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ABSTRACT 

Biliary atresia (BA) is the most common pediatric liver disease leading to liver 

transplantation during childhood, with very poor prognosis if untreated.  In this study, we aimed 

to apply a linear mixed effect (LME) model to estimate the correlation coefficients among 

longitudinally measured total serum bilirubin, international normalized ratio (INR) for 

prothrombin time, and serum albumin, the three important prognosis predictors of pretransplant 

mortality. The dataset was obtained from the Standard Transplant Analysis and Research 

(STAR) of the United Network of Organ Sharing (UNOS). The primary analysis cohort consists 

of 1,700 pediatric liver transplant candidates who started their liver transplant waiting list 

between February 27, 2002 and June 24, 2010 with at least one follow-up measurement and had 

primary diagnosis of biliary atresia at the time of listing. In applying the LME model, we 

estimated the longitudinally measured markers via two different correlation structures: 

autoregressive of order one (AR1) and compound symmetry (CS) in rearranged data by a 7-day 

equally spaced repeated measures interval. Under the AR(1) structure, the estimated total 

correlation coefficients between total bilirubin and INR, total bilirubin and albumin, and INR 

and albumin were 0.4151, -0.2404, and -0.206, respectively, whereas the partial correlation 

coefficients (within-subject correlation) were 0.0656, 0.0916, and -0.0451, respectively. Under 

the CS structure, the estimated total correlation coefficients were 0.4307, -0.2432, and -0.1912, 
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respectively and the partial correlation coefficients were 0.1742, -0.0678, and -0.0509, 

respectively for the above analysis. AR(1) structure had a better fit based on the Akaike 

information criterion (AIC) and the Bayesian information criterion (BIC). Several sensitivity 

analyses were conducted to understand the stability of the estimated overall correlation. The 

magnitudes of the estimates obtained from different sensitivity methods do not differ 

substantially.  

Public health significance: For two repeatedly measured markers, the total correlation, the 

between-subject correlation with time-averaged values, and partial correlation for within-subject 

measurements will provide a more complete picture of the correlations for these markers. 

Correlation by stacking all measurements of a subject together or between-subject correlation 

with time-averaged values is a measurement ignoring time effects and could either over or under 

estimate the total correlation coefficients. The estimated correlations between any two markers 

measured repeatedly for patients awaiting liver transplantation will give physicians a tool to 

analyze the relationship between two markers for patients during the waitlist period and may 

further help physicians understand disease progression and refine treatment strategy for 

candidates prior to receiving a transplant. 

Keywords: biliary atresia, liver transplant, longitudinal measures, partial correlation coefficient, 

total correlation coefficient. 
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1.0  INTRODUCTION 

Biliary Atresia (BA) is the most common liver disease leading to liver transplantation (LT) 

among pediatric patients with end-stage liver disease, occurring approximately 1 in 8,000 (Asian 

countries) to 1 in 18,000 (European countries) live births, characterized by complete fibrotic 

obliteration of the lumen of all or part of the extrahepatic biliary tree within 3 months of life. The 

prognosis for untreated BA remains extremely poor, with a patient’s median survival ranging 

from 8 to 16 months. [1-4] 

Markers including total serum bilirubin, international normalized ratio (INR) for 

prothrombin time, and serum albumin are closely monitored in untreated BA patients for the 

purpose of prognosis prediction [5], but so far little is known about their correlation in repeated 

observations. Analyzed on most recent follow-up data from 48 patients awaiting LT (median 

waiting time was 17.08 months), Lee et al. (2005) have found that INR was significantly 

correlated with bilirubin in Pearson correlation of 0.63 (P < 0.001). [6]  

For a longitudinal study with repeated measured markers, the correlation coefficient 

between two of the markers was first investigated by Bland and Altman (1995) as a weighted 

correlation coefficient, using the number of repeated measures as weights. The within-subject 

correlation (partial correlation) was measured by the method of analysis of covariance, treating 

subject as a categorical factor using dummy variables. [7, 8] This subject has been studied by 

several authors thereafter. Assuming that the repeated measures are correlated under either AR(1) 
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or CS structure, Roy (2006) proposed a linear mixed effects model to calculate the correlation 

coefficient between the two variables with or without the subject effect. [9] In this study, we 

used the model proposed by Roy to estimate the total and partial correlation coefficient between 

any of the two above-mentioned longitudinally measured markers for patients awaiting liver 

transplantation.  
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2.0  METHODS 

2.1 DATA 

The data used in this study was extracted from the Standard Transplant Analysis and Research 

(STAR) of the United Network of Organ Sharing (UNOS) which includes all liver transplant 

recipients in the United States who were on the transplant waiting list between February 27, 2002 

and June 24, 2010.  Patients whose primary diagnosis was biliary atresia and who were 17 years 

or younger were selected (N=2,039). During the data checking and cleaning phase, patients with 

no baseline information (N=7) or with data input errors (N=4) were excluded from the study. 

Finally, a cohort of 2,028 pediatric liver transplant candidates with primary diagnosis of biliary 

atresia were included in the analysis. In this study, we planned to investigate the correlation 

among three markers measured repeatedly during the time of waiting for liver transplantation: 

total serum bilirubin level, INR, and serum albumin level. After consulting with transplant and 

medical clinicians, the boundaries (max, min) for total serum bilirubin, INR, and albumin were 

set at (60.7, 0.1 mg/dl), (10, 0.5), and (5.42, 1.10 g/dl) respectively. There were a few data with 

these markers out of the reasonable ranges. We were unable to determine whether those values 

were actual measured values or due to input errors. To deal with those out-of-boundary values, 

we replaced the values by their reasonable maximum and minimum boundary values for 

subsequent analyses. Among 2,028 pediatric candidates in our analysis cohort, 328 did not have 
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follow-up measurements of these three markers. This resulted in 1,700 patients with at least one 

follow-up measurements. 

2.2 STATISTICAL MODELS 

We assumed that there are two variables measured repeatedly and the total correlation coefficient 

( ) between these two variables will be estimated from a LME model. We applied the 

method to the liver transplant data and fit three separate models to estimate correlation 

coefficients for bilirubin and INR, bilirubin and albumin, and INR and albumin. In this section, 

we use bilirubin and INR as an example to explain our method. 

For the i-th patient (i = 1, . . . , N), let yij = (y1ij, y2ij)´ be a 2 × 1 vector of the j-th repeated 

observations (j = 1, . . . , ni) of variables y1 and y2, to represent bilirubin and INR respectively, 

where N is the total number of patients. We assume that both variables are measured at the same 

time points, and let p be the maximum number of repeated measurements, i.e., p = max(n1, n2, 

…, nN). For the i-th patient, we assume that the 2 × 1 vector yij follows a bivariate normal 

distribution with the form, 

, 

where µ1 and µ2 are the means of y1ij and y2ij respectively, and Σ is the variance-covariance 

matrix. If we further assume that ,  are the variances of y1ij and y2ij and , are the 
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covariance and the correlation between , , then the variance-covariance matrix Σ can be 

rewritten into the following form, 

. 

Note that the correlation coefficient for variable yj measured at different time points is denoted as 

 (j = 1, 2). The correlation coefficient between variables y1 and y2 at a single time point, also 

called the partial correlation coefficient, can be calculated by . We also define the 

correlation between the two outcome variables measured at different time points as 

, where the correction factor δ is usually less than 1, indicating that 

correlations between the two variables measured at different time points are lower in magnitude 

than those measured at the same time point. 

Based on the specification described above, the LME model for the 2ni dimensional 

outcome vector yi = (yi1, yi2, . . . , yip)´ = (y1i1, y2i1, y1i2, y2i2, . . . , y1ip, y2ip)´, 1 ≤ 2ni ≤ 2p  can be 

written in the following form, [10] 

yi = Xiβ + Ziγi + εi ,     (1) 

where Xi and Zi are the fixed and the random design matrices respectively; β is a vector of fixed 

effects; γi is a vector of random effects; and εi is a vector of random errors. We assume that γi ~ 

N(0, G), εi ~ N(0, Ri), and γi and εi are independent., i.e., Cov(γi, εi) = 0. 

 From (1), we have E(yi) = Xiβ and Var(yi) =  ZiGZi´ + Ri. The variance-covariance matrix 

between the two outcome variables at a given time point is defined as a 2 × 2 matrix Σ = 
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 and is assumed to be the same for all time points. If we would like to specify a 

correlation structure for the repeated measures, matrix Ri can be written as the form Ri = Vi ⊗ Σ, 

where ⊗ is the Kronecker product; Vi is the p × p matrix representing the correlation of repeated 

measures on a given outcome variable and is assumed to be the same for both outcome variables. 

When a compound symmetric (CS) correlation structure or an autoregressive of order one 

(AR[1]) correlation structure is specified, matrix Vi will have the form 

    or   

respectively. The CS correlation structure assumes equal correlation among all the repeated 

measurements, whereas the AR(1) correlation structure assumes a time decay between 

successive observations and is usually a more realistic assumption for longitudinal observations. 

Note that it is required that   ρ  1 for Vi to be positive definite. [9, 11-12] 

2.3 DATA ANALYSIS 

We first examined the between-subject correlations without considering the time effect. We 

constructed scatter plots and calculated Pearson’s correlation coefficient using the time-averaged 

values of the markers within a subject. We will refer to this type of analysis as between subject 



 7 

correlation ignoring time-effect ( ). We also calculated correlation coefficients between two 

markers ignoring repeated measures by stacking all pair of measurements of the two variables 

together. We will refer to this analysis as naïve correlation ( ). 

The longitudinal correlation coefficients between two markers were analyzed using the 

LME model described in Section 2.2. Equally spaced time interval is required for using this 

methodology. Because the median time between measurements (9 days) is close to weekly 

measurements, we fixed our time interval into 7 days. Using LME model, we analyzed the 

repeated measurements that only occurred on multiples of 7 days (0, 7, 14,...) from the time of 

listing. Missing data that occurred on these days were imputed using last observation carried 

forward (LOCF) from the closest available prior visit. In an attempt to apply the model to the 

liver transplant data ignoring the actual measurement times, we also analyze the data by treating 

the order of the measurement time (called the visit time) as an equally spaced assessment.  

We created three different versions of datasets for the analysis in order to balance among 

maximum information, minimum noise, and model convergence. Dataset 1 was the original 

cohort described in Section 2.1. Dataset 2 was generated from Dataset 1 by including only those 

patients who had at least one follow-up lab measurements. Dataset 3 was obtained from Dataset 

2 by including only those patients aged 11 years old or younger at the time of first being on the 

liver transplant waiting list.   

All data managements and analyses were implemented in SAS 9.4. The SAS code was 

given in the Appendix. In the SAS code, variable Patient represents the subject pseudo ID and 

variable Follow represents the number of measurements for each subject. A vector variable 

mvar was used to define the 3 longitudinal markers; mvar = 1 for variable bilirubin or 
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n_bilirubin (rescaled bilirubin, n_bilirubin = 1/10 of bilirubin), mvar = 2 for variable 

INR and mvar = 3 for variable albumin. Models were fit with the intercept and mvar were the 

fixed effects and mvar was the random effect. 
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3.0  RESULTS 

3.1 DESCRIPTIVE ANALYSIS 

Table 1 gives the summary statistics for the 3 analysis datasets. Similar distributions were 

observed for each variable across the datasets. Approximately 70% of the transplant candidates 

were under one year old. For Datasets 2 and 3, half of the candidates had at least 5 measurements 

for each marker while for Dataset 1 half of the candidates had at least 4 measurements. The 

maximum follow-up day was 2,869 days and the median follow-up time for Dataset 1 was 60 

days and for Datasets 2 and 3 were about 83 days. The median time between measurements was 

9 days for all three datasets. Similar distributions of albumin, bilirubin, and INR were found 

across all three datasets.  
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 Table 1. Characteristics of patients in three datasets  

Characteristics                                         Dataset 1                          Dataset 2                          Dataset 3 
    
Number of patients        2028  1700     1675  
Age of being on the waiting list, 
median, mean ± SD (years)       0, 1.17 ± 2.74  0, 1.10 ±2.68    0, 0.90 ± 2.12 
              < 1        1381 (68.10)  1181 (69.47)    1181 (70.51) 
              1       321 (15.83)  260 (15.29)    260 (15.52) 
              2       71 (3.50)  61 (3.59)    61 (3.64) 
              3-4        63 (3.11)  50 (2.94)    50 (2.99) 

5-9       127 (6.26)  96 (5.65)    96 (5.73) 
10-11        34 (1.68)  27 (1.59)    27 (1.61) 

              12-17        31 (1.53)  25 (1.47)  
Number of measurements per 
individual, median, mean ± SD 
Range 

      4, 6.09 ± 5.99 
      1 – 73 

 5, 7.07 ± 6.07 
 2 - 73 

   5, 7.10 ± 6.08 
   2 - 73 

Days of follow up,           
median, mean ± SD (days) 
range 

            60, 168.07 ± 313.80 
            0 – 2869 

 83, 200.50 ± 333.13 
 1 - 2869 

   84, 201.55 ± 334.57 
   1 - 2869 

Time between measures, median, 
mean ± SD (days) 
Range 

      9, 33.03 ± 75.23 
      1 – 1312 

 9, 33.03 ± 75.23 
 1 - 1312 

   9, 33.04 ± 75.34 
   1 - 1312 

Laboratory values,          
median, mean ± SD    

Albumin (g/dl)       3.00, 3.00 ± 0.71  3.00, 3.00 ± 0.71    3.00, 2.99 ± 0.71 
Total Bilirubin (mg/dl)       12.60, 14.54 ± 11.43  12.70, 14.65 ± 11.48    12.70, 14.65 ± 11.48 
INR       1.34, 1.59 ± 0.81  1.36, 1.59 ± 0.81    1.35, 1.59 ± 0.82 

Dataset 1: the original dataset; Dataset 2: generated from Dataset 1 by including only those patients who had at least one follow-up lab 
measurements; Dataset 3: obtained from Dataset 2 by including only those patients aged 11 years old or younger at the time of first being on the 
liver transplant waiting list. 

3.2 STATISTICAL RESULTS 

Table 2 summarizes the estimated naïve correlation and between-subject correlation, ignoring 

time effect for bilirubin and INR, bilirubin and albumin, and INR and albumin for three datasets. 

The estimated correlations are similar across all three datasets: moderate positive correlation 

between bilirubin and INR, and relatively weak negative correlation between bilirubin and 

albumin and INR and albumin. As an illustration, scatter plots in Figure 1 give visual 
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representations of the between-subject correlations ignoring time effect based on Dataset 2. 

Compared the naïve correlation with between-subject correlations, between-subject correlations 

have slightly stronger association in absolute magnitude. 

Table 2. Naïve and between-subject correlations between two repeatedly measured markers  

in three different datasets 

            bilirubin(y1) & INR(y2)   bilirubin(y1) & albumin(y2)   INR(y1) &albumin(y2) 

Correlation coefficient 
         Dataset 1                         0.3958                 -0.1476    -0.1350 

                                0.4839                 -0.2579    -0.1954 
      Dataset 2                     0.3952                 -0.1447     -0.1350 
                                0.4991                 -0.2616     -0.2137 
      Dataset 3                     0.3962                 -0.1397      -0.1328 
                                0.5002                 -0.2561      -0.2087 

                      , Pearson correlation coefficients for stacking all pair of measurements of the two variables together (naïve correlation);  

                ,  Pearson correlation coefficients for between-subject correlation ignoring time effect. 

 

In fitting LME models, we experienced convergence issues which might be caused by 

small sample size at later time points. We checked the model convergence for all three datasets 

with two different types of correlation structures (AR[1] and CS), and two different versions of 

bilirubin measurements (in the original scale and in one-tenth of the original level [rescaled]) and 

presented the findings in Table 3. The models converged for both correlation structures when 

Dataset 2 and rescaled bilirubin were used. For the subsequent analyses, we will present the 

results based on Dataset 2. 

Table 4 shows the comparison of estimated parameters and goodness-of-fit statistics 

between the two correlation structures. The estimated total correlation coefficients ( ) were  
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                Figure 1. Scatter plots between two markers. Each point on the plot was the  

                                          time-averaged marker value for each subject  
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Table 3. Summary of convergence in using different datasets and scales of bilirubin 

  bilirubin & INR bilirubin & albumin INR & albumin 
Correlation structure  AR(1) CS    AR(1)  CS   AR(1)  CS  
Dataset 1 

         bilirubin      x √         x   √      √    x 
        rescaled bilirubin*      √ x         √  x      √    x 
Dataset 2 

         bilirubin      x √         x  √      √    √ 
        rescaled bilirubin*      √ √         √  √      √    √ 
Dataset 3 

         bilirubin      x √         x  √      √    x 
        rescaled bilirubin*      √ x         √  x      √    x 

                                       √: converge;  x : not converge; rescaled bilirubin*: 1/10 of bilirubin 

 

Table 4. Comparison of linear mixed effects analysis results for Dataset 2  

using different correlation structures 

         bilirubin(y1) & INR(y2)  bilirubin(y1) & albumin(y2) INR(y1) & albumin(y2) 
Correlation 
Structure     AR(1)             CS    AR(1)             CS   AR(1)            CS 
Parameter 

              0.4151 0.4307 -0.2404 -0.2432 -0.2060 -0.1912 
         0.0656 0.1742 0.0916 -0.0678 -0.0451 -0.0509 
       ρ  0.8868 0.2530 0.9290 0.0489 0.8659 -0.0005 
       δ  0.9949 0.9436 1.0087 0.9576 0.9893 0.9467 
Fit statistics        
       AIC  -36378.4 48697.4 -54770.2 69576.1 -37110 50710.1 
       BIC  -36329.5 48746.4 -54721.3 69625.1 -37061 50759.1 

           , total correlation coefficient;  , partial correlation coefficient; ρ, correlation coefficients for repeated measures;  

               δ, correction factor. 
 

 

similar based on the models with AR(1) and CS correlation structures for the repeated measures. 

These estimated results also indicated a moderate positive correlation between bilirubin and INR, 

and relatively weak negative correlations between bilirubin and albumin, and INR and albumin. 

The partial correlation coefficients ( ) at a single time point were very weak (ranged from 

0.0451 to 0.1742 in absolute value), and the correlation coefficients among the repeated 
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measurements (ρ) were very strong (ranged from 0.8659 to 0.9290) based on the AR(1) structure, 

and very weak (ranged from 0.0005 to 0.2530 in absolute value) based on the CS structure. Note 

that the overall model fit was better for using AR(1) than CS because of a smaller value in 

Akaike information criterion (AIC) and Bayesian information criterion (BIC). Except in analyses 

of bilirubin and albumin (δ=1.0087), the estimates of δ were less than 1, which indicates that the 

correlation between two markers measured at different time points were mostly lower than the 

correlation between those markers measured at the same time point. 

If analysis used visits rather than actual measurement times, we found slightly weaker 

total correlation coefficients between the markers and slightly weaker correlations among 

repeated measures, while we found similar partial correlation coefficients between the markers. 

This analysis was based on Dataset 2 and assumed having AR(1) correlation structure (Table 5). 

If we compared the same data with different correlation structures, model with CS had a slightly 

stronger total correlation in absolute magnitude, and much weaker correlation among repeated 

measures (Table 6). 

  

Table 5. Comparison of linear mixed effects analysis results for Dataset 2 using actual measurement times 

versus visits as the time factors in the models  

         bilirubin(y1) & INR(y2)  bilirubin(y1) & albumin(y2) INR(y1) & albumin(y2) 
Repeated 
Measures   actual time          visit           actual time         visit            actual time          visit 
Parameter 

              0.4151 0.3120 -0.2404 -0.1344 -0.2060 -0.1451 
         0.0656 0.0669 0.0916 0.0926 -0.0451 -0.0551 
       ρ  0.8868 0.7842 0.9290 0.8413 0.8659 0.6813 

           , overall correlation coefficient; , partial correlation coefficient;  ρ , correlation coefficients for repeated measures. 
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Table 6. Comparison of linear mixed effects analysis results for Dataset 2 between different correlation 

structures using visits as the time factors in the models  

             bilirubin(y1) & albumin(y2) INR(y1) & albumin(y2) 
Correlation 
Structure         AR(1)             CS         AR(1)            CS 
Parameter 

             -0.1344 -0.1747 -0.1451 -0.1515 
         0.0926 0.0990 -0.0551 -0.0372 
       ρ  0.8413 -0.0139 0.6813 -0.0139 
Fit statistics      
       AIC  30028.7 43125.9 33608.8 41460.6 
       BIC  30077.7 43174.9 33657.8 41509.6 

                                 The analysis of bilirubin & INR did not converge for both correlation structures in dataset 2. 
               , total correlation coefficient;  , partial correlation coefficient; ρ, correlation coefficients for repeated measures. 

 
For comparison purpose, we also refit the LME models with AR(1) correlation structure 

and actual measurement times as time interval for Dataset 1 and Dataset 3. The estimated total 

correlation, partial correlation, and correlation repeated measures were very similar across three 

datasets (Table 7). 

As we described before, sample size became smaller when follow-up time got longer. To 

check the stability of the estimates, we investigated the effect on estimated total correlation 

coefficients for data truncated at different follow-up times: 3 months, 6 months, 1 year, 2 years, 

and data with no truncation. Figure 2 depicts these estimates using either data with equally 

spaced time-interval (Panel A) or data with different visits (Panel B). In the latter case, the 

estimates did not change much. In the former case, the absolute correlation estimates tended to 

be stronger when follow-up time gets longer. 

Because of a wide range of age in our study subjects, we refit the LME models by 

including age as a fixed effect and re-estimated the correlations between markers. Age was 
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Table 7. Comparison of linear mixed effects analysis results among 3 different datasets  

           Models used AR(1) correlation structure and  actual measurement times as the time factors.  
           Dataset 1: the original dataset; Dataset 2: generated from Dataset 1 by including only those patients who had at least one follow-up lab     
           measurements; Dataset 3: obtained from Dataset 2 by including only those patients aged 11 years old or younger at the time of first being       
           on the liver transplant waiting list.  
           , total correlation coefficient; , partial correlation coefficient;  ρ, correlation coefficients for repeated measures 
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Figure 2. The estimated total correlation coefficients for data truncated at different follow-up  

time points: panel  A, using actual measurement times; panel B, using visits as time factors  

 

 bilirubin(y1) & INR(y2)  bilirubin(y1) & albumin(y2)    INR(y1) & albumin(y2) 
Dataset   1   2 3 1 2 3 1 2 3 
Parameter          
        0.4079 0.4151 0.4159 -0.2370 -0.2404 -0.2367 -0.1924 -0.2060 -0.2019 
        0.0657 0.0656 0.0656 0.0915 0.0916 0.0924 -0.0450 -0.0451 -0.0445 
       ρ       0.8866 0.8868 0.8863 0.9289 0.9290 0.9286 0.8659 0.8659 0.8653 
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treated both as a continuous variable and a categorical variable in order to catch linear or 

possibly nonlinear effects of age on the markers. As shown in Tables 8, although the models 

including age had a little improvement according to the AIC and BIC values, the estimated 

correlation coefficients after adjusting for age were almost identical. 

Table 8. Comparison of linear mixed effects analysis results between models with and without age as a fixed 

effect, with AR(1) correlation structure and Dataset 2 

           age, cat*: categorical variable of age; age, con*: continuous variable of age. 
            , total correlation coefficient;  , partial correlation coefficient; ρ, correlation coefficients for repeated measures. 

            
Sensitivity analysis was performed by comparing results in different lengths of follow-up 

days (7, 5, and 3 days) using Dataset 2. The results are summarized in Table 9. The estimated 

total correlation coefficients, partial correlation coefficients, and correlations among repeated 

measures are consistent among the comparisons and the models are robust. 

Table 9. Comparison of linear mixed effects analysis results for Dataset 2 using different lengths of 

intervals for measurement times  

         , total correlation coefficient; , partial correlation coefficient;  ρ, correlation coefficients for repeated measures 

 bilirubin(y1) & INR(y2)  bilirubin(y1) & albumin(y2)           INR(y1) & albumin(y2) 
Fixed effect           no age       age, cat.*    age, con.**     no age      age, cat.*     age, con.**    no age      age, cat.*    age, con.**     
Parameter          
        0.4151 0.4110 0.4131 -0.2404 -0.2403 -0.2396 -0.2060 -0.2099 -0.2081 
        0.0656 0.0656 0.0657 0.0916 0.0913 0.0916 -0.0451 -0.0453 -0.0452 
        0.8868 0.8870 0.8868 0.9290 0.9290 0.9290 0.8659 0.8651   0.8653 
Fit statistics          
       AIC -36378.4 -36382.7 -36376.9 -54770.2 -54787.1 -54768.6 -37110.0 -37136.1 -37123.4 
       BIC -36329.5 -36301.1 -36322.5 -54721.3 -54705.6 -54714.2 -37061.0 -37054.5 -37069.0 

 bilirubin(y1) & INR(y2)  bilirubin(y1) & albumin(y2)    INR(y1) & albumin(y2) 
Lengths (days) 7 5    3 7 5 3 7 5  3 
Parameter          
        0.4151 0.4154 0.4113 -0.2404 -0.2449 -0.2427 -0.2060 -0.2131 -0.2092 
        0.0656 0.0572 0.0465 0.0916 0.0885 0.1001 -0.0451 -0.0603 -0.0518 
       ρ       0.8868 0.9129 0.9522 0.9290 0.9490 0.9685 0.8659 0.8986 0.9421 
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For model diagnostics, we used the marginal residuals to check the normality assumption 

of models with AR(1) correlation structure using Dataset 2 as suggested by Cheng et al. [13] 

Jackknifed studentized residual plots and normal plots were presented in Figures 3-5. Both the  

Kolmogorov-Smirnov normality tests (P < 0.01 in all 3 analyses: correlations between bilirubin 

and INR, bilirubin and albumin, and INR and albumin) and the quantile-quantile plots show 

some deviations from the normal distributions. No outlier was detected.  

 

Figure 3. The Jackknifed studentized residual for the correlation analysis of bilirubin and INR 

 



 19 

 

Figure 4. The Jackknifed studentized residual for the correlation analysis of bilirubin and albumin 

 

 

Figure 5. The Jackknifed studentized residual for the correlation analysis of INR and albumin 
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4.0  DISCUSSION 

In our analysis, we mainly focused on a cohort consisting of 1,700 pediatric liver transplant 

candidates with primary diagnosis of biliary atresia and with at least one lab follow-up measure. 

We were interested in estimating correlation coefficients of the three prognosis markers total 

serum bilirubin, INR, and serum albumin that were measured repeatedly over the waitlist period. 

For each patient, study baseline was defined as time of entry to the liver transplant 

waiting list. We used three different methods to estimate the correlation coefficients between any 

two of the three above-mentioned markers: between-subject correlation for markers averaged 

across all time points for each patient, correlation between two markers with all measurements 

stacked together and ignoring correlation due to repeated measurements, and total correlation 

using the linear mixed effects modeling adjusting for within-patient correlations. The sign of the 

correlation coefficients estimated from these three methods are the same and the magnitudes of 

the estimates obtained from these three methods do not differ substantially. The similarity of 

these three estimates could be due to relatively stable prognosis during the waitlist period and the 

high within-subject correlation for a given variable. The correlation between bilirubin and INR 

was moderately positive whereas the correlations between bilirubin and albumin and INR and 

albumin were weakly negative. Note that based on the values of AIC and BIC, linear mixed 

effects model with AR(1) correlation structure of repeated measurements had a better fit than 

that with CS correlation structure. 
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Several sensitivity analyses were conducted to understand the stability of the estimated 

total correlation. First, we selected various lengths of equally spaced repeated measurements for 

the linear mixed effects modeling: 3, 5, and 7 days. The estimated total correlations were not 

much different. Second, we included repeated measurements in various lengths of follow-up for 

the analysis: 3-month, 6-month, 1-year, 2-year, and the maximum (about 8 years) follow up. The 

longer the follow-up time is, the higher percent of missing measurements will be in the later 

follow-up time points. Despite having various lengths of follow-up and various percentage of 

missing measurements, we found that the estimated total correlations were not much different. 

Third, we excluded pediatric patients who were 12 years or older at the baseline. Since January 

11, 2005, the UNOS changed eligible age for using the PELD organ allocation system from 17 

years and younger to 11 years and younger. The third sensitivity analysis compared the 

estimation results among pediatric patients defined using these two different thresholds and the 

estimated correlations do not differ much. Finally, we used the measurements at different visits 

and considered visits as the time factor in the linear mixed effects model. For a patient, when 

disease progression was suspected to change during the waitlist period, lab tests were usually 

ordered by a doctor and marker values were then updated. Our results showed that the estimated 

total correlations were smaller for using visit than using equally-spaced time interval as the time 

factors in the model.  

 There are some limitations which we are aware of for estimating total correlation using 

the linear mixed effects modeling. First, because of higher percentage of missing data when 

follow-up time is longer in the analysis, linear mixed effects model may face the issue of 

nonconvergence. This missing data problem is common in any longitudinal study. We suggest 

conducting different sensitivity analyses including the between-subject time-averaging method 
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and the naïve stacking method to resolve the convergence issue and to understand the correlation 

patterns under different scenarios. Second, violation of homogeneous variance for a linear mixed 

effects model may also occur. To obtain reliable estimates, regression diagnostics and further 

adjustments to correct for violation will be needed. 

 Correlation coefficient is an easy-to-interpret quantity for nonstatistician clinical 

researchers. Correlation between two longitudinally measured markers can give us a more 

accurate estimation of the linear relationship between two variables if it is adjusted for the 

similarity from a within-subject association. Because of the use of a regression-based method in 

estimating correlation, several extensions including adjusting for other fixed effect confounding 

factors or adjusting for clustering effects in a multilevel setting can be further investigated in the 

future. 
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APPENDIX: SAS CODE FOR ANALYSIS OF CORRELATION BETWEEN BILIRUBIN 

AND INR UNDER AR(1) STRUCTURE IN DATASET 2 

 

data data3; 

input id calc_age  agec bilirunim inr albumin  init_age dayfrominitdate visit maxvisit; 

cards; 

7240       0     1      5.6    3.6    1.4       0        0       1      1 

11630     1     2    12.9    3.9    1.4       1        0       1      4 

11630     1     2      8.9    3.3    1.4       1       24      2      4 

11630     1     2    10.6    3.9    1.5       1       45      3      4 

11630     1     2    10.6    3.9    1.5       1     119      4      4 

80280     0     1    12.4    2.6    1.5       0        0       1      2 

80280     0     1    12.4    2.6    1.5       0        9       2      2 

                                                                                         

; 

Run; 

data new_b; set data3; n_bilirubin=bilirubin/10; 

if maxvisit=1 then delete; 
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data data3a_new_b; set new_b; 

by id; 

if first. id then do ; patient+1; end; 

 

data data3b_new_b; 

merge data3a_new_b data3a_new_b (firstobs=2 keep=patient dayfrominitdate rename = (patient 

=_patient dayfrominitdate=_dayfrominitdate)); output; 

if patient=_patient then do;  

 do i=dayfrominitdate+1 to _dayfrominitdate-1; dayfrominitdate=i;output; 

 end; end; 

drop i _:; 

run; 

 

data data4_new_b; set data3b_new_b; 

follow=round(dayfrominitdate/7,.001);       

if int(follow)=follow;  

  

data data5_new_b; set data4_new_b; 

by patient; 

response=n_bilirubin; mvar=1; output; 

response=inr; mvar=2; output; 

response=albumin; mvar=3; output; 

run; 
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proc mixed data=data5_new_b method = ml covtest; 

class patient mvar follow; 

model response = mvar/ solution ddfm=residual; 

random mvar/ type=un subject = patient v =2 vcorr =2; 

repeated mvar follow/ type = un@ar(1) subject = patient r =2 rcorr =2; 

where mvar=1 or mvar=2; 

run; 

 

calc_age, the age at the time of follow-up 

agec, the categorical variable of calc_age with the agec=1, 2, 3, 4, 5, 6, 7, corresponding to 

calc_age= 0, 1, 2, [3, 4], [5, 9], [10, 11], [12, 17] years old respectively 

init_age, the age of being listed as a liver transplant candidate 

dayfrominitdate, from the date on the waiting list to the date of follow-up 

visit, the order of measurement 

maxvisit, the maximum number of visit 
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