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TWO NONLINEAR LATTICE PROBLEMS IN MATERIALS

Lifeng Liu, PhD

University of Pittsburgh, 2015

The interplay of spatial discreteness and nonlinearity plays an important role in the dynamics

of nonlinear lattice systems, as illustrated by two problems considered in this thesis.

The first problem concerns kinetics of a step propagating along a twin boundary in a

cubic lattice undergoing an antiplane shear deformation. To model twinning, we consider

a piecewise quadratic double-well interaction potential with respect to one component of

the shear strain and harmonic interaction with respect to another. We construct semi-

analytical traveling wave solutions that correspond to a steady step propagation and obtain

the kinetic relation between the applied stress and the velocity of the step. We show that

this relation strongly depends on the width of the spinodal region where the double-well

potential is nonconvex and on the material anisotropy parameter. In the limiting case when

the spinodal region degenerates to a point, we construct new solutions that extend the

kinetic relation obtained in the earlier work of Celli, Flytzanis and Ishioka into the low-

velocity regime. Numerical simulations suggest stability of some of the obtained solutions,

including low-velocity step motion when the spinodal region is sufficiently wide. When the

applied stress is above a certain threshold, nucleation and steady propagation of multiple

steps are observed.

In the second part of the thesis we explore a novel locally resonant granular material

bearing harmonic internal resonators in a chain of beads interacting via Hertzian elastic

contacts. Dynamics of the system can range from strongly to weakly nonlinear, depending

on the solution amplitude and the amount of static precompression. We provide numerical

and analytical evidence of the existence of discrete dark breathers solutions, exponentially
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localized, time-periodic states mounted on top of a non-vanishing background. Our results

are obtained by means of an asymptotic reduction to suitably modified versions of the discrete

p-Schrödinger and nonlinear Schrödinger modulation equations in the strongly and weakly

nonlinear regime, respectively. Stability and bifurcation structure of numerically computed

exact dark breathers are examined. In some parameter regimes we also find small-amplitude

periodic traveling waves, long-lived standing and traveling bright breathers, i.e., localized

time-periodic solutions with exponentially decaying tails.

Keywords: lattice model, kinetic relation, twinning step, radiative damping, spinodal re-

gion, granular materials, resonators, discrete breathers, modulation equations, stability,

bifurcation.
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1.0 INTRODUCTION

The general theme of my thesis research is modeling and analysis of nonlinear phenomena

in materials. In particular, I am interested in problems where the interplay of spatial dis-

creteness and nonlinearity plays an important role in the dynamics of the system, which is

described by nonlinear lattice differential equations. In this dissertation, I focus on two non-

linear lattice problems: kinetics of twinning steps in crystals and nonlinear waves in resonant

granular materials.

1.1 KINETICS OF A TWINNING STEP

Deformation twinning is a phenomenon observed in many metals and alloys. A twin bound-

ary separates two adjacent regions of a crystal lattice (two variants) that are related to

one another by simple shear. Martensites, in particular, are known to form twinning mi-

crostructures under mechanical deformation [1]. Formation and motion of twin boundaries

are responsible for the ability of these materials to accommodate very large deformations (up

to 8-10% strain). A twin boundary propagates forward via the motion of steps, or ledges,

along it [2–5]. Lattice dynamics of steps thus largely determines the macroscopic kinetics of

a twin boundary [6, 7].

Chapter 2 describes the study of the kinetics of a twinning step in a cubic lattice, a

project in collaboration with Yangyang Wang, a mathematics Ph.D. student, and my advisor

Prof. Anna Vainchtein [8]. We assume that the lattice is undergoing an antiplane shear

deformation, which reduces the problem to two dimensions with displacement field um,n(t).
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To model twinning in a way that captures the essential nonlinearity of the problem while

allowing us to construct semi-analytical solutions, we consider a piecewise quadratic double-

well interaction potential Φ with respect to one component of the shear strain and harmonic

interaction with respect to another. The two wells represent two different twin variants and

are separated by a spinodal region where the potential is nonconvex. The dimensionless

equations of motion are then given by

üm,n = χ(um+1,n − 2um,n + um−1,n) + Φ′(um,n+1 − um,n)− Φ′(um,n − um,n−1), (1.1)

where üm,n denote the second time derivative of the displacement and the parameter χ

measures the material anisotropy.

To find the kinetic relation between the applied stress and the velocity of the step,

we construct semi-analytical traveling wave solution representing the steady motion of a

twinning step at a given velocity and use this solution to compute the far-field stress necessary

to maintain such motion. Following the approach developed in [9], we use Fourier transform

methods and reduce the problem to a convolution-type linear integral equation that is solved

numerically. We show that the resulting kinetic relation strongly depends on the width of

the spinodal region and the material anisotropy. We also consider the singular limit when

the width of the spinodal region tends to zero. This problem was studied in [10, 11] but in

the earlier work no solutions were found at velocities below a certain threshold. We use the

integral equation approach to construct new solutions in the low-velocity region below the

threshold.

In addition to stability of sufficiently fast step propagation, numerical simulations of

(1.1) suggest that slow step motion may become stable when the spinodal region is wide

enough. As we show, a slowly moving step requires very small stress and emits short-length

lattice waves that propagate both behind and ahead of the moving front. Meanwhile, fast

step propagation takes place at higher stress and features lattice waves only behind the front.

When the applied stress exceeds a certain critical value, the large amplitude of these waves

causes island nucleation on top of a moving step, and the constructed solutions break down.

Numerical simulations show cascade nucleation, growth and coalescence of multiple islands.
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1.2 NONLINEAR WAVES IN A RESONANT GRANULAR CHAIN

Granular crystals are tightly packed arrays of solid particles that deform elastically upon

contact via nonlinear Hertzian interactions [12–14]. The dynamics of these systems ranges

from weakly nonlinear, when the initial overlap of the neighboring particles due to the static

precompression is much larger than their relative displacement, to the strongly nonlinear

regime characterized by relatively small or zero precompression. This provides an ideal set-

ting for exploring nonlinear waves that emerge in granular materials. Among them, arguably,

the most prototypical ones are traveling waves [12–14], shock waves [15,16] and exponentially

localized (in space), periodic (in time) states that are referred to as discrete breathers [17–25].

Discrete breathers originate from the combined effects of nonlinearity and spatial dis-

creteness. They constitute a generic excitation that emerges in a wide variety of systems and

has been thoroughly reviewed [26, 27]. Discrete breathers can be divided into two distinct

types, which are often referred to as bright and dark breathers. Bright breathers have tails

in relative displacement decaying to zero and are known to exist in dimer (or more generally

heterogeneous) granular chains with precompression [17,23, 25], monatomic granular chains

with defects [24] (see also [22]) and in Hertzian chains with harmonic onsite potential [20,21].

Dark breathers, on the other hand, are spatially modulated standing waves whose amplitude

is constant at infinity and vanishes at the center of the chain (see Fig. 3.9, for example).

Their existence, stability and bifurcation structure have been studied in a homogeneous gran-

ular chain under precompression [18]. Recently, experimental investigations utilizing laser

Doppler vibrometry have systematically revealed the existence of such states in damped,

driven granular chains in [19]. However, to the best of our knowledge, dark breathers have

not been identified in a monatomic granular chain without precompression.

In a joint work with Professors Panos Kevrekidis (University of Massachusetts at Amherst),

Guillaume James (Grenoble University) and Anna Vainchtein, we focus on a recent, yet

already emerging as particularly interesting, modification of the standard granular chain,

namely the so-called locally resonant granular chain. The latter belongs to a new type of

granular “metamaterial” that has additional degrees of freedom and exhibits a very rich non-

linear dynamic behavior. In particular, in these systems it is possible to engineer tunable
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band gaps, as well as to potentially utilize them for shock absorption and vibration miti-

gation. Such metamaterials have been recently designed and experimentally tested in the

form of chains of spherical beads with internal linear resonators inside the primary beads

(mass-in-mass chain) [28], granular chains with external ring resonators attached to the

beads (mass-with-mass chain) [29] (see also [30]) and woodpile phononic crystals consisting

of vertically stacked slender cylindrical rods in orthogonal contact [31]. An intriguing feature

that has already been reported in such systems is the presence of weakly nonlinear solitary

waves or nanoptera [32] (see also [33] for more detailed numerical results). Under certain

conditions, each of these systems can be described by a granular chain with a secondary

mass attached to each bead in the chain by a linear spring. The attached linear oscillator

has the natural frequency of the internal resonator in the mass-in-mass chain (Fig. 1 in [28]),

the piston normal vibration mode of the ring resonator attached to each bead in the mass-

with-mass system (Fig. 9 in [29]) or the primary bending vibration mode of the cylindrical

rods in the woodpile setup (Fig. 1 in [31]). The dimensionless equations of motion are

ün = (δ0 + un−1 − un)α+ − (δ0 + un − un+1)α+ − κ(un − vn), ρv̈n = κ(un − vn) (1.2)

where un(t) and vn(t) are the displacements of nth primary and secondary beads, respectively,

(x)+ = x when x > 0 and equals zero otherwise, κ measures the relative strength of the

linear elastic spring, ρ = m2/m1 is the ratio of two masses, α is the Hertzian nonlinear

exponent which is equal to 3/2 for spherical beads, and δ0 ≥ 0 measures the amount of

static precompression in the granular chain.

One of the particularly appealing characteristics of a locally resonant granular chain of

this type is the fact that it possesses a number of special case limits that have previously been

studied. More specifically, in the limit when the ratio of secondary to primary masses tends

to zero, our model reduces to the non-resonant, homogeneous granular chain, while at a very

large mass ratio and zero initial conditions for the secondary mass the system approaches a

model of Newton’s cradle [20, 21], a granular chain with quadratic onsite potential. We are

interested in investigating the system’s dynamics at finite ρ, when the equations are coupled,

making the analysis more difficult.
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In Chapter 3, we study the locally resonant granular chain in the absence of precom-

pression. The dynamics of this system belongs to the strongly nonlinear regime, due to the

fully nonlinear character of the interactions between beads. In particular, we prove that the

non-attracting character of Hertzian interactions leads in this case to the non-existence of

nontrivial bright breathers at finite mass ratio. Using a multiple-scale analysis and following

the approach developed in [20], we derive the generalized modulation equations of discrete

p-Schrödinger (DpS) type, which include a discrete p-Laplacian. The asymptotic DpS-type

equations are then used to approximate various types of small-amplitude nonlinear waves

existing in the system. First, we show that they capture the dynamics of the small-amplitude

periodic traveling waves when the mass ratio is below a critical value. Second, in the case

of large enough mass ratio and suitable small-amplitude initial data, we rigorously justify

the validity of the limiting DpS equation derived in [20] on the long-time scale and use

it to prove the existence of long-lived bright breather solutions in the system. Third, the

generalized DpS equations are used to form initial conditions for numerical computation of

dark breathers, whose stability and bifurcation structure are also examined. In addition,

we identify the period-doubling bifurcations of these dark breather solutions at small mass

ratios, as well as investigate their long-time instabilities that lead to steady motions and

chaotic evolutions.

In Chapter 4, we consider the locally resonant granular chain under precompression. The

precompression suppresses the fully nonlinear character of Hertztian interactions, to which

a linear component is effectively added. At finite mass ratio, the dispersion relation for

plane wave solutions of the linearized system has optical and acoustic branches. We identify

the modulational instability of small-amplitude periodic waves that is typically responsible

for breather formation in the weakly nonlinear regime. This is accomplished via derivation

and analysis of modulation equations of nonlinear Schrödinger (NLS) type using multiple-

scale techniques [34–36]. Depending on the wave number and the branch of the dispersion

relation, the NLS equation is either focusing, admitting sech-type solutions, or defocusing,

with tanh-type solutions. In particular, we analyze the focusing NLS and obtain numerical

results suggesting that it approximates the dynamics of moving bright breathers quite well at

various mass ratios and some wave numbers. We then use solutions of the defocusing NLS to
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form initial conditions for numerical computation of exact dark breathers that bifurcate from

both optical and acoustic branches. We show that the stability and bifurcation structure

of the computed dark breathers are significantly affected by the mass ratio and breather

frequency.
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2.0 KINETICS OF A TWINNING STEP

In this chapter we study the kinetics of a single step propagating along the twin boundary.

To model this phenomenon in the simplest setting, we consider antiplane shear deformation

of a cubic lattice, with piecewise quadratic double-well interaction potential with respect to

one component of the shear strain and harmonic interaction with respect to another. The

two wells represent two different twin variants and are separated by a spinodal region where

the potential is nonconvex. This is an extension of the model with bilinear interactions

that was used in [37, 38] to study high-velocity dynamics of steps along a phase boundary

and in [39], where their quasistatic evolution was considered. Piecewise linear interactions

were assumed by many authors to describe propagation of phase boundaries, fracture and

dislocations in a crystal lattice (see [9–11, 40–50] and references therein). The advantage of

such models is that they allow a semi-analytical treatment through the application of Fourier

transform, Wiener-Hopf technique and related methods.

To find the kinetic relation between the applied stress and the velocity of the step, we

need to construct traveling wave solutions representing the steady motion of a twinning

step. The problem trivially reduces to the uniform motion of a screw dislocation studied

in [9] (see also [51,52]), where it is shown that semi-analytical solutions can be obtained by

solving a linear integral equation. The kernel of the integral equation is determined by the

solution of the problem where spinodal region degenerates into a point, which was studied

in [10,11]; see also [40] for a closely related one-dimensional Frenkel-Kontorova (FK) model.

Despite the long history of this problem, some important questions remained open. One of

these questions is the existence and stability of the low-velocity motion. In fact, the work

in [9, 51, 52] focused primarily on solutions at some fixed velocities in the medium to high

range and their dependence on the width of the spinodal region, while the slow propagation
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was not investigated. Here we use the approach in [9] to construct solutions for a wide

range of velocities, including slow motion, and obtain the associated kinetic relation. We

show that this relation strongly depends on the width of the spinodal region and the material

anisotropy parameter given by the relative strength of the harmonic bonds. We then conduct

numerical simulations to independently verify some of these results and test stability of the

obtained solutions. We provide semi-analytical and numerical evidence that not only steady

slow dislocation (step) motion exists, it may become stable when the spinodal region is

sufficiently wide. Unlike the high-velocity motion, a slowly moving step requires very small

stress and emits lattice waves that may propagate both behind and ahead of the moving

front. Our work thus complements and extends the results in [9, 51, 52]. It also extends

to the higher-dimensional case the work in [49], where a similar investigation was recently

undertaken for the FK model.

We also revisit the limiting case when the spinodal region between the two wells degen-

erates into a single point (spinodal value). In this case the earlier work [10, 11] considered

traveling wave solutions in which a transforming bond goes through the spinodal value at a

single transition point, which means that it instantaneously switches from one well to an-

other and remains there. While this assumption seems reasonable, it generates solutions only

at relatively high velocities above a certain threshold value V0 (and below another critical

velocity where the solutions break down). Below V0, the formally constructed solutions vio-

late the assumption used to obtain them because the transforming bond crosses the spinodal

value more than once. This implies that no traveling wave solutions of the form assumed

in [10,11] exist below the threshold value. The same non-existence result has been observed

for the Frenkel-Kontorova model [40, 43]. Meanwhile, the results obtained for the models

with a non-degenerate spinodal region, both the one studied here and its FK counterpart

in [49], suggest that at velocities below V0 the time interval during which a transforming bond

remains in the spinodal region approaches a nonzero value as the spinodal region shrinks to

a point. This motivated the work [53] for the FK model, where a new type of solutions below

the threshold velocity was recently constructed by extending the approach developed in [9]

to this limiting case and allowing the transforming bonds to stay at the spinodal value for a

finite time before switching into another well. Here we apply this idea to the present model
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and show that the same result holds. The new solutions fill in the low-velocity gap in the

kinetic relation left by the analysis in [10,11], although, as in [53], they are likely unstable.

Finally, we investigate the solution breakdown at sufficiently high velocities when the

amplitude of the lattice waves emitted by a moving step becomes sufficiently large and

leads to cascade nucleation, growth and coalescence of islands on top of the existing step.

The boundaries of the new islands and the initial step eventually propagate with the same

velocity. These results extend the analysis in [38] to the case with a non-degenerate spinodal

region, where the island nucleation is no longer instantaneous, and support the dynamic

twin nucleation and growth mechanism that was predicted in [54] and studied numerically

in [55,56].

This chapter is organized as follows. Section 2.1 introduces the model, and the solution

procedure is summarized in Section 2.2. In Section 2.3 we discuss the admissibility of solu-

tions, obtain the kinetic relation and analyze its dependence on the width of the spinodal

region and the material anisotropy parameter. The new solutions for the case of the degener-

ate spinodal region are obtained and discussed in Section 2.4. In Section 2.5 we numerically

investigate stability of the obtained solutions, and some concluding remarks can be found in

Section 2.6. Some additional technical results are contained in the Appendix A and B.

2.1 THE MODEL

Consider a three-dimensional cubic lattice with an orthonormal basis {e1, e2, e3} under-

going an antiplane shear deformation, which means that the atomic rows parallel to the

e3-direction are rigid and can only move along their length. Let um,n(t) denote the displace-

ment of (m,n)th row at time t. We assume that each row interacts with its four nearest

neighbors. The interaction potentials between the neighboring rows in the horizontal (m)

and vertical (n) directions are given by Ψ(e) and Φ(y), where e and y denote the correspond-

ing components of the shear strain. The equations of motion are then given by the infinite

9



system of ordinary differential equations:

d2

dt2
um,n(t) = Ψ′(um+1,n(t)− um,n(t))−Ψ′(um,n(t)− um−1,n(t))

+ Φ′(um,n+1(t)− um,n(t))− Φ′(um,n(t)− um,n−1(t)).

(2.1)

Here all variables are dimensionless after an appropriate rescaling [37].

To model twinning, we assume that the bonds in the vertical direction are governed by

a double-well potential, with a continuous trilinear derivative:

Φ′(y) =


y + 1, y < −δ/2 (variant I)

(1− 2/δ)y, |y| ≤ δ/2 (spinodal region)

y − 1, y > δ/2 (variant II)

(2.2)

The two symmetric quadratic wells of Φ(y) correspond to two different twin variants I and

II and are connected by a downward parabola that represents the spinodal region of width

δ such that 0 < δ < 2 (see Figure 2.1). In what follows, we will also separately consider

the limiting case δ = 0 when the spinodal region degenerates to a single point, and Φ′(y)

becomes bilinear, Φ′(y) = y ± 1, y ≶ 0. We further assume that the elastic interactions

between the nearest neighbors in the horizontal bonds are linear:

Ψ′(e) = χe. (2.3)

Here χ > 0 is the dimensionless parameter measuring the anisotropy of the lattice. We

note that while in general the interaction potentials are periodic, with alternating slip and

twinning energy barriers, here we assume that the energy barrier for twinning is much lower

than the one for slip, as is the case, for example, in Cu-Al-Ni alloy [6], so it suffices to consider

only two wells. On the continuum level, constitutive laws similar to the one assumed here

were used to model twinning in [57,58].

Suppose now that a twin boundary containing a single step divides the lattice into two

regions, as shown in Figure 2.2. The vertical bonds in the blue region are in variant II, the

bonds in the red region are in variant I, and there are possibly also some bonds near the

step front that have spinodal strain values (the green region). As the step propagates from

left to right along the twin boundary, the spinodal (green) bonds switch to variant II (blue),
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Figure 2.1: The double-well quadratic potential Φ(y) and its derivative (2.2).

and the variant I (red) bonds switch to the spinodal region (green) and later to variant II. In

what follows, we will consider traveling wave solutions describing a steady step propagation

and obtain the corresponding kinetic relations between the applied stress and the velocity

of the step.

2.2 TRAVELING WAVE SOLUTION

To model a steadily moving step front along the twin boundary, we seek solutions of (2.1)

in the form of a traveling wave with (constant) velocity V > 0:

um,n(t) = u(ξ, n), ξ = m− V t. (2.4)

The vertical strains ym,n(t) = um,n(t)− um,n−1(t) are then given by

ym,n(t) = y(ξ, n) = u(ξ, n)− u(ξ, n− 1).
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Figure 2.2: A twin boundary with a single step. Vertical bonds inside the blue region are in variant II,
bonds in the red region are in variant I, and the strains of the vertical bonds inside the green region have
spinodal values.

We assume that at infinity the vertical strain tends to constant values y+ < 0 and y− > 0 in

variant I and variant II, respectively:

y(ξ, n)→ y±, as n→ ±∞

y(ξ, n)→


y+, n ≥ 2

y±, n = 1

y−, n ≤ 0,

, as ξ → ±∞
(2.5)

Furthermore, we assume the horizontal strains vanish at infinity:

em,n(t) = um,n(t)− um−1,n(t)→ 0, as m2 + n2 →∞.

Note that under these assumptions the 31-component of the shear stress tends to zero at

infinity, and in view of (2.2), the applied shear stress σ32 = σ is given by σ = y+ +1 = y−−1,

so that

y± = σ ∓ 1. (2.6)
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Observe also that the displacement um,n(t) is determined up to an additive constant which

can be fixed by specifying displacement of a lattice point. As illustrated in Figure 2.2, we

assume that the vertical bonds at n ≥ 2 and n ≤ 0 remain in their respective variants:

y(ξ, n) < −δ/2, n ≥ 2 (variant I), y(ξ, n) > δ/2, n ≤ 0 (variant II). (2.7)

Meanwhile, the vertical bonds at n = 1 can switch from the first to second variant as the

step propagates to the right by going through the spinodal region. Following the approach

used in [9], we assume that y(ξ, 1) takes values inside the spinodal region when |ξ| < z, for

some z > 0 to be determined, and is in the corresponding variant outside this interval:

y(ξ, 1) < −δ
2
, ξ > z (variant I)

|y(ξ, 1)| < δ

2
, |ξ| < z (spinodal region)

y(ξ, 1) >
δ

2
, ξ < −z (variant II),

(2.8)

and the switch between variant I (II) and the spinodal region takes place at ξ = ±z:

y(z, 1) = −δ
2
, y(−z, 1) =

δ

2
. (2.9)

Under the above assumptions we can write

Φ′(y(ξ, 1)) = y(ξ, 1) + 1− 2

∫ z

−z
θ(s− ξ)h(s)ds, (2.10)

where θ(s) is a unit step function: θ(s) = 1 for s > 0, θ(s) = 0 for s < 0. Here we have

introduced an unknown shape function h(s), which is zero outside the interval [−z, z] and is

normalized so that ∫ z

−z
h(s)ds = 1 (2.11)

Using (2.4), (2.10) and the assumed inequalities (2.7) and (2.8), we rewrite the equations

of motion (2.1) as

V 2 ∂
2

∂ξ2
u(ξ, n) =χ (u(ξ + 1, n) + u(ξ − 1, n)− 2u(ξ, n)) + u(ξ, n+ 1) + u(ξ, n− 1)

−2u(ξ, n) + 2

[
δn,0 + (δn,1 − δn,0)

∫ z

−z
h(s)θ(s− ξ)ds

] (2.12)
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The solution of (2.12) can be represented as the sum of the solution of the static problem

with a flat twin boundary along n = 0 at zero stress and a solution of the dynamic problem

for a screw dislocation located at the step front and moving steadily under the applied stress.

More precisely, we write

u(ξ, n) = uFn + w(ξ, n), (2.13)

where

uFn =

0, n ≥ 0

2n, n ≤ −1

(2.14)

satisfies the static flat-boundary problem

uFn+1 + uFn−1 − 2uFn + 2δn,0 = 0, (2.15)

and the screw dislocation solution is given, up to an additive constant, by [9]

w(ξ, n) = n(σ − 1) +
1

2π2

∫ ∞
−∞

e−ikξξH(kξ)J (kξ, n)

i(kξ − i0)
dkξ. (2.16)

Here kξ − i0 = limε→0+(kξ − iε), H(kξ) is the Fourier transform of h(ξ) and

J (kξ, n) =

∫ π

−π

(1− eiκ)e−inκ

V 2k2
ξ − 4(χ sin2 kξ

2
+ sin2 κ

2
)
dκ (2.17)

is defined for integer n. The integral in (2.17) can be explicitly calculated using the residue

theorem, yielding (A.3) in the Appendix A. Using (2.13), (2.14), (2.16) and the convolution

properties of the Fourier transform, we obtain the vertical strains in the lattice as

y(ξ, n) =

∫ z

−z
g|n−1|(ξ − s)h(s)ds+

σ − 1, n ≥ 1

σ + 1, n ≤ 0.

(2.18)

Here we defined

gj(ξ) =
1

π

∫ ∞
−∞

e−ikξξ

i(kξ − i0)
S(kξ, j)dkξ, j = 0, 1, 2, . . . , (2.19)
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where

S(kξ, j) =


(λ−

√
λ2 − 1)−|j|(δj,0 −

√
λ−1
λ+1

), λ < −1

(λ∓ i
√

1− λ2)−|j|(δj,0 ± i
√

1−λ
1+λ

), |λ| < 1, kξ ≶ 0

(λ+
√
λ2 − 1)−|j|(δj,0 −

√
λ−1
λ+1

), λ > 1

(2.20)

and

λ(kξ) = 1 + 2χ sin2 kξ
2
− 1

2
V 2k2

ξ . (2.21)

Observe now that on one hand, we have

∂

∂ξ
y(ξ, 1) = −

∫ z

−z
q(ξ − s)h(s)ds, (2.22)

where, by (2.18) and (2.19),

q(ξ) = −g′0(ξ) =
1

π

∫ ∞
−∞

e−ikξξS(kξ, 0)dkξ. (2.23)

On the other hand, (2.2) and (2.10) imply that for |ξ| < z

y(ξ, 1) = δ

(∫ z

ξ

h(s)ds− 1

2

)
,

and thus
∂

∂ξ
y(ξ, 1) = −δh(ξ). (2.24)

Together, (2.22) and (2.24) yield a Fredholm integral equation of the second kind [9]:∫ z

−z
q(ξ − s)h(s)ds = δh(ξ), |ξ| < z, (2.25)

where the shape function h(ξ) is an eigenfunction of the integral operator in the left hand

side of (2.25) with kernel (2.23) associated with the eigenvalue δ. The problem thus reduces

to solving the integral equation (2.25) for z and h(ξ).

Once h(ξ) and z are known, the vertical strains for the traveling wave solution can be

computed from (2.18). Substituting (2.18) into the switch conditions (2.9) and subtracting

the first condition from the second, we obtain
∫ z
−z(g0(−z−s)−g0(z−s))h(s)ds = δ, which is

automatically satisfied, as can be verified by integrating (2.25) and recalling (2.11) and the
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first equality in (2.23). Meanwhile, adding the two conditions yields the following expression

for the applied stress:

σ = 1− 1

2

∫ z

−z
h(s)[g0(z − s) + g0(−z − s)]ds. (2.26)

Since g0 depends on V , this defined the kinetic relation σ = Σ(V ) between the applied stress

σ and the step moving velocity V . The relation also depends on δ and χ.

We remark that the real wave numbers kξ such that |λ(kξ)| ≤ 1, with λ given by (2.21),

correspond to the lattice waves emitted by the moving step because this inequality implies

the existence of real wave numbers κ such that the velocity of the moving step equals the

horizontal component of the phase velocity of some plane waves: V = ω/kξ, where ω2 =

4(χ sin2(kξ/2) + sin2(κ/2)) is the dispersion relation [10]. One can show [9] that only these

waves, which carry energy away from the step, contribute to the stress in (2.26). The transfer

of energy from long (continuum level) to short (lattice-scale) waves associated with this

nonlinearity-induced radiation is known in the physics literature as the radiative damping

phenomenon (e.g. [43]). Analyzing the asymptotic strain behavior as in [9, 37, 59], one can

show that the amplitude of the lattice waves slowly decays as |ξ| increases, so that the strains

tend to constant values at infinity, as assumed in (2.5).

It should be emphasized that the solutions of (2.12) satisfy the original nonlinear equation

(2.1) if and only if the admissibility conditions (2.7) and (2.8) hold. Solutions of (2.12) that

violate any of the admissibility conditions will be called inadmissible.

2.3 ADMISSIBLE SOLUTIONS AND KINETIC RELATIONS

We first review the limiting case z = 0 that reduces to the screw dislocation problem studied

in [9,11]. One can see that in this limit we must have δ = 0, i.e. spinodal region degenerates

to a single point and Φ′(y) becomes bilinear, while the shape function becomes a Dirac delta

function: h(s) = δD(s). Thus, (2.18) reduces to

y0(ξ, n) = u0(ξ, n)− u0(ξ, n− 1) = g|n−1|(ξ) +

σ − 1, n ≥ 1

σ + 1, n ≤ 0

, (2.27)
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where u0(ξ, n) satisfies

V 2 ∂
2

∂ξ2
u0(ξ, n) = χ(u0(ξ + 1, n) + u0(ξ − 1, n)− 2u0(ξ, n)) + u0(ξ, n+ 1) + u0(ξ, n− 1)

−2u0(ξ, n) + 2 [δn,0 + (δn,1 − δn,0)θ(−ξ)] .

(2.28)

We observe that the first equality in (2.23) and (2.27) imply that

q(ξ) = −∂y
0(ξ, 1)

∂ξ
. (2.29)

Note that the vertical strain y0(ξ, n) should also satisfy the corresponding admissibility

conditions (2.7) and (2.8) at z = 0 and δ = 0, which reduce to (with y = y0)

y(ξ, n) < 0, n ≥ 2 (variant I), y(ξ, n) > 0, n ≤ 0 (variant II). (2.30)

and

y(ξ, 1) < 0, ξ > 0 (variant I), y(ξ, 1) > 0, ξ < 0 (variant II), (2.31)

respectively. The kinetic relation (2.26) can be shown in this case to yield σ = Σ0(V ) defined

by

σ = 1− g0(0) =
2

π

∫ ∞
0

1

kξ

√
1− λ(kξ)

1 + λ(kξ)
θ(1− |λ(kξ)|)dkξ, (2.32)

where we recall that λ(kξ) is given by (2.21). The reader is referred to [10, 11, 37] for more

details.

The resulting kinetic relation, shown in Figure 2.3(a), consists of disjoint segments sepa-

rated by resonance velocities, i.e. values of V such that λ(kξ) = −1 and λ′(kξ) = 0 for some

real kξ (see Figure 2.3(b)). At these velocities the kinetic relation has either a logarithmic

singularity (at the resonance velocities that correspond to the local minima of V (kξ) such

that λ = −1) or a jump discontinuity (at the local maxima) [11]. A typical admissible

solution (V = 0.5) above the first resonance V1 ≈ 0.3158 is shown in Figure 2.4(a). One can

see that the moving step generates lattice waves behind it. As velocity decreases below the

first resonance, solution develops oscillations at ξ > 0 as well; see, for example, the vertical
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strain profile at V = 0.17 in Figure 2.4(b), where two modes of emitted lattice waves propa-

gate behind and one mode ahead of the step. However, a closer inspection reveals that this

solution is in fact inadmissible and should be removed because it violates the first inequality

in both (2.30) and (2.31). At χ = 1, our calculations show that the large-velocity segment

contains admissible solutions above a certain threshold, V ≥ V0 ≈ 0.4649, while in several

segments of the kinetic relation below the threshold, we only found inadmissible traveling

waves that violate (2.31) and sometimes also (2.30), and thus need to be removed. This sug-

gests non-existence of traveling wave solutions with velocity lower than the threshold value

in the z = 0 case, in agreement with the conjectures made in [10, 11]. Meanwhile, solutions

at sufficiently high velocities (V ≥ Vh ≈ 0.9908 at χ = 1) are also inadmissible, because the

large amplitude of waves propagating behind the step front causes the n = 2 bonds directly

above the step to switch from variant I to variant II, which violates the first inequality in

(2.30) (see also [37]).
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Figure 2.3: (a) Kinetic relation σ = Σ0(V ) at z = 0, δ = 0. Only the first twenty segments are shown.
Admissible solutions correspond to the dark portion of the first segment. (b) Velocities V such that λ = −1
for positive real kξ. The dashed lines indicate the first five resonance velocities at which λ(kξ) = −1 and
λ′(kξ) = 0. Here χ = 1.

Consider now the trilinear problem with δ > 0. To find h(s) and z for given non-resonant

V > 0 and δ > 0, we approximate the integral equation (2.25) by a trapezoidal rule with

a uniform mesh, obtaining a homogeneous linear system (Q(z) − δI)h = 0, where Q(z) is

the matrix approximating the integral operator, I is the identity matrix, and h is the vector

approximating the unknown shape function. To find z, we solve the nonlinear algebraic
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Figure 2.4: Vertical strain y0(ξ, n) profiles at n = 1, 2 formally computed from (2.27) and (2.32) at
z = 0, δ = 0, χ = 1 and velocities (a) V = 0.5 (σ = 0.2096) and (b) V = 0.17 (σ = 0.5736). Solution in
(a) satisfies the constraints (2.30) and (2.31) but the one in (b) violates both constraints at ξ > 0. Here
and in the pictures below n = 0 strains are not shown because by the symmetry of g|n−1|(ξ) and (2.18),
y(ξ, 0) = y(ξ, 2) + 2.

equation det(Q(z) − δI) = 0, which ensures that δ is an eigenvalue of Q(z), and then find

the corresponding eigenvector h, normalized by (2.11). In general, there may be more than

one value of z but our calculations suggest that at most one value yields admissible solutions.

Once z and h are found, the trapezoidal approximation of the integrals in (2.18) and (2.26)

is used to compute the solution y(ξ, n) and the applied stress σ.

The resulting vertical strains of n = 1 and n = 2 bonds at V = 0.17 are shown by

Figure 2.5 for δ = 0.8 (which yields z = 0.424 and σ = 0.0409) and δ = 1.2 (z = 0.875 and

σ = 0.0039). As in [9], we observe that the main effect of increasing δ, which leads to larger

z, is the decreased amplitude of the oscillations due to wave modulation that takes place

over the larger time interval. As a result, the solutions at V = 0.17 become admissible at

δ = 0.8 and δ = 1.2, while the corresponding solution of the bilinear problem at z = 0 is

not. Note also that the stress decreases as δ is increased due to the smaller contribution of

the lattice waves, although it may oscillate at larger values of δ [51, 52].

Figure 2.6 shows the half-width z of the transition region as a function of V for different

δ at χ = 1, and the corresponding kinetic relations are shown in Figure 2.7. Due to the pile-
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Figure 2.5: Vertical strain y(ξ, n) (n = 1, 2) profiles at V = 0.17, with (a) δ = 0.8 (z = 0.424, σ = 0.0409)
and (b) δ = 1.2 (z = 0.875, σ = 0.0039). Both solutions are admissible. Here χ = 1.

up of resonance velocities as V approaches zero, which makes the computation progressively

more difficult, only V ≥ 0.1 were considered. A detailed inspection suggests that all solutions

shown except the ones along the grey portions of the curves are admissible. This includes

solutions in the immediate vicinity of the resonance velocities, which correspond to the cusps

in Figure 2.6 and Figure 2.7. Note that the kinetic relations are highly non-monotone, with

larger stress variations at lower δ. Observe also that at δ = 1.2 the low-velocity motion

requires very little applied stress, due to the small amplitude of the emitted waves and

thus small amount of radiative damping. This “solitonlike” dislocation behavior is discussed

in [51,52].

Interestingly, as in [49], our numerical calculations reveal that as δ approaches zero at

velocities below the threshold value V0 ≈ 0.4649, the value of z approaches a positive value

rather than zero, contrary to the assumption of z = 0 in [10, 11] for the bilinear case. This

motivates us to construct a new type of traveling wave solutions for the limiting case δ = 0

that has z > 0 below the threshold value. We postpone the discussion of these new solutions

until Section 2.4, while here we simply show the corresponding curves for comparison.

We now consider the dependence of the kinetic relation σ = Σ(V ) on χ, the dimensionless

anisotropy parameter measuring the shear strength of the linearly elastic horizontal bonds

relative to the vertical ones. Let c =
√
χ be the sound speed of elastic shear waves in the
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Figure 2.6: (a) The half-width z(V ) of the transition region for different δ calculated for V ≥ 0.1. (b)
Zoom-in of the small-velocity region inside the rectangle. Here χ = 1. The thicker black segments contain
admissible solutions, while the gray segments correspond to inadmissible solutions.
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Figure 2.7: (a) Kinetic relations σ = Σ(V ) for different δ and V ≥ 0.1. (b) Zoom-in of the small-velocity
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gray segments correspond to inadmissible solutions.
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horizontal direction of the step motion. At δ = 0.8, typical kinetic relations at different χ

are shown in Figure 2.8(b), and the corresponding z(V ) graphs in Figure 2.8(a). Note that

the resonance velocities take different values for different χ, so the locations of the cusps in

the kinetic relation changes. One can see that a higher χ results in a lower applied stress at

the same normalized velocity V/c because it means a stronger coupling of the vertical bonds.
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Figure 2.8: (a) The half-width z(V ) of the transition region and (b) kinetic relations σ = Σ(V ) at different
χ. The thicker black segments contain admissible solutions, while the gray segments corresponding to
inadmissible solutions. Here δ = 0.8, and the velocities are normalized by c =

√
χ.

At sufficiently large velocities above a threshold Vh (for example, V > Vh ≈ 0.9389

at δ = 0.8 and χ = 1), the amplitude of the waves propagating behind the step front

becomes so large that strain in some n ≥ 2 bonds above the step enters the spinodal region

from variant I, violating the first constraint in (2.7) and thus rendering the corresponding

solutions inadmissible (see the gray large-velocity segments in Figures 2.6(a), 2.7(a) and 2.8).

One can observe that at χ = 1 the upper threshold Vh increases as δ decreases. Meanwhile,

at the same δ = 0.8, the normalized upper threshold Vh/c increases as χ is increased. As

we will see in Section 2.5, this solution failure at σ > σh = Σ(Vh) corresponds to a cascade

nucleation of new steps.

In addition to the traveling wave solutions, there are equilibrium states (V = 0) that

exist when the applied stress is in the trapping region |σ| ≤ σP , where σP is the Peierls

stress (B.9). One can show [60] that at 0 < δ < 2 there are two equilibrium states with
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the assumed single-step configuration for |σ| < σP , a stable state with ms spinodal vertical

bonds near the step front and an unstable state with ms + 1 spinodal bonds, where ms and

σP determined by δ and χ (see Appendix B for more details). These solutions are given by

(B.4) for ms = 0 and (B.7), (B.8) for ms ≥ 1.

2.4 NEW TRAVELING WAVE SOLUTIONS

We now revisit the bilinear problem (δ = 0) with degenerate spinodal region, where, as we

recall, no admissible solutions were found for V < V0 at z = 0. However, as we already

mentioned above, our results for small δ in this velocity region suggest that z tends to a

nonzero value as δ approaches zero. This suggests that following the approach recently

pursued for the one-dimensional problem [53], we should seek solutions with z > 0 and

replace the admissibility conditions (2.31) by the more general conditions

y(ξ, 1) < 0, ξ > z (variant I),

y(ξ, 1) = 0, |ξ| ≤ z (degenerate spinodal region),

y(ξ, 1) > 0, ξ < −z (variant II),

(2.33)

while leaving (2.30) (or, equivalently, (2.7) at δ = 0) the same. Note that (2.9) at δ = 0 is

included in (2.33), so we seek solutions of (2.12) subject to (2.30) and (2.33).

Observe now that (2.22) still holds. At the same time, our assumption that y(ξ, 1) ≡ 0

at |ξ| ≤ z implies ∂
∂ξ
y(ξ, 1) ≡ 0 in the interval (−z, z). Together with (2.22), this yields a

Fredholm integral equation of the first kind:∫ z

−z
h(s)q(ξ − s)ds = 0 |ξ| < z. (2.34)

Thus the shape function h(s) is an eigenfunction of the integral operator in the left hand

side of (2.34) with kernel (2.23) associated with the zero eigenvalue. As before, we solve this

problem numerically using the trapezoidal approximation, which now involves finding the

roots of detQ(z) = 0, and find that at most one of these roots yields admissible solutions

that satisfy (2.30) and (2.33). For example, Figure 2.9 shows y(ξ, 1) and y(ξ, 2) obtained
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at V = 0.17, which yields z = 0.322. One can see that unlike the z = 0 solution (the gray

curves), which is inadmissible since it violates (2.30) and (2.31), the new solution (black

curves) satisfies the more general admissibility condition (2.33) within the numerical error.

We verified that it also satisfies (2.30) and thus is admissible. Note that like its counterparts

at δ > 0 at the same velocity, it involves lattice waves propagating both behind and ahead

of the step.

-6 -4 -2 2 4

-1.0

-0.5

0.5

1.0

1.5

-1.0 -0.5 0.5 1.0

-0.5

0.5

1.0

(a) (b)

y

!

y

!

n"#

n"$

n"#

Figure 2.9: (a) New traveling wave solution y(ξ, n) at n = 1, 2 and V = 0.17 with z = 0.322 (black curves),
shown together with the inadmissible z = 0 solution y0(ξ, n) (gray curves). (b) Zoom-in of the z = 0.322
solution at n = 1. Here δ = 0, χ = 1 and σ = 0.2139 for the new solution.

Repeating this procedure for a range of velocities, we obtain the relation z(V ) between

z and V at χ = 1 shown in Figure 2.6. Note that z(V ) tends to zero as the velocity

approaches the value V = V0 ≈ 0.4649. Recall that this is the threshold above which (and

below Vh ≈ 0.9908) z = 0 solutions of the bilinear problem become admissible. This suggests

that as in [53], the new solutions with z > 0 bifurcate from z = 0 solutions at V0. To see this,

we follow the argument in [53] and consider the piecewise linear approximation of the kernel

(2.23) in (2.34), as in [9]. Note that q(ξ) is continuous, while q′(ξ) has a jump discontinuity

at ξ = 0, as can be shown from (2.29) and (2.28). Thus for small ξ the kernel can be

approximated by

q̂(ξ) =

q0 + q+ξ, ξ > 0

q0 + q−ξ, ξ < 0,

(2.35)

where

q0 = q(0), q± = q′(0±), q+ − q− = 4/V 2, (2.36)

24



with the last relation is implied by (2.28) and (2.29). Solving the approximate version of

(2.34), i.e.
∫ z
−z h(s)q̂(ξ − s)ds = 0, |ξ| < z, one obtains [53]

z =
q0(q+ − q−)

2q+q−
(2.37)

and

h(ξ) =
q−

q− − q+

δD(ξ + z)− q+

q− − q+

δD(ξ − z), (2.38)

in the sense of distributions. Numerical evaluation of (2.23) and the last of (2.36) show

that (q+ − q−)/(2q+q−) < 0 when V is near the threshold V0. Thus the positive solution

z given by (2.37) exists provided that −q0 = ∂
∂ξ
y0(0, 1) > 0. Meanwhile, the admissibility

conditions (2.31) imply that ∂
∂ξ
y0(0, 1) ≤ 0. This indicates that bifurcation of the new type of

traveling wave with z > 0 occurs precisely at the threshold velocity V0, at which q0(V0) = 0,

and below which the z = 0 solutions are inadmissible because (2.31) is violated. As shown

in Figure 2.10, the values of z(V ) obtained from the numerical solution of (2.34) with the

original kernel (2.23) near the threshold velocity V0 approach the values (2.37) resulting from

the linear approximation near the threshold velocity.
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Figure 2.10: Comparison of the function zN (V ) computed numerically using the kernel (2.23) (solid line)
and zL(V ) obtained from (2.37) using the linear approximation (2.35) of the kernel (dashed line) near the
bifurcation point V0 ≈ 0.4649.

The corresponding kinetic relation σ = Σ(V ) is shown in Figure 2.7. It coincides with

the z = 0 relation Σ0(V ) above the velocity V0, while below this threshold, where z > 0,

it provides lower values of the applied stress and replaces the singularities in Σ0(V ) at the
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Figure 2.11: Comparision of the kinetic relation σ = Σ(V ) generated by the new solutions with z > 0
with the relation Σ0(V ) obtained from the formal z = 0 solutions of the bilinear (δ = 0) problem. The two
curves coincide above the threshold velocity V0 ≈ 0.4649. The gray curves correspond to inadmissible z = 0
solutions below V0.

resonance velocities by cusps; see Figure 2.11 for comparison. This result thus extends the

kinetic relation obtained in [10,11] for δ = 0 case into the region of velocities V < V0, where

the new solutions with z > 0 “fill the gap” left by the non-existence of admissible solutions

with z = 0.

2.5 STABILITY OF THE TRAVELING WAVES: NUMERICAL

SIMULATIONS

To investigate stability of the obtained traveling waves solutions and obtain an independent

verification of our results, we solve the equations (2.1) numerically without assuming any

particular motion pattern and then compare the numerical results with the traveling wave

solutions. We use the velocity Verlet algorithm in the computational domain Ω given by a

truncated 400 × 8 lattice. The initial configuration has a flat twin boundary with a single

step in the center of the domain, as in Figure 2.2. To avoid reflection of lattice waves

from the boundary of Ω, we use the non-reflective boundary conditions (NRBC) developed

26



in [38]. Assuming that the initial condition outside the computational domain satisfies the

equilibrium equations with zero initial velocity and that the problem there remains linear

(i.e. the vertical bonds remain in their respective variants), the NRBC conditions prescribe

the displacement on ∂Ω+, a set of lattice points outside the computational domain Ω that

have at least one nearest neighbor belonging to ∂Ω, the boundary of Ω.

To construct the initial condition for given δ and applied stress below the Peierls thresh-

old, 0 < σ < σP , we start with an equilibrium state (stable or unstable), given by (B.4) if

there are no spinodal bonds and (B.7), (B.8) if there is at least one such bond. To trigger

step propagation, we perturb this state by changing the vertical strain in front of the step.

Above the Peierls threshold, no equilibrium state exists but we use the same formulas to

ensure that the initial state satisfies the equilibrium equations outside Ω, as required by the

NRBC conditions we use. Inside the computational domain, this yields a non-equilibrium

displacement. If it does not satisfy the assumed initial phase distribution, we modify the

initial displacement in Ω by prescribing strains in some vertical bonds and solving a con-

strained equilibrium problem that ensures the assumed inequalities hold. Initial velocities

are set to zero.

We find that for sufficiently small σ below the Peierls threshold the numerical solution

gets trapped in a stable equilibrium state. For higher applied stress, the step propagates,

and after some transient time its motion becomes steady, which means that the time period

during which the front moved from one vertical bond in the lattice to the next approaches a

constant value T . The velocity is then obtained by computing V = 1/T as the average over

the last ten periods.

Figures 2.12 and 2.13 compare (V , σ) obtained from the numerical results (circles) for

δ = 1.2 and δ = 0.8 (at χ = 1) with the corresponding semi-analytical kinetic relation curves.

One can see that the numerical results are in very good agreement with some increasing

portions of the kinetic curves, which suggests stability of the traveling wave solutions with

the corresponding velocities. The fact that the numerical results only fall on the increasing

portions of the curves supports the conjecture in [49] that Σ′(V ) > 0 is necessary but not

sufficient for stability. Note, in particular, that the results indicate stability of an entire

range of low-velocity motion (0.139 ≤ V ≤ 0.21) at δ = 1.2 at very small values of the
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Figure 2.12: (a) Results of the numerical simulations for δ = 1.2 (circles), shown together with the kinetic
curve. (b) Zoom-in of the small-velocity region inside the rectangle in (a).
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Figure 2.13: (a) Results of the numerical simulations for δ = 0.8 (circles), shown together with the kinetic
curve. (b) Zoom-in of the small-velocity region inside the rectangle in (a) (below the Peierls stress).
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applied stress where the solutions coexist with stable equilibrium states. Observe also that

stable solutions with different velocities may coexist at the same value of σ. For example,

at δ = 1.2, numerical simulations at σ = 0.006 yield steady motion at either V = 0.193 or

V = 0.488, depending on the perturbation introduced in the initial conditions. Low-velocity

solutions appear to be stable only when δ is sufficiently high. Meanwhile, at small δ our

results indicate stability of only relatively fast traveling waves. In particular, we did not find

any numerical evidence that the new traveling wave solutions constructed in Section 2.4 for

δ = 0 are stable.

As discussed in Section 2.3, when the applied stress is above a certain critical value

σh = Σ(Vh), which depends on δ and χ, the traveling wave solutions become inadmissible

because the large-amplitude lattice waves emitted by the moving step force some vertical

bonds above the step (n ≥ 2) to have strain values outside variant I and hence violate the

first inequality in (2.7). Our numerical simulations reveal that at the applied stress σ > σh,

nucleation of new islands of variant II takes place on top of the existing step configuration.

For example, at δ = 0.8 and χ = 1 we have σh ≈ 0.309, and at σ = 0.45 above this

threshold, after some transient time, an initial single step propagates steadily with velocity

V ≈ 1.01. This can be seen in Figure 2.14(a), which shows the evolution in time of the

step front positions xn(t), defined by xn(t) = m, where m is such that ym,n(t) > δ/2 and

ym+1,n(t) ≤ δ/2 for the initial step, n = 1. Eventually, however, a vertical bond above the

step enters the spinodal region, nucleating a new island that starts propagating on top of

the initial step. For example, at t = 12 in Figure 2.15 one can see six vertical bonds that

have strains in either spinodal region (green) or variant II (blue). As this island grows, its

boundaries soon attain the same velocity as the initial step, as can be seen in Figure 2.14(a)

(n = 2). Later on, more islands nucleate, grow and coalesce, and all the fronts eventually

propagate with the same velocity; see Figure 2.14(a) and Figure 2.15. At higher applied

stress, σ = 0.55, island nucleation occurs sooner, and new islands nucleate and merge more

frequently (see Figure 2.14(b)). While these observations are similar to the results obtained

in [38] for a potential with a degenerate spinodal region, the new feature here is that island

nucleation no longer occurs instanteneously but requires some time to develop. For example,

the right island at n = 3 in Figure 2.15 starts forming already around t = 29, where one

29



0 10 20 30 40 50
0

20

40

60

80

100

t 0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

t

(a)   !"#$%& (b)  !"#$&&

n"'

n"(

xn xn

n")

n")

n"%

Figure 2.14: Evolution of step front positions xn(t) during island nucleation, propagation and coalescence
at different values of the applied stress above the threshold value σh. Here δ = 0.8 and χ = 1.

can see a bond inside the spinodal region, but it does not fully develop and start growing

until a much later time, as can be seen from t = 42 snapshot, where the island has only

grown by a few bonds (see also Figure 2.14(a)). The cascade island nucleation observed here

is in agreement with the dynamic twin nucleation and growth due to lattice waves emitted

by a sufficiently fast motion of a screw dislocation that was predicted in [54] and studied

numerically in [55] and [56].

2.6 CONCLUDING REMARKS

In this chapter, we used a simple antiplane shear lattice model with piecewise linear in-

teractions to study the motion of a step propagating along a twin boundary. Following

the approach developed in [9], we constructed semi-analytical traveling wave solutions for

a wide range of the velocities and showed that the width of the spinodal region and the

material anisotropy have a significant effect on the resulting kinetic relation between the

applied stress and the velocity of the step. Our results extend and complement the work
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in [9,51,52] by considering slow step propagation that was not previously investigated. Our

semi-analytical results and numerical simulations strongly suggest that such motion does

not only exist but may become stable if the spinodal region is sufficiently wide. The slow

step motion requires very small applied stress and involves emitted lattice wave that may

propagate both behind and ahead of the moving step. This is in contrast to the previously

studied high-velocity motion that features waves only behind the step and requires a larger

stress. We also numerically investigated the solution breakdown when the applied stress is

above a certain critical value. In this case the lattice waves emitted by the moving step and

propagating behind it enter the spinodal region and lead to a cascade nucleation, growth and

coalescence of multiple islands on top of the moving step. Compared to the similar results

in [38], where the spinodal region was degenerate, in our case the island nucleation does not

happen instantaneously.

The solution procedure was also used to find new admissible traveling wave solutions at

low velocities in the case when the spinodal region degenerates to a single point. Applying

the method in [53], we showed that these new solutions, in which the transforming bonds

stay at the spinodal value before switching to the new twin variant, bifurcate from the

solutions where the transition is instantaneous precisely at the threshold velocity where the

latter become inadmissible. This allowed us to extend the kinetic relation in [10,11] to lower

velocities, where no admissible solutions were previously found.

We remark that the kinetic relations obtained here are in general quantitatively different

from the ones obtained in [49,53] for the closely related one-dimensional Frenkel-Kontorova

model due to the different kernel (2.23) in the integral equation (2.25). In particular, the

amplitude of the oscillations in our kernel decays at infinity [37], while in the one-dimensional

case it remains constant. Note also that the one-dimensional problem has stronger singu-

larities at the resonance velocities in the z = 0 case [11]. Nevertheless, qualitatively many

of the results are similar, suggesting that the one-dimensional model, which is technically

much less involved, captures the basic features of the kinetics of a single step. One impor-

tant exception is the solution breakdown at high velocities in the present model, which is an

essentially higher-dimensional phenomenon, since it involves step nucleation at n ≥ 2.

The work in this chapter can be extended to the case of multiple steps as in [37,38] and
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to other lattice geometries. The ultimate challenge is the multiscale problem of obtaining

the kinetic relation for a twin boundary from the step kinetics that takes into account the

interaction between the steps.
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3.0 NONLINEAR WAVES IN A STRONGLY NONLINEAR LOCALLY

RESONANT CHAIN

In this chapter, we explore nonlinear waves in locally resonant granular crystals in the

absence of precompression. In this case, the dynamics of the system is strongly nonlinear

and governed by (1.2) with δ0 = 0. As mentioned in Section 1.2, in the limit when the

mass ratio ρ tends to infinity and the initial conditions for the secondary masses are zero,

the system approaches the Newton’s cradle model, a granular chain with onsite harmonic

potential. This problem was studied in [20] (see also [21]), where the discrete p-Schrödinger

(DpS) modulation equation governing slowly varying small amplitude of oscillations was

derived and used to prove existence of time-periodic traveling wave solutions. The DpS

equation was also used to compute and study these and other periodic solutions, such as

standing and traveling bright breathers. The other limiting case, when ρ = 0, corresponds to

the non-resonant homogeneous Hertzian chain problem, which is well known to have solitary

wave solutions [12–14] but admits no bright breathers [21].

To investigate the case of finite mass ratio (i.e., away from the above studied limits), we

follow the approach in [20] and derive generalized modulation equations of the DpS type. We

show that these equations capture small-amplitude periodic traveling waves of the system

quite well when the mass ratio is below a critical value. When the mass ratio ρ is large

enough and the secondary masses satisfy zero initial conditions, these equations degenerate

to the original DpS equation obtained in [20]. Using the technique established in [61], we

prove that for suitable small-amplitude initial conditions and large enough ρ, solutions are

well described by the limiting DpS equation over a long but finite time. We further show that

when the mass ratio is large enough, the system admits long-lived bright breathers, spatially

localized solutions of the system that remain close to a time-periodic oscillation over a long
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time. However, we also prove that at finite ρ the problem has only trivial exact bright

breather solutions, which do not involve Hertzian interactions between the primary masses.

As in ρ = 0 case [21], this is mainly due to non-attracting character of such interactions.

To further explore the dynamics of the system at finite ρ, we use solutions of the general-

ized DpS equations to form initial conditions for the numerical computation of dark breather

solutions, which come in two families of site-centered and bond-centered type. We then ex-

amine stability and bifurcation structure of both types of dark breathers at different mass

ratios. When the breather frequency is above but sufficiently close to the linear frequency

of the resonator, the dark breather solutions of site-centered type are long-lived and exhibit

marginal oscillatory instability, while the bond-centered solutions exhibit real instability.

This can lead to the emergence of steadily traveling dark breathers in the numerical simula-

tions. In addition, we identify period-doubling bifurcations for the bond-centered solutions.

The instability of breather solutions is also affected by the mass ratio. In particular, the real

instability of the bond-centered breather solutions at a given frequency gradually becomes

stronger as the mass ratio increases.

The chapter is organized as follows. Sec. 3.1 introduces the model, and the generalized

DpS equations are derived in Sec. 3.2.1. In Sec. 3.2.2 we show that for sufficiently large mass

ratio the equations reduce to the DpS equation derived in [20] and rigorously justify the

validity of this equation on the long-time scale for suitable small-amplitude initial data. We

use the modulation equations in Sec. 3.3 to numerically investigate small-amplitude time-

periodic traveling waves, including their stability, the accuracy of their DpS approximation

and the effect of the mass ratio. In Sec. 3.4 we show that the system admits only trivial

exact bright breather solutions that do not involve Hertzian interactions. We then prove and

numerically demonstrate the existence of long-lived nontrivial bright breathers at sufficiently

large mass ratio. In Sec. 3.5.1 we construct the approximate dark breather solutions using

the DpS equations. We use these solutions and a continuation procedure based on Newton-

type method to compute numerically exact dark breathers in Sec. 3.5.2 and examine their

stability and bifurcation structure in Sec. 3.6. Concluding remarks can be found in Sec. 3.7.
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3.1 THE MODEL

Consider a chain of identical particles of mass m1 and suppose a secondary particle of mass

m2 is attached to each primary one via a linear spring of stiffness K > 0 and constrained

to move in the horizontal direction. As mentioned in Sec. 1.2, the harmonic oscillator is

meant to represent the primary vibration mode of a ring resonator attached to each primary

mass or a cylindrical rod. Let ũn(t̃) and ṽn(t̃) denote the displacements of the nth primary

and secondary masses, respectively. The dynamics of the resulting locally resonant granular

chain is governed by

m1
d2ũn

dt̃2
= A(ũn−1 − ũn)α+ −A(ũn − ũn+1)α+ −K(ũn − ṽn)

m2
d2ṽn

dt̃2
= K(ũn − ṽn)

(3.1)

Here A(ũn − ũn+1)α+ is the Hertzian contact interaction force between nth and (n + 1)th

particles, where (x)+ = x when x > 0 and equals zero otherwise, so the particles interact

only when they are in contact, A > 0 is the Hertzian constant, which depends on the material

properties of the contacting particles and radius of the contact curvature, and α > 1 is the

nonlinear exponent of the contact interaction that depends on the shape of the particles and

the mode of contact (e.g. α = 3/2 for spherical beads and orthogonally stacked cylinders).

Typically, we find α > 1, although settings with α < 1 have also been proposed; see e.g. [62]

and references therein. In writing (3.1) we assume that the deformation of the particles in

contact is confined to a sufficiently small region near the contact point and varies slowly

enough on the time scale of interest, so that the static Hertzian law still holds [14]; this is

known to be a well justified approximation in a variety of different settings [12,13]. We also

assume that dissipation and plastic deformation are negligible, which is generally a reasonable

approximation, although dissipation effects have been argued to potentially lead to intriguing

features in their own right, including secondary waves [63] (see also [64]). Choosing R to be

a characteristic length scale, for example, the radius of spherical or cylindrical particles, we

can introduce dimensionless variables

un =
ũn
R
, vn =

ṽn
R
, t = t̃

√
Rα−1A
m1
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and two dimensionless parameters

ρ =
m2

m1

, κ =
K

ARα−1
,

where ρ is the ratio of two masses and κ measures the relative strength of the linear elastic

spring. In the dimensionless variables the equations (3.1) become

ün = (un−1 − un)α+ − (un − un+1)α+ − κ(un − vn)

ρv̈n = κ(un − vn),
(3.2)

where ün and v̈n are the accelerations of the primary and secondary masses, respectively. In

what follows, it will be sometimes convenient to consider (3.2) rewritten in terms of relative

displacement (strain) variables xn = un − un−1 and yn = vn − vn−1:

ẍn = 2(−xn)α+ − (−xn+1)α+ − (−xn−1)α+ − κ(xn − yn)

ρÿn = κ(xn − yn).
(3.3)

Note that in the limit ρ→ 0, the model reduces to the one for a regular (non-resonant)

homogeneous granular chain. Meanwhile, at ρ → ∞ and zero initial conditions for vn(t)

the system approaches a model of Newton’s cradle, a granular chain with quadratic onsite

potential, which is governed by [20,65]

ün + κun = (un−1 − un)α+ − (un − un+1)α+. (3.4)

In [20], the discrete p-Schrödinger (DpS) equation

2iτ0
∂An
∂τ

= (An+1 − An)|An+1 − An|α−1 − (An − An−1)|An − An−1|α−1 (3.5)

has been derived at κ = 1 to capture the modulation of small-amplitude nearly harmonic

oscillations in the form

uappn (t) = ε(An(τ)eit + Ān(τ)e−it), τ = εα−1t, (3.6)

where ε > 0 is a small parameter, An(τ) is a slowly varying amplitude of the oscillations and

τ0 is a constant depending on α. In the next section, we follow a similar approach and use

multiscale expansion to derive generalized modulation equations of the DpS type for (3.2)

with finite ρ.
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3.2 MODULATION EQUATIONS FOR SMALL-AMPLITUDE WAVES

3.2.1 Derivation of generalized DpS equations at finite ρ

Using the two-timing asymptotic expansion as in [20], we seek solutions of (3.2) in the form

u(t) = εU(t, τ), v(t) = εV (t, τ)

where τ = εα−1t is the slow time, and u, v, U and V are vectors with components un, vn,

Un, Vn, respectively. The governing equations (3.2) then yield

(∂t + εα−1∂τ )
2U = εα−1G(U) + κ(V − U)

(∂t + εα−1∂τ )
2V =

κ

ρ
(U − V ),

(3.7)

where the nonlinear term is given by

G(U)n = (Un−1 − Un)α+ − (Un − Un+1)α+.

The solution has the form

U = U0 + εα−1U1 + o(εα−1), V = V 0 + εα−1V 1 + o(εα−1).

The 0th order terms satisfy a linear system, which after the elimination of secular terms

yields

U0 = B(τ) + κ[A(τ)eiωt + Ā(τ)e−iωt], V 0 = B(τ)− κ

ρ
[A(τ)eiωt + Ā(τ)e−iωt], (3.8)

where ω =
√
κ+ κ/ρ is the frequency of harmonic oscillations. This internal frequency of

each resonator is associated with the out-of-phase motion of the displacements U and V . On

the order O(εα−1), the system (3.7) results in

(∂2
t + κ)U1 − κV 1 = −2κ∂τAiωe

iωt + c.c.+G(U0)

∂2
t V

1 − κ

ρ
(U1 − V 1) =

2κ

ρ
∂τAiωe

iωt + c.c.
(3.9)

where c.c. denotes the complex conjugate. Let

J(f) =
ω

2π

∫ 2π/ω

0

f(t)e−iωtdt (3.10)
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denote the projection of f(t) on eiωt and define the averaging operator as

E(f) =
ω

2π

∫ 2π/ω

0

f(t)dt. (3.11)

The projection operator on all remaining Fourier modes (of the form eijωt, j 6= ±1, j 6= 0) is

given by

Πh = I − E − eiωtJ − e−iωtJ̄ , (3.12)

Let U1
h = ΠhU

1, V 1
h = ΠhV

1. Then (3.9) yields

(∂2
t + κ)U1

h − κV 1
h = ΠhG(U0)

∂2
t V

1
h −

κ

ρ
(U1

h − V 1
h ) = 0.

Note that this equation has a unique 2π/ω-periodic solution (U1
h , V

1
h )T because for each j

such that j 6= ±1, j 6= 0, the matrix κ− j2ω2 −κ

−κ/ρ κ/ρ− j2ω2


for the left hand side of the above equation associated with jth harmonic is invertible. Let

U1 = U1
h + C0(τ) + C1(τ)eiωt + c.c., V 1 = V 1

h +D0(τ) +D1(τ)eiωt + c.c.

and project (3.9) on eiωt, recalling that ω =
√
κ+ κ/ρ:

− (κ/ρ)C1 − κD1 = −2κ∂τAiω + J(G(U0))

− (κ/ρ)C1 − κD1 = (2κ/ρ)∂τAiω.

This yields the compatibility condition

2iκω3∂τA = J(G(U0)) (3.13)

and

D1 = −κ
ρ

(C1 + 2iω∂τA).
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Taking the average of (3.9), we obtain

κ(C0 −D0) = E(G(U0))

− κ

ρ
(C0 −D0) = 0.

Since ρ is finite, this yields C0 = D0, and hence the following condition can be obtained for

the leading order solution:

E(G(U0)) = 0. (3.14)

To obtain the generalized DpS equations, we now consider the conditions (3.13) and

(3.14) in more detail. Observe that for b ∈ R, z = reiφ ∈ C, we have

E[(−b+ κzeiωt + κz̄e−iωt)α+] =
1

2π

∫ 2π

0

(−b+ 2κr cos t)α+dt ≡ gα(b, r), r = |z|. (3.15)

Here we rescaled time in the averaging integral and used the fact that the result is indepen-

dent of φ since we can always shift time when averaging. Similarly,

J [(−b+κzeiωt+κz̄e−iωt)α+] =
z

2πr

∫ 2π

0

e−it(−b+ 2κr cos t)α+dt ≡ zhα(b, r), r = |z|. (3.16)

Defining the forward and backward shift operators

(δ+A)n = An+1 − An, (δ−A)n = An − An−1,

we observe that

G(U0) = −δ+(−δ−U0)α+ = −δ+(−δ−B(τ)− κδ−A(τ)eiωt − κδ−Ā(τ)e−iωt)α+,

where we used the first of (3.8) to obtain the second equality. Substituting this in (3.13)

and (3.14) and using (3.15), (3.16) with z = −δ−A and b = δ−B, we obtain the generalized

DpS equations

2iκω3∂τA = δ+[hα(δ−B, |δ−A|)δ−A] (3.17)

and

δ+gα(δ−B, |δ−A|) = 0. (3.18)
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3.2.2 DpS equation at large ρ

We now investigate the case of large ρ. Consider first the “critical” case when ρ = ε1−α. The

0th order problem is

∂2
tU

0 = κ(V 0 − U0), ∂2
t V

0 = 0,

which yields

U0 = B(τ) + κ[A(τ)ei
√
κt + Ā(τ)e−i

√
κt], V 0 = B(τ). (3.19)

where we used the fact that ω =
√
κ when ρ→∞. Meanwhile, the O(εα−1) problem becomes

(∂2
t + κ)U1 − κV 1 = −2iκ3/2∂τAe

i
√
κt + c.c.+G(U0)

∂2
t V

1 = κ2Aei
√
κt + c.c.

Note that the right hand side of the second equation has zero time average, as it should to

be consistent with the left hand side, and the equation yields

V 1 = −κA(τ)ei
√
κt + c.c.+D0(τ).

Putting this back into the first equation and projecting on ei
√
κt, we get

2κ3/2i∂τA+ κ2A = J [G(U0)],

which is almost like the DpS equation in [20] if we set κ = 1. Note, however, the additional

term κ2A in the left hand side and the fact that U0 also includes B(τ). Observe further that

there are no conditions to determine B at this order. If B = 0, we get (a modified) DpS

equation for A only.

Now suppose ρ = ε1−γ, γ > α. Then the 0th order equation is the same, so the solution

is still given by (3.19), while on O(εα−1) we get

(∂2
t + κ)U1 − κV 1 = −2κ3/2∂τAie

i
√
κt + c.c.+G(U0)

∂2
t V

1 = 0,

so the second equation yields V 1 = D0(τ), while the projection of the first on ei
√
κt yields

the DpS equation for Newton’s cradle model:

2κ3/2i∂τA = J [G(U0)].
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Note that B(τ) in (3.19) is again not determined at this order. Observe, however, that in the

limit ρ → ∞ the initial conditions v(0) = v̇(0) = 0 yield v(t) ≡ 0 (and thus V 0 = V 1 = 0),

and we recover (3.6) and the DpS equation (3.5) at κ = 1 :

i ∂τA = ω0 δ
+[|δ−A|α−1δ−A] (3.20)

with (see [20])

ω0 =
2α−2

√
π

Γ(α/2 + 1)

Γ((α + 1)/2 + 1)
. (3.21)

In Theorem 3.2.1 below, we justify the DpS equation (3.20) on long time scales, for suitable

small-amplitude initial conditions. We obtain error estimates between solutions of (3.2) and

modulated profiles described by DpS. We seek solutions of (3.2) and the DpS equation in

the usual sequence spaces `p with 1 ≤ p ≤ +∞. For simplicity we state Theorem 3.2.1 in

the case κ = 1.

Theorem 3.2.1. Fix constants Cr, Ci, T > 0 and a solution A ∈ C2([0, T ], `p) of the DpS

equation (3.20). There exist constants εT > 0 and CT ≥ Ci such that the following holds:

For all ε ≤ εT and for ρ−1 ≤ Cr ε
2(α−1), for all initial condition (u(0), v(0), u̇(0), v̇(0)) ∈ `4

p

satisfying

‖u(0)− 2εReA(0)‖p + ‖u̇(0) + 2ε ImA(0)‖p ≤ Ciε
α, (3.22)

‖v(0)‖p ≤ Ciε
α, ‖v̇(0)‖p ≤ Ciε

2α−1, (3.23)

the corresponding solution of (3.2) satisfies for all t ∈ [0, T/εα−1]

‖u(t)− 2εRe (A(εα−1t) eit)‖p + ‖u̇(t) + 2ε Im (A(εα−1t) eit)‖p ≤ CT ε
α, (3.24)

‖v(t)‖p ≤ CT ε
α, ‖v̇(t)‖p ≤ CT ε

2α−1. (3.25)
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Similarly to what was established in [61] for Newton’s cradle problem, Theorem 3.2.1

shows that small O(ε) solutions of (3.2) are described by the DpS equation over long (but

finite) times of order ε1−α. However, there are important differences compared to the results

of [61]. Firstly, the DpS approximation is not valid for all small-amplitude initial conditions,

since one has to assume that v(0) and v̇(0) are small enough (see (3.23)). Secondly, ρ must

be large when ε is small. More precisely, ρ must be greater than ε2(1−α), which scales as the

square of the characteristic time scale of DpS. This is due to the translational invariance of

(3.2), which introduces a Jordan block in the linearization of (3.2) around the trivial state,

inducing a quadratic growth of secular terms (see the estimate (3.44) below).

Let us now prove Theorem 3.2.1. The main steps are Gronwall estimates to obtain

solutions of (3.2) close to solutions of the Newton’s cradle problem (3.4) when ρ is large, and

the use of the results of [61] to approximate solutions of (3.4) with the DpS equation.

Equation (3.2) at κ = 1 reads

ü+ u− v = G(u), (3.26)

v̈ = σ (u− v), (3.27)

where σ := 1/ρ is a small parameter satisfying

σ ≤ Cr ε
2(α−1), (3.28)

as assumed in Theorem 3.2.1. In addition, we have

‖G(u)‖p = O(‖u‖αp ), ‖DG(u)‖L(`p) = O(‖u‖α−1
p ). (3.29)

To simplify subsequent estimates, it is convenient to uncouple the linear parts of (3.26) and

(3.27), which can be achieved by making the change of variables

u = Q+R, v = R− σ Q.

System (3.26)-(3.27) is equivalent to

Q̈+Q = χG(Q+R)− σ Q, (3.30)

R̈ = χσG(Q+R), (3.31)
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where χ = (1 + σ)−1 is close to unity.

To approximate the dynamics of (3.30)-(3.31) when σ is small, we first consider the case

σ = 0 and R = 0 of (3.30) (leading to the Newton’s cradle problem) and use the results

of [61] relating Newton’s cradle problem to the DpS equation. More precisely, given the

solution A of the DpS equation considered in Theorem 3.2.1, we introduce the solution Qa

of

Q̈a +Qa = G(Qa)

with initial condition Qa(0) = 2εReA(0), Q̇a(0) = −2ε ImA(0). According to Theorem 2.10

of [61], for ε small enough, the solution Qa is defined on a maximal interval of existence

(t−, t+) containing [0, T ε1−α] and satisfies for all t ∈ [0, T ε1−α]

‖Qa(t)− 2εRe (A(εα−1t) eit)‖p + ‖Q̇a(t) + 2ε Im (A(εα−1t) eit)‖p ≤ C εα. (3.32)

This implies in particular that

‖Qa‖L∞((0,T ε1−α),`p) + ‖Q̇a‖L∞((0,T ε1−α),`p) ≤M ε. (3.33)

Next, our aim is to show that Q remains close to Qa (and its DpS approximation) and R

remains small over long times, for suitable initial conditions, ε small enough and ρ large

enough (i.e. σ small enough). Setting Q = Qa +W in (3.30)-(3.31) yields

Ẅ +W = N(W,R) (3.34)

R̈ = χσG(Qa +W +R), (3.35)

where

N(W,R) = −σ(Qa + χG(Qa)) + χ [G(Qa +W +R)−G(Qa) ]− σW. (3.36)

Moreover, from the identities

W = Q−Qa = (1 + σ)−1 (u− v)−Qa, R = (1 + σ)−1 (σu+ v)

and the assumptions (3.22)-(3.23) and (3.28), it follows that

‖W (0)‖p + ‖Ẇ (0)‖p ≤ C εα, (3.37)
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‖R(0)‖p ≤ C εα, ‖Ṙ(0)‖p ≤ C ε2α−1. (3.38)

Let X = (W,R, Ẇ , Ṙ) and ‖X‖p denote the sum of the `p norms of each component. We

shall now use Gronwall estimates to bound ‖X(t)‖p on the time scale considered in Theorem

3.2.1.

The solutions of (3.34)-(3.35) corresponding to initial conditions satisfying (3.37)-(3.38)

are defined on a maximal interval of existence (tmin, tmax) with tmin < 0 and tmax ≤ t+, which

depends a priori on the initial condition and parameters (in particular ε). From (3.37)-(3.38),

one can infer that ‖X(0)‖p < M ε (the size of Qa in (3.33)) for ε small enough. Let

tε = sup {t ∈ (0,min(T ε1−α, tmax)) : ∀s ∈ (0, t), ‖X(s)‖p ≤M ε}. (3.39)

From (3.33) and the triangle inequality, we obtain

‖Qa(t) +W (t) +R(t)‖p ≤ 2M ε, ∀ t ∈ [0, tε]. (3.40)

In addition, from definition (3.39) we have either

tε < min(T ε1−α, tmax) and ‖X(tε)‖p = M ε (3.41)

or

tε = T ε1−α < tmax (3.42)

(if ‖X‖p is bounded on [0, tmax), then tmax = t+ > T ε1−α). Integrating (3.35) twice yields

R(t) = ṙ(0) t+R(0) + χσ

∫ t

0

(t− s)G(Qa +W +R)(s) ds. (3.43)

Using the fact that tε ≤ T ε1−α, estimate (3.40) and the first bound in (3.29), one obtains

from the above identity the following inequality:

∀t ∈ [0, tε], ‖R(t)‖p ≤ T ε1−α‖Ṙ(0)‖p + ‖R(0)‖p + C1 σ ε
2−α. (3.44)

Then the assumption (3.28) and the property (3.38) yield

∀t ∈ [0, tε], ‖R(t)‖p ≤ C εα. (3.45)

45



Similarly, we have

Ṙ(t) = Ṙ(0) + χσ

∫ t

0

G(Qa +W +R)(s) ds, (3.46)

which implies

∀t ∈ [0, tε], ‖Ṙ(t)‖p ≤ ‖Ṙ(0)‖p +O(σ ε) ≤ C ε2α−1. (3.47)

Moreover, using Duhamel’s formula in (3.34) yields

W (t) = cos tW (0) + sin t Ẇ (0) +

∫ t

0

sin (t− s) [N(W,R)](s) ds.

Recalling that tε ≤ T ε1−α, using (3.37), and using (3.33), (3.28), (3.29) and (3.45) to

estimate N(W,R) from the definition (3.36), we get

∀t ∈ [0, tε], ‖W (t)‖p ≤ C1 ε
α + C2 ε

α−1

∫ t

0

‖W (s)‖p ds. (3.48)

By Gronwall’s lemma we then have

∀t ∈ [0, tε], ‖W (t)‖p ≤ C1 e
C2 T εα. (3.49)

Similarly, we obtain

Ẇ (t) = − sin tW (0) + cos t Ẇ (0) +

∫ t

0

cos (t− s) [N(W,R)](s) ds.

Using the same estimates as the ones involved in proving (3.48) and estimate (3.49), one can

show that the above identity yields

∀t ∈ [0, tε], ‖Ẇ (t)‖p ≤ C εα. (3.50)

Summing estimates (3.45), (3.47), (3.49), (3.50), we find that ‖X(t)‖p = O(εα) < M ε for

all t ∈ [0, tε] if ε is small enough. Consequently, the property (3.41) is not satisfied, which

implies that (3.42) must hold instead. We therefore have

tε = T ε1−α
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in estimates (3.45), (3.47), (3.49) and (3.50). Combining these estimates with the DpS error

bound (3.32) and the assumption (3.28), we deduce the error bounds (3.24), (3.25) from the

identities

u(t)− 2εRe (A(εα−1t) eit) = W (t) +R(t) +Qa(t)− 2εRe (A(εα−1t) eit),

u̇(t) + 2ε Im (A(εα−1t) eit) = Ẇ (t) + Ṙ(t) + Q̇a(t) + 2ε Im (A(εα−1t) eit),

v = R− σ Qa − σW.

This completes the proof of Theorem 3.2.1.

3.3 TIME-PERIODIC TRAVELING WAVES

We now use the DpS equations to investigate time-periodic traveling wave solutions of our

system. In what follows, it will be convenient to use the strain formulation (3.3) and also

rewrite the DpS equation (3.17) in terms of strain-like variables

2iκω3∂τδ
−An = δ+[hα(δ−Bn, |δ−An|)δ−An]− δ+[hα(δ−Bn−1, |δ−An−1|)δ−An−1]. (3.51)

A special class of solution of (3.51), (3.18) has the form of a periodic traveling wave

δ−An(τ) = aei(Ωτ−qn−φ), δ−Bn(τ) = b, (3.52)

where the frequency Ω depends on the amplitude a > 0, the constant b and the wave number

q through the nonlinear dispersion relation

Ω =
2

κω3

∣∣∣sin q
2

∣∣∣2 hα(b, a). (3.53)

Note that definition of hα in (3.16) requires that b ≤ 2κa. In particular, the dispersion

relation has a closed form when b = 0. In fact, as shown in [20] for κ = 1, in this case

hα(0, r) = 2α−1cακ
αrα−1, cα =

1

π

Γ(1/2)Γ(α/2 + 1)

Γ((α + 1)/2 + 1)
,
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and the dispersion relation is given by

Ω0 =
cα2α(κa)α−1

ω3

∣∣∣sin q
2

∣∣∣2 .
Equations (3.8), (3.52) and (3.53) yield the following first-order approximation of the periodic

traveling wave solutions of system (3.3):

xtwn (t) = εb+ 2κεa cos(nq − ωtwt+ φ), ytwn (t) = εb− 2κεa

ρ
cos(nq − ωtwt+ φ), (3.54)

where ωtw is the traveling wave frequency given by

ωtw = Ωεα−1 + ω = ω +
2εα−1

κω3

∣∣∣sin q
2

∣∣∣2 hα(b, a). (3.55)

To investigate how well the dynamics governed by the DpS equations approximates the

traveling wave solutions of (3.3), we consider initial conditions determined from the first-

order approximation (3.8):

xappn (t) = εδ−Bn(εα−1t) + κεδ−An(εα−1t)eiωt + c.c.

yappn (t) = εδ−Bn(εα−1t)− κε

ρ
δ−An(εα−1t)eiωt + c.c.

(3.56)

at t = 0, along with initial velocities given by

ẋn(0) = ε{εα−1δ−Ḃn(0) + κεα−1δ−Ȧn(0) + iκωδ−An(0) + c.c}

ẏn(0) = ε{εα−1δ−Ḃn(0)− κ

ρ
εα−1δ−Ȧn(0)− iκ

ρ
ωδ−An(0) + c.c}.

(3.57)

Here δ−An(0) are set to be small perturbations of (3.52) at τ = 0 and φ = 0:

δ−An(0) = a[(1 + ζ(1)
n ) cos(nq)− i(1 + ζ(2)

n ) sin(nq)], (3.58)

where ζ
(1)
n and ζ

(2)
n are uniformly distributed random variables in [−ζ, ζ] with small ζ > 0.

Let C = gα(b, |a|) > 0 for given constants a and b < 2κ|a|. Then δ−Bn(τ) is determined

from (3.18) by numerically solving

gα(δ−Bn(τ), |δ−An(τ)|) = C. (3.59)

From the definition of gα in (3.15), it is clear that the function b 7→ gα(b, r) is decreasing on

(−∞, 2κr) and satisfies limb→−∞ gα(b, r) = +∞ and gα(b, r) = 0 for b ≥ 2κr. Consequently
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equation (3.59) admits a unique solution δ−Bn(τ) ∈ (−∞, 2κ|δ−An(τ)|). In particular, we

obtain the value of δ−Bn(0) by solving (3.59) at τ = 0. Note that δ−Ȧn(0) and δ−Ḃn(0)

can be computed exactly using DpS equations (3.51), (3.59), although their contribution is

negligible since they correspond to higher order terms in the expression of initial velocities

ẋn(0) and ẏn(0). In particular, when the perturbation is zero (i.e. ζ = 0), the initial condition

simplifies to

xn(0) = εb+ 2εκa cos(nq + φ), yn(0) = εb− 2εκa

ρ
cos(nq + φ),

ẋn(0) = 2ωtwκεa sin(nq + φ), ẏn(0) = −2ωtwκεa

ρ
sin(nq + φ).

(3.60)

Integrating (3.3) numerically on a finite chain with these initial conditions and using periodic

boundary conditions x0 = xN , xN+1 = x1, we can compare the solution of (3.3) (referred

to in what follows as the numerical solution) with the ansatz (3.54) when ζ = 0 or the

ansatz (3.56) when ζ > 0. The latter is obtained by solving (3.51), (3.59) with periodic

boundary conditions δ−A0(τ) = δ−AN(τ), δ−AN+1(τ) = δ−A1(τ), using the Runge-Kutta

method and a standard numerical root finding routine to determine δ−Bn(τ) from (3.59) for

given δ−An(τ) at each step.

3.3.1 Numerical traveling waves and the DpS approximation

We now consider a locally resonant chain with N = 50 masses. In what follows, we set

κ = 1, noting that other values of this parameter can be recovered by the appropriate

rescaling of time and amplitude. To investigate the accuracy of the DpS approximation

of the small-amplitude traveling waves, we first fix mass ratio ρ = 1/3 and normalize the

traveling wave solution (3.52) by fixing a = 1, φ = 0 and b = 1. The linear frequency is

given by ω =
√
κ+ κ/ρ = 2.

In the first numerical run, we set q = π/5, ζ = 0 and consider the traveling wave

with frequency ωtw = ω + 0.001, so that ε ≈ 0.057 from the nonlinear dispersion relation

(3.55). Equation (3.54) then yields the amplitude of xtwn approximately equal to 0.114,

which corresponds to the small-amplitude regime. As shown in the left panel of Fig. 3.1,

the agreement between the numerical and approximate solutions is excellent, even after a
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long time t = 100Ttw, where Ttw = 2π/ωtw = 3.126 is the period of the traveling wave. The

relative errors of the approximate solutions

Ex(t) =
1

2εκa
||xappn (t)− xn(t)||∞ and Ey(t) =

ρ

2εκa
||yappn (t)− yn(t)||∞ (3.61)

are less than 8% at the final time of computation and remain bounded throughout the

reported time evolution, as shown in the right panel of Fig. 3.1. In the second numerical
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Figure 3.1: Left plot: strain profiles of small-amplitude approximate solution (3.54) (connected stars) and
numerical solution of (3.3) (connected squares) at t = 100Ttw ≈ 314. Right plot: the relative errors Ex(t)
(black curve) and Ey(t) (grey curve) of the DpS approximation. Here φ = 0, k = 1, q = π/5, b = 1, a = 1,
ζ = 0 and ωtw = w + 0.001.

run, we set ζ = 0.01 for the perturbation in (3.58), while the other parameters remain the

same. The agreement between the numerical and approximate solutions is still excellent over

the same time interval (see the left plot of Fig. 3.2). Moreover, the right plot of Fig. 3.2

shows the normalized differences

Ẽx(t) =
1

2εκa
||xptdn (t)− xn(t)||∞ and Ẽy(t) =

ρ

2εκa
||yptdn (t)− yn(t)||∞ (3.62)

between a perturbed traveling wave (xptdn , yptdn ) (numerical solution obtained for the perturbed

initial condition) and the unperturbed numerical traveling wave solution (xn, yn) shown in

Fig. 3.1 with the wave number q = π/5. As shown by Fig. 3.2, the initial perturbation is

not amplified at the early stage of the numerical integration of (3.3) (for t ≤ 50 ≈ 16Ttw).

However, the subsequent growth of perturbations indicates the instability of the traveling

wave solution.
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Figure 3.2: Left plot: strain profiles of small-amplitude approximate solution (connected stars) from the
ansatz (3.56) and perturbed traveling wave solution (connected squares) at t = 100Ttw ≈ 314. Right plot:

the normalized differences Ẽx(t) (black curve) and Ẽy(t) (grey curve) of the perturbed traveling wave and
the unperturbed solution shown in Fig. 3.1. Here ζ = 0.01 and all the other parameters are the same as in
Fig. 3.1. A growth of the perturbations can be clearly observed in the dynamics.

In the next computation, we increase the wave number up to q = 4π/5 and keep all

the other parameters the same as before. Now the asymptotic scale becomes quite small as

ε ≈ 6.37× 10−4, which yields a very small amplitude of xtwn ≈ 0.0013. As shown in Fig. 3.3,

the DpS equations can successfully capture the dynamics of the small-amplitude traveling

wave solution of the original system. In addition, the small-amplitude traveling wave with

q = 4π/5 appears to be stable on the interval t ∈ [0, 600]. However, this result may be linked

with the very small traveling wave amplitude, and instabilities might appear on longer time

scales.

It is worth pointing out that the time scale of the validity of the DpS approximation

depends not only on the asymptotic scale ε but also on the wave number q. To illustrate

this, we first consider the wave number q = π/5 but increase the traveling wave frequency

up to ωtw = ω + 0.003, which yields ε ≈ 0.514 and the amplitude of xtwn around 1.028. As

revealed by the left plot in Fig. 3.4, the DpS equations fail to describe the dynamics of (3.3)

appropriately soon after we start the integration. We then increase the wave number up

to q = 4π/5 but choose ωtw = ω + 0.009 yielding ε ≈ 0.0516, which is even smaller than

the asymptotic scale ε used in Fig. 3.1. However, notable difference between the traveling

wave patterns of the numerical and approximate solutions are observed over the same time

interval [0, 314] (see the right plot of Fig. 3.4).
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Figure 3.3: Top panels: strain profiles of small-amplitude approximate solution (connected stars) from
the ansatz (3.56) and numerical results (connected squares) with both unperturbed (left) and perturbed
initial conditions with ζ = 0.1 (right) at t = 200Ttw ≈ 628, respectively. Bottom panels: left plot shows the
relative errors Ex(t) (black curve) and Ey(t) (grey curve) of the DpS approximation. Right plot shows the

normalized differences Ẽx(t) (black curve) and Ẽy(t) (grey curve) between the perturbed and unperturbed
traveling waves. Here q = 4π/5 and all the other parameters are the same as in Fig. 3.1.
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Figure 3.4: Left panel: results of the simulations with the same parameters as in Fig. 3.1 except for
ωtw = ω+ 0.003 and the snapshot is taken at t = 10Ttw ≈ 31.4. Right panel: results of the simulations with
the same parameters as in the left panels of Fig. 3.3 except for ωtw = ω + 0.009 and the snapshot is taken
at t = 314.
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3.3.2 Effect of mass ratio ρ

To investigate the effect of the mass ratio ρ on the validity of the DpS approximation of the

small-amplitude traveling waves, we fix q = π/5, ε = 0.01 and keep the other parameters

the same as before. We choose mass ratio ρ = 3 and the traveling wave frequency in (3.55)

is now given by ωtw ≈ ω + 0.002, where the linear frequency is ω = 1.1547. The results of

the simulations are shown in Fig. 3.5. We observe again that the agreement between the

numerical and approximate solutions remains excellent over the time interval [0, 100Ttw], and

the numerical traveling waves appear to be stable over the time interval [0, 100]. However,

we note the growing trend of the difference between the perturbed and unperturbed traveling

wave solutions after t ≈ 100, which illustrates the instability of the traveling wave.
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Figure 3.5: Results of the simulations with the same parameters as in Fig. 3.3 except for ρ = 3, q = π/5
and ε = 0.01. The strain profiles of both panels correspond to snapshots taken at t = 100Ttw and the
perturbation added in the initial condition is ζ = 0.01.

We further increase ρ to the critical value ρc = ε1−α = 10. The linear and traveling

wave frequencies are given by ω = 1.0488 and ωtw = 1.0517, respectively. As shown by the

left panel of Fig. 3.6, the wave form of yn is no longer sinusoidal at t = 100Ttw, while the

wave form of xn remains sinusoidal and matches its DpS approximation very well over the

time interval [0, 100Ttw]. We observe also a growing trend in the relative error between the
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numerical and approximate solutions, despite the structural similarities of the profiles. To
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Figure 3.6: Results of the simulations with the same parameters as in the left panel of Fig. 3.5 except for
ρ = 10 (left panel) and ρ = 1000 (right panel). The strain profiles of both panels correspond to the snapshot
taken at t = 100Ttw. The insets in the bottom plots show the enlarged plots of the relative error Ex(t).

investigate the case when ρ is large (O(ε1−γ), γ > α), we now set ρ = 1000 and keep all

other parameters the same as before. The linear frequency is now given by ω = 1.0005 and

approximate frequency is ωtw = 1.0038. Again, over the integration time interval [0, 100Ttw]

the wave form of xn remains sinusoidal and close to the ansatz (3.54) but the waveform of yn

is non-sinusoidal and significantly deviates from the DpS traveling wave approximation (see

the right plots in Fig. 3.6). These results are consistent with the discussion in Sec. 3.2.1, since

the derivation of the DpS equations (3.17)-(3.18) requires that ρ is below the critical value

ρc = ε1−α for given ε. Note that if we further set b = 0, the DpS equation (3.17) reduces

to the one capturing the traveling waves in Newton’s cradle problem in [20]. Numerical

results (not reported here) reveal that the numerical solution of xn is sinusoidal and very

well approximated by the traveling wave ansatz (3.54). However, the difference between

exact and approximate solutions of yn is very substantial. Here the structural characteristics

of the solution for yn are no longer properly captured by the DpS approximation.

These numerical simulations reveal that the validity of the DpS approximation at fixed

wave number q is very sensitive to the mass ratio ρ. When ρ is relatively small, the generalized

DpS equations (3.17)-(3.18) successfully capture the dynamics of periodic traveling waves.

When ρ ≥ ρc = ε1−α, an increasing deviation between the exact and approximate solutions
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of yn emerges. However, in all cases, the agreement of approximate and numerical solutions

for xn remains excellent over a finite time interval. In addition, traveling wave instabilities

can be observed depending on the values of ρ, wave number q, wave amplitude and time

scales considered.

3.4 BRIGHT BREATHERS

Bright breathers are time-periodic solutions of (3.2) which converge to constants (zero strain)

at infinity, i.e.

un, vn → c±, as n→ ±∞ (3.63)

uniformly in time. In this section we examine the existence of either exact or long-lived

bright breather solutions of (3.2). The second class of solutions refers to spatially localized

solutions of (3.2) remaining close to a time-periodic oscillation over long times.

We begin by noting the existence of trivial exact bright breather solutions of (3.2) for

which particles do not interact, i.e. (un−1(t)− un(t))α+ = 0 for all t and n. This is equivalent

to having

un−1(t) ≤ un(t) ∀ t ∈ R, ∀n ∈ Z, (3.64)

ün = κ(vn − un),

ρv̈n = κ(un − vn).
(3.65)

The time-periodic solutions of (3.65) read

un(t) =
ρ

1 + ρ
an cos (ω t+ φn) + bn, vn(t) = − 1

1 + ρ
an cos (ω t+ φn) + bn, (3.66)

where we can fix an ≥ 0 and denote ω2 = κ (1 + 1/ρ). Bright breather profiles are obtained

for

lim
n→±∞

an = 0, lim
n→±∞

bn = c±. (3.67)
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A solution of (3.2) is obtained if and only if constraint (3.64) is satisfied, which is equivalent

to

bn − bn−1 ≥
ρ

1 + ρ
[ a2

n + a2
n−1 − 2anan−1 cos (φn − φn−1) ]1/2 ∀n ∈ Z. (3.68)

For (an)n∈Z ∈ `1(Z), this is equivalent to assuming

bn = dn +
ρ

1 + ρ

n∑
k=−∞

[ a2
k + a2

k−1 − 2akak−1 cos (φk − φk−1) ]1/2,

where (dn)n∈Z is a nondecreasing sequence converging as n → ±∞. It is clear from this

expression that (bn)n∈Z corresponds to a kink profile. Moreover, fixing φn − φn−1 = π, we

can simplify the above expression to obtain

bn = dn +
ρ

1 + ρ

(
an + 2

n−1∑
k=−∞

ak
)
.

We now prove the following.

Theorem 3.4.1. The trivial bright breather solutions defined by (3.66)-(3.67)-(3.68) are the

only time-periodic bright breather solutions of (3.2).

To prove Theorem 3.4.1, we follow the method of the proof of nonexistence of breathers

in FPU chains with repulsive interactions given in [21]. Suppose (un, vn) is a bright breather,

i.e. a T -periodic solution of (3.2) satisfying (3.63). Adding the equations in (3.2), one can

see that the bright breather solution must satisfy

ün + ρv̈n = (un−1 − un)α+ − (un − un+1)α+. (3.69)

Integrating (3.69) over one period, we obtain

F̄n+1 = F̄n, F̄n =
1

T

∫ T

0

(un−1(t)− un(t))α+dt. (3.70)

Note that F̄ := F̄n is independent of n and one can show that it vanishes. Indeed, by (3.63),

we have

lim
n→±∞

||un − un−1||L∞(0,T ) = 0. (3.71)

Meanwhile,

|F̄ | = 1

T

∫ T

0

(un−1(t)− un(t))α+dt ≤ ||un−1(t)− un(t)||αL∞(0,T ) (3.72)
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for all n. Taking the limit n→ ±∞ in (3.72) one obtains F̄ = 0. Consequently, for each n,

we have ∫ T

0

(un−1(t)− un(t))α+dt = 0 (3.73)

and since Fn := (un−1 − un)α+ is non-negative, continuous and T -periodic, we have Fn = 0

for all t and n. Thus (un, vn) satisfies the linear system (3.65) and corresponds to a trivial

bright breather solution. This completes the proof of Theorem 3.4.1.

In what follows we show that, although nontrivial time-periodic bright breathers do not

exist for system (3.2), long-lived small-amplitude bright breather solutions can be found

when ρ is large. This is due to the connection between (3.2) and the DpS equation (3.20)

established in section 3.2.2. Equation (3.20) admits time-periodic solutions of the form

An(τ) = ε an e
i ω0 |ε|α−1 τ , (3.74)

where a = (an)n∈Z is a real sequence and ε ∈ R an arbitrary constant, if and only if a satisfies

a = −δ+[|δ−a|α−1δ−a]. (3.75)

In particular, nontrivial solutions of (3.75) satisfying limn→±∞ an = 0 correspond to bright

breather solutions of (3.20) given by (3.74). These solutions are doubly exponentially de-

caying, so that they belong to `p for all p ∈ [1,∞]. They have been studied in a number of

works (see [66] and references therein). The following existence theorem for spatially sym-

metric breathers has been proved in [66] using a reformulation of (3.75) as a two-dimensional

mapping.

Theorem 3.4.2. The stationary DpS equation (3.75) admits solutions ain (i = 1, 2) satisfy-

ing

lim
n→±∞

ain = 0,

(−1)n ain > 0, |ain| > |ain−1| for all n ≤ 0,

and a1
n = a1

−n, a2
n = −a2

−n+1, for all n ∈ Z.
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Furthermore, for all q̄ ∈ (0, 1), there exists n0 ∈ N such that the above-mentioned solutions

ain satisfy, for i = 1, 2:

∀n ≥ n0, |ain| ≤ q̄1+αn−n0 .

Considering the bright breather solutions of (3.20) given by (3.74) with a = ai, ε = 1,

and applying Theorem 3.2.1, one obtains stable exact solutions of equations (3.2), close to

the bright breathers, over the corresponding time scales. This yields the following result

formulated for κ = 1.

Theorem 3.4.3. Fix constants Cr, Ci, T > 0. Consider a solution ai = (ain)n∈Z (i = 1, 2)

of the stationary DpS equation (3.75) described in Theorem 3.4.2. There exist εT , CT > 0

such that for all ε ∈ (0, εT ] and for ρ−1 ≤ Cr ε
2(α−1), for all initial condition of (3.2) in `4

p

satisfying

‖u(0)− 2ε ai‖p + ‖u̇(0)‖p + ‖v(0)‖p ≤ Ciε
α, ‖v̇(0)‖p ≤ Ciε

2α−1, (3.76)

the solution to equation (3.2) is defined at least for t ∈ [0, T ε1−α] and satisfies

‖u(t)− 2ε ai cos (Ωb t)‖p + ‖u̇(t) + 2ε ai sin (Ωb t)‖p ≤ CT ε
α, for all t ∈ [0, T ε1−α], (3.77)

with Ωb = 1 + ω0 ε
α−1, ω0 defined in (3.21) and

‖v(t)‖p ≤ CT ε
α, ‖v̇(t)‖p ≤ CT ε

2α−1, for all t ∈ [0, T ε1−α]. (3.78)

It is important to stress the differences between the long-lived bright breather solutions

provided by Theorem 3.4.3 and the trivial bright breathers analyzed at the beginning of this

section. The oscillations described in Theorem 3.4.3 are nontrivial in the sense that Hertzian

interactions do not vanish identically. In addition, they are truly localized (for p < ∞)

whereas the trivial exact breathers are superposed on a nonvanishing kink component bn.

Moreover, the (approximate) frequency Ωb of long-lived bright breathers satisfies 0 < Ωb−1 =

O(εα−1) for breathers with amplitude O(ε). For trivial exact bright breathers, the frequency

ω is independent of amplitude and satisfies 0 < ω − 1 = O(1/ρ) when ρ is large. Under

the assumptions of Theorem 3.4.3, we have 1/ρ = O(ε2(α−1)) and thus Ωb > ω for ε small

enough.
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We now investigate the behavior of long-lived bright breathers numerically. Fixing T =

2π/ω0 = 19.4158, Cr = Ci = 1 and choosing ε = 0.01, we consider a locally resonant chain

of N = 40 masses with the mass ratio ρ = 1000 so that the inequality ρ−1 ≤ Crε
2(α−1)

in Theorem 3.4.3 is satisfied. We then integrate the system (3.2) over a long time interval

[0, 80T ], starting with initial conditions

u(0) = 2εai, v(0) = 0, u̇(0) = v̇(0) = 0 (3.79)

where ai is the numerical solution of (3.75) obtained using the method in [21]. The numerical

simulation yields spatially localized solutions of (3.2) that stay close to the time-periodic

oscillation

ũ(t) = 2εai cos(Ωbt), ˙̃u(t) = −2εai sin(Ωbt), ṽ(t) = ˙̃v(t) ≡ 0 (3.80)

with i = 2 over the time interval [0, T ε1−α] = [0, 194.158], as can be seen in the inset of the

right panel of Fig 3.7. Note that the comparison is made at times correspond to multiples of

Tb = 2π/Ωb = 6.0862. To measure the relative difference of the numerical solution of (3.2)

and the time-periodic oscillations (3.80), we define the rescaled `1-norms as follows

Eu(t) =
||u(t)− ũ(t)||1

εα
, Eu̇(t) =

||u̇(t)− ˙̃u(t)||1
εα

(3.81)

and

Ev(t) =
||v(t)− ṽ(t)||1

εα
, Ev̇(t) =

||v̇(t)− ˙̃v(t)||1
ε2α−1

. (3.82)

The fact that those rescaled norms remains small and bounded over time interval [0, T ε1−α]

is consistent with the result of Theorem 3.4.3 and confirms the existence of the long-lived

bright breathers. However, at larger time, part of the energy is radiated away from the

vicinity of the initially excited sites. As a result, we observe the breakdown of the localized

structure for a long-time (t � Tε1−α) evolution, and the solution profile spreads out and

eventually approaches to a kink-type structure shown by circles in the left panel of Fig 3.7.

This is associated with the growing magnitude of vn during the simulation.
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Figure 3.7: Left panels: snapshot of numerical solution of (3.2) at t = 30Tb < 10T (blue stars) and
t = 80T (red circles), respectively, starting with initial conditions (3.79) with i = 2 (black squares). Right
panel: time evolution of the rescaled `1-norms defined in (3.81) and (3.82), where Eu(t) is represented by
connected dots (black curve), Eu̇(t) by connected stars (green curve), Ev(t) by connected circles (red curve)
and Ev̇(t) by connected pluses (blue curve). The inset in the right plot shows time evolution of the same
`1-norms when t ≤ Tε1−α.

3.5 DARK BREATHERS

3.5.1 Approximate dark breather solutions

We now turn to dark breather solutions, which, as we will see, are fundamentally different

from the waveforms considered in the previous section and are not excluded by the results of

Theorem 3.4.1. To construct approximate dark breather solutions, we start by considering

standing wave solutions of the generalized DpS equations (3.17)-(3.18) in the form

δ−An(τ) = δ−ane
i(Ωτ+φ) (an ∈ R), δ−Bn(τ) = δ−bn, (3.83)

where an and bn are time-independent. Introducing ωb = ω + Ωεα−1, we find that the

first-order approximate solution of (3.2) reads

uswn (t) = εbn + 2κεan cos(ωbt+ φ),

vswn (t) = εbn −
2κ

ρ
εan cos(ωbt+ φ).

(3.84)
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Substituting (3.83) in the generalized DpS equations (3.17)-(3.18) we obtain

− µan = hα(δ−bn+1, |δ−an+1|)δ−an+1 − hα(δ−bn, |δ−an|)δ−an

δ+gα(δ−bn, |δ−an|) = 0,
(3.85)

where µ = 2κω3Ω = 2κω3(ωb − ω)ε1−α.

Following the approach in [20], for µ 6= 0 one can further show that ãn = |µ|
1

1−αan,

b̃n = |µ|
1

1−α bn satisfy the renormalized equation

− sign(µ)ãn = hα(δ−b̃n+1, |δ−ãn+1|)δ−ãn+1 − hα(δ−b̃n, |δ−ãn|)δ−ãn

δ+gα(δ−b̃n, |δ−ãn|) = 0.
(3.86)

where sign(µ) = 1 for µ > 0 and sign(µ) = −1 for µ < 0. For simplicity we drop the tilde in

(3.86) in what follows. Numerical results suggest that a nontrivial solution for {δ−an} can

be found if and only if µ > 0. Thus it suffices to consider the case µ = 1. It is convenient to

rewrite (3.86) in terms of δ−an and δ−bn by subtracting from the first equation in (3.86) the

same equation at n− 1:

− δ−an = hα(δ−bn+1, |δ−an+1|)δ−an+1 − 2hα(δ−bn, |δ−an|)δ−an + hα(δ−bn−1, |δ−an−1|)δ−an−1

gα(δ−bn+1, |δ−an+1|) = gα(δ−bn, |δ−an|).

(3.87)

We now use Newton’s iteration to solve (3.87) numerically for δ−an, δ−bn, n = −N, . . . , N ,

with periodic boundary conditions (δ−a−N−1 = δ−aN and δ−aN+1 = δ−a−N). Note that the

associated Jacobian matrix is singular due to the structure of second equation in (3.87), and

therefore an additional constraint is necessary. It is sufficient to fix δ−b−N = c, where c is a

constant. Since we are looking for dark breathers, it is natural to consider initial values of

δ−an in the form

δ−a0
n = (−1)ntanh(n− n0) (3.88)

where n0 is an arbitrary constant corresponding to spatial translation. One can then use the

second equation in (3.87) to solve for initial guess of δ−b0
n, n = −N + 1, ..., N . A standard

Newton’s iteration procedure of the system (3.87) with 4N + 1 variables δ−b−N+1, . . . , δ
−bN ,

δ−a−N , . . . , δ
−aN is then performed with the tolerance of 10−8. Setting n0 = 0 in (3.88)
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results in a site-centered solution shown in the left panel of Fig. 3.8, whereas the bond-

centered solution corresponds to n0 = 1/2 shown the right panel. Typical breather waveforms

of both bright [25] and dark [18] type come in these two broad families [27].
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Figure 3.8: Left panel: A site-centered solution of (3.87) with δ−b−N = c = 0. Right panel: bond-centered
solution.

Once the Newton’s iteration converges to a fixed point {(δ−a∗n, δ−b∗n)}, we can compute

the first-order approximate solution of (3.3) given by

xswn (t) = |µ̄|
1

α−1{δ−b∗n + 2κδ−a∗n cos(ωbt+ φ)},

yswn (t) = |µ̄|
1

α−1{δ−b∗n −
2κ

ρ
δ−a∗n cos(ωbt+ φ)},

(3.89)

where µ̄ = 2κω3(ωb − ω).

3.5.2 Numerically exact dark breathers

Having constructed the initial seed (3.89), we can compute the numerically exact dark

breather solution of system (3.3) with periodic boundary conditions. Let x(t), y(t), ẋ(t) and

ẏ(t) denote the row vectors with component xn(t), yn(t), ẋn(t) and ẏn(t), respectively. Let

Z(t) := (x(t), y(t)). We seek time-periodic solutions (Z(t), Ż(t)) of Hamiltonian system (3.3)

satisfying the initial conditions (Z(0), Ż(0)). For a fixed period of the dark breather solution

given by Tb = 2π/ωb, where ωb is the breather frequency, the problem is equivalent to finding

the fixed points of the corresponding Poincaré map PTb [(Z(0), Ż(0))T ] = (Z(Tb), Ż(Tb))
T .
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Since the system (3.3) has the time-reversal symmetry, we can further restrict the solution

space by setting Ż(0) ≡ 0.

We use a Newton-type algorithm (see, for example, Algorithm 2 in [67]) to compute

the fixed point. More precisely, let ∆Z(0) be the small increment of the initial data that

needs to be determined. It is then sufficient to minimize ||PTb [(Z(0) + ∆Z(0), 0)T ]− (Z(0) +

∆Z(0), 0)T || at each iteration step. Notice that PTb [(W (0), 0)T ] can be approximated by

PTb [(Z(0), 0)T ]+M(Tb)(∆Z(0), 0)T for sufficiently small ∆Z(0). Here M(t) is the associated

monodromy matrix of the variational equations satisfying

d

dt
M(t) = J (Z(t), Ż(t))M(t), M(0) = I, (3.90)

where J (Z(t), Ż(t)) is the Jacobian matrix of the nonlinear system (3.3) at (Z(t), Ż(t)), and

I is the identity matrix. The Jacobian for the Newton’s iteration is then given by I−M(Tb)

and it is singular since it can be shown that M(Tb) has eigenvalue equal to 1. To remove

the singularity, we impose the additional constraint that the time average of x1(t) + ∆x1(t),

the first component Z(t) + ∆Z(t), is fixed to be (approximately) zero. Observing that

(Z(t) + ∆Z(t), Ż(t) + ∆Ż(t))T ≈ (Z(t), Ż(t))T +M(t)(Z(0), 0)T , we obtain

1

Tb

∫ Tb

0

x1(t)dt+
1

Tb

∫ Tb

0

M1(t) ·∆Z(0)dt = 0. (3.91)

where M1(t) is the first row of M(t).

In the results discussed below we set κ = 1. To characterize the solution, we define the

vertical centers of the solution for x and y components [18],

Cx :=
supt∈[0,Tb]

x1(t) + inft∈[0,Tb] x1(t)

2
, Cy :=

supt∈[0,Tb]
y1(t) + inft∈[0,Tb] y1(t)

2
(3.92)

and the amplitudes of the breather,

Kx :=
supt∈[0,Tb]

x1(t)− inft∈[0,Tb] x1(t)

2
, Ky :=

supt∈[0,Tb]
y1(t)− inft∈[0,Tb] y1(t)

2
. (3.93)

Note that the vertical center Cx is approximately zero due to the constraint (3.91). However,

one can fix any other value of Cx by replacing zero in the right hand side of (3.91) by Cx. To
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further investigate the long-term behavior of the dark breather solution, we introduce the

relative error

Eb(t) = ||Z(mTb)− Z(0)||∞/||Z(0)||∞ (3.94)

where m = bt/Tbc and Z(mTb) = (x(mTb), y(mTb)) represents the strain profile after inte-

grating (3.3) over m multiple of time periods, starting with the static dark breather Z(0) as

the initial condition.

We first consider the mass ratio ρ = 1/3, so that the linear frequency is ω = 2. We

choose a value of ωb that is slightly greater than this value but close enough to it in order to

obtain a good initial seed with a small amplitude. Once the Newton-type solver converges

to a numerically exact dark breather solution, we use the method of continuation to obtain

an entire family of dark breathers that corresponds to different values of ωb. Sample profiles

of both bond-centered and site-centered dark breather solutions with ωb = 2.05 along with

the DpS approximate solutions (3.89) are shown in Fig. 3.9. The amplitudes Kx and Ky

increase with ωb, and the solution approaches zero as ωb → ω.
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Figure 3.9: Left panel: a bond-centered solution of dark breather solution (connected stars) with frequency
ωb = 2.05. Connected squares represent strain profile after integration over Tb and circles represent the DpS
approximate solution from the ansatz (3.89). Right panel: site-centered solution. The relative errors Eb(Tb)
of both site-centered and bond-centered solutions are less than 4.5× 10−9. Here κ = 1 and ρ = 1/3.
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3.6 LINEAR STABILITY ANALYSIS AND BIFURCATION

3.6.1 Floquet analysis

The linear stability of each obtained dark breather solution is examined via a standard Flo-

quet analysis. The eigenvalues (Floquet multipliers) of the associated monodromy matrix

M(Tb) determine the linear stability of the breather solution. The moduli of Floquet multi-

pliers for the site-centered and bond-centered solutions of various frequencies are shown in

Fig. 3.10, along with the numerically computed Floquet spectrum that corresponds to the

sample breather profile at ωb = 2.09. If any of these Floquet multipliers λi satisfies |λi| > 1,

the corresponding breather is linearly unstable. We observed two types of instabilities in

this Hamiltonian system. The first one is the real instability, which corresponds to a real

Floquet multiplier with magnitude greater than one; an example is shown in the right top

plot of Fig. 3.10 for the bond-centered dark breather with ωb = 2.09. The second type is

the oscillatory instability, which corresponds to a quartet of Floquet multipliers outside the

unit circle with non-zero imaginary parts (see the right bottom plot of Fig. 3.10 for the

site-centered dark breather with ωb = 2.09).
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Figure 3.10: Left plots: moduli of the Floquet multipliers versus frequency ωb for the bond-centered (top)
and site-centered (bottom) breathers. The Floquet multipliers for ωb = 2.09 in the complex plane are shown
in the respective plots on the right. Here κ = 1 and ρ = 1/3.

Numerical results reveal that the site-centered dark breathers appear to exhibit only
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oscillatory instability. These marginally unstable modes emerge at the beginning of the

continuation procedure but remain weak until ωb reaches ωb ≈ 2.078. As shown in the right

plot of Fig. 3.11, the relative error Eb(1200) stays below 7 × 10−7 when ωb ≤ 2.077 but

increases dramatically afterwards. The results are consistent with the Floquet spectrum

shown in the left plot of Fig. 3.11. In fact, beyond the critical point of ωb ≈ 2.078, we

observe the emergence of a new and stronger oscillatory instability mode that corresponds

to two pairs of Floquet multipliers distributed symmetrically outside the unit circle around

−1 (see also the right bottom plot of Fig. 3.10 for ωb = 2.09). Representative space-time

evolution diagrams of site-centered dark breather solutions are shown in Fig. 3.12, which

suggests that the site-centered dark breather solutions with frequency close to the linear

frequency ω are long-lived and have marginal oscillatory instability, below the pertinent

critical point. However, the oscillatory instability becomes more and more significant as

ωb increases, leading to the breakdown of the dark breather structure of the solution. In

fact, beyond the critical point, the breakup of the site-centered breather appears to be

accompanied in Fig. 3.12 by a dramatic evolution, whereby the configuration is completely

destroyed and a form of lattice dynamical turbulence ensues. This phenomenon is reminiscent

of traveling wave instabilities observed in [68] for Hertzian chains and may be worth further

study, which, however, is outside the scope of this dissertation.
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Figure 3.11: Left plot: moduli of the Floquet multipliers of the site-centered breathers for frequency
ωb ≤ 2.08. Right plot: the relative error Eb(t) versus frequency at t = 1200. Inset shows the relative error
for frequencies less than ωb ≤ 2.077. Here κ = 1 and ρ = 1/3.

In contrast to the site-centered solutions, the bond-centered ones exhibit only real insta-

bility at the early stage of the continuation when the breather frequency ωb is greater than
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Figure 3.12: Left panel: contour plot of the time evolution of the site-centered solution for ωb = 2.05.
The color bar corresponds to the magnitude of the strain xn (top) and yn (bottom). Right panel: same
computation as in left panel but for ωb = 2.09. Here κ = 1 and ρ = 1/3.

but close to ω. At those frequencies, the magnitude of the Floquet multipliers corresponding

to the real instability of bond-centered breathers is larger than the moduli of the multipliers

describing the oscillatory instability of the site-centered ones, resulting in not only shorter

lifetime of the bond-centered solutions, but also setting the dark breather state in motion.

A representative space-time evolution diagram for bond-centered dark breather solution of

frequency ωb = 2.05 is shown in the left panel of Fig. 3.13. In the right panel of Fig. 3.13

the manifestation of real instability of the same solution is shown, where the perturbation

of the dark breather solution along the direction associated with the unstable mode that

corresponds to a real Floquet multiplier is used as the initial condition for the integration.

One can see that the instability results in a dark breather moving with constant velocity

after some initial transient time in the left panel, while the pertinent motion is initiated

essentially immediately by the perturbation induced in the right panel. However, as ωb is

increased the same phenomenology (dismantling of the breather and chaotic evolution) is

also taking place for the bond-centered breathers, as shown in Fig. 3.14.

3.6.2 Period-doubling bifurcation

The large arc seen in the middle of the Floquet multiplier diagram of the bond-centered

breather solutions (the top left plot in Fig. 3.10) corresponds to the period-doubling bifurca-
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Figure 3.13: Left panel: contour plot of the time evolution of the bond-centered solution for ωb = 2.05.
The color bar corresponds to the magnitude of the strain xn (top) and yn (bottom). Right panel: same
simulation as in the left panel but with the perturbed dark breather as the initial condition. Here κ = 1 and
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tion. As the frequency approaches ωb ≈ 2.063, two complex conjugate eigenvalues collide on

the real axis at −1. Two real eigenvalues then form and move in opposite directions as ωb

increases. After the difference between the real eigenvalues reaches a maximum value, they

start moving toward each other and collide at ωb ≈ 2.096. Breathers with double the period

(half the frequency) of the ones on the main branch exist between these two frequencies.

To explore the numerically exact period-doubling orbits, we constructed an initial seed

by slightly perturbing the dark breather solution at the bifurcation point along the direction

of eigenvector associated with the eigenvalue −1. As shown in Fig. 3.15, the eigenvector

is spatially localized at the middle of the chain. As a consequence, the initial seed only

differs from the previous dark breather solution in the middle part of the chain. Sample
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Figure 3.15: Left panel: the eigenvector associated with the eigenvalue −1. Right panel: numerically exact
dark breather solution of frequency ωb = 1.032 (connected squares) and initial seed (connected stars) after
perturbing numerically exact dark breather solution of frequency ωb = 2.063.

profiles of period-doubling dark breather solution at ωb = 1.032 are shown in the top of

Fig. 3.16. To check that these solutions differ from the main branch, we integrated the

solution for both the full period Tb = 2π/ωb and its half Tb/2 and verified that the period of

the obtained new solution is doubled compared with the previously obtained dark breathers.

The continuation method is used to obtain all the period-doubling dark breather solutions

for different frequencies. Note that the continuation stops at ωb ≈ 1.051 and also cannot

proceed for ωb below 1.032, which agrees with the (doubled) frequency range of the large

arc in the top left plot of Fig. 3.10. All of these solutions exhibit both real and oscillatory

instabilities (see the bottom plots of Fig. 3.16).
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3.6.3 Effect of mass ratio

We now investigate the effect of mass ratio on stability of the dark breathers by consid-

ering different values of ρ. Recall that the linear frequency ω =
√
κ+ κ/ρ decreases and

approaches
√
κ as ρ increases. In what follows, we start the continuation at frequency

ωb = ω + 0.01 to make sure that the amplitude of initial seed (3.89) is small. We first test

the case when ρ = 3 with linear frequency given by ω = 1.1547. Sample profiles of bond-

centered and site-centered dark breather solutions at the frequency ωb = ω+0.1 = 1.2547 and

their space-time evolution diagrams are shown in Fig. 3.17. We observe the bond-centered

solution starts to move in form of a traveling dark breather after the integration for a suffi-

ciently long time, while the site-centered solution persists for a longer time in the simulation

and hence can be considered to be long-lived. The dynamic behavior of both solutions is

consistent with their numerically computed Floquet spectrum shown in the right of Fig. 3.18.

Moreover, the diagrams of Floquet multipliers’ moduli in the right panel of Fig. 3.18 suggest

that the bond-centered solutions exhibit only real instability for a wide range of frequencies
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[ω + 0.001, ω + 0.2], while the site-centered dark breathers have just marginal oscillatory

instability.
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Figure 3.17: Top panel: sample profiles (circles) of site-centered (left) and bond-centered (right) dark
breathers at the frequency ωb = 1.2547. Stars connected by dashed lines represent strain profiles after the
integration over 299Tb ≈ 1500. Note that the site-centered solution has relative error Eb(1500) = 9.21×10−5.
Bottom panel: space-time evolution diagrams for site-centered (left) and bond-centered (right) solutions.
Here κ = 1 and ρ = 3.

Next, we repeat the simulation with ρ = 10 and ω = 1.0488. Note that the amplitude

of dark breather solution at frequency ωb = ω + 0.01 is close to 1.6 × 10−4. As shown in

Fig. 3.19, the pattern of Floquet multipliers moduli is very similar to the ρ = 3 case for

breather frequencies close to ω. However, as ωb becomes larger, we observed significant

oscillatory instability of both the bond-centered and site-centered solutions. Note that the

distribution of Floquet multipliers at large mass ratios (for example, ρ = 3, 10) is completely

different than that at smaller ones (such as ρ = 1/3), given the same magnitude of frequency

difference ωb − ω.

We now fix the breather frequency ωb and perform the continuation in the mass ratio ρ.

The results of numerical continuation are shown in Fig. 3.20. At a given breather frequency,

the real instability is only exhibited by solutions of the bond-centered type, and its signif-
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and site-centered (bottom) types. Right panel: Floquet multipliers of dark breather solutions of frequency
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icance is gradually increasing as mass ratio becomes larger. In contrast, the site-centered

solutions have marginal oscillatory instability and persist for a long time. Moreover, the

lifetime of those solutions decreases as the mass ratio increases. At a larger frequency like

ωb = 2.05 and small mass ratio, the emergence of many unstable quartets suggests that both

bond-centered and site-centered solutions share strong modulational instabilty of the back-

ground, which leads to a chaotic evolution of both solutions after a short time of integration.

3.7 CONCLUDING REMARKS

In this chapter, we studied nonlinear waves in a resonant granular material modeled by a

Hertzian chain of identical particles with a secondary mass attached to each bead in the

chain by a linear spring. Following the approach developed in [20] for a limiting case of

the present model, we derived generalized modulation equations of DpS type. We showed

that for suitable initial data and large enough mass ratio, these equations reduce to the DpS
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equation derived in [20] and rigorously justified the equation in this limit on the long time

scales. We then used the DpS equations to investigate the time-periodic traveling wave of

the system at finite mass ratio. We showed numerically that these equations can successfully

capture the dynamics of small-amplitude periodic traveling waves.

Turning our attention to the breather-type solutions, we proved non-existence of nontriv-

ial bright breathers at finite mass ratio. However, we also showed that at sufficiently large

mass ratio and suitable initial data, the problem has long-lived bright breather solutions.

The generalized DpS equations were also used to construct well-prepared initial condi-

tions for the numerical computation of dark breather solutions. A continuation procedure

based on a Newton-type fixed point method and initiated by the approximate dark breather

solutions obtained from the DpS equations was utilized to compute numerically exact dark

breathers for a wide range of frequencies and at different mass ratios. The stability and

the bifurcation structure of the numerically exact dark breathers of both bond-centered and

site-centered types were examined. Our numerical results strongly suggest that the bond-

centered solutions exhibit real instability that may give rise to steady propagation of a dark

breather after large enough time. In addition, period-doubling bifurcations of these solutions

were identified at small mass ratios. The site-centered solutions, in contrast to the bond-

centered ones, appeared to exhibit only oscillatory instability, which is much weaker than

the real instability of the bond-centered breathers for a range of breather frequencies that

are close enough to the natural frequency of the system, i.e., the frequency of out-of-phase

motion within each unit cell of the chain involving the particle and the secondary mass. As

a consequence, these low-frequency site-centered solutions persisted for a long time in the

numerical simulation, and thus the effect of oscillatory instability is quite weak. However,

we also provided case examples of their (long-time) instabilities that led to their complete

destruction and ensuing apparently chaotic dynamics within the lattice. We showed that

the distribution of Floquet multipliers and hence stability of the dark breather solutions are

significantly affected by the mass ratio and breather frequency.

A challenge left for the future work is to rigorously prove the existence of small-amplitude

exact periodic traveling wave and dark breather solutions of system (3.2) using the approx-

imate solutions obtained from the generalized DpS equations. Another intriguing aspect to
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further consider involves the mobility of the dark breathers, and its association with the

dynamical instability of the states, as well as possibly with the famous Peierls-Nabarro bar-

rier associated with the energy difference between bond- and site-centered solutions, i.e., the

energy barrier that needs to be “overcome” in order to have mobility of the dark breathers.

Equally important and relevant would be an effort to analytically understand the modula-

tional stability properties of the lattice, perhaps at the DpS level and compare them with

corresponding systematic numerical computations. On the experimental side, it will be in-

teresting to investigate whether we can generate dark breathers by exciting the both ends of

a finite chain in a way similar to [19]. Additionally, exciting small-amplitude traveling waves

through boundary excitations, e.g. in the woodpile chain of [31] and observing experimen-

tally their evolution through lased Doppler vibrometry would also be particularly relevant.
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4.0 BREATHERS IN A LOCALLY RESONANT GRANULAR CHAIN

WITH PRECOMPRESSION

In this chapter, we study discrete breathers in the locally resonant granular chain under

nonzero precompression. In the non-resonant limit (regular granular chain, zero mass ratio),

such a system belongs to the general class of Fermi-Pasta-Ulam (FPU) lattice models (e.g.

see [36,69–78] and references therein), with dispersion relation for plane wave solutions of the

linearized problem possessing only acoustic spectrum. At finite mass ratio, the dispersion

relation has both acoustic and optical branches. In this respect the problem is somewhat

reminiscent of diatomic FPU chains, although the optical branch is quite different in our case.

In the small-amplitude limit the dynamics of the system is weakly nonlinear. This dynamical

regime has been well studied for the FPU problem, as has its generalized version with an

additional onsite potential [27,34–36,71–73,75–77]. In particular, the established conditions

for bifurcation of discrete breathers for this class of problems [27,75,76] rule out the existence

of bright breathers in the homogeneous non-resonant granular chain under precompression,

the limiting case of our problem when the mass ratio is zero and the dispersion relation

has only an acoustic branch. In this case, dark breathers were identified in [18] as the only

possible type of intrinsically localized mode. The defocusing nonlinear Schrödinger equation

(NLS), which has tanh-type solutions, is derived in [18] as the modulation equation for

waves with frequencies near the edge of the linear acoustic spectrum and used to construct

initial conditions for numerical computation and analysis of the dark breathers. In another

limiting case, when the mass ratio goes to infinity and the secondary masses have zero

initial conditions, the system approaches the Newton’s cradle model with precompression,

a problem with purely an optical dispersion branch. In this case, traveling bright breathers

were investigated in [21] via the analysis of the corresponding focusing NLS, which admits
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sech-type solutions.

To explore the weakly nonlinear dynamics at finite mass ratio, we use a multiscale asymp-

totic method (see [34–36] and references therein) and derive the classical NLS equation,

yielding closed-form solutions of sech-type and tanh-type in the focusing and defocusing

cases, respectively.

We investigate how well the dynamics governed by the focusing NLS equation approxi-

mates the dynamics of the moving bright breather solutions of the original system. Provided

that certain non-resonance conditions are satisfied, the approximation remains valid until the

wave number approaches zero, which corresponds to a singular point for the NLS solution;

we discuss the relevant details below. We find that the focusing NLS successfully captures

the dynamics of small-amplitude optical bright breathers at various mass ratios and some

wave numbers, for which robust motion of the breather is observed. At some other wave

numbers for the optical branch and in the acoustic case the numerical solutions tend to

deviate from the NLS approximation. In particular, in both optical and acoustic cases we

observe formation of additional small-amplitude bright breathers associated with the other

dispersion branch that eventually detach from its parent breather and move in either the

same or the opposite direction.

Following the approach in [18], we then analyze the defocusing NLS at the edges of

both optical and acoustic branches that correspond to wave number equal to π, and use

the static solutions of the modulation equation to construct the approximate standing dark

breather solutions. A continuation procedure based on a Newton-type method with initial

conditions built from the approximation ansatz is employed to compute numerically exact

dark breathers for a wide range of frequencies and at different mass ratios. Interestingly, the

resulting branches of solutions also include large-amplitude dark breathers, whose dynamics

is strongly nonlinear.

We examine the stability of the numerically exact dark breathers of both weakly and

strongly nonlinear types. Our numerical results suggest that small-amplitude weakly non-

linear dark breather solutions with frequencies close to the linear frequencies of the system

are stable, in analogy to what was found for the homogeneous granular chain in [18]. As the

amplitude of the dark breather solution becomes relatively large compared to the amount of
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precompression, the solutions start to exhibit a very strong modulational instability of the

background, eventually leading to their complete destruction and the emergence of chaotic

dynamics. However, when the real instability of the solution is dominant, it may give rise

to steady propagation of a dark breather at large enough time. We also show that the mass

ratio plays a substantial role in the oscillatory instability of the background of the dark

breathers. In contrast, the value of the mass ratio has a less significant effect on the real

instability modes for both the strongly and weakly nonlinear solutions, as we infer from the

similar patterns of positive real Floquet multipliers at different mass ratios.

The chapter is organized as follows. Sec. 4.1 introduces the model and the dispersion

relation for plane waves. We derive the modulation equations of NLS type in Sec. 4.2,

with more technical details included in Appendix C. In Sec. 4.3 we investigate the focusing

NLS equation and the validity of its approximation of the moving breather solutions of the

original system. In Sec. 4.4 we construct the approximate standing dark breathers using

the defocusing NLS equations. A continuation procedure is used in Sec. 4.5 to compute

numerically exact dark breathers bifurcating from the edges of optical and acoustic spectra,

and the linear stability of the obtained solutions is studied in Sec. 4.6. Concluding remarks

can be found in Sec. 4.7.

4.1 THE MODEL

We consider the model described in Sec. 3.1, with the primary masses in the granular chain

precompressed by the static load F0. The dynamics of the system is then governed by

m1
d2ũn

dt̃2
= A(δ̃0 + ũn−1 − ũn)α+ −A(δ̃0 + ũn − ũn+1)α+ −K(ũn − ṽn),

m2
d2ṽn

dt̃2
= K(ũn − ṽn).

(4.1)

where the new parameter δ̃0 = (F0/A)1/α is the equilibrium overlap of the adjacent primary

masses due to the precompression, and all the other parameters have the same meaning as
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in (3.1). Rescaling the equations as in Sec. 3.1, we obtain the dimensionless system

ün = V
′
(δ+un)− V ′(δ−un)− κ(un − vn)

ρv̈n = κ(un − vn),
(4.2)

where δ0 = δ̃0/R is the rescaled static overlap, and V (r) is the interaction potential in the

form

V (r) =
1

α + 1
(δ0 − r)α+1

+ + δα0 r −
1

α + 1
δα+1

0 (4.3)

that satisfies V (0) = V ′(0) = 0. Here we recall that ün and v̈n are the accelerations of the

primary and secondary masses, respectively, ρ = m2/m1 is the ratio of two masses, κ mea-

sures the relative strength of the linearly elastic springs connecting primary and secondary

masses, and δ+un = un+1 − un and δ−un = un − un−1 define the forward and backward

shift operators, respectively. Notice that when r � δ0, it is relevant to consider the Taylor

expansion

V (r) = K2
r2

2
+K3

r3

3
+K4

r4

4
+O(|r|5), (4.4)

where K2 = αδα−1
0 , K3 = −1

2
α(α− 1)δα−2

0 and K4 = 1
6
α(α− 1)(α− 2)δα−3

0 . Linearizing the

system (4.2) about the equilibrium state, we obtain

ün = K2(un+1 − 2un + un−1)− κ(un − vn), ρv̈n = −κ(vn − un). (4.5)

The linear system has nontrivial plane wave solutions in the form

un(t) = Aei(nθ−ωt), vn(t) = Bei(nθ−ωt)

with wave number θ ∈ (−π, π], frequency ω and amplitudes A and B, provided that the

matrix

M =

 ω2 −D − κ κ

κ/ρ ω2 − κ/ρ

 (4.6)

with D = D(θ) = 4K2 sin2(θ/2) has a vanishing determinant. This yields the dispersion

relation

ω2 = ω2
±(θ) =

D + κ+ κ/ρ±
√

(D + κ+ κ/ρ)2 − 4Dκ/ρ

2
. (4.7)
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Figure 4.1: The optical (solid) and acoustic (dashed) branches of the dispersion relation (4.7). Due to the
even symmetry about θ = 0, only [0, π] interval is shown. Here δ0 = 4/9, κ = 1 and ρ = 1/3.

The relation has two branches: optical, ω+(θ), and acoustic, ω−(θ), as shown in Fig. 4.1. One

can show that ω+(θ) and ω−(θ) are increasing functions of θ in [0, π] and that ω−(π) < ω+(0),

implying the existence of a gap between the two branches.

Note that in the limit ρ→ 0, the model reduces to the one for a regular (non-resonant)

homogeneous granular chain with precompression, which is governed by [14]

ün = (δ0 + un−1 − un)α+ − (δ0 + un − un+1)α+. (4.8)

In this case the dispersion relation for the linearized problem only has the acoustic branch

ω2(θ) = 4K2 sin2(θ/2). (4.9)

In the opposite limit of ρ→∞ and for zero initial conditions for vn(t), the system approaches

a precompressed granular chain with quadratic onsite potential, i.e., a Newton’s cradle model

with precompression [21], described by

ün + κun = (δ0 + un−1 − un)α+ − (δ0 + un − un+1)α+. (4.10)

In this limit, the dispersion relation is purely optical and given by

ω2(θ) = 4K2 sin2(θ/2) + κ. (4.11)
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4.2 DERIVATION OF THE NONLINEAR SCHRÖDINGER (NLS)

EQUATION

To study the weakly nonlinear dynamics of the locally resonant chain, we begin by deriving

the modulation equations for the plane-wave mode E(t, n) := ei(nθ−ωt), with θ ∈ (−π, π] and

ω = ω+ or ω− defined in (4.7). Using a small parameter ε > 0, we introduce the slow time

τ = ε2t and the macroscopic traveling wave coordinate ξ = ε(n−ct), where c = c± := ω′±(θ) is

the group velocity. We seek solutions of (4.2) in the form of fast oscillating, small-amplitude

patterns modulated by envelopes that vary slowly in space and time:

un(t) = uAn (t) +O(ε2) = ε{A1,0(τ, ξ) + A1,1(τ, ξ)E(t, n) + c.c.}+O(ε2)

vn(t) = vBn (t) +O(ε2) = ε{B1,0(τ, ξ) +B1,1(τ, ξ)E(t, n) + c.c.}+O(ε2),
(4.12)

where c.c. denotes complex conjugate. More precisely, following [34, 35] (see also [36]), we

substitute the multiple-scale ansatz

un(t) =
∑
k∈N1

εk
k∑

j=−k

Ak,j(τ, ξ)E
j(t, n), vn(t) =

∑
k∈N1

εk
k∑

j=−k

Bk,j(τ, ξ)E
j(t, n), (4.13)

where N1 is the set of natural numbers k ∈ N, k ≥ 1, Ak,j, Bk,j ∈ C, Ak,−j = Āk,j and

Bk,−j = B̄k,j, into (4.2). As shown in Appendix C, this leads to the coupled modulation

equations

i∂τA1,1 + β∂ξA1,0A1,1 +
1

2
ω′′∂2

ξA1,1 − h|A1,1|2A1,1 = 0, (4.14)

[c2(1 + ρ)−K2]∂2
ξA1,0 = 8K3 sin2 (θ/2)Ā1,1∂ξA1,1 + c.c. (4.15)

and the identities

B1,0 = A1,0, B1,1 =
κ

κ− ρω2
A1,1 (4.16)

(one can check that κ− ρω2
± 6= 0). In equations (4.14)-(4.15), we assume two non-resonance

conditions,

(4ω2 − 4K2 sin2 θ − κ)(κ− 4ω2ρ) + κ2 6= 0 (4.17)
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and

c2(1 + ρ)−K2 6= 0, (4.18)

and set

β = −4K3 sin2 (θ/2)γ, ω′′ =

{
K2 cos θ − c2

[
1− 3ω2ρ2κ2 + ρκ3

(ρω2 − κ)3

]}
γ (4.19)

and

h =

{
16K2

3 sin2 θ(1− cos θ)2(κ− 4ω2ρ)

(4ω2 − 4K2 sin2 θ − κ)(κ− 4ω2ρ) + κ2
+ 6K4(1− cos θ)2

}
γ, (4.20)

where

γ =
(ρω2 − κ)2

ω[ρκ2 + (ρω2 − κ)2]
. (4.21)

Note that h is non-singular when (4.17) holds. Observe also that (4.15) can be rewritten as

∂2
ξA1,0 = λ∂ξ|A1,1|2, (4.22)

where

λ =
8K3 sin2 (θ/2)

c2(1 + ρ)−K2

(4.23)

is well-defined under (4.18). Integrating both sides of (4.22) with respect to ξ yields

∂ξA1,0 = λ|A1,1|2 + f(τ), (4.24)

where f(τ) is an arbitrary time-dependent function. Substituting ∂ξA1,0 into (4.14) then

gives

i∂τA1,1 + βf(τ)A1,1 +
1

2
ω′′∂2

ξA1,1 + (λβ − h)|A1,1|2A1,1 = 0. (4.25)

Let

A(ξ, τ) = A1,1(ξ, τ)e−iβF (τ), (4.26)

where F (τ) is the antiderivative of f(τ). From (4.25) it then follows that A(ξ, τ) satisfies

the classical time-dependent nonlinear Schrödinger (NLS) equation

i∂τA(ξ, τ) +
1

2
ω′′∂2

ξA(ξ, τ)− h̃|A(ξ, τ)|2A(ξ, τ) = 0, (4.27)

where we set

h̃ = h− λβ. (4.28)
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Equation (4.27) has solutions in the form

A(ξ, τ) = Ã(ξ)eiµτ , (4.29)

where µ ∈ R and Ã(ξ) is a real-valued function satisfying the stationary NLS equation

−µÃ(ξ) +
1

2
ω′′∂2

ξ Ã(ξ)− h̃Ã3(ξ) = 0. (4.30)

The focusing case of the NLS equation (4.27) occurs for ω′′h̃ < 0. In this case (4.30) admits

sech-type solution

Ã(ξ) =

√
−2µ

h̃
sech

(√
2µ

ω′′
ξ

)
(4.31)

for µ such that µω′′ > 0 and µh̃ < 0. Using (4.26) and (4.29), we then obtain

A1,1(ξ, τ) =

√
−2µ

h̃
sech

(√
2µ

ω′′
ξ

)
ei[µτ+βF (τ)], (4.32)

and integrating (4.24) yields

A1,0(ξ, τ) =
λ
√

2ω′′µ

|h̃|
tanh

(√
2µ

ω′′
ξ

)
+ f(τ)ξ + C(τ). (4.33)

On the other hand, when ω′′h̃ > 0, equation (4.27) becomes self-defocusing, and (4.30) has

a tanh-type solution

Ã(ξ) =

√
−µ
h̃

tanh

(√
−µ
ω′′

ξ

)
(4.34)

for µ satisfying µω′′ < 0 and µh̃ < 0. We then have

A1,1(ξ, τ) =

√
−µ
h̃

tanh

(√
−µ
ω′′

ξ

)
ei[µτ+βF (τ)]. (4.35)

Integrating (4.24), we obtain

A1,0(τ) = −λ
√
−ω′′µ
|h̃|

tanh

(√
−µ
ω′′

ξ

)
+

(
f(τ)− λµ

h̃

)
ξ + C(τ). (4.36)

Representative plots of sign(ω′′h̃) as a function of θ and ρ for optical and acoustic branches

are shown in Fig. 4.2, where we vary ρ but fix the other parameters at the same values as

in Fig. 4.1 (κ = 1, δ0 = 4/9 and α = 3/2). From (4.19), (4.20), (4.23) and (4.28), one can
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Figure 4.2: Plots of sign(ω′′h̃) for optical (left) and acoustic (right) branches. The focusing region is shaded
in pink. Its boundaries for the optical case include ω′′+ = 0 (blue dashed line) and the curve along which
the second non-resonance condition (4.18) is violated (greed solid line). Black solid line in the acoustic case
(right plot) corresponds to the curve along which the first non-resonance condition (4.17) breaks down. The

remaining boundaries separating focusing (pink) and defocusing (white) regions corresponds to h̃ = 0. Inset
zooms in on the region inside the rectangle. Here α = 3/2, δ0 = 4/9, κ = 1.

see that ω′′h̃ can change sign when ω′′ = 0, h̃ = 0 or when h̃ has a singularity which occurs

when either of the two non-resonance conditions, (4.17) and (4.18), is violated for θ ∈ (0, π).

For the optical branch of the dispersion relation, (4.17) always holds for the parameters

we consider here, but the other non-resonance condition, (4.18), breaks down at some wave

numbers for sufficiently large ρ (solid curve in the left plot of Fig. 4.2). In this case the sign

of ω′′+h̃+ also changes for any ρ > 0 at the inflection point of the dispersion relation (ω′′+ = 0,

dashed curve) and, for large enough ρ, when the numerator of h̃ in (4.28) vanishes. Thus,

for sufficiently small ρ, 0 < ρ < 2.356, we have the focusing regime (shaded in Fig. 4.2)

for θ < θc, where ω′′+(θc) = 0, and the defocusing NLS otherwise. For larger ρ, focusing

and defocusing regimes alternate, due to breakdown of (4.18), the inflection point, and, for

ρ & 15.335, h̃ = 0. Interestingly, the focusing and defocusing regions “flip” at ρ ≈ 2.356 and

ρ ≈ 22.298, where the boundary curves intersect, with focusing regime below the ω′′+ = 0

curve at small ρ, above it for a range of wave numbers at intermediate mass ratios and below
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the curve again for a θ-range at larger ρ.

We now turn to sign(ω′′−h̃−) and examine the acoustic dispersion branch shown in the

right plot of Fig. 4.2. One can show that in this case the curvature of the dispersion curve is

always negative, ω′′−(θ) < 0, for θ ∈ (0, π], yielding 0 ≤ c− = ω′−(θ) < ω′−(0) =
√
K2/(1 + ρ).

As a result, the second non-resonance condition (4.18) always holds for the acoustic branch

at nonzero wave numbers. However, the first non-resonance condition breaks along the solid

curve, changing the sign of h̃− from negative to positive, and hence the sign of ω′′−h̃− from

positive to negative, at sufficiently large θ < π in the interval of mass ratios 0.074 < ρ <

2.137. For each ρ in this interval, sign(ω′′−h̃−) changes again to positive (defocusing regime)

at slightly larger θ due to h̃ = 0. This yields a very narrow shaded focusing region, with the

lower boundary for θ < π coinciding with the solid curve where (4.18) is violated. It should

be noted that although this singularity curve includes points where θ = π, the focusing

region approaches this value at its ends but does not include it because h(θ) in (4.20), and

therefore h̃(θ) in (4.28), does not have a singularity at θ = π. Instead, as we approach

each of the two end points of the focusing region where θ → π, the values of θ where h̃− is

singular and where it vanishes for given ρ both approach π, so that at θ = π we have the

defocusing case, h̃−(π)ω′′−(π) > 0 for ρ > 0. The focusing region is particularly narrow at

smaller mass ratios, ρ & 0.074 (see the inset in Fig. 4.2). Outside this region one has the

defocusing regime. This includes 0 < ρ < 0.074, in agreement with the non-resonant chain

studied in [18] (ρ = 0), where only the defocusing case is possible.

To further illustrate these results, we show some plots of group velocity c, curvature ω′′

and h̃ as functions of the wave number θ in Fig. 4.3. One can see that at ρ = 1/3 the optical

branch has negative h̃+ in (0, π] with no singularities, and the single transition from focusing

to defocusing regime occurs due to the inflection point at θ = θc ≈ 1.892 in the dispersion

curve (ω′′+(θc) = 0). At ρ = 3, however, h̃+ changes sign twice via singularities (breakdown of

(4.18)), and together with the inflection point this yields three transition points separating

focusing and defocusing regions (see also the left plot in Fig. 4.2). Meanwhile, the acoustic

branch, as already noted, has no inflection points in (0, π], ω′′− < 0, and the transition from

defocusing to focusing (for θ ∈ (1.784, 1.949)) and back at ρ = 1/3 occurs through the change

of sign of h̃− due to singularity (breakdown of (4.18)) and going through zero. At ρ = 3 we

85



θ/π

ρ=1/3 ρ=3 

θ/π
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1
-8
-6
-4
-2
0
2
4

-0.4

-0.2

0.0

0.2

0.4

0.6

θ/π

θ/π0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

-15

-10

-5

0

5

10

c−

h+
~

c+ω''+

ω''−

c−

c+

ω''− ω''+

h−
~

h−
~

h+
~

h+
~

h+
~

h−
~
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have h̃− < 0 in (0, π] without singularities, so the regime is defocusing.

4.3 FOCUSING NLS AND MOVING BRIGHT BREATHERS

We now proceed to investigate how well the dynamics governed by the focusing NLS equa-

tions (ω′′h̃ < 0) approximates the solutions of original system (4.2). As before, it is con-

venient to rewrite (4.2) in terms of strain variables xn = un − un−1 and yn = vn − vn−1:

ẍn = V ′(xn+1)− 2V ′(xn) + V ′(xn−1)− κ(xn − yn)

ρÿn = κ(xn − yn).
(4.37)

Using (4.12), (4.16), (4.32) and (4.33), we find that the approximate solutions given by the

focusing NLS equation take the form

xAn (t) = δ−uAn (t) = 2M2δ
−{sech[a(n− n0 − ct)] cos (nθ − ωbt+ βF (ε2t))}

+M1δ
−tanh[a(n− n0 − ct)] + ε2f(ε2t)

yAn (t) = δ−vAn (t) =
2κM2

κ− ρω2
δ−{sech[a(n− n0 − ct)] cos (nθ − ωbt+ βF (ε2t))}

+M1δ
−tanh[a(n− n0 − ct)] + ε2f(ε2t),

(4.38)

with arbitrary spatial translation by n0. Here instead of µε2 we introduce the breather

frequency ωb = ω − µε2, a real number such that |ω − ωb| = O(ε2), (ω − ωb)ω
′′ > 0,

(ω − ωb)h̃ < 0, and set

M1 =
λ
√

2ω′′(ω − ωb)
|h̃|

, M2 =

√
2(ωb − ω)

h̃
and a =

√
2(ω − ωb)

ω′′
.

Recall that f(τ) is a slow-time varying function, independent of n and F (τ) is its antideriva-

tive. In what follows we simply set F (τ) ≡ 0 so that f(τ) ≡ 0.
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To numerically integrate (4.37), we start with initial condition determined from the first

order approximation (4.38) at t = 0, along with initial velocities given by

ẋn(0) = c a
{
−M1δ

−sech2[a(n− n0)] + 2M2δ
−tanh[a(n− n0)]sech[a(n− n0)] cos (nθ)

}
+ 2ωbM2δ

−sech[a(n− n0)] sin (nθ)

ẏn(0) = c a

{
−M1δ

−sech2[a(n− n0)] +
2κM2

κ− ρω2
δ−tanh[a(n− n0)]sech[a(n− n0)] cos (nθ)

}
+

2ωbκM2

κ− ρω2
δ−sech[a(n− n0)] sin (nθ).

(4.39)

We use the same parameters as before (α = 3/2, δ0 = 4/9, κ = 1), choose a relatively small

mass ratio, ρ = 1/3 and start by considering the optical case. Recall from the discussion in

Sec. 4.2 (see also the left plots in Fig. 4.2 and Fig. 4.3) that for this mass ratio the focusing

regime takes place at 0 < θ < θc, where θc ≈ 1.892 satisfies ω′′+(θc) = 0. We first consider the

wave number θ = π/2 < θc. Numerical integration is performed on the lattice of size 2N + 1

with free-end boundary conditions x−N−1 = x−N and xN+1 = xN . As shown in Fig. 4.4, the

agreement between the numerical evolution of (4.37) and the approximate analytical solution

is excellent, even after a long time at t = 200Tb, where Tb = 2π/ωb = 2.8885 is the period

of the modulated wave. The relative errors of the approximation (4.38), defined by Ex(t) =

||xAn (t)−xn(t)||∞/||xn(0)||∞ and Ey(t) = ||yAn (t)−yn(t)||∞/||yn(0)||∞, remain less than 3.5%

over the time of computation. In the simulation, we observe that the numerically exact

solutions have a localized structure which moves to the right end at the speed approximately

equal to the group velocity c+ ≈ 0.23. Meanwhile, the amplitudes of the oscillations vary

during the simulation and are well captured by the NLS approximation (4.38). Snapshots of

these moving bright breathers at different times are also shown in Fig. 4.4.

To further illustrate the strong mobility of the bright breather, we consider the energy

density (energy stored at the nth site):

en =
1

2
u̇2
n+

ρ

2
v̇2
n+

κ

2
(un−vn)2 +

1

5
[(δ0−δ−un)

5/2
+ +(δ0−δ+un)

5/2
+ ]+

1

2
δ

3/2
0 (un+1−un−1)− 2

5
δ

5/2
0 .

(4.40)
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Figure 4.4: Top plots: snapshots of a moving bright breather solution xn and yn of the original system
(4.2), with initial data determined from (4.38), (4.39). The breather moving from the middle of the chain to
the right is shown here at t = 0 (connected red squares), t = 50.125Tb ≈ 145 (connected green circles) and
t = 200Tb ≈ 578 (connected black squares). The same plots compare the time snapshots of the approximate
analytical solution (connected blue stars) and the numerical evolution result at the same times. Bottom
plot: relative errors Ex(t) (solid red curve) and Ey(t) (dashed blue curve). Here θ = π/2, κ = 1, ρ = 1/3,
δ0 = 4/9, ωb = ω − 0.0001 = 2.1752, N = 500 and n0 = 0.
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Figure 4.5: Left plot: energy density of a moving bright breather in the system (4.2). Right plot: time
evolution of the breather’s energy center. Here all the parameters are the same as in Fig. 4.4.

The left plot in Fig. 4.5 shows the energy density in the system (4.2), and the right plot

displays the time evolution of the (local) energy center of mass, which is defined by

X =

∑n′+m
i=n′−m iei∑n′+m
i=n′−m ei

, (4.41)

with n′ being the location of the maximum energy density of the breather and m > 0 an

integer which accounts for the width of the breather (we set m = 100).

In the second numerical run, we choose a smaller wave number θ = π/8, while the other

parameters remain the same. The linear frequency is now given by ω = 2.0098 which is fairly

close to the θ = 0 edge of the optical branch. As shown in Fig. 4.3, the corresponding value of

|h̃| decreases dramatically, so that the amplitude of the strain profiles increases. In fact, we

now have ||xn(0)||∞ ≈ 0.208 < δ0, which is of the same order as δ0 = 0.444. We perform the

same numerical integration over the time interval [0, 150Tb], where Tb = 2π/ωb = 3.1265 and

ωb = ω− 0.0001 = 2.0097. As shown in the bottom plot of Fig. 4.6, the NLS approximation

remains excellent at the early stage of the simulation, with relative errors less than 3 % when

t ≤ 150. However, later the approximation error becomes large, and the energy spreads

out towards both ends of the chain, as shown in Fig. 4.7. The ensuing waveform no longer

preserves the structure of a breather.
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An interesting question is whether there exist static bright breathers at the θ = 0 edge

of optical branch. Recall that the order of the approximate solution (4.38) roughly depends

on the magnitude of M1 and M2 and thus on h̃ that appears in their denominators. As

shown in Fig. 4.3, the value of h̃ becomes extremely small when θ is close to zero. Hence

we need to choose ωb very close to ω to ensure that the approximate solutions are within

the small-amplitude regime. Meanwhile, the width of the moving breather is ∼ |ω − ωb|−1/2

when ω → ωb (it is determined by the factor 1/a according to the sech functional form in

(4.38)). When |ω−ωb| is very small, we have to run simulations on an extremely long chain

in order to observe the localized structure with a decaying tail. Therefore, it is numerically

impractical to investigate static bright breathers as a limit of the moving ones using the

focusing NLS approximation (4.38). However, the multiscale analysis used to derive the

modulation equations still holds for θ = 0, yielding β = h = c = 0 so that (4.14)-(4.15)

become the linear equations

i∂τA1,1 +
1

2
ω′′∂2

ξA1,1 = 0, ∂2
ξA1,0 = 0 (4.42)

where ω′′ = K2γ = κK2/ω
3. Given the absence of localization at this order of the asymptotic

expansion (4.12), we do not have any evidence of the existence of static bright breathers in

this limit.

We now consider wave numbers above π/2 but below θc at the same mass ratio ρ = 1/3.

In the numerical simulation, we observe that the NLS approximation of the moving bright

breathers remains excellent over a finite time interval until the wave number is close to

θc ≈ 1.892, which, as we recall, marks the boundary between focusing and defocusing regions

at our parameter values. To illustrate what happens below but very close to this boundary,

we consider the wave number θ = 3π/5 ≈ 1.885 and perform the numerical integration over

the time interval [0, 200Tb], where Tb = 2π/ωb = 2.791 and ωb = ω − 0.0001 = 2.2512.

As illustrated by the snapshots of the strain profiles of xn and yn at time t = 200Tb ≈

558.2, as well as by the space-time evolution of the energy density in Fig. 4.8, the resulting

waveform mostly preserves its localized structure and moves to the right at the velocity

approximately equal to c+. However, we observe the growing trend of the relative error of the

NLS approximation emerging from the very beginning of the simulation. Note also that the
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Figure 4.8: Left panels: comparison of the time snapshots of the approximate analytical solution (connected
blue stars) and the numerical evolution result (red squares) at t = 200Tb ≈ 558.2 for θ = 3π/5, ωb =
ω − 0.0001 = 2.2512, N = 1000; the other parameters are the same as in Fig. 4.4. Right panels: energy
density of the moving bright breather in the system (4.2). The dark blue color marks a range of small energy
densities in order to better show the growing size of the tail behind the breather. The inset depicts the
relative errors Ex(t) (red) and Ey(t) (blue).

approximation fails to capture the increasing size of the tail in the numerical solution, which

suggests that the optical bright breathers with wave numbers near θc cannot be robustly

sustained for long-time dynamical evolutions.

We next investigate bright breathers associated with the acoustic branch. From the

discussion in Sec. 4.2 (see also the right plot in Fig. 4.2 and the left plots in Fig. 4.3), we recall

that in this case the focusing regime takes place only in a narrow interval of wave numbers

for a range of small enough mass ratios. In the case ρ = 1/3, with other parameters kept

the same as before, this θ-interval is (1.7841, 1.949). For moving acoustic bright breathers

associated with wave numbers θ in the lower part of the focusing θ-interval, we observed

dynamical features similar to the one discussed above for optical breathers and illustrated

in Fig. 4.8. At wave numbers near the upper bound of this interval, when h̃− decreases

and approaches zero, yielding a relatively large amplitude of ||xn(0)||∞, we observed another

small-amplitude bright breather eventually detaching from the original waveform and moving

to the left with constant velocity near −c+, suggesting that this second breather is an optical
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Figure 4.9: Left panels: comparison of the time snapshots of the approximate analytical solution (acoustic
bright breather, connected blue stars) and the numerical evolution result (connected red squares) at t =
200Tb ≈ 994 for θ = 1.948, ωb = ω − 0.0001 = 1.264, N = 1000; the other parameters are the same
as in Fig. 4.4. Insets zoom in on the small-amplitude optical breather that eventually separates from the
initial acoustic breather. Right panel: energy density of the numerical solution of the system (4.2) showing
the energy density of the parent breather (darker color) and the small-amplitude breather detaching from
it (faint lighter color bounded by the dash-dotted lines for better visibility), also shown in the inset that
enlarges the region inside the rectangle.

one. See, for example, the results of the numerical simulation for θ = 1.948 shown in Fig. 4.9.

Clearly, the NLS approximation does not capture this feature.

We now investigate the effect of larger mass ratios on the optical bright breathers and

their NLS approximation (recall that in the acoustic case the NLS equation is defocusing

at large enough ρ). We first consider the mass ratio ρ = 10, at which the focusing regime

corresponds to two disjoint θ-intervals: (0, 0.3681) and (1.2263, 2.4389). At wave numbers

in the upper part of each interval, we found that NLS provides an excellent approximation

of the corresponding small-amplitude moving bright breather over a finite time. Similarly

to the results shown in Fig. 4.6 and Fig. 4.7 for the case ρ = 1/3, at sufficiently small wave

numbers the localized structure eventually breaks down. At wave numbers near the lower

bound of the θ-interval (1.2263, 2.4389), we observe not only the increasing size of the tail

in the numerical solution, similar to the example shown in Fig. 4.8 for the case ρ = 1/3,

but also the emergence of a train of bright-breather-like structures clearly visible in the yn

variable that separate from the initial breather and slowly move in both directions with
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Figure 4.10: Left panels: comparison of the time snapshots of the approximate analytical solution (optical
bright breather, connected blue stars) and the numerical evolution result (connected red squares) at t =
200Tb ≈ 815.28 for ρ = 10, θ = 1.23, ωb = ω − 0.0001 = 1.5414, N = 1000; the other parameters are the
same as in Fig. 4.4. Relative errors Ex(t) (red) and Ey(t) (blue) are shown in the top left inset. Bottom left
inset zooms in on the train of acoustic waveforms that eventually separate from the initial optical breather.
Right panel: energy density of the numerical solution of the system (4.2). The inset zooms in on the train
of acoustic breather-like structures (not visible in the main energy plot), with dash-dotted lines added for
better visibility.
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speed approximately equal to c−, suggesting their acoustic nature. Meanwhile, the optical

breather initiated by the NLS approximation propagates to the right with velocity close to

c+. See, for example, Fig. 4.10, where the wave number is θ = 1.23, and we have c− ≈ 0.0754

and c+ ≈ 0.6.

At ρ = 30, there are three focusing intervals, with θ in (0, 0.1927), (0.3775, 1.1952) and

(2.3814, 2.7346), respectively. We observed stable motion of small-amplitude optical bright

breathers with wave numbers in the first and third intervals over a finite time. At wave

numbers in the second (middle) interval, we obtained results similar to the one shown in

Fig. 4.10.

4.4 DEFOCUSING NLS AND STANDING WAVE SOLUTIONS

We now turn our attention to the defocusing case (ω′′h̃ > 0). Using (4.12), (4.35) and (4.36),

we obtain the approximate solutions in terms of strain variables given by

xAn (t) = δ−uAn (t) = εδ−{M3 + 2M4 cos [nθ − ω̃bt+ βF (ε2t)]}tanh[ηε(n− n0 − ct)]

+ ε2

{
f(ε2t)− λµ

h̃

}
yAn (t) = δ−vAn (t) = εδ−{M3 +

2κM4

κ− ρω2
cos [nθ − ω̃bt+ βF (ε2t)]}tanh[ηε(n− n0 − ct)]

+ ε2

{
f(ε2t)− λµ

h̃

}
,

(4.43)

where we define

M3 = −λ
√
−ω′′µ
|h̃|

, M4 =

√
−µ
h̃
, and η =

√
− µ

ω′′
.

Here n0 corresponds to the spatial translation and ω̃b = ω−µε2, where µ is any real number

such that µω′′ < 0, µh̃ < 0. Again, f(τ) in the O(ε2) term is undetermined.
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We are particularly interested in seeking standing wave solutions (i.e. stationary dark

breathers) when the wave number is on the θ = π edges of the optical or acoustic branches,

so that the group velocity c vanishes. This yields in (4.19), (4.23) and (4.28)

β = −4K3γ, h̃ = (24K4 − 32K2
3/K2)γ, ω′′ = −K2γ, λ = −8K3

K2

. (4.44)

Then ω′′h̃ = −(24K2K4 − 32K2
3)γ2 > 0, which corresponds to the defocusing case. The

same condition was obtained, e.g., in [18]; see also the discussion therein. Since f(τ) is an

arbitrary function independent of ξ, we set

f(ε2t) ≡ λµ

h̃
(4.45)

to eliminate the ε2-term in (4.43). The antiderivative of f(τ) is now given by F (τ) = λµτ/h̃,

which leads to

βF (τ) = −2µτ

3
(4.46)

after evaluating K2, K3, K4 for α = 3/2 (see (4.4)). Substituting (4.46) into the cosine terms

of (4.43) yields

cos [nθ − ω̃bt+ βF (ε2t)] = cos (ω − 1

3
µε2)t

and the leading order NLS approximation (4.43) is now given by

xAn (t) ≈ δ−
{
− 2√

3
+ 2(−1)n cos (ωbt)

}√
3(ωb − ω)

h̃
tanh

[√
3(ωb − ω)

ω′′
(n− n0)

]

yAn (t) ≈ δ−
{
− 2√

3
+

2(−1)nκ

κ− ρω2
cos (ωbt)

}√
3(ωb − ω)

h̃
tanh

[√
3(ωb − ω)

ω′′
(n− n0)

]
,

(4.47)

where we have converted µ and ε into a new single parameter ωb = ω − 1
3
µε2 measuring the

breather frequency. Choosing n0 = 0 in (4.47) results in a site-centered solution, whereas the

bond-centered solution corresponds to n0 = 1/2. When ωb is close enough to ω, the ansatz

(4.47) with t = 0 can be used as an initial seed for a Newton-type iteration to compute

the numerically exact stationary dark breather solutions of the discrete system (4.37) of

both site-centered and bond-centered type. Notice that although the continuum envelope

approximation developed here permits an arbitrary selection of n0, discrete models typically

only support such site- and bond-centered solutions with the corresponding selection of n0

discussed above; see e.g. [27].
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4.5 WEAKLY AND STRONGLY NONLINEAR DARK BREATHERS

We now use the Newton-type algorithm described in Sec. 3.5.2 with the initial seed (4.47) to

compute the numerically exact dark stationary breather solutions of the system (4.37) with

periodic boundary conditions.

In what follows we set α = 3/2, κ = 1 and δ0 = 4/9. Also, the vertical center Cx (recall

(3.92)) is set to be approximately zero. The renormalized `2 norm of Z(0) can be defined as

||Z(0)||2˜̀2 =
∑
n

K2
x − |xn(0)− Cx|2 +

∑
n

K2
y − |yn(0)− Cy|2. (4.48)

We first consider the mass ratio ρ = 1/3, so that the linear frequencies of plane waves

at the θ = π edge of optical and acoustic branches are ωopt = 2.4495 and ωacs = 1.4142,

respectively. We choose a value of ωb that is slightly smaller than but close enough to ωopt

or ωacs to obtain a good initial seed with a small amplitude. Once the Newton-type solver

converges to an exact dark breather solution, we use the method of continuation to obtain

an entire family of dark breathers that corresponds to different values of ωb. Sample profiles

of both bond-centered and site-centered dark breather solutions with frequency ωb = 2.42,

along with their corresponding initial seeds from the NLS approximation (4.47) are shown in

Fig. 4.11. In the left plots in Fig. 4.12, we show the renormalized `2 norm of the numerically

exact bond-centered dark breathers that bifurcate from θ = π edge of the optical branch.

The solutions do not exist for arbitrary values of ωb; rather, there is a turning point at

ωb ≈ 2.37. We are able to continue the relevant solution branch past this turning point,

obtaining dark breather solutions making up the top part of the branch with increasing

amplitude as ωb increases. Therefore, dark breathers above the turning point can be regarded

as strongly nonlinear solutions, while solutions along the bottom part are weakly nonlinear.

As explained in the next section, solutions along the segments marked by red dots possess

real instability, and the ones along the blue segments do not.
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Figure 4.11: Left plot: a bond-centered dark breather solution (connected stars) with frequency ωb = 2.42.
Squares represent the strain profile after integration over Tb. Circles represent the initial profiles computed
from the approximation (4.47). Right plot: a site-centered solution. The relative errors Eb(Tb) of both
solutions are less than 3× 10−9. Here α = 3/2, κ = 1, δ0 = 4/9 and ρ = 1/3.
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Figure 4.12: Left plot: renormalized `2 norm of the bond-centered dark breather solution versus frequency
ωb with the vertical center Cx = 0. The black vertical line shows the edge of the optical branch ωopt = 2.4495.
Right plot: same as the left, but for site-centered solution. Regions where a real instability is present are
indicated by red dots. Here α = 3/2, κ = 1, δ0 = 4/9 and ρ = 1/3.
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4.6 LINEAR STABILITY ANALYSIS

We now examine the linear stability of the obtained dark breather solutions via the standard

Floquet analysis introduced in Sec. 3.6.1. The moduli of Floquet multipliers of the site-

centered and bond-centered solutions, for both strongly and weakly nonlinear types, are

shown in Fig. 4.13, along with the numerically computed Floquet spectrum corresponding

to the sample breather profile at ωb = 2.42. As in Sec. 3.6.1, we observe real and oscillatory

instability modes.
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Figure 4.13: Moduli of Floquet multipliers versus frequency ωb for weakly nonlinear (top) and strongly
nonlinear (bottom) types. Recall that these refer to solutions below and above the turning point in Fig. 4.12,
respectively. Left and right plots corresponds to bond- and site-centered dark breathers respectively. Blue
dots represent Im(λ) 6= 0, red diamonds represent Im(λ) = 0, λ > 0 and green squares represent Im(λ) =
0, λ < 0. The Floquet multipliers for ωb = 2.42 in the complex plane are shown in the respective insets.
Here α = 3/2, κ = 1, δ = 4/9 and ρ = 1/3.

Numerical results suggest that both bond-centered and site-centered weakly nonlinear

solutions are stable at the beginning of the continuation procedure, as shown in the top panels

of Fig. 4.13, similarly to what was found in the homogeneous granular chain [18]. However,

as the corresponding frequency decreases, the amplitude of the breathers increases and they

start to exhibit oscillatory instabilities. These marginally unstable modes remain weak until

ωb reaches ωb ≈ 2.4255 in the left plot of Fig. 4.14. The relative error Eb(1200) defined in
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(3.94) stays below 2 × 10−4 when 2.4255 ≤ ωb ≤ ωopt and increases dramatically at smaller

frequencies. A representative space-time evolution diagram of bond-centered dark breather

solution at ωb = 2.4255 is shown in the right plots of Fig. 4.14, and the time evolution of

site-centered solution is similar. This suggests that the dark breathers solutions of both

types with frequency close to the linear frequency ωopt are long-lived and have marginal

oscillatory instability. As ωb further decreases, we observe the emergence of many new and

stronger modes of oscillatory instability, with Floquet multipliers distributed symmetrically

outside the unit circle around −1. In addition, for bond-centered dark breathers, pairs of real

Floquet multipliers collide at −1 and move in the opposite directions as ωb decreases. This

is associated with a period-doubling instability. Moduli of these multipliers are indicated by

the green squares in Fig. 4.13 and in the left plot of Fig. 4.14.
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Figure 4.14: Left plot: moduli of Floquet multipliers of bond-centered breathers for frequencies 2.4235 ≤
ωb ≤ ωopt. Right plots: contour plot of the time evolution of the bond-centered solution for ωb = 2.4255.
The color bar corresponds to the magnitude of the strain xn (top) and yn (bottom). The breather appears
to be very long-lived despite the instability suggested by the left panel of the figure. Here α = 3/2, κ = 1,
δ = 4/9 and ρ = 1/3.

The emergence of many unstable quartets suggests that both bond-centered and site-

centered solutions have strong modulational instabilty of the background, which leads to the

breakdown of the dark breather structure, accompanied, as shown in Fig. 4.15, by a chaotic

evolution of both solutions after a short time. The same phenomenology (dismantling of

the breather and chaotic evolution) also takes place for all strongly nonlinear dark breather

solutions. For this reason, in the bifurcation diagram of Fig. 4.12 only real instabilities

are indicated. It is interesting that the strongly nonlinear bond-centered solutions typically

exhibit real instability at frequencies greater than ωopt, while the real instability emerges
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only when ωb is less than ωopt for the site-centered ones.
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Figure 4.15: Left plot: snapshots of the strain profile of site-centered dark breather solution at time t = 0
(connected red stars) and t = 500 (connected blue squares). Right plots: contour plot of the time evolution
of the site-centered solution for ωb = 2.40. The color bar corresponds to the magnitude of the strain xn
(top) and yn (bottom). Here α = 3/2, κ = 1, δ = 4/9 and ρ = 1/3. Clearly, the dark breather structure gets
destroyed as a result of its spectral instability.

We now examine the stability properties of dark breathers that bifurcate from the θ = π

edge of the acoustic branch, where the linear frequency is ωacs = 1.414. The bifurcation

diagram for solutions of the bond-centered type and the corresponding diagrams of the

moduli of the Floquet multipliers versus frequency are shown in Fig. 4.16. We observe that

the distribution of positive real Floquet multipliers in the top right plot (weakly nonlinear

dark breathers) follows a pattern similar to the one for such breathers bifurcating from the

optical branch (top left plot of Fig. 4.13). Note also that the large arc for strongly nonlinear

solutions in the bottom right plot of Fig. 4.16 suggests that these dark breathers exhibit

not only an oscillatory instability but also a real instability, which possesses a considerably

larger growth rate than the oscillatory one.

We now investigate the effect of the mass ratio on the linear stability of the solutions.

We first consider the mass ratio ρ = 1 and keep all other parameters the same as in the

previous simulation. Using the continuation procedure, we obtain a family of dark breathers

bifurcating from the optical branch edge ωopt = 2.2882. As shown in Fig. 4.17, the bifurcation

diagrams of the renormalized `2 norm of these solutions are similar to the ρ = 1/3 case.

The moduli of Floquet multipliers of the weakly and strongly nonlinear dark breathers

solutions for both bond-centered and site-centered types, are shown in Fig. 4.18. We observe

that the magnitude of the Floquet multipliers corresponding to the oscillatory instability

is much weaker than in the ρ = 1/3 case. In addition, the real instability becomes more
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Figure 4.16: Left panel: renormalized `2 norm of the bond-centered solution bifurcating from the acoustic
branch versus ωb with the vertical center Cx = 0. The black vertical line shows the θ = π edge of the
acoustic branch ωacs = 1.414. Right panel: moduli of the Floquet multipliers versus frequency ωb for weakly
nonlinear (top) and strongly nonlinear (bottom) types. Insets: the Floquet multipliers in the complex plane.
Here α = 3/2, κ = 1, δ = 4/9 and ρ = 1/3.

significant than the oscillatory one at some frequencies, resulting in not only shorter lifetime

of the solutions, but also setting the dark breathers in motion. A representative space-time

evolution diagram for weakly nonlinear bond-centered dark breather solution of frequency

ωb = 2.207 is shown in Fig. 4.19. Note that the positive Floquet multipliers again exhibit

the same bifurcation structure as in the previous results.

We also investigate the case of a large mass ratio, ρ = 10. The continuation procedure

works quite well for dark breathers bifurcating from the optical branch but we encountered

difficulty doing computations for the acoustic band due to the rapidly growing amplitude of

those solutions as ωb decreases. As a result, only dark breathers with frequencies very close

to ωacs are obtained. The diagrams of the moduli of the Floquet multipliers versus frequency

for the dark breathers bifurcating from the optical branch are shown in Fig. 4.20. We observe

that the magnitude of Floquet multipliers corresponding to oscillatory instability becomes

much larger again than in the ρ = 1 case but smaller than in the ρ = 1/3 case, which

suggests that the significance of oscillatory instability does not depend monotonically on the
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Figure 4.18: Results of the simulation with the same parameters as in Fig. 4.13 except for ρ = 1. Here
the corresponding dark breathers bifurcate from the optical branch.
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Figure 4.19: Left panel: sample profiles (connected stars) of bond-centered dark breathers at the frequency
ωb = 2.207. Connected squares represent strain profiles after integration over 526Tn ≈ 1500. Right panel:
contour plots of the time evolution of the bond-centered solution for ωb = 2.207. The color bar corresponds
to the magnitude of the strain xn (top) and yn (bottom). Clearly, the instability of the stationary dark
breather solutions sets it into motion.

mass ratio. Furthermore, in this case, the oscillatory instability appears to set in already

in the immediate vicinity of the linear limit at the edge of the optical band. Considering

now the case of a very small mass ratio, ρ = 0.1, we find that in contrast to the large mass

ratio like ρ = 10, we can only obtain dark breathers bifurcating from the acoustic branch

and corresponding to a wide range of frequencies; see Fig. 4.21. It is surprising that the

real instability of some of the weakly nonlinear solutions is again more significant than the

oscillatory instability, which is also a feature for the optical weakly nonlinear solutions at

ρ = 1. Again, similar patterns of the distribution of the positive real Floquet multipliers

suggest that their bifurcation structure remain unaffected by different mass ratios.

4.7 CONCLUDING REMARKS

In this chapter, we investigated discrete breathers in a precompressed locally resonant gran-

ular chain. The precompression effectively suppresses the fully nonlinear character of the

Hertzian interactions and leads to the weakly nonlinear dynamics in the small-amplitude

limit. Following the approach developed in [18, 21] for two limiting cases of the present
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Figure 4.20: Results of the simulation with the same parameters as in Fig. 4.13 except for ρ = 10. Here
the corresponding dark breathers bifurcate from the optical branch.
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Figure 4.21: Results of the simulation with the same parameters as in Fig. 4.13 except for ρ = 1/10. Here
the corresponding dark breathers bifurcate from the acoustic branch.

106



model and adopting the multiscale asymptotic technique [34–36], we derived modulation

equations that reduce to the NLS equation at finite mass ratio.

The focusing NLS equations was then used to investigate the moving bright breather

solution of the system at finite mass ratios. We showed numerically that these equations can

successfully capture the dynamics of small-amplitude moving optical bright breathers on a

long but finite time scale at some wave numbers and various mass ratios. At some other

wave numbers for the optical branch and in the acoustic case the NLS solution does not

capture numerically observed phenomena, including eventual formation and steady motion

of smaller breathers that detach from the tail of the initial breather and are associated

with the other dispersion branch. Contrary to the more standard dimer case, this resonator

problem appears to possess bright breathers in the neighborhood of θ = 0 wave numbers

of the optical band. However, that very point is found to be singular, and breathers in

its immediate vicinity do not appear to be robust, while bright breathers at larger wave

numbers that are below a certain threshold are found to propagate nearly undistorted in the

resonator chain at any mass ratio.

In addition, we analyzed the defocusing case of NLS equations and used the analytical

solutions of these equations to construct approximate stationary dark breather solutions.

Using this approximation as an initial condition for a continuation procedure based on a

Newton-type algorithm, we obtained both weakly and strongly nonlinear dark breather so-

lutions of both the site-centered and bond-centered families for a wide range of frequencies.

We then studied linear stability of the obtained solutions. The results revealed that only

small-amplitude weakly nonlinear solutions with frequencies very close to the linear frequen-

cies of the system are stable (for typical values of the resonator mass ρ). In contrast, large-

amplitude dark breather solutions exhibit either real or oscillatory instabilities (or both). In

particular, the strongly nonlinear dark breathers have a very unstable background, leading

to the dismantling of their structure, accompanied by a chaotic evolution after a short time.

We also observed the potential of steady motion of dark breathers due to a long-time evo-

lution subject to real instability. Finally, we showed that the mass ratio strongly affects the

strength of the oscillatory instability of the dark breather solutions, but its influence on the

distribution patterns of positive real Floquet multipliers is less pronounced.
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Future challenges include the rigorous proof of the existence of long-lived or exact small-

amplitude moving bright breathers and static dark breathers, the analysis of their modu-

lational stability and comparison with the numerical results presented here. On the exper-

imental side, it will be interesting to investigate whether it is possible to generate either

(approximate) moving bright breathers, perhaps actuating one boundary at a suitable, near-

band-edge frequency, or stationary dark breathers in a slightly damped finite locally resonant

chain driven at the ends in a way similar to [18,19] but using the woodpile setup [32].
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APPENDIX A

ANALYTICAL EXPRESSION FOR J

Recall that the integral form of J (kξ, n) is given by (2.17). Note that J (kξ, n) has the

symmetry property that for any integer n

J (kξ,−n) + J (kξ, n+ 1) = 0, (A.1)

and hence only the case n ≥ 1 needs to be considered. Following [10], we rewrite (2.17) as

an integral over the unit circle in the complex plane:

J (kξ, n) =

∮
|ζ|=1

(1− ζ)ζ−n

i(ζ2 − 2λζ + 1)
dζ, (A.2)

where ζ = eiκ and λ(kξ) is given by (2.21). Applying residue theorem to the integration in

(A.2), we obtain an analytic expression:

J (kξ, n) =


π(1 +

√
λ−1
λ+1

)(λ−
√
λ2 − 1)−n, λ < −1,

π(1∓ i
√

1−λ
1+λ

)(λ∓ i
√

1− λ2)−n, |λ| < 1, kξ ≶ 0.

π(1 +
√

λ−1
λ+1

)(λ+
√
λ2 − 1)−n, λ > 1

(A.3)

We remark that the derivation of (A.3) for |λ| < 1 involves the poles ζ = λ ± i
√

1− λ2

located on the unit circle |ζ| = 1 (the path of integration in (A.2)), which correspond to the

lattice waves emitted by the moving step. To resolve these singularities in a way that selects

physically relevant solutions, we follow the approach in [10] and introduce a small damping

contribution, which corresponds to replacing λ in (2.21) by λ = λ0 + iγV kξ/2, where λ0 is

109



given by the right hand side of (2.21), γ > 0 is a small damping coefficient, and we recall

that V > 0. Then for |λ0| < 1 one of the poles shifts slightly outside the unit circle, while

the other one shifts slightly inside the circle, depending on the sign of kξ. In the limit when

γ → 0 and thus λ → λ0, this means that the unit circle should be indented inward around

ζ = λ− i
√

1− λ2 and outward around ζ = λ+ i
√

1− λ2 when kξ < 0. Meanwhile, for kξ > 0

the opposite is true: the path of integration is indented inward around ζ = λ + i
√

1− λ2

and outward around ζ = λ − i
√

1− λ2. This ensures the selection of the relevant pole in

the residue theorem calculation and results in a physically meaningful distribution of lattice

waves in the final solution, in the sense that it is not destroyed in the presence of small

damping. We observe that in [37], the expression corresponding to (A.3) has λ′(kξ) ≷ 0

instead of kξ ≶ 0, which is equivalent in the region V > V1 above the first resonance velocity

that is studied in [37]. However, a formal extension of the formula in [37] to V < V1 does

not satisfy the above zero-damping limit criterion.

Using

S(kξ, n) =
J (kξ, n+ 1)− J (kξ, n)

2π
, (A.4)

(A.1) and (A.3), we then obtain the analytic expression (2.20) for S(kξ, j).
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APPENDIX B

EQUILIBRIUM STATES AND THE PEIERLS STRESS

In this appendix, we consider the equilibrium states (V = 0), which are governed by the

system of difference equations

χ(um+1,n − 2um,n + um−1,n) + Φ′(um,n+1 − um,n)− Φ′(um,n − um,n−1) = 0 (B.1)

and correspond to the configuration like the one shown in Figure 2.2, i.e. satisfy

ym,n < −δ/2, n ≥ 2, ym,n > δ/2, n ≤ 0,

ym,1 ≥ δ/2, m ≤ 0, ym,1 ≤ −δ/2, m ≥ ms + 1, (B.2)

and

|ym,1| ≤ δ/2, m = 1, . . . ,ms, if ms ≥ 1,

where ms is the number of n = 1 vertical bonds in the spinodal region. Under these

assumptions, (B.1) become

χ(um+1,n + um−1,n − 2um,n) + um,n+1 + um,n−1 − 2um,n

= −2δn,0 + (δn,0 − δn,1)

{
2θ(−m) +

(
1 +

2

δ
(um,1 − um,0)

)
[θ(ms −m)− θ(−m)]

}
,

(B.3)

where the unit function satisfies θ(0) = 1.
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If ms = 0, the displacement field can be obtained using the lattice Green’s function as

in [38,79], yielding

um,n =
1

πχ

∫ π

0

J(m)
cos (n− 1)κ− cosnκ

sinh s
dκ,+

n(σ − 1), n ≥ 0

n(σ + 1), n ≤ −1.

(B.4)

where s ≥ 0 satisfies cosh s = (χ+ 1− cosκ)/χ and

J(m) =


es+1−ems
es−1

, m < 0

e(1−m)s

es−1
, m ≥ 0.

(B.5)

One can show that the solution (B.4) exists if and only if the applied stress is within the

trapping region |σ| ≤ σP , where

σP = 1− δ

2
− 2

π

∫ π

0

J(1)
cosh s− 1

sinh s
dκ.

is the Peierls stress at which y1,1 ≡ u1,1 − u1,0 = −δ/2. For example, at χ = 1 we obtain

σP = (1− δ)/2.

Since the Peierls stress must be non-negative, the equilibrium solutions with no spinodal

bonds exist only for sufficiently narrow spinodal regions, e.g. 0 ≤ δ ≤ 1 for χ = 1. In

particular, at δ = 0 (B.4) yields the single stable equilibrium state with the assumed con-

figuration for σ inside the trapping region. For 0 < δ < 2 there are solutions with at least

one spinodal bond. In general, this problem can be reduced to the one analyzed in [60] for a

screw dislocation. Here we simply summarize the results. Let α(N) be the largest eigenvalue

of the N ×N matrix A with the entries ai,j = A(i− j), where

A(p) =
1

π

∫ π

0

e−|p|s
cosh s− 1

sinh s
dκ

and we set α(0) = 0. Then for 0 < δ < 2 and |σ| < σP , there are two equilibrium states,

a stable state with ms spinodal bonds and an unstable state with ms + 1 spinodal bonds,

where ms is uniquely determined from the inequality

α(ms) <
δ

2
< α(ms + 1). (B.6)
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The two equilibria merge into a saddle point at σ = σP . For ms ≥ 1 the displacement field

is then given by

um,n =
ms∑
j=1

(
1 +

2

δ
Yj

)
1

πχ

∫ π

0

e−|m−j|s
cos (n− 1)κ− cosnκ

2 sinh s
dκ

+
1

πχ

∫ π

0

J(m)
cos (n− 1)κ− cosnκ

sinh s
dκ+

n(σ − 1), n ≥ 0

n(σ + 1), n ≤ −1.

(B.7)

where Yj ≡ yj,1, j = 1, ...,ms are the strains in the spinodal bonds found by solving the

linear system

Yi =
2

δ

ms∑
j=1

A(i− j)Yj +
2

π

∫ π

0

[
J(i) +

1

2

ms∑
j=1

e−|i−j|s

]
cosh s− 1

sinh s
dκ+ σ − 1, i = 1, . . . ,ms.

(B.8)

To determine the Peierls stress, which corresponds to yms+1,1 = −δ/2 in a stable equilibrium,

define

NS =

N/2 if mod (N, 2) = 0

(N + 1)/2 if mod (N, 2) = 1,

NA = N −NS,

β(N, j) =

1/2 if mod (N, 2) = 0 and j = NS

1 otherwise,

and let BS(N) be the NS ×NS matrix with the entries

(bS)i,j =
δ

2
δi,j − [A(i− j) +A(N + 1− i− j)]β(N, j),

while BA(N) is the NA ×NA matrix with the entries

(bA)i,j =
δ

2
δi,j − [A(i− j)−A(N + 1− i− j)].

We then obtain [60]

σP = −det BS(ms)

det BA(ms)
· det BS(ms + 1)

det BA(ms + 1)
, (B.9)

where for ms = 1 and ms = 0 the zero-size determinants equal 1. Figure B1 shows the

dependence of Peierls stress on the width δ of the spinodal region at different χ. Note that
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Figure B1: (a) Dependence of the Peierls σP stress on the width δ of the spinodal region at χ = 1. Here
ms is the number of spinodal n = 1 vertical bonds in a stable equilibrium configuration, while an unstable
equilibrium has ms + 1 such bonds. (b) σP (δ) at χ = 2 (dashed curve), χ = 1 (solid curve) and χ = 0.5
(dotted curve). Insets show the Peierls stress at smaller δ.

the dependence on δ is no longer linear when spinodal bonds exist (ms ≥ 1). At δ = 2α(ms),

ms = 1, 2, . . . , there is no trapping region, i.e. σP = 0. This is an artifact of the trilinear

model and is not generic. Similar results were obtained for the Frenkel-Kontorova model

in [80,81].
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APPENDIX C

DERIVATION OF THE MODULATION EQUATIONS

In this appendix, we show the details of the derivation of the modulation equations (4.14)

and (4.15). In what follows, we will use the abbreviation
∑

k,j for the summation over k ∈ N1

and j ∈ Z, |j| ≤ k in (4.13). The ansatz defined in (4.13) will be denoted by UA
n = un and

V B
n = vn. After substituting (4.13) into (4.2), we find that the right hand side of the second

equation in (4.2) reads

−κ
ρ

∑
k,j

εk[Bk,j(τ, ξ)− Ak,j(τ, ξ)]E(t, n)j, (C.1)

and its left hand side is

V̈ B
n (t) :=

∑
k,j

εk[−(jω)2Bk,j + 2εijωc∂ξBk,j + ε2(c2∂2
ξBk,j − 2ijω∂τBk,j)

−2ε3c∂ξ∂τBk,j + ε4∂2
τBk,j]E

j(t, n). (C.2)

To match the coefficients of each εkEj(τ, ξ) term on both sides, we require that

ε1E0 : 0 = −κ
ρ

(B1,0 − A1,0) ⇒ B1,0 = A1,0, (C.3)

ε1E1 : −ω2B1,1 = −κ
ρ

(B1,1 − A1,1) ⇒ (κ− ρω2)B1,1 = κA1,1, (C.4)

ε2E1 : −ω2B2,1 + 2iωc∂ξB1,1 = −κ
ρ

(B2,1 − A2,1), (C.5)

ε2E2 : −4ω2B2,2 = −κ
ρ

(B2,2 − A2,2), (C.6)

ε3E0 : c2∂2
ξB1,0 = −κ

ρ
(B3,0 − A3,0), (C.7)

ε3E1 : −ω2B3,1 + 2iωc∂ξB2,1 + c2∂2
ξB1,1 − 2iω∂τB1,1 = −κ

ρ
(B3,1 − A3,1). (C.8)
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Meanwhile, the right hand side of the first equation of (4.2) can be treated as a sum of linear

part Ln(UA, V B) and nonlinear part Nn(UA), where we define

Ln(UA, V B) :=
∑
k,j

εk{[2K2(cos jθ − 1)− κ)]Ak,j + κBk,j + 2iK2ε∂ξAk,j sin jθ

+K2ε
2∂2
ξAk,j cos jθ +O(ε3)}Ej (C.9)

and

Nn(UA) := −ε2(K3sD1A
2
1,1E

2 + c.c.)

+ ε3{2K3D1Ā1,1∂ξA1,1 + (2K3sD1Ā1,1A2,2 − 3K4D
2
1|A1,1|2A1,1 − 2K3D1∂ξA1,0A1,1)E

+ [2K3D1(D1 − 3)A1,1∂ξA1,1 − 2K3sD1A1,1A2,1]E2

+ [2K3s(D1 + s2)A1,1A2,2 +K4D
2
1(3−D1)A3

1,1]E3 + c.c}+ h.o.t., (C.10)

with the abbreviation h.o.t. meaning higher order terms. Here s = 2i sin θ and D1 =

4 sin2(θ/2). The left hand side of the first equation of (4.2) reads

ÜA
n (t) :=

∑
k,j

εk[−(jω)2Ak,j + 2εijωc∂ξAk,j + ε2(c2∂2
ξAk,j − 2ijω∂τAk,j)

−2ε3c∂ξ∂τAk,j + ε4∂2
τAk,j]E

j(t, n). (C.11)

To match the coefficients of each εkEj(τ, ξ) term on both sides, one needs

ε1E0 : 0 = −κA1,0 + κB1,0 ⇒ A1,0 = B1,0, (C.12)

ε1E1 : −ω2A1,1 = (−D − κ)A1,1 + κB1,1, (C.13)

ε2E1 : −ω2A2,1 + 2iωc∂ξA1,1 = (−D − κ)A2,1 + κB2,1 + 2iK2∂ξA1,1 sin θ, (C.14)

ε2E2 : −4ω2A2,2 = (−4K2 sin2 θ − κ)A2,2 + κB2,2 −K3sD1A
2
1,1, (C.15)

ε3E0 : c2∂2
ξA1,0 = −κA3,0 + κB3,0 +K2∂

2
ξA1,0 + 2K3D1Ā1,1∂ξA1,1 + c.c., (C.16)

ε3E1 : −ω2A3,1 + 2iωc∂ξA2,1 + c2∂2
ξA1,1 − 2iω∂τA1,1 = (−D − κ)A3,1 + κB3,1 (C.17)

+ 2iK2∂ξA2,1 sin θ +K2∂
2
ξA1,1 cos θ + 2K3sD1Ā1,1A2,2 − 3K4D

2
1|A1,1|2A1,1 − 2K3D1∂ξA1,0A1,1.

116



Note that both (C.3) and (C.12) yield A1,0 = B1,0 but the two coefficients are not zero,

in contrast with the non-resonant homogeneous chain problem (ρ = 0). We now derive an

equation to determine them. Using (C.7) and (C.16), we obtain

[c2(1 + ρ)−K2]∂2
ξA1,0 = 2K3D1Ā1,1∂ξA1,1 + c.c., (C.18)

where we assume the non-resonance condition (4.18).

Now combining (C.4) and (C.13) yields M (A1,1, B1,1)T = 0, where the matrix M is

given by (4.6). This yields that (A1,1, B1,1)T is an eigenvector of M corresponding to zero

eigenvalue and A1,1 and B1,1 are thus connected by

B1,1 =
κ

κ− ρω2
A1,1. (C.19)

Note that κ−ρω2 6= 0, since one can check that ω2
−(θ) ≤ ω2

−(π) < κ/ρ and ω2
+(θ) ≥ ω2

+(0) >

κ/ρ. In addition, (C.5), (C.14) and (C.19) yield

M

 A2,1

B2,1

 = 2i∂ξA1,1W,

with

W =

 ωc−K2 sin θ

ωcκ/(κ− ρω2)

 (C.20)

and the matrix M defined in (4.6). The range of M being orthogonal to

W ∗ =

 1− ρω2/κ

ρ

 ,

we further obtain the compatibility condition W ∗ ·W = 0, which reads

ρκ

ρω2 − κ
=
wc−K2 sin θ

wc

κ− ρω2

κ
. (C.21)

This yields

c =
K2 sin θ (κ− ρω2)2

ω[ρκ2 + (κ− ρω2)2]
, (C.22)

and one can check that c = ω′(θ) by differentiating the dispersion equation det M = 0, or

ω4 − (D + κ+ κ/ρ)ω2 +Dκ/ρ = 0 (C.23)
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with respect to θ.

Consider now the equations (C.6) and (C.15) for ε2E2, which yield

B2,2 =
κ

κ− 4ρω2
A2,2, (C.24)

A2,2 =
K3sD1(κ− 4ω2ρ)

(4ω2 − 4K2 sin2 θ − κ)(κ− 4ω2ρ) + κ2
A2

1,1. (C.25)

This solution exists under the non-resonance condition (4.17), which is equivalent to ω(2θ)±

2ω(θ) 6= 0, as can be easily verified by substituting ω → ±2ω and θ → 2θ in (C.23).

In the same manner, (C.5), (C.8) and (C.17) yield the following linear system:

M

 A3,1

B3,1

 = 2i∂ξA2,1W +

 (c2 −K2 cos θ)∂2
ξA1,1

c2(3ρω2 + κ)/(κ− ρω2)∂2
ξB1,1

− 2iω

 ∂τA1,1

∂τB1,1


+

 −2K3sD1Ā1,1A2,2 + 3K4D
2
1|A1,1|2A1,1 + 2K3D1∂ξA1,0A1,1

0

 .

In order for the right hand side to lie in range M = (W ∗)⊥, and in view of (C.21), the

following compatibility condition must be satisfied

(c2 −K2 cos θ)∂2
ξA1,1 − 2iω∂τA1,1 − 2K3sD1Ā1,1A2,2 + 3K4D

2
1|A1,1|2A1,1 + 2K3D1∂ξA1,0A1,1

=
ρκ

ρω2 − κ
{c

2(3ρω2 + κ)

(κ− ρω2)
∂2
ξB1,1 − 2iω∂τB1,1}.

Using (C.19), (C.25) and substituting B1,1 and A2,2 into the above identity yields the fol-

lowing modulation equation in terms of A1,1 and A1,0 :

−2iω
ρκ2 + (ρω2 − κ)2

(ρω2 − κ)2
∂τA1,1 =

{
K2 cos θ − c2[1− 3ω2ρ2κ2 + ρκ3

(ρω2 − κ)3
]

}
∂2
ξA1,1

+

{
2K2

3s
2D2

1(κ− 4ω2ρ)

(4ω2 +K2s2 − κ)(κ− 4ω2ρ) + κ2
− 3K4D

2
1

}
|A1,1|2A1,1 − 2K3D1∂ξA1,0A1,1,

(C.26)

which is coupled to (C.18). Introducing

γ =
(ρω2 − κ)2

ω[ρκ2 + (ρω2 − κ)2]
,

one can show that the curvature is given by

ω′′ = {K2 cos θ − c2[1− 3ω2ρ2κ2 + ρκ3

(ρω2 − κ)3
]}γ. (C.27)

This completes the derivation of the coupled modulation equations (4.14) and (4.15).
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	4.3. Representative plots of group velocity c (green), curvature '' (red) and h"0365h (blue) as functions of the scaled wave number / at different mass ratios for optical (solid) and acoustic (dashed) branches. Here = 3/2, 0 = 4/9, =1.
	4.4. Top plots: snapshots of a moving bright breather solution xn and yn of the original system (4.2), with initial data determined from (4.38), (4.39). The breather moving from the middle of the chain to the right is shown here at t =0 (connected red squares), t = 50.125Tb 145 (connected green circles) and t = 200Tb 578 (connected black squares). The same plots compare the time snapshots of the approximate analytical solution (connected blue stars) and the numerical evolution result at the same times. Bottom plot: relative errors Ex(t) (solid red curve) and Ey(t) (dashed blue curve). Here = /2, = 1, = 1/3, 0 = 4/9, b = - 0.0001 = 2.1752, N = 500 and n0 = 0.
	4.5. Left plot: energy density of a moving bright breather in the system (4.2). Right plot: time evolution of the breather's energy center. Here all the parameters are the same as in Fig. 4.4.
	4.6. Top plots: comparison of time snapshot of approximate solution (connected stars) and exact solution (grey curve) at t=150Tb 469. Bottom plot: relative errors Ex(t) (solid curve) and Ey(t) (dashed curve). Inset: the relative error for t [0, 200]. Here = /8, b = - 0.0001 = 2.0097, and the other parameters are the same as in Fig. 4.4.
	4.7. Left plot: energy density of a moving breather in system (4.2). Right plot: time evolution of the breather's energy center. Here = /8, b = - 0.0001 = 2.0097, and the other parameters are the same as in Fig. 4.4.
	4.8. Left panels: comparison of the time snapshots of the approximate analytical solution (connected blue stars) and the numerical evolution result (red squares) at t=200Tb558.2 for = 3/5, b = - 0.0001 = 2.2512, N=1000; the other parameters are the same as in Fig. 4.4. Right panels: energy density of the moving bright breather in the system (4.2). The dark blue color marks a range of small energy densities in order to better show the growing size of the tail behind the breather. The inset depicts the relative errors Ex(t) (red) and Ey(t) (blue).
	4.9. Left panels: comparison of the time snapshots of the approximate analytical solution (acoustic bright breather, connected blue stars) and the numerical evolution result (connected red squares) at t = 200Tb 994 for = 1.948, b = - 0.0001 = 1.264, N=1000; the other parameters are the same as in Fig. 4.4. Insets zoom in on the small-amplitude optical breather that eventually separates from the initial acoustic breather. Right panel: energy density of the numerical solution of the system (4.2) showing the energy density of the parent breather (darker color) and the small-amplitude breather detaching from it (faint lighter color bounded by the dash-dotted lines for better visibility), also shown in the inset that enlarges the region inside the rectangle.
	4.10. Left panels: comparison of the time snapshots of the approximate analytical solution (optical bright breather, connected blue stars) and the numerical evolution result (connected red squares) at t = 200Tb 815.28 for =10, = 1.23, b = - 0.0001 = 1.5414, N=1000; the other parameters are the same as in Fig. 4.4. Relative errors Ex(t) (red) and Ey(t) (blue) are shown in the top left inset. Bottom left inset zooms in on the train of acoustic waveforms that eventually separate from the initial optical breather. Right panel: energy density of the numerical solution of the system (4.2). The inset zooms in on the train of acoustic breather-like structures (not visible in the main energy plot), with dash-dotted lines added for better visibility.
	4.11. Left plot: a bond-centered dark breather solution (connected stars) with frequency b = 2.42. Squares represent the strain profile after integration over Tb. Circles represent the initial profiles computed from the approximation (4.47). Right plot: a site-centered solution. The relative errors Eb(Tb) of both solutions are less than 310-9. Here =3/2, =1, 0 = 4/9 and = 1/3.
	4.12. Left plot: renormalized 2 norm of the bond-centered dark breather solution versus frequency b with the vertical center Cx = 0. The black vertical line shows the edge of the optical branch opt = 2.4495. Right plot: same as the left, but for site-centered solution. Regions where a real instability is present are indicated by red dots. Here =3/2, =1, 0 = 4/9 and = 1/3.
	4.13. Moduli of Floquet multipliers versus frequency b for weakly nonlinear (top) and strongly nonlinear (bottom) types. Recall that these refer to solutions below and above the turning point in Fig. 4.12, respectively. Left and right plots corresponds to bond- and site-centered dark breathers respectively. Blue dots represent Im() =0, red diamonds represent Im() =0, > 0 and green squares represent Im() = 0, < 0. The Floquet multipliers for b = 2.42 in the complex plane are shown in the respective insets. Here = 3/2, =1, =4/9 and = 1/3.
	4.14. Left plot: moduli of Floquet multipliers of bond-centered breathers for frequencies 2.4235 bopt. Right plots: contour plot of the time evolution of the bond-centered solution for b = 2.4255. The color bar corresponds to the magnitude of the strain xn (top) and yn (bottom). The breather appears to be very long-lived despite the instability suggested by the left panel of the figure. Here = 3/2, =1, =4/9 and = 1/3. 
	4.15. Left plot: snapshots of the strain profile of site-centered dark breather solution at time t = 0 (connected red stars) and t = 500 (connected blue squares). Right plots: contour plot of the time evolution of the site-centered solution for b = 2.40. The color bar corresponds to the magnitude of the strain xn (top) and yn (bottom). Here =3/2, =1, =4/9 and = 1/3. Clearly, the dark breather structure gets destroyed as a result of its spectral instability.
	4.16. Left panel: renormalized 2 norm of the bond-centered solution bifurcating from the acoustic branch versus b with the vertical center Cx = 0. The black vertical line shows the =  edge of the acoustic branch acs=1.414. Right panel: moduli of the Floquet multipliers versus frequency b for weakly nonlinear (top) and strongly nonlinear (bottom) types. Insets: the Floquet multipliers in the complex plane. Here =3/2, =1, =4/9 and = 1/3.
	4.17. Left plot: renormalized 2 norm of the bond-centered dark breather solution bifurcating from the optical brach versus frequency b with the vertical center Cx = 0. The black vertical line shows the edge of the optical branch opt = 2.2282. Right plot: same as the left, but for site-centered solution. Portions of the curve where a real instability is present are indicated by red dots. Here =3/2, =1, 0 = 4/9 and = 1.
	4.18. Results of the simulation with the same parameters as in Fig. 4.13 except for = 1. Here the corresponding dark breathers bifurcate from the optical branch.
	4.19. Left panel: sample profiles (connected stars) of bond-centered dark breathers at the frequency b = 2.207. Connected squares represent strain profiles after integration over 526Tn 1500. Right panel: contour plots of the time evolution of the bond-centered solution for b = 2.207. The color bar corresponds to the magnitude of the strain xn (top) and yn (bottom). Clearly, the instability of the stationary dark breather solutions sets it into motion.
	4.20. Results of the simulation with the same parameters as in Fig. 4.13 except for = 10. Here the corresponding dark breathers bifurcate from the optical branch.
	4.21. Results of the simulation with the same parameters as in Fig. 4.13 except for = 1/10. Here the corresponding dark breathers bifurcate from the acoustic branch.
	B1. (a) Dependence of the Peierls P stress on the width  of the spinodal region at =1. Here ms is the number of spinodal n=1 vertical bonds in a stable equilibrium configuration, while an unstable equilibrium has ms+1 such bonds. (b) P() at =2 (dashed curve), =1 (solid curve) and =0.5 (dotted curve). Insets show the Peierls stress at smaller .
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