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condition for the 3-dimensional model resulted in comparatively smaller mean RMSE values 

compared to the scores generated under the traditional unidimensional and 2-dimensional 

essentially unidimensional conditions (Figures 22 and 23).  

Table 14. Grade 9 mean BIAS and mean RMSE by condition 

Scaling 
Method 

Common 
Item Set Model Format 

Effect 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 

Separate  

Narrow 

Unidim None -0.12 -1.51 4.03 4.71 

2-Dim 

None -0.11 -1.52 4.02 4.71 
Small -0.15 -1.62 4.17 4.86 

Moderate -0.24 -2.10 5.07 5.56 
Large -0.26 -3.67 6.05 7.17 

3-Dim 

None -0.20 -1.01 3.47 3.67 
Small  -0.23 -1.09 3.54 3.71 

Moderate -0.27 -1.30 3.72 3.87 
Large -0.31 -1.78 3.94 4.27 

Expanded 

Unidim None -0.11 -1.48 4.05 4.68 

2-Dim 

None -0.13 -1.49 4.04 4.67 
Small -0.16 -1.63 4.17 4.85 

Moderate -0.26 -2.17 4.97 5.66 
Large -0.26 -3.52 6.03 7.01 

3-Dim 

None -0.22 -1.01 3.50 3.68 
Small -0.22 -1.08 3.52 3.72 

Moderate -0.28 -1.33 3.70 3.91 
Large -0.31 -1.74 3.93 4.26 

Pairwise  

Narrow 

Unidim None -0.12 -1.10 4.06 4.77 

2-Dim 

None -0.12 -0.88 4.04 4.77 
Small -0.16 -0.78 4.20 4.84 

Moderate -0.29 -2.13 4.97 5.65 
Large -0.41 -3.70 5.97 7.13 

3-Dim 

None -0.19 -0.46 3.45 3.68 
Small -0.22 -0.45 3.50 3.79 

Moderate -0.26 -0.92 3.67 4.11 
Large -0.31 -1.16 3.87 4.31 

Expanded 

Unidim None -0.11 -1.24 4.06 4.72 

2-Dim 

None -0.13 -1.02 4.07 4.69 
Small -0.17 -0.59 4.18 4.82 

Moderate -0.31 -1.43 4.96 5.50 
Large -0.40 -3.79 6.00 7.16 

3-Dim 

None -0.20 -0.74 3.42 3.58 
Small -0.21 -0.78 3.49 3.66 

Moderate -0.27 -0.83 3.65 3.91 
Large -0.32 -0.99 3.93 4.20 
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Figure 20. Grade 9 average BIAS for small grade level 
separation 

 
 
Figure 21. Grade 9 average BIAS for large grade level 
separation 

 
 
 

Figure 22. Grade 9 average RMSE for small grade level 
separation 

 
 
Figure 23. Grade 9 average RMSE for large grade level 
separation 
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4.1.5.2 ANOVA Results 

Again, two separate five-way mixed ANOVAs using BIAS and RMSE values as the dependent 

variable were performed on the results of the 100 replications for this grade. Most interactions 

and main effects for this grade level were significant for both the BIAS and RMSE models 

(Table B9 and B10).  Pairwise comparisons were examined, effect sizes were calculated, and the 

difference matrix produced was used to examine relevant comparisons between vertical scaling 

configurations by condition to determine the scaling method(s) that resulted in the most accurate 

vertical scales for each condition. 

Item Format Effect  

Significant differences in item format effect condition were observed for both data generation 

models and both grade level separation conditions (Table C21). Effect sizes for mean BIAS 

values ranged from 0.23 to 1.33 while effect sizes for mean RMSE values ranged from 0.39 to 

1.82. Mean BIAS values were only significantly different for the large grade level separation 

conditions only regardless of data generation model. For separate calibration, regardless of 

model, the large item format effect condition was significantly larger than the no and small item 

format effect conditions. For pairwise concurrent calibration, the large item format effect 

condition was significantly larger than the small and no item format effect condition and the 

moderate item format effect condition was significantly larger than the no and small item format 

effect condition, regardless of model, for the narrow common item set configuration. 

Additionally, under the 2-dimensional model for the pairwise concurrent calibration with 

expanded common item set, the large item format effect condition was significantly larger than 

the moderate, small, and no item format effect conditions and the moderate item format effect 

condition was significantly larger than the small and no item format effect conditions.  
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Under the 2-dimensional model, mean RMSE values for the large item format effect 

condition was significantly larger than those for the moderate, small, and no item format effect 

conditions and the moderate item format effect condition was significantly larger than the small 

and no item format effect conditions regardless of any other condition. However, under the 3-

dimensional model, there was no significant difference among item format effect conditions for 

the small grade level separation, but for the large grade level separation, the large item format 

effect condition was significantly larger than the no and small item format effect conditions 

regardless of vertical scaling method.  

Vertical Scaling Method 

There was no significant difference in mean BIAS or mean RMSE values between calibration 

methods except for the small item format effect condition for the small grade level separation 

under the 2-dimensional data generation model (Table C22). Effect sizes for these significant 

results were small and ranged from 0.37 to 0.43. 

Common Item Set Configuration 

There was no significant difference in mean BIAS or mean RMSE values between common item 

set configurations regardless of item format effect, vertical scaling method, grade level 

separation, and data generation method (Table C23).  

Grade Level Separation 

Differences in grade level separation were dependent on vertical scaling method and data 

generation method (Table C24). Effect sizes for significant mean BIAS results ranged from 0.33 

to 1.41. There was a significant difference in mean BIAS values between grade level separation 

conditions for separate calibration regardless of data generation model, item format effect 

condition, and common item set configuration. Additionally, for pairwise concurrent calibration, 
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mean BIAS values were significantly larger for the large grade level separation condition for the 

large item format effect conditions regardless of data generation model or common item set 

configuration. Additionally, mean BIAS values for the large grade level separation condition for 

the moderate item format effect condition for the 2-dimensional data generation model were 

significantly larger. 

Mean RMSE values were significantly larger for the larger grade level separation 

condition under separate calibration regardless of data generation model, item format effect 

condition or common item set configuration. For pairwise concurrent calibration, mean RMSE 

values for the large grade level separation condition were significantly larger than those for the 

small grade level separation condition regardless of item format effect and common item set 

configuration, but only for the 2-dimensional and unidimensional data generation models. Effect 

sizes for these significant results ranged from 0.36 to 0.85. 

Data Generation Method 

Differences in mean BIAS values for data generation model were dependent on grade level 

separation (Table C25). While there was no significant difference in mean BIAS values between 

data generation models for the small grade level separation, data generated under the 2-

dimensional model resulted in significantly larger values for both the moderate and large item 

format effect conditions for the large grade level separation. Effect sizes for these results ranged 

from 1.24 to 2.18. Mean RMSE values were significantly larger under the 2-dimensional data 

generation model for all item format effect conditions regardless of common item set and scaling 

method. Additionally, the 3-dimensional data generation model produced significantly smaller 

mean values compared to the unidimensional model regardless of condition. Effect sizes for 

these values ranged from 0.40 to 2.18. 
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4.1.5.3 Performance of Vertical Scaling Configurations 

The summary table produced from the pairwise comparisons matrix shows that significant mean 

BIAS differences existed between most vertical scaling configurations for the large grade level 

separation with pairwise concurrent calibration resulting in smaller values (Table 15). In 

addition, although not significant, under the 3-dimensional model, mean BIAS values were 

smallest when using pairwise concurrent calibration with the small grade level separation. 

However, mean BIAS values were smallest when using separate calibration under the traditional 

data generation model with the small grade level separation. Again, although not significant, 

mean BIAS and mean RMSE values were smallest when using the expanded common item set 

regardless of item format effect, scaling method, and data generation model.  

Table 15. Grade 9 vertical scaling methods by accuracy 

 Data Generation Format Effect Small Separation Large Separation 

BIAS 

Unidim None se=pe=sn=pn pn=pe=se=sn 

2-Dim 

None sn=pn=se=pe pn=pe<se=sn 
Small sn=pn=se=pe pe=pn<sn=se 

Moderate sn=se=pn=pe pe=sn=pn=se 
Large se=sn=pe=pn se=sn=pn=pe 

3-Dim 

None pn=pe=sn=se pn=pe<sn=se 
Small  pe=pn=se=sn pn=pe<se=sn 

Moderate pn=sn=pe=se pn=pe<se=sn 
Large pn=se=sn=pe pn=pe<se=sn 

RMSE 

Unidim None sn=se=pe=pn se=sn=pe=pn 

2-Dim 

None sn=se=pn=pe se=pe=sn=pn 
Small se=sn=pn=pe pe=pn=se=sn 

Moderate pe=pn=se=sn pe=sn=pn=se 
Large pn=pe=se=sn se=pn=pe=sn 

3-Dim 

None pe=pn=sn=se pe=sn=se=pn 
Small  pe=pn=se=sn pe=sn=se=pn 

Moderate pe=pn=se=sn sn=se=pe=pn 
Large pe=pn=se=sn pe=se=sn=pn 

sn=separate - narrow; se=separate - expanded; pn=pairwise – narrow; pe=pairwise – expanded 
< significantly smaller        = not significantly different 
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4.1.5.4 Summary of Grade 9 Results 

Based on the ANOVA results, item format effect and grade level separation had a statistically 

significant impact on the vertical scaling results for this grade level. Common item set and 

vertical scaling method did not have an impact on the scaling results. The largest mean RMSE 

values resulted from the two largest item format effect conditions under traditional data 

generation models regardless of common item set, grade level separation, or scaling method. The 

same was true for mean BIAS values, but only for the large grade level separation. Additionally, 

the large grade level separation condition resulted in larger mean BIAS and mean RMSE values 

for all item format effect conditions although only the largest item format effect conditions were 

impacted when using pairwise concurrent calibration. Opposite of the phenomenon observed for 

grades 5 and 6, a large proportion of replications for the no and small item format effect 

conditions resulted in positive mean BIAS values compared to the relatively high proportion of 

negative mean BIAS values for the moderate and large item format effect conditions. This 

resulted in spuriously small average values for the no and small item format effect conditions. 

Again, mean RMSE values were not impacted by this issue and showed an expected pattern and 

magnitude. 

Data generation method had the largest significant impact on scaling results for the large 

grade level separation, especially for the largest item format effect conditions.    

4.1.6 Grade 10 Results 

4.1.6.1 Trends by Grade Level Separation  
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Average BIAS 

Mean BIAS values generally increased as degree of item format effect increased for separate 

calibration under the large grade level separation condition regardless of common item set and 

vertical scaling method (Table 16). However, mean values were similar across all conditions 

under the small grade level separation condition for data generated under the 3-dimensional 

model. Again, for this grade level under pairwise concurrent calibration, mean BIAS values fell 

into the same two or three ‘distributions’. The same pattern was observed with smaller item 

format effect conditions producing distributions with large proportions of both negative and 

positive BIAS values with proportions of the negative BIAS values increasing as item format 

effect increased. Again, due to the presence of the more neutral distribution for the 3-

dimensional model, the larger item format effect conditions could still be spuriously high. As 

expected, average RMSE values were not impacted. 

Pairwise concurrent calibration produced smaller average BIAS values compared to 

separate calibration and values resulting from both calibration methods were smaller for the 

small grade level separation condition compared to the large grade level separation condition 

regardless of common item set or data generation method. However, for the large grade level 

separation condition, mean BIAS values resulting from the 3-dimensional generation tended to 

be smaller than those resulting from the 2-dimensional generation while the opposite was true for 

the small grade level separation condition. Finally, the traditional unidimensional and essentially 

unidimensional condition under the 2-dimensional resulted in similar average values regardless 

of condition. However, values resulting from data generated under the 3-dimensional model 

tended to be larger for the small grade level separation and smaller for the large grade level 

separation than the other data generation models (Figures 24 and 25).  
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Average RMSE 

As with grade 9, mean RMSE values generally increased as degree of item format effect 

increased, regardless of common item set, grade level separation, vertical scaling method, and 

data generation method for both grade level separation conditions. Mean RMSE values resulting 

from data generated under the 3-dimensional model were smaller than those resulting from data 

generated under the 2-dimensional model and values under the small grade level separation 

condition were smaller than those under the large grade level separation condition across 

common item sets, scaling methods, and data generation methods. Also, the essentially 

unidimensional values generated under the 3-dimensional model resulted in comparatively 

smaller average values compared to the average values generated under the traditional 

unidimensional and 2-dimensional essentially unidimensional conditions (Figures 26 and 27).  
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Table 16. Grade 10 mean BIAS and mean RMSE by condition 

Scaling 
Method 

Common 
Item Set Model Format 

Effect 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 

Separate  

Narrow 

Unidim None -0.01 -2.38 4.14 4.96 

2-Dim 

None -0.05 -2.34 4.10 4.92 
Small -0.01 -2.48 4.23 5.12 

Moderate 0.00 -2.95 4.96 5.83 
Large 0.26 -4.36 5.86 7.46 

3-Dim 

None -0.24 -1.46 3.51 3.58 
Small  -0.26 -1.51 3.54 3.61 

Moderate -0.29 -1.85 3.73 3.81 
Large -0.33 -2.50 3.98 4.32 

Expanded 

Unidim None -0.01 -2.29 4.15 4.89 

2-Dim 

None -0.03 -2.32 4.15 4.93 
Small -0.04 -2.43 4.20 5.08 

Moderate -0.01 -3.11 4.91 6.02 
Large 0.26 -4.23 5.86 7.31 

3-Dim 

None -0.29 -1.46 3.54 3.56 
Small -0.27 -1.55 3.55 3.63 

Moderate -0.29 -1.92 3.74 3.88 
Large -0.33 -2.44 3.93 4.26 

Pairwise  

Narrow 

Unidim None -0.05 -1.35 3.93 4.48 

2-Dim 

None -0.09 -1.02 3.91 4.49 
Small -0.06 -0.75 4.05 4.59 

Moderate -0.03 -2.19 4.77 5.31 
Large 0.29 -3.27 5.67 6.52 

3-Dim 

None -0.22 -0.50 3.35 3.31 
Small -0.24 -0.46 3.40 3.41 

Moderate -0.25 -1.01 3.55 3.71 
Large -0.26 -1.20 3.75 3.86 

Expanded 

Unidim None -0.05 -1.28 3.93 4.41 

2-Dim 

None -0.06 -1.22 3.93 4.43 
Small -0.07 -0.51 4.03 4.57 

Moderate -0.02 -1.34 4.76 5.23 
Large 0.31 -3.38 5.70 6.57 

3-Dim 

None -0.23 -0.54 3.33 3.20 
Small -0.25 -0.90 3.39 3.27 

Moderate -0.25 -0.92 3.55 3.50 
Large -0.29 -1.01 3.77 3.73 
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Figure 24. Grade 10 average BIAS for small grade level 
separation 

 
 
Figure 25. Grade 10 average BIAS for large grade level 
separation 

 
 

Figure 26. Grade 10 average RMSE for small grade level 
separation  

 
 
Figure 27. Grade 10 average RMSE for large grade level 
separation 
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4.1.6.2 ANOVA Results 

As with all previous grade levels, the two separate five-way mixed ANOVAs performed using 

BIAS and RMSE values as the dependent variable resulted in mostly significant interactions and 

main effects for both BIAS and RMSE models (Table B11 and B12). Again, pairwise 

comparisons were examined using the LSMEANS command in SAS and effect sizes were 

calculated. Again, the difference matrix produced was used to examine relevant comparisons 

between vertical scaling configurations. 

Item Format Effect  

Significant differences in mean BIAS and mean RMSE values were dependent upon grade level 

separation, common item set configuration, and data generation method (Table C26). Effect sizes 

for mean BIAS values ranged from 0.35 to 0.92 and effect sizes for mean RMSE values ranged 

from 0.30 to 1.88.  

The only mean BIAS values that were significantly different under the 2-dimensional 

data generation model were those for the large grade level separation. Under this condition, mean 

BIAS values for the large item format effect were significantly larger compared to the no, small, 

and moderate item format effect conditions as well as the moderate item format effect compared 

to the small and no item format effect conditions for pairwise concurrent calibration with the 

narrow common item set configuration. There was no significant difference among item format 

effect conditions under the 3-dimensional data generation model for this grade level. 

Mean RMSE values under the 2-dimensional data generation model were significantly 

larger for the large and moderate item format effect conditions compared to the no and small 

item format effect conditions as well as the large item format effect condition compared to the 

moderate item format effect condition regardless of vertical scaling method, common item set 
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configuration, and grade level separation. Under the 3-dimensional data generation model, 

significant differences were observed for the large grade level separation condition. Regardless 

of scaling method, the large item format effect condition was significantly larger than the no and 

small item format effect conditions and for separate calibration with the narrow common item set 

configuration, the large item format effect condition was also significantly larger than the 

moderate item format effect condition.  

Vertical Scaling Method 

Significant differences in mean BIAS values for vertical scaling method were dependent on 

grade level separation (Table C27). Mean BIAS values were significantly larger for separate 

calibration regardless of common item configuration, item format effect, or data generation 

method for the large grade level separation condition only. Effect sizes for these significant 

results ranged from 0.24 to 0.62. Likewise, mean RMSE values were significantly larger for 

separate calibration regardless of common item configuration, item format effect for the large 

grade level separation; but only for the traditional data generation methods. Effect sizes for mean 

RMSE values were small and ranged from 0.35 to 0.43. 

Common Item Set Configuration 

There was no significant difference in mean BIAS or mean RMSE values between common item 

set configurations regardless of item format effect, vertical scaling method, grade level 

separation, and data generation method (Table C28).  

Grade Level Separation 

Significant differences in mean BIAS values between grade level separation conditions were 

dependent on vertical scaling method (Table C29). Regardless of item format effect, common 

item set, and data generation method, the large grade level separation condition produced larger 
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mean BIAS values for the separate calibration condition. For pairwise concurrent calibration 

under the 2-dimensional data generation model, mean BIAS values for the large grade level 

separation condition were larger for the moderate and large item format effect conditions 

regardless of common item set configuration as well as for the unidimensional data generation 

model regardless of vertical scaling method. There was no significant difference between grade 

level separation conditions under the 3-dimensional generation model for pairwise concurrent 

calibration. Effect sizes for significant mean BIAS results ranged from 0.37 to 1.49. 

Mean RMSE values were not significantly different between grade level separation 

conditions under the 3-dimensional data model. However, under the unidimensional and 2-

dimensional data generation model, mean RMSE values for the large grade level separation 

condition were significantly larger than those for the small grade level separation condition for 

all conditions of item format effect, vertical scaling method, and common item set 

configurations. Effect sozes for these significant values ranged from 0.35 to 1.18. 

Data Generation Method 

Mean BIAS values were significantly larger for the 2-dimensional data generation model 

compared to the 3-dimensional data generation model only for the large grade level separation 

condition for the moderate and large item format effect conditions regardless of common item set 

and vertical scaling method (Table C30). Effect sizes for these significant results ranged from 

0.35 to 0.76. On the other hand, mean RMSE values were significantly larger for the 2-

dimensional data generation model compared to the 3-dimensional data generation model for all 

item format effect conditions regardless of common item set, grade level separation, and vertical 

scaling method. Additionally, the unidimensional model produced larger mean RMSE values 
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than the 3-dimensional model, but similar mean RMSE values compared to the 2-dimensional 

model. Effect sizes for these results ranged from 0.41 to 2.32. 

4.1.6.3 Performance of Vertical Scaling Configurations 

Using the pairwise comparisons matrix, a summary table was created to examine each vertical 

scaling configuration (Table 17). Differences in vertical scaling configurations existed for the 

large grade level separation with pairwise concurrent calibration producing significantly smaller 

mean BIAS and mean RMSE values. With the exception of the data generated under the 2-

dimensional model, pairwise concurrent calibration produced smaller, but not always significant, 

mean BIAS values. Also, although not significant, the expanded common item set configuration 

consistently produced smaller mean RMSE values under the large grade level separation 

condition. However, regardless of grade level separation, the narrow common item set usually 

produced the smallest mean BIAS values.   
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Table 17. Grade 10 vertical scaling methods by accuracy 

 Data Generation Format Effect Small Separation Large Separation 

BIAS 

Unidim None sn=se=pn=pe pn=pe<se=sn 

2-Dim 

None se=sn=pe=pn pn=pe<se=sn 
Small sn=se=pn=pe pe=pn<se=sn 

Moderate sn=se=pn=pe pe=pn <sn=se 
Large se=sn=pe=pn pn=pe<se=sn 

3-Dim 

None pn=pe=sn=se pn=pe<sn=se 
Small  pn=pe=sn=se pn<pe<sn=se 

Moderate pn=pe=se=sn pn<pe<sn=se 
Large pn=pe=sn=se pe=pn<se=sn 

RMSE 

None None pe=pn=sn=se pe=pn=se=sn 

2-Dim 

None pn=pe=sn=se pe=pn=sn=se 
Small pe=pn=se=sn pe=pn<se=sn 

Moderate pn=pe=sn=se pe=pn<sn=se 
Large pn=pe=sn=se pn=pe<se=sn 

3-Dim 

None pe=pn=sn=se pe=pn=se=sn 
Small  pe=pn=sn=se pe=pn=sn=se 

Moderate pe=pn=se=sn pe=pn=sn=se 
Large pn=pe=se=sn pe=pn<se=sn 

sn=separate - narrow; se=separate - expanded; pn=pairwise – narrow; pe=pairwise - expanded 
< significantly smaller        = not significantly different 
     

4.1.6.4 Summary of Grade 10 Results 

Based on the ANOVA results, item format effect, grade level separation, and vertical scaling 

method had a statistically significant impact on the vertical scaling results for this grade level. 

Common item set configuration did not have an impact on the resultant vertical scales. In 

general, the large grade level separation condition produced significantly larger mean BIAS and 

mean RMSE values, especially when using separate calibration and for the large item format 

condition. Additionally, the small and moderate item format effect conditions resulted in 

significantly larger mean RMSE values for both grade level separation conditions and under the 

traditional data generation method.  As observed with grade 9, a large proportion of replications 

with positive mean BIAS values resulted in spuriously small values for both the no and small 

item format effect conditions under pairwise concurrent calibration regardless of data generation 
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model. Again, mean RMSE values did not exhibit this phenomenon and showed an expected 

pattern and magnitude.  

Significant differences also existed between data generation methods with the 3-

dimensional model generally resulting in smaller mean BIAS and mean RMSE values. 

4.1.7 Overall Summary of Grade Level Results 

Item format effect and grade level separation had a significant impact on all grade level results 

while vertical scaling method had a significant influence on scaling results for most grade levels. 

However, common item set did not significantly influence the scaling results for any grade level. 

Additionally, significant differences were observed between data generation methods.  

Item Format Effects 

Item format effect had a significant impact on the resultant vertical scales.  In general, mean 

BIAS and mean RMSE values increased as item format effect increased for all grade levels, 

however, only the largest item format effect condition resulted in significantly larger mean 

values across grade levels. The moderate item format effect produced significantly larger mean 

values for several grade levels. Also, item format effect had more impact on mean RMSE values 

than on mean BIAS values. Item format effect was influenced by grade level separation, data 

generation model, and vertical scaling method.  

Under the 2-dimensional data generation model for the small grade level separation 

regardless of scaling method, there was no significant difference among item format effect 

conditions for grades 8, 9, and 10, as well as grade 7 for separate calibration. For grades 5 and 6 

for the small grade level separation for both scaling methods, the large item format effect 

condition had significantly larger mean BIAS values compared to all other format effect 
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conditions. In addition, for grade 5 under separate calibration the moderate item format effect 

was significantly larger than both the small and no item format effect conditions.  

Under the 2-dimensional data generation model for the large grade level separation 

condition and separate calibration, there was no significant difference in mean BIAS values for 

grades 6 and 7. For grades 5, 8, 9 and 10 for the same configuration, the large item format effect 

was significantly larger than the small and no item format effect conditions. Additionally, for 

grades 5, 8, and 10, the large item format effect had significantly larger mean BIAS values than 

the moderate item format effect condition. For grade 8, the moderate item format effect had 

significantly larger mean BIAS values compared to the no and small item format effect 

conditions as well.  

Under the 2-dimensional model, large grade level separation, and pairwise concurrent 

calibration, the large item format effect condition produced significantly larger mean BIAS 

values compared to the small and no item format effect conditions for grades 7, 8, 9, and 10. 

Additionally, for grades 9 and 10, the large item format effect condition had significantly larger 

values compared to the moderate item format effect condition. For grades 7 and 9, the moderate 

item format effect condition had significantly larger values than the small item format effect 

condition as well as for grade 10 with the narrow common item set configuration. Also, for 

grades 9 and 10 under the narrow common item set configuration, the moderate item format 

effect condition was significantly larger than the no item format effect condition.  

Under the 3-dimensional data generation model, there was no significant difference in 

item format effect conditions for the small grade level condition for all grade levels regardless of 

scaling method. This was also true for the large grade level separation condition under pairwise 

concurrent calibration for grades 7, 8, and 10 and for separate calibration for grades 7 and 10.  
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For grades 5, 6, 8, and 9 under separate calibration, the large item format effect condition 

had significantly larger mean BIAS values than the no and small item format effect condition. 

Additionally, under separate calibration for grades 5, 8 and 9, the large item format effect 

condition had significantly larger mean values than the moderate item format effect condition 

and for grade 5 for the same configuration, the moderate item format effect condition had 

significantly larger mean values compared to the small and no item format effect conditions.   

Under pairwise concurrent calibration, for grades 5, 8, and 9 with the narrow common 

item set configuration, the large item format effect condition was significantly larger than both 

the small and no item format effect conditions. In addition, for the grade 9 configuration, the 

moderate item format effect condition was significantly larger than the no and small item format 

effect conditions. 

Under the 2-dimensional data generation model, mean RMSE values were significantly 

larger for the large item format effect compared to all other item format effect conditions and the 

moderate item format effect condition had significantly larger mean values compared to the no 

and small item format conditions for grades 7, 8, 9, and 10 regardless of common item set, grade 

level separation, and scaling method. The same pattern was observed for grade 5 except under 

pairwise concurrent calibration, the moderate item format effect condition was significantly 

higher for only the no item format condition. For grades 6 regardless of grade level separation 

and scaling method, the large item format effect condition had significantly larger values 

compared to the moderate, small, and no item format effect conditions although under the large 

grade level separation condition for pairwise concurrent calibration with the expanded common 

item set, the moderate item format effect condition had significantly larger values than the small 

and no item format effect conditions.  



140 

 

Under the 3-dimensional data generation model for the small grade level separation 

condition regardless of common item set or scaling method, there was no significant difference 

in item format effect conditions for grades 5, 6, 9, and 10.  

For grade 8, regardless of grade level separation condition, common item set and scaling 

method, the large item format effect condition had significantly larger mean RMSE values 

compared to both the small and no item format effect conditions. For grade 7, regardless of grade 

level separation condition, common item set and scaling method, the larger item format effect 

condition had significantly larger mean RMSE than all other item format effect conditions and 

the moderate item format effect had significantly larger values than the no item format effect 

condition.  

For grades 9 and 10 under the 3-dimensional model with the large grade level separation 

condition, the large item format effect also had significantly larger mean values compared to the 

no and small item format effect conditions and for grade 10 with the narrow common item set 

configuration, the mean RMSE value for the large item format effect condition was also 

significantly larger the moderate item format effect condition. 

Vertical Scaling Effects 

Across grade levels, calibration method had a significant impact on the vertical scaling results 

with pairwise concurrent calibration producing smaller mean BIAS and RMSE values. In 

addition, calibration method interacted with grade level separation condition. Specifically, mean 

BIAS values for grades 5, 8, and 10 for all item format effects for the large grade level separation 

condition were significantly smaller for pairwise concurrent calibration. In addition, mean BIAS 

values were significantly smaller for pairwise concurrent calibration for grade 5 under the 2-

dimensional data generation model for the small, moderate, and large item format effect 
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conditions. Likewise, mean RMSE values for pairwise concurrent calibration were significantly 

smaller for grades 5, 8, and 10 for all item format effects for the large grade level separation. In 

addition, mean RMSE values were significantly smaller for pairwise concurrent calibration under 

the 2-dimensional data generation model for the large item format effect condition. 

Common Item Set Effects 

There was no significant impact of common item set configuration on the resultant vertical scales 

regardless of item format effect, vertical scaling method, grade level separation, or data 

generation model for any grade level.  

Grade Level Separation Effects 

In general, the large grade level separation produced significantly larger mean BIAS and mean 

RMSE values compared to the small grade level separation for each grade level. This was 

especially true when using separate calibration. While there was no significant difference in 

mean BIAS values between grade level separation conditions for the base grade level (grade 7), 

there was a significant difference in mean BIAS values for all item format effect conditions for 

all grade levels when using separate calibration which favored the small grade level separation 

condition. Additionally, the large grade level separation produced significantly larger mean 

BIAS values under pairwise concurrent calibration differing item format effect conditions for 

grades 5, 6, 9, and 10. For grade 6, this was true for all item format effect conditions for both 

data generation models; for grade 5 this was true for the unidimensional model and for all item 

format effect conditions for the 2-dimensional data generation model as well as the moderate and 

large item format effect conditions for the 3-dimensional data generation model; for grades 9 and 

10 this was true for the unidimensional model as well as the moderate and large item format 
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effect conditions for the 2-dimensional data generation model as well as the large item format 

effect condition for grade 9 for the 3-dimensional data generation model.  

There was no significant difference in mean RMSE values between grade level separation 

conditions for grade 7. There was, however, a significant difference in mean RMSE values 

between grade level separation conditions for the other grade levels depending on scaling 

method and data generation model. For grades 9 and 10, the small grade level condition 

produced smaller mean RMSE values compared to the large grade level separation condition for 

the undimensional and 2-dimensional data generation model for all item format effect conditions 

regardless of scaling method. For grade 8, this same pattern was true, but only for separate 

calibration. There was no significant difference in grade level separation conditions for pairwise 

concurrent calibration for this grade. This pattern was also true for grade 5, but only for the 

separate calibration condition as well as the 3-dimenisonal data generation model. For pairwise 

concurrent calibration for this grade level, significant differences were observed for the moderate 

and large item format effect conditions under the 2-diemsnional data generation model. For 

grade 6, the small grade level separation produced smaller mean RMSE values only for the large 

item format effect condition for the 2-dimensional model regardless of scaling method and for 

separate calibration under the 3-dimensional data generation model.  

Data Generation Model Effects 

Differences in results based on the method by which the data was generated were also observed. 

In general, including the vertical scale factor in the data generation model resulted in smaller 

mean values for most grade levels and item format effect conditions. However, the data 

generation model was influenced by grade level separation, scaling method, and item format 

effect condition.  
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 Mean BIAS values were not significantly different among data generation models for the 

small grade level separation condition for grades 7, 8, 9, and 10. However, for grade 6 the 2-

dimensional model produced larger mean BIAS values for the large item format effect condition. 

This was also true for grade 5, but the moderate item format effect condition also produced 

smaller mean BIAS values when using separate calibration. For the large grade level separation, 

the 3-dimensional model produced smaller mean BIAS values for both moderate and large item 

format effect conditions for grades 9 and 10; for grade 7 with pairwise concurrent calibration; for 

grade 5 with separate calibration; and for the large item format effect condition with separate 

calibration only for grade 6. For grade 8, under separate calibration, the 3-dimensional model 

produced smaller mean RMSE values for all item format effect conditions.  

  Mean RMSE values were significantly different between the 2-dimensional and the 3-

dimensional models for all item format effect conditions regardless of scaling method and grade 

level separation, as well as between the unidimensional and 3-dimensional models for grades 7, 

8, 9, and 10 as well as for the large grade level separation condition for grade 5. These 

significant differences favored the 3-dimensional model in all cases. For grade 6, regardless of 

grade level separation, as well as grade 5 for the small grade level separation condition; the 3-

dimensional data generation model produced smaller mean RMSE values for the moderate and 

large item format effect conditions only. Also, there was no significant difference between the 3-

dimensional essentially unidimensional and the unidimensional models unless noted. 
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5.0  SUMMARY AND DISCUSSION 

This chapter provides a summary of the major findings and discusses the results of the study. It 

begins with a review of the study goals, followed by a review of the methodology used, and then 

discusses the major findings of the study by research question. It ends with a discussion of the 

limitations of this study and recommendations for future studies.   

5.1.1 Review of Study Goals  

The goal of this study was to investigate the impact of format effect on the performance of two 

popular methods of vertically scaling mixed item format tests, under plausible conditions of a 

real testing scenario. Secondary to this purpose was the examination of the influence of the 

common item set and grade level separation on these vertical scaling methods when scaling 

mixed item format tests. Third, ability data was generated under a traditional method in which 

the underlying vertical scale factor was implied and under a 3-dimensional method in which the 

underlying vertical scale factor was explicitly modeled. A simulation study was chosen because 

it allowed the systematic manipulation of format effect, common item set configuration, and 

grade level separation. Also, it allowed the comparison of observed results to a ‘true’ result such 

that absolute deviations could be explored. 
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5.1.2 Review of Study Methodology 

In order to accomplish the goals of the study, six grade level tests consisting of 61 items each 

were generated with 90 percent of the items multiple-choice and 10 percent of the items 

constructed-response. This ratio is consistent with mixed item format tests currently in use. The 

multiple-choice items were generated under the 3PL model while the constructed-response items 

were generated under the GRM. Mean item difficulty for each grade level test was set slightly 

higher or lower (depending on whether the test was above or below the base grade level) than the 

small grade level separation mean ability level. Since the study was contextualized under the 

CINEG design, fourteen mixed format items (12 multiple-choice and 2 constructed-response) 

were designated as common items between adjacent grade levels. This number of common items 

is consistent with the recommendations for the minimum percentage of common items to use 

when vertical scaling tests. Two set of common items were chosen; one with a narrow range of 

item difficulties and one with an expanded range of item difficulties.   

 Ability distributions were generated for 2000 students per grade level. The mean ability 

for the general ability gradually increased at increments of 0.2 or 0.5 to simulate small and large 

grade level separation, respectively. These values were, in part, chosen so that the range of 

abilities across the span of 6 grade levels would be reasonable. Two different data generation 

methods were used; one in which the underlying vertical scale was implied but not modeled (2-

dimensional) and one in which the underlying vertical scale was explicitly modeled (3-

dimensional) along with a traditional unidimensional ability generation for comparison. During 

ability generation, the covariance structure was manipulated to simulate four degrees of format 

effect between a multiple-choice and a constructed-response factor.  
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 Response files were then created for each of the 7 covariance conditions for each of the 

grade levels for both the small and large grade level separation conditions and true expected 

scores were calculated for each student across conditions and grade levels. Recovery of the 

expected score was chosen for evaluation purposes so that additional transformations would not 

be necessary to compare vertical scaling configurations. Item and ability parameters were 

estimated using the MLE proficiency estimator in MULTILOG. Then, STUIRT was used to 

calculate transformation constants for both separate and pairwise concurrent calibration for both 

common item set configurations. The Stocking-Lord linking method was used for all linkings 

and grade 7 (or 7-8 grade pair) was used as the base grade level for all configurations.  

After expected scores were calculated for the observed parameters, BIAS and RMSE values 

were determined. Using expected score values as the dependent variables, a mixed ANOVA 

analysis was performed for each grade level and pairwise comparisons were calculated to 

examine differences in item format effect, calibration method, grade level separation, common 

item set configuration, and data generation model. 

5.1.3 Major Findings by Research Question 

This section describes the major results by research question. 

Research Question #1: Do item format effects impact the resultant vertical scale when scaling 
mixed format tests if unidimensionality is assumed? 
 
Evidence suggests that adding different item formats to a single test can increase the dimensional 

complexity of that test (Kim & Kolen, 2006; Yai, 2008). IRT, however, comes with the 

assumption that a test is measuring only one underlying dimension (Swaminathan & Hambleton, 

1985). Fortunately, studies show that IRT is somewhat robust to violations of this assumption if 
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the dimensions being measured are highly correlated (e.g., Reckase, 1979; Dorans & Kingston, 

1985). Also, if items of different formats on the same test measure the same content and skills 

(are highly correlated) a test can be considered ‘essentially unidimensional’ (Yao, 2008). 

This study investigated the impact of item format effects between multiple-choice and 

constructed-response items represented by four different levels of correlation (0.95, 0.80, 0.50, 

0.20). Results of the study were consistent with previous equating studies in that conditions with 

item format effects that were highly correlated resulted in expected scores for which the mean 

values were not significantly different from the unidimensional or essentially unidimensional 

conditions. However, item format effect often interacted with grade level separation, calibration 

method, and data generation model to influence scaling results for individual grade levels. 

For the small grade level separation, significant differences in mean BIAS values were 

found for grades 5 and 6 regardless of scaling method and for grade 7 for pairwise concurrent 

calibration under the 2-dimensional model. For the large grade level separation, mean BIAS 

values were significantly larger for the larger item format effect conditions for grades 8, 9, and 

10 regardless of scaling method. In addition, under the 3-dimensional model, significantly larger 

values were found for grades 5 and 6 regardless of scaling method and for grades 8 and 9 for 

pairwise concurrent calibration, but, again only for the largest item format effect conditions. 

Mean RMSE values were greatly impacted by item format effect condition. Under the 2-

dimensional model regardless of grade level separation, significantly larger values for the largest 

two item format effect conditions were observed for all grade levels as well as for grades 8-10 

for the large grade level separation under the 3-dimensional model. Also, this was true for grades 

7-8 for the small grade level separation under the 3-dimensional model. Regardless, only the 

moderate and large item format effect conditions resulted in significantly different values across 
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grade levels. However, the small item format effect condition did not result in significantly 

higher mean BIAS or mean RMSE values compared to the no format effect condition for any 

grade level for any condition.  

Differences in whether the large or the moderate and large item format effect resulted in 

significant differences could be attributed to the observation that as the item format effect 

increased the proportion of average BIAS values that were positive (underestimation of the 

observed expected score) increased. This pattern was evident in grades 8-10 as well as being 

particularly evident for grade 6. This shift in proportions resulted in an abnormally low average 

BIAS value for one particular item format effect condition for each grade level. For instance, for 

grade 6, it was the moderate item format effect that was close to 0 for some conditions and for 

grade 8, it was the large item format effect condition. When examining differences between item 

format effect conditions, this lead to small differences in many cases that were not statistically 

significant. Additionally, since grades 5 and 6 seemed to be the most adversely affected by this 

phenomenon, it raises the question of whether the choice of base grade level for the pair in 

pairwise concurrent calibration and/or the base grade level for the entire scale is influencing 

results. Mean RMSE values, however with the exception of grade 6, would not be as influenced 

by this estimation issue and, as a result, were more consistent in showing that item format effect 

condition was impacting the overall vertical scale regardless of scaling method, common item set 

configuration, and grade level separation.  

Research Question #2: Does the range in difficulty of the common items impact the resultant 
vertical scale when scaling mixed format tests in the presence of multidimensionality? 
 
The burden of the scaling process under the CINEG design rests on the set of common items 

used to link adjacent grade levels (Tong & Kolen, 2010). Evidence from horizontal equating 

studies suggests that common items should be statistically and content representative of the 
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whole test (Tong & Kolen, 2010). When considering mixed item format tests, evidence indicates 

that the common items should also be format representative (Li, Lissitz, & Yang, 1999; Bastardi, 

2000; Kim & Lee, 2006). Since vertical scaling tests are expected to differ in difficulty as grade 

level increases, designing statistically representative common item sets between adjacent grade 

levels is challenging because it is not certain which test should be mirrored statistically to 

produce the most accurate scale (Peterson, 2010). 

In this study, two sets of common item were designed to be format representative and 

simulate two types of statistical representativeness. Both sets of items were designed to include 

items from both adjacent grade level tests. The narrow set of common items included the most 

difficult items for the lower adjacent grade level and the easiest items for the upper adjacent 

grade level while the expanded set included items that covered a larger range of difficulty across 

the two adjacent tests. While previous studies have indicated differences in the performance of 

common item sets, this study resulted in no significant difference in performance between the 

sets of common items on scaling results for any grade level and common item set configuration 

rarely was significant in the overall ANOVA model.  

Three issues related to the common item set configurations in this study are important to 

note. First, the common item sets were designed to be representative of the overall test both 

statistically and with respect to item format. However, the number of common items in each set 

was small because of the small number of test items. Between the narrow and expanded common 

item sets, eight of the fourteen common items were the same. This could ameliorate any common 

item set effect. Additionally, the number of constructed-response items within the common item 

sets was only two because of the proportion of multiple-choice to constructed-response items in 

the overall test. While this may not be unusual in an operational setting because of the 
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protectiveness surrounding these memorable items, it is probable that the small number of 

constructed-response items did not represent the item format effect suitably. Finally, while the 

number of common items reached the minimum recommendation for the separate calibration 

condition (Tong & Kolen, 2010), it did not reach that recommendation for format 

representativeness or proportion of items compared to total test items when calculating the 

linking constants for the final transformation of the pairwise concurrent calibration condition. At 

this point, the number of ‘test items’ was larger (108 as opposed to 61) due to the combining of 

the tests for concurrent calibration and the 14 common items was only 13% of the total number 

of items being linked between grade level pairs.  

Research Question #3: Does the degree of separation in ability level between different grade 
levels impact the resultant vertical scale when scaling mixed format tests in the presence of 
multidimensionality when unidimensionality is assumed? 
 
Studies examining differences in mean ability between groups within a horizontal equating or 

vertical scaling context consistently suggest that the larger the difference in mean ability between 

groups, the larger the bias in results (e.g. Hanson & Béguin, 1999; Chin, Kim & Nering, 2006). 

This is problematic since the expectation is that some difference in mean ability will exist 

between grade levels being vertically scaled (Chin, Kim & Nering, 2006). Additional evidence 

suggests that vertical scaling method can be differentially impacted by grade level separation 

(Chin, Kim, & Nering, 2006). 

In this study two grade level separation conditions were investigated; small (0.2) and 

large (0.5). Consistent with other studies investigating differences in mean ability between 

groups being equated or scaled, grade level separation had a significant impact on the resultant 

vertical scales for most grade levels with greater bias present for a larger grade level separation. 
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However, grade level separation interacted with item format effect and calibration method to 

influence scaling results.  

Overall, mean BIAS values for separate calibration appeared to be more sensitive to 

differences in separation between grade levels. On the other hand, mean BIAS values for 

pairwise concurrent calibration seemed to be differentially impacted by grade level separation.  

Grade levels below the base grade level (grades 5 and 6) showed significant differences between 

grade level separation conditions regardless of item format effect while only the largest item 

format effect conditions showed significant differences in grade level separation conditions for 

grade levels above the base grade level (grades 8, 9, and 10). On the other hand, all item format 

effect conditions showed significant differences in mean RMSE values between grade level 

separation conditions for grades 5, 8, 9, and 10 under separate calibration. In addition, this same 

pattern was also observed for grades 9 and 10 for pairwise concurrent calibration. However, 

unlike mean BIAS values, these grade levels are above the base grade level. For the grades 

below the base grade level grades (grades 5 and 6) only the largest item format effect conditions 

produced significant differences between grade level separation conditions. This was also true 

for the separate calibration condition for grade 6.   

Important to note for this research question is the unusual distribution of average BIAS 

values resulting from pairwise concurrent calibration with the large grade level separation for 

grades 9 and 10. Depending on the data generation model, an examination of the average BIAS 

values from these conditions showed a two or three node discontinuous distribution. This 

phenomenon was not observed for separate calibration for these grades levels or for the other 

grade levels in the study for any conditions. The percentage of scores in the two or three nodes 

varied by item format effect, but generally was around 70/30 with the smaller percentage 
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observed for the more positive replications. Additionally, when three nodes were observed for 

some 3-dimensional conditions, the middle node was generally centered at zero and represented 

a larger percentage of scores compared to the highest distributional node.  

Two issues could be influencing these results. First, there was a mismatch between the 

mean ability for grades 9 and 10 and the mean difficulty for the grade level tests for the large 

grade level separation condition. This mismatch could have made the grade level test too ‘easy’ 

for the simulated students for these grade levels leading to what potentially could be a ceiling 

effect in this data and instability in estimating the observed expected score. Second, as 

previously mentioned, the proportion of common items may not have been sufficient to estimate 

the linking constants between the grade 9/10 pair and the grade 7/8 pair which could potentially 

lead to instability in calculating the final observed expected scores. This issue could 

differentially impact whether or not pairwise concurrent calibration is influenced by grade level 

separation. Additionally, given that pairwise concurrent calibration for grades 5 and 6 showed 

differential effects for scaling method brings into question whether or not the choice of base 

grade level for the pair or for the overall scale is impacting results for this calibration method.  

Research Question #4: Which vertical scaling method (separate or pairwise concurrent) 
produces the most accurate vertical scale in the presence of multidimensionality when 
unidimensionality is assumed? 
 
The performance of different vertical scaling methods has been widely researched. Studies 

investigating calibration methods for horizontal equating of mixed item format tests suggests that 

concurrent calibration outperforms separate calibration (Cao, 2008; Kim & Lee, 2006; Bastardi, 

2002; Li, Lissitz, & Yang, 1999). However, concurrent calibration often suffers from 

convergence problems when a large number of grade levels is scaled (Kolen & Brennan, 2006). 

Although inconsistent, studies of vertical scaling mixed item format tests seem to indicate that 
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either separate calibration or pairwise concurrent calibration perform better than concurrent 

calibration (Karkee, et. al, 2003; Meng, 2008). Additionally, studies show that grade level 

separation (Chin, Kim, & Nering, 2006), multidimensionality (Beguin & Hanson, 2002; Cao, 

2008), and proportion of dichotomously- to polytomously- scored items (Li, Lissitz, & Yang, 

1999) can influence calibration method. 

Given the number of grade levels being scaled and the deliberate introduction of 

multidimensionality by the presence of item format effects within each test, only separate and 

pairwise concurrent calibration were examined in this study. Since previous studies produced 

inconsistent results concerning the performance of separate versus pairwise concurrent 

calibration within the context of mixed item format tests, results were not necessarily 

predictable. For this study, scaling method had a significant impact on the resultant vertical 

scales. When the results were significant, pairwise concurrent calibration produced smaller mean 

BIAS and RMSE values. However, scaling method interacted with grade level separation and 

data generation model to influence results. 

Mean BIAS and mean RMSE values for calibration method were not significantly 

different for the small grade level separation condition for grades 6-10 regardless of item format 

effect, common item set configuration, or data generation model. For grade 5, however, under 

the 2-dimensional data generation model, pairwise concurrent calibration produced significantly 

smaller mean BIAS values. On the other hand, scaling method was significantly impacted by the 

large grade level separation. For grades 5, 8, and 10, separate calibration produced significantly 

larger mean BIAS and mean RMSE values for all item format effect conditions regardless of 

common item set configuration and data generation model. Of particular interest is that the grade 

levels producing significant differences were the non-base grade level for the concurrent 
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calibration part of the pairwise concurrent calibration. This would be consistent with the 

hypothesis that a reduction in the number of grade level linkings leads to smaller bias in the 

overall vertical scale because these grade levels were not linked but concurrently calibrated with 

their grade level pair (Kim, Lee, & Kim, 2008; Smith, Finkelman, Nering, & Kim, 2008).  

Research Question #5: Does explicitly modeling the otherwise assumed vertical scale underlying 
the test data influence the simulated results? 
 
The simulation of item format effects for this study necessitated the generation of two different 

but correlated ability parameters for each student. The traditional way of generating data for a 

vertical scaling study would be to do just that; generate two different but correlated ability 

parameters for scaling. In two recent studies (Li & Lissitz, 2012; Koepfler, 2014), a bifactor 

model was used to generate and scale simulated data. In both cases, bias values were smaller for 

the multidimensional data compared to the unidimensional model used for comparison.  

 For this study, two different data generation models were investigated in addition to the 

unidimensional case. One data generation model modeled the item format effect only while the 

other modeled the item format effect as well as the overall vertical scale. Data generation method 

did have a significant impact on the results of this study. Explicitly modeling the underlying 

vertical scale often resulted in significantly smaller bias in the final scaling outcome. In addition, 

data generation method interacted with item format effect, grade level separation, and vertical 

scaling method to influence results. In general, as grade level separation and item format effect 

increased, the 3-dimensional data generation model produced smaller bias in the final vertical 

scale. 

 Mean BIAS values under the small grade level separation were not significantly different 

between data generation models for grades 7-10. In addition under the same condition, for grades 

5 and 6, the only significant difference between data generation models was for the largest item 
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format effect conditions. Values for the large grade level separation were more likely to be 

impacted by data generation model, however, it was generally only the largest item format effect 

conditions that were affected.   

Average mean RMSE values, however, were significantly impacted by data generation 

model regardless of condition. For the large grade level separation condition, the 3-dimensional 

model produced smaller mean RMSE values compared to the 2-dimensional and unidimensional 

models regardless of item format effect conditions for all grades except grade 6. For grade 6, 

however, only the moderate and large item format effect conditions had significantly smaller 

values for the 3-dimensional model. Likewise, under the small grade level separation condition, 

all grades showed significantly smaller values for the 3-dimensional model regardless of item 

format effect condition except for grades 5 and 6. For these grade levels, only the moderate and 

large item format effects showed significant differences.  

 It is interesting to note that differences in data generation model for mean BIAS values 

tended to mimic the results from this study concerning differences in item format effect, grade 

level separation, scaling method, and common item set configuration. Common item set 

configuration did not impact results. However, the large grade level separation condition was 

more likely to be impacted, but only for the largest item format effect conditions and where 

significant, pairwise concurrent calibration resulted in smaller bias values compared to separate 

calibration.  

      Explicitly modeling the vertical scale (3-dimensional model) as opposed to just implying 

its existence (2-dimensional model) resulted in smaller mean RMSE values. This perhaps is not 

surprising since mean RMSE values speak specifically to the recovery of the underlying vertical 

scale. A bit unexpected, however, was the significant difference in mean RMSE values between 
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data generation models for the unidimensional case. While not the same scenario, a similar result 

is reported by Li & Lissitz (2012) in that data generated and recovered under a multidimensional 

model had smaller bias compared to unidimensional data. One potential issue was the choice to 

have the mean ability level for all factors be equal as opposed to the mean ability for the item 

format effect factors be 0 with only the mean ability for the vertical scale factor changing to 

reflect the increasing level of ability associated with the vertical scale.  

5.1.4 Additional Comments 

The results discussed above raised several questions about the choice of base grade level and 

choice of mean ability level for the factors in the 3-dimensional model. To see if these choices 

were differentially impacting the results of the study, three ‘mini-investigations’ were conducted. 

5.1.4.1 Base Grade Level 

Published evidence concerning choice of base grade level in vertical scaling is limited and 

inconsistent and there are no published studies examining the impact of base grade level in 

vertically scaling mixed item format tests. Of the four studies investigating vertically scaling 

mixed format tests, three used the lowest grade level as the base grade level while the fourth used 

the middle grade level (see Table 1). Additionally, when examining pairwise concurrent 

calibration, a grade level for each of the grade level pairs for the concurrent estimation must be 

chosen. For the three studies examining pairwise concurrent calibration, all three used the lowest 

grade level as the base grade level for the concurrent pair estimation.  

In this study, because grade 7 was chosen as the base grade level for the overall vertical 

scale, grade 6 was chosen as the base grade level for the grade 5/6 pair because it was closer to 
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grade 7. For grades 5 and 6, however, replications tended to increase in proportion of 

underestimated mean values as item format effect increased. This trend towards increasingly 

underestimated mean values for each replication observed in grades 5 and 6 was also observed 

for grade 8, but to a lesser degree, with grade 6 being the grade level most adversely impacted by 

the observed phenomenon.  

To investigate if this choice of base grade level for the 5/6 pair was influential in the 

observed results, thirty replications were performed in which the base grade level for the pair 

was changed to grade 5. This was done for the 2-dimensional data generation model under the 

large grade level separation with the narrow common item set because the phenomenon tended to 

be more pronounced for the large grade level separation and for the 2-dimensional model 

generation. Results of this mini-investigation confirmed that the choice of base grade level was 

differentially impacting the estimation of mean BIAS and mean RMSE values for this pair of 

grade levels. While the new base grade level resulted in greatly increased mean BIAS and mean 

RMSE values for both grade levels, the mean BIAS value for each replication was consistently 

negative meaning the scores were consistently underestimated across both grade levels.   

Since changing the base grade level for the grade 5/6 pair impacted the results and 

because the mean values showed a large increase in bias for the below base grade level pair, the 

choice of base grade level for the entire scale was questioned especially in relationship to 

pairwise concurrent calibration. Therefore, a second mini-investigation in which the base grade 

level of the overall vertical scale was changed from grade 7 to grade 5 was conducted. This 

investigation used the 2-dimensional model for the small grade level separation with the narrow 

common item set. Results showed a predictable gradual increase in mean BIAS and mean RMSE 

value as grade level increased. Compared to the mean values resulting from grade 7 as the base 



158 

 

grade level, grades 5 and 6 showed decreased mean BIAS and mean RMSE values while grades 

7-10 showed increased mean BIAS and mean RMSE values, especially for grades 8-10. This is 

consistent with previous studies that hypothesized that bias in the vertical scale was influenced 

by the number of linkings between each grade level and the base grade level (Kim, Lee, & Kim, 

2010). Additionally, overall mean values for each replication became increasingly positive as 

grade level increased rather than increasingly positive across item format effects within grade 

level as observed in the current study.    

5.1.4.2 Three-Dimensional Data Generation Model 

One design decision that could have impacted the results regarding the 3-dimensional model, and 

the focus of the third mini-investigation, was the choice to keep the mean ability for the item 

format factors the same as the mean for the vertical scale factor. To conduct this investigation, 

the 3-dimensional data generation model under pairwise concurrent calibration for the large 

grade level separation with the narrow common item set was used and the mean ability 

parameters for the item format effect conditions were changed to 0 from their respective values. 

Base grade level of the overall vertical scale and base grade level for the grade 5/6 pair was the 

same as in the original study. 

Results of this mini-investigation showed a reduction in the number of replications 

resulting in a positive mean BIAS value for grades 9 and 10, although the largest item format 

effect conditions for both grade levels still had a substantial proportion of positive replications. 

Additionally, the mean BIAS increased for grades 5, 6, 8, 9, and 10 while it stayed the same for 

grade 7. While mean RMSE values still increased with increasing item format effect conditions 

for each grade level, overall the mean values for each item format effect condition were smaller 

across grade levels and remarkably similar across grades 5, 6, 9, and 10. While how this was 
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interacting with grade level tests that had an in increase in mean difficulty level is unclear, these 

results suggest that choice of mean ability level for the item format effect factors could be 

impacting the results and may be able to ameliorate the multiple separate distributions seen in the 

results for some conditions in this study. Since the mean RMSE values were even smaller for this 

mini-investigation, it does not appear that this was impacting the significant difference between 

the 3-dimensional model and the unidimensional model observed in this study. 

Two other design decisions that could have impacted the results but were not the subject 

of ‘mini-investigations’ were the propagation of the item format effect correlations throughout 

the covariance matrices as well as the use of 1 as the discrimination parameter for all items for 

the item format effect factors.  

5.1.5 Limitations and Suggestion for Further Study 

While considering the results for this study a few issues should be kept in mind. First, choices 

were made about which variables to manipulate and the levels of each variable to use based on 

plausible, or when possible, vertical scaling contexts commonly used in practice. Grade level 

tests were created using one of the two most common ratios of multiple-choice to constructed-

response items with the number of common items slightly above the recommended minimum 

percentage of items. In addition, the format of the common items matched the format and ratio of 

item type for the overall test.  However, this resulted in only 2 constructed-response items being 

used in the common item set. While this may be advantageous in actual practice since 

constructed-response items tend to be memorable and, from a test security perspective, the fewer 

of those items used in the common item set the better; it does raise the question of how format 

representative does the common item set need to be to detect a format effect. It could be that a 
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larger percentage of constructed-response items need to be used in the common item set so that 

the format effect is adequately represented in the linking items.  

 Second, mean item difficulty for each grade level test was designed to mimic the mean 

ability for each successive grade. Since two grade level separations were investigated, the mean 

item difficulty for each test is necessarily closer to one grade level separation configuration than 

the other. This ultimately resulted in a poor match between the mean ability of the grade level 

and the mean item difficulty for the test, as well as the range of item difficulty for the common 

items, for those grade levels farthest from the base grade level under the large grade level 

separation condition. 

Third, simulation studies are important because they allow the direct manipulation of 

variables in specific ways and the comparison of the observed results to a true result. However, 

the situations are often contrived and even when great effort is made to be as realistic as possible, 

real world contexts are often more complex. For instance, item format effect was held constant 

across grade levels when in practice dimensional complexities most likely do not occur this way. 

It is much more likely that format effect is minimal between some grade levels and larger 

between other grade levels. This is most likely the case for grade level separation as well. For 

instance, it is highly likely that grade level separation is larger for lower grade levels and smaller 

for upper grade levels rather than constant across grade levels.   

Fourth, for simplicity’s sake, many variables suggested by other studies to possibly 

produce inconsistencies in vertical scaling results were held constant, namely; length of test, 

proportion of multiple-choice to constructed-response items, base grade level, number of grade 

levels being scaled, proficiency estimator, and construct shift. Whether results would change if 

the test were longer and/or the proportion of multiple-choice to constructed-response items were 
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8:2 instead of 9:1 and/or if there is a maximum number of grade levels that should be scaled are 

all legitimate questions that need to be explored. Also, changing the base grade from the central 

grade level to the lowest grade level, without changing the increasing mean ability for each 

grade, would also remove the additional potential confound of the base grade level having a 

mean ability of zero and/or changing the base grade level for the grade level pairs when using 

pairwise concurrent calibration would be worthy of further investigation. Preliminary results of 

two mini-investigations in this study suggest that both of these base grade level issues could 

differentially impact resultant vertical scales. 

Finally, when constructing the mean vectors for the 3-dimensional model, the decision 

was made to keep all three factor means for a grade level the same. The other option would be to 

increase the mean of the vertical scale factor only and keep the mean of the item format factors 

for each grade level as zero. The mini-investigation conducted in this study seemed to suggest 

that this could impact scaling results. Also, for simplicity it was decided to use a constant of 1 for 

the item discrimination parameters for the item format effect factors. This may or may not be a 

realistic representation of the relationship between the vertical scale factor and the item format 

effect factors for a given test. Finally, the item format effect correlations were propagated 

throughout the matrix to fill in the correlation between the vertical scale factor and the item 

format factors. This also may not be a realistic representation of this relationship. In fact, a factor 

analysis of one real data set showed a high correlation between the vertical scale factor and the 

multiple-choice factor and a much lower correlation between the vertical scale factor and the 

constructed-response factor. More investigation with real data sets could illuminate a more likely 

correlational structure. 
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5.1.6 Final Summary  

Vertical scaling is a complex process in which different design decisions and practical issues 

lead to different resultant scales and, by extension, different conceptualizations of student 

growth. To date, empirical evidence is inconsistent and no one set of decisions has been 

established as best practice.  

In this study, the performance of pairwise concurrent and separate calibration on 

vertically scaling mixed format tests was compared in the presence of item format effect using 

test specifications likely to exist in practice. While the results of the study provide evidence that 

item format effects, vertical scaling method, and separation between grade levels can 

significantly impact resultant vertical scales; the influence of these variables is often in 

combination with one another. While interactions sometimes made it difficult to draw 

generalizations for some grade levels, results seemed to indicate that: pairwise concurrent 

calibration holistically performed better compared to separate calibration; moderate to large item 

format effects were more likely to bias resultant vertical scales; and a large separation between 

grade levels resulted in more biased vertical scales.  

Explicitly modeling the vertical scaling factor did not always impact mean BIAS values, 

but mean RMSE values were influenced by the inclusion of the vertical scale factor. Although, 

the same patterns of increased bias for separate calibration, a large grade level separation, and 

moderate or large item format effects were evident for both data generation models; significant 

differences were not as likely to occur under the 3-dimensional data generation model.  

As with any other simulation, the extent to which the results of this study can be 

generalized to other contexts are limited to situations in which the conditions are similar to the 

ones used in the study. While the results of this study indicated that further research into 



163 

 

vertically scaling mixed format tests is clearly warranted, it did reiterate that test characteristics 

need to be examined prior to attempting to vertically scale mixed format tests under the 

assumption of unidimensionality. 
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Table A1. Item parameters for grade 5 – narrow CI set 
Item 

Number a1 a2 b c d1 d2 d3 
1 1.46 1.00 -0.97 0.25    
2 1.69 1.00 0.06 0.25    
3 1.26 1.00 -0.52 0.25    
4 1.72 1.00 -1.34 0.25    
5 2.18 1.00 0.10 0.25    
6 1.85 1.00 -0.49 0.25    
7 1.80 1.00 -0.85 0.25    
8 1.31 1.00 -0.86 0.25    
9 2.00 1.00 -1.05 0.25    
10 1.44 1.00 -0.52 0.25    
11 1.71 1.00 -1.98 0.25    
12 2.05 1.00 -0.88 0.25    
13 1.52 1.00 -0.93 0.25    
14 1.21 1.00 -0.01 0.25    
15 1.94 1.00 -1.31 0.25    
16 2.10 1.00 -1.76 0.25    
17 1.81 1.00 -1.73 0.25    
18 1.83 1.00 -1.28 0.25    
19 1.79 1.00 -1.48 0.25    
20 2.00 1.00 -0.67 0.25    
21 1.90 1.00 -0.62 0.25    
22 1.55 1.00 -1.86 0.25    
23 2.12 1.00 -0.51 0.25    
24 2.15 1.00 -0.70 0.25    
25 1.53 1.00 -0.76 0.25    
26 1.95 1.00 0.17 0.25    
27 1.90 1.00 -1.01 0.25    
28 1.37 1.00 0.24 0.25    
29 1.53 1.00 0.31 0.25    
30 1.29 1.00 0.06 0.25    
31 1.25 1.00 -1.53 0.25    
32 1.39 1.00 -1.41 0.25    
33 1.52 1.00 -0.19 0.25    
34 1.96 1.00 -1.15 0.25    
        

 
Item  

Number 

 
 

a1 

 
 

a2 

 
 

b 

 
 
c 

 
 

d1 

 
 

d2 

 
 

d3 
35 1.72 1.00 -1.86 0.25    
36 2.18 1.00 -1.57 0.25    
37 1.22 1.00 -0.56 0.25    
38 1.61 1.00 -0.19 0.25    
39 1.31 1.00 -1.25 0.25    
40 2.08 1.00 -1.04 0.25    
41 1.42 1.00 -0.59 0.25    
42 1.35 1.00 -0.58 0.25    

43* 1.84 1.00 -0.23 0.25    
44* 1.38 1.00 -0.20 0.25    
45* 1.26 1.00 -0.26 0.25    
46* 1.43 1.00 -0.31 0.25    
47* 2.14 1.00 -0.25 0.25    
48* 1.83 1.00 -0.41 0.25    
49* 1.30 1.00 -0.46 0.25    
50* 2.00 1.00 -0.18 0.25    
51* 1.87 1.00 -0.16 0.25    
52* 1.81 1.00 -0.42 0.25    
53* 2.04 1.00 -0.44 0.25    
54* 1.50 1.00 -0.18 0.25    
55* 2.02 1.00   -1.85 -0.85 0.02 
56* 1.61 1.00   -1.50 -0.75 -0.19 
57 1.56 1.00   -1.57 -0.74 -0.33 
58 1.52 1.00   -1.90 -0.78 -0.35 
59 1.46 1.00   -1.83 -0.99 -0.20 
60 1.96 1.00   -1.95 -0.96 0.17 
61 1.84 1.00   -1.65 -0.81 -0.24 

*Common items between grade 5 and grade 6 
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Table A2. Item parameters for grade 5 – expanded CI set 
 Item 
Number a1 a2 b c d1 d2 d3 

1 1.46 1.00 -0.97 0.25    
2 1.69 1.00 0.06 0.25    
3 1.26 1.00 -0.52 0.25    
4 1.72 1.00 -1.34 0.25    
5 2.18 1.00 0.10 0.25    
6 1.85 1.00 -0.49 0.25    
7 1.80 1.00 -0.85 0.25    
8 1.31 1.00 -0.86 0.25    
9 2.00 1.00 -1.05 0.25    
10 1.44 1.00 -0.52 0.25    
11 1.71 1.00 -1.98 0.25    
12 2.05 1.00 -0.88 0.25    
13 1.52 1.00 -0.93 0.25    
14 1.21 1.00 -0.01 0.25    
15 1.94 1.00 -1.31 0.25    
16 2.10 1.00 -1.76 0.25    
17 1.81 1.00 -1.73 0.25    
18 1.83 1.00 -1.28 0.25    
19 1.79 1.00 -1.48 0.25    
20 2.00 1.00 -0.67 0.25    
21 1.90 1.00 -0.62 0.25    
22 1.55 1.00 -1.86 0.25    
23 2.12 1.00 -0.51 0.25    
24 2.15 1.00 -0.70 0.25    
25 1.84 1.00 -0.23 0.25    
26 1.38 1.00 -0.20 0.25    
27 1.26 1.00 -0.26 0.25    
28 1.43 1.00 -0.31 0.25    
29 2.14 1.00 -0.25 0.25    
30 1.83 1.00 -0.41 0.25    
31 1.25 1.00 -1.53 0.25    
32 1.39 1.00 -1.41 0.25    
33 1.52 1.00 -0.19 0.25    
        

 
Item 

Number 

 
 

a1 

 
 

a2 

 
 

b 

 
 
c 

 
 

d1 

 
 

d2 

 
 

d3 
34 1.96 1.00 -1.15 0.25    
35 1.72 1.00 -1.86 0.25    
36 2.18 1.00 -1.57 0.25    
37 1.22 1.00 -0.56 0.25    
38 1.61 1.00 -0.19 0.25    
39 1.31 1.00 -1.25 0.25    
40 2.08 1.00 -1.04 0.25    
41 1.42 1.00 -0.59 0.25    
42 1.35 1.00 -0.58 0.25    

43* 1.53 1.00 -0.76 0.25    
44* 1.95 1.00 0.17 0.25    
45* 1.90 1.00 -1.01 0.25    
46* 1.37 1.00 0.24 0.25    
47* 1.53 1.00 0.31 0.25    
48* 1.29 1.00 0.06 0.25    
49* 1.30 1.00 -0.46 0.25    
50* 2.00 1.00 -0.18 0.25    
51* 1.87 1.00 -0.16 0.25    
52* 1.81 1.00 -0.42 0.25    
53* 2.04 1.00 -0.44 0.25    
54* 1.50 1.00 -0.18 0.25    
55* 2.02 1.00   -1.85 -0.85 0.02 
56* 1.61 1.00   -1.50 -0.75 -0.19 
57 1.56 1.00   -1.57 -0.74 -0.33 
58 1.52 1.00   -1.90 -0.78 -0.35 
59 1.46 1.00   -1.83 -0.99 -0.20 
60 1.96 1.00   -1.95 -0.96 0.17 
61 1.84 1.00   -1.65 -0.81 -0.24 

*Common items between grade 5 and grade 6 
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Table A3. Item parameters for grade 6 – narrow CI set 
Item 

Number a1 a2 b c d1 d2 d3 
1^ 1.42 1.00 -0.19 0.25    
2^ 1.44 1.00 -0.20 0.25    
3^ 1.71 1.00 -0.18 0.25    
4^ 2.00 1.00 -0.21 0.25    
5^ 1.50 1.00 -0.02 0.25    
6^ 2.04 1.00 -0.12 0.25    
7^ 1.80 1.00 -0.01 0.25    
8^ 1.52 1.00 -0.13 0.25    
9^ 1.69 1.00 -0.12 0.25    

10^ 1.94 1.00 -0.03 0.25    
11^ 1.81 1.00 0.04 0.25    
12^ 1.83 1.00 0.04 0.25    
13 2.18 1.00 -0.68 0.25    
14 2.18 1.00 0.33 0.25    
15 1.69 1.00 -1.04 0.25    
16 1.72 1.00 -1.35 0.25    
17 1.85 1.00 0.09 0.25    
18 1.31 1.00 -0.09 0.25    
19 2.05 1.00 0.11 0.25    
20 1.79 1.00 0.49 0.25    
21 2.00 1.00 -0.99 0.25    
22 1.55 1.00 -1.28 0.25    
23 2.12 1.00 -0.75 0.25    
24 2.15 1.00 -0.91 0.25    
25 1.53 1.00 -0.76 0.25    
26 1.95 1.00 0.17 0.25    
27 1.90 1.00 -1.01 0.25    
28 1.37 1.00 0.24 0.25    
29 1.53 1.00 0.31 0.25    
30 1.29 1.00 0.06 0.25    
31 1.25 1.00 0.36 0.25    
32 1.39 1.00 -0.53 0.25    
33 1.52 1.00 -0.62 0.25    
        

 
Item 

Number 

 
 

a1 

 
 

a2 

 
 

b 

 
 
c 

 
 

d1 

 
 

d2 

 
 

d3 
34 1.96 1.00 0.52 0.25    
35 1.72 1.00 -0.73 0.25    
36 2.18 1.00 0.44 0.25    
37 1.22 1.00 -0.79 0.25    
38 1.61 1.00 -1.45 0.25    
39 1.31 1.00 -0.84 0.25    
40 2.08 1.00 -0.14 0.25    
41 1.90 1.00 0.74 0.25    
42 1.35 1.00 0.44 0.25    

43* 1.84 1.00 -0.23 0.25    
44* 1.38 1.00 -0.20 0.25    
45* 1.26 1.00 -0.26 0.25    
46* 1.43 1.00 -0.31 0.25    
47* 2.14 1.00 -0.25 0.25    
48* 1.83 1.00 -0.41 0.25    
49* 1.30 1.00 -0.46 0.25    
50* 2.00 1.00 -0.18 0.25    
51* 1.87 1.00 -0.16 0.25    
52* 1.81 1.00 -0.42 0.25    
53* 2.04 1.00 -0.44 0.25    
54* 1.50 1.00 -0.18 0.25    
55* 2.02 1.00   -1.85 -0.85 0.02 
56* 1.61 1.00   -1.50 -0.75 -0.19 
57 1.46 1.00   -1.35 -0.59 0.76 
58 1.96 1.00   -1.14 -0.30 0.21 
59 1.84 1.00   -1.20 -0.28 0.21 
60^ 1.46 1.00   -0.95 -0.12 0.89 
61^ 1.52 1.00   -1.28 -0.66 0.68 

*Common items between grade 5 and grade 6 
^ Common items between grade 6 and grade 7 
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Table A4. Item parameters for grade 6 – expanded CI set 
Item 

Number a1 a2 b c d1 d2 d3 
1^ 1.42 1.00 -0.19 0.25    
2^ 1.44 1.00 -0.20 0.25    
3^ 1.71 1.00 -0.18 0.25    
4^ 2.00 1.00 -0.21 0.25    
5^ 1.50 1.00 -0.02 0.25    
6^ 2.04 1.00 -0.12 0.25    
7^ 1.25 1.00 0.36 0.25    
8^ 1.39 1.00 -0.53 0.25    
9^ 1.52 1.00 -0.62 0.25    

10^ 1.96 1.00 0.52 0.25    
11^ 1.72 1.00 -0.73 0.25    
12^ 2.18 1.00 0.44 0.25    
13 2.18 1.00 -0.68 0.25    
14 2.18 1.00 0.33 0.25    
15 1.69 1.00 -1.04 0.25    
16 1.72 1.00 -1.35 0.25    
17 1.85 1.00 0.09 0.25    
18 1.31 1.00 -0.09 0.25    
19 2.05 1.00 0.11 0.25    
20 1.79 1.00 0.49 0.25    
21 2.00 1.00 -0.99 0.25    
22 1.55 1.00 -1.28 0.25    
23 2.12 1.00 -0.75 0.25    
24 2.15 1.00 -0.91 0.25    
25 1.84 1.00 -0.23 0.25    
26 1.38 1.00 -0.20 0.25    
27 1.26 1.00 -0.26 0.25    
28 1.43 1.00 -0.31 0.25    
29 2.14 1.00 -0.25 0.25    
30 1.83 1.00 -0.41 0.25    
31 1.80 1.00 -0.01 0.25    
32 1.52 1.00 -0.13 0.25    
33 1.69 1.00 -0.12 0.25    
34 1.94 1.00 -0.03 0.25    

 
Item 

Number a1 a2 b c d1 d2 d3 
35 1.81 1.00 0.04 0.25    
36 1.83 1.00 0.04 0.25    
37 1.22 1.00 -0.79 0.25    
38 1.61 1.00 -1.45 0.25    
39 1.31 1.00 -0.84 0.25    
40 2.08 1.00 -0.14 0.25    
41 1.90 1.00 0.74 0.25    
42 1.35 1.00 0.44 0.25    

43* 1.53 1.00 -0.76 0.25    
44* 1.95 1.00 0.17 0.25    
45* 1.90 1.00 -1.01 0.25    
46* 1.37 1.00 0.24 0.25    
47* 1.53 1.00 0.31 0.25    
48* 1.29 1.00 0.06 0.25    
49* 1.30 1.00 -0.46 0.25    
50* 2.00 1.00 -0.18 0.25    
51* 1.87 1.00 -0.16 0.25    
52* 1.81 1.00 -0.42 0.25    
53* 2.04 1.00 -0.44 0.25    
54* 1.50 1.00 -0.18 0.25    
55* 2.02 1.00   -1.85 -0.85 0.02 
56* 1.61 1.00   -1.50 -0.75 -0.19 
57 1.46 1.00   -1.35 -0.59 0.76 
58 1.96 1.00   -1.14 -0.30 0.21 
59 1.84 1.00   -1.20 -0.28 0.21 
60^ 1.46 1.00   -0.95 -0.12 0.89 
61^ 1.52 1.00   -1.28 -0.66 0.68 

*Common items between grade 5 and grade 6 
^ Common items between grade 6 and grade 7 

 
 

 



169 

 

Table A5. Item parameters for grade 7 – narrow CI set 
Item 

Number a1 a2 b c d1 d2 d3 
1 1.42 1.00 -0.19 0.25    
2 1.44 1.00 -0.20 0.25    
3 1.71 1.00 -0.18 0.25    
4 2.00 1.00 -0.21 0.25    
5 1.50 1.00 -0.02 0.25    
6 2.04 1.00 -0.12 0.25    
7 1.80 1.00 -0.01 0.25    
8 1.52 1.00 -0.13 0.25    
9 1.69 1.00 -0.12 0.25    

10 1.94 1.00 -0.03 0.25    
11 1.81 1.00 0.04 0.25    
12 1.83 1.00 0.04 0.25    
13 1.26 1.00 0.24 0.25    
14 1.72 1.00 0.91 0.25    
15 1.84 1.00 0.57 0.25    
16 1.38 1.00 -0.76 0.25    
17 1.26 1.00 -0.81 0.25    
18 2.05 1.00 0.20 0.25    
19 1.30 1.00 0.43 0.25    
20 2.00 1.00 -0.69 0.25    
21 1.87 1.00 -0.67 0.25    
22 1.21 1.00 -0.12 0.25    
23 1.55 1.00 0.38 0.25    
24 2.15 1.00 -0.63 0.25    
25 1.53 1.00 -0.53 0.25    
26 1.95 1.00 0.38 0.25    
27 1.90 1.00 -0.28 0.25    
28 1.37 1.00 -0.16 0.25    
29 1.53 1.00 0.48 0.25    
30 1.29 1.00 0.67 0.25    
31 1.25 1.00 0.36 0.25    
32 1.39 1.00 -0.53 0.25    
33 1.52 1.00 -0.62 0.25    
34 1.96 1.00 0.52 0.25    

 
Item 

Number a1 a2 b c d1 d2 d3 
35 1.72 1.00 -0.73 0.25    
36 2.18 1.00 0.44 0.25    
37 1.22 1.00 0.26 0.25    
38 1.61 1.00 -0.33 0.25    
39 1.31 1.00 0.34 0.25    
40 2.08 1.00 -0.91 0.25    
41 1.42 1.00 0.25 0.25    
42 1.35 1.00 0.32 0.25    

43* 1.43 1.00 0.12 0.25    
44* 2.14 1.00 0.19 0.25    
45* 1.83 1.00 0.21 0.25    
46* 1.85 1.00 0.09 0.25    
47* 1.80 1.00 -0.01 0.25    
48* 1.31 1.00 -0.09 0.25    
49* 1.94 1.00 -0.03 0.25    
50* 2.10 1.00 -0.02 0.25    
51* 1.81 1.00 0.04 0.25    
52* 1.83 1.00 0.08 0.25    
53* 1.79 1.00 0.18 0.25    
54* 2.00 1.00 0.21 0.25    
55* 1.61 1.00   -0.65 0.37 0.96 
56* 1.56 1.00   -1.06 -0.49 0.01 
57 2.02 1.00   -0.59 0.17 0.94 
58 1.96 1.00   -0.69 -0.32 0.69 
59 1.84 1.00   -0.87 0.00 0.88 
60 1.46 1.00   -0.95 -0.12 0.89 
61 1.52 1.00   -1.28 -0.66 0.68 

*Common items between grade 7 and grade 8 
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Table A6. Item parameters for grade 7 – expanded CI set 
Item 

Number a1 a2 b c d1 d2 d3 
1 1.42 1.00 -0.19 0.25    
2 1.44 1.00 -0.20 0.25    
3 1.71 1.00 -0.18 0.25    
4 2.00 1.00 -0.21 0.25    
5 1.50 1.00 -0.02 0.25    
6 2.04 1.00 -0.12 0.25    
7 1.25 1.00 0.36 0.25    
8 1.39 1.00 -0.53 0.25    
9 1.52 1.00 -0.62 0.25    

10 1.96 1.00 0.52 0.25    
11 1.72 1.00 -0.73 0.25    
12 2.18 1.00 0.44 0.25    
13 1.26 1.00 0.24 0.25    
14 1.72 1.00 0.91 0.25    
15 1.84 1.00 0.57 0.25    
16 1.38 1.00 -0.76 0.25    
17 1.26 1.00 -0.81 0.25    
18 2.05 1.00 0.20 0.25    
19 1.30 1.00 0.43 0.25    
20 2.00 1.00 -0.69 0.25    
21 1.87 1.00 -0.67 0.25    
22 1.21 1.00 -0.12 0.25    
23 1.55 1.00 0.38 0.25    
24 2.15 1.00 -0.63 0.25    
25 1.43 1.00 0.12 0.25    
26 2.14 1.00 0.19 0.25    
27 1.83 1.00 0.21 0.25    
28 1.85 1.00 0.09 0.25    
29 1.80 1.00 -0.01 0.25    
30 1.31 1.00 -0.09 0.25    
31 1.80 1.00 -0.01 0.25    
32 1.52 1.00 -0.13 0.25    
33 1.69 1.00 -0.12 0.25    
34 1.94 1.00 -0.03 0.25    

 
Item 

Number a1 a2 b c d1 d2 d3 
35 1.81 1.00 0.04 0.25    
36 1.83 1.00 0.04 0.25    
37 1.22 1.00 0.26 0.25    
38 1.61 1.00 -0.33 0.25    
39 1.31 1.00 0.34 0.25    
40 2.08 1.00 -0.91 0.25    
41 1.42 1.00 0.25 0.25    
42 1.35 1.00 0.32 0.25    

43* 1.53 1.00 -0.53 0.25    
44* 1.95 1.00 0.38 0.25    
45* 1.90 1.00 -0.28 0.25    
46* 1.37 1.00 -0.16 0.25    
47* 1.53 1.00 0.48 0.25    
48* 1.29 1.00 0.67 0.25    
49* 1.94 1.00 -0.03 0.25    
50* 2.10 1.00 -0.02 0.25    
51* 1.81 1.00 0.04 0.25    
52* 1.83 1.00 0.08 0.25    
53* 1.79 1.00 0.18 0.25    
54* 2.00 1.00 0.21 0.25    
55* 1.61 1.00   -0.65 0.37 0.96 
56* 1.56 1.00   -1.06 -0.49 0.01 
57 2.02 1.00   -0.59 0.17 0.94 
58 1.96 1.00   -0.69 -0.32 0.69 
59 1.84 1.00   -0.87 0.00 0.88 
60 1.46 1.00   -0.95 -0.12 0.89 
61 1.52 1.00   -1.28 -0.66 0.68 

*Common items between grade 7 and grade 8 
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Table A7. Item parameters for grade 8 – narrow CI set 
Item 

Number a1 a2 b c d1 d2 d3 
1^ 1.26 1.00 0.22 0.25    
2^ 1.72 1.00 0.29 0.25    
3^ 2.18 1.00 0.35 0.25    
4^ 1.84 1.00 0.27 0.25    
5^ 2.00 1.00 0.29 0.25    
6^ 1.44 1.00 0.36 0.25    
7^ 1.71 1.00 0.39 0.25    
8^ 2.05 1.00 0.45 0.25    
9^ 1.30 1.00 0.35 0.25    

10^ 2.00 1.00 0.24 0.25    
11^ 1.52 1.00 0.45 0.25    
12^ 1.26 1.00 0.42 0.25    
13 1.46 1.00 0.51 0.25    
14 1.90 1.00 0.64 0.25    
15 1.21 1.00 0.89 0.25    
16 1.25 1.00 0.87 0.25    
17 1.90 1.00 -0.28 0.25    
18 1.37 1.00 -0.16 0.25    
19 1.87 1.00 -0.73 0.25    
20 1.81 1.00 1.13 0.25    
21 2.04 1.00 0.29 0.25    
22 1.50 1.00 0.15 0.25    
23 1.55 1.00 -0.57 0.25    
24 2.12 1.00 -0.63 0.25    
25 1.53 1.00 -0.53 0.25    
26 1.95 1.00 0.38 0.25    
27 1.90 1.00 -0.28 0.25    
28 1.37 1.00 -0.16 0.25    
29 1.53 1.00 0.48 0.25    
30 1.29 1.00 0.67 0.25    
31 1.69 1.00 0.08 0.25    
32 2.15 1.00 0.78 0.25    
33 1.39 1.00 0.49 0.25    
34 1.52 1.00 0.23 0.25    

 
Item 

Number a1 a2 b c d1 d2 d3 
35 1.96 1.00 1.38 0.25    
36 1.72 1.00 0.10 0.25    
37 2.18 1.00 1.42 0.25    
38 1.22 1.00 0.42 0.25    
39 1.31 1.00 -0.65 0.25    
40 2.08 1.00 -0.09 0.25    
41 1.42 1.00 0.62 0.25    
42 1.35 1.00 -0.65 0.25    

43* 1.43 1.00 0.12 0.25    
44* 2.14 1.00 0.19 0.25    
45* 1.83 1.00 0.21 0.25    
46* 1.85 1.00 0.09 0.25    
47* 1.80 1.00 -0.01 0.25    
48* 1.31 1.00 -0.09 0.25    
49* 1.94 1.00 -0.03 0.25    
50* 2.10 1.00 -0.02 0.25    
51* 1.81 1.00 0.04 0.25    
52* 1.83 1.00 0.08 0.25    
53* 1.79 1.00 0.18 0.25    
54* 2.00 1.00 0.21 0.25    
55* 1.61 1.00   -0.65 0.37 0.96 
56* 1.56 1.00   -1.06 -0.49 0.01 
57 2.02 1.00   -0.44 0.56 1.04 
58 1.52 1.00   -0.53 0.46 0.86 
59 1.84 1.00   -0.41 0.59 0.99 
60^ 1.46 1.00   -0.38 0.31 1.03 
61^ 1.96 1.00   -0.40 0.17 1.09 

*Common items between grade 7 and grade 8 
^ Common items between grade 8 and grade 9 
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Table A8. Item parameters for grade 8 – expanded CI set 
Item 

Number a1 a2 b c d1 d2 d3 
1^ 1.46 1.00 0.51 0.25    
2^ 1.90 1.00 0.64 0.25    
3^ 1.21 1.00 0.89 0.25    
4^ 1.25 1.00 0.87 0.25    
5^ 1.90 1.00 -0.28 0.25    
6^ 1.37 1.00 -0.16 0.25    
7^ 1.71 1.00 0.39 0.25    
8^ 2.05 1.00 0.45 0.25    
9^ 1.30 1.00 0.35 0.25    

10^ 2.00 1.00 0.24 0.25    
11^ 1.52 1.00 0.45 0.25    
12^ 1.26 1.00 0.42 0.25    
13 1.26 1.00 0.22 0.25    
14 1.72 1.00 0.29 0.25    
15 2.18 1.00 0.35 0.25    
16 1.84 1.00 0.27 0.25    
17 2.00 1.00 0.29 0.25    
18 1.44 1.00 0.36 0.25    
19 1.87 1.00 -0.73 0.25    
20 1.81 1.00 1.13 0.25    
21 2.04 1.00 0.29 0.25    
22 1.50 1.00 0.15 0.25    
23 1.55 1.00 -0.57 0.25    
24 2.12 1.00 -0.63 0.25    
25 1.43 1.00 0.12 0.25    
26 2.14 1.00 0.19 0.25    
27 1.83 1.00 0.21 0.25    
28 1.85 1.00 0.09 0.25    
29 1.80 1.00 -0.01 0.25    
30 1.31 1.00 -0.09 0.25    
31 1.69 1.00 0.08 0.25    
32 2.15 1.00 0.78 0.25    
33 1.39 1.00 0.49 0.25    
34 1.52 1.00 0.23 0.25    

 
Item 

Number a1 a2 b c d1 d2 d3 
35 1.96 1.00 1.38 0.25    
36 1.72 1.00 0.10 0.25    
37 2.18 1.00 1.42 0.25    
38 1.22 1.00 0.42 0.25    
39 1.31 1.00 -0.65 0.25    
40 2.08 1.00 -0.09 0.25    
41 1.42 1.00 0.62 0.25    
42 1.35 1.00 -0.65 0.25    

43* 1.53 1.00 -0.53 0.25    
44* 1.95 1.00 0.38 0.25    
45* 1.90 1.00 -0.28 0.25    
46* 1.37 1.00 -0.16 0.25    
47* 1.53 1.00 0.48 0.25    
48* 1.29 1.00 0.67 0.25    
49* 1.94 1.00 -0.03 0.25    
50* 2.10 1.00 -0.02 0.25    
51* 1.81 1.00 0.04 0.25    
52* 1.83 1.00 0.08 0.25    
53* 1.79 1.00 0.18 0.25    
54* 2.00 1.00 0.21 0.25    
55* 1.61 1.00   -0.65 0.37 0.96 
56* 1.56 1.00   -1.06 -0.49 0.01 
57 2.02 1.00   -0.44 0.56 1.04 
58 1.52 1.00   -0.53 0.46 0.86 
59 1.84 1.00   -0.41 0.59 0.99 
60^ 1.46 1.00   -0.38 0.31 1.03 
61^ 1.96 1.00   -0.40 0.17 1.09 

*Common items between grade 7 and grade 8 
^ Common items between grade 8 and grade 9 
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Table A 9. Item parameters for grade 9 – narrow CI set 
Item 

Number a1 a2 b c d1 d2 d3 
1^ 1.26 1.00 0.22 0.25    
2^ 1.72 1.00 0.29 0.25    
3^ 2.18 1.00 0.35 0.25    
4^ 1.84 1.00 0.27 0.25    
5^ 2.00 1.00 0.29 0.25    
6^ 1.44 1.00 0.36 0.25    
7^ 1.71 1.00 0.39 0.25    
8^ 2.05 1.00 0.45 0.25    
9^ 1.30 1.00 0.35 0.25    
10^ 2.00 1.00 0.24 0.25    
11^ 1.52 1.00 0.45 0.25    
12^ 1.26 1.00 0.42 0.25    
13 1.46 1.00 0.51 0.25    
14 1.90 1.00 0.64 0.25    
15 1.21 1.00 0.89 0.25    
16 1.25 1.00 0.87 0.25    
17 1.90 1.00 -0.28 0.25    
18 1.37 1.00 -0.16 0.25    
19 1.87 1.00 0.98 0.25    
20 1.81 1.00 1.74 0.25    
21 2.04 1.00 1.98 0.25    
22 1.50 1.00 1.81 0.25    
23 1.31 1.00 -0.39 0.25    
24 1.21 1.00 -0.43 0.25    
25 1.94 1.00 -0.43 0.25    
26 2.10 1.00 1.52 0.25    
27 1.81 1.00 0.19 0.25    
28 2.15 1.00 0.99 0.25    
29 1.53 1.00 0.51 0.25    
30 1.95 1.00 0.38 0.25    
31 1.69 1.00 1.80 0.25    
32 1.39 1.00 -0.01 0.25    
33 1.52 1.00 1.44 0.25    
34 1.96 1.00 0.78 0.25    

 
Item 

Number a1 a2 b c d1 d2 d3 
35 1.72 1.00 1.11 0.25    
36 2.18 1.00 1.06 0.25    
37 1.22 1.00 0.11 0.25    
38 1.61 1.00 0.22 0.25    
39 1.31 1.00 0.35 0.25    
40 2.08 1.00 1.14 0.25    
41 1.42 1.00 0.94 0.25    
42 1.35 1.00 0.84 0.25    

43* 1.38 1.00 0.44 0.25    
44* 1.26 1.00 0.42 0.25    
45* 1.43 1.00 0.50 0.25    
46* 2.14 1.00 0.51 0.25    
47* 1.83 1.00 0.63 0.25    
48* 1.85 1.00 0.53 0.25    
49* 1.83 1.00 0.48 0.25    
50* 1.79 1.00 0.49 0.25    
51* 2.00 1.00 0.49 0.25    
52* 1.90 1.00 0.57 0.25    
53* 1.55 1.00 0.62 0.25    
54* 2.12 1.00 0.64 0.25    
55* 1.56 1.00   -0.15 0.25 1.15 
56* 1.52 1.00   -0.20 0.31 1.46 
57 2.02 1.00   -0.47 0.61 1.04 
58 1.61 1.00   0.09 0.57 1.07 
59 1.84 1.00   -0.04 0.33 1.05 
60^ 1.46 1.00   -0.38 0.31 1.03 
61^ 1.96 1.00   -0.40 0.17 1.09 

*Common items between grade 7 and grade 8 
^ Common items between grade 8 and grade 9 
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Table A10. Item parameters for grade 9 – expanded CI set 
Item 

Number a1 a2 b c d1 d2 d3 
1^ 1.46 1.00 0.51 0.25    
2^ 1.90 1.00 0.64 0.25    
3^ 1.21 1.00 0.89 0.25    
4^ 1.25 1.00 0.87 0.25    
5^ 1.90 1.00 -0.28 0.25    
6^ 1.37 1.00 -0.16 0.25    
7^ 1.71 1.00 0.39 0.25    
8^ 2.05 1.00 0.45 0.25    
9^ 1.30 1.00 0.35 0.25    

10^ 2.00 1.00 0.24 0.25    
11^ 1.52 1.00 0.45 0.25    
12^ 1.26 1.00 0.42 0.25    
13 1.26 1.00 0.22 0.25    
14 1.72 1.00 0.29 0.25    
15 2.18 1.00 0.35 0.25    
16 1.84 1.00 0.27 0.25    
17 2.00 1.00 0.29 0.25    
18 1.44 1.00 0.36 0.25    
19 1.87 1.00 0.98 0.25    
20 1.81 1.00 1.74 0.25    
21 2.04 1.00 1.98 0.25    
22 1.50 1.00 1.81 0.25    
23 1.31 1.00 -0.39 0.25    
24 1.21 1.00 -0.43 0.25    
25 1.94 1.00 -0.43 0.25    
26 2.10 1.00 1.52 0.25    
27 1.81 1.00 0.19 0.25    
28 2.15 1.00 0.99 0.25    
29 1.53 1.00 0.51 0.25    
30 1.95 1.00 0.38 0.25    
31 1.69 1.00 1.80 0.25    
32 1.39 1.00 -0.01 0.25    
33 1.52 1.00 1.44 0.25    
34 1.96 1.00 0.78 0.25    

 
Item 

Number a1 a2 b c d1 d2 d3 
35 1.72 1.00 1.11 0.25    
36 2.18 1.00 1.06 0.25    
37 1.83 1.00 0.48 0.25    
38 1.79 1.00 0.49 0.25    
39 2.00 1.00 0.49 0.25    
40 1.90 1.00 0.57 0.25    
41 1.55 1.00 0.62 0.25    
42 2.12 1.00 0.64 0.25    

43* 1.38 1.00 0.44 0.25    
44* 1.26 1.00 0.42 0.25    
45* 1.43 1.00 0.50 0.25    
46* 2.14 1.00 0.51 0.25    
47* 1.83 1.00 0.63 0.25    
48* 1.85 1.00 0.53 0.25    
49* 1.22 1.00 0.11 0.25    
50* 1.61 1.00 0.22 0.25    
51* 1.31 1.00 0.35 0.25    
52* 2.08 1.00 1.14 0.25    
53* 1.42 1.00 0.94 0.25    
54* 1.35 1.00 0.84 0.25    
55* 1.56 1.00   -0.15 0.25 1.15 
56* 1.52 1.00   -0.20 0.31 1.46 
57 2.02 1.00   -0.47 0.61 1.04 
58 1.61 1.00   0.09 0.57 1.07 
59 1.84 1.00   -0.04 0.33 1.05 
60^ 1.46 1.00   -0.38 0.31 1.03 
61^ 1.96 1.00   -0.40 0.17 1.09 

*Common items between grade 7 and grade 8 
^ Common items between grade 8 and grade 9 
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Table A11. Item parameters for grade 10 – narrow CI set 
Item 

Number a1 a2 b c d1 d2 d3 
1 1.46 1.00 1.58 0.25    
2 1.69 1.00 1.92 0.25    
3 1.26 1.00 1.05 0.25    
4 1.72 1.00 1.69 0.25    
5 2.18 1.00 0.22 0.25    
6 1.84 1.00 1.28 0.25    
7 1.80 1.00 1.67 0.25    
8 1.31 1.00 0.17 0.25    
9 2.00 1.00 0.15 0.25    
10 1.44 1.00 1.37 0.25    
11 1.71 1.00 1.06 0.25    
12 2.05 1.00 0.17 0.25    
13 1.30 1.00 0.32 0.25    
14 2.00 1.00 0.88 0.25    
15 1.87 1.00 0.28 0.25    
16 1.81 1.00 0.21 0.25    
17 2.04 1.00 0.09 0.25    
18 1.50 1.00 0.29 0.25    
19 1.52 1.00 -0.14 0.25    
20 1.21 1.00 1.04 0.25    
21 1.94 1.00 1.10 0.25    
22 2.10 1.00 1.33 0.25    
23 1.81 1.00 1.10 0.25    
24 2.15 1.00 1.14 0.25    
25 1.53 1.00 1.91 0.25    
26 1.95 1.00 0.88 0.25    
27 1.90 1.00 0.25 0.25    
28 1.37 1.00 0.39 0.25    
29 1.53 1.00 0.74 0.25    
30 1.29 1.00 -0.25 0.25    
31 1.25 1.00 1.43 0.25    
32 1.39 1.00 0.63 0.25    
33 1.52 1.00 1.17 0.25    
34 1.96 1.00 0.92 0.25    

 
Item 

Number a1 a2 b c d1 d2 d3 
35 1.72 1.00 1.07 0.25    
36 2.18 1.00 0.87 0.25    
37 1.22 1.00 0.11 0.25    
38 1.61 1.00 0.22 0.25    
39 1.31 1.00 0.35 0.25    
40 2.08 1.00 1.14 0.25    
41 1.42 1.00 0.94 0.25    
42 1.35 1.00 0.84 0.25    

43* 1.38 1.00 0.44 0.25    
44* 1.26 1.00 0.42 0.25    
45* 1.43 1.00 0.50 0.25    
46* 2.14 1.00 0.51 0.25    
47* 1.83 1.00 0.63 0.25    
48* 1.85 1.00 0.53 0.25    
49* 1.83 1.00 0.48 0.25    
50* 1.79 1.00 0.49 0.25    
51* 2.00 1.00 0.49 0.25    
52* 1.90 1.00 0.57 0.25    
53* 1.55 1.00 0.62 0.25    
54* 2.12 1.00 0.64 0.25    
55* 1.56 1.00   -0.15 0.25 1.15 
56* 1.52 1.00   -0.20 0.31 1.46 
57 2.02 1.00   -0.27 1.15 1.49 
58 1.61 1.00   -0.24 0.69 1.79 
59 1.46 1.00   -0.07 1.03 1.65 
60 1.96 1.00   0.03 0.95 1.54 
61 1.84 1.00   0.37 1.02 1.68 

*Common items between grade 9 and grade 10 
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Table A12. Item parameters for grade 10 – expanded CI set 
Item 

Number a1 a2 b c d1 d2 d3 
1 1.46 1.00 1.58 0.25    
2 1.69 1.00 1.92 0.25    
3 1.26 1.00 1.05 0.25    
4 1.72 1.00 1.69 0.25    
5 2.18 1.00 0.22 0.25    
6 1.84 1.00 1.28 0.25    
7 1.80 1.00 1.67 0.25    
8 1.31 1.00 0.17 0.25    
9 2.00 1.00 0.15 0.25    

10 1.44 1.00 1.37 0.25    
11 1.71 1.00 1.06 0.25    
12 2.05 1.00 0.17 0.25    
13 1.30 1.00 0.32 0.25    
14 2.00 1.00 0.88 0.25    
15 1.87 1.00 0.28 0.25    
16 1.81 1.00 0.21 0.25    
17 2.04 1.00 0.09 0.25    
18 1.50 1.00 0.29 0.25    
19 1.52 1.00 -0.14 0.25    
20 1.21 1.00 1.04 0.25    
21 1.94 1.00 1.10 0.25    
22 2.10 1.00 1.33 0.25    
23 1.81 1.00 1.10 0.25    
24 2.15 1.00 1.14 0.25    
25 1.53 1.00 1.91 0.25    
26 1.95 1.00 0.88 0.25    
27 1.90 1.00 0.25 0.25    
28 1.37 1.00 0.39 0.25    
29 1.53 1.00 0.74 0.25    
30 1.29 1.00 -0.25 0.25    
31 1.25 1.00 1.43 0.25    
32 1.39 1.00 0.63 0.25    
33 1.52 1.00 1.17 0.25    
34 1.96 1.00 0.92 0.25    

 
Item 

Number a1 a2 b c d1 d2 d3 
35 1.72 1.00 1.07 0.25    
36 2.18 1.00 0.87 0.25    
37 1.83 1.00 0.48 0.25    
38 1.79 1.00 0.49 0.25    
39 2.00 1.00 0.49 0.25    
40 1.90 1.00 0.57 0.25    
41 1.55 1.00 0.62 0.25    
42 2.12 1.00 0.64 0.25    

43* 1.38 1.00 0.44 0.25    
44* 1.26 1.00 0.42 0.25    
45* 1.43 1.00 0.50 0.25    
46* 2.14 1.00 0.51 0.25    
47* 1.83 1.00 0.63 0.25    
48* 1.85 1.00 0.53 0.25    
49* 1.22 1.00 0.11 0.25    
50* 1.61 1.00 0.22 0.25    
51* 1.31 1.00 0.35 0.25    
52* 2.08 1.00 1.14 0.25    
53* 1.42 1.00 0.94 0.25    
54* 1.35 1.00 0.84 0.25    
55* 1.56 1.00   -0.15 0.25 1.15 
56* 1.52 1.00   -0.20 0.31 1.46 
57 2.02 1.00   -0.27 1.15 1.49 
58 1.61 1.00   -0.24 0.69 1.79 
59 1.46 1.00   -0.07 1.03 1.65 
60 1.96 1.00   0.03 0.95 1.54 
61 1.84 1.00   0.37 1.02 1.68 

*Common items between grade 9 and grade 10 
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Table B1. Grade 5 ANOVA results for BIAS 
Effect df1 df2 F-value p-value 
DG 2 198 2611.13 <.0001 
FE 3 297 281.48 <.0001 
DG*FE 3 297 1819.95 <.0001 
SEP 1 99 39475.50 <.0001 
DG*SEP 2 198 959.58 <.0001 
FE*SEP 3 297 4607.46 <.0001 
DG*FE*SEP 3 297 1129.13 <.0001 
CI 1 99 23.23 <.0001 
DG*CI 2 198 0.23 0.80 
FE*CI 3 297 6.28 0.00 
DG*FE*CI 3 297 8.22 <.0001 
SEP*CI 1 99 12.22 0.00 
DG*SEP*CI 2 198 13.27 <.0001 
FE*SEP*CI 3 297 0.32 0.81 
DG*FE*SEP*CI 3 297 2.63 0.05 
VS 1 99 883.15 <.0001 
DG*VS 2 198 716.14 <.0001 
FE*VS 3 297 51.36 <.0001 
DG*FE*VS 3 297 258.04 <.0001 
SEP*VS 1 99 14060.90 <.0001 
DG*SEP*VS 2 198 329.42 <.0001 
FE*SEP*VS 3 297 610.03 <.0001 
DG*FE*SEP*VS 3 297 90.03 <.0001 
CI*VS 1 99 5.66 0.02 
DG*CI*VS 2 198 5.33 0.01 
FE*CI*VS 3 297 11.03 <.0001 
DG*FE*CI*VS 3 297 1.83 0.14 
SEP*CI*VS 1 99 11.64 0.00 
DG*SEP*CI*VS 2 198 11.05 <.0001 
FE*SEP*CI*VS 3 297 2.35 0.07 
DG*FE*SEP*CI*VS 3 297 7.27 0.00 
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Table B2. Grade 5 ANOVA results for RMSE 
Effect df1 df2 F-value p-value 
DG 2 198 5531.15 <.0001 
FE 3 297 3066.90 <.0001 
DG*FE 3 297 717.77 <.0001 
SEP 1 99 12557.90 <.0001 
DG*SEP 2 198 127.76 <.0001 
FE*SEP 3 297 102.84 <.0001 
DG*FE*SEP 3 297 132.38 <.0001 
CI 1 99 0.92 0.34 
DG*CI 2 198 5.81 0.00 
FE*CI 3 297 5.85 0.00 
DG*FE*CI 3 297 1.90 0.13 
SEP*CI 1 99 9.89 0.00 
DG*SEP*CI 2 198 5.89 0.00 
FE*SEP*CI 3 297 0.40 0.75 
DG*FE*SEP*CI 3 297 0.87 0.46 
VS 1 99 14093.10 <.0001 
DG*VS 2 198 364.92 <.0001 
FE*VS 3 297 161.48 <.0001 
DG*FE*VS 3 297 4.69 0.00 
SEP*VS 1 99 7176.80 <.0001 
DG*SEP*VS 2 198 118.64 <.0001 
FE*SEP*VS 3 297 62.95 <.0001 
DG*FE*SEP*VS 3 297 154.06 <.0001 
CI*VS 1 99 0.03 0.87 
DG*CI*VS 2 198 1.03 0.36 
FE*CI*VS 3 297 0.12 0.95 
DG*FE*CI*VS 3 297 4.53 0.00 
SEP*CI*VS 1 99 5.62 0.02 
DG*SEP*CI*VS 2 198 3.98 0.02 
FE*SEP*CI*VS 3 297 0.34 0.80 
DG*FE*SEP*CI*VS 3 297 1.25 0.29 
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Table B3. Grade 6 ANOVA results for BIAS 
Effect df1 df2 F-value p-value 
DG 2 198 898.62 <.0001 
FE 3 297 263.23 <.0001 
DG*FE 3 297 1338.15 <.0001 
SEP 1 99 16615.40 <.0001 
DG*SEP 2 198 560.57 <.0001 
FE*SEP 3 297 2664.80 <.0001 
DG*FE*SEP 3 297 672.03 <.0001 
CI 1 99 52.61 <.0001 
DG*CI 2 198 4.24 0.02 
FE*CI 3 297 14.71 <.0001 
DG*FE*CI 3 297 6.05 0.00 
SEP*CI 1 99 35.40 <.0001 
DG*SEP*CI 2 198 21.18 <.0001 
FE*SEP*CI 3 297 2.05 0.11 
DG*FE*SEP*CI 3 297 5.02 0.00 
VS 1 99 18.67 <.0001 
DG*VS 2 198 13.11 <.0001 
FE*VS 3 297 83.42 <.0001 
DG*FE*VS 3 297 11.32 <.0001 
SEP*VS 1 99 706.79 <.0001 
DG*SEP*VS 2 198 142.08 <.0001 
FE*SEP*VS 3 297 392.65 <.0001 
DG*FE*SEP*VS 3 297 60.96 <.0001 
CI*VS 1 99 12.61 0.00 
DG*CI*VS 2 198 0.82 0.44 
FE*CI*VS 3 297 14.20 <.0001 
DG*FE*CI*VS 3 297 3.76 0.01 
SEP*CI*VS 1 99 24.93 <.0001 
DG*SEP*CI*VS 2 198 12.45 <.0001 
FE*SEP*CI*VS 3 297 3.26 0.02 
DG*FE*SEP*CI*VS 3 297 1.85 0.14 
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Table B4. Grade 6 ANOVA results for RMSE 
Effect df1 df2 F-value p-value 
DG 2 198 2012.88 <.0001 
FE 3 297 1282.18 <.0001 
DG*FE 3 297 317.13 <.0001 
SEP 1 99 974.55 <.0001 
DG*SEP 2 198 28.41 <.0001 
FE*SEP 3 297 73.92 <.0001 
DG*FE*SEP 3 297 6.85 0.00 
CI 1 99 5.08 0.03 
DG*CI 2 198 2.38 0.10 
FE*CI 3 297 1.37 0.25 
DG*FE*CI 3 297 2.96 0.03 
SEP*CI 1 99 1.47 0.23 
DG*SEP*CI 2 198 4.11 0.02 
FE*SEP*CI 3 297 0.45 0.72 
DG*FE*SEP*CI 3 297 2.15 0.09 
VS 1 99 50.51 <.0001 
DG*VS 2 198 11.30 <.0001 
FE*VS 3 297 5.35 0.00 
DG*FE*VS 3 297 3.39 0.02 
SEP*VS 1 99 99.48 <.0001 
DG*SEP*VS 2 198 13.78 <.0001 
FE*SEP*VS 3 297 23.89 <.0001 
DG*FE*SEP*VS 3 297 5.79 0.00 
CI*VS 1 99 0.03 0.86 
DG*CI*VS 2 198 1.50 0.23 
FE*CI*VS 3 297 1.17 0.32 
DG*FE*CI*VS 3 297 0.70 0.55 
SEP*CI*VS 1 99 7.38 0.01 
DG*SEP*CI*VS 2 198 2.42 0.09 
FE*SEP*CI*VS 3 297 0.15 0.93 
DG*FE*SEP*CI*VS 3 297 0.47 0.70 
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Table B5. Grade 7 ANOVA results for BIAS 
Effect df1 df2 F-value p-value 
DG 2 198 649.15 <.0001 
FE 3 297 664.77 <.0001 
DG*FE 3 297 144.06 <.0001 
SEP 1 99 40.71 <.0001 
DG*SEP 2 198 9.78 <.0001 
FE*SEP 3 297 10.07 <.0001 
DG*FE*SEP 3 297 4.20 0.01 
CI 1 99 1.43 0.23 
DG*CI 2 198 1.10 0.34 
FE*CI 3 297 2.44 0.06 
DG*FE*CI 3 297 4.15 0.01 
SEP*CI 1 99 0.15 0.70 
DG*SEP*CI 2 198 0.55 0.58 
FE*SEP*CI 3 297 3.82 0.01 
DG*FE*SEP*CI 3 297 1.42 0.24 
VS 1 99 159.26 <.0001 
DG*VS 2 198 82.07 <.0001 
FE*VS 3 297 79.86 <.0001 
DG*FE*VS 3 297 37.03 <.0001 
SEP*VS 1 99 38.14 <.0001 
DG*SEP*VS 2 198 10.07 <.0001 
FE*SEP*VS 3 297 8.89 <.0001 
DG*FE*SEP*VS 3 297 7.48 <.0001 
CI*VS 1 99 0.09 0.77 
DG*CI*VS 2 198 0.00 1.00 
FE*CI*VS 3 297 0.11 0.96 
DG*FE*CI*VS 3 297 0.03 0.99 
SEP*CI*VS 1 99 0.05 0.82 
DG*SEP*CI*VS 2 198 0.04 0.96 
FE*SEP*CI*VS 3 297 0.12 0.95 
DG*FE*SEP*CI*VS 3 296 0.11 0.95 
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Table B6. Grade 7 ANOVA results for RMSE 
Effect df1 df2 F-value p-value 
DG 2 198 74837.40 <.0001 
FE 3 297 38699.50 <.0001 
DG*FE 3 297 16949.80 <.0001 
SEP 1 99 1.28 0.26 
DG*SEP 2 198 3.36 0.04 
FE*SEP 3 297 2.14 0.10 
DG*FE*SEP 3 297 2.57 0.05 
CI 1 99 7.94 0.01 
DG*CI 2 198 3.76 0.03 
FE*CI 3 297 0.01 1.00 
DG*FE*CI 3 297 2.79 0.04 
SEP*CI 1 99 1.40 0.24 
DG*SEP*CI 2 198 1.00 0.37 
FE*SEP*CI 3 297 1.73 0.16 
DG*FE*SEP*CI 3 297 0.50 0.68 
VS 1 99 0.42 0.52 
DG*VS 2 198 0.17 0.85 
FE*VS 3 297 0.65 0.58 
DG*FE*VS 3 297 0.89 0.45 
SEP*VS 1 99 0.81 0.37 
DG*SEP*VS 2 198 0.91 0.40 
FE*SEP*VS 3 297 0.51 0.67 
DG*FE*SEP*VS 3 297 0.85 0.47 
CI*VS 1 99 0.75 0.39 
DG*CI*VS 2 198 0.19 0.82 
FE*CI*VS 3 297 0.87 0.46 
DG*FE*CI*VS 3 297 0.41 0.75 
SEP*CI*VS 1 99 0.60 0.44 
DG*SEP*CI*VS 2 198 0.20 0.82 
FE*SEP*CI*VS 3 297 0.97 0.41 
DG*FE*SEP*CI*VS 3 296 0.48 0.70 
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Table B7. Grade 8 ANOVA results for BIAS 
Effect df1 df2 F-value p-value 
DG 2 198 508.59 <.0001 
FE 3 297 323.07 <.0001 
DG*FE 3 297 22.41 <.0001 
SEP 1 99 5330.76 <.0001 
DG*SEP 2 198 183.45 <.0001 
FE*SEP 3 297 176.39 <.0001 
DG*FE*SEP 3 297 44.66 <.0001 
CI 1 99 0.70 0.40 
DG*CI 2 198 0.09 0.92 
FE*CI 3 297 2.90 0.04 
DG*FE*CI 3 297 2.78 0.04 
SEP*CI 1 99 2.47 0.12 
DG*SEP*CI 2 198 0.63 0.53 
FE*SEP*CI 3 297 6.12 0.00 
DG*FE*SEP*CI 3 297 1.62 0.19 
VS 1 99 10748.10 <.0001 
DG*VS 2 198 472.37 <.0001 
FE*VS 3 297 573.74 <.0001 
DG*FE*VS 3 297 146.32 <.0001 
SEP*VS 1 99 8610.72 <.0001 
DG*SEP*VS 2 198 426.97 <.0001 
FE*SEP*VS 3 297 388.45 <.0001 
DG*FE*SEP*VS 3 297 98.83 <.0001 
CI*VS 1 99 0.74 0.39 
DG*CI*VS 2 198 0.65 0.52 
FE*CI*VS 3 297 3.20 0.02 
DG*FE*CI*VS 3 297 0.96 0.41 
SEP*CI*VS 1 99 0.07 0.80 
DG*SEP*CI*VS 2 197 0.55 0.58 
FE*SEP*CI*VS 3 297 3.77 0.01 
DG*FE*SEP*CI*VS 3 297 0.74 0.53 
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Table B8. Grade 8 ANOVA results for RMSE 
Effect df1 df2 F-value p-value 
DG 2 198 74699.90 <.0001 
FE 3 297 35317.40 <.0001 
DG*FE 3 297 14885.30 <.0001 
SEP 1 99 373.14 <.0001 
DG*SEP 2 198 234.90 <.0001 
FE*SEP 3 297 7.96 <.0001 
DG*FE*SEP 3 297 3.33 0.02 
CI 1 99 0.39 0.53 
DG*CI 2 198 0.33 0.72 
FE*CI 3 297 2.49 0.06 
DG*FE*CI 3 297 0.39 0.76 
SEP*CI 1 99 0.59 0.44 
DG*SEP*CI 2 198 2.80 0.06 
FE*SEP*CI 3 297 1.27 0.29 
DG*FE*SEP*CI 3 297 0.41 0.75 
VS 1 99 6947.61 <.0001 
DG*VS 2 198 199.51 <.0001 
FE*VS 3 297 49.27 <.0001 
DG*FE*VS 3 297 9.96 <.0001 
SEP*VS 1 99 2891.42 <.0001 
DG*SEP*VS 2 198 105.73 <.0001 
FE*SEP*VS 3 297 20.14 <.0001 
DG*FE*SEP*VS 3 297 3.15 0.03 
CI*VS 1 99 0.30 0.58 
DG*CI*VS 2 198 0.93 0.39 
FE*CI*VS 3 297 3.57 0.01 
DG*FE*CI*VS 3 297 0.78 0.51 
SEP*CI*VS 1 99 0.37 0.54 
DG*SEP*CI*VS 2 197 1.02 0.36 
FE*SEP*CI*VS 3 297 1.17 0.32 
DG*FE*SEP*CI*VS 3 297 0.35 0.79 
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Table B9. Grade 9 ANOVA results for BIAS 
Effect df1 df2 F-value p-value 
DG 2 198 644.74 <.0001 
FE 3 297 766.97 <.0001 
DG*FE 3 297 257.76 <.0001 
SEP 1 99 7567.85 <.0001 
DG*SEP 2 198 731.94 <.0001 
FE*SEP 3 297 534.37 <.0001 
DG*FE*SEP 3 297 212.11 <.0001 
CI 1 99 0.11 0.74 
DG*CI 2 198 2.39 0.09 
FE*CI 3 297 1.75 0.16 
DG*FE*CI 3 297 3.63 0.01 
SEP*CI 1 99 0.40 0.53 
DG*SEP*CI 2 198 2.70 0.07 
FE*SEP*CI 3 297 1.82 0.14 
DG*FE*SEP*CI 3 297 4.45 0.00 
VS 1 99 272.50 <.0001 
DG*VS 2 198 18.10 <.0001 
FE*VS 3 297 17.28 <.0001 
DG*FE*VS 3 297 35.06 <.0001 
SEP*VS 1 99 324.51 <.0001 
DG*SEP*VS 2 198 8.49 0.00 
FE*SEP*VS 3 297 10.16 <.0001 
DG*FE*SEP*VS 3 297 25.72 <.0001 
CI*VS 1 99 0.00 1.00 
DG*CI*VS 2 198 1.86 0.16 
FE*CI*VS 3 297 3.16 0.03 
DG*FE*CI*VS 3 297 6.17 0.00 
SEP*CI*VS 1 99 0.00 0.95 
DG*SEP*CI*VS 2 198 1.77 0.17 
FE*SEP*CI*VS 3 297 2.98 0.03 
DG*FE*SEP*CI*VS 3 297 6.54 0.00 
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Table B10. Grade 9 ANOVA results for RMSE 
Effect df1 df2 F-value p-value 
DG 2 198 15513.60 <.0001 
FE 3 297 5817.73 <.0001 
DG*FE 3 297 2188.89 <.0001 
SEP 1 99 4350.53 <.0001 
DG*SEP 2 198 514.63 <.0001 
FE*SEP 3 297 80.08 <.0001 
DG*FE*SEP 3 297 31.07 <.0001 
CI 1 99 10.02 0.00 
DG*CI 2 198 0.11 0.90 
FE*CI 3 297 0.38 0.77 
DG*FE*CI 3 297 0.26 0.85 
SEP*CI 1 99 6.10 0.02 
DG*SEP*CI 2 198 0.51 0.60 
FE*SEP*CI 3 297 0.99 0.40 
DG*FE*SEP*CI 3 297 0.68 0.56 
VS 1 99 0.04 0.84 
DG*VS 2 198 1.21 0.30 
FE*VS 3 297 0.03 0.99 
DG*FE*VS 3 297 4.36 0.01 
SEP*VS 1 99 8.03 0.01 
DG*SEP*VS 2 198 0.70 0.50 
FE*SEP*VS 3 297 2.00 0.11 
DG*FE*SEP*VS 3 297 2.49 0.06 
CI*VS 1 99 2.97 0.09 
DG*CI*VS 2 198 2.83 0.06 
FE*CI*VS 3 297 3.70 0.01 
DG*FE*CI*VS 3 297 0.39 0.76 
SEP*CI*VS 1 99 7.06 0.01 
DG*SEP*CI*VS 2 198 1.10 0.33 
FE*SEP*CI*VS 3 297 3.59 0.01 
DG*FE*SEP*CI*VS 3 297 1.77 0.15 
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Table B11. Grade 10 ANOVA results for BIAS 
Effect df1 df2 F-value p-value 
DG 2 198 271.82 <.0001 
FE 3 297 279.45 <.0001 
DG*FE 3 297 54.93 <.0001 
SEP 1 99 8713.18 <.0001 
DG*SEP 2 198 808.09 <.0001 
FE*SEP 3 297 411.32 <.0001 
DG*FE*SEP 3 297 136.51 <.0001 
CI 1 99 0.08 0.78 
DG*CI 2 198 3.33 0.04 
FE*CI 3 297 1.20 0.31 
DG*FE*CI 3 297 3.62 0.01 
SEP*CI 1 99 0.24 0.63 
DG*SEP*CI 2 198 2.22 0.11 
FE*SEP*CI 3 297 1.05 0.37 
DG*FE*SEP*CI 3 297 5.06 0.00 
VS 1 99 1020.36 <.0001 
DG*VS 2 198 1.51 0.22 
FE*VS 3 297 6.10 0.00 
DG*FE*VS 3 297 20.17 <.0001 
SEP*VS 1 99 1005.90 <.0001 
DG*SEP*VS 2 198 2.24 0.11 
FE*SEP*VS 3 297 7.21 0.00 
DG*FE*SEP*VS 3 297 21.57 <.0001 
CI*VS 1 99 0.00 0.96 
DG*CI*VS 2 198 2.35 0.10 
FE*CI*VS 3 297 3.06 0.03 
DG*FE*CI*VS 3 297 5.66 0.00 
SEP*CI*VS 1 99 0.02 0.88 
DG*SEP*CI*VS 2 198 2.00 0.14 
FE*SEP*CI*VS 3 297 3.20 0.02 
DG*FE*SEP*CI*VS 3 297 5.62 0.00 
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Table B12. Grade 10 ANOVA results for RMSE 
Effect df1 df2 F-value p-value 
DG 2 198 17155.70 <.0001 
FE 3 297 5145.47 <.0001 
SEP 3 297 1776.87 <.0001 
CI 1 99 3711.23 <.0001 
DG*FE 2 198 1166.67 <.0001 
DG*SEP 3 297 105.30 <.0001 
DG*CI 3 297 27.07 <.0001 
FE*SEP 1 99 8.35 0.00 
FE*CI 2 198 2.62 0.08 
SEP*CI 3 297 1.08 0.36 
DG*FE*SEP 3 297 0.63 0.60 
DG*FE*CI 1 99 9.15 0.00 
DG*SEP*CI 2 198 0.97 0.38 
FE*SEP*CI 3 297 0.74 0.53 
DG*FE*SEP*CI 3 297 0.56 0.64 
VS 1 99 1623.25 <.0001 
VS*DG 2 198 39.12 <.0001 
VS*FE 3 297 16.93 <.0001 
VS*SEP 3 297 1.79 0.15 
VS*CI 1 99 346.89 <.0001 
VS*DG*FE 2 198 43.14 <.0001 
VS*DG*SEP 3 297 16.05 <.0001 
VS*DG*CI 3 297 5.14 0.00 
VS*FE*SEP 1 99 2.61 0.11 
VS*FE*CI 2 198 3.16 0.04 
VS*SEP*CI 3 297 4.24 0.01 
VS*DG*FE*SEP 3 297 0.38 0.76 
VS*DG*FE*CI 1 99 7.37 0.01 
VS* DG*SEP*CI 2 198 1.14 0.32 
VS*FE*SEP*CI 3 297 4.96 0.00 
VS*DG*FE*SEP*CI 3 297 1.95 0.12 

 



190 

 

APPENDIX C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



191 

 

Table C1. Grade 5 Comparisons of Item Format Effects  

Ability 
Generation 

Scaling 
Method 

Common 
Item Set Format Effect 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

2-Dim 

Separate 

Narrow 

None 
Small 0.01 0.12 -0.16 -0.16 

Moderate -0.62* 0.46 -1.15* -1.71* 
Large -3.98* 1.02* -3.87* -2.37* 

Small Moderate -0.63* 0.34 -0.99* -1.55* 
Large -3.99* 0.90* -3.71* -2.21* 

Moderate Large -3.36* 0.56* -2.72* -0.66 

Expanded 

None 
Small -0.07 0.17 -0.26 -0.23 

Moderate -0.64* 0.49 -1.18* -1.63* 
Large -4.03* 1.17* -3.97* -2.58* 

Small Moderate -0.57* 0.32 -0.92* -1.40* 
Large -3.96* 1.00* -3.71* -2.35* 

Moderate Large -3.39* 0.68* -2.79* -0.95* 

Pairwise 

Narrow 

None 
Small -0.01 0.03 -0.24 -0.10 

Moderate -0.16 0.23 -0.97* -0.90* 
Large -1.75* 0.40 -2.33* -2.28* 

Small Moderate -0.15 0.20 -0.73 -0.80 
Large -1.74* 0.37 -2.09* -2.18* 

Moderate Large -1.59* 0.17 -1.36* -1.38* 

Expanded 

None 
Small 0.02 0.07 -0.17 -0.08 

Moderate -0.20 0.25 -0.95* -0.90* 
Large -1.80* 0.42 -2.32* -2.29* 

Small Moderate -0.22 0.18 -0.78 -0.82 
Large -1.82* 0.35 -2.15* -2.21* 

Moderate Large -1.60* 0.17 -1.37* -1.39* 

3-Dim 

Separate 

Narrow 

None 
Small -0.02 0.16 -0.05 -0.22 

Moderate -0.06 0.90* -0.25 -1.20* 
Large -0.14 1.91* -0.58 -2.38* 

Small Moderate -0.04 0.74* -0.20 -0.98* 
Large -0.12 1.75* -0.53 -2.16* 

Moderate Large -0.08 1.01* -0.33 -1.18* 

Expanded 

None 
Small -0.04 0.40 -0.17 -0.41 

Moderate -0.06 1.01* -0.26 -1.16* 
Large -0.12 1.85* -0.59 -2.07* 

Small Moderate -0.02 0.61* -0.09 -0.75 
Large -0.08 1.45* -0.42 -1.66* 

Moderate Large -0.06 0.84* -0.33 -0.91* 

Pairwise 

Narrow 

None 
Small 0.02 0.15 -0.04 0.07 

Moderate -0.01 0.39 -0.19 -0.28 
Large -0.02 0.68* -0.40 -0.54 

Small Moderate 0.01 0.24 -0.15 -0.21 
Large 0.00 0.53* -0.36 -0.47 

Moderate Large -0.01 0.29 -0.21 -0.26 

Expanded 

None 
Small 0.00 0.11 -0.11 -0.11 

Moderate -0.02 0.24 -0.19 -0.28 
Large 0.00 0.57* -0.40 -0.57 

Small Moderate -0.02 0.13 -0.08 -0.17 
Large 0.00 0.46 -0.29 -0.46 

Moderate Large 0.02 0.33 -0.21 -0.29 
* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C2. Grade 5 Comparisons of Vertical Scaling Method Effects  

Ability 
Generation 

Common 
Item Set 

Format 
Effect Scaling Method 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Uni Narrow   Separate Pairwise 0.37 -0.99* 0.48 3.56* 
Expanded   Separate Pairwise 0.43 -1.19* 0.46 3.98* 

2-Dim 

Narrow 

None Separate Pairwise 0.41 -1.41* 0.43 3.69* 
Small Separate Pairwise 1.34* -0.98* 0.09 3.15* 

Moderate Separate Pairwise 0.87* -1.03* 0.67 3.80* 
Large Separate Pairwise 2.64* -1.42* 2.03* 3.08* 

Expanded 

None Separate Pairwise 0.38 -1.66* 0.40 3.40* 
Small Separate Pairwise 0.91* -0.96* -0.18 3.24* 

Moderate Separate Pairwise -0.66* -1.03* 0.63 3.74* 
Large Separate Pairwise 2.61* -1.54* 2.05* 3.30* 

3-Dim 

Narrow 

None Separate Pairwise 0.12 -1.36* 0.26 2.09* 
Small Separate Pairwise 0.18 -1.07* 0.27 1.86* 

Moderate Separate Pairwise 0.15 -1.54* 0.32 2.56* 
Large Separate Pairwise 0.22 -2.26* 0.44 3.48* 

Expanded 

None Separate Pairwise 0.12 -1.49* 0.22 2.10* 
Small Separate Pairwise 0.31 -1.15* 0.28 1.97* 

Moderate Separate Pairwise 0.15 -1.58* 0.29 2.55* 
Large Separate Pairwise 0.23 -2.09* 0.41 3.17* 

* significant at p < 0.05 and Cohen’s d > 0.20 
 
Table C3. Grade 5 Comparisons of Common Item Effects 

Ability 
Generation 

Scaling 
Method 

Format 
Effect Common Item Set 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Uni Separate  Narrow Expanded -0.06 -0.01 -0.03 -0.05 
 Pairwise  Narrow Expanded 0.01 0.00 -0.05 0.00 

2-Dim Separate None Narrow Expanded 0.03 -0.03 0.04 -0.03 
  Small Narrow Expanded -0.05 0.02 -0.06 -0.10 
  Moderate Narrow Expanded 0.01 0.00 0.01 0.05 
  Large Narrow Expanded -0.02 0.12 -0.06 -0.24 
 Pairwise None Narrow Expanded 0.00 -0.02 -0.05 -0.01 
  Small Narrow Expanded -0.48 0.02 0.02 -0.01 
  Moderate Narrow Expanded -0.04 0.00 -0.03 -0.01 
  Large Narrow Expanded -0.05 0.00 -0.04 -0.02 

3-Dim Separate None Narrow Expanded -0.01 -0.18 0.03 0.07 
  Small Narrow Expanded -0.03 0.06 -0.09 -0.12 
  Moderate Narrow Expanded -0.01 -0.07 0.02 0.11 
  Large Narrow Expanded 0.01 -0.24 0.02 0.38 
 Pairwise None Narrow Expanded 0.00 0.04 -0.01 0.10 
  Small Narrow Expanded 0.02 0.00 -0.08 0.06 
  Moderate Narrow Expanded -0.01 -0.11 -0.01 0.10 
  Large Narrow Expanded 0.02 -0.07 -0.01 0.07 

* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C4. Grade 5 Comparisons of Grade Level Separation Effects  
Ability 

Generation 
Scaling 
Method 

Common 
Item Set 

Format 
Effect 

Grade Level 
Separation 

Mean BIAS Mean RMSE 
Mean diff Mean diff 

Uni 
Separate Narrow   Small Large 2.10* -3.66* 

Expanded   Small Large 2.15* -3.68* 

Pairwise Narrow    Small Large 0.91* -1.04* 
Expanded   Small Large 0.90* -0.99* 

2-Dim 

Separate 

Narrow 

None Small Large 2.10* -3.48* 
Small Small Large 2.21* -3.48* 
Moderate Small Large 3.18* -4.04* 
Large Small Large 7.10* -1.98* 

Expanded 

None Small Large 2.04* -3.55* 
Small Small Large 2.28* -3.52* 
Moderate Small Large 3.18* -4.00* 
Large Small Large 7.24* -2.16* 

Pairwise 

Narrow 

None Small Large 0.89* -0.98* 
Small Small Large 0.93* -0.84* 
Moderate Small Large 1.28* -0.91* 
Large Small Large 3.04* -0.93* 

Expanded 

None Small Large 0.87* -0.94* 
Small Small Large 0.92* -0.82* 
Moderate Small Large 1.32* -0.89* 
Large Small Large 3.09* -0.91* 

3-Dim 

Separate 

Narrow 

None Small Large 1.74* -1.89* 
Small Small Large 1.92* -2.06* 
Moderate Small Large 2.70* -2.84* 
Large Small Large 3.79* -3.69* 

Expanded 

None Small Large 1.57* -1.85* 
Small Small Large 2.01* -2.09* 
Moderate Small Large 2.64* -2.75* 
Large Small Large 3.54* -3.33* 

Pairwise 

Narrow 

None Small Large 0.26 -0.51 
Small Small Large 0.67 -0.54 
Moderate Small Large 1.01* -0.60 
Large Small Large 1.31* -0.65 

Expanded 

None Small Large -0.04 0.40 
Small Small Large 0.55 -0.40 
Moderate Small Large 0.91* -0.49 
Large Small Large 1.22* -0.57 

* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C5. Grade 5 Comparisons of Data Generation Models 

Scaling 
Method 

Common 
Item Set 

Format 
Effect Ability Generation 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Separate  

Narrow 

None 
Uni 2-Dim -0.01 -0.01 0.00 0.18 

  3-Dim 0.51 0.15 0.52 2.29* 
2-Dim 3-Dim 0.52 0.16 0.52 2.11* 

Small 2-Dim 3-Dim 0.49 0.20 0.63 2.05* 
Moderate 2-Dim 3-Dim 1.08* 0.60* 1.42* 2.62* 

Large 2-Dim 3-Dim 4.36* 1.05* 3.81* 2.10* 

Expanded 

None 
Uni 2-Dim 0.08 -0.03 0.07 0.20 

  3-Dim 0.50 -0.02 0.59 2.41* 
2-Dim 3-Dim 0.48 0.01 0.51 2.21* 

Small 2-Dim 3-Dim 0.51 0.24 0.60 2.03* 
Moderate 2-Dim 3-Dim 1.06* 0.53* 1.43* 2.68* 

Large 2-Dim 3-Dim 4.39* 0.69* 3.89* 2.72* 

Pairwise 

Narrow 

None 
Uni 2-Dim 0.03 -0.01 0.01 0.07 

  3-Dim 0.24 -0.06 0.30 0.82* 
2-Dim 3-Dim 0.21 -0.07 0.29 0.76* 

Small 2-Dim 3-Dim -0.20 0.05 0.49 0.79* 
Moderate 2-Dim 3-Dim 0.36 0.09 1.07* 1.38* 

Large 2-Dim 3-Dim 1.94* 0.21 2.22* 2.50* 

Expanded 

None 
Uni 2-Dim 0.02 -0.01 0.01 0.06 

  3-Dim 0.23 -0.02 0.34 0.93* 
2-Dim 3-Dim 0.21 -0.01 0.33 0.87* 

Small 2-Dim 3-Dim 0.19 0.03 0.39 0.84* 
Moderate 2-Dim 3-Dim 0.39 -0.02 1.09* 1.49* 

Large 2-Dim 3-Dim 2.01* 0.14 2.25* 2.59* 
* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C6. Grade 6 Comparisons of Item Format Effects 

Ability 
Generation 

Scaling 
Method 

Common 
Item Set Format Effect 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

2-Dim 

Separate 

Narrow 

None 
Small 0.08 0.05 -0.16 -0.02 

Moderate 0.00 0.13 -0.96 -1.02* 
Large -0.90* 0.11 -1.98* -2.32* 

Small Moderate -0.08 0.08 -0.80 -0.99 
Large -0.97* 0.06 -1.82* -2.30* 

Moderate Large -0.90* -0.02 -1.01* -1.30* 

Expanded 

None 
Small 0.01 0.06 -0.21 -0.11 

Moderate -0.05 0.11 -0.88 -1.33* 
Large -0.93* 0.04 -2.03* -2.34* 

Small Moderate -0.06 0.05 -0.67 -1.22* 
Large -0.94* -0.02 -1.82* -2.24* 

Moderate Large -0.89* -0.07 -1.15* -1.02* 

Pairwise 

Narrow 

None 
Small 0.03 0.05 -0.20 -0.08 

Moderate -0.08 0.08 -0.88 -0.85 
Large -0.95* 0.25 -2.04* -2.19* 

Small Moderate -0.11 0.08 -0.68 -0.77 
Large -0.98* 0.20 -1.84* -2.11* 

Moderate Large -0.87* 0.16 -1.15* -1.33* 

Expanded 

None 
Small 0.01 0.01 -0.17 -0.01 

Moderate -0.09 0.05 -0.94 -1.02* 
Large -0.94* 0.19 -2.04* -2.14* 

Small Moderate -0.10 0.05 -0.78 -1.02* 
Large -0.94* 0.19 -1.87* -2.14* 

Moderate Large -0.85* 0.13 -1.09* -1.12* 

3-Dim 

Separate 

Narrow 

None 
Small 0.01 0.07 -0.06 -0.13 

Moderate 0.03 0.25 -0.19 -0.43 
Large 0.04 0.45* -0.48 -1.02* 

Small Moderate 0.02 0.18 -0.13 -0.30 
Large 0.03 0.38* -0.43 -0.89 

Moderate Large 0.01 0.20 -0.29 -0.60 

Expanded 

None 
Small 0.01 0.04 -0.10 -0.09 

Moderate 0.02 0.18 -0.22 -0.29 
Large 0.04 0.36* -0.51 -1.21* 

Small Moderate 0.01 0.13 -0.12 -0.20 
Large 0.03 0.31* -0.41 -1.12* 

Moderate Large 0.02 0.18 -0.29 -0.92 

Pairwise 

Narrow 

None 
Small 0.04 0.05 -0.03 -0.10 

Moderate 0.08 0.21 -0.19 -0.28 
Large 0.09 0.40* -0.52 -0.54 

Small Moderate 0.04 0.16 -0.15 -0.18 
Large 0.05 0.35* -0.48 -0.44 

Moderate Large 0.01 0.19 -0.33 -0.26 

Expanded 

None 
Small -0.03 0.00 -0.12 -0.06 

Moderate 0.00 0.12 -0.20 -0.17 
Large 0.04 0.32* -0.57 -0.59 

Small Moderate -0.04 0.12 -0.08 -0.11 
Large -0.07 0.32* -0.45 -0.53 

Moderate Large 0.03 0.19 -0.37 -0.42 
* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C7. Grade 6 Comparisons of Vertical Scaling Method Effects 

Ability 
Generation 

Common 
Item Set 

Format 
Effect Scaling Method 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Uni Narrow   Separate Pairwise 0.00 -0.02 0.01 -0.12 
Expanded   Separate Pairwise 0.00 -0.04 0.02 -0.14 

2-Dim 

Narrow 

None Separate Pairwise 0.04 0.00 0.05 0.02 
Small Separate Pairwise 0.01 0.00 0.02 -0.08 

Moderate Separate Pairwise -0.04 -0.05 0.14 0.14 
Large Separate Pairwise -0.02 0.14 -0.01 0.11 

Expanded 

None Separate Pairwise -0.01 0.01 0.01 -0.06 
Small Separate Pairwise -0.01 0.04 0.06 0.03 

Moderate Separate Pairwise -0.05 -0.05 -0.06 0.24 
Large Separate Pairwise -0.01 0.17 0.00 0.14 

3-Dim 

Narrow 

None Separate Pairwise -0.06 0.02 0.00 -0.13 
Small Separate Pairwise -0.03 0.00 0.03 -0.10 

Moderate Separate Pairwise -0.01 -0.02 0.00 0.02 
Large Separate Pairwise -0.01 -0.03 -0.04 0.35 

Expanded 

None Separate Pairwise 0.01 0.02 0.00 -0.09 
Small Separate Pairwise -0.03 -0.02 -0.02 -0.06 

Moderate Separate Pairwise 0.00 -0.04 0.03 0.03 
Large Separate Pairwise 0.01 -0.02 -0.06 0.53 

* significant at p < 0.05 and Cohen’s d > 0.20 
 
Table C8. Grade 6 Comparisons of Common Item Effects 

Ability 
Generation 

Scaling 
Method 

Format 
Effect Common Item Set 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Uni Separate   Narrow Expanded 0.01 -0.02 0.00 0.02 
Pairwise   Narrow Expanded 0.00 0.00 -0.03 0.00 

2-Dim 

Separate 

None Narrow Expanded 0.02 0.02 0.01 -0.01 
Small Narrow Expanded -0.04 0.03 -0.04 -0.09 

Moderate Narrow Expanded -0.02 0.00 0.10 -0.32 
Large Narrow Expanded -0.01 -0.06 -0.04 -0.03 

Pairwise 

None Narrow Expanded 0.01 -0.03 -0.03 -0.05 
Small Narrow Expanded -0.02 -0.01 0.00 0.02 

Moderate Narrow Expanded -0.04 0.00 -0.10 -0.22 
Large Narrow Expanded -0.03 -0.03 -0.03 0.00 

3-Dim 

Separate 

None Narrow Expanded 0.00 0.03 0.01 -0.05 
Small Narrow Expanded 0.00 0.00 -0.04 -0.01 

Moderate Narrow Expanded 0.00 -0.04 -0.03 0.09 
Large Narrow Expanded -0.01 -0.06 -0.03 -0.24 

Pairwise 

None Narrow Expanded 0.07 -0.03 0.01 -0.01 
Small Narrow Expanded 0.00 -0.02 -0.09 0.03 

Moderate Narrow Expanded 0.00 -0.06 0.00 0.10 
Large Narrow Expanded -0.02 -0.05 -0.05 -0.06 

* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C9. Grade 6 Comparisons of Grade Level Separation Effects 
Ability 

Generation 
Scaling 
Method 

Common 
Item set 

Format 
Effect 

Grade Level 
Separation 

Mean BIAS Mean RMSE 
Mean diff Mean diff 

Uni 
Separate Narrow   Small Large 0.50* -0.80 

Expanded   Small Large 0.49* -0.88 

Pairwise Narrow    Small Large        0.51* -0.91 
Expanded   Small Large        0.52* -0.94 

2-Dim 

Separate 

Narrow 

None Small Large 0.50* -0.78 
Small Small Large 0.48* -0.65 
Moderate Small Large 0.64* -0.84 
Large Small Large 1.51* -1.13* 

Expanded 

None Small Large 0.50* -0.80 
Small Small Large 0.55* -0.69 
Moderate Small Large 0.65* -1.25* 
Large Small Large 1.47* -1.11* 

Pairwise 

Narrow 

None Small Large 0.47* -0.86 
Small Small Large 0.49* -0.74 
Moderate Small Large 0.63* -0.83 
Large Small Large 1.67* -1.01* 

Expanded 

None Small Large 0.52* -0.88 
Small Small Large 0.52* -0.72 
Moderate Small Large 0.65* -0.95 
Large Small Large 1.64* -0.98 

3-Dim 

Separate 

Narrow 

None Small Large 0.34* -0.37 
Small Small Large 0.40* -0.44 
Moderate Small Large 0.56* -0.61 
Large Small Large 0.75* -0.91 

Expanded 

None Small Large 0.36* -0.42 
Small Small Large 0.40* -0.41 
Moderate Small Large 0.53* -0.49 
Large Small Large 0.69* -1.12* 

Pairwise 

Narrow 

None Small Large 0.42* -0.50 
Small Small Large 0.43* -0.57 
Moderate Small Large 0.54* -0.60 
Large Small Large 0.73* -0.52 

Expanded 

None Small Large 0.38* -0.52 
Small Small Large 0.41* -0.45 
Moderate Small Large 0.50* -0.49 
Large Small Large 0.69* -0.54 

* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C10. Grade 6 Comparisons of Data Generation Models 

Scaling 
Method 

Common 
Item Set 

Format 
Effect 

Ability 
Generation 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Separate  

Narrow 

None 
Uni 2-Dim 0.00 0.01 0.00 0.01 

  3-Dim 0.10 -0.06 0.41 0.84 
2-Dim 3-Dim 0.10 -0.07 0.42 0.83 

Small 2-Dim 3-Dim 0.03 -0.05 0.52 0.72 
Moderate 2-Dim 3-Dim 0.13 0.05 1.19* 1.42* 

Large 2-Dim 3-Dim 1.03* 0.27* 1.91* 2.13* 

Expanded 

None 
Uni 2-Dim 0.03 0.05 0.01 -0.02 

  3-Dim 0.11 -0.01 0.42 0.77 
2-Dim 3-Dim 0.07 -0.06 0.41 0.79 

Small 2-Dim 3-Dim 0.07 -0.07 0.52 0.80 
Moderate 2-Dim 3-Dim 0.14 0.01 1.07* 1.82* 

Large 2-Dim 3-Dim 1.04* 0.27* 1.93* 1.92* 

Pairwise 

Narrow 

None 
Uni 2-Dim 0.04 -0.01 0.06 0.11 

  3-Dim 0.04 -0.06 0.42 0.83 
2-Dim 3-Dim 0.00 -0.05 0.36 0.72 

Small 2-Dim 3-Dim 0.01 -0.01 0.53 0.70 
Moderate 2-Dim 3-Dim 0.16 0.08 1.06* 1.29* 

Large 2-Dim 3-Dim 1.04* 0.10 1.88* 2.37* 

Expanded 

None 
Uni 2-Dim 0.02 -0.02 0.00 0.06 

  3-Dim 0.11 -0.03 0.41 0.82 
2-Dim 3-Dim 0.09 0.05 0.40 0.76 

Small 2-Dim 3-Dim 0.05 -0.06 0.44 0.71 
Moderate 2-Dim 3-Dim 0.18 0.02 1.14* 1.61* 

Large 2-Dim 3-Dim 1.06* 0.08 1.86* 2.30* 
* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C11. Grade 7 Comparisons of Item Format Effects 

Ability 
Generation 

Scaling 
Method 

Common 
Item Set Format Effect 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

2-Dim 

Separate 

Narrow 

None 
Small 0.05 0.04 -0.16* -0.15* 

Moderate 0.13 0.13 -0.80* -0.88* 
Large 0.11 0.10 -1.82* -1.80* 

Small Moderate 0.08 0.09 -0.73* -0.72* 
Large 0.06 0.06 -1.66* -1.65* 

Moderate Large -0.03 -0.04 -0.93* -0.92* 

Expanded 

None 
Small 0.06 0.08 -0.15* -0.16* 

Moderate 0.13 0.13 -0.89* -0.87* 
Large 0.10 0.10 -1.80* -1.82* 

Small Moderate 0.07 0.05 -0.74* -0.72* 
Large 0.04 0.02 -1.65* -1.66* 

Moderate Large -0.03 -0.03 -0.91* -0.95* 

Pairwise 

Narrow 

None 
Small 0.06 0.06 -0.16* -0.15* 

Moderate 0.18* 0.23* -0.95* -0.87* 
Large 0.20* 0.31* -1.82* -1.79* 

Small Moderate 0.12 0.17* -0.79* -0.72* 
Large 0.14* 0.25* -1.66* -1.63* 

Moderate Large 0.02 0.08 -0.86* -0.91* 

Expanded 

None 
Small 0.07 0.10 -0.15* -0.16* 

Moderate 0.17* 0.22* -0.89* -0.87* 
Large 0.19* 0.31* -1.80* -1.81* 

Small Moderate 0.11 0.12 -0.74* -0.71* 
Large 0.12 0.21* -1.65* -1.65* 

Moderate Large 0.12 0.09 -0.91* -0.93* 

3-Dim 

Separate 

Narrow 

None 
Small 0.02 0.00 -0.04 -0.04 

Moderate 0.04 0.02 -0.16* -0.17* 
Large 0.08 0.06 -0.38* -0.37* 

Small Moderate 0.01 0.02 -0.12 -0.13 
Large 0.06 0.06 -0.34* -0.33* 

Moderate Large 0.04 0.04 -0.22* -0.20* 

Expanded 

None 
Small -0.01 0.02 -0.04 -0.05 

Moderate 0.04 0.04 -0.19* -0.19* 
Large 0.04 0.08 -0.37* -0.39* 

Small Moderate 0.05 0.03 -0.15 -0.13 
Large 0.04 0.06 -0.33* -0.33* 

Moderate Large 0.00 0.04 -0.18* -0.20* 

Pairwise 

Narrow 

None 
Small 0.02 0.01 -0.04 -0.04 

Moderate 0.06 0.03 -0.16* -0.17* 
Large 0.11 0.09 -0.38* -0.37* 

Small Moderate 0.03 0.02 -0.12 -0.13 
Large 0.08 0.09 -0.34* -0.33* 

Moderate Large 0.05 0.07 -0.21* -0.20* 

Expanded 

None 
Small -0.01 0.02 -0.04 -0.05 

Moderate 0.04 0.06 -0.18* -0.19* 
Large 0.07 0.11 -0.37* -0.38* 

Small Moderate 0.05 0.03 -0.14 -0.13 
Large 0.07 0.09 -0.32* -0.33* 

Moderate Large 0.03 0.05 -0.19* -0.20* 
* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C12. Grade 7 Comparisons of Vertical Scaling Method Effects 

Ability 
Generation 

Common 
Item Set 

Format 
Effect Scaling Method 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Uni Narrow   Separate Pairwise 0.00 0.00 0.01 0.00 
Expanded   Separate Pairwise -0.01 0.00 0.00 0.00 

2-Dim 

Narrow 

None Separate Pairwise 0.00 0.01 0.00 0.00 
Small Separate Pairwise 0.01 0.03 0.00 0.00 

Moderate Separate Pairwise 0.04 0.10 -0.06 0.01 
Large Separate Pairwise 0.09 0.22* 0.00 0.01 

Expanded 

None Separate Pairwise 0.00 0.01 0.00 0.00 
Small Separate Pairwise 0.01 0.03 0.00 0.00 

Moderate Separate Pairwise 0.04 0.10 0.00 0.00 
Large Separate Pairwise 0.09 0.21* 0.00 0.02 

3-Dim 

Narrow 

None Separate Pairwise -0.01 -0.01 0.00 0.00 
Small Separate Pairwise -0.01 0.00 0.00 0.00 

Moderate Separate Pairwise 0.01 0.01 0.00 0.00 
Large Separate Pairwise 0.01 0.03 0.00 0.00 

Expanded 

None Separate Pairwise -0.01 -0.01 0.00 0.00 
Small Separate Pairwise -0.01 0.00 0.00 0.00 

Moderate Separate Pairwise -0.01 0.01 0.01 0.00 
Large Separate Pairwise 0.02 0.03 0.00 0.00 

* significant at p < 0.05 and Cohen’s d > 0.20 
 
Table C13. Grade 7 Comparisons of Common Item Effects 

Ability 
Generation 

Scaling 
Method 

Format 
Effect Common Item Set 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Uni Separate   Narrow Expanded 0.00 -0.01 0.02 0.01 
Pairwise   Narrow Expanded -0.01 -0.01 0.01 0.01 

2-Dim 

Separate 

None Narrow Expanded 0.00 -0.01 0.00 0.02 
Small Narrow Expanded 0.01 0.03 0.01 0.02 

Moderate Narrow Expanded 0.00 -0.01 0.00 0.02 
Large Narrow Expanded -0.01 -0.01 0.02 0.00 

Pairwise 

None Narrow Expanded 0.00 -0.01 0.00 0.02 
Small Narrow Expanded 0.01 0.03 0.01 0.01 

Moderate Narrow Expanded -0.01 -0.02 0.06 0.02 
Large Narrow Expanded -0.01 -0.01 0.02 0.00 

3-Dim 

Separate 

None Narrow Expanded 0.02 -0.01 0.01 0.01 
Small Narrow Expanded -0.01 0.00 0.01 0.00 

Moderate Narrow Expanded 0.02 0.01 -0.02 -0.01 
Large Narrow Expanded -0.02 0.01 0.02 -0.01 

Pairwise 

None Narrow Expanded 0.02 -0.01 0.01 0.01 
Small Narrow Expanded -0.01 0.00 0.01 -0.01 

Moderate Narrow Expanded 0.00 0.02 -0.01 -0.01 
Large Narrow Expanded -0.02 0.00 0.02 -0.01 

* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C14. Grade 7 Comparisons of Grade Level Separation Effects 
Ability 

Generation 
Scaling 
Method 

Common 
Item set 

Format 
Effect 

Grade Level 
Separation 

Mean BIAS Mean RMSE 
Mean diff Mean diff 

Uni 
Separate Narrow   Small Large 0.00 0.00 

Expanded   Small Large -0.01 -0.01 

Pairwise Narrow    Small Large 0.00 -0.01 
Expanded   Small Large 0.00 -0.01 

2-Dim 

Separate 

Narrow 

None Small Large 0.01 -0.01 
Small Small Large 0.00 0.00 
Moderate Small Large 0.01 0.00 
Large Small Large 0.00 0.01 

Expanded 

None Small Large -0.01 0.01 
Small Small Large 0.02 0.00 
Moderate Small Large 0.00 0.03 
Large Small Large 0.00 -0.01 

Pairwise 

Narrow 

None Small Large 0.02 -0.01 
Small Small Large 0.02 0.00 
Moderate Small Large 0.06 0.07 
Large Small Large 0.12 0.02 

Expanded 

None Small Large 0.00 0.01 
Small Small Large 0.04 0.00 
Moderate Small Large 0.05 0.03 
Large Small Large 0.12 0.01 

3-Dim 

Separate 

Narrow 

None Small Large 0.02 0.00 
Small Small Large 0.00 0.00 
Moderate Small Large 0.00 0.00 
Large Small Large 0.00 0.01 

Expanded 

None Small Large -0.01 0.00 
Small Small Large 0.01 -0.01 
Moderate Small Large -0.01 0.01 
Large Small Large 0.03 -0.01 

Pairwise 

Narrow 

None Small Large 0.03 0.00 
Small Small Large 0.01 0.00 
Moderate Small Large 0.00 0.00 
Large Small Large 0.01 0.01 

Expanded 

None Small Large -0.01 0.00 
Small Small Large 0.02 -0.01 
Moderate Small Large 0.01 0.00 
Large Small Large 0.04 -0.02 

* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C15. Grade 7 Comparisons of Data Generation Models 

Scaling 
Method 

Common 
Item Set 

Format 
Effect 

Ability 
Generation 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Separate  

Narrow 

None 
Uni 2-Dim 0.00 0.01 -0.01 -0.02 

  3-Dim -0.02 0.00 0.39* 0.40* 
2-Dim 3-Dim -0.02 -0.01 0.40* 0.42* 

Small 2-Dim 3-Dim -0.05 -0.05 0.52* 0.53* 
Moderate 2-Dim 3-Dim -0.11 -0.12 1.13* 1.12* 

Large 2-Dim 3-Dim -0.04 -0.04 1.84* 1.84* 

Expanded 

None 
Uni 2-Dim 0.01 0.01 -0.02 0.00 

  3-Dim 0.01 0.00 0.39* 0.40* 
2-Dim 3-Dim 0.00 -0.01 0.41* 0.40* 

Small 2-Dim 3-Dim -0.06 -0.07 0.52* 0.51* 
Moderate 2-Dim 3-Dim -0.09 -0.10 1.11* 1.09* 

Large 2-Dim 3-Dim -0.06 -0.03 1.84* 1.84* 

Pairwise 

Narrow 

None 
Uni 2-Dim 0.00 0.01 -0.01 -0.02 

  3-Dim -0.03 0.00 0.39* 0.40* 
2-Dim 3-Dim -0.03 -0.02 0.40* 0.42* 

Small 2-Dim 3-Dim -0.06 -0.07 0.52* 0.53* 
Moderate 2-Dim 3-Dim -0.15 -0.22* 1.19* 1.12* 

Large 2-Dim 3-Dim -0.12 -0.23* 1.84* 1.83* 

Expanded 

None 
Uni 2-Dim 0.01 0.02 -0.02 0.00 

  3-Dim 0.00 0.00 0.39* 0.40* 
2-Dim 3-Dim -0.01 -0.02 0.41* 0.40* 

Small 2-Dim 3-Dim -0.08 -0.10 0.52* 0.51* 
Moderate 2-Dim 3-Dim -0.14 -0.18* 1.12* 1.09* 

Large 2-Dim 3-Dim -0.13 -0.21* 1.85* 1.82* 
* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C16. Grade 8 Comparisons of Item Format Effects 

Ability 
Generation 

Scaling 
Method 

Common 
Item Set Format Effect 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

2-Dim 

Separate 

Narrow 

None 
Small 0.06 0.04 -0.15 -0.17 

Moderate 0.11 0.18* -0.93* -0.89* 
Large 0.09 0.78* -1.92* -2.03* 

Small Moderate 0.05 0.14* -0.77* -0.72* 
Large 0.03 0.75* -1.76* -1.87* 

Moderate Large -0.02 0.60* -0.99* -1.15* 

Expanded 

None 
Small 0.03 0.02 -0.16 -0.12 

Moderate 0.08 0.17* -0.96* -0.88* 
Large 0.08 0.64* -1.91* -1.95* 

Small Moderate 0.05 0.15* -0.79* -0.75* 
Large 0.05 0.61* -1.74* -1.83* 

Moderate Large 0.00 0.46* -0.95* -1.07* 

Pairwise 

Narrow 

None 
Small 0.06 0.00 -0.17 -0.19 

Moderate 0.09 -0.01 -0.94* -0.96* 
Large 0.01 -0.15* -1.86* -1.86* 

Small Moderate 0.03 -0.01 -0.76* -0.77* 
Large -0.05 -0.15* -1.69* -1.68* 

Moderate Large -0.08 -0.14 -0.93* -0.91* 

Expanded 

None 
Small 0.03 0.01 -0.17 -0.20 

Moderate 0.06 -0.03 -0.95* -0.96* 
Large 0.00 -0.16* -1.88* -1.87* 

Small Moderate 0.03 -0.05 -0.78* -0.76* 
Large -0.04 -0.18* -1.71* -1.67* 

Moderate Large -0.06 -0.13 -0.93* -0.91* 

3-Dim 

Separate 

Narrow 

None 
Small 0.02 0.02 -0.06 -0.06 

Moderate 0.04 0.07 -0.19 -0.18 
Large 0.06 0.29* -0.42* -0.47* 

Small Moderate 0.02 0.05 -0.14 -0.12 
Large 0.04 0.27* -0.36* -0.41* 

Moderate Large 0.02 0.22* -0.23 -0.29 

Expanded 

None 
Small 0.00 0.01 -0.07 -0.04 

Moderate 0.04 0.12 -0.22 -0.21 
Large 0.07 0.27* -0.42* -0.45* 

Small Moderate 0.04 0.11 -0.15 -0.17 
Large 0.07 0.26* -0.36* -0.42* 

Moderate Large 0.03 0.15* -0.21 -0.24 

Pairwise 

Narrow 

None 
Small 0.01 -0.01 -0.05 -0.05 

Moderate 0.03 -0.01 -0.19 -0.19 
Large 0.03 -0.02 -0.41* -0.37* 

Small Moderate 0.01 0.00 -0.14 -0.14 
Large 0.02 -0.01 -0.35* -0.32* 

Moderate Large 0.01 -0.01 -0.21 -0.18 

Expanded 

None 
Small -0.01 0.00 -0.07 -0.04 

Moderate 0.02 -0.01 -0.21 -0.17 
Large 0.03 -0.01 -0.41* -0.37* 

Small Moderate 0.03 -0.01 -0.14 -0.13 
Large 0.04 -0.01 -0.35* -0.32* 

Moderate Large 0.01 0.00 -0.21 -0.20 
* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C17. Grade 8 Comparisons of Vertical Scaling Set 

Ability 
Generation 

Common 
Item Set 

Format 
Effect Scaling Method 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Uni Narrow   Separate Pairwise -0.02 -0.51* 0.10 0.56* 
Expanded   Separate Pairwise -0.02 -0.51* 0.11 0.54* 

2-Dim 

Narrow 

None Separate Pairwise -0.01 -0.52* 0.09 0.46* 
Small Separate Pairwise -0.02 -0.56* 0.07 0.43* 

Moderate Separate Pairwise -0.04 -0.71* 0.08 0.39* 
Large Separate Pairwise -0.10 -1.45* 0.14 0.62* 

Expanded 

None Separate Pairwise -0.01 -0.54* 0.08 0.48* 
Small Separate Pairwise -0.01 -0.55* 0.07 0.41* 

Moderate Separate Pairwise -0.03 -0.74* 0.09 0.40* 
Large Separate Pairwise -0.10 -1.34* 0.11 0.57* 

3-Dim 

Narrow 

None Separate Pairwise -0.02 -0.32* 0.06 0.25* 
Small Separate Pairwise -0.03 -0.36* 0.06 0.26* 

Moderate Separate Pairwise -0.03 -0.41* 0.06 0.24* 
Large Separate Pairwise -0.05 -0.64* 0.08 0.36* 

Expanded 

None Separate Pairwise -0.02 -0.33* 0.06 0.26* 
Small Separate Pairwise -0.02 -0.35* 0.06 0.25* 

Moderate Separate Pairwise -0.03 -0.46* 0.07 0.30* 
Large Separate Pairwise -0.05 -0.61* 0.07 0.34* 

* significant at p < 0.05 and Cohen’s d > 0.20 
 
Table C18. Grade 8 Comparisons of Common Item Set 

Ability 
Generation 

Scaling 
Method 

Format 
Effect Common Item Set 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Uni Separate   Narrow Expanded -0.01 -0.02 -0.02 0.02 
Pairwise   Narrow Expanded -0.01 -0.02 -0.01 0.00 

2-Dim 

Separate 

None Narrow Expanded 0.01 0.03 0.02 -0.03 
Small Narrow Expanded -0.02 0.02 0.01 0.01 

Moderate Narrow Expanded -0.02 0.02 -0.01 -0.02 
Large Narrow Expanded 0.00 -0.11 0.03 0.05 

Pairwise 

None Narrow Expanded 0.01 0.01 0.01 0.00 
Small Narrow Expanded -0.02 0.03 0.01 -0.01 

Moderate Narrow Expanded -0.01 -0.01 0.00 0.00 
Large Narrow Expanded 0.00 0.00 0.00 -0.01 

3-Dim 

Separate 

None Narrow Expanded 0.00 0.00 0.01 -0.01 
Small Narrow Expanded -0.02 -0.01 0.00 0.01 

Moderate Narrow Expanded 0.00 0.05 -0.01 -0.04 
Large Narrow Expanded 0.00 -0.02 0.00 0.01 

Pairwise 

None Narrow Expanded 0.01 -0.01 0.01 0.00 
Small Narrow Expanded -0.02 0.00 0.00 0.00 

Moderate Narrow Expanded 0.00 -0.01 0.00 0.02 
Large Narrow Expanded 0.00 0.00 0.00 0.00 

* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C19. Grade 8 Comparisons of Grade Level Separation 
Ability 

Generation 
Scaling 
Method 

Common 
Item set 

Format 
Effect 

Grade Level 
Separation 

Mean BIAS Mean RMSE 
Mean diff Mean diff 

Uni 
Separate Narrow   Small Large 0.46* -0.29* 

Expanded   Small Large 0.49* -0.25* 

Pairwise Narrow    Small Large -0.03 0.07 
Expanded   Small Large 0.00 0.08 

2-Dim 

Separate 

Narrow 

None Small Large 0.48* -0.27* 
Small Small Large 0.45* -0.28* 
Moderate Small Large 0.55* -0.23* 
Large Small Large 1.17* -0.38* 

Expanded 

None Small Large 0.50* -0.32* 
Small Small Large 0.49* -0.28* 
Moderate Small Large 0.60* -0.24* 
Large Small Large 1.06* -0.36* 

Pairwise 

Narrow 

None Small Large -0.03 0.10 
Small Small Large -0.09 0.08 
Moderate Small Large -0.12 0.08 
Large Small Large -0.18 0.10 

Expanded 

None Small Large -0.02 0.08 
Small Small Large -0.04 0.06 
Moderate Small Large -0.12 0.08 
Large Small Large -0.18 0.10 

3-Dim 

Separate 

Narrow 

None Small Large 0.30* -0.08 
Small Small Large 0.30* -0.08 
Moderate Small Large 0.33* -0.07 
Large Small Large 0.53* -0.13 

Expanded 

None Small Large 0.30* -0.10 
Small Small Large 0.32* -0.07 
Moderate Small Large 0.38* -0.09 
Large Small Large 0.50* -0.13 

Pairwise 

Narrow 

None Small Large 0.00 0.11 
Small Small Large -0.03 0.12 
Moderate Small Large -0.04 0.12 
Large Small Large -0.06 0.15 

Expanded 

None Small Large -0.02 0.10 
Small Small Large -0.01 0.12 
Moderate Small Large -0.05 0.14 
Large Small Large -0.06 0.15 

* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C20. Grade 8 Comparisons of Data Generation Models 

Scaling 
Method 

Common 
Item Set 

Format 
Effect 

Ability 
Generation 

Mean BIAS Mean RMSE 

Small 
Separation 

Large 
Separation 

Small 
Separation 

Large 
Separation 

Mean diff Mean diff Mean diff Mean diff 

Separate  

Narrow 

None 
Uni 2-Dim 0.01 0.03 -0.04 -0.01 

  3-Dim 0.00 -0.17* 0.42* 0.63* 
2-Dim 3-Dim -0.01 -0.19* 0.46* 0.64* 

Small 2-Dim 3-Dim -0.06 -0.21* 0.56* 0.75* 
Moderate 2-Dim 3-Dim -0.08 -0.30* 1.19* 1.35* 

Large 2-Dim 3-Dim -0.04 -0.68* 1.96* 2.20* 

Expanded 

None 
Uni 2-Dim 0.03 0.04 0.00 -0.06 

  3-Dim 0.01 -0.19* 0.45* 0.60* 
2-Dim 3-Dim -0.02 -0.23* 0.45* 0.67* 

Small 2-Dim 3-Dim -0.06 -0.23* 0.54* 0.75* 
Moderate 2-Dim 3-Dim -0.06 -0.28* 1.19* 1.33* 

Large 2-Dim 3-Dim -0.04 -0.59* 1.93* 2.16* 

Pairwise 

Narrow 

None 
Uni 2-Dim 0.02 0.02 -0.05 -0.02 

  3-Dim 0.00 0.02 0.39* 0.42* 
2-Dim 3-Dim -0.02 0.00 0.43* 0.44* 

Small 2-Dim 3-Dim -0.06 -0.01 0.55* 0.58* 
Moderate 2-Dim 3-Dim -0.08 0.00 1.17* 1.21* 

Large 2-Dim 3-Dim 0.01 0.13 1.89* 1.94* 

Expanded 

None 
Uni 2-Dim 0.03 0.01 -0.03 -0.02 

  3-Dim 0.01 -0.01 0.40* 0.42* 
2-Dim 3-Dim -0.02 -0.02 0.42* 0.44* 

Small 2-Dim 3-Dim -0.06 -0.03 0.53* 0.59* 
Moderate 2-Dim 3-Dim -0.06 0.00 1.17* 1.23* 

Large 2-Dim 3-Dim 0.01 0.13 1.89* 1.94* 
* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C21. Grade 9 Comparisons of Item Format Effects 

Ability 
Generation 

Scaling 
Method 

Common 
Item Set Format Effect 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

2-Dim 

Separate 

Narrow 

None 
Small 0.04 0.10 -0.15 -0.15 

Moderate 0.12 0.58* -1.05* -0.85* 
Large 0.15 2.15* -2.03* -2.46* 

Small Moderate 0.09 0.48* -0.90* -0.70* 
Large 0.11 2.04* -1.88* -2.31* 

Moderate Large 0.03 1.57* -0.98 -1.61* 

Expanded 

None 
Small 0.03 0.14 -0.13 -0.18 

Moderate 0.13 0.68* -0.93* -1.00* 
Large 0.13 2.03* -1.99* -2.35* 

Small Moderate 0.10 0.54* -0.80* -0.82* 
Large 0.09 1.89* -1.86* -2.17* 

Moderate Large 0.00 1.35* -1.06* -1.35* 

Pairwise 

Narrow 

None 
Small 0.04 -0.14 -0.15 -0.07 

Moderate 0.17 1.26* -0.93* -0.88* 
Large 0.30 2.82* -1.93* -2.36* 

Small Moderate 0.13 1.39* -0.77* -0.81* 
Large 0.25 2.96* -1.77* -2.29* 

Moderate Large 0.12 1.57* -1.00 -1.48* 

Expanded 

None 
Small 0.04 -0.43 -0.11 -0.13 

Moderate 0.18 0.41 -0.89* -0.82* 
Large 0.27 2.77* -1.93* -2.47* 

Small Moderate 0.13 0.84* -0.78 -0.68* 
Large 0.23 3.20* -1.82* -2.34* 

Moderate Large 0.09 2.36* -1.04* -1.66* 

3-Dim 

Separate 

Narrow 

None 
Small 0.03 0.08 -0.07 -0.03 

Moderate 0.07 0.29 -0.25 -0.19 
Large 0.11 0.77* -0.47 -0.59* 

Small Moderate 0.04 0.21 -0.18 -0.16 
Large 0.08 0.69* -0.40 -0.56* 

Moderate Large 0.05 0.48 -0.22 -0.40 

Expanded 

None 
Small 0.01 0.06 -0.02 -0.04 

Moderate 0.06 0.32 -0.21 -0.23 
Large 0.10 0.73* -0.44 -0.59* 

Small Moderate 0.05 0.26 -0.18 -0.19 
Large 0.09 0.66* -0.41 -0.54* 

Moderate Large 0.03 0.41 -0.23 -0.35 

Pairwise 

Narrow 

None 
Small 0.03 -0.01 -0.06 -0.10 

Moderate 0.07 0.46 -0.23 -0.43 
Large 0.12 0.70* -0.42 -0.63* 

Small Moderate 0.04 0.47 -0.17 -0.33 
Large 0.08 0.71* -0.37 -0.52* 

Moderate Large 0.04 0.24 -0.20 -0.20 

Expanded 

None 
Small 0.02 0.04 -0.07 -0.09 

Moderate 0.07 0.09 -0.23 -0.34 
Large 0.13 0.25 -0.51 -0.63* 

Small Moderate 0.06 0.05 -0.16 -0.25 
Large 0.11 0.21 -0.44 -0.54* 

Moderate Large 0.05 0.16 -0.28 -0.29 
* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C22. Grade 9 Comparisons of Vertical Scaling Set 

Ability 
Generation 

Common 
Item Set 

Format 
Effect Scaling Method 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Uni Narrow   Separate Pairwise 0.00 -0.41 -0.03 0.06 
Expanded   Separate Pairwise 0.00 -0.24 -0.01 -0.04 

2-Dim 

Narrow 

None Separate Pairwise 0.00 -0.64 -0.02 -0.06 
Small Separate Pairwise 0.01 -0.84* -0.02 0.02 

Moderate Separate Pairwise 0.06 0.03 0.10 -0.09 
Large Separate Pairwise 0.15 0.03 0.08 0.04 

Expanded 

None Separate Pairwise 0.00 -0.47 -0.03 -0.02 
Small Separate Pairwise 0.01 -1.04* -0.01 0.02 

Moderate Separate Pairwise 0.05 -0.74 0.01 0.16 
Large Separate Pairwise 0.14 0.27 0.03 -0.15 

3-Dim 

Narrow 

None Separate Pairwise -0.01 -0.55 0.02 -0.01 
Small Separate Pairwise 0.00 -0.63 0.04 -0.08 

Moderate Separate Pairwise 0.00 -0.38 0.05 -0.25 
Large Separate Pairwise -0.01 -0.62 0.07 -0.04 

Expanded 

None Separate Pairwise -0.02 -0.27 0.08 0.10 
Small Separate Pairwise -0.01 -0.29 0.03 0.06 

Moderate Separate Pairwise -0.01 -0.50 0.05 0.00 
Large Separate Pairwise 0.01 -0.76 0.00 0.06 

* significant at p < 0.05 and Cohen’s d > 0.20 
 
Table C23. Grade 9 Comparisons of Common Item Set 

Ability 
Generation 

Scaling 
Method 

Format 
Effect Common Item Set 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Uni Separate   Narrow Expanded -0.01 -0.02 0.02 0.03 
Pairwise   Narrow Expanded -0.01 0.14 0.00 0.05 

2-Dim 

Separate 

None Narrow Expanded 0.02 -0.02 -0.02 0.04 
Small Narrow Expanded 0.01 0.01 0.00 0.01 

Moderate Narrow Expanded 0.02 0.07 0.10 -0.11 
Large Narrow Expanded -0.01 -0.14 0.02 0.16 

Pairwise 

None Narrow Expanded 0.02 0.15 -0.03 0.08 
Small Narrow Expanded 0.01 -0.19 0.02 0.02 

Moderate Narrow Expanded 0.02 -0.70 0.01 0.14 
Large Narrow Expanded -0.01 0.09 -0.03 -0.03 

3-Dim 

Separate 

None Narrow Expanded 0.02 0.00 -0.03 0.00 
Small Narrow Expanded 0.00 -0.01 0.02 -0.01 

Moderate Narrow Expanded 0.01 0.04 0.02 -0.04 
Large Narrow Expanded 0.00 -0.03 0.00 0.00 

Pairwise 

None Narrow Expanded 0.01 0.28 0.03 0.11 
Small Narrow Expanded -0.01 0.33 0.01 0.13 

Moderate Narrow Expanded 0.01 -0.09 0.02 0.20 
Large Narrow Expanded 0.02 -0.18 -0.06 0.11 

* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C24. Grade 9 Comparisons of Grade Level Separation 
Ability 

Generation 
Scaling 
Method 

Common 
Item set 

Format 
Effect 

Grade Level 
Separation 

Mean BIAS Mean RMSE 
Mean diff Mean diff 

Uni 
Separate Narrow   Small Large 1.38* -0.68* 

Expanded   Small Large 1.37* -0.63* 

Pairwise Narrow    Small Large 0.98* -0.71* 
Expanded   Small Large 0.92* -0.67* 

2-Dim 

Separate 

Narrow 

None Small Large 1.40* -0.69* 
Small Small Large 1.47* -0.68* 
Moderate Small Large 1.86* -0.49* 
Large Small Large 3.40* -1.12* 

Expanded 

None Small Large 1.36* -0.62* 
Small Small Large 1.47* -0.68* 
Moderate Small Large 1.91* -0.69* 
Large Small Large 3.27* -0.98* 

Pairwise 

Narrow 

None Small Large 0.76 -0.73* 
Small Small Large 0.62 -0.64* 
Moderate Small Large 1.84* -0.68* 
Large Small Large 3.29* -1.16* 

Expanded 

None Small Large 0.91* -0.62* 
Small Small Large 0.42 -0.64* 
Moderate Small Large 1.13* -0.55* 
Large Small Large 3.39* -1.16* 

3-Dim 

Separate 

Narrow 

None Small Large 0.81* -0.21 
Small Small Large 0.86* -0.17 
Moderate Small Large 1.03* -0.15 
Large Small Large 1.46* -0.33 

Expanded 

None Small Large 0.80* -0.18 
Small Small Large 0.85* -0.20 
Moderate Small Large 1.06* -0.21 
Large Small Large 1.43* -0.33 

Pairwise 

Narrow 

None Small Large 0.27 -0.24 
Small Small Large 0.23 -0.29 
Moderate Small Large 0.66 -0.44 
Large Small Large 0.86* -0.44 

Expanded 

None Small Large 0.54 -0.16 
Small Small Large 0.57 -0.18 
Moderate Small Large 0.56 -0.26 
Large Small Large 0.66 -0.27 

* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C25. Grade 9 Comparisons of Data Generation Models 

Scaling 
Method 

Common 
Item Set 

Format 
Effect 

Ability 
Generation 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Separate  

Narrow 

None 
Uni 2-Dim 0.00 0.01 0.01 0.01 

  3-Dim 0.08 -0.50 0.56* 1.04* 
2-Dim 3-Dim 0.08 -0.51 0.55* 1.03* 

Small 2-Dim 3-Dim 0.08 -0.54 0.64* 1.15* 
Moderate 2-Dim 3-Dim 0.03 -0.80* 1.35* 1.69* 

Large 2-Dim 3-Dim 0.05 -1.89* 2.11* 2.90* 

Expanded 

None 
Uni 2-Dim 0.02 0.01 0.01 0.02 

  3-Dim 0.10 -0.47 0.55* 1.00* 
2-Dim 3-Dim 0.09 -0.48 0.55* 0.99* 

Small 2-Dim 3-Dim 0.06 -0.55 0.65* 1.13* 
Moderate 2-Dim 3-Dim 0.02 -0.84* 1.27* 1.76* 

Large 2-Dim 3-Dim 0.06 -1.78* 2.10* 2.75* 

Pairwise 

Narrow 

None 
Uni 2-Dim 0.00 -0.23 0.02 0.00 

  3-Dim 0.07 -0.64 0.62* 1.09* 
2-Dim 3-Dim 0.07 -0.42 0.60* 1.09* 

Small 2-Dim 3-Dim 0.07 -0.33 0.70* 1.05* 
Moderate 2-Dim 3-Dim -0.03 -1.21* 1.30* 1.53* 

Large 2-Dim 3-Dim -0.11 -2.54* 2.10* 2.82* 

Expanded 

None 
Uni 2-Dim 0.02 -0.22 -0.02 0.04 

  3-Dim 0.08 -0.50 0.64* 1.15* 
2-Dim 3-Dim 0.07 -0.28 0.65* 1.11* 

Small 2-Dim 3-Dim 0.04 0.19 0.69* 1.16* 
Moderate 2-Dim 3-Dim -0.04 -1.31* 1.31* 1.59* 

Large 2-Dim 3-Dim -0.08 -2.81* 2.07* 2.96* 
* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C26. Grade 10 Comparisons of Item Format Effects 

Ability 
Generation 

Scaling 
Method 

Common 
Item Set Format Effect 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

2-Dim 

Separate 

Narrow 

None 
Small -0.04 0.14 -0.13 -0.21 

Moderate -0.05 0.61 -0.86* -0.92* 
Large -0.31 2.02* -1.76* -2.54* 

Small Moderate -0.01 0.46 -0.73* -0.72* 
Large -0.27 1.88* -1.63* -2.33* 

Moderate Large -0.26 1.41* -0.90* -1.62* 

Expanded 

None 
Small 0.01 0.11 -0.05 -0.15 

Moderate -0.02 0.79 -0.76* -1.09* 
Large -0.28 1.91* -1.71* -2.39* 

Small Moderate -0.03 0.68 -0.71* -0.94* 
Large -0.29 1.80* -1.65* -2.24* 

Moderate Large -0.27 1.12* -0.95* -1.30* 

Pairwise 

Narrow 

None 
Small -0.03 -0.27 -0.15 -0.10 

Moderate -0.05 1.17* -0.86* -0.82* 
Large -0.37 2.26* -1.76* -2.04* 

Small Moderate -0.02 1.44* -0.72* -0.72* 
Large -0.34 2.52* -1.62* -1.93* 

Moderate Large -0.32 1.08* -0.90* -1.22* 

Expanded 

None 
Small 0.01 -0.70 -0.10 -0.14 

Moderate -0.03 0.12 -0.83* -0.80* 
Large -0.37 2.16* -1.77* -2.14* 

Small Moderate -0.05 0.83 -0.73* -0.66* 
Large -0.38 2.87* -1.67* -2.00* 

Moderate Large -0.33 2.04* -0.94* -1.34* 

3-Dim 

Separate 

Narrow 

None 
Small 0.02 0.05 -0.03 -0.03 

Moderate 0.05 0.39 -0.22 -0.24 
Large 0.08 1.04* -0.47* -0.74* 

Small Moderate 0.03 0.34 -0.19 -0.21 
Large 0.07 0.99 -0.43 -0.71* 

Moderate Large 0.04 0.65 -0.25 -0.50* 

Expanded 

None 
Small -0.02 0.09 -0.01 -0.07 

Moderate 0.00 0.46 -0.20 -0.33 
Large 0.04 0.98 -0.39 -0.70* 

Small Moderate 0.02 0.37 -0.19 -0.26 
Large 0.06 0.89 -0.38 -0.64* 

Moderate Large 0.05 0.52 -0.19 -0.38 

Pairwise 

Narrow 

None 
Small 0.02 -0.04 -0.05 -0.11 

Moderate 0.03 -0.51 -0.20 -0.40 
Large 0.03 0.70 -0.41 -0.55* 

Small Moderate 0.01 0.55 -0.15 -0.30 
Large 0.01 0.74 -0.36 -0.45* 

Moderate Large 0.01 0.19 -0.21 -0.15 

Expanded 

None 
Small 0.02 0.36 -0.06 -0.07 

Moderate 0.02 -0.38 -0.22 -0.31 
Large 0.06 0.47 -0.44 -0.53* 

Small Moderate 0.01 0.02 -0.16 -0.23 
Large 0.04 0.11 -0.39 -0.45* 

Moderate Large 0.04 0.09 -0.23 -0.22 
* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C27. Grade 10 Comparisons of Vertical Scaling Set 

Ability 
Generation 

Common 
Item Set 

Format 
Effect Scaling Method 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Uni Narrow   Separate Pairwise 0.04 -1.03*  0.21  0.48*  
Expanded   Separate Pairwise  0.04  -1.01* 0.22 0.48* 

2-Dim 

Narrow 

None Separate Pairwise 0.04 -1.32* 0.19 0.43* 
Small Separate Pairwise 0.05 -1.73* 0.18 0.53* 

Moderate Separate Pairwise 0.03 -0.76* 0.19 0.53* 
Large Separate Pairwise -0.03 -1.09* 0.19 0.93* 

Expanded 

None Separate Pairwise 0.03 -1.10* 0.22 0.50* 
Small Separate Pairwise 0.03 -1.91* 0.17 0.51* 

Moderate Separate Pairwise 0.01 -1.77* 0.16 0.79* 
Large Separate Pairwise -0.05 -0.85* 0.16 0.75* 

3-Dim 

Narrow 

None Separate Pairwise -0.02 -0.96* 0.17 0.27 
Small Separate Pairwise -0.02 -1.05* 0.15 0.19 

Moderate Separate Pairwise -0.04 -0.84* 0.18 0.10 
Large Separate Pairwise -0.07 -0.96* 0.22 0.46* 

Expanded 

None Separate Pairwise -0.06 -0.92* 0.21 0.36 
Small Separate Pairwise -0.02 -0.65 0.16 0.35 

Moderate Separate Pairwise -0.03 -1.00* 0.19 0.38 
Large Separate Pairwise -0.04 -1.43* 0.15 0.54* 

* significant at p < 0.05 and Cohen’s d > 0.20 
 
Table C28. Grade 10 Comparisons of Common Item Set 

Ability 
Generation 

Scaling 
Method 

Format 
Effect Common Item Set 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Uni Separate   Narrow Expanded 0.00  -0.09  -0.01  0.07  
Pairwise   Narrow Expanded  0.00  0.17  0.00 0.07 

2-Dim 

Separate 

None Narrow Expanded -0.03 -0.02 -0.05 -0.01 
Small Narrow Expanded 0.02 -0.06 0.03 0.05 

Moderate Narrow Expanded 0.01 0.16 0.05 -0.18 
Large Narrow Expanded 0.00 -0.13 0.00 0.14 

Pairwise 

None Narrow Expanded -0.03 0.20 -0.03 0.06 
Small Narrow Expanded 0.01 -0.24 0.02 0.02 

Moderate Narrow Expanded -0.01 -0.85 0.01 0.08 
Large Narrow Expanded -0.02 0.11 -0.03 -0.04 

3-Dim 

Separate 

None Narrow Expanded 0.04 0.00 -0.03 0.02 
Small Narrow Expanded 0.01 0.04 0.00 -0.02 

Moderate Narrow Expanded 0.00 0.07 -0.01 -0.07 
Large Narrow Expanded 0.01 -0.06 0.05 0.06 

Pairwise 

None Narrow Expanded 0.01 0.04 0.02 0.11 
Small Narrow Expanded 0.00 0.44 0.01 0.14 

Moderate Narrow Expanded 0.00 -0.09 0.00 0.21 
Large Narrow Expanded 0.03 -0.19 -0.02 0.14 

* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C29. Grade 10 Comparisons of Grade Level Separation 

Ability 
Generation 

Scaling 
Method 

Common 
Item set 

Format 
Effect 

Grade Level 
Separation 

Mean 
BIAS 

Mean 
RMSE 

Mean diff Mean diff 

Uni 
Separate Narrow   Small Large  2.37* -0.82* 

Expanded   Small Large  2.28* -0.74* 

Pairwise Narrow    Small Large  1.30* -0.55* 
Expanded   Small Large  1.47* -0.48*  

2-Dim 

Separate 

Narrow 

None Small Large 2.28* -0.82* 
Small Small Large 2.47* -0.89* 
Moderate Small Large 2.94* -0.88* 
Large Small Large 4.62* -1.60* 

Expanded 

None Small Large 2.29* -0.78* 
Small Small Large 2.39* -0.87* 
Moderate Small Large 3.10* -1.11* 
Large Small Large 4.48* -1.46* 

Pairwise 

Narrow 

None Small Large 0.93 -0.58* 
Small Small Large 0.70 -0.54* 
Moderate Small Large 2.16* -0.54* 
Large Small Large 3.56* -0.86* 

Expanded 

None Small Large 1.16* -0.49* 
Small Small Large 0.44 -0.54* 
Moderate Small Large 1.32* -0.47* 
Large Small Large 3.69* -0.87* 

3-Dim 

Separate 

Narrow 

None Small Large 1.22* -0.06 
Small Small Large 1.25* -0.06 
Moderate Small Large 1.56* -0.08 
Large Small Large 2.17* -0.34 

Expanded 

None Small Large 1.17* -0.02 
Small Small Large 1.28* -0.08 
Moderate Small Large 1.64* -0.15 
Large Small Large 2.11* -0.34 

Pairwise 

Narrow 

None Small Large 0.28 0.04 
Small Small Large 0.22 -0.02 
Moderate Small Large 0.76 -0.16 
Large Small Large 0.94 -0.11 

Expanded 

None Small Large 0.31 0.13 
Small Small Large 0.66 0.12 
Moderate Small Large 0.67 0.04 
Large Small Large 0.72 0.05 

* significant at p < 0.05 and Cohen’s d > 0.20 
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Table C30. Grade 10 Comparisons of Data Generation Models 

Scaling 
Method 

Common 
Item Set 

Format 
Effect 

Ability 
Generation 

Mean BIAS Mean RMSE 
Small 

Separation 
Large 

Separation 
Small 

Separation 
Large 

Separation 
Mean diff Mean diff Mean diff Mean diff 

Separate  

Narrow 

None 
Uni 2-Dim 0.04 -0.04 0.04 0.05 

  3-Dim 0.23 -0.92 0.63* 1.39* 
2-Dim 3-Dim 0.19 -0.88 0.58* 1.34* 

Small 2-Dim 3-Dim 0.25 -0.97 0.69* 1.52* 
Moderate 2-Dim 3-Dim 0.29 -1.10* 1.23* 2.02* 

Large 2-Dim 3-Dim 0.58 -1.86* 1.88* 3.14* 

Expanded 

None 
Uni 2-Dim 0.02 0.03 0.00 -0.03 

  3-Dim 0.28 -0.83 0.61* 1.33* 
2-Dim 3-Dim 0.26 -0.86 0.61* 1.37* 

Small 2-Dim 3-Dim 0.23 -0.88 0.65* 1.45* 
Moderate 2-Dim 3-Dim 0.28 -1.19* 1.17* 2.13* 

Large 2-Dim 3-Dim 0.59 -1.79* 1.93* 3.05* 

Pairwise 

Narrow 

None 
Uni 2-Dim 0.04 -0.33 0.02 -0.01 

  3-Dim 0.18 -0.85 0.58* 1.17* 
2-Dim 3-Dim 0.14 -0.52 0.56* 1.18* 

Small 2-Dim 3-Dim 0.19 -0.29 0.66* 1.18* 
Moderate 2-Dim 3-Dim 0.22 -1.18* 1.22* 1.60* 

Large 2-Dim 3-Dim 0.54 -2.08* 1.91* 2.66* 

Expanded 

None 
Uni 2-Dim 0.01 -0.30 0.00 -0.02 

  3-Dim 0.18 -0.74 0.60* 1.21* 
2-Dim 3-Dim 0.17 -0.68 0.60* 1.23* 

Small 2-Dim 3-Dim 0.18 0.39 0.64* 1.29* 
Moderate 2-Dim 3-Dim 0.23 -0.42 1.21* 1.72* 

Large 2-Dim 3-Dim 0.60 -2.37* 1.92* 2.84* 
* significant at p < 0.05 and Cohen’s d > 0.20 
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