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Optical regulation using light as an external trigger was applied to the control of biological 

processes with high spatio-temporal resolution. Photoremovable caging groups were site-

specifically incorporated onto oligonucleotides and proteins to optically regulate their function in 

biological environments, typically for the photochemical control of gene expression. These 

caging group modifications enabled both OFF → ON and ON → OFF optochemical switches for 

important chemical biology tools. Oligonucleotides containing caging group modifications were 

synthesized to regulate nucleic acid function with light. Specifically, photocaged triplex-forming 

oligonucleotides were developed to optochemically control transcription in cell culture. Light-

activated antagomirs were designed for the optical inhibition of miR-21 and miR-122 function in 

the regulation of endogenous microRNA activity. This technology was then applied to the study 

of miR-22 and miR-124 function in cortical neuron migration during cerebral corticogenesis. 

Splice-switching oligonucleotides were engineered to optically control mRNA splicing pathways 

in both human cells and zebrafish. The optical control of plasmid-based gene expression was 

demonstrated with a caged promoter, and applied to the photochemical activation of transcription 

in a live animal model. The caging of oligonucleotides was also applied to DNA computation in 

the production of optically controlled logic gates and amplification cycles, providing spatio-

temporal control over hybridization cascades to add new functionality to DNA computation 

modules. These studies in DNA computation led to the development of novel biosensors for 
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logic gate-based detection of specific micro RNA signatures in live cells. In addition, proteins 

were optically controlled through the site-specific installation of caging groups on amino acid 

side chains that are essential for protein function using unnatural amino acid mutagenesis in 

mammalian cells with an expanded genetic code. A caged lysine analogue was incorporated into 

T7 RNA polymerase to photochemically regulate transcription in the development of a light-

activated synthetic gene network and light-triggered RNA interference. A light-activated Cas9 

endonuclease was engineered through the installation of a caged lysine analogue to optically 

control CRISPR/Cas9 editing of both exogenous and endogenous genes. Lastly, a system for the 

incorporation of unnatural amino acids in zebrafish was studied in efforts to produce the first 

vertebrate species with an expanded genetic code. 
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1.0   Introduction to Caged Oligonucleotides and Proteins 

Gene expression is tightly controlled in single cells and multicellular organisms, and the precise 

activation and deactivation of genes in high spatio-temporal resolution is required for many 

biological processes.
1
 In order to dissect or reprogram genetic circuits with the same spatio-

temporal resolution observed in nature, light can be used as an external control element. Light 

activation provides advantages over other methods of external triggers, such as specific timing or 

location of irradiation, controlled amplitude, and wavelength specificity that is fully orthogonal 

in most biological systems.
2
 The use of light-removable protecting groups to control biological 

events was first applied to cyclic adenosine monophasphate
3
 (cAMP) and adenosine 

triphosphate
4
 (ATP). While initially developed by organic chemists for use as protecting groups 

for multi-step syntheses,
5
 these “caging” groups found many new roles in the regulation of 

biochemical processes.
6
 Photoactivated nucleotides were initially used to study the kinetics of 

ion channels,
7
 muscle fibers,

8
 and triphosphate-based reactions,

9
 providing insight into dynamic 

biological activities, such as sensory neuronal function.
10

 These findings were some of the 

earliest applications of caged small molecules to study biological processes with light, allowing 

for rapid activation and analysis of function in ways that were previously not possible. Building 

on that research, glutamate, ɣ-aminobutyric acid, inositol trisphosphate, and calcium have all 

been rendered light-activatable for the optical interrogation of neurotransmitters and subsequent 

photostimulation of neural circuits (Figure 1.1).
11
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Figure 1.1: Photostimulation of caged neurotransmitters. 

Caged neurotransmitters (brown hexagons) can be activated with light, allowing the decaged 

compounds (blue triangles) to interact with neuronal targets, for example in the activation of ion 

channels. Image adapted with permission from Szobota and Isacoff, Annu. Rev. Biophys. 2010, 

39:329-48. 

 

The installation of caging groups on larger biological macromolecules is a versatile 

approach to the optical regulation of DNA, RNA, and protein activity.
12

 Several photoremovable 

protecting groups are available for researchers to interrogate biological systems using light, each 

with different synthetic requirements for installation and unique parameters for the release of the 

active biomolecule.
13

 Biomolecules are caged with these photolabile groups in a manner that 

specifically inhibits function, which is then restored through light irradiation induced 

“decaging”. The central focus of this thesis is the development of chemical biology tools based 

on caged oligonucleotides and caged proteins that enable control of important biological 

processes in a precise manner that other research tools cannot provide. The two main 

photoremovable protecting groups that were utilized in this thesis are derivatives of the ortho-

nitrobenzyl alcohol (ONB) and coumarin-4-ylmethanol molecules.
13

 

 Caging groups can be installed onto nucleic acid bases to optically activate 

oligonucleotide duplex formation (Figure 1.2A), which is critical for the transfer of genetic 
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information and gene expression. Additionally, caged oligonucleotides have applications in the 

field of DNA computation as logic gate components. Proteins can also be optically controlled 

through the site-specific installation of caging groups on amino acid residues at active sites or in 

close proximity to residues required for biological activity (Figure 1.2B). The photochemical 

control of biological processes with caged biomolecules should fulfill the following 

requirements: A) caging group linkage that is stable under physiological conditions, B) complete 

inhibition of the biological function of interest, C) decaging with non-damaging light,
14

 D) rapid 

and efficient decaging, as well as E) generation of nontoxic byproducts.
15

   

 

inactive

caged lysine

active

native lysine

A

B

guanosinecaged cytosine base pair hydrogen bonds

365 nm

365 nm

 

Figure 1.2: Photocaging of biological molecules. 

A) DNA nucleobase caging prevents base pair hybridization until decaged through UV irradiation. 

R groups represent oligonucleotide chains. The ortho-nitrophenylethyl (NPE) caging group is 

shown in red. B) Site-specific amino acid caging inactivates protein function until decaged with 

UV irradiation. The 6-nitropiperonyloxycarbonyl (NPOC) caging group is shown in red. 
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1.1 Optical Control of Oligonucleotide Function 

The term oligonucleotide describes a broad class of nucleic acid polymers, including 

deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). These organic polymers consist of a 

sugar-phosphate backbone that is connected at the 3’ and 5’ positions, with heterocyclic 

nitrogenous bases that are linked to the sugars at the 4’ position (Figure 1.3).
16

 There are 

structural differences between DNA and RNA that are biologically relevant for specific function. 

The 2’ position of the RNA sugar ring has a hydroxyl group, in comparison to the 2’ hydrogen 

on DNA. There is a modification between the DNA base thymine and the RNA base uracil, in 

which the DNA base form is methylated. DNA exists as an anti-parallel double-stranded helix, 

where as RNA is observed as single stranded helical polymers that can form complex secondary 

structures, such as stem-loops and bulges. 
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Figure 1.3: Comparison of RNA and DNA helices as well as nucleobase structures.  

Image adapted from the National Human Genome Research Institute. 

 

 There are many known and well defined roles of oligonucleotides in biology, specifically 

in genetic information transfer and in the control of gene expression. The central dogma 

describes the flow of genetic information,
17

 in which DNA is transcribed into RNA and RNA is 

translated into protein. Within this genetic flow, there are many different applications of 

synthetic oligonucleotides for the regulation of gene function. The design parameters for 

synthetic oligonucleotides can alter gene expression by interacting with specific substrates within 
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the central dogma; for example, binding to DNA with triplex-forming oligonucleotides (TFOs) 

can inhibit transcription into RNA,
18

 mRNA templates can be inhibited with antisense agents,
19

 

microRNA (miRNA) and RNA interference (RNAi) pathways can be controlled with antagomirs 

or synthetic small-interfering RNA (siRNA) duplexes,
20-22

 splice-switching oligonucleotides 

(SSOs) can control RNA splicing pathways of translation into functional protein products,
23

 

protein function can be inhibited by aptamers,
24

 etc. These many classes of oligonucleotides have 

broad structural modification requirements and utilize different mechanism for controlling gene 

expression.  

Synthetic oligonucleotides have been manufactured with a variety of modified functional 

groups. The modifications can be introduced at different domains of the oligonucleotide. 

Common regions for modification include the phosphate backbone,
25

 sugar ring,
26

 nucleobase,
27

 

and chain terminus.
28

 These modifications have broad and unique characteristics, such as 

fluorophores for oligonucleotide labeling or sulfur containing bases capable of forming disulfide 

bonds in bioconjugation reactions. A large focus of nucleic acid modification is to provide 

important functionality for biological applications, including increased stability, tighter binding 

affinity, and enhanced in vivo efficacy.
29

 However, the application of caging groups provides the 

opportunity to photochemically control oligonucleotide function with high levels of spatial and 

temporal resolution. These caging groups are typically introduced at the common oligonucleotide 

modification sites described above. The function of caged oligonucleotides can generally be 

described by two classes: those containing photoremovable protecting groups on structural 

components, and those containing photocleavable linkers between structural components (Figure 

1.4).
30

 The application of these optically controlled oligonucleotides, for either in vivo or in vitro 
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studies, can also generally be described in two classes: those that are optically activated, or those 

that are optically deactivated. 

 

B

Deactivation

C
Activation

Deactivation

Activation

A
Activation

 

Figure 1.4: Caging approaches to regulate oligonucleotide binding with light.  

A) Photocaged phosphate backbones. B) Photocleavable linkers. C) Photocaged nucleobases. 

Modified oligonucleotides are indicated in blue, with the photoresponsive moieties indicated in 

red. Target strands are indicated in green. Arrow above DNA represents transcription. Image 

adapted with permission from Liu and Deiters, Acc. Chem. Res. 2014, 47(1):45-55. Copyright 

2013 American Chemical Society. 

 

Oligonucleotides caged in either of these manners have been used for the in vitro 

photochemical control of probes for abasic sites in RNA,
31

 recombinant DNA manipulation,
32

 

DNA aptamer activation,
33

 and ribozyme function.
34, 35

 There are many examples of optically 

controlled gene regulation using caged oligonucleotides in vivo with high spatial and temporal 

control, including caged plasmid DNA and mRNA,
36

 DNA decoys,
37

 antisense technology,
38, 39

 

and RNA interference.
40, 41

  

Methods for the generation of optically controlled oligonucleotides involve the 

modification of nucleic acid structures, either through post-synthesis chemical reactions or 

during solid-phase synthesis of caged oligonucleotides. A phosphate backbone caged plasmid 
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was generated through chemical modification of a native nucleic acid structure (Figure 1.4A), 

but lacked sequence-specificity and the ability to control the number of caging groups attached.
42

 

While backbone caging inactivated transcription of the plasmid, full restoration was not achieved 

with UV irradiation due to incomplete removal of the numerous caging groups. Similar 

approaches to apply caging groups nonspecifically to the backbone of plasmid DNA and mRNA 

structures for the control of gene expression were also met with the same limitations (i.e., only 

partial recovery of function after long irradiation times).
36, 43

 This approach was then applied to 

the control of small interfering RNA (siRNA) oligonucleotides, but again clean OFF → ON light 

switching could not be realized.
44

 However, significant progress has been made over the years in 

the selective installation of phosphate caging groups and control over the number of caging 

group additions. Through these improvements, the potential of light activated RNA interference 

(LARI) with terminal phosphate caged siRNA duplexes was realized for gene regulation in cell 

culture (Figure 1.5).
45
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Figure 1.5: Patterned gene expression using light-activated RNAi.  

A) Caging groups were installed at the 5’ and 3’ terminal phosphates on a dsRNA duplex targeting 

GFP. B) The siRNA duplexes were transfected into cells with GFP and RFP expression plasmids, 

then irradiated with UV light for 10 min. C) UV irradiation through spatially restricted masks 

enables spatial control of RNAi. Image adapted with permission from Jain et al, J. Am. Chem. Soc. 

2011, 133(3):440-446. Copyright 2011 American Chemical Society. 

 

In this study, the siRNA targeting GFP was chemically modified in the duplex form, 

demonstrating post-synthesis addition of caging groups onto oligonucleotides. A total of four 

caging groups were incorporated per duplex, as modification to each terminal phosphate was 

achieved (Figure 1.5A). To test the optical activation of RNAi, the siRNA duplexes were 

transfected into cells with expression vectors for two reporter genes, green fluorescent protein 

(GFP; RNAi target) and red fluorescent protein (RFP; transfection control). After transfection, 

the cells were UV irradiated and expression of the fluorescent reporters was analyzed (Figure 

1.5B). The noncaged siRNA duplex showed significant reduction of GFP expression, while a 

negative control scrambled siRNA sequence containing the caging group modifications showed 
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no activity. The caged siRNA duplex targeting GFP showed no inhibition of GFP expression in 

the absence of UV irradiation, and photochemical activation with UV irradiation reduced GFP 

expression to similar levels as the noncaged siRNA duplex. This caged siRNA methodology was 

then applied to the spatial control of RNAi, by irradiating cells transfected with the caged 

oligonucleotide through spatially restricted masks (Figure 1.5C). Spatial control of the caged 

siRNA was demonstrated with inhibition of GFP expression, as the optical activation was 

restricted to the irradiated areas outside of the “LARI” masks. 

Working towards the site-specific incorporation of internal photoreactive moieties into 

oligonucleotides, photocleavable linkers have been introduced to link multiple oligonucleotide 

segments, or to link the terminal ends of a single oligonucleotide (i.e. circularization). These 

reactions are also performed post-synthesis, to modify nucleic acids through chemical ligation, 

and enable light-induced degradation (Figure 1.4B). The use of photocleavable linkers for 

photochemical regulation of oligonucleotide function in biological environments has been well 

demonstrated,
46

 especially with morpholinos (MOs), which are chemically altered 

oligonucleotides that contain a morpholine ring and dimethyl amine-modified phosphate 

backbone.
47

 These modifications enhance the MO stability and efficacy for in vivo targeted gene 

knockdown commonly applied in zebrafish studies.
48

 While the composition of MOs differs 

from other nucleic acids, the use of photochemical caging groups can still be applied for the 

optical control of oligonucleotide activity. For example, a MO antisense agent containing a 

photocleavable linker was applied to the optochemical regulation of endogenous gene inhibition 

in zebrafish (Figure 1.6).
38
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Figure 1.6: Light-controlled gene silencing in zebrafish embryos. 

A) The MO morpholino (blue) is connected to a complementary inhibitor strand (red) through a 

photocleavable linker, enabling light-triggered hybridization to RNA targets. The structure of the 

linker for the caged ntl morpholino (cMO) is shown. B) Embryos were injected with the ntl cMO 

and exposed to UV light or kept in the dark. C) Western blot of ntl expression, with a β-actin 

control. Image adapted with permission from MacMillan Publishers Ltd: Nature Chem. Bio. 

133(3):440-446, copyright 2011. 

 

Here, a MO targeting ntl, a gene responsible for formation of the tail and notochord, was 

bound through a photocleavable linker to an inhibitor strand containing a complementary 

sequence (Figure 1.6A). Thus, the binding of the caged MO (cMO) to its target mRNA was 

prohibited until the inhibitor strand was removed through photochemical cleavage of the linker. 

When injected into zebrafish embryos, activation of cMO function through light irradiation 

resulted in the loss of posterior structures and tail deformation (Figure 1.6B). Additionally, the 

loss of ntl was observed by Western blot (Figure 1.6C). This study demonstrated that 

photoresponsive nucleic acids could be applied to live animals to achieve spatio-temporal 

regulation of gene expression. 
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Alternative methods for the synthesis of caged oligonucleotides were developed to 

further control the specific number and location of the caging groups. To produce 

oligonucleotides containing small, site-specific photoreactive moieties, ONB photocleavable 

backbones were incorporated at the interbase linkages of oligonucleotide chains to perform light-

induced degradation and phototriggered hybridization at near-UV wavelengths.
49

 This method 

utilized solid-phase synthesis with modified phosphoramidites to determine the specific location 

of the caging group.
50

 A similar strategy with a phosphoramidite containing an ONB-ether 

derivative demonstrated enhanced utility as a protecting group at the 2’ hydroxyl group during 

RNA synthesis, with increased stability during post-synthesis deprotection, while still 

maintaining the photoresponsive properties of the caged RNA oligonucleotide.
51

 Moreover, 

photocleavable linkers within the sequence of a single stranded oligonucleotide have been 

applied to light-induced degradation for OFF → ON photoswitching in live animals.
52

 The site-

specific incorporation of an ONB caging group into oligonucleotides using this method was also 

successfully demonstrated with caging of the 2’ sugar position in RNA, and utilized to 

photochemically control catalytic activity of the hammerhead ribozyme (Figure 1.7).
34

  

 

 

A B

 

Figure 1.7: Photocontrol of a ribozyme reaction with caged RNA. 

A) Canonical secondary structure of the hammerhead ribozyme substrate complex. The caging 

group was synthetically installed onto the 2’ sugar position at location X. B) Denaturing PAGE 

analysis of 
32

P-end-labeled unmodified and caged RNA substrates. Image adapted from Chaulk 
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and MacMillan, Nucl. Acids Res. 1998, 26(13): 3173-3178 by permission of Oxford University 

Press. 

 

In this study, the photocaged modification was incorporated site-specifically onto a 

hydroxyl group at the 2’ sugar position of a RNA residue responsible for ribozyme cleavage 

(Figure 1.7A). Through in vitro analysis, the caged RNA substrate only showed cleavage after 

UV photolysis of the caging group (Figure 1.7B). These results demonstrated that the reactive 2′ 

hydroxyl functionality in a RNA ribozyme could be caged through sugar modification to initiate 

catalytic cleavage upon photolysis. However, the methods described thus far all lack the ability 

to disrupt the base pair hybridization at nucleobase sites, which are most often associated with 

the oligonucleotide “information storage” that ultimately confers activity in gene regulation.  

The most widely discussed modifications in this thesis are nucleobase caging groups 

(Figure 1.4C),
30

 in which the sites responsible for hydrogen bonding to other bases are blocked 

to sterically restrict duplex formation and hybridization of the oligonucleotide complement.
53

 

Previous reports demonstrated that nucleobases could be modified with ONB derivatives using 

modified phosphoramidites for nucleobase protection and photolysis deprotection during solid-

phase synthesis.
54

 However, the utility of these photoremovable protecting groups in biological 

applications was not immediately realized. The first biological application for the incorporation 

of a caged nucleoside was achieved with a modified phosphoramidite in the synthesis of a single 

stranded oligonucleotide containing thiolether linkages at an adenosine residue, for the 

photochemical activation of DNA enzymatic function, although this caging site was not utilized 

for the inhibition of base pairing.
55

 This caging group unfortunately required activation 

wavelengths between 250-280 nm, thus representing limited utility in the interrogation of true 

biological systems, which rely on nondamaging UV-A (or longer) wavelengths for light 

activation. Therefore, several groups expanded upon the approach, applying nucleobase caging 
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technology to a number of oligonucleotide structures for photochemical activation at near-UV 

wavelengths. The incorporation of nucleobase caging group on a thymine residue produced a 

temporary mismatch that enabled the photoactivation of transcription using a caged promoter 

region in a DNA template.
56

 A similar caged thymidine residue was utilized in the optochemcial 

regulation of a DNA-based aptamer targeting thrombin (Figure 1.8). 

 

A

B

 

Figure 1.8: Light regulation of aptamer activity.  

A) The G-qaudruplex DNA-based thrombin aptamer was caged at a critical thymidine residue to inhibit 

binding to thrombin in the absence of UV light. B) Binding assay of the caged aptamer (A2) to thrombin, 

with and without irradiation. Image adapted with permission from Heckel and Mayer, J. Am. Chem. Soc. 

2005, 127(3):822-823. Copyright 2005 American Chemical Society. 

 

The thrombin aptamer was modified with a synthetically installed caged thymidine 

residue, which did not interrupt the G-quadruplex secondary structure formation (Figure 1.8A). 

However, the site-specific caging group was placed in a location that interrupted binding of the 

aptamer to the thrombin protein substrate. In the absence of UV irradiation, no binding between 

the aptamer and thrombin could be detected (Figure 1.8B). However, light irradiation restored 

aptamer recognition of the protein, demonstrating that aptamer function could be 



 

 15 

photochemically activated with caged nucleobases. Additionally, the functional inhibition of 

thrombin-dependent blood clotting was demonstrated with a human plasma clotting assay, 

showing that the optical control extended beyond simple binding assays. 

In conjunction with the caged thymine, a nucleobase caged guanine residue was used to 

control G-quadruplex formation with light, expanding the number of reported caged DNA 

residues.
57

 Similarly, nucleobase caging of guanine within an RNA oligonucleotide was used to 

study folding kinetic of RNA-RNA interactions.
58

 In a rather expansive effort, all four naturally 

occurring RNA nucleobases were photoprotected and applied to the light regulation of RNA 

folding and tertiary structure formation.
59

 In order to add an additional layer of functionality into 

the nucleobase caging approach, a photocleavable quencher moiety enabled not only disruption 

of duplex formation, but also the ability to monitor decaging through an adjacent fluorophore.
60

 

While these initial nucleobase caging approaches had some drawbacks, including specialized 

synthesis condition requirements or relatively poor decaging kinetics, they paved the way for 

more advanced technologies to be developed. For example, the use of nucleobase caging was 

subsequently applied to siRNA molecules for optical regulation of RNA interference (Figure 

1.9).
40
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Figure 1.9: Light-activated RNA interference with nucleobase-caged siRNAs. 

A) Nucleobase caging groups (©) were incorporated into an siRNA strand targeting GFP. B) The 

relative GFP expression was determined for a series of modified siRNA  oligonucleotides. Image 

adapted with permission from Mikat and Heckel, RNA. 2007, 13:2341-2347. Copyright 2007 RNA 

Society 

 

Here, the nucleobase caged guanine and thymidine residues were synthetically installed 

onto siRNA strands targeting GFP. These caging groups did not inhibit complete hybridization 

between the siRNA and mRNA duplex, but rather introduced temporary mismatches to create a 

“bulge” in the duplex recognition site (Figure 1.9A). These siRNA oligonucleotides were 

transfected into cells expressing the GFP and RFP reporter genes, and UV irradiated or kept in 

the dark. The GFP expression levels were then normalized to the RFP expression (Figure 1.9B). 

The nucleobase caged siRNA reagents were not active in the absence of irradiation, and no 

inhibition of GFP expression was observed. However, after UV irradiation the siRNAs 

containing caging groups at the mRNA cleavage site were activated, and reduced GFP 

expression was observed. These results demonstrated that the nucleobase caging approach could 

be applied to optical control of RNAi with site-specific modified residues. 

Since those initial developments, many new nucleobase caging groups incorporated into 

oligonucleotides through synthetic means (Figure 1.10).  This general approach allowed the 

photosensitive modification to be placed at any base residue of interest through the incorporation 
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of synthetic modified phosphoramidites during solid-phase oligonucleotide synthesis.
61

 Since the 

nucleobase caging group can be applied to virtually any DNA or RNA base at defined residues, 

the study of very specific base-base interactions was made possible.  

 

 

Figure 1.10: Chemical structures of caged nucleobases incorporated into oligonucleotides. 

The light-removable caging groups are shown in red. Image adapted with permission from Liu and 

Deiters, Acc. Chem. Res. 2014, 47(1):45-55. Copyright 2013 American Chemical Society. 

 

Oligonucleotides containing caged nucleobases have been synthesized as standard DNA, 

phosphorothiotate (PS) backbone modified, and 2’-O-methyl (2’OMe) nucleobase modified 

compositions. The application of photochemically modified oligonucleotides will be further 

described in Chapter 2.0 for the regulation of gene function and in Chapter 3.0 for the regulation 

of DNA computation. 
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1.1.1 Synthesis of Modified Oligonucleotides. 

Oligonucleotide synthesis was performed using standard β-cyanoethyl phosphoramidite 

chemistry on solid-phase supports.
50

 A refurbished Applied Biosystems Model 394 automated 

DNA/RNA synthesizer (Life Technologies) and a MerMade4 synthesizer (Bioautomation) were 

used for all oligonucleotide manufacturing. All oligonucleotide synthesis reagents were obtained 

from Glen Research. The synthesis cycle (Figure 1.11) is based on a reactive 3’ phosphorous 

coupled with a 5’ hydroxide to polymerize phosphoramidites into nucleotide chains. Synthesis 

was performed in the 3’  5’ direction with the first base immobilized on CPG resin column at 

the 3’ sugar position. The initiating synthesis step was the removal of a 5’ DMTr protecting 

group and formation of a reactive 5’ OH group through treatment with TCA. This was performed 

in several successive reactions since the DMTr cation is highly reactive and can re-tritylate any 

reactive nucleophiles. The removal of the DMTr cation can be observed and quantified by the 

absorbance at 498 nm, a process known as trityl monitoring. The incoming phosphoramidite was 

prepared for coupling through activation with tetrazole, forming a tetrazoyl phosphoramidite. 

This reactive species coupled with the 5’ OH of the previous base and formed a 5’  3’ 

phosphorous linkage. A capping step was performed to acetylate any remaining 5’ OH groups in 

order to truncate any failed coupling reactions. Acetic anhydride and N-methyl imidazole were 

combined to form a strong acetylating agent that capped failed sequences, preventing further 

coupling with activated phosphoramidites and terminating the oligonucleotide chain elongation. 

The phosphite triester linkage of successful coupling reactions was then oxidized through 

treatment with an I2 / H2O / THF / pyridine mixture to form a more stable phosphate triester. 

This final step of a single base addition cycle leaves a 5’ DMTr protecting group on the newly 
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added nucleotide, which can be coupled with incoming activated phosphoramidites through 

additional cycles to complete the oligonucleotide chain. Once all nucleotides have been added 

and the final 5’ DMTr group has been removed through TCA treatment, the oligonucleotide was 

cleaved from the resin with concentrated ammonium hydroxide/methyl amine (AMA, 1:1) 

leaving a 3’ hydroxide group. Deprotection of the cyanoethyl phosphate protecting groups and 

exocyclic amines on certain bases (A, C, and G) was also performed with the AMA treatment at 

65 °C for 2 hr, forming phosphodiester linkages and nucleobase structures that are naturally seen 

in native DNA. Subsequent purification was performed with sephadex
 
columns utilizing size 

exclusion.
62

 UV absorption at 260 nm was used to calculate molar concentrations from the 

oligonucleotide extinction coefficient (IDT OligoAnalyzer 3.1). Polyacrylamide gel (PAGE) 

analysis was used to confirm the size and purity of the final product. In the cases where multiple 

bands were observed, truncated oligonucleotides were removed from the final product through 

band excision and elution of the full-length oligonucleotide. Further analysis of the 

oligonucleotide can be conducted with HPLC and mass spectrometry methods.
63
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Figure 1.11: DNA synthesis cycle with phosphoramidites. 

 

A number of caged DNA phosphoramidites have been synthesized in the Deiters lab and 

are incorporated into oligonucleotides through the same synthesis cycle as described above 

(Figure 1.12). These monomers contain the ONB derivatives ortho-nitrophenylethyl (NPE) or 6-

nitropiperonyloxymethyl (NPOM), and were designed to remain stable under standard 

oligonucleotide synthesis conditions, while exhibiting efficient decaging at UV wavelengths. 

When placed on exocyclic amines, the caging modifications also act as protecting groups during 

oligonucleotide synthesis, with functional groups that are orthogonal to the synthesis conditions. 
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NPE-caged dA

NPE-caged dC

NPOM-caged dT

NPOM-caged dG
  

Figure 1.12: Caged DNA phosphoramidites synthesized in the Deiters lab.  

Caging groups have been applied to phosphoramidites for all four native DNA bases (A, T, C, and 

G). NPE and NPOM caging groups are indicated in red. 

 

Modifications such as 2’OMe sugar rings have been shown to increase affinity for the 

DNA or RNA targets, as well as cellular stability of the oligonucleotide.
64

 2’OMe caged 

phosphoramidites have been synthesized in the Deiters lab, as well as phosphoramidites that 

employ light-cleavable groups at positions that are not involved in base hybridization (Figure 

1.13). Phosphorothioate (PS) linkages were also of interest due to the increased stability and 

applications in molecular biology, such as siRNA or antisense oligonucleotides.
65

 The 

sulfurization of nucleotide backbone linkages was performed using a standard ABI synthesis 

cycle and the Beaucage sulfurizing reagent.
66
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DEACM linker NPOM-caged 2’OMe-U
 

Figure 1.13: Modified caged phosphoramidites synthesized in the Deiters lab. 

Caging groups and photocleavable linkers have been installed on specialized phosphoramidites. 

Photolabile groups are indicated in red. 

 

Table 5.1 includes the sequence information on all ~110 oligonucleotides that have been 

successfully synthesized along with the corresponding application. More detailed information 

regarding synthesis conditions can be found in Section 5.2.  

1.2 Optical Control of Protein Function 

Several methods for the generation of light-activated proteins exist.
67

 Initially, optical induction 

of protein function and gene expression was demonstrated with caged small molecule effectors 

that interact with receptors to control activation of protein function with light.
68

 These systems 

showed good OFF → ON switching behavior, with low activity in the absence of light and high 

levels of gene expression after irradiation, although diffusion of the activated small molecule 

effector limited the timeframe in which the function could be observed. Similar methods were 

applied to induction of the Tet-ON system with a caged doxycycline molecule, which showed 

some delay in light activation response and also experienced issues with diffusion of the 

activated compound.
69

 However, the issue of diffusion was subsequently overcome by linking 

the ligand and receptor with a photoswitchable domain, which can be turned ON or OFF with 
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specific wavelengths of light without complete release of the ligand substrate.
70

 Caged small 

molecules were also developed for the inhibition of gene expression using a photochemically 

caged ribosomal inhibitor to turn OFF translation with light.
71

 While these methods all involve 

the caging of biologically active small molecules that target protein function, the installation of 

photochemically responsive groups onto the protein of interest is an alternative method that 

allows for more efficient photoregulation (Figure 1.14). Light-activation induces changes in 

structural perturbations, conformations, protein-protein interactions, or active site accessibility. 
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Figure 1.14: Select approaches to directly control protein function with light.  

A) Protein activity can be reversibly regulated by light irradiation when fused to a light receptor 

(e.g., light-oxygen-voltage domain). B) Two proteins can be dimerized by light irradiation when 

fused to natural photoreceptors (e.g., phytochromes). D) Proteins containing caged amino acids 

can be activated via irradiation. Proteins are indicated in blue, caging groups are indicated in red, 

and light-responsive fusion domains are indicated in orange/green. Adapted from Trends 

Biotechnol., 28(9), Riggsbee and Deiters, Recent advances in the photochemical control of 

protein function, 468-475, Copyright (2010) with permission from Elsevier. 

 

Among the methods for direct protein modification, light-oxygen-voltage (LOV) 

domains,
72

 phytochromes (Phy),
73

 and cryptochromes (Cry)
74

 have all been utilized to efficiently 

control proteins with light.
75

 These optogenetic approaches rely on the engineering of constructs 
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with a naturally occurring light-sensitive protein from plants or microbial organisms fused to the 

target protein of interest in order to render it light-responsive.
76

 The fusion proteins can then be 

photoswitched to control protein dimerization and protein conformation, enabling optical control 

of protein function (Figure 1.15).
77

  

 

 

Figure 1.15: Controlling protein function with optogenetic tools. 

The photosensitive proteins that have been used for different regulatory approaches are listed to 

the right. LOV, light-oxygen-voltage; PHYB, phytochrome B; CRY2, cryptochrome 2; DRONPA, 

photoswitchable fluorescent protein. The light-stimulated protein reverts back to its original state 

either in the dark or through a second light exposure. Photosensitive proteins are indicated in navy 

blue, binding partners are indicated as gray triangles, and protein regulation targets are shown as 

teal circles. Curvy arrows indicate the response of the system to light, whereas straight arrows 

indicate dark- or light-stimulated reversion. Image adapted with permission from MacMillan 

Publishers Ltd: Nature Rev. Mol. Cell Bio., 15:551-558, copyright 2014. 

 

As shown in the optogenetics illustration above, heterodimerization can be used to recruit 

a protein domain to a substrate for inducible protein association. To initiate gene expression, 

heterodimerization or homodimerization techniques can be used to recruit transcriptional 

activators or other DNA-modifying proteins. Fused protein domains can be used to form natural 

clusters that are dependent on domain density to activate function with light. Lastly, 

conformational changes in the photosensitive protein can be used to expose concealed functional 
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domains or activate protein function. Adaptations of the yeast two-hybrid system have been 

modified with these light-sensitive fusion proteins to reversibly control gene expression with 

light in eukaryotes.
78

  

  As an example for the utilization of conformational changes induced through 

photostimulation of LOV domains, fusion constructs were developed for the manipulation of 

kinase activity with a genetically encoded photoactivatable phosphorylation inhibitor (Figure 

1.16).
79

 Protein phosphorylation by kinases is an essential mechanism of cell signaling and 

cellular regulation of a wide range of processes and plays very important roles in human 

pathology.
80

  Optical interrogation of kinase function and cell signaling has advantages over the 

use of gene manipulation or small molecule inhibitors, which often provide poor spatio-temporal 

resolution and limited specificity for targets that utilize common cofactors. In this study, a highly 

selective naturally occurring inhibitory peptide (PKI)
81

 of cyclic-AMP dependent kinase (PKA) 

was fused with a LOV domain to produce a photoactivated PKI (PA-PKI). This construct was 

inactive until irradiated with blue light, which enabled the PKI peptide to bind to PKA, inhibiting 

downstream phosphorylation events (Figure 1.16A). The LOV domain was linked to a carboxy-

terminal helical extension (Jα)
82

 that is unwound through conformational changes after 

irradiation, resulting in increased flexibility and accessibility of the PKI peptide (Figure 1.16B). 

 In order to test the response of PA–PKI to light, the PKA-dependent phosphorylation of the 

transcription factor cAMP response element-binding protein (CREB)
83

 was analyzed (Figure 

1.16C). A reduction of CREB phosphorylation was observed through Western blot analysis when 

the PA-PKI was exposed to blue light, in contrast to no irradiation (Figure 1.16D). This study 

demonstrated that coupling genetically encoded photosensitive domains to inhibitory peptides 

enables photoswitchable endogenous kinase signaling, in a versatile approach to control 
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phosphorylation activity in living cells. The minimally invasive approach may allow for spatio-

temporal precision in the study of kinase pathways that can be inhibited by peptides. 
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Figure 1.16: Optical control of kinase activity with photoswitchable inhibitory peptides. 

A) Schematic of the LOV fusion PA–PKI and light-induced binding to PKA. B) Schematic 

showing the light response of LOV. Blue represents the LOV globular domain, yellow represents 

the Jα helix. Upon irradiation with blue light, a conformational change in LOV causes the 

unwinding of Jα. C) Western blot of CREB phosphorylation (pCREB) with PA-PKI expression, 

both with and without blue light (460 nm). D) Quantification of C. Image adapted with permission 

from Yi et al, ACS Synth Biol. 2014, 3(11):788-795. Copyright 2014 American Chemical Society. 

 

As an alternative approach, light-induced protein dimerization has been used to control 

cell signaling. For example, the Phy/PIF dimerization can be adapted for conditional control of 

Rac1 function through translocation of an activator protein to the cell membrane (Figure 1.17).
84

 

The Rac1 protein is a GTPase that regulates actin cytoskeletal dynamics during cell migration.
85

 

The use of phytochromes for gene regulation relies on several factors to detect red or near-

infrared light and produce photoisomerization: a chromophore (phycocyanobilin, PCB), a 
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phytochrome (PhyB), and a phytochrome interaction factor (PIF3).
86

 In this study, Rac1 was 

activated by the catalytic Tiam-DHPH domain module after membrane recruitment
87

 and 

production of lamellipodial cell protrusions (Figure 1.17A). The PhyB and PIF3 photosensitive 

proteins were fused to constructs expressing the reporter proteins mCherry and YFP for cellular 

tracking, as well as the Tiam-DPDH (Figure 1.17B). Photochemical recruitment of the PIF-

Tiam-DHPH chimera, in conjunction with PhyB and PCB, caused a pronounced lamellipodial 

phenotype within 20 min in ~80% of cells (Figure 1.17B). The spatially localized light activation 

of Rac1 cell protrusion was then tested. Red laser stimulation was used for localized recruitment 

of the PIF-Tiam-DHPH domain in serum-depleted cells, producing a localized lamellipodial 

‘bloom’ within 10 min (Figure 1.17C). By slowly extending the point of activating light away 

from the cell, the ability to draw out cellular morphology up to 30 μm from the main body of the 

cell was demonstrated. The high spatial and temporal resolution of light control allows this 

module to function as an analytical tool to pattern cellular behavior. In fact, the optical regulation 

of Rac1 was used to demonstrate that GTPase activation occurs within seconds, suggesting that 

downstream signaling steps were responsible for the 5-10 min delay in lamellipodial protrusion 

formation. This study showcases the potential for programming specific cell geometries and 

intercellular connections with light using the Phy/PIF system to sculpt cell shape in an 

unprecedented manner. An advantage of the Phy/PIF system is the ability to reversibly 

photoswitch between active (red) and inactive (far-red) states using light.  
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Figure 1.17: Optical control of cell signaling using a light-switchable protein dimerization.  

A) The catalytic Tiam-DHPH domain activates the respective G-protein Rac1, which in turn acts 

through effector proteins to modify the actin cytoskeleton. B) Constructs with the PIF-Tiam-

DHPH and Phy domains were assayed for their ability to induce lamellipodia in serum-depleted 

cells with red light irradiation (650 nm). The percentage of cells that produced lamellipodia within 

20 min was determined with live microscopy. C) Local induction and extrusion of lamellipodia in 

live cells was demonstrated by focusing red light (650 nm) onto a small portion of the cell and 

slowly extending the light away from the cell body. Superimposed outlines of the cell show 

directed extension 30 μm along the line of light movement. Image adapted with permission from 

MacMillan Publishers Ltd: Nature, 461: 991-1001, copyright 2014. 

 

A significant drawback of the Phy/PIF system is the requirement to supplement the cells 

with PCB. The Cry domains represent an alternative approach to the optical control of protein 

dimerization that relies on an endogenous chromophore cofactor (flavin adenine dinucleotide, 

FAD), which does not require additional supplementation. For example, cryptochrome (Cry) 

induced dimerization of a split Cre recombinase and optical control of DNA recombination was 

demonstrated (Figure 1.18).
88

 Cre recombinase is an extensively used enzyme in genetic 

engineering that recombines DNA at specific loxP sites.
89

 The protein can be split into two 

nonfunctional domains to activate DNA recombination upon dimerization and reconstitution.
90

 

The Cry2 domain binds to the cryptochrome-interacting basic-helix-loop-helix (CIBN) domain 

when photoexcited with blue light.
91

 In this study, the split Cre domains were fused to the Cry2 

and CIBN domains to optically control Cre recombination (Figure 1.18A). Additionally, a 

plasmid containing a transcriptional stop sequence flanked by loxP sites preceding EGFP was 
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used as a reporter for Cre recombinase activity (Figure 1.18A). This reporter expresses EGFP 

when the Cre recombinase is dimerized and activated. The Cre expression and reporter 

constructs were transfected into cells, and irradiated with pulsed blue light (450 nm), ranging up 

to 24 h (Figure 1.18B). In the absence of blue light activation, no recombination resulting in the 

expression of EGFP was observed. Cells containing both Cry2-CreN and CIBN-CreC that were 

exposed to pulsed blue light showed increased EGFP expression, with the most significant 

increase in recombinase activity was observed with 24 h irradiation (Figure 1.18C). Since this 

system is entirely genetically encoded and can be activated using common light sources, these 

modules are useful for optically controlling a broad range of biological phenomena.
92
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Figure 1.18: Optical control of DNA recombination using a blue-light protein dimerization.  

A) Schematic showing the two split Cre recombinase constructs (CIBN-CreC and CRY2-CreN) 

and the EGFP reporter construct. B) Cre reporter recombination was measured 48 h after cellular 

transfection with the Cre reporter and CRY2/CIBN constructs. Cells were exposed to blue light 

pulses (450 nm) for the indicated durations or kept in the dark. C) Fluorescent images from cells 
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containing both CRY2-CreN and CIBN-CreC that were exposed to 24 h of pulsed blue light or 

maintained in the dark. Scale bar indicates 20 μm. Image adapted with permission from 

MacMillan Publishers Ltd: Nat. Methods, 7:973-975, copyright 2010. 

 

However, the engineering of light-responsive fusion constructs with the protein of 

interest requires significant trial-and-error on a case-by-case basis, since the target protein must 

be split into two nonfunctional fragments and then specifically fused to the photoresponsive 

domains to optically control dimerization. These fusion domains can also interfere with the 

native protein activity, as large modifications can encumber protein function in some biological 

applications. Therefore, the use of smaller site-specific caging modifications was developed 

through incorporation of caged amino acids into proteins. Through this method, the optical 

regulation achieved with a single caging group modification does not encumber the native 

protein with fusion constructs to light-responsive protein domains that are several orders of 

magnitude larger (from 20 to >120 kDa) than a caging group (0.24 kDa). 

The addition of modified amino acid residues (e.g., photocaged) for the incorporation of 

new functionality into proteins has been accomplished a number of ways: chemical modification 

of amino acids, solid-phase synthesis of proteins containing modified amino acids, and in vivo 

incorporation of modified amino acids (Figure 1.19). These methodologies have been applied to 

the modification of proteins with amino acids containing site-specific caging groups.
93

 An 

advantage of using synthetic caging groups is the ability to tune the photochemical properties of 

caged proteins, such that they respond to UV irradiation, avoid interference by ambient light, and 

allow for the simultaneous application of the full palette of fluorescent protein reporters, while 

providing clean OFF → ON light switching.  
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Figure 1.19: Methods for incorporation of modified amino acids into proteins.  

A) Chemical modification of a solvent exposed amino acid (e.g., cysteine) with a thiol-reactive 

agent. B) Chemical ligation between an expressed protein and a synthetic peptide, which is 

amended to the N-terminus (left) or the C-terminus (right) of the protein. C) Incorporation of a 

modified amino acid through suppression of an amber stop codon during translation. A tRNA 

molecule designed to recognize and read through the amber codon is charged with the modified 

amino acid, either synthetically or endogenously with a mutant tRNA synthetase. Adapted from 

Trends Biotechnol., 28(2), Loving et al, Monitoring protein interactions and dynamics with 

solvatochromic fluorophores, 73-83, Copyright (2010) with permission from Elsevier. 

 

The generation of caged peptides or proteins can be achieved through synthetic chemical 

methodologies and introduced into biological systems for the optical control of biological 

processes.
94

 Traditionally, these protein-caging modifications have been introduced in a 

nonspecific manner, through in vitro modification and downstream purification of the 

photoresponsive protein. General chemical modifications were performed using functional 

groups of the protein backbone or amino acid side chains for reactions to introduce 
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photoresponsive moieties onto a protein of interest (Figure 1.19A).
95

 For example, the caging of 

the cofilin protein was achieved through chemical modification of an amino acid side chain, in 

which a cysteine residue was altered with an ONB derivative (Figure 1.20A).
96

 The cofilin 

protein is responsible for modulating actin dynamics through the depolymerization of F-actin,
97

 

and is regulated by LIM kinase phosphorylation of a serine residue that inactivates cofilin 

function.
98

 However, a constitutively active cofilin containing a cysteine mutation maintains a 

high rate of F-actin cleavage and cannot be phosphorylated by LIM kinase.
99

 It was shown that 

chemical conversion of the cysteine on the constitutively active cofilin produced a caged cofilin, 

which was unable to bind to F-actin in the absence of photolysis. Light irradiation restored 

cofilin activity and F-actin cleavage. In this study, the chemical modification of a protein was 

used to optically control the function of a kinase target. While these methods were relatively 

simple to employ, they were somewhat limited in the ability to control the location specificity of 

the modification, required that the amino acids be surface exposed (i.e., internal sites buried 

within a protein structure are not accessible for chemical modification), and could only be 

applied to specific amino acid residues (e.g., Cys and Lys). To overcome challenges regarding 

nonspecific protein modification through chemical means, the use of solid-phase peptide 

synthesis was enabled for the manufacturing of caged peptides containing site-specific caging 

group modifications.
100

 However, these approaches for the production of caged proteins were 

limited by the constraints of peptide synthesis, allowing only peptides of a specific size and with 

a limited number of caged amino acid incorporations to be generated. Larger peptide chains have 

since been produced through chemical ligation methods, enabling the photochemical caging of 

full proteins through synthetic means (Figure 1.19B).
101

 For example, the caging of Smad2 was 

achieved through chemical ligation, in which a thioester modification on an expressed protein 
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was linked to a synthetic peptide containing caged phosphate groups (Figure 1.20B).
102

 Smad2 is 

a kinase that accumulates in the nucleus to regulate transcription after phosphorylation, which 

releases Smad2 from the Smad anchor for receptor activation (SARA), and subsequently forms a 

Smad2 homotrimer mediated by the MH2 domain.
103

 The caging strategy for Smad2 involved 

the chemical ligation of an expressed Smad2-MH2 domain modified with a thioester
104

 and 

complexed to the SARA binding domain (SARA-SBD) with a synthetic caged phosphopeptide
105

 

through expressed protein ligation.
106

 The resulting caged Smad2 complex contained two caged 

phosphate groups, which could be removed with UV irradiation to activate the Smad2 

homotrimerization and downstream biological activity (Figure 1.20B). The optically controlled 

behavior of caged Smad2-MH2 was determined with a nuclear import assay to study the kinetics 

of biological signaling and transport processes in live cells. Labeled Smad2 complexes were 

delivered to cells, and nuclear accumulation was analyzed through cellular imaging (Figure 

1.20C). In the presence of the SARA-SBD, nonphosphorylated Smad2-MH2 (OP) was excluded 

from the nucleus, whereas diphosphorylated Smad2-MH2 (2P) accumulated in the nucleus. The 

caged Smad2-MH2 was excluded from the nucleus in the absence of irradiation, whereas 

decaging of the protein with light led to near complete nuclear accumulation. In this study, a 

caged Smad2-MH2 protein was prepared by a semisynthetic route utilizing chemical ligation in 

the production of a phosphate caged protein and optical control of phosphorylation-dependent 

function.  
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Figure 1.20: Chemical modification and ligation strategies for photocaging proteins. 

A) The design and synthesis of caged cofilin. LIM kinase phosphorylates a serine residue on 

native cofilin. However, when a constitutively active cysteine mutant is chemically modified with 

an ONB derivative, the caged cofilin is inactive until UV irradiated. Adapted from Biochimica et 

Biophysica Acta - Proteins and Proteomics, 1804(3), Priestman and Lawrence, Light-mediated 

remote control of signaling pathways, 547-558, Copyright (2010) with permission from 

Elsevier. B) Semisynthesis of caged Smad2-MH2. Expressed protein ligation was used to ligate a 

recombinant Smad2-MH2-α-thioester/SARA-SBD protein complex to a doubly caged 

phosphopeptide to produce the caged Smad2-MH2/SARA-SBD heterodimer. Caged Smad2-MH2 

is activated by exposure to UV light and subsequently releases SARA-SBD to form a homotrimer. 

Smad2-MH2 is shown in globular form, SARA-SBD is shown in orange, phosphorylated residues 

are symbolized by yellow circles, and caging groups are symbolized by red crescents. C) Nuclear 

import assay of Smad2-MH2 variants. Nonphosphorylated (OP), doubly phosphorylated (2P), and 

caged Smad2-MH2 are shown before (top) and after (bottom) UV laser irradiation (20 min) in 

HeLa cells. Image adapted from Photocontrol of Smad2 a Multiphosphorylated Cell-Signaling 
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Protein through Caging of Activating Phosphoserines, Hahn and Muir, Angewandte Chemie, 

43(43):5800-5803. Copyright 2004 Wiley. 

 

The methods described above for in vitro chemical production of caged proteins were all 

generally limited for biological applications due to purification requirements, low quantities 

generated, restricted bioorthogonal reactions, and the need for delivery (typically injection) into 

biological systems. Therefore, the use of genetically expressed modified proteins (i.e., caged 

proteins that are produced within the cell or organism of interest) provides additional value for 

biological applications in the field of optochemical control of protein function (Figure 1.19C).
107

  

Cells can be equipped with an expanded genetic code that allows for the site-specific in 

vivo incorporation of a modified amino acid.
108, 109

 The growing field of unnatural amino acid 

(UAA) mutagenesis has led to new approaches in developing methods to control protein activity 

with photochemical modifications in recognition of the amber codon TAG,
110

 which is a low 

frequency stop codon.  Mutations can be made in a gene of interest to introduce the amber codon 

for site-specific incorporation of the UAA. Initially, the chemical synthesis of misacylated 

tRNAs in conjunction with amber codon mutagenesis provided a method to site-specifically 

install caged amino acids onto proteins and photochemically control protein function,
111

 although 

the chemical process of misacylation proved to be experimentally challenging. Therefore, 

orthogonal synthetase/tRNA pairs have been engineered to incorporate specific UAAs through 

cellular generation of amber-suppressor tRNAs that are selectively charged with a UAA by a 

corresponding tRNA synthetase (Figure 1.21).
112
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Figure 1.21: Unnatural amino acid (UAA) mutagenesis in live cells. 

The mutant aaRS (red) aminoacylates the orthogonal tRNACUA (blue) which leads to incorporation 

of the UAA (blue X) in response to the amber codon (red) by the ribosome. The endogenous 

synthetases (grey) and tRNAs (black) only incorporate native amino acids (black). Image adapted 

with permission from Young and Schultz, J. Biol. Chem. 2010, 285(15):11039-44. 

   

 Caged proteins have been developed with a variety of amino acid analogues through 

UAA incorporation in bacterial, yeast, and mammalian cells. Several light-responsive UAAs 

have been synthesized and successfully incorporated in response to an amber codon, such as 

ONB,
113

 6-nitropiperonyloxycarbonyl (NPOC),
114

 and coumarin-based
115

 derivatives of Cys,
116, 

117
 Lys,

118
 Ser,

119
 and Tyr

120
 (Figure 1.22). Advantages of this methodology over other 

approaches for light-activated proteins are that the location specificity of the caged amino acid is 

determined through mutagenesis of the protein encoding gene, photochemical removal of the 
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caging group restores the native amino acid residue, and the light-activated proteins are produced 

in live cells.  

 

ONB-tyrosine

ONB-cysteine

NPOC-lysine

HC-lysine
 

Figure 1.22: Examples of caged amino acids. 

Caging groups have been synthetically installed onto the side chains of several amino acids. 

Photolabile caging groups are indicated in red. 

 

As an example for the specific application of UAA mutagenesis in the incorporation of 

caged amino acids into proteins, a photocaged lysine derivative (NPOC-lysine, Figure 1.22) was 

incorporated into MEK1 kinase to optically control kinase signaling networks in live cells 

(Figure 1.23).
121

 In this study, the caged amino acid was placed into the ATP binding pocket of 

the MEK1 catalytic domain, perturbing its function until light induced decaging generates the 

native protein (Figure 1.23A). MEK1 is part of the Raf/MEK/ERK signaling pathway, and when 

activated by phosphorylation it in turn phosphorylates the protein kinases ERK1 and ERK2.
122

 

Once phosphorylated, ERK1/2 detach from MEK1 and translocate into the nucleus to regulate 

gene expression,
123

 while dephosphorylation by nuclear MAPK phosphatases (MKP) results in 

ERK1/2 returning to the cytoplasm, producing a feedback loop within this dynamic 

phosphorylation pathway (Figure 1.23B).
124

 Stimulation of this pathway can be achieved in cells 

expressing MEK1 and ERK2 with epidermal growth factor (EGF), which activates the entire 
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MAP kinase pathway, resulting in ERK2 translocation from the cytoplasm to the 

nucleus. Tracking of the pathway activation and subsequent nuclear translocation can be 

observed through imaging of ERK2 fused to an enhanced green fluorescent protein (EGFP-

ERK2). To demonstrate that caged MEK1 (C-MEK1) could be photochemically activated, the 

caged protein was expressed in live cells containing the EGFP-ERK2 reporter. Real-time 

measurements of EGFP-ERK2 nuclear translocation showed that the C-MEK1 rapidly induced 

nuclear translocation of the EGFP-ERK2 reporter through photochemical activation of the 

phosphorylation pathway (Figure 1.23C). The anchoring of ERK2 in the nucleus was retained, in 

contrast to cells stimulated with EGF that showed temporally limited nuclear translocation. 

These findings demonstrated that the photoactivated C-MEK1 acts as a stationary stimulus and 

optical activity of the subnetwork is not subjected to negative feedback and compensatory effects 

that were observed when stimulating the EGF receptor on the cell surface. The UAA 

mutagenesis strategy for creating site-specifically caged kinases that are expressed in living 

mammalian cells and can be activated with light irradiation enabled the study of single step 

kinetics in signaling cascades. This method is generally applicable to creating photoactivated 

kinases for other signaling pathways to provide precise quantitative insights into the kinetics of 

kinase networks and to dissect temporal regulation. 
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Figure 1.23: Genetically encoded caged MEK1 using UAA mutagenesis. 

A) MEK1 was modified with a genetically encoded photocaged lysine at the K97 residue, 

sterically blocking the ATP binding pocket, which renders the kinase inactive until light 

irradiation removes the caging group. B) Scheme of the potential negative feedback within the 

photoactivatable subnetwork. C) Normalized F(n/c) (ratio of nuclear to cytoplasmic EGFP 

fluorescence intensities) as a function of time after. The gray line shows the normalized F(n/c) 

observed when cells are stimulated with EGF. Image adapted with permission from Gautier et al, 

J. Am. Chem. Soc. 2011, 133(7):2124-2127. Copyright 2011 American Chemical Society. 

 

The site-specific incorporation of caged unnatural amino acids has been applied to a 

number of proteins for photochemical control of activity including Cre recombinase,
125

 DNA 

polymerase,
126

 RNA polymerase,
127

 zinc finger nuclease,
128

 kinsases,
114, 121

 transcription 

factors,
129

 ion channels, 
130

 intein,
131

 and reporter genes such as luciferase or EGFP.
115, 117

 The 

use of UAA mutagenesis to express caged proteins for the optical regulation of gene function 

will be further described in Chapter 4.0 , focusing primarily on the NPOC-lysine, shown in 

Figure 1.22, and its application in mammalian cell systems. These proteins are caged in a manner 
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that deactivates function, typically through inhibition of active-site residues or steric blocking of 

conformational changes required for protein activity. Light irradiation then activates the caged 

protein to initiate a biological process of interest, which is monitored to demonstrate optical 

regulation of gene expression or protein function. 
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2.0  Application of Caged Oligonucleotides in the Regulation of Gene Function 

This chapter will describe the application of nucleobase caging groups and photocleavable 

linkers to several biologically relevant oligonucleotides (as described in Section 1.1) The use of 

caged oligonucleotides for the optical control of gene function was further expanded to include 

new classes of regulatory nucleic acids. Importantly, the use of photocaged oligonucleotides for 

the regulation of gene function was demonstrated in live animals, allowing for optically 

controlled in vivo studies. 

2.1 Optical Regulation of Transcription through Caged Triplex-Forming 

Oligonucleotides 

This material was reprinted, in part, with permission from Govan, J. M.; Uprety, R.; Hemphill, 

J.; Lively, M. O.; Deiters, A. ACS Chem. Biol. 2012, 20 (7), 1247-56. Oligonucleotide syntheses 

were performed, in part, by the author of this thesis. All biological experiments were conducted 

by Jeane Govan in the Deiters lab. 

Triplex-forming oligonucleotides (TFOs) bind target duplex DNA in a sequence-specific 

manner and can block transcription factors to suppress gene expression.
132

 These single-stranded 

oligonucleotides recognize double-stranded DNA templates and bind in the major groove 

through Hoogsteen hydrogen bonds to form T:A:T and G:G:C triplex structures (Figure 2.1A and 

http://pubs.acs.org/doi/abs/10.1021/cb300161r
http://pubs.acs.org/doi/abs/10.1021/cb300161r
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B).
133

 TFOs have been applied to the inhibition of protein–DNA binding,
134

 DNA replication,
135

 

and gene expression,
136

 but generally lack precise spatial and temporal control which limits 

potential applications. Caged TFOs were developed for the photochemical regulation of 

Hoogsteen base-pairing, allowing activation or deactivation of TFO function and gene 

transcription in mammalian cells (Figure 2.1C). 

 

A B

C

transcription

no transcription

no transcription

transcription dumbbell

TFO

365 nm

365 nm

 

Figure 2.1: Schematic of light-controlled triplex forming oligonucleotides (TFOs). 

A) Hydrogen bond formation between the A:T pair in duplex DNA (red) and a T in the TFO. B) 

Hydrogen bond formation between the G:C pair in duplex DNA (red) and a G in the TFO. 

Watson-Crick (red) and Hoogsten (black) hydrogen bonds are indicated. C) Schematic of a light-

activated hairpin TFO (top) and a light-deactivated dumbbell TFO (bottom). Image adapted with 

permission from Govan et al, ACS Chem Bio. 2012, 7(7):1247-56. 
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The cyclin D1 promoter was selected as a target duplex for the design of light-controlled 

TFOs that utilize hairpin and dumbbell secondary structures (Table 2.1). Hairpin loop structures 

on the 5′ and 3′ termini of antisense agents have been shown to stabilize oligonucleotides in 

tissue culture while maintaining their antisense properties,
137

 a methodology that has previously 

not been applied to TFOs. In the caged form, the hairpin TFO will not bind the DNA target, 

while after irradiation the caging groups are cleaved and the TFO is activated, thereby 

photochemically inhibiting transcription. In contrast, a caged dumbbell TFO was designed to 

achieve photochemical inhibition of TFO activity and light-activation of transcription. In the 

caged form, the dumbbell TFO will bind the DNA target, while after irradiation the TFO is 

deactivated through an internal dumbbell structure formation that will no longer bind the DNA 

target, thereby photochemically activating transcription.  

 

Table 2.1: Sequences of the light-controlled triplex-forming oligonucleotides.  

Hairpin (HP) and dumbbell (DB) TFOs are shown. Caged base residues are underlined, bolded, 

and highlighted red (“T” represents an NPOM-caged thymidine residue, “C” represents an NPE-

caged cytidine residue). Caged DNA oligonucleotides were synthesized according to the general 

protocol 5.2Error! Reference source not found.. Oligonucleotide residues synthesized by the 

Lively Lab (Center for Structural Biology, Wake Forest University School of Medicine) are 

indicated with a caret (^). 

Strand Sequence (5' → 3') 

HP-TFO-1
^
 

hairpin 

GCGCGCGAAACGCGCGCTACGTGGGTGGGGGTGGGGGGTAT

CGCGCGCAAAGCGCGCG 

CHP-TFO-1
^
 

4T caged hairpin 

GCGCGCGAAACGCGCGCTACGTGGGTGGGGGTGGGGGGTAT

CGCGCGCAAAGCGCGCG 

DB-TFO-1 

dumbbell 

GCGCGCGAAACGCGCGCTACGTGGGTGGGGGTGGGGGGTAT

CGCGCGCAAAGCGCGCGATACCCCCCACCCCCACCCACGTA   

CDB-TFO-1 

4C caged dumbbell 

GCGCGCGAAACGCGCGCTACGTGGGTGGGGGTGGGGGGTAT

CGCGCGCAAAGCGCGCGATACCCCCCACCCCCACCCACGTA 

 

TFO inhibition of gene expression was first investigated with a luciferase reporter 

containing an upstream cyclin D1 promoter (pCyclin D1 Δ-944).
138

 The caged hairpin TFO 
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(CHP-TFO-1) showed UV dependent inhibition of gene expression for the luciferase reporter 

construct (Figure 2.2A). The caged dumbbell TFO (CDB-TFO-1) was active in the absence of 

UV irradiation, though exposure to UV light removes the caging groups which deactivates the 

TFO through dumbbell formation and recovers gene expression (Figure 2.2A). These findings 

were validated with photochemical regulation of an endogenous cyclin D1 gene using qRT-PCR 

to quantify cyclin D1 mRNA (Figure 2.2B). The caged TFOs recovered relative cyclin D1 

expression to similar levels observed with the corresponding noncaged TFOs when irradiated, 

indicating full UV decaging. 

 

A B

 

Figure 2.2: Photochemical activation of gene transcription in mammalian cells.  

A) Normalized relative luciferase units (RLU) for a luciferase reporter gene downstream of the 

cyclin D1 promoter. B) Relative cyclin D1 expression in MBA-MD-231 cells. Error bars represent 

standard deviations from three independent experiments. Image adapted with permission from 

Govan et al, ACS Chem Bio. 2012, 7(7):1247-56. These experiments were conducted by Jeane 

Govan. 

 

Caged triplex-forming oligonucleotides were synthesized and successfully applied to the 

photochemical regulation of transcription in mammalian cells, enabling light-activation and 
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light-deactivation of gene transcription. Through the direct incorporation of caging groups on 

nucleobases within the TFO molecules, light-induced inhibition of a specific promoter (cyclin 

D1) and thus inhibition of gene transcription was achieved. In addition, a caged TFO design was 

developed that enables the light-activation of gene expression. This was achieved through the 

synthesis of a new caged deoxycytidine phosphoramidite and its incorporation into dumbbell-

forming TFOs. These methodologies were validated in human cells by photochemically 

controlling the transcription of a transiently transfected reporter gene (luciferase) and an 

endogenous gene (cyclin D1). Since TFOs are versatile inhibitors of transcription, and have 

implications in the precise regulation of gene promoter activity in tissue culture or multicellular 

organisms, these caged transcriptional regulators can be applied as photochemical ON/OFF 

switches to study gene expression. Potential applications of caged TFOs range from basic 

biological studies of gene expression to new gene therapeutic approaches with high spatial and 

temporal resolution. 

2.2 Optical Control of MicroRNA Function using Caged Antagomirs 

This material was reprinted, in part, with permission by The Royal Society of Chemistry from 

Connelly, C.M.; Uprety, R.; Hemphill, J.; Deiters, A. Mol Biosyst. 2012, 8(11), 2987-93. 

Oligonucleotide syntheses were performed by the author of this thesis. All biological 

experiments were conducted by Colleen Connelly in the Deiters lab. 

MicroRNAs (miRNAs) are small noncoding RNAs that down regulate gene expression in 

a sequence specific fashion by binding the 3′ untranslated regions of target mRNAs.
139

 It has 

been estimated more than 30% of all gene expression is regulated by miRNA activity
140

 and the 

http://pubs.rsc.org/en/Content/ArticleLanding/2012/MB/c2mb25175b#!divAbstract
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expression of certain miRNAs has been linked to a wide range of human diseases.
141, 142

 Gene 

regulation through miRNA pathways has become an increasingly studied field due to the 

prevalence of misregulation linked to disease states, highlighting the important role of 

understanding miRNA regulation and biogenesis.
143

 The most common tools to study and control 

miRNA function are chemically modified complementary oligonucleotides termed 

antagomirs.
144, 145

 Here, the use of caged antagomirs was demonstrated for the photochemical 

control of miRNA function and inhibition of gene expression (Figure 2.3).   

 

mRNA

caged antagomir

active antagomir

miRNA

translation off translation on

 

Figure 2.3: Regulation of gene expression with nucleobase caged antagomirs. 

Image adapted with permission from Connelly et al, Mol Biosyst. 2012, 8(11):2987-93. 

 

MicroRNAs miR-21 and miR-122 were selected as targets to demonstrate light-activated 

inhibition of miRNA function. Over expression of miR-21 is observed in many cancer types,
146

 

while miR-122 is a liver specific miRNA
147

 that has roles in hepatitis C virus replication and 

infection.
148

 Caged antagomirs were synthesized with 2′OMe modified nucleotides and 

phosphorothioate backbones, containing three or four caging groups depending on the antagomir 

sequence (Table 2.2). These nucleobase-caged antagomirs have no effect on miRNA-mediated 

gene silencing until activation through photochemical removal of the caging groups, which 
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allows the antagomirs to bind to the miRNAs and blocks their function, leading to the light-

activation of gene expression. 

 

Table 2.2: Sequences of the noncaged and caged antagomirs.  

All oligonucleotides contain phosphorothioate backbone linkages and 2’OMe modified 

nucleobases. Antagomirs for miR-21 and miR-122 are shown. Caged 2’OMe NPOM-uridine 

residues are underlined, bolded, and highlighted red (“U”). Caged oligonucleotides were 

synthesized according to the general protocol 5.2. 

Strand Sequence (5' → 3') 

miR-21 antagomir AUCAACAUCAGUCUGAUAAGCUA 

miR-21 4U caged antagomir AUCAACAUCAGUCUGAUAAGCUA 

miR-122 antagomir ACAAACACCAUUGUCACACUCCA 

miR-122 3U caged  antagomir ACAAACACCAUUGUCACACUCCA 

 

The photochemical control of antagomir activity was investigated in mammalian cell 

culture using the psiCHECK-2 (Promega) reporter plasmid containing downstream miRNA 

target sequences.
149, 150

 The presence of endogenous miRNAs decreased luciferase signal through 

inhibition of gene expression, and antagomir binding to the miRNA recovered luciferase 

expression. The caged miR-21 antagomir showed no inhibition of miRNA function in the 

absence of UV irradiation, but exhibited an increase in gene expression upon decaging similar to 

a noncaged antagomir (Figure 2.4A). The caged miR-122 antagomir also showed no gene 

expression in the absence of irradiation and UV dependent miRNA inhibition to recover 

luciferase activity (Figure 2.4B). These results demonstrate that caged antagomir activity is fully 

restored upon UV irradiation with similar levels of gene expression observed as the noncaged 

control antagomirs. 
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Figure 2.4: Light-activated inhibition of miRNA function. 

A) Photochemical inhibition of miR-21 function. B) Photochemical inhibition of miR-122 

function. Huh7 cells expressing the psi-CHECK-2 reporters were transfected with the caged and 

noncaged antagomirs then UV irradiated (365 nm, 25 W) for 5 min. Dual luciferase assays were 

performed at 48 h, and Renilla luciferase was normalized to the control firefly luciferase. The 

error bars represent standard deviations from three independent experiments. Image adapted with 

permission from Connelly et al, Mol Biosyst. 2012 , 8(11):2987-93. These experiments were 

conducted by Colleen Connelly. 

 

The miR-21 target sequence was then placed downstream of an EGFP reporter gene to 

achieve spatial control for the photochemical regulation of miRNA activity in mammalian cells. 

Irradiations were performed with a fiber optic probe in a defined region (Figure 2.5). EGFP 

expression was only observed within the irradiated area, demonstrating spatial control over 

antagomir activity and photochemically activated inhibition of miR-21 function. 
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Figure 2.5: Spatial activation of EGFP expression with a caged miR-21 antagomir. 

Huh7 cells were co-transfected with an EGFP sensor for miR-21 function and the caged miR-21 

antagomir (100 pmol). Cells were irradiated at 365 nm using a LED fiber optics probe (Prizmatix) 

and were imaged after 48 h. The EGFP channel (left) and corresponding brightfield merged 

images (right) are shown. Image adapted with permission from Connelly et al, Mol Biosyst. 2012 , 

8(11):2987-93. These experiments were conducted by Colleen Connelly. 

 

Light-activated antagomirs were developed for mature miR-21 and miR-122 through the 

site-specific installation of caging groups that photochemically regulate antagomir-miRNA 

hybridization. These synthetic antagomirs were applied to the photochemical regulation of 

miRNA function in mammalian cells using both a luciferase reporter and an EGFP reporter. Both 

temporal and spatial control over miRNA function was achieved using a caged miR-21 

antagomir. Photocaging enables the precise activation of miRNA antagomirs and deactivation of 

miRNA function using UV irradiation, with sequence specificity that allows for antagomirs to be 

designed to target any miRNA of interest. These caged antagomirs can be used to further explore 

the roles of miRNA in signaling networks or human diseases with high spatial and temporal 

resolution. 
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2.3 Optical Control of microRNAs Controlling Polarization of Migrating Cortical 

Neurons 

In addition to the initial studies of photochemically caged antagomirs in cell culture, the 

technology was later applied to the study of neuronal migration in mouse brain slices. The 

optical regulation of miRNA function through caged antagomirs was used to determine miRNA-

based roles of radial migration during cerebral corticogenesis, in collaboration with the Nguyen 

lab (University of Liège, GIGA-Neurosciences, Developmental Neurobiology Unit, Belgium). 

This material was reprinted, in part, with permission from Volvert, M.L.; Prévot, P.P.; 

Close, P.; Laguesse, S.; Pirotte, S.; Hemphill, J.; Rogister, F.; Kruzy, N.; Sacheli, R.; Moonen, 

G.; Deiters, A.; Merkenschlager, M.; Chariot, A.; Malgrange, B.; Godin, J.D.; Nguyen, L. Cell 

Reports. 2014, 7(4), 1168-1183. Oligonucleotide syntheses were performed by the author of this 

thesis. All biological experiments were conducted in the Nguyen lab. 

The cerebral cortex comprises six layers of neurons born in the progenitor zones of the 

forebrain. Dorsal cortical progenitors generate temporal cohorts of neurons that undergo active 

migration to reach their final positions in successive cortical layers where they extend neurites to 

finalize contacts with target cells.
151

 Cell migration and branching require dynamic cell shape 

remodeling orchestrated both by extracellular and intracellular cues that ultimately converge on 

the cytoskeleton.
152

 Untangling the mechanisms that drive neuron migration and integration to 

appropriate neuronal networks is thus critical for understanding the biological basis of these 

disorders as well as the emergence of cortical architecture, connectivity and functions during 

development. Although most projection neurons undergo somal translocation at early phases of 

corticogenesis, they combine different migration modes to reach their final position at later 

stages.
153

 Bipolar progenitors leave the ventricular zone (VZ) and start radial migration. When 

http://www.sciencedirect.com/science/article/pii/S2211124714002861
http://www.sciencedirect.com/science/article/pii/S2211124714002861
http://www.sciencedirect.com/science/article/pii/S2211124714002861
http://www.sciencedirect.com/science/article/pii/S2211124714002861
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they reach the intermediate zone (IZ), they become multipolar.
154

 This morphological conversion 

is a critical regulation step as mutations in genes that control the multipolar stage often lead to 

radial migration defects. Over the past few years, several studies started to define the 

mechanisms underlying radial migration, and most identified regulators were actin or 

microtubule (MT) cytoskeleton-associated proteins.
153

 In spite of these advances, little is known 

about the molecular basis and more particularly the epigenetic control of cell shape conversion 

during the successive steps of radial migration in the cortex. 

Epigenetics has recently been extended to the study of miRNAs that regulate signaling 

pathways to control neurogenesis
155

 including those that orchestrate successive steps of 

corticogenesis.
156

 Several miRNAs are abundant in the developing cerebral cortex, among which 

some show dynamic expression that correlates with developmental milestones of the cortex. 

Critical roles have been revealed for Dicer in cortical neurogenesis,
157

 and although cortical 

phenotypes resulted from loss of mature miRNAs, functional connections to individual miRNA 

have been mostly correlative. Therefore, there is currently no evidence that miRNAs directly 

control the migration of postmitotic projection neurons.
156

 

Initial research findings indicate that conditional removal of Dicer in postmitotic 

projection neurons impedes radial migration, and Dicer is required for proper polarization of 

neurons during migration. Additionally, overexpression of the corepressor silencing transcription 

factor CoREST
158

 contributes to radial migration defects of Dicer knockout neurons. It was 

shown that the CoREST/REST transcriptional repressor complex contains predicted conserved 

miRNA target site sequences in the 3’UTR (Figure 2.6A). The role of miRNA regulation of 

CoREST in radial migration was confirmed, showing that miR-22 and miR-124 promote radial 
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migration of projection neurons by targeting CoREST, and were further identified to control 

neuronal migration in the developing cortex.  

 

A

C

B

D

 

Figure 2.6: Optochemically activated antagomir inhibition of CoREST.  

A) miRNA target sites in the 3’UTR of the CoREST ORF. B) Photochemical activation of 

nucleobase-caged antagomirs for postmitotic neuronal migration in cultured brain slices. UV light 

(blue arrow) activates the caged antagomirs, which bind to endogenous miR-22 or miR-124 and 

block their function in cortical neurons, leading to CoREST upregulation. C and D) Histograms 

showing the percentage of neurons with light-activated (blue arrow) caged antagomirs that 

undergo multipolar to bipolarconversion (C) or that maintained a stable bipolar morphology 

during migration (D) in 1 day cultured slices from corresponding brains. Image adapted with 

permission from Volvert et al, Cell Rep. 2014, 7(4):1168-83. These experiments were conducted 

by the Nguyen lab. 

 

Optical tools were then exploited to induce spatial and temporal changes of endogenous 

miR-22 and miR-124 activity (Figure 2.6B). Brains were sliced 2 days after electorporation of 

the caged antagomirs (Table 2.3) and UV illuminated, followed by real-time imaging 24 h later. 
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It was shown that the light-activated antagomirs reduced bipolar conversion (Figure 2.6C) and 

impaired bipolar stability (Figure 2.6D) of neurons navigating in the IZ. These results 

demonstrate that endogenous miR-22 and miR-124 are both required for radial migration by 

regulating the dynamic morphological remodeling of projection neurons. These results also 

suggest that the migration phenotype resulting from the conditional removal of Dicer in 

postmitotic neurons mostly arise as a consequence of the lack of miR-22 and miR-124 

maturation. The expression of CoREST in the developing cortical wall results from the interplay 

between transcriptional and translational mechanisms, including miR-22 and miR-124. 

 

Table 2.3: Sequences of the noncaged and caged antagomirs.  

All oligonucleotides contain phosphorothioate backbone linkages and 2’OMe modified 

nucleobases. Antagomirs for miR-22 and miR-124 are shown. Caged 2’OMe NPOM-uridine 

residues are underlined, bolded, and highlighted red (“U”). Caged oligonucleotides were 

synthesized according to the general protocol 5.2Error! Reference source not found.. 

Strand Sequence (5' → 3') 

miR-22 antagomir AACAGUUCUUCAACUGGCAGCUU 

miR-22 3U caged antagomir AACAGUUCUUCAACUGGCAGCUU 

miR-124 antagomir AGGCAUUCACCGCGUGCCUUA 

miR-124 3U caged antagomir AGGCAUUCACCGCGUGCCUUA 

 

A tight regulation of projection neuron migration is fundamental for the establishment of 

functional connectivity in the developing neocortex. Although several genes and molecular 

pathways have been associated with neuronal migration in physiological or pathological 

conditions,
152

 the epigenetic control of this process remains poorly investigated. Dicer was 

conditionally removed in postmitotic neurons, then combined with global gene expression 

profiling and miRNA expression pattern analysis to identify the miRNAs and corresponding 

gene targets involved in radial migration regulation. miR-22 and miR-124 were discovered to be 

enriched in the cortical wall where they target CoREST to fine-tune expression of Doublecortin 
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(Dcx), thereby promoting migration to the appropriate layer in the cortical plate. CoREST was 

the only gene from a short list of regulators of neuronal polarization whose expression was 

upregulated in Dicer-depleted projection neurons. This correlates with reduction of 

transcriptional Dcx of as well as downregulation of its expression in cortical neurons depleted for 

Dicer. At the functional level, lack of Dicer disrupted radial migration at distinct steps, including 

multipolar-bipolar cell transition in the IZ and bipolar stability during locomotion. This 

phenotype was rescued after targeting CoREST or expressing Dcx in Dicer-depleted neurons. 

Although the fine-tuning of additional targets by other miRNAs during the migration of 

projection neurons cannot be excluded, the regulation of CoREST expression by miR-124 and 

miR-22 is a critical step for proper polarization of projection neurons during their migration in 

the developing cerebral cortex. The dynamic expression of Dcx is controlled by activators and 

repressors, the latter including the CoREST complex, which is targeted by miR-22 and miR-124. 

The use photochemically caged antagomirs assisted in the discovery of this miRNA-based role in 

CoREST regulation and neuronal migration pathways. 

2.4 Optical Control of Gene Expression through Site-Specific Promoter Caging  

This material was reprinted in its entirety with permission from Hemphill, J.; Govan, J. M.; 

Uprety, R.; Tsang, M.; Deiters, A. J. Am. Chem. Soc. 2014, 136(19), 7152-7158. 

In cell and molecular biology, double-stranded circular DNA constructs, known as 

plasmids, are extensively used to express a gene of interest. These gene expression systems rely 

on a specific promoter region to drive the transcription of genes either constitutively (i.e., in a 

continually “ON” state) or conditionally (i.e., in response to a specific transcription initiator). 

http://pubs.acs.org/doi/abs/10.1021/ja500327g
http://pubs.acs.org/doi/abs/10.1021/ja500327g
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However, controlling plasmid-based expression with high spatial and temporal resolution in 

cellular environments and in multicellular organisms remains challenging. To overcome this 

limitation, nucleobase-caging groups were site-specifically installed within a plasmid promoter 

region to enable optochemical control of transcription and, thus, gene expression, via photolysis 

of the caging groups. Through the light-responsive modification of plasmid-based gene 

expression systems, optochemical activation of an exogenous fluorescent reporter gene was 

demonstrated in both tissue culture and a live animal model, as well as light-induced 

overexpression of an endogenous signaling protein. 

For transcriptional activation in eukaryotic systems, a gene expression plasmid contains a 

promoter sequence upstream of the gene of interest, such as the commonly used cytomegalovirus 

(CMV) promoter,159 which further includes a specific transcription initiator sequence called the 

“TATA box”. 160 Transcription is initiated when a subunit of transcription factor IID (TFIID), 

referred to as the TATA box binding protein (TBP), binds to the TATA box sequence and 

recruits additional components of the transcriptional machinery such as RNA polymerase II.161  

Since the binding of TBP to the TATA box is the driving force to activate transcription, the 

TATA box is an optimal site to optochemically control the transcription of a plasmid by applying 

nucleobase caging technologies. In order to develop a generally applicable system for the optical 

activation of transcription in vivo, modified short oligomer fragments were inserted into 

plasmids in a site-specific manner162 and introduced caged nucleobases at 1–3 defined sites into 

the TATA-box promoter region of large (>4 kB) gene expression plasmids. The newly developed 

caged plasmid system was successfully applied to in vivo optochemical control of gene 

expression in mammalian cells and in zebrafish. 
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The optochemical regulation of an enhanced green fluorescent protein (EGFP) reporter 

gene was selected as a proof-of-concept model for the application of a caged promoter region. 

An EGFP plasmid was modified to contain two nicking sites in the CMV promoter flanking the 

TATA box, in order to remove a short DNA fragment and replace it with a caged DNA insert 

(Figure 2.7). The site-specific installation of caged nucleobases within the TATA box will inhibit 

initiation of EGFP transcription by TBP. Upon UV irradiation, the caging groups would be 

cleaved and transcription would be activated. To test this hypothesis, 1–3 NPOM-caged 

thymidine residues163 were site-specifically incorporated into oligonucleotides containing the 

TATA box sequence via automated solid-phase DNA synthesis (Table 2.6). A mutant promoter 

region that contains three T → C base substitutions (TATATAA → CACACAA) was designed 

as a negative control, based on the ability to replace the same thymidine residues with caged Ts 

and on a previous analysis that showed less than 4% transcriptional efficiency with two or more 

mutations in the TATA box region.164 This T
mut

 negative control contains thymidine mutations at 

the same sites in the TATA box as the designed NPOM-caged promoter constructs. The 

installation of the caged thymidine nucleotides was predicted to disrupt hydrogen-bonding 

interactions between base-pairs within the TATA box region; however, nucleotides outside of 

this region will still be able to hybridize to their complement sequences as needed for ligation of 

the inserts into the plasmid.162   
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(4) ligate with 

caged insert 

5’ TGGGCGAGTCGCGTTAAACCAGCTCTGCTTATATAAGAGTCCCAGCAGAG 3’

3’ ACCCGCTCAGCGCAATTTGGTCGAGACGAATATATTCTCAGGGTCGTCTC 5’

(1) digest with 

NT.BstNB

(2) remove  insert 

with rev. comp. (3) gel purify

EGFP-BstNB

CMV

promoter

T1-EGFP

no 

expression

expression

(5) purify

(6) test =

-UV

+ UV

  

Figure 2.7: Construction of the site-specifically caged plasmids.  

(1) pEGFP-Bst is digested with Nt.BstNB and (2) annealed with the reverse complement to 

remove the TATA box region. (3) The digested plasmid is gel purified and (4) ligated with a 

phosphorylated caged TATA box insert. (5) The caged plasmid is then column-purified and (6) 

applied in mammalian cells or live animal models that were either kept in the dark (no expression 

of EGFP) or irradiated with UV light (EGFP expression). The restriction sites are underlined and 

the TATA box recognition sequence is shown in blue. The NPOM-caged thymidine is represented 

by a red circle and the NPOM modification is indicated in red within the nucleotide structure. 

 

To ensure that the caged DNA does not completely inhibit hybridization to its 

complement sequence, melting temperatures (TM) were determined (Table 2.4). With each 
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addition of a caged nucleotide, the TM slightly decreased, which is reflective of the caging groups 

interfering with the hydrogen bonding interactions of the nucleobases.165 As expected, removal of 

the caging groups through UV exposure completely restored binding of the caged TATA box 

sequences to their complement sequence similar to the noncaged TM. Importantly, hybridization 

for all caged primers was still detected at the ligation temperature of 4 °C, a prerequisite for 

construction of the promoter-caged plasmid.  

 

Table 2.4: Melting temperatures (TMs) of the caged TATA box oligonucleotides.  
The TMs were experimentally determined with the pEGFP-BstNB plasmid TATA sequence 

complement. Standard deviations were derived from three separate TM measurements. 

DNA −UV +UV 

T
0

  73.5  ± 0.1 - 

T
1

  73.5  ± 0.1 74.0  ± 0.2 

T
2

  72.5  ± 0.2 73.0  ± 0.2 

T
3

  70.2  ± 0.3 73.5  ± 0.3 

 

 The caged plasmids were then assembled and verified by agarose gel electrophoresis 

(Figure 2.8) prior to subsequently assessment for function in mammalian cell culture. 

 

1       2      3      4      5

 

Figure 2.8: Gel analysis of caged plasmid construction.  

pEGFP-Bst (lane 1) was digested with Nt.BstNB (lane 2). The reverse complement to the nicked 

DNA fragment was added and annealed (lane 3). The digested plasmid was gel purified (bottom 

band, lane 4) and the phosphorylated caged DNA oligo was ligated into the purified plasmid (lane 

5). Aliquots of each step were collected and analyzed on a 1% agarose gel. These experiments 

were conducted by Jeane Govan. 
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 A cell viability assay (CellTiter-Glo, Bio-Rad) was performed to analyze the effects of 

cellular UV-A application with increasing intervals of 365 nm irradiations, demonstrating that 

UV-A light does not reduce cell viability for exposures of up to 20 min in the irradiation setup 

(Figure 2.9).  
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Figure 2.9: Effect of UV exposure on cell viability. 

A CellTiter-Glo viability assay (Bio-Rad) was performed in HEK293T cells with increasing 

intervals of UV irradiation (365 nm, 25 W).  

 

The caged EGFP plasmids were then cotransfected with a DsRed expression vector as a 

control, and the transfected HEK293T cells were either irradiated for 5 min (365 nm, 25 W) or 

kept in the dark. After 48 h incubation the cells were imaged for EGFP and DsRed expression 

(Figure 2.10). As expected, T
mut 

achieved the greatest reduction in EGFP expression from a 

series of mutants analyzed (data not shown), and the thymidine caging groups were capable of 

inhibiting EGFP transcription to low basal levels similar to those of the mutated nonfunctional 

TATA box sequence. After UV irradiation, the caged plasmids regained full functionality, 

showing expression levels virtually identical to the noncaged EGFP expression plasmid (T
0
), 

which validates that the incorporation of NPOM-caged thymidine nucleotides within the TATA 
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box sequence can be applied to the optochemical regulation of a plasmid expression vector. The 

high levels of EGFP expression observed for the T
1
–T

3
-caged plasmids after UV irradiation 

suggest that optical control for each of the constructs results in similar levels of gene activation.  

 

-UV +UV

DsRed DsRedEGFP EGFP

A

B

C

D

E

 

Figure 2.10: Light-activation of EGFP expression with caged plasmids.  

A) T
0
 noncaged EGFP. B) T

mut
 negative control. C) T

1
 caged EGFP. D) T

2
 caged EGFP. E) T

3
 

caged EGFP. HEK293T cells were transfected with noncaged and caged EGFP plasmids and 

pDsRed-N1. The cells were irradiated for 5 min with UV light (365 nm, 25 W) or kept in the dark. 

Cells were imaged on 5X magnification after 48 h. EGFP channel is shown to the left and the 

DsRed channel is shown on the right. Scale bar indicates 200 μm. These experiments were 

conducted by Jeane Govan. 
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The light-activation of EGFP expression results were also quantified by flow cytometry 

(Figure 2.11 and Figure 2.12A), verifying the initial micrograph findings. With each additional 

caging group a slight reduction in the EGFP background expression was observed. The T
3
-caged 

plasmid was then applied to all subsequent experiments, since it showed the lowest background 

EGFP expression before light exposure. One of the main advantages of using nucleobase caging 

technology to photoregulate gene expression is the ability to perform localized and temporal 

control over biological activity. To this end, HEK293T cells were cotransfected with the T
3
-

caged EGFP plasmid and the control DsRed expression vector. Following transfection, only a 

small subset of cells was irradiated with UV light, followed by imaging after 48 h incubation. As 

shown in Figure 2.12B, EGFP expression was localized to the irradiated area, while DsRed 

expression was observed in all cells. This demonstrates that the developed TATA box-caging 

methodology can be applied to optochemically regulate gene expression with spatio-temporal 

control. 
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% normalized EGFP expressing cells

-UV + UV

Average Std Dev Average Std Dev

Tmut 15.25 6.75 21.42 4.16

T0 71.39 3.56 81.69 6.41

T1 22.84 7.72 81.06 8.24

T2 16.50 6.18 84.10 11.82

T3 13.69 2.29 76.55 9.64
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Figure 2.11: Fluorescent cell counts. 

A) Representative EGFP and DsRed fluorescent cell count dot plots for the following conditions: 

EGFP plasmid alone, DsRed plasmid alone, T
mut

 negative control, T
0
 noncaged positive control, 

T
3
 caged plasmid –UV, and T

3
 caged plasmid +UV. B) Raw values for the cells expressing both 

EGFP and DsRed normalized to the number of cells expressing only DsRed. These experiments 

were conducted in part by Jeane Govan. 
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Figure 2.12: Light-activation of EGFP expression.  

A) Quantification of light-activated EGFP expression. HEK293T cells were transfected with 

noncaged and caged EGFP plasmids and a DsRed control plasmid. The cells were irradiated for 5 

min (365 nm, 25 W) or kept in the dark. After 48 h incubation, the cells were analyzed by flow 

cytometry. The number of cells expressing both EGFP and DsRed was normalized to the number 

of cells expressing only DsRed and set relative to the noncaged plasmid. Standard deviations were 

calculated form three individual experiments. ns = not significant (P > 0.05), *** = highly 

significant (P < 0.001). B) Spatial activation of EGFP expression. HEK293T cells were 

transfected with T
3
-caged EGFP and DsRed plasmids. Cells within the white dashed circle were 

irradiated through a microscope filter cube (DAPI, BP377/28, 40X) for 30 s and were imaged (5X 

magnification) after 48 h incubation. An enlarged region of the EGFP channel is shown in the gray 

box. Scale bar indicates 200 μm. 

 

In order to demonstrate the general applicability of the developed methodology, the 

optochemical overexpression of an endogenous gene was investigated. Pololike kinase 3 (Plk3) 

is a serine/threonine kinase that is essential for cells entering into mitosis, spindle formation, 
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segregation of the chromosomes, and cytokinesis.166  Plk3 is also a tumor suppressor that when 

overexpressed can induce cell cycle arrest, chromatin condensation, and apoptosis.167 Since the 

ectopic expression of Plk3 leads to disruption of microtubule integrity, a change in cell 

morphology occurs, namely cytokinesis defects and formation of binucleated and polynucleated 

cells.168 Due to its involvement in the cell cycle and the phenotypic change when Plk3 is 

overexpressed, the optical activation of Plk3 expression was investigated through the engineered 

caged plasmids. To this end, Plk3 was fused to the C-terminus of the EGFP expression vector 

based on a previously reported plasmid.168 The EGFP-Plk3 plasmid was then modified with the 

caged TATA box DNA sequences as previous stated (see Figure 2.7). HeLa cells were 

transfected with the modified EGFP-Plk3 plasmids, and the cells were either irradiated for 5 min 

(365 nm, 25 W) or kept in the dark, followed by incubation for 48 h. This cell line was used to 

analyze previously reported phenotypic changes168 and to improve single cell imaging 

capabilities, since HeLa cells have distinct morphology and form cellular monolayers, in contrast 

to the previously used HEK293T cell line. The cells were fixed and stained to identify actin 

filaments as well as nuclei, in addition to EGFP expression. As expected, the positive control T
0
-

noncaged EGFP-Plk3 plasmid showed transcription of both genes and a significant change in 

phenotype, specifically the formation of binucleated cells and a loss in cellular structure, while 

the negative control T
mut

 showed normal cellular morphology (Figure 2.13).  
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Figure 2.13: Controls for the light-induced over-expression of Plk3. 

HeLa cells were transfected with T
0
 noncaged EGFP-Plk3 plasmid (A) and the T

mut
 negative 

control EGFP-Plk3 plasmid (B). The cells were irradiated with UV light (365 nm, 5 min, 25 W), 

or kept in the dark, and incubated for 48 h. The cells were fixed and stained with DAPI (blue) and 

Rhodamine-phalloidin (red) and imaged on 63X magnification. White arrows indicate binucleated 

cells, and scale bar indicates 50 μm. These experiments were conducted by Jeane Govan. 

 

The T
3
-caged plasmid showed low EGFP expression as well as little morphological 

change when the cells were kept in the dark. After UV irradiation, the caging groups were 

removed and transcription of EGFP-Plk3 was activated, as shown by the increase in EGFP 

expression and the observation of binucleated cells (Figure 2.14A). Additionally, the 

overexpression of Plk3 can lead to apoptosis by activating caspase-3.169 Thus, the downstream 

activation of caspase-3 activity was measured in response to the optochemically driven 

overexpression of Plk3. HeLa cells were transfected with the noncaged or caged EGFP-Plk3 
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plasmids and either kept in the dark or irradiated (365 nm, 5 min) and caspase-3 activity was 

measured after 48 h (Ac-DEVD-AFC substrate, Calbiochem). The T
0
-noncaged TATA box 

demonstrated a 5-fold increase in caspase-3 activity over nontreated cells. In contrast, the 

T
mut

 plasmid only led to basal levels of caspase-3 activity, confirming it as a negative control for 

Plk3-driven caspase-3 activation (Figure 2.14B). In the absence of UV light, the T
3
-caged 

plasmid was inactive as only basal caspase-3 activity similar to nontreated cell was observed, as 

expected. However, after light-induced activation an increase in caspase-3 activity was detected, 

indicative of Plk3-driven downstream pathway regulation. These results demonstrate that the 

overexpression of an endogenous gene can be optochemically activated through the site-specific 

incorporation of NPOM-caged thymidine nucleotides within the TATA box transcription 

regulatory region. Here, this was applied to the induction of a phenotypic change and activation 

of a downstream signaling pathway; however, broad applicability of the developed methodology 

to the temporal activation of gene function is conceivable. 
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Figure 2.14: Caged plasmid-based light activation of endogenous signaling pathways.  

A) Light-induced expression of Plk3. HeLa cells were transfected with the T
3
-caged EGFP-Plk3 

plasmid followed by irradiation of the caged construct (365 nm, 5 min, 25 W) and incubated for 

48 h. The cells were then fixed and stained with DAPI (nuclei) and Rhodamine-phalloidin (actin 

filaments) prior to imaging (63X magnification). White arrows indicate binucleated cells, and 

scale bar indicates 50 μm. B) Light-induced activation of caspase-3. HeLa cells were transfected 

with the T
mut

 negative control, T
0
-noncaged, and T

3
-caged EGFP-Plk3 plasmids. The cells were 

either irradiated (365 nm, 5 min, 25 W) or kept in the dark and lysed after 48 h. The lysate was 

assayed with a fluorogenic caspase-3 substrate (Calbiochem). Fluorescence units were normalized 

to the noncaged control, and standard deviations were calculated from three individual 

experiments. ns = not significant (P > 0.05), *** = highly significant (P < 0.001). These 

experiments were conducted in part by Jeane Govan. 

 

In order to demonstrate the applicability of the caged TATA box construct to the 

optochemical control of gene function in an animal, the expression of a fluorescent reporter was 

tested in zebrafish embryos. The zebrafish was selected because it is a common model organism 
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for developmental studies, its transparency facilitates irradiation, and plasmid-driven gene 

expression has been well documented via direct microinjection into fertilized eggs.170 

Microinjections with modified EGFP plasmids were performed at the 1-cell stage, and embryos 

were either irradiated (365 nm, 2 min) or kept in the dark. After 24 h incubation the embryos 

were dechorionated and imaged for EGFP expression directly and 24 h later. The T
0
-noncaged 

plasmid was used as a positive control, exhibiting mosaic EGFP expression patterns commonly 

observed with DNA injection due to differential plasmid content in each cell (Figure 2.15A). 

When the TATA box region of the vector was caged, transcription was deactivated and only a 

minimal level of EGFP expression was observed. However, after UV exposure, the embryos 

injected with the T
3
-caged plasmid showed activation of EGFP expression, conferring the optical 

control observed in a single cell environment to gene expression in a multicellular animal (Figure 

2.15B). More than 45% of live embryos injected with the caged plasmid construct expressed 

EGFP after UV irradiation, with levels of transcriptional activation similar to the noncaged 

control (Figure 2.15C). Although a small population of embryos exhibited low levels of EGFP 

expression in the absence of UV exposure, a 5-fold increase in EGFP expressing embryos was 

observed.  
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Figure 2.15: Light-induced EGFP expression in zebrafish.  

A) Zebrafish embryos were microinjected with the control T
0
 noncaged EGFP plasmid (50 pg) at 

the 1-cell stage and were incubated at 28 °C. Imaging was then performed with dechorionated 

embryos at 24 hpf and 48 hpf for EGFP expression. B) Embryos were microinjected at the 1-cell 

stage with the T
3
-caged EGFP expression plasmid or the noncaged T

0
 plasmid (50 pg). Embryos 

were then irradiated (2 min, 365 nm) or kept in the dark and incubated at 28 °C for 24 hpf, 

followed by dechorionation. Imaging was performed at 48 hpf. C) Frequency of the EGFP 

phenotype for each condition. Error bars represent standard deviations from three (T
0
) or four (T

3
) 

independent experiments. N = 9–24. ns = not significant (P > 0.05), *** = highly significant (P < 

0.001). Scale bars indicate 250 μm. 

 

Additionally, a UV irradiation time course was performed, indicating that longer 

exposures do not significantly enhance the frequency of EGFP expressing embryos (Figure 

2.16A). Late-stage irradiations at 8 hpf (75% epiboly stage) were also performed to examine 

caged plasmid activation during gastrulation, and EGFP expression was observed at 24 hpf 
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(Figure 2.16B). Although the total number of EGFP positive embryos was slightly lower 

compared to irradiations at earlier stages, the presence of similar mosaic expression patterns as 

observed in the case of 1 hpf irradiation shows that caged plasmids can provide a means to 

activate gene expression through UV irradiation later in development (Figure 2.16C). These 

results demonstrate that the caged promoter sequence allows for the construction of plasmid-

based optochemical gene expression that can be readily applied to live aquatic embryos for the 

regulation of gene function. 
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Figure 2.16: Optimization of UV irradiation time.  

A) Zebrafish embryos were microinjected with the T
3
 caged EGFP plasmid (50 pg) and UV 

irradiated (365 nm) across a range of times. At 24 hpf the frequency of EGFP expression was 

determined through embryo counting. N  = 6–20. B) Zebrafish embryos were microinjected with 

the T
0
 noncaged and T

3
 caged EGFP plasmids (50 pg) at the one cell stage and were incubated at 

28 °C. Late-stage 2 min UV irradiations (365 nm) were then performed at 8 hpf (75% epiboly) and 

the embryos were incubated at 28 °C. At 24 hpf the frequency of EGFP expression was 

determined through embryo counting. N = 11–20. C) Zebrafish injected with the T
3
 caged EGFP 

plasmid that were late-stage UV irradiated at 8 hpf were dechorionated and imaged at 48 hpf (top: 

EGFP; bottom: brightfield/EGFP merge). Scale bar indicates 250 μm. 

 

In summary, a system was engineered in which plasmid function can be optochemically 

regulated with high spatial and temporal resolution. A site-specifically caged promoter region 

was inserted into expression plasmids via ligation with synthetic nucleobase-caged DNA strands. 

By installing NPOM-caged thymidine nucleotides within the TATA box promoter region, 

transcription was inhibited and activity was not observed until the caging groups were removed 

through a brief exposure to UV light. The optical OFF → ON switching of plasmid function was 
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assessed using a fluorescent reporter gene in live cells, and spatial control of activation was 

demonstrated for TATA box-driven gene expression in human tissue culture. Additionally, it was 

shown that the engineered system could be used to regulate cellular signaling cascades by 

optochemically triggering overexpression of an endogenous gene, polo-like kinase 3 (Plk3). The 

effect of Plk3 overexpression was observed by a phenotype change leading to binucleation only 

in irradiated cells and through upregulation of caspase-3 activity after light-induced Plk3 

activation. Lastly, the caged vector methodology was applied to the optochemical triggering of 

gene expression in live animals. Specifically, light-activated gene expression was achieved in the 

zebrafish embryo, a multicellular model organism that is extensively used for genetic studies. In 

contrast to caging of the oligonucleotide phosphate backbone,171 this approach is completely site-

specific, generally applicable, and does not require auxiliary proteins, as only 1–3 NPOM-caging 

groups are synthetically incorporated onto nucleobases in the TATA-box region of the 

expression plasmids. Thus, only a few photolysis reactions are required to optically activate gene 

expression from an otherwise inactive expression vector. This method adds a new and precise 

synthetic biology tool to the light-regulation of gene function in cells and organism and has 

broad applicability in the regulation of plasmid-encoded protein expression, as demonstrated in 

mammalian cell culture and zebrafish embryos. 

2.4.1 Methods and Materials 

 Construction of the Caged Plasmids. See Section 5.3 for specific information on 

molecular biology techniques The Nt.BstNB restriction sites were cloned into the pEGFP-N1 19 

bases immediately upstream and downstream of the TATA box through PCR amplification with 

sequence specific primers (Table 2.5) following protocol 5.3.2. The pEGFP-BstNB plasmid was 
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digested (40 μg) with Nt.BstNB at 55 °C for 2 h (500 μL) following protocol 5.3.3. The reverse 

complement to the 34 bp DNA insert fragment was added to the digestion reaction (25 μL of a 

100 μM solution) and annealed in TAE/Mg
2+

 buffer (0.04 M tris-acetate, 1 mM 

ethylenediaminetetraacetic acid (EDTA), 12.5 mM magnesium acetate, pH ~7.4) by cooling the 

solution from 95 to 12 °C over 10 min. The complete plasmid digest reaction then was gel 

purified with the E.Z.N.A. Gel Extraction (Omega) kit. The noncaged and caged TATA box 

sequences (T
mut

 and T
0
–T

3
, Table 2.6) were 5′ phosphorylated with T4 polynucleotide kinase at 

50 μM (50 μL) and were ligated (10 μL insert, 60 μL reaction) into the purified plasmid 

following protocol 5.3.4. The ligated product was column purified with the E.Z.N.A. Cycle Pure 

(Omega) kit and quantified with a Nanodrop spectrometer 

 

Table 2.5: Primer sequences used in the cloning of the pEGFP-BstNB plasmid.  

Restriction sites are underlined. 

Strand Sequence (5’− 3’) 

Nt.BstNB forward TATATAAGACCGAGTCCCGTCGTCAGATCCGC 

Nt.BstNB reverse AGCAGAGCTGGTTTAACGCGACTCGCCCAACCGC 

TATA insert rev. comp. ACGGTTGGAGGTCTGTGTGAGCAGAGCTGGTTTA 

 

Table 2.6: Sequences of the synthetic caged TATA box oligonucleotides. 

Sequences were designed for insertion into the TATA promoter region of the pEGFP-BstNB 

plasmid. NPOM-caged thymidine residues are underlined, bolded, and highlighted red (“T”). 

Caged DNA oligonucleotides were synthesized according to the general protocol 5.2. 

 Strand Sequence (5’− 3’) 

 T
mut

 TAAACCAGCTCTGCTCACACAGACCTCCAACCGT 

 T
0

 TAAACCAGCTCTGCTTATATAGACCTCCAACCGT 

 T
1

 TAAACCAGCTCTGCTTATATAGACCTCCAACCGT 

 T
2

 TAAACCAGCTCTGCTTATATAGACCTCCAACCGT 

 T
3

 TAAACCAGCTCTGCTTATATAGACCTCCAACCGTU 
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 Melting Temperatures. The TM of each TATA box duplex was measured using a 

CFX96 Touch Real Time PCR Detection System (Bio-Rad). TATA box DNA duplexes (20 μL, 

1 μM) were incubated in TAE/Mg
2+

 buffer (0.04 M tris-acetate, 1 mM EDTA, and 12.5 mM 

magnesium acetate) and annealed over a temperature gradient from 95 to 4 °C over 10 min. The 

samples were then heated in the presence of SYBR green (1 μL of 20X SsoFast EvaGreen 

Supermix, Bio-Rad) from 0 to 100 °C at a rate of 0.5 °C/min with a dwell time of 10 sec, and the 

fluorescence was measured every 0.5 °C. The TM was determined by the maximum of the first 

derivative of the fluorescence vs temperature plot. Standard deviations were calculated from 

three individual experiments. 

Analysis of the Effect of UV-A Exposure on Cell Viability. See Section 5.4 for specific 

information on cell culture techniques. HEK293T cells were passaged into a 96-well plate and 

grown to ∼70% confluence within 24 h following protocol 5.4.1. Cells were then irradiated for 

0–20 min (UV transilluminator, 365 nm, 25 W) following protocol 5.4.3, then incubated for 24 

h. After the overnight incubation, 150 μL of the cellular media was removed and 50 μL 

CellTiter-Glo (Bio-Rad) reagent was added. Chemiluminescence was measured on a BioTek 

Synergy 4 plate reader after 10 min. Standard deviations were calculated from three individual 

experiments. 

Light Activation of EGFP Expression. See Section 5.4 for specific information on cell 

culture techniques. HEK293T cells were passaged into 96-well plates and grown to ∼70% 

confluence within 24 h following protocol 5.4.1. The cells were transfected with pEGFP-BstNB 

(T
mut

, T
0
–T

3
, 150 ng/well) and pDsRed-N1 (300 ng/well) plasmids using bPEI following 

protocol 5.4.2. The following day cells were either irradiated for 5 min (UV transilluminator, 365 
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nm, 25 W) or kept in the dark following protocol 5.4.3, then incubated for 48 h. The cells were 

imaged on a Zeiss Observer Z1 microscope (5X magnification) following protocol 5.4.5. 

Flow Cytometry Analysis.  See Section 5.4 for specific information on cell culture 

techniques. HEK293T cells were passaged into 24-well and grown to ∼70% confluence within 

24 h following protocol 5.4.1. The cells were transfected with pEGFP-BstNB (T
0
–T

3
, 750 

ng/well) and pDsRed-N1 (1500 ng/well) plasmids using bPEI following protocol 5.4.2. The 

following day cells were either irradiated for 5 min (UV transilluminator, 365 nm, 25 W) or kept 

in the dark following protocol 5.4.3, then incubated for 48 h. The cells were trypsinized and 

resuspended in DMEM media. Flow cytometry was performed on a FACSCalibur (Becton-

Dickinson) instrument (EGFP; 488 nm argon laser, 530/50 nm BPF. DsRed; 633 nm excitation 

argon laser, 671/50 nm BPF). Cells were gated for EGFP and DsRed fluorescence (above 

10
2.5

 RFUs) then analyzed with Cellquest Pro Software until 20,000 cells had been counted for 

each condition tested. For each of the triplicates, the data were averaged, normalized to the T
0
-

noncaged control, and standard deviations were calculated. p values were calculated from 

unpaired t tests. 

Spatial Activation of Gene Expression. See Section 5.4 for specific information on cell 

culture techniques. HEK293T cells were passaged into 96-well plates and grown to ∼70% 

confluence within 24 h following protocol 5.4.1. Cells were transfected with the T
3
-caged EGFP 

(50 ng) and pDsRed-N1 (300 ng) plasmids using lipofectamine transfection reagent for 4 h 

following protocol 5.4.2. Localized irradiation was performed with a Zeiss Observer Z1 

microscope for 30 sec following protocol 5.4.3. The cells were then incubated for 48 h and 

imaged on a Zeiss Observer Z1 microscope (5X magnification) following protocol 5.4.5. 
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Plk3 Phenotypic Cell Assay. See Section 5.3 for specific information on molecular 

biology techniques and Section 5.4 for specific information on cell culture techniques. The Plk3 

gene was fused to the C terminus of EGFP in pEGFP-Bst to form the pEGFP-Bst-Plk3 plasmid. 

The pEGFP-Bst-Plk3 plasmid was constructed by amplifying Plk3 from Drosophila Plk3 cDNA 

(ATCC) with specific primers, and the pEGFP-BstNB plasmid was PCR amplified for Plk3 

insertion (Table 2.7) following protocol 5.3.1. Both PCR products were digested with SpeI and 

MfeI and ligated together following protocol 5.3.3. The caged pEGFP-Bst-Plk3 plasmid was 

constructed using the same protocol as described above. HeLa cells were passaged into 4 well 

chamber slides and grown to 70% confluency within 24 h following protocol 5.4.1. The cells 

were transfected with noncaged and caged pEGFP-Bst-Plk3 plasmids (150 ng) using lPEI 

following protocol 5.4.2. The cells were irradiated with a UV transilluminator (365 nm, 5 min, 

25 W) following protocol 5.4.3, and were incubated for 48 h. The cells were fixed and stained 

with DAPI (blue) and Rhodamine-phalloidin (red) fluorescent dyes following protocol 5.4.4, 

then imaged on a Zeiss Z1 Observer microscope (63X magnification) following protocol 5.4.5.  

 

Table 2.7: Primer sequences for Plk3 amplification and insert into pEGFP-BstNB. 

Primer Sequence (5’− 3’) 

Plk3 forward CGTAAGCAATTGGACTTCTTTACC 

Plk3 reverse CCTACGACTAGTCTAGGCTGGGCT 

pEGFP-BstNB forward GGAACTAGTCAGCGGCCGCGACTCT 

pEGFP-BstNB reverse CCTACGCAATTGCTTGTACAGCTCGTC 

 

Plk3 Caspase 3 Activity Assay. See Section 5.4 for specific information on cell culture 

techniques. HeLa cells were passaged into 24-well plates and grown to ∼70% confluency within 

24 h following protocol 5.4.1. The cells were transfected with noncaged and caged pEGFP-Bst-

Plk3 plasmids (150 ng) using lPEI following protocol 5.4.2. The cells were irradiated with UV 
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light (365 nm, 5 min, 25 W UV transilluminator) following protocol 5.4.3, and were incubated 

for 48 h. The cells were lysed and total protein was quantified with a Nanodrop spectrometer 

following protocol 5.4.8. HeLa cell protein extract (100 μg) was incubated with 50 μM Caspase-

3 substrate (Ac-DEVD-AFC, Calbiochem) in activity buffer (50 mM HEPES, 150 mM NaCl, 50 

mM MgCl2, 250 μM EDTA, 10% sucrose, 0.1% CHAPS, pH 7.2) at 37 °C for 20 h. The 

fluorescence was measured on a BioTek Synergy 4 plate reader (400/505 nm). For each of the 

triplicates, the data were averaged, normalized to the T
0
-noncaged control, and standard 

deviations were calculated. p values were calculated from unpaired t tests. 

Zebrafish Injections. See Section 5.5 for specific information on zebrafish techniques. 

Embryos were microinjected with 50 pg of the plasmid in 1 nL following protocol 5.5.2. 

Embryos were then irradiated following injection (typically at the 4- or 8-cell stage) for 2 min 

with a 365 nm UV transilluminator. Late-stage irradiation experiments were performed at 8 hpf. 

Imaging was performed at 24 and 48 h following protocol 5.5.3. EGFP scores were calculated 

with embryo counts of [(EGFP positive/alive)·100]. For each of the replicates, the data were 

averaged, and standard deviations were calculated. p values were calculated from 

unpaired t tests. 

2.5 Optical Control of Alternative Splicing through Caged Splice-Switching 

Oligonucleotides 

This material was reprinted in its entirety with permission from Hemphill, J.; Liu, Q.; Uprety, 

R.; Tsang, M.; Juliano, R. L.; Deiters, A. J. Am. Chem. Soc. 2015, 137(10), 3656-3662. 

http://pubs.acs.org/doi/abs/10.1021/jacs.5b00580
http://pubs.acs.org/doi/abs/10.1021/jacs.5b00580
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The spliceosome machinery is composed of several proteins and multiple small RNA 

molecules that are involved in gene regulation through the removal of introns from pre-mRNAs 

in order to assemble exon-based mRNA containing protein-coding sequences. Splice-switching 

oligonucleotides (SSOs) are genetic control elements that can be used to specifically control the 

expression of genes through correction of aberrant splicing pathways. A current limitation with 

SSO methodologies is the inability to achieve conditional control of their function paired with 

high spatial and temporal resolution. This limitation was addressed through site-specific 

installation of light-removable nucleobase-caging groups as well as photocleavable backbone 

linkers into synthetic SSOs. This enables optochemical OFF → ON and ON → OFF switching of 

their activity and thus precise control of alternative splicing. The use of light as a regulatory 

element allows for tight spatial and temporal control of splice switching in mammalian cells and 

animals. 

Alternative splicing (AS) plays a large role in the regulation of gene expression,
172

 as the 

spliceosome is responsible for processing of pre-mRNA into coding sequence by eliminating 

introns and assembling the correct exons.
173

 The splicing of pre-mRNA in humans was 

documented in the mid 1980s,
174

 and the field has dramatically expanded since. It has been 

estimated that 95% of all human genes show AS pathways, highlighting the importance of 

spliceosome activity in RNA regulation.
175

 Additionally, up to 50% of mutations associated with 

genetic disorders result in altered pre-mRNA splicing pathways,
176

 linking aberrant mRNA 

splicing to a wide variety of disease states, including cystic fibrosis and Duchenne muscular 

dystrophy.
177

 Splice-switching oligonucleotides (SSOs) act by hybridizing to the pre-mRNA and 

blocking splice sites in a sequence-specific manner, which prevents interaction with components 

of the spliceosome such that splicing pathways are altered. SSOs are commonly used tools to 
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control gene expression via alternative mRNA splicing pathways through the removal of aberrant 

introns or exons as well as exon retention or skipping.
23

 For example, the coding region of a 

protein can be interrupted via a mutant intron gene (Figure 2.17A). Through AS pathways, the 

aberrant sequences can be blocked with SSOs, allowing for corrected exon splicing and resulting 

in the expression of a functional gene product (Figure 2.17B). Besides applications as research 

tools, SSOs are proposed for use as therapeutic agents to correct splice mutations,
178

 and have 

been applied to genetic disorders for the initiation of several human clinical trials
179

 because 

these oligonucleotides are able to restore proper gene function in disease states. 
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Figure 2.17: Schematic of splice-switching oligonucleotide function. 

Pre-mRNA processing and regulation of gene expression through alternative splicing (AS) are 

shown. Active splicing pathways are indicated with solid black lines and AS pathways are 

indicated with dashed lines. The mutant intron is shown in red, and the activated SSO is shown in 

blue. A) In the absence of the SSO, a mutant intron from the pre-mRNA is present in the mRNA 

sequence and disrupts formation of a functional gene product. B) The SSO binds to the target site, 

blocks the spliceosome from interacting with the target site, and creates an AS pathway that will 

remove the mutant intron from the mRNA allowing for the expression of functional protein (e.g., 

EGFP). 
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However, no conditional control of SSO activity has been reported, and neither temporal 

nor spatial regulation of SSO function and AS has been achieved. The specific timing and 

location of AS play very important roles in many regulatory pathways in cells across the animal 

kingdom, for example during neuronal cell differentiation in the human brain.
180

 Similar spatial 

and temporal activity of AS has been observed in fruit flies,
181

 mice,
182

 zebrafish,
183

 and 

nematodes,
184

 demonstrating that distinct AS patterns are responsible for many essential 

biological functions. Methods to accurately perturb the spatial and temporal patterns of AS are 

critical for understanding the complex mechanisms that underlie gene regulatory control by the 

spliceosome.
185

 However, traditional SSOs are constitutively in an ON state, i.e., the splicing 

pathways are immediately altered and cannot be controlled with any spatial and temporal 

resolution, precluding precise investigation of AS in cells and multicellular organisms. In order 

to achieve conditional control of alternative splicing, optochemical tools were developed based 

on the introduction of caged nucleobases and photocleavable linkers into SSOs. This approach 

enabled both optochemical activation and deactivation of splicing pathways, leading to efficient 

two-directional genetic control through OFF → ON as well as ON → OFF light switches. These 

optochemical regulation tools provide conditional control of SSO activity with high resolution in 

cellular and embryonic environments, providing spatial and temporal capabilities for dissection 

of AS pathways as well as the general control of gene function. 

Before applying the light-controlled SSO approach to a complex biological system, such 

as a developing zebrafish embryo, the β-globin intron 1 was selected as a proof-of-principle 

target, since it contains an aberrant splice site that contributes to the genetic blood disorder β-

thalassaemia and that can be corrected with SSOs.
186, 187

 HeLa cell lines stably expressing 

enhanced green fluorescent protein (EGFP) and luciferase (Luc) genes interrupted with the 
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mutant β-globin intron (HeLa:EGFP654, HeLa:Luc705)
188

 were used to analyze the 

optochemical regulation of SSOs and the ability to control AS pathways with light. The reporter 

genes contain an altered coding region with an aberrant splice site to impair functional 

fluorescent protein expression until it is blocked by a sequence-specific SSO. The activity of 

control SSOs was analyzed using TAMRA-labeled oligonucleotides to track transfection, for 

both a noncaged SSO and a five-base-mismatched oligo (Table 2.8). TAMRA fluorescence 

showed successful transfection of the labeled oligos, and  EGFP expression was observed in the 

HeLa:EGFP654 cell line only in the presence of the positive control SSO (Figure 2.18A). No 

detrimental effect on the SSO-controlled expression of EGFP in the presence of UV light was 

detected, ensuring that the reporter construct itself was not UV responsive (Figure 2.18B).  
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Figure 2.18: Confirmation of HeLa:EGFP654 reporter function. 

A) HeLa:EGFP654 cells were passaged into 96-well plates and transfected with noncaged 

TAMRA labeled SSOs (50 nM) using X-tremeGENE siRNA reagent (Roche). The EGFP and 

TAMRA fluorescence were observed at 24 h on 20X magnification. NT = no oligo treatment, 

NEG = mismatch negative control. B) HeLa:EGFP654 cells were transfected with the noncaged 

SSO (50 nM) using X-tremeGENE siRNA reagent (Roche), then UV irradiated on a 
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transilluminator (365 nm, 6.3 mW/cm2), and imaged for EGFP fluorescence on 20X 

magnification 24 h after UV exposure. Scale bars indicate 0.2 mm. 

 

 

While the HeLa:Luc705 cell line showed a significant 20-fold increase in luciferase when 

transfected with the noncaged SSO, a decrease of luciferase expression was observed for cells 

transfected and exposed to short UV exposures (Figure 2.19). Therefore, the HeLa:EGFP654 cell 

line was utilized for all subsequent analysis of the optical regulation of splice switching in 

mammalian cells. In order to optochemically regulate SSO activity, oligonucleotides with light-

responsive modifications were synthesized containing 2′OMe nucleotides and phosphorothioate 

linkages, which are highly effective oligonucleotide chemistries for cellular applications of 

SSOs.
189
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Figure 2.19: Splice-switch driven luciferase expression with UV irradiation.  
HeLa:Luc705 cells were transfected with the noncaged SSO (50 nM) using X-tremeGENE siRNA 

reagent (Roche), then UV irradiated on a transilluminator (365 nm, 6.3 mW/cm2) for 30 sec bursts 

up to 5 min. A luciferase bright glow assay was performed 24 h after UV exposure. 

Chemiluminescence was normalized to a no UV control and error bars represent the standard 

deviation of experimental triplicates. 

 

First, a nucleobase-caged SSO was engineered that contained light-removable protecting 

groups that inhibit hybridization to the complementary pre-mRNA target. A 2′OMe-NPOM-

caged uridine phosphoramidite was synthesized (Figure 2.20A) and incorporated into the SSO at 
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four positions throughout the sequence, as indicated in Table 2.8, to achieve full inhibition of 

duplex formation. The light-activated SSO (LASSO) was synthesized using phosphoramidite 

chemistry, gel extracted to obtain a high-purity full-length oligomer (Figure 2.20B and Figure 

2.21), and subsequently transfected into the HeLa reporter cell line.  

 

nc caged sox31 SSO -
SSO LASSO LDSSO nc LASSO .  
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Figure 2.20: Splice-switching oligonucleotide synthesis. 

A) Chemical structures of the two specialized phosphoramidites used for the synthesis of 

photochemically regulated oligonucleotides. B) Gel analysis of 10 pmol of each oligonucleotide 

synthesis. The abbreviation “nc” stands for noncaged. The abbreviations “synth.” and “pur.” 

represent the crude synthesis and purification products, respectively.  
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Oligonucleotide Calculated Measured

SSO 6932.5 6931.1

LASSO 7825.3 7823.5

LDSSO 6787.3 6787.3

sox31 SSO 8582.9 8580.9

sox31 LASSO 9475.7 9474.7

SSO

LDSSO

sox31 LASSO

LASSO

sox31 SSO

 

Figure 2.21: Analysis of splice-switching oligonucleotides. 

ESI mass spectra of synthesized oligonucleotides and tabulated results of calculated and measured 

masses (in Da). No photolysed products (loss of 1-4 NPOM groups or linker cleavage) were 

detected. Electrospray ionization mass spectrometry (ESI-MS) was performed by Novatia 

(Newtown, PA). 
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The LASSO was designed to be inactive when transfected into cells until briefly exposed 

to UV light, thus enabling efficient OFF → ON photoswitching for aberrant splice correction 

(Figure 2.22A and B). In the absence of UV irradiation, no EGFP expression was observed, but 

after a short UV exposure the AS pathway was activated through SSO decaging, leading to 

removal of the mutant intron and recovery of EGFP reporter gene expression (Figure 2.22D). 

Only cells that were UV-irradiated exhibit splice-switching activity and EGFP expression.  
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Figure 2.22: Optochemical regulation of splice switching with the LASSO (OFF → ON). 

Schematics for the two RNA splicing pathways (black) and the mutant intron (red) are shown. A) 

In the absence of irradiation, the LASSO does not bind to the target site due to inhibition of base 

hybridization from the nucleobase caging groups. B) UV decaging of the LASSO enables 

conditional splice correction of the aberrant mutant intron and activation of gene expression. C) 

Dark blue boxes represent 2′OMe-NPOM-caged uridine residues, with the light-removable group 

indicated in red. D) HeLa:EGFP654 cells were transfected with the LASSO, irradiated for 2 min 
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or kept in the dark, and imaged for EGFP expression after 24 h. Images of the EGFP channel (left) 

and the EGFP channel merged with a brightfield image (right) are shown. Scale bar indicates 0.2 

mm. 

 

In order to maximize light activation, the parameters for UV irradiation and LASSO 

concentration were further analyzed, revealing a 200 nM concentration and a 2 min irradiation 

time as being optimal for light-activated splice correction (Figure 2.23). Importantly, no 

background leakiness of the LASSO before irradiation was observed, confirming excellent OFF 

to ON switching behavior. 
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Figure 2.23: Optimization of photochemical LASSO activation in HeLa:EGFP654 cells.  

A) Cells were transfected of the LASSO (50 nM) using X-tremeGENE siRNA reagent (Roche), 

followed by different irradiation times (UV transilluminator, 365 nm, 6.3 mW/cm2) and imaging 

after 24 h (20X magnification). B) The 2 min exposure time was then used across a range of SSO 

transfection concentrations. Scale bars indicate 0.2 mm. 
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As a second approach, a light-cleavable oligonucleotide was synthesized to enable ON → 

OFF photoswitching of gene expression using an ortho-nitrobenzyl (ONB) linker (Figure 

2.20A). The ONB group was incorporated at two locations internally within the SSO sequence, 

as indicated in Table 2.8, both to maintain binding with the target site and to ensure complete 

cleavage of the full-length oligonucleotide through a brief UV exposure. This light-

deactivated SSO (LDSSO) was designed to be active in the absence of UV irradiation, but it can 

be deactivated with UV light, inducing oligonucleotide cleavage (Figure 2.24A and B). The 

successful synthesis and UV-dependent cleavage of the LDSSO was confirmed by gel analysis 

prior to cellular applications (Figure 2.20B and Figure 2.21). Transfection of the LDSSO 

confirmed that the installation of ONB linkers did not interfere with the SSO activity and that 

splice-switching correction for the expression of EGFP occurred in the absence of UV exposure 

(Figure 2.24D). In contrast, cells that were UV-irradiated showed no EGFP expression due to 

deactivation of splice-switching oligonucleotide as a result of light-induced oligonucleotide 

fragmentation. Importantly, splice correction with the LDSSO was completely deactivated 

through UV irradiation, demonstrating an excellent ON → OFF switching behavior of the SSO 

pathway. Thus, in conjunction with the LASSO described above, both optical activation and 

deactivation of splice-switching pathways are possible. 
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Figure 2.24: Optochemical regulation of splice switching with the LDSSO (ON → OFF). 

Schematics for the two RNA splicing pathways (black) and the mutant intron (red) are shown. A) 

In the absence of irradiation, the LDSSO binds to the target site for aberrant splice correction and 

activation of gene expression. B) UV cleavage of the LDSSO deactivates splice correction, and 

gene expression is interrupted by the mutant intron. C) Red circles represent ONB linker residues, 

with the photocleavable group indicated in red. D) HeLa:EGFP654 cells were transfected with the 

LDSSO, irradiated for 2 min or kept in the dark, and imaged for EGFP expression after 24 h. 

Images of the EGFP channel (left) and the EGFP channel merged with a brightfield image (right) 

are shown. Scale bar indicates 0.2 mm. 
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The effect of optochemical regulation of SSO activity and aberrant intron splicing on 

EGFP expression was then quantified through flow cytometry. Conditions for cell transfection 

and fluorescent cell counting were optimized both for the LASSO and LDSSO (Figure 2.25), 

followed by analysis of the optical OFF → ON and ON → OFF switching with the light-

regulated SSOs and comparison to a noncaged positive control (Figure 2.26). The EGFP reporter 

expression for the LASSO was fully restored, showing nearly identical expression levels as that 

of the control after a 2 min UV irradiation for light-activation of SSO function. The light-

deactivated SSO showed similarly high levels of EGFP expression as that of the noncaged SSO 

in the absence of UV irradiation but greatly reduced expression levels after UV exposure. Both 

SSO light switches exhibited >10-fold changes in EGFP expression between the OFF and ON 

states. These findings are in agreement with the observations from cellular micrographs 

presented in Figure 2.22 and Figure 2.24, validating the application of photocaged bases and 

photocleavable linkers for optochemical activation and deactivation of aberrant splicing 

pathways. 
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Figure 2.25: Optimization for flow cytometry quantification of splice-switching. 

HeLa:EGFP654 cells were transfected in 6-well plates with the LASSO (A) and LDSSO (B) 

oligonucleotides (50 nM unless otherwise indicated), irradiated with a UV transilluminator (365 

nm, 6.3 mW/cm2), and analyzed for EGFP expression after 24 h using a FACSCalibur (Becton-

Dickinson) flow cytometer (20,000 gating events). The gated EGFP positive cells were 

normalized relative to the noncaged control. 
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Figure 2.26: Flow cytometry quantification of optically regulated splice-switching.  

HeLa:EGFP654 cells were transfected with the SSOs, irradiated for 2 min or kept in the dark, and 

analyzed for EGFP expression after 24 h. The gated EGFP positive cells were normalized to the 

noncaged control. Error bars represent standard deviations from three independent experiments 

through counts of 20,000 cells each. 

 

The ability to specifically control the location of SSO optochemical regulation through 

localized UV illumination was then investigated. Irradiations for the LASSO were performed 

using irradiation masks as well as microscope optics. When UV irradiation was applied in a 

spatially defined area in conjunction with the light-activated SSO, only the cells that were 

exposed to 365 nm light exhibited EGFP expression through an OFF → ON light switch of SSO 

activity (Figure 2.27). The time of irradiation was decreased from 2 min to 30 s for localized 

irradiations because these were performed through focusing microscope optics using a Xe/Hg 

lamp. The tight spatial control conferred with this method can potentially be used to analyze 

splice switching and aberrant intron correction in small subsets of cellular populations as well as 

within defined locations in multicellular organisms. 
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Figure 2.27: Spatial control of EGFP expression using the LASSO. 

Localized irradiations were performed using a vertical mask (top) or a partially closed microscope 

shutter (bottom). Cells were imaged after 24 h. Images of the EGFP channel (left) and the EGFP 

channel merged with a brightfield image (right) are shown. Scale bars indicate 0.2 mm. 

 

In order to translate the methodology for the optical regulation of splice-switching from 

cell culture experiments to multicellular organisms, an endogenous gene in zebrafish was 

targeted to demonstrate conditional control of RNA splicing. The zebrafish embryo was selected 

as a model system because it has been shown that UV-A exposure does not affect zebrafish 

embryonic development, hatch rate, mortality, or global gene expression,
190

 making this 

translucent and ex utero developing animal highly suited for photoactivation studies with 

microinjected caged oligonucleotides.
170

 A light-activated splice-switching oligonucleotide was 

designed targeting sox31 (also known as sox19b), a member of the B1 Sox gene family that is 

responsible for many critical processes during zebrafish development, both before and after the 

midblastula transition (MBT).
191

 During the blastula stage, sox31 is expressed throughout the 

blastoderm, where it then assists in epiboly during the gastrulation stage.
192

 Splice variants of 

sox31 have been previously generated with morpholino oligonucleotides (MO) targeting cryptic 

splice sites in sox31.
193

 Alternative splicing-based inhibition of sox31 resulted in normal 

development during the first 3 hpf, followed by arrested embryonic development and loss of 
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epiboly for zebrafish that failed to undergo gastrulation. Although these findings were made with 

MOs, there is precedence for the use of 2′OMe-modified oligonucleotides as antisense agents in 

zebrafish.
194

 As such, a 2′OMe sox31 LASSO was synthesized with NPOM-caged uridine 

residues incorporated at four positions throughout the sequence, as indicated in Table 2.8, and 

purified for injection into zebrafish embryos (Figure 2.20B). The sox31 LASSO was designed to 

be inactive in the absence of UV exposure, allowing for correct RNA splicing and functional 

protein production until a brief UV exposure removes the nucleobase caging groups to activate 

the LASSO, which will then bind the RNA target site to initiate AS for the production of a 

nonfunctional interrupted RNA (see Figure 2.22). To this end, embryos were injected with the 

oligonucleotides (5 ng) and either irradiated (365 nm, 2 min) or kept in the dark. At 8 h 

postfertilization (hpf), the embryos were imaged during gastrulation at ∼75% epiboly (Figure 

2.28A), and the frequency of embryos exhibiting epiboly defects was determined (Figure 2.28B). 

The noninjected embryos were not affected by UV exposure, as no significant changes in 

development were observed. Injection with the noncaged positive control sox31 SSO showed 

developmental arrest and high frequency of the no epiboly phenotype. A negative control 

scrambled 2′OMe oligonucleotide shows low levels of developmental arrest, slightly above those 

observed for noninjected embryos. The sox31LASSO showed normal epiboly formation and 

development through gastrulation for the injected embryos in the absence of UV irradiation, 

similar to the negative control. However, activation of the LASSO with UV irradiation 

inhibited sox31 expression and induced epiboly failure to the same high levels as that observed 

for injection of the noncaged control. Thus, the conditional control of splice switching of an 

endogenous gene was successfully demonstrated in a living animal.  
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Figure 2.28: Optical regulation of splice switching in living zebrafish embryos. 

For a schematic of RNA splicing and LASSO activity refer to Figure 2.22. A) Zebrafish embryos 

were injected with the SSOs (5 ng) and imaged at 8 hpf. The major phenotypes observed from 

treatment with the light-activated and control SSOs, both without (top) and with (bottom) UV 

irradiation, are shown. Arrows indicate the absence of epiboly formation. B) Zebrafish embryo 

scores were determined for the frequency of no epiboly formation with and without UV exposure 

(365 nm, 2 min). Error bars represent standard deviations from three independent experiments. 

N = 18–44. 

 

Additionally, UV exposures at different time points from 1 to 7 hpf were performed to 

determine temporal requirements for the activity of sox31 during early embryonic development. 

Only embryos irradiated after 4 hpf (after the MBT) showed a distinct decrease in epiboly 

defects (Figure 2.29), supporting functional sox31 as a requirement for epiboly.
193

 Thus, 
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the sox31 LASSO enabled OFF → ON photoswitching of a dominant negative splice variant, 

thereby inhibiting sox31 and other SoxB1 genes in the developing zebrafish embryo. 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

NI No UV 0 1 2 3 4 5 6 7

UV irradiation (hpf)

re
la

ti
v
e

 n
o

 e
p

ib
o

ly
 p

h
e

n
o

ty
p

e

0 hpf 1 hpf 2 hpf 3 hpf

4 hpf 5 hpf 6 hpf 7 hpf

B

A

no UV

 

Figure 2.29: Sox31 LASSO light-activation time points. 

Zebrafish embryos were injected with the sox31 LASSO (5 ng) and UV irradiated (365 nm, 2 min) 

at 1-7 hpf. A) At 8 hpf, the embryos were imaged to demonstrate the majority phenotype. B) The 

frequency of embryos exhibiting a no epiboly phenotype was determined. N = 17–22. 

 

Alternative splicing (AS) is an important factor in the regulation of gene expression, 

responsible for the processing of pre-mRNA in many organisms. Misregulation of the 

spliceosome resulting in aberrant splicing is associated with a wide range of human genetic 
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disorders, and distinct changes in endogenous alternative splicing can lead to gene expression 

patterns that are tightly regulated in many biological pathways. Splice-switching oligos (SSOs) 

provide a method to investigate AS and control splicing pathways through hybridization with the 

pre-mRNA, which blocks splice sites and prevents interaction with components of the 

spliceosome, thus modulating gene expression and protein function. In order to address the lack 

of tools to conditionally regulate SSO function with spatial and temporal resolution, a method to 

regulate AS pathways with light as an external control element was developed. The installation 

of caged nucleobases in synthetic SSOs enabled optochemical activation of splice switching and 

alternative expression pathways in live cells and animals. Light-triggered deactivation of splice 

switching was demonstrated through the installation of photocleavable linkers into the 

oligonucleotide backbone. The NPOM-caged nucleobases and ONB-linker groups site-

specifically introduced into SSOs were used to develop both OFF → ON and ON → OFF light 

switches for gene splicing, with excellent switching behavior and no detectable background 

activity before light exposure. These findings are supported by cellular micrographs as well as 

florescent cell quantification using an EGFP reporter system in human cells. In addition, spatial 

control of SSO function in a cellular monolayer was achieved through localized UV exposure, 

showing distinct splice-switch regulation and activation of the caged SSO in a subset of cells. 

The conditional control of splice switching was demonstrated with the correction of a mutant 

intron, but it could be readily applied to other mechanisms of AS, such as mutant exon removal 

or processing of genes that contain multiple splice variants. To this end, the developed 

methodology was applied to the regulation of mRNA processing for an endogenous gene in a 

living organism, by targeting sox31 splicing in zebrafish embryos. The induction of 

developmental arrest through the inhibition of epiboly during zebrafish gastrulation was 
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conditionally controlled with injection of a sox31 light-activated SSO, successfully 

demonstrating temporal regulation of AS pathways in a complex animal model. By conveying 

optochemical regulation to SSOs, a new level of precision was added for conditional control over 

these gene regulatory tools and potential therapeutic reagents. The developed methodology will 

aid in the investigation of spatial and temporal mechanisms underlying spliceosome correction, 

aberrant splice switching, and their function in cells as well as multicellular organisms. 

2.5.1 Methods and Materials 

Oligonucleotides. The noncaged and negative control SSOs were received as a gift from 

Rudolph Juliano (UNC). The negative control scramble oligonucleotide was purchased from 

Ambion. Electrospray ionization mass spectrometry (ESI-MS) was performed by Novatia 

(Newtown, PA). All oligonucleotide sequences are shown in Table 2.8.  

 

Table 2.8: Oligonucleotides used for photochemically regulated splice-switching. 

All oligonucleotides contain phosphorothioate backbone linkages and 2’OMe modified 

nucleobases. Mismatched base pairs are indicated with an asterisk (*). NPOM-caged 2’OMe 

uridine residues are underlined, bolded, and highlighted red (“U”). Light-cleavable linker 

substitutions are indicated with a dash (-). Caged oligonucleotides were synthesized according to 

the general protocol 5.2Error! Reference source not found.. 

Strand   Sequence (5' → 3') 

SSO  GUUAUUCUUUAGAAUGGUGC  

NEG  GUA*AUUA*UUUAU*AAUC*GUC*C 

LASSO  GUUAUUCUUUAGAAUGGUGC 

LDSSO  GUUAU-CUUUAGA-UGGUGC 

sox31 SSO  AGCCCUUUUCUCAAAACAAACCUGU  

sox31 LASSO  AGCCCUUUUCUCAAAACAAACCUGU 
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Cellular Transfection of SSOs. See Section 5.4 for specific information on cell culture 

techniques. The reporter cell lines (HeLa:EGFP654 and HeLa:Luc705) were passaged into 96-

well plates and grown to ∼70% confluence within 24 h following protocol 5.4.1. Transfections 

were performed with 50–200 nM of each SSO using 1 μL of X-tremeGENE siRNA reagent for 4 

h following protocol 5.4.2.  

Fluorescence Imaging of EGFP. See Section 5.4 for specific information on cell culture 

techniques. Fluorescent imaging was performed after 24 h incubation using a Zeiss Observer Z1 

microscope (20X magnification) following protocol 5.4.5. The EGFP signal was normalized to a 

common setting for fluorescent intensity across all experiments (black = 300; white = 3000; 

gamma = 0.8) in Zen Pro 2011 imaging software. Fluorescent and brightfield merged images are 

shown with scale bars. 

Luciferase assay. See Section 5.4 for specific information on cell culture techniques. A 

bright glow assay was performed after 24 h incubation to quantify luciferase activity. 

Luminescence was read from a white 96-well plate on a BioTek Synergy 4-plate reader, with the 

gain set at 150 and 1 sec integration per well. The luminescence was normalized to the maximum 

activation observed, and error bars represent the standard deviation of experimental triplicates. 

Optochemical Regulation of SSOs. See Section 5.4 for specific information on cell 

culture techniques. Cellular irradiations were performed post-transfection with a 365 nm UV 

transilluminator (6.3 mW/cm
2
) for 30 sec to 2 min (EGFP reporter) or 5 min (luciferase reporter) 

following protocol 5.4.3. Spatially distinct UV irradiations were performed with a 

transilluminator through precut vertical slits in tinfoil for 2 min, and localized irradiations were 

performed with a Zeiss Observer Z1 microscope for 30 sec following protocol 5.4.3.  
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Fluorescent Cell Counting. See Section 5.4 for specific information on cell culture 

techniques. HeLa:EGFP64 cells were passaged into 6-well plates and grown to ∼70% 

confluence within 24 h following protocol 5.4.1. Transfections were performed with 50–200 nM 

of each SSO using 5 μL of X-tremeGENE siRNA reagent for 4 h following protocol 5.4.2. After 

transfection, UV irradiations were performed as described above followed by 24 h incubation. 

Cells were then trypsinized and resuspended in PBS buffer for fluorescent analysis. Flow 

cytometry was performed on a FACSCalibur (Becton-Dickinson) instrument (488 nm argon 

laser, 530/50 nm BPF) and analyzed using Cellquest Pro software. Cells were gated for EGFP 

fluorescence (above 10
2.5

 RFUs) and analyzed until 20000 cells had been counted for each 

condition tested. The frequency of EGFP positive cells (gated/total) was normalized to the 

noncaged control SSO. Error bars represent the standard deviation of experimental triplicates. 

Zebrafish Maintenance and Injections.  See Section 5.5 for specific information on 

zebrafish techniques. Embryos were microinjected at the 1-2 cell stage with 5 ng of the 

oligonucleotides in 5 nL following protocol 5.5.2. Embryos were then irradiated immediately 

following injection for 2 min with a 365 nm UV transilluminator and incubated for 8 h. UV 

exposures were performed at different timepoints between 1-7 hpf. Imaging was performed at 8 

hpf following protocol 5.5.3. Phenotype scores were calculated with embryo counts of [(no 

epiboly/alive) × 100]. For each of the replicates, the data were averaged, and standard deviations 

were calculated. 
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3.0  DNA Computation: Photochemical Regulation and Application in Live Cells 

In addition to applying photocaging of oligonucleotides to the control of gene expression (as 

described in Chapter 2.0  the use of caged oligonucleotides in optical control of DNA 

computation events was analyzed (Sections 3.1 and 3.4). These studies were transitioned from 

photochemical activation to cellular applications of DNA computation (Sections 3.2, 3.3, and 

3.5). The goals of these projects were to construct nucleic acid networks that utilize light as an 

input and to implement logic gates that perform computation functions in living cells. In the 

latter example, the DNA logic gates acted as biosensors for the detection of endogenous nucleic 

acids within cellular environments. 

Since a molecular computer encoded a solution to the Hamiltonian path problem in 1994 

through DNA hybridization,
195

 demonstrating that DNA algorithms can be used to perform 

computation operations, there have been many developments in the field of DNA 

computation.
196

  These DNA-based chemical circuits rely on nucleic acid base pairing 

interactions for the assembly of structures that are both precise in their activation and highly 

controllable. Researchers in the field construct these DNA computers to mimic the computation 

power of electronic systems (i.e., silicon-based) with devices composed solely of biological 

components. In a silicon-based computing device, the inputs consist of and are processed into 

electrical signals. For example, binary code utilizes digits of 0 (NO) and 1 (YES) to indicate 

ON/OFF states. Circuits then utilize these binary digits as inputs in the construction of logic 
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gates for the execution of Boolean logic functions and generation of electrical output signals. 

Logic gates are a basic computation device commonly implemented with diodes or transistors 

that function as electronic switches. However, in the examples presented below the electrical 

voltages associated with the input and output of a logic gate have been replaced with nucleic acid 

strands (e.g., DNA or RNA). Though there are many hurdles in producing DNA computation 

devices that would rival silicon-based computation, such as scaling limitations and the low 

computation speed of DNA-based devices,
197

 there are distinct advantages in developing 

biologically relevant computation systems. DNA computation devices have the ability to interact 

with biological and chemical environments, which is an important step towards developing in 

vivo cellular computation, and can potentially be interfaced with genetic regulatory molecules for 

diagnostic and therapeutic applications.
198, 199

 Additionally, DNA computation modules have 

potential as nanodevices for molecular bioassembly of complex DNA structures or in the 

development of smart materials.
200

 It has been estimated that DNA computation can operate at 

over 100 teraflops, as well as store a single bit of information in one cubic nanometer, with 

storage capacities greatly exceeding silicon computation devices.
197

 DNA computation also 

provides increased storage density for information compared to electrical systems.
201

 The focus 

of this chapter is on the construction of novel nucleic acid-based DNA computation devices for 

both cell-free and cell-based systems (Figure 3.1).
199
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Figure 3.1: Cell-based and cell-free nucleic acid logic devices.  

Representative time-scales for the activation of biomolecule-based logic devices are shown. Image 

adapted with permission from Miyamoto et al, ACS Synth. Biol., 2013, 2(2):72-82. Copyright 2013 

American Chemical Society. 

 

A variety of DNA devices have been engineered that recognize nucleic acid strands or 

ligand inputs through sequence-specific interactions in the generation of output signals, which 

can be used for the construction of synthetic circuits or as molecular computers with unique 

biological functions.
202

 The devices that will be discussed in this chapter are limited to logic 

gates or signal amplification cascades with Boolean function, which, by definition, respond to 

one or more input to produce a single defined output. The function of these DNA logic gates is 
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based on strand displacement and branch migration, which occur on the order of a few hours as 

shown in Figure 3.1. The method for activation of the logic gates discussed in this chapter (e.g, 

OR gates, AND gates, signal amplification networks) utilizes toe-hold mediated strand 

displacement in the generation of a defined output. A toe-hold is a short single stranded DNA 

sequence (e.g., 6 bases) extended from a DNA duplex that binds to a complementary sequence 

on another strand to facilitate DNA hybridization, branch migration, and strand displacement 

(Figure 3.2).
203

 The toe-holds are designed to interact with specific nucleic acid sequences as 

biological inputs, which displace bound oligonucleotides from DNA duplex structures. In the 

absence of a toe-hold, strand displacement is kinetically slow (Figure 3.2A). In contrast, if there 

are two toe-holds present on each termini of the duplex, strand displacement is kinetically fast 

and considered reversible, a process known as toe-hold exchange (Figure 3.2B). However, in the 

presence of a single toe-hold, strand displacement is kinetically fast in a single direction, and 

thus considered irreversible (Figure 3.2C). The first step of toe-hold mediated strand 

displacement (hybridization) involves complementary binding of the incoming oligo to the toe-

hold sequence, which is rapid and reversible (k1 = 10
6
 M

-1
s

-1
).

204
 The second step (branch 

migration) involves removing the bound strand from the toe-hold containing duplex (k2 = 1 s
-1

), 

and although the process is slower than the first step, it generally proceeds in a single direction, 

which makes the reaction irreversible.
204

 These calculated rate constants are dependent on the 

DNA concentration, sequence, and the length of a toe-hold domain, which can alter the rate of 

binding or displacement.
203

 For example, reducing the toe-hold length by a single base (e.g., 

from 6 to 5) will reduce the rate of the first step by a factor of 10. Due to the important role of a 

toe-hold in strand displacement reactions, certain strands can be rendered nonreactive through 

toe-hold sequestering, such as binding a complementary domain to make the toe-hold 
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inaccessible.
205

 Unique toe-holds for each nucleic acid component are utilized to initiate strand 

displacement reactions with sequence-specific inputs.  

 

B

A

C

 

Figure 3.2: Schematic of toe-hold mediated strand displacement.  

A) Slow displacement without toe-holds. B) Fast reversible strand displacement with two toe-

holds. C) Fast irreversible strand displacement with a single toe-hold (yellow box). A reaction 

pathway for toe-hold mediated irreversible strand displacement is shown to the right. Round and 

triangular ends of the lines represent 5′ and 3′ termini, respectively. Dashed line with arrow 

indicates toe-hold binding. 392-400. Adapted from Curr. Opin. Biotechnol., 21(15), Chen and 

Ellington, Shaping up nucleic acid computation, 392-400, Copyright (2010) with permission 

from Elsevier 

 

 DNA logic gates are a powerful computational device because the outputs are chemically 

equivalent to the inputs, and the output of one gate can act as the input for a following gate – 

similar to electronic gates. The advances in DNA logic gate engineering have enabled serial 

connections of gates, thus generating signaling cascades that can be assembled into complex 

molecular circuits based on nucleic acid hybridization.
206, 207

 For example, a complex circuit 

containing translator gates was used to combine multiple AND gates with OR gates, in 

conjunction with signal amplification and restoration (Figure 3.3).
208

 

 

  



 

 106 

 

Figure 3.3: Complex circuit with connected logic gates.  

Circuit diagram for let-7c AND miR-124a AND (miR-15a OR miR-10b) AND (miR-143 OR 

miR-122a). Signal propagation through the circuit containing AND gates, OR gates, sequence 

translators, and a signal restoration module is shown. The five-layer circuit consists of a total of 11 

gates and accepts six inputs. Fluorescence traces of circuit operation without and with the signal 

restoration module (threshold plus amplifier) are shown. Adapted from Seelig et al, Science. 2006, 

314(5805):1585-1588. Reprinted with permission from AAAS. 

 

Here, the serial connection of AND gates with OR gates allowed the specific analysis of 

patterns of six miRNA inputs. Each miRNA input interacted with a translator gate, which 

produced an output strand that acts as an input for a downstream gate. The final interaction of the 

completed circuit was the displacement of a fluorophore:quencher containing duplex in a 

reporter gate to generate an output signal (i.e., fluorescence). This circuit utilized eleven total 

gate structures, which all interacted autonomously in solution. As the size of a complex circuit 

increased, the speed of activation decreased (from completion in 5-6 h to requiring >12 h for 

completion), as shown in the gate kinetic diagrams. However, in both cases the OFF and ON 

states can be clearly distinguished.  
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DNA logic gates have been designed as synthetic chemical circuits with functions in 

memory simulation,
209

 deoxyribozyme function,
210

 G-quadruplex formation,
211

 aptamer ligand 

binding,
212

 activation of protein translation,
213

 molecular beacon probes,
214

 edge detection,
215

 and 

game simulation.
216

 Since enzyme-free DNA logic gates recognize nucleic acid inputs through 

strand hybridization to activate computation cascades, the oligonucleotide outputs generated can 

be interfaced with cellular environments. The ability to interface with biological systems is a 

strong driving force to further develop DNA computing devices that recognize specific 

biological changes, which is paramount towards the eventual goal of developing modular cellular 

circuitry and molecular computation devices. Cells have been programmed to recognize DNA 

hybridization for cellular self-assembly pathways,
205

 showing the potential for linking DNA 

computation with biological systems. Applications of nucleic acid-based logic gates in biological 

systems include targeted cellular delivery,
217

 mRNA detection with amplification,
218

 and  

targeted therapy of cancerous cell markers.
219

 For example, programmable DNAzymes libraries 

have been constructed to replicate a variety of Boolean logic gates with miRNA or mRNA 

inputs, such as the miR-21 AND miR-125b logic gate that was applied in live cells (Figure 

3.4).
220
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Figure 3.4: Development of miR-21 AND miR-125b DNAzyme logic gate in live cells.  

A) Illustration of the DNAzyme Dz13 cleaving a fluorescently labeled RNA substrate. Input A = 

miR-21, Input B = miR-125b. B) Quantitative substrate cleavage results. Error bars represent 

standard deviation errors from three independent experiments. C) Cells were microinjected with 

each input combination. Fluorophore-labeled dextran was used to normalize fluorescence and 

mark injected cells. Representative injected cells were imaged 5 minutes after injection. 

Fluorescent (left) and phase (right) images are shown. Image adapted with permission from 

Kahan-Hanum et al, Sci. Rep., 2013, 3:1535. Copyright 2013 Nature Publishing Group. 

 

In this study, the Dz13 DNAzyme
221

 was reprogrammed into a library of Boolean logic 

gates, where the Dz13 catalytic activity was controlled with specific input conditions. To form an 

AND gate the DNAzyme's catalytic core was split into two parts, and a blocking arm containing 

a stem-loop was loop was added to one half of the DNAzyme core (Figure 3.4A). The toe-holds 

and complementary sequences were designed using miR-21 (Input A) and miR-122 (Input B) 

sequences. The functional DNAzyme complex will only be formed when both inputs are present, 

which remove the blocking arm and bring the split catalytic core halves together. The activity of 

the AND gate was analyzed with a fluorescently labeled RNA substrate that produced an output 
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signal upon DNAzyme cleavage only when both inputs were present, confirming the AND gate 

function in vitro (Figure 3.4B). Subsequently, the in vivo activity of the AND gate was tested. 

The AND gate, fluorescent substrate, and exogenous inputs were microinjected into cells 

followed by microscopy imaging (Figure 3.4C). The AND gate properly operated within living 

cells and the computation output was observed in less than 5 min. The DNAzyme substrate 

cleavage only occurred when both inputs were injected, and output signal was localized in the 

cell nucleus. While this report demonstrated activation of DNA computation in a biological 

environment, the use of exogenous inputs limited the detection of endogenous miRNA profiles in 

specific cell lines. Moreover, gate activation may have occurred already during injection, before 

inputs and gate were released into the cell. In another interesting biological application of a DNA 

nanodevice, pH was sensed in Caenorhabditis elegans (Figure 3.5).
222
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Figure 3.5: DNA-based sensing of pH changes in a living organism.  

A) Schematic showing the structure and function of the I-switch nanodevice. B) I-switch uptake in 

coelomocytes postinjection in C. elegans.
223

 C) Donor channel, acceptor channel, and respective 

pseudocolour D/A images of wild-type coelomocytes labelled with the I-switch and clamped at pH 

5 or 7. Scale bar indicates 10 μm. Image adapted with permission from MacMillan Publishers Ltd: 

Nat. Comm., 2:340, copyright 2011. 

 

The DNA nanomachine was triggered within a live animal in response to pH changes 

associated with endocytosis. A previously described autonomous DNA nanomachine that 

undergoes a conformational change in response to pH changes, known as the I-switch,
224

 was 

utilized for the detection of acidic compartments within C. elegans. The I-switch contains two 

DNA duplexes connected by a flexible hinge, and cytosine-rich single stranded overhangs at the 
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termini, which can be protonated under acidic conditions to form an I-motif (Figure 3.5A).
225

 In 

this state, two fluorohores are brought into close proximity, allowing for fluorescence resonance 

energy transfer (FRET)-based pH sensing. C. elegans have proton-rich large scavenger cells 

known as coelomocytes, which are involved in endocyctosis of macromolecules from the body 

cavity, and can be used to study endocytosis pathways (Figure 3.5B).
226

 The function of the I-

switch was determined in vivo through worm injections at two pHs and subsequent imaging of 

the FRET pair (Figure 3.5C). The D/A ratios observed for endosomes at pH 5 are lower than 

those observed for endosomes at pH 7, demonstrating that the injected I-switch retains pH 

sensing function within endosomes.  The DNA nanomachine allowed for the mapping of spatio-

temporal pH changes that occur during endosome maturation. This report demonstrated that 

rationally designed DNA-based molecular devices can interrogate complex biological 

phenomena in live organisms. In addition, there are several examples of oligonucleotide 

computation concepts that utilize protein components and existing networks in live cells, 

including RNA gates targeting mRNA,
227

 transcriptional regulation with CRISPR/Cas9 gene 

circuits,
228

 and RNAi logic gates.
229, 230

 Directly relevant to the research discussed in Section 3.5, 

amplification circuits have been engineered for the detection of RNAs in live cells.
218, 231

  

Current limitations of the DNA computation technology that will be addressed in this 

chapter include spatio-temporal control of logic gate activation (Section 3.1), activation of logic 

gates in cellular environments for the detection of endogenous nucleic acids (Sections 3.2 and 

3.3), and amplification of the input signal (Sections 3.4 and 3.5). 
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3.1 DNA Computation: A Photochemically Controlled AND Gate 

This material was reprinted, in part, with permission from Prokup, A.; Hemphill, J.; Deiters, 

A. J. Am. Chem. Soc. 2012, 134(8), 3810-3815. Oligonucleotide syntheses and assistance in 

logic gate design were performed by the author of this thesis. All experiments were conducted by 

Alexander Prokup in the Deiters lab. 

 DNA-based logic gates have previously been operated through purely chemical means, 

controlling logic operations through DNA strands or other biomolecules. Although gates can 

operate through this manner, it limits temporal and spatial control of DNA-based logic 

operations. Light represents a powerful input with a wide range of advantages over chemical or 

biological inputs. Photochemical inputs close the gap between DNA computation and silicon-

based electrical circuitry, since electromagnetic waves can be directly converted into electrical 

output signals and vice versa. This connection is important for the further development of an 

interface between DNA logic gates and electronic devices. The use of chemical inputs introduces 

variables, such as cellular uptake, processing, and diffusion that reduce the reliability of a logic 

gate to be controlled in a biological environment. A system in which the logic gate machinery is 

pre-assembled and activated with light provides enhanced control and specificity. 

Photochemically caged nucleic acids allow for light-activation of DNA hybridization in a precise 

manner that other research tools cannot accommodate. However, photocaged nucleic acids have 

not been used in cellular computation or the development of DNA-based logic gates. Here, 

photochemical control of logic gate function was demonstrated by employing caging groups on 

DNA strands responsible for toe-hold displacement. The photochemical triggering of a 

functional logic gate allows for spatial and temporal activation, which can be used to enhance 

control over signaling cascades of complex DNA computation circuits.
209

 

http://pubs.acs.org/doi/abs/10.1021/ja210050s
http://pubs.acs.org/doi/abs/10.1021/ja210050s
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 A light-triggered AND gate was designed based on the concept of toe-hold mediated 

strand displacement, which forms the basis for many DNA computational elements.
207

 As shown 

in Figure 3.6, the light-triggered AND gate will only deliver an output signal if both 

photochemical input signals of different wavelengths (I1 and I2) are present. The gate complex is 

composed of three ssDNA oligomers: a fluorophore strand GF, a quencher strand GQ and a toe-

hold containing strand GT. The fluorophore and quencher moieties are in close proximity 

preventing fluorescence. In order to activate the gate, A4 and B0 need to induce a toe-hold 

displacement cascade resulting in the removal of GQ from GF. The A4 strand binds to the toe-

hold of GT separating the gate complex, allowing B0 to bind to the toe-hold exposed on GF. This 

event releases GQ, permitting emission of the excited fluorophore. It was hypothesized that 

caging groups installed on select thymidine bases of the A4 strand will prevent hybridization and 

thus prevent strand exchange. Therefore, without the proper light inputs for decaging (input I1 = 

365 nm) and excitation (input I2 = 532 nm) no output signal will be observed. Thus, step 1 

involves UV irradiation at 365 nm for decaging of the nucleotides. After caging group removal, 

complementary regions are exposed, enabling DNA:DNA hybridization. In step 2, A4 will 

dislodge GT via a toe-hold mediated strand displacement mechanism.
207

 Following step 2, the 

gate complex consists of only fluorophore and quencher strands. Step 3 occurs spontaneously 

because a second toe-hold region is exposed on the gate complex after the GT strand was 

expelled by the A4 strand. During step 4, quencher and fluorophore strands are separated by a 

second toe-hold mediated exchange with the strand B0. In step 5, irradiation at 532 nm now leads 

to excitation of the fluorophore and observation of fluorescence emission as the output signal. 
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Figure 3.6: A photochemically control DNA logic gate. 

A) Light-triggered DNA-based AND gate using irradiation at 365 and 532 nm as input 

signals I1 and I2, respectively, and fluorescence as the output signal. The NPOM (6-

nitropiperonyloxymethylene) caging group installed on thymidine nucleotides is represented by a 

blue square. Quencher Q = Iowa Black RQ. Fluorophore F = tetramethylrhodamine (TAMRA). B) 

AND gate truth table. C) AND gate circuit diagram. Image adapted with permission from Prokup 

et al, J. Am. Chem Soc. 2012, 134(8):3810-5. 

 

In order to determine the effect of caging groups for the photochemical control of an 

AND gate, caging groups were initially added to the A strand (for a detailed discussion of 

nucleobase caging, see Section 1.1). A set of four oligonucleotides bearing 1–4 caging groups 

was synthesized (A1–A4, Table 3.1) and individually tested for function to study the design 

requirements for suppression of strand displacement.  
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Table 3.1: Inputs for the photochemically activated AND gate.  

NPOM-caged thymidine residues are underlined, bolded, and highlighted red (“T”). Caged DNA 

oligonucleotides were synthesized according to the general protocol 5.2. 

Strand Sequence (5' → 3') 

A0 TATGGTTGTTTATGTGTTCCCTGATCTTTAGCCTTA 

A1 TATGGTTGTTTATGTGTTCCCTGATCTTTAGCCTTA 

A2 TATGGTTGTTTATGTGTTCCCTGATCTTTAGCCTTA 

A3 TATGGTTGTTTATGTGTTCCCTGATCTTTAGCCTTA 

A4 TATGGTTGTTTATGTGTTCCCTGATCTTTAGCCTTA 

 

As the number of caging groups was increased, the fluorescence output of the gate 

linearly decreased in the absence of UV irradiation with I1 = 365 nm (Figure 3.7A). Optimal 

suppression of the output signal was observed with A4, which contained four NPOM caging 

groups evenly distributed throughout the DNA strand and displayed no activity. An optimization 

of the UV irradiation time for decaging was then conducted, and a time course was performed 

with the A4 strand. Maximum fluorescence was observed after 15 min of UV irradiation at I1 = 

365 nm followed by a brief excitation at I2 = 532 nm (Figure 3.7B). Longer I1 irradiation times 

lead to a decrease in fluorescence, possibly due to photobleaching of the fluorophore.
232

 

Activation of logic gates using noninvasive UV irradiation as an input signal shows that a DNA-

based light switch can be generated, which holds promise for developing new applications of 

externally regulated DNA computation devices. 
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Figure 3.7: Optimization of caging group number and UV irradiation time for the A strand. 

A) The logic gate was not irradiated with 365 nm light in order to keep all caging groups in place, 

but only with 532 nm light (I2). B) The logic gate was irradiated with a time course of 365 nm 

light (I1) and activated was detected with 532 nm light (I2). Averages of three independent 

experiments are shown, and error bars represent standard deviations. Image adapted with 

permission from Prokup et al, J. Am. Chem Soc. 2012, 134(8):3810-5. These experiments were 

conducted by Alexander Prokup.  

 

To investigate whether the light-triggered AND gate could be controlled with temporal 

and spatial resolution using UV light as an input, several experiments were conducted with the 

caged A4 strand. First, three separate sets of logic gates were irradiated at different time points, 

and a fluorescent signal was only observed after UV irradiation (Figure 3.8A). Thus, temporal 

control over the light-triggered AND gate was achieved. Second, a step response of the gate was 

elicited through subsequent UV irradiations in two intervals (Figure 3.8B). The output signal of 

the caged AND gate is dependent upon the irradiation interval and increases with additional UV 

exposure. The tunable nature of the step response displays a unique feature to control output 

intensity of a DNA-based AND gate using subsequent input stimuli I1. Achieving a tunable step-

response allows light-triggered DNA logic gates to be used as molecular controllers that can be 

adapted to enhance circuit cascades. These factors demonstrate the improvements upon existing 

DNA logic gates through temporal activation with light input signals. Third, to demonstrate 
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spatial control of DNA computation via locally restricted light irradiation, the AND gate 

complex and the caged strand A4 were embedded into a low-melt agarose gel. The gel was either 

kept in the dark or irradiated in a patterned fashion with I1 = 365 nm UV light, followed by 

imaging of the gel via excitation at I2 = 532 nm. A distinct pattern was obtained and no 

fluorescence was observed in the absence of UV irradiation, demonstrating the ability to apply 

the developed light-triggered AND gate in spatially controlled DNA computation (Figure 3.8C). 

This demonstrates that logic gate operations can be performed in semi-solid structures and are 

not limited to solution-based applications. Since electronic systems depend on solid structures 

and spatially separated devices, identification and recognition of spatially separated signals 

potentially allows for organization of circuits to create an important link between non-electronic 

and electronic computational systems.  

 

A B

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80

re
la

ti
v
e

 f
lu

o
re

s
c
e
n
c
e

time (min)

UV UV UV

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100

re
la

ti
v
e

 f
lu

o
re

s
c
e
n
c
e

time (min)

UV

UV
C + UV− UV

1 cm

 

Figure 3.8:  UV irradiation at different time points to demonstrate temporal control. 

A) Baseline fluorescence was measured for 30 min, and three individual gates containing caged 

A4 at were irradiated with I1 = 365 nm light at 30 (red), 45 (green), and 60 min (purple). B) A 

single logic gate containing caged A4 was irradiated for two intervals resulting in a steplike 

response. Graphs represent an average of three independent experiments. C) Spatially restricted 

activation of the DNA logic gate through patterned UV irradiation using masks followed by gel 

imaging with I2 = 532 nm. Image adapted with permission from Prokup et al, J. Am. Chem Soc. 

2012, 134(8):3810-5. These experiments were conducted by Alexander Prokup. 

 



 

 118 

In conclusion, a photochemically controlled AND gate was developed through the 

incorporation of caged thymidine nucleotides in a DNA-based logic gate. Strands of DNA were 

synthesized using specialized phosphoramidites, which enabled the use of specific wavelengths 

of light as inputs for a DNA-based AND gate. Temporal control over DNA computation was 

achieved through introducing four caging groups and activating separate gate complexes at 

different time points, displaying fundamental properties of a light-switch for molecular circuits. 

When a single gate complex was irradiated at two intervals, a step response in the output signal 

was observed, suggesting that the phototriggered AND gate can act as a tunable DNA-based 

circuit. Integration of a light-activated AND gate for purposes of a step response could allow the 

gate to function as a manual feedback controller. Within a cascade of gates, the light-triggered 

AND gate can operate as a switch or controller and will allow for more complex and better 

controlled circuit designs. Moreover, photochemical activation enabled DNA-based logic 

operations in a spatially localized fashion. This was demonstrated by light-triggered pattern 

formation in a semisolid substrate, where DNA computation events were only observed in areas 

that received irradiation with both input wavelengths. Design rules were established that enabled 

light-activation of the gate and will be applicable to further developments, e.g., the generation of 

other light-triggered logic gates. The use of light to control a DNA-based logic gate creates a 

new paradigm of inputs that will be beneficial when used in a biological context. Light allows 

for spatial and temporal control with high specificity, while overcoming the downfalls of 

chemical-based inputs such as diffusion and delivery kinetics. Photochemical inputs also shorten 

the gap between DNA computation and silicon-based electrical circuitry, since light waves can 

be directly converted into electrical output signals and vice versa. This connection is supremely 

important for further developing the interface of DNA logic gates and electronic devices and, 
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thus, the interface of biological systems with electrical circuits. Thus, the photochemical control 

demonstrated here lays the foundation for the programming of complex, DNA-based 

computation devices with unprecedented spatial and temporal resolution. 

3.2 DNA Computation in Mammalian Cells: AND Gates 

The next step taken for the design of new paradigms in DNA computation was the application of 

DNA-based logic gates in a biological system. The use of DNA logic gate operations in live cells 

requires biomolecular assembly of DNA structures, which has been well documented.
233

 Here, 

the first in vivo photochemical activation of a light-triggered AND gate in mammalian cells, and 

subsequent application for the detection of endogenous nucleic acids with DNA logic gates 

targeting microRNAs are described. This material was reprinted, in part, with permission from 

Hemphill, J.; Deiters, A. J. Am. Chem. Soc. 2013, 135(28), 10512-10518. All experiments were 

conducted by the author of this thesis. 

Oligonucleotide AND gates were engineered to respond to specific microRNA (miRNA) 

inputs in live mammalian cells. Both single and dual-sensing miRNA-based computation devices 

were synthesized for the cell-specific identification of endogenous miR-21 and miR-122. A logic 

gate response was observed with miRNA expression regulators, exhibiting molecular recognition 

of miRNA profile changes. Nucleic acid logic gates that are functional in a cellular environment 

and recognize endogenous inputs significantly expand the potential of DNA computation to 

monitor, image, and respond to cell-specific markers. 

 At the time of this study, synthetic DNA-based logic gates had not yet been reported in 

live mammalian cells and therefore held great promise for the computation of endogenous 

http://pubs.acs.org/doi/abs/10.1021/ja404350s
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biological inputs independent of protein components and gene expression systems. MicroRNAs 

are small noncoding ssRNAs that down-regulate gene expression in a sequence-specific fashion 

by binding the 3′ untranslated regions of target mRNAs,
139

 and it has been estimated up to 30% 

of all genes are regulated by miRNAs.
140

 The expression and misregulation of certain miRNAs 

has been linked to a wide range of human diseases,
142

 highlighting the importance in 

understanding miRNA regulation and function.
141, 143

  

It was demonstrated that logic gates can be used to detect miRNAs in vivo through DNA 

computation and will enable cell-specific gate activation based on endogenous miRNA 

expression patterns. Although DNA-hydridization probes have been used to detect cellular 

miRNAs,
234

 for example, through miRNA-specific molecular beacons,
235

 DNA computation in 

live cells allows for Boolean logic gate operations with miRNA inputs, and the generated 

oligonucleotide outputs enable applications beyond miRNA pattern detection. While a previous 

example of miRNA detection by logic gate operations in live cells requires plasmid constructs 

for the expression of protein gate components,
229

 the use of DNA logic gates to identify 

endogenous miRNA patterns as described here is independent of the cellular transcription and 

translation machinery and does not require the transfer of genetic information, allowing the 

circuits to be orders of magnitude smaller in size based on DNA sequence (e.g., 268 bp versus 

>7000 bp for a dual-miRNA input gate). 

MicroRNAs miR-21 and miR-122 were selected as inputs for miRNA-specific 

intracellular logic gate activation. Overexpression of miR-21 is observed in many cancer 

types,
146, 236

 while miR-122 is involved in hepatocellular carcinoma
237

 and hepatitis C virus 

replication.
148

 The DNA-based AND gate is derived from a design by Seelig et al.
208

 and 

computes two input strands that initiate toe-hold mediated strand exchange, displacing a 
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quencher and fluorophore duplex, leading to a fluorescent output. The use of mature miRNAs as 

endogenous AND gate inputs is both sequence- and cell-specific. Additionally, the fluorescent 

output can be observed without the need to perform cell lysis or RNA purification, which can 

introduce variability between experiments.
238

 Here, the developed methodology was applied to 

the detection of cellular miRNA expression patterns, utilizing DNA computation as a method for 

the development of synthetic circuits that are functional in live cells. 

In order to visualize DNA computation in a cellular system, a photochemically activated 

logic gate was utilized to trigger toe-hold mediated strand exchange and gate output at a defined 

time point. First, the light-triggered DNA logic gate (oligonucleotide sequences can be found 

in Table 3.2) was tested for activity in mammalian cells through transfection of the AND gate 

components into HEK293T cells. The noncaged A and B strands were used to determine if gate 

components would remain stable within live cells, and if activated gate fluorescence could be 

observed in vivo (Figure 3.9). Logic gate activation was observed 4 h after transfection and was 

dependent on the presence of both input strands, confirming cellular stability of the AND gate 

duplex and fluorescent imaging of DNA computation through standard microscopy techniques. 

Imaging cytometry was unfortunately unsuccessful for the quantification of logic gate activation 

in cells, since the punctuate fluorescence patterns did not the satisfy requirements of identifiers 

used in common cell counting software, such as size cutoffs and shape recognition.    

 



 

 122 

- B 

+ B

- A + A

 

Figure 3.9: Application of logic gate for DNA computation in HEK293T cells. 

Transfections were performed with the AND gate and A/B strands then imaged after 4 h. Scale bar 

indicates 200 μm. 

 

To ensure that the logic gate could be triggered inside a cellular environment and to 

demonstrate intracellular toe-hold mediate strand exchange without activation in preceding 

mixing steps, photochemical control of DNA computation was used (for a detailed discussion of 

nucleobase caging, see Section 1.1). The AND gate was cotransfected with the caged A4T input, 

and irradiation (5 min, 365 nm) was performed after gate transfection was completed, followed 

by cellular imaging after 1 h (Figure 3.10). Successful cellular activation of the AND gate 

through UV decaging of the input strand with minimal background was observed. This temporal 

control over oligonucleotide hybridization confirms that DNA computation based on toe-hold 

mediated strand exchange can be conducted in live cells, since only logic gates that were 

successfully transfected into the cells and also exposed to UV irradiation were activated. 
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Figure 3.10: Photochemically controlled DNA-based AND gate activation in HEK293T cells. 

A) Simplified schematic of the light-activated AND gate with a caged A4T strand. NPOM-caged 

thymidine nucleotides are indicated as dark blue boxes. Toe-hold regions are shown for the A 

(green) and B (orange) input activation cascades, along with corresponding arrows representing 

hybridization steps. Quencher Q = Iowa Black RQ. Fluorophore F = tetramethylrhodamine 

(TAMRA). B) Cells were transfected with the AND gate and A/B inputs then imaged for TAMRA 

fluorescent output after 4 h. Cells were also transfected with the AND gate and caged A4T/B 

strands for 4 h then UV irradiated and imaged 1 h after exposure. Scale bar indicates 200 μm. 

 

In order to develop a DNA logic gate that can respond to an endogenous cellular 

activator, a miR-21-based AND gate was engineered that replaces the A input with mature miR-

21. The gate sequences were amended to add miR-21 relevant toe-hold regions on GT and 

recognition sites within the gate complex, which required an 8 base truncation from the AND 

gate duplex to accommodate the smaller miR-21 input (Table 3.3). The B strand was altered to 

have a toe-hold recognition sequence that is complementary to the 3′ sequence of miR-21. 

Additionally, the fluorophore and quencher moieties were switched to the opposite strands to 

increase DNA synthesis yields. To verify that toe-hold mediated strand exchange was not 

inhibited by the alterations in gate sequence and introduction of ssRNA as an input, the miR-21 

AND gate duplex was purified and incubated with synthetic miR-21 and B21 strands (Figure 

3.11A). The miR-21 AND gate is only activated when both the miR-21 and B21 inputs are 
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present, providing a miR-21 responsive DNA computation device. The miR-21-based AND gate 

was then tested for function in HEK293T cells, which display low endogenous expression levels 

of miR-21.
239

 As expected, the logic gate was confirmed to produce an output signal dependent 

upon transfection of both synthetic miR-21 RNA and B21stands (data not shown). Importantly, 

no background fluorescence was observed with the AND gate alone or with only a single input 

strand, confirming the gate duplex stability in vivo. Next, two human cell lines which express 

high levels of miR-21 (Hela and Huh7, >10-fold increase in relative miR-21 concentration 

compared to the control HEK293T cells)
239

 were transfected with the AND gate components in 

order to test detection of endogenous miR-21 through DNA computation. Experiments with 

these cell lines were performed in the absence of synthetic miR-21, and the AND gate was 

cotransfected with only the B21 input strand, followed by fluorescence imaging after 4 h (Figure 

3.11B). The miR-21 AND gate duplex was not activated in the absence of B21, and activation in 

the presence of B21 indicates that toe-hold mediated strand exchange was initiated with 

endogenous miR-21 as the input strand. The presence of miR-21 with the engineered AND gate 

was observed in both cell lines, validating the application of AND gates for the detection of 

miRNA in mammalian cells. The logic gates show high transfection and activation efficiency in 

a cellular monolayer, as >90% of the cells show a fluorescent output from endogenous 

gate/miRNA interactions. 
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Figure 3.11: Engineered miR-21-based AND gate for detection of endogenous miR-21. 

A) The logic gate was tested for activation with miR-21 and B21 strands. TAMRA fluorescence 

was observed at 4 h and normalized to the activated AND gate. An average of three independent 

experiments is shown and error bars represent standard deviations. The miR-21 AND gate requires 

both inputs for generation of fluorescent output. B) HeLa (top) and Huh7 (bottom) cells were 

transfected with the miR-21 gate and B21 strand then imaged after 4 h. Scale bars indicate 200 μm. 

 

A transfection time course was performed in order to determine the minimum amount of 

time required for AND gate activation in vivo, and early detection of miR-21 can be observed in 

>50% of the cells after only 1.5 h, suggesting that a short cellular incubation is sufficient for 

computation of miRNA expression patterns (Figure 3.12).  
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Figure 3.12: miR‐21 AND gate time course in HeLa cells. 

Cells were transfected with the miR‐21 gate and B21 then imaged at specific time points.  Scale bar 

indicates 200 μm. 

 

Fluorescence was also imaged after an extended cellular incubation time of 24 h (Figure 

3.13). In this experiment, endogenous miRNA-driven logic gate activation was still observed, 

and no fluorescence was observed in the absence of B21. This data suggests that the nonactivated 

gate duplex was stable in HeLa cells for up to 24 h, and duplex degradation does not occur 

within an overnight time frame.   

 

- B21 + B21

 

Figure 3.13: Long‐term exposure of the miR‐21 AND gate in HeLa cells. 

Cells were transfected with the miR‐21 gate and B21 then imaged after 24 h incubation. Scale bar 

indicates 200 μm. 
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Additional imaging experiments were performed, including nuclear staining, to identify 

the location of the DNA computation event (Figure 3.14). Apparent localization of activated 

miR-21 logic gates could be observed around the nuclear periphery – potentially in endosomes, 

suggesting that DNA logic gates can potentially be applied to the spatial identification of 

miRNA-rich and/or logic gate-rich areas.  

 

DAPI TAMRA Merge

 

Figure 3.14: miR‐21 AND gate cellular localization in HeLa cells. 

Cells were transfected with the miR‐21 gate and B21 then fixed and nuclear counter stained with 

DAPI and imaged to observe gate activation with sub‐cellular resolution.  

 

The miR-21 logic gate was then altered to be photochemically controlled through UV 

activation of a caged input strand. Light-activation allows for controlled cellular interaction of 

the logic gate output and enables temporally distinct detection of endogenous nucleic acids. A 

caged B21–4Tstrand gate was synthesized with four light cleavable NPOM-dT bases and tested for 

the photochemical activation of the miR-21 AND gate (Figure 3.15B). An increase in gate 

fluorescent output was observed after a 5 min UV irradiation when the AND gate was analyzed 

in solution. The caged miR-21 AND gate was then transfected into HeLa cells for 

photochemically activated miRNA detection (Figure 3.15C). As expected, in conjunction with 

the caged B21–4T strand, the miR-21 AND gate only detects endogenous miR-21 after UV 
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exposure. The combination of photocaging and miRNA detection allows for the use of light as a 

second input when analyzing endogenous miRNA expression in biological environments. 
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Figure 3.15: A photochemically triggered miR-21 AND gate. 

A) Simplified schematic of the AND gate with a caged B21–4T strand. NPOM-caged thymidine 

nucleotides are indicated as dark blue boxes. Toe-hold regions are shown for the miR-21 (green) 

and B21–4T (orange) input activation cascades, along with corresponding arrows representing 

hybridization steps. Quencher Q = Iowa Black RQ. Fluorophore F = tetramethylrhodamine 

(TAMRA). B) The AND gate was tested for photochemical (365 nm, 5 min) activation of caged 

B21–4T. TAMRA fluorescence was observed at 4 h and normalized to the noncaged activated AND 

gate. An average of three independent experiments is shown and error bars represent standard 

deviations. C) HeLa cells were cotransfected with the miR-21 gate and caged B21–4T for 4 h and 

then UV irradiated and imaged 1 h after exposure. Scale bars indicate 200 μm. 
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Environmental changes can greatly affect miRNA expression patterns and quickly 

monitoring these effects with DNA computation devices has potential in diagnostic application 

and therapeutic responses. Here, the AND gate was applied to the detection of changes in miR-

21 levels in HeLa cells through both small molecule treatment with a miR-21 inhibiting 

azobenzene
149

 and antagomir treatment with a reverse complement of the mature miR-21 

sequence,
21

  perturbing different stages of the miRNA pathway.
145

 Cells were treated with either 

the miR-21 antagomir (100 pmol) or the small molecule (10  μM) for 48 h, followed by 

transfection of the miR-21 AND gate and subsequent fluorescence imaging (Figure 3.16). The 

logic gate output is deactivated through treatment with either the small molecule or the miRNA 

antagomir, demonstrating successful DNA computation of miRNA responses to environmental 

changes.  
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Figure 3.16: miR-21 AND gate detection of functionally depleted miR-21 in HeLa cells. 

Cells were treated for 48 h with a miR-21 antagomir (100 pmol) or a miR-21 small molecule 

inhibitor (10 μM) followed by cotransfection with the miR-21 gate and B21 as previously 

described. Scale bars indicate 200 μm. The azobenzene derivative shown is a known miR‐21 

inhibitor. 

 

A dose–response experiment was performed to observe the effects of decreased small 

molecule concentrations on detection of miR-21 inhibition (Figure 3.17). Inhibition of miR‐21 

expression from treatment of HeLa cells with the small molecule can be detected at 250 nM 

through deactivation of a miR‐21 AND gate. Thus, the detection of miRNA with logic gates has 

been shown to be sensitive to miRNA inhibitors at submicromolar concentrations, comparable to 

genetically encoded luciferase reporters.
240
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No Treatment 10 nM 50 nM

100 nM 500 nM250 nM

1 uM 5 uM 10 uM
 

Figure 3.17: Dose response for miR‐21 AND gate with small molecule treatment. 

HeLa cells were treated for 48 h with a small molecule inhibitor (10 nM to 10 μM) then 

transfected with the miR‐21 gate and the B21 strand. Scale bar indicates 200 μm. 

 

In order to demonstrate the general applicability of sequence-specific DNA logic gates 

for the detection of various miRNAs in different cellular environments, a miR-122-based AND 

gate was engineered. The miR-122 AND gate was designed through reconfiguration of the two 

input logic gate system (Table 3.4) and confirmed to be activated in the presence of both miR-

122 RNA and B122 inputs (Figure 3.18A). No background fluorescence was observed in 

HEK293T or HeLa cells, which do not express miR-122,
239

 and logic gate function was 

specifically activated through the addition of synthetic miR-122 (data not shown). To validate 

endogenous cellular activation, the miR-122 AND gate was applied to Huh7 cells, which express 

high levels of miR-122 (>10-fold increase in relative miR-122 concentrations compared to the 

control HEK293T and HeLa cells).
239

 Efficient logic gate activation was observed in the 

presence of cellular miR-122 and the addition of the second B122input strand (Figure 3.18B). 
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These experiments confirm that the AND gate design can be readily altered to recognize 

different miRNAs, in different cell types, and can be applied to the imaging of cell-specific 

miRNA markers. 
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Figure 3.18: Engineered miR-122-based AND gate. 

A) The logic gate was tested for activation with miR-122 and B122 strands. TAMRA fluorescence 

was observed at 4 h and normalized to the activated AND gate. An average of three independent 

experiments is shown and error bars represent standard deviations. B) Huh7 cells were 

cotransfected with the miR-122 gate and B122 strand and imaged after 4 h. Scale bars indicate 200 

μm. 
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A distinct application of DNA logic gates that are functional in cellular computation 

events is the ability to trigger an output signal dependent upon the recognition of multiple 

endogenous inputs. Expression patterns of miRNAs associated with cancer and other disease 

states often involve the simultaneous up-and-down regulation of several 

miRNAs,
145

 highlighting the importance of simultaneous detection for the computation of 

diagnostic and therapeutic outputs based on miRNA expression patterns. In order to develop a 

dual-miRNA logic gate, the design of translator gates
208

 was adapted to interact with miR-21 and 

miR-122 inputs (Table 3.5 and Figure 3.19), converting them into DNA output strands that 

subsequently trigger AND gate activation and fluorescent output. This modular design will allow 

for the general application of the cellular DNA logic gate system for dual-miRNA activation 

through simple tailoring of the connected translator subcircuits to any two miRNA inputs.  
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Figure 3.19: The miR‐21/122 translator‐coupled AND gate activation cascade. 

Translator gates (blue boxes) interact with two miRNA inputs that displace the J21 Out and M122 Out 

strands. These translator gate outputs activate the miR‐21/122 AND gate (green box) through toe‐ 
hold mediated strand exchange in sequential steps producing a fluorescent output (ex: 532 nm). 

Toe‐ hold regions are shown for the miR‐21 (green/blue) and miR‐122 (orange/red) activation 

cascades, along with corresponding arrows representing hybridization steps. Quencher Q = Iowa 

Black RQ. Fluorophore F = tetramethylrhodamine (TAMRA). 

 

The miR-21/122 AND gate system was first tested with synthetic RNA molecules and 

was only activated in the presence of both miRNAs (Figure 3.20B). The translator-coupled AND 

gate device was successfully applied in Huh7 cells, which express high functional levels of both 

miRNAs,
239, 241

 thus displaying a rapid Boolean operation with endogenous miR-21 and miR-122 

as inputs (Figure 3.20C). There was no background with a single translator gate, and both 

translator gate interactions were required to trigger the AND gate, further verifying complete 
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specificity for the two cellular miRNA inputs. These experiments validated that the translator-

coupled AND gate circuit maintains a low fluorescence background, remains stable 

intracellularly, and is activated only in the presence of both miRNAs.  
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Figure 3.20: Engineered miR-21/122 translator-coupled AND gate. 

A) The logic gate was tested for activation with the miR-21 and miR-122 RNA strands. TAMRA 

fluorescence was observed at 4 h and normalized to the activated AND gate. An average of three 

independent experiments is shown and error bars represent standard deviations. B) Huh7 cells 

were cotransfected with the miR-21/122 AND gate and translator gates, followed by imaging after 

4 h. Scale bars indicate 200 μm. 
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Moreover, in HeLa cells that endogenously express miR-21 but not miR-122,
239

  the 

addition of synthetic miR-122 was sufficient for gate activation, demonstrating that dual-sensing 

miRNA gates can be activated with a mix of endogenous and synthetic miRNA inputs (Figure 

3.21).  

 

- miR-122 RNA + miR-122 RNA

 

Figure 3.21: miR‐21/122 translator‐coupled AND gate application in HeLas. 

Cells were transfected with the miR‐21/122 gate and both translator gates in the absence and 

presence of synthetic miR‐122 RNA then imaged after 4 h. Scale bar indicates 200 μm. 

 

The successful activation of DNA logic gates in live cells lays the groundwork to pursue 

the development of biological applications for complex molecular computation. Light-directed 

DNA assembly within mammalian cells was demonstrated as a stepping stone toward cellular 

activation of synthetic DNA computation circuits. Logic gates were developed and tested for in 

vivo activation of a fluorescent output dependent upon the presence of endogenous miRNAs. 

The cell-specific miRNA detection was achieved through DNA computation with AND gates 

that were engineered to recognize, with high specificity, either miR-21 or miR-122 or both 

miRNAs. The response of an endogenously activated logic gate was demonstrated to identify 

reduced miRNA function due to environmental changes, for example, exposure to miRNA small 

molecule inhibitors. The ability to compute the presence (or absence through the application of 

other Boolean logic gates) of multiple miRNAs in live cells has implications in the diagnosis and 

treatment (e.g., through the release of therapeutic agents) of human disease, especially cancer. 
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Moreover, this modular computation approach can be easily reconfigured for the detection of 

other endogenous nucleic acid inputs. The DNA devices developed have potential application in 

the detection of miRNA markers for cellular expression profiling and can be expanded to the in 

vivo detection of other miRNAs, as well as interfaced with additional gates to develop complex 

DNA-based circuits that can recognize and respond to multi-miRNA patterns. 

3.2.1 Methods and Materials 

 Logic Gate Duplex Purification. See Section 5.6 for specific information on DNA 

computation techniques. Logic gate duplexes were purified following protocol 5.6.1. All 

oligonucleotide sequences are shown in the following tables: a letter prior to the base indicates 

sugar modification (r = RNA, m = 2’OMe), an asterisk (*) indicates phosphorothioate linkages 

between bases, toe-hold regions are underlined, NPOM‐caged thymidines are highlighted in red 

and bolded (“T”), Q = BHQ2 quencher, F = Tetramethylrhodamine (TAMRA) fluorophore: 

 

Table 3.2: Photochemically activated AND gate.  

Caged DNA oligonucleotides were synthesized according to the general protocol 5.2. 

Strand Sequence (5' → 3') 

A TATGGTTGTTTATGTGTTCCCTGATCTTTAGCCTTA 

A
4T

 TATGGTTGTTTATGTGTTCCCTGATCTTTAGCCTTA 

B AGATGTTAGTTTCACGAAGACAATGATTAAGGC 

G
F
 TGTTTATGTGTTCCCTGATCTTTAGCCTTAATCATTGTCTTCGTGAAACTAACATCTAAC-F 

G
Q
 Q-GTTAGATGTTAGTTTCACGAAGACAATGAT 

G
T
 TAAGGCTAAAGATCAGGGAACACATAAACAACCATA 
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Table 3.3: miR-21 AND gate.  

Caged DNA oligonucleotides were synthesized according to the general protocol 5.2. 

Strand Sequence (5' → 3') 

miR-21 rUrArGrCrUrUrArUrCrArGrArCrUrGrArUrGrUrUrGrA  

B
21

 GTTAGATGTTAGTTTCACGAAGACAATGATTCAACA  

B
21-4T

 GTTAGATGTTAGTTTCACGAAGACAATGATTCAACA  

G
FM

 F-GTTAGATGTTAGTTTCACGAAGACAATGAT 

G
Q21

 ATCAGACTGATGTTGAATCATTGTCTTCGTGAAACTAACATCTAAC-Q  

G
T21

 TCAACATCAGTCTGATAAGCTA  

antagomir 
mA*mU*mC*mA*mA*mC*mA*mU*mC*mA*mG*mU*mC*mU*mG*mA*

mU*mA*mA*mG* mC*mU*mA  

 

Table 3.4: miR-122 AND gate. 

Strand Sequence (5' → 3') 

miR-122 rUrGrGrArGrUrGrUrGrArCrArArUrGrGrUrGrUrUrUrG 

B
122

 GTTAGATGTTAGTTTCACGAAGACAATGATCAAACA  

G
FM

 F-GTTAGATGTTAGTTTCACGAAGACAATGAT 

G
Q122

 GTGACAATGGTGTTTGATCATTGTCTTCGTGAAACTAACATCTAAC-Q  

G
T122

 CAAACACCATTGTCACACTCCA  

 

Table 3.5: miR-21 / miR-122 translator-coupled AND gate. 

Strand Sequence (5' → 3') 

G
F21/122

 F-GTTAGATGTTAGTTTCACGAAGACAATGAT 

G
T21/122

 TGGAGTTAAAGATCAGGGAACACATAAACATCAACA  

G
Q21/122

 TGTTTATGTGTTCCCTGATCTTTAACTCCAATCATTGTCTTCGTGAAACTAACATCTAAC-Q 

J
21 Out

 ATCAGACTGATGTTGATGTTTATGTGTTCCCTGATCTTTAACTCCA 

K
21

 ACATCAACATCAGTCTGATAAGCTA  

L
122

 CAAACACCATTGTCACACTCCAATC  

M
122 Out

 GTTAGATGTTAGTTTCACGAAGACAATGATTGGAGTGTGACAATGG 

 

Gate Functional Examination. See Section 5.6 for specific information on DNA 

computation techniques. Gate fluorescent output signals were determined following protocol 

5.6.2. 
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Cellular Logic Gate Transfection. See Section 5.4 for specific information on cell 

culture techniques and Section 5.6 for specific information on DNA computation techniques. 

Cells were passaged into a 96-well plate and grown to ∼70% confluence within 24 h following 

protocol 5.4.1. The cells were transfected with logic gates using X-tremeGENE siRNA 

transfection reagent following protocol 5.6.3. 

Live Cell Imaging of TAMRA Fluorescence. See Section 5.4 for specific information 

on cell culture techniques. Transfected cells were imaged on a Zeiss Observer Z1 microscope 

(20X magnification) following protocol 5.4.5.  

Imaging of Subcellular TAMRA Fluorescence Localization. See Section 5.4 for 

specific information on cell culture techniques. HeLa cells were seeded into 4-well chamber 

slides following protocol 5.4.1, and transfected with the miR-21 AND gate at 50 nM with 200 

nM B21 input strand using 5 μL of X-tremeGENE (Roche) in 1 mL of Opti-Mem (Invitrogen) at 

37 °C for 4 h. After 4 h, the cells were fixed then nuclear counter stained with DAPI (Invitrogen) 

following protocol 5.4.4, and imaged with a Zeiss Observer Z1 (63X magnification) following 

protocol 5.4.5.  

Photochemical Activation in Mammalian Cells. Cells were incubated for 1 h post-

transfection and UV irradiated for 5 min on a 365 nm transilluminator following protocol 5.4.3. 

Cellular images were taken 1 h post UV irradiation following protocol 5.4.5. 

Small Molecule and Antagomir Treatment of HeLa Cells. HeLa cells were treated 

with (E)-4-(phenyldiazenyl)-N-(prop-2-ynyl)benzamide (10 μM) in 1% DMSO/DMEM growth 

media for 48 h. The dose–response treatments were performed in 1% DMSO/DMEM at 

decreasing concentrations of the small molecule (as low as 10 nM). Alternatively, cells were 

transfected with 100 pmol of the miR-21 antagomir using X-tremeGENE following protocol 
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5.4.2. Logic gate transfections were performed after 48 h incubations using X-tremeGENE 

following protocol 5.6.3. 

3.3 DNA Computation in Mammalian Cells: OR Gate, OR/AND Circuit, and Release of 

a Splice-Switching Oligonucleotide 

The next step taken to expand the DNA logic gate-based detection of endogenous miRNAs was 

the incorporation of new Boolean logic functions into miRNA-based computation devices. These 

devices will enable logic operations beyond the AND gate function described in Sections 3.1 and 

3.2.  

As the first example, an OR gate was designed for the detection of a single miRNA from 

a pair of inputs. The concept of a duplex structure containing two overhangs for OR gate 

functionality was previously described for an aptamer-based OR gate for ligand binding,
212

 and 

has been applied to toe-hold strand displacement for the development of functional protein 

outputs,
242

 but has not been utilized for endogenous nucleic acid detection. Other methods for 

DNA-based OR gates with nucleic acid inputs have been demonstrated, including stem-loop 

hairpin molecular beacon structures
243

 and translator gates.
208

 This OR logic gate utilizes an 

internal fluorophore:quencher duplex that contains two toe-hold specific for miRNA sequences, 

one on either side. The toe-holds for miR-21 and miR-122 were amended to the fluorophore and 

quencher strands, such that when either miRNA is present the duplex will dissociate through toe-

hold mediated strand exchange, and a fluorescent output will be observed (Table 3.6 and Figure 

3.22A). Therefore, there are 3 conditions that will produce the output signal for the miR-21 OR 

miR-122 logic gate: miR-21 present, miR-122 present, or both miRNAs present (Figure 3.22B).  
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Figure 3.22: miR-21 OR miR-122 logic gate.  

A) The nucleic acid-based Boolean OR gate activation cascade that responds to single stranded 

miR-21 and miR-122 inputs. Toe‐hold regions are shown for the miR-21 (green) and miR-122 

(orange), along with corresponding arrows representing hybridization steps. Quencher Q = Iowa 

Black RQ. Fluorophore F = tetramethylrhodamine (TAMRA). B) OR gate truth table. C) OR 

circuit diagram.  

 

The linker length between the internal fluorophore and quencher strands was investigated 

to determine the appropriate spacing for fluorophore quenching and proper duplex formation, 

since the dye modifications could introduce steric hindrance of base hybridization due to the 

internal placement within the duplex. Therefore, linker lengths of 1-3 cytosine nucleotides were 

examined in solution for different sized duplexes, and the corresponding response to synthetic 

miRNA inputs was observed (Figure 3.23A). This analysis demonstrated that the quenching of 

the TAMRA signal and the activation by miRNA inputs was not dependent on linker length. The 

OR gate containing a single C linker was utilized for all subsequent experiments.  It is worth 

noting that the fluorescent activation of the OR logic gate with miR-122 is less than that 

observed for the miR-21 input, and that the output is slightly increased with both miRNAs 

compared to either individually (Figure 3.23B). 
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Figure 3.23: Analysis of miR-21 OR miR-122 logic gate activation.  

A) The OR gates (200 nM) were incubated with the miRNA inputs (800 nM) and TAMRA 

fluorescence was measured at 4 h. B) Relative fluorescence of the OR gate containing a single C 

linker, normalized to the signal generated from the presence of both miRNA inputs. An average of 

three independent experiments is shown and error bars represent standard deviations. 

 

The miR-21 OR miR-122 logic gate was then applied to the detection of endogenous 

miRNAs in mammalian cells, to confirm biological function of the new duplex structure. The 

logic gate was transfected into five cell lines (Figure 3.24), with varied miRNA expression 

profiles as determined through miRNA-based database searches.
244

 One of the cell lines does not 

overexpress either miRNA of interest (HEK293T), while the four others show mixed profiles for 

the overexpression of either or both miRNAs (HeLa, HepG2, Huh7, PC3). Unfortunately, some 

background fluorescent was observed in the HEK293T cell line that does not overexpress either 

miRNA. However, there is an increase in fluorescence observed in cell lines that overexpress the 

miRNAs, as observed in the four positive cell lines. Variability in the total fluorescent output 
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was observed for different cell lines, independent of miRNA signatures. For example, PC3s 

showed the greatest logic gate activation while only overexpressing miR-21, compared to cell 

lines that overexpressed both miRNAs (HepG2, Huh7). Since this finding does not support the 

increased activation of the OR gate with both miRNAs, as shown in Figure 3.22B, this 

phenomenon is likely attributable to either differences in relative miRNA expression levels, 

miRNA copy numbers, or transfection efficiency between the cells lines, i.e., cell lines that 

transfect more readily will have an increased uptake of the logic gate and show enhanced 

activation over cell lines that transfect poorly.  
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Figure 3.24: miR-21 OR miR-122 logic gate activation in cells. 

The OR gate was transfected (200 nM) into 5 cell lines (HEK293T, HeLa, HepG2, Huh7, and 

PC3), with each relevant miRNA profile indicated on the right (↓ = low levels of miRNA 

expression, ↑ = high levels of miRNA expression), then imaged after 4 h. TAMRA and 

brightfield-merged channels are shown. Scale bar indicates 200 μm. 

 

The development of connected miRNA-based logic gate circuits was then examined 

through the coupling an OR gate and an AND gate. This DNA computation module utilizes 

translator gates to recognize either miR-21 or miR-122 to generate the same output, which then 

interacts with a fluorophore:quencher duplex that contains an additional miRNA target site for 
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miR-125b (Table 3.7 and Figure 3.25). Since the function of this device is based on logic gate 

circuit connectivity by linking an OR gate to the activation cascade of an AND gate, the 

activation of a fluorescent output signal is only produced if the miR-21 OR miR-122 condition is 

met in conjunction with miR-125b. Therefore, there are 3 conditions that will generate the output 

signal for the (miR-21 OR miR-122) AND miR-125b circuit: miR-21 and miR-125b present, 

miR-122 and miR-125b present, or all three miRNAs present (Figure 3.25B).   
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Figure 3.25: (miR-21 OR miR-122) AND miR-125b logic circuit. 

A) The nucleic acid-based (miR-21 OR miR-122) AND miR-125b logic circuit is activated with 

either of two OR inputs only in conjunction with the AND input. The OR/AND logic circuit 

activation cascade is shown, with single stranded inputs for miR-21, miR-122, and miR-125b. OR 

translator gates (blue boxes) interact with two miRNA inputs that displace a activator strands with 

the same toe-hold recognition sequences, which interact with the AND miR-125b gate (green 

box). Toe‐hold regions are shown for the miR-21 (green), miR-122 (orange), and miR-125b (red), 

along with corresponding arrows representing hybridization steps. Quencher Q = Iowa Black RQ. 

Fluorophore F = tetramethylrhodamine (TAMRA). B) The OR/AND truth table. C) The OR/AND 

circuit diagram. 
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The (miR-21 OR miR-122) AND miR-125b logic circuit was first analyzed in a test tube 

in the presence of each activating translator gate with the corresponding miRNA and miR-125b 

(Figure 3.26). Proper circuit function was observed, as the fluorophore gate duplex had minimal 

background with the translator gates alone, and each condition from the truth table that should 

produce a fluorescent output was confirmed ([1,0,1] [0,1,1] and [1,1,1]). However, there was 

some leakiness observed in the presence of miR-125b alone, suggesting the circuit design may 

limit the detection of endogenous miRNA patterns through an increase in miR-125b sensitivity. 
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Figure 3.26: Analysis of the OR/AND logic circuit activation.  

The fluorophore:quencher AND gate duplex (200 nM)  was incubated with the OR translator gates 

(200 nM) and corresponding  miRNA inputs (800 nM). TAMRA fluorescence was observed at 4 

h, and set relative to the [1,1,1] input activation with all three miRNAs. Error bars represent 

standard deviations from an average of three independent experiments 

 

The (miR-21 OR miR-122) AND miR-125b logic circuit was then applied to the 

endogenous detection of complex miRNA profiles in mammalian cells. The five cell lines 

described above for the OR gate were also utilized in the analysis of the (miR-21 OR miR-122) 

AND miR-125b logic circuit cellular activation (Figure 3.27), with varied miRNA expression 

profiles as determined through miRNA-based database searches.
244

 Two positive cell lines that 
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contain either miR-21 or miR-122 in the presence of miR-125b (HeLa and PC3), which should 

active the logic and generate a fluorescent output based on the truth table. Low background was 

observed in the three cell lines that do not show overexpression of the required miRNAs for gate 

activation (HEK293T, Huh7, HepG2). The successful detection of multiple miRNAs with a 

connected DNA computation module was demonstrated, as fluorescent activation of the (miR-21 

OR miR-122) AND miR-125b logic circuit was observed selectively in HeLa and PC3 cell lines. 

However, the logic circuit activation was not robust, and high variability existed between 

experiments. Logic gate transfections were repeated with each cell line 5-10 times, and both 

background fluorescence in the negative control HEK293T cell line as well as lack of activation 

in the positive HeLa cell line have occasionally been observed. Thus, additional optimization of 

the computation system may be required for the application of multi-layer DNA logic gate 

circuits to the robust detection of complex miRNA signatures in live cells. 
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Figure 3.27: (miR-21 OR miR-122) AND miR-125b logic circuit in cells. 

The OR/AND circuit fluorophore:quencher duplex was transfected (50 nM) with the translator 

gates (200 nM) into 5 cell lines (HEK293T, HeLa, HepG2, Huh7, and PC3), with each relevant 

miRNA profile indicated on the right (↓ = low levels of miRNA expression, ↑ = high levels of 

miRNA expression), then imaged after 4 h. TAMRA and brightfield-merged channels are shown. 

Scale bar indicates 200 μm. 

 

In order to analyze the location of miRNA detection within live cells and potentially 

identify miRNA-rich regions or cellular compartments, subcellular imaging with nuclear staining 

was performed for the HeLa and PC3 cellular transfections of the (miR-21 OR miR-122) AND 
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miR-125b logic circuit (Figure 3.28). Indeed, localization of the activated logic gates appears 

similar to Figure 3.14 (miR-21 AND gate), in a phenomenon that needs to be further examined.  
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Figure 3.28: Cellular localization of the (miR-21 OR miR-122) AND miR-125b logic circuit. 

Cells were transfected with the (miR-21 OR miR-122) AND miR-125b circuit 

fluorophore:quencher duplex (50 nM) and translator gates (200 nM) for 4 h, then fixed and nuclear 

counter stained with DAPI. Imaging was performed to observe gate activation with sub‐cellular 

resolution.  

 

It has been shown that miRNAs are often associated with endosomal compartments, in 

addition to cytoplasmic foci P-bodies and GW-bodies.
245

 Anti-miRNA oligonucleotides are also 

associated with endosomal compartments, suggesting that the targeting of miRNAs occurs within 

the same endosomal compartments.
246

 Therefore, it is a reasonable assumption that the DNA 

logic gates are localized in endosomes and are activated by miRNA inputs within these 

compartments.
247

 Initial application of an endosomal cellular pH indicator (pHrodo, Life 

Technologies) has been met with limited success (data not shown), due to spectral overlap 

between the pHrodo indicator and the TAMRA fluorophore utilized for the DNA logic gates, 

which will need to be further investigated before any conclusions can be made. A full 
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understanding of the subcellular trafficking of DNA logic gates and the corresponding target 

miRNA will require additional investigation to distinguish the importance of the localized 

fluorescence observed with activated miRNA-based logic gates in relation to miRNA targeting 

within the cell. 

Since DNA computation provides a unique approach to the detection of miRNA patterns 

with oligonucleotides, the generated nucleic acid outputs can then be directly interfaced with 

cellular systems for regulation of gene expression. To this end, the release of a biologically 

relevant splice-switching oligonucleotide output (SSO, described in Section 2.5) in response to a 

DNA computation event was investigated. A DNA logic gate was designed to release an SSO in 

response to miR-21 (Table 3.8). This miR-21 SSO AND gate (Figure 3.29A) was applied to the 

regulation of alternative splicing (AS) pathways for the correction of an aberrant mutant intron. 

A luciferase reporter gene was used that contains an altered coding region with an aberrant splice 

site to impair functional protein expression until it is blocked by the sequence-specific SSO 

output (Figure 3.29B and C). 
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Figure 3.29: The miR-21 SSO AND gate. 

A) Simplified schematic of the AND gate. Toe-hold regions are shown for the miR-21 (green) and 

InB (orange) input activation cascades, along with corresponding arrows representing 

hybridization steps. The SSO output is shown in light-blue. B) In the absence of the SSO, a mutant 

intron from the pre-mRNA is present in the mRNA sequence and disrupts formation of a 

functional gene product. C) The SSO binds to the target site, blocks the spliceosome from 

interacting with the target site, and creates an AS pathway that will remove the mutant intron from 

the mRNA allowing for the expression of functional protein (e.g., luciferase). Active splicing 

pathways are indicated with solid black lines, AS pathways are indicated with dashed lines, and 

the mutant intron is shown in red. 

 

Initial experiments were performed with the pLuc705 plasmid
248

 through transient 

transfection with the plasmid, SSO, and miR-21 SSO AND gate in either HEK293T or HeLa 

cells. However, transfection with the different oligonucleotide constructs proved to be 

challenging for reliable SSO activation under various conditions (data not shown). Therefore, 

a HeLa cell line stably expressing the interrupted luciferase gene containing a mutant β-globin 

intron (HeLa:Luc705, described in Section 2.5)
188

 was used to analyze the miRNA-based logic 



 

 153 

gate activity. Since the HeLa cell line shows high levels of miR-21 overexpression,
239

 

transfection of the AND gate with the InB input should result in the release of a regulatory SSOs 

to control AS pathways. To this end, transfections were performed with the SSO control and a 

range of conditions for the miR-21 SSO AND gate (Figure 3.30). The cell line showed low basal 

expression of luciferase and activation of AS pathways with SSO transfection, confirming 

previous results described in Section 2.5. However, transfection with the miR-21 SSO AND gate 

alone showed an increase in luciferase expression compared to nontreated cells at both 50 and 

200 nM, suggesting that either degradation of the gate duplex or interaction of the 3’ SSO 

overhang with the pre-mRNA were resulting in the premature release of the SSO. Additionally, 

the logic gate was not activated with either the InB input or both synthetic inputs. Therefore, the 

miR-21 SSO AND gate did not function as intended, as luciferase expression was observed 

independent of the required input strands, and the oligonucleotide transfection experiments were 

discontinued. 
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Figure 3.30: Analysis of miR-21 SSO AND gate driven luciferase expression.  
HeLa:Luc705 cells were transfected with the SSO (50 nM) or the miR-21 SSO AND gate (50 and 

200 nM) with synthetic input strands (200 or 800 nM). A luciferase assay was performed after 24 

h incubation. Error bars represent the standard deviation of experimental triplicates 

 

Since cellular transfection techniques proved ineffective at properly delivering the SSO 

for activation of AS pathways in response to specific miRNA signatures, the use of “naked” 

oligonucleotide delivery was subsequently investigated. A small molecule that increases 

intracellular trafficking of oligonucleotides for enhanced pharmacological SSO activity
187

 was 

applied to the miR-21 SSO AND gate for delivery of nucleic acids into HeLa:Luc705 cells. The 

gate duplex and input strands were added to the media for oligonucleotide delivery in the 

absence of transfection reagent. The cells were soaked with the oligonucleotides overnight, then 

treated with Retro-1 (Figure 3.31A) for 4 h. A luciferase assay was performed after an additional 

4 h incubation (Figure 3.31B). The use of naked oligos significantly decreased the efficiency of 

SSO activation for AS pathways and the expression of luciferase compared to the use of 

transfection reagents as shown in Figure 3.30. There was no observable difference between the 

luciferase expressed with the miR-21 SSO AND gate alone or with the corresponding inputs at 

either concentration. Unfortunately, the Retro-1 treatment did not show any enhancement of the 
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SSO control or the logic gate activation, as no increases in luciferase expression from splice-

switching was observed. Therefore, the use of Retro-1 for the delivery of SSO-based logic gates 

and intracellular trafficking of oligonucleotides was discontinued. The further understanding of 

DNA logic gate cellular localization and trafficking will be required to make progress on the 

development of a computation-based release for biologically active agents driven by the 

detection of certain miRNA expression patterns and potential therapeutic application. 
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Figure 3.31: Analysis of miR-21 SSO AND cellular delivery technique.  
A) Structure of Retro-1. B)  HeLa:Luc705 cells were soaked overnight with the SSO (50 nM) or 

the miR-21 SSO AND gate (50 and 200 nM) with synthetic input strands (200 or 800 nM). Cells 

were then treated with Retro-1 (100 μM) for 4 h. A luciferase assay was performed 4 h post Retro-

1 treatment. Error bars represent the standard deviation of experimental triplicates 

 

In summary, three Boolean logic gates were analyzed for miRNA detection in 

mammalian cells: an OR gate, an OR/AND circuit, and an SSO-releasing AND gate. The OR 

gate was designed with an internal fluorophore:quencher pair and was confirmed in test tube 

experiments with synthetic miRNAs. Additionally, OR gate application in mammalian cells was 

successfully utilized for the detection of miR-21 or miR-122. However, compared to the AND 
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gate discussed in Section 3.2, increased background fluorescence was observed in cells lacking 

either miRNA. The OR/AND logic circuit was designed with a duplex containing a terminal 

fluorophore:quencher pair that interacts with two translator gates, and was also confirmed in 

solution with synthetic miRNAs. The OR/AND logic circuit successfully detected complex 

miRNA signatures in two positive control cell lines. However, reproducibility remains a hurdle 

in cellular applications, as varied levels of background fluorescence have been observed. Lastly, 

a miR-21 SSO AND gate was designed, but the release of a regulatory oligonucleotide could not 

be demonstrated in a cellular environment through transfections or intracellular trafficking 

driven by Retro-1 treatment. Future studies for these projects will focus on reducing background 

of logic gate fluorescence, increasing reproducibility, and confirming localization in subcellular 

compartments. To that end, a number of transfection techniques are available that will deliver the 

DNA logic gates to cells, such as cationic polymers, viral vectors, DNA nanoparticles, 

electroporation, or peptide conjugation.
249

 These methods may introduce an alternative method 

to liposomal transfection (e.g., via X-tremeGENE siRNA reagent), which will allow the DNA 

logic gates to penetrate different subcellular compartments that were previously inaccessible. 

Alternative delivery methods may also generate less background or increased reproducibility for 

DNA logic gates applications, through protection of duplex degradation or specific subcellular 

localization.  

3.3.1 Methods and Materials 

 Logic Gate Duplex Purification.  See Section 5.6 for specific information on DNA 

computation techniques. Logic gate duplexes were purified following protocol 5.6.1. All 

oligonucleotide sequences are shown in the following tables: a letter prior to the base indicates 
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sugar modification (r = RNA, m = 2’OMe), an asterisk (*) indicates phosphorothioate linkages 

between bases, toe-hold regions are underlined or bolded/italicized, linker regions highlighted 

green, Q = BHQ2 quencher, F = Tetramethylrhodamine (TAMRA) fluorophore: 

 

Table 3.6: miR-21 OR miR-122 logic gate. 

Strand Sequence (5' → 3') 

miR-21 rUrArGrCrUrUrArUrCrArGrArCrUrGrArUrGrUrUrGrA  

miR-122 rUrGrGrArGrUrGrUrGrArCrArArUrGrGrUrGrUrUrUrG  

OR gate 1C ATCAGACTGATGTTGACTGGAGTGTGACAATGG 

OR gate 2C ATCAGACTGATGTTGACCTGGAGTGTGACAATGG 

OR gate 3C ATCAGACTGATGTTGACCCTGGAGTGTGACAATGG 

F-OR21/122 F-TCAACATCAGTCTGATAAGCTA  

Q-OR21/122 CAAACACCATTGTCACACTCCA-Q  

 

Table 3.7: (miR-21 OR miR-122) AND miR-125b logic circuit. 

Strand Sequence (5' → 3') 

miR-21 rUrArGrCrUrUrArUrCrArGrArCrUrGrArUrGrUrUrGrA  

miR-122 rUrGrGrArGrUrGrUrGrArCrArArUrGrGrUrGrUrUrUrG  

miR-125b rUrCrCrCrUrGrArGrArCrCrCrUrArArCrUrUrGrUrGrA  

21-Comp AGTAGTTCAACATCAGTCTGATAAGCTA  

122-Comp AGTAGTCAAACACCATTGTCACACTCCA  

21-Act ATCAGACTGATGTTGAACTACTCGTAGGTGTAGGAAAGTCACAA  

122-Act GTGACAATGGTGTTTGACTACTCGTAGGTGTAGGAAAGTCACAA  

Toe-hold TTGTGACTTTCCTACACCTACGAGTAGT  

F-OR/AND F-TCCCTGAGACCCTAAC  

Q-OR/AND CGTAGGTGTAGGAAAGTCACAAGTTAGGGTCTCAGGGA -Q  
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Table 3.8: miR-21 SSO AND gate. 

Strand Sequence (5' → 3') 

miR-21 rUrArGrCrUrUrArUrCrArGrArCrUrGrArUrGrUrUrGrA  

SSO 
mG*mU*mU*mA*mU*mU*mC*mU*mU*mU*mA*m

G*mA*mA*mU*mG*mG*mU*mG*mC 

GateSSO TTCTAAAGAATAACTAGCTTATCAGACTGA 

InB AAGCTAGTTATTCTTTAGAA 

ToeSSO TCAACATCAGTCTGATAAGCTA 

 

Gate Functional Examination. See Section 5.6 for specific information on DNA 

computation techniques. Gate fluorescent output signals were determined following protocol 

5.6.2. 

Cellular Logic Gate Transfection. See Section 5.4 for specific information on cell 

culture techniques and Section 5.6 for specific information on DNA computation techniques. 

Cells were passaged into a 96-well plate and grown to ∼70% confluence within 24 h following 

protocol 5.4.1. The cells were transfected with logic gates using X-tremeGENE following 

protocol 5.6.3. 

Live Cell Imaging of TAMRA Fluorescence. See Section 5.4 for specific information 

on cell culture techniques. Transfected cells were imaged on a Zeiss Observer Z1 microscope 

(20X magnification) following protocol 5.4.5.  

Imaging of Subcellular TAMRA Fluorescence Localization. See Section 5.4 for 

specific information on cell culture techniques and Section 5.6 for specific information on DNA 

computation techniques. HeLa and PC3 cells were seeded into 4-well chamber slides  following 

protocol 5.4.1, and transfected with the (miR-21 OR miR-122) AND miR-125b circuit at 50 nM 

with 200 nM translator gates using 5 μL X-tremeGENE (Roche) in 1 mL of Opti-Mem 

(Invitrogen) at 37 °C for 4 h. After 4 h, the cells were fixed then nuclear counter stained with 
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DAPI (Invitrogen) following protocol 5.4.4, and imaged with a Zeiss Observer Z1 (63X 

magnification) following protocol 5.4.5. 

Luciferase assay: See Section 5.4 for specific information on cell culture techniques and 

Section 5.6 for specific information on DNA computation techniques. HeLa:Luc705 cells were 

passaged into a 96-well plate and grown to ∼70% confluence within 24 h following protocol 

5.4.1. The cells were transfected with the SSO control (50 nM), the miR-21 SSO AND gate (50 

or 200 nM), and the miR-21/InB inputs (200 or 800 nM) using X-tremeGENE following 

protocol 5.6.3. Additionally, cells were soaked with the oligonucleotide reagents (same 

concentrations as above) in DMEM overnight at 37 °C. Retro-1 treatment was performed at 100 

μM in DMEM with dilution from a 20 mM DMSO stock solution for 4 h. A Bright-Glo assay 

(Promega) was performed 24 h post transfection or 4 h post Retro-1 treatment by removing 150 

μL of cell media, adding 50 μL of the kit reagent, and shaking for 20 min prior to reading 

chemiluminescence on a Tecan M1000. 

3.4 Optically Controlled Signal Amplification for DNA Computation 

This material was reprinted, in part, with permission from Prokup, A.; Hemphill, J.; Liu, Q.; 

Deiters, A. ACS Synth. Bio. 2015, available online. Oligonucleotide syntheses and assistance in 

fuel-catalyst cycle design were performed by the author of this thesis. All experiments were 

conducted by Alexander Prokup in the Deiters lab. 

 In order to operate, DNA computation devices require an exchange of DNA strands 

between logic gates, which can become inefficient in large circuits, leading to a dampening in 

signal.
208

 Options are available to amplify a low DNA output signal: for example, the use of 

http://pubs.acs.org/doi/abs/10.1021/sb500279w
http://pubs.acs.org/doi/abs/10.1021/sb500279w
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branched DNA to accumulate labeled DNA strands on an output strand,
250

 a kinetically trapped 

metastable DNA fuel,
251

 the hybridization chain reaction (HCR),
252, 253

 and an entropy-driven 

fuel-catalyst cycle.
206, 254

 However, the aforementioned amplification methods are limited in their 

ability to be externally controlled, particularly in a temporal and spatial fashion. While these signal 

amplifiers function efficiently, they cannot be switched ON or OFF quickly and noninvasively. 

Therefore, light-regulated variants of HCR and the fuel-catalyst cycle amplification were 

developed for DNA computation. This design relies on introducing nucleobase-caging groups 

into DNA strands
 
to sterically block DNA/DNA hybridization until irradiation with UV light 

induces caging group removal and DNA duplex formation. Thus, a simple chemical modification 

to an existing structure enables the DNA amplification devices to be either turned ON or OFF 

through application of photochemical triggers in a spatial and temporal manner. To move the 

capabilities of these devices beyond solution-based operations, the components were embedded in 

agarose gels. Irradiation with customizable light patterns and at different time points demonstrated both 

spatial and temporal control. Overall, the addition of small light-cleavable photocaging groups to DNA 

signal amplification circuits enabled conditional control as well as fast photocontrol of signal 

amplification. 

HCR allows for the detection of small concentrations of nucleic acids by generating an 

amplified signal through the opening of metastable hairpins to form a long nicked duplex, even 

in complex biological environments.
255

 Three components are required for the reaction: two 

hairpins and an initiator strand. In the absence of the initiator, the hairpins will not cross react, as 

there are no complementary sequences exposed. However, when the initiator is added, it will 

hybridize to the toe-hold of hairpin 1 (H1) and expose a toe-hold for hairpin 2 (H2). After H2 

binds to H1, a new toe-hold will be revealed, allowing the concatemer to continue growing. 

Overall, the presence of the input signal (i.e., the initiator strand N) is amplified through the 
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production of high molecular weight duplexes. To obtain optical control over HCR, the initiator 

strand was blocked with four nucleobase caging groups to prevent binding to H1 (Table 3.9). 

 

Table 3.9: Initiator strands for photochemically activated HCR.  

NPOM-caged thymidine residues are underlined, bolded, and highlighted red (“T”). Caged DNA 

oligonucleotides were synthesized according to the general protocol 5.2. 

Strand Sequence (5' → 3') 

Initiator N0 AGTCTAGGATTCGGCGTGTATATA  

Initiator N4  AGTCTAGGATTCGGCGTGTATATA  

 

 This design utilizes the known hairpin and initiator sequences published by the Pierce 

group,
252

 with modified toe-hold regions to increase the number of thymidines. These hairpin 

sequences have been designed to prevent premature signal generation in the absence of initiator, 

and the extra thymidine residues also allowed for increased flexibility in selecting nucleobases 

caging sites. Activation of the initiator strand was achieved by irradiation with UV light to 

photochemically remove the caging groups. Consequently, UV irradiation can act as a switch to 

turn on HCR (Figure 3.32A). No background was observed in the absence of UV light. 

Irradiation of N4 with UV light triggered the formation of higher molecular weight products 

similar to the HCR products generated by N0. In the absence of UV light, no HCR occurred and 

no higher molecular weight products were formed (Figure 3.32B). Removal of the caging groups 

through UV exposure restored activity to the initiator, which was evident by the formation of the 

same HCR products as were generated by the noncaged initiator. Thus, photochemical control of 

HCR was achieved through a synthetic modification of a single DNA component. 
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Figure 3.32: Photochemical control of HCR. 

A) Schematic of the hybridization chain reaction with the caged initiator strand N4. 

Oligonucleotides are shown as colored lines, and NPOM caging groups are represented by blue 

boxes. Two hairpins (H1 and H2) are metastable until light-triggering of the initiator strand causes 

the formation of higher molecular weight product strands. B) PAGE analysis of HCR reactions 

with noncaged (N0) and caged initiator (N4) strands. Image adapted with permission from Prokup 

et al, ACS Synth. Bio. 2015. These experiments were conducted by Alexander Prokup. 
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A second DNA-based device to achieve signal amplification involves a fuel-catalyst 

cycle.
206

 The cycle begins with binding of the catalyst strand to the substrate complex (duplex 

containing the substrate, signal, and output strands). After a toe-hold mediated strand exchange, 

the catalyst displaces the signal strand revealing a toe-hold for the fuel strand. Binding of the fuel 

strand completely removes the output strand and catalyst, which creates a waste duplex. 

Displacement of the catalyst strand allows the cycle to continue, and the output strand is then 

able to interact with the reporter gate, releasing the quencher strand from the fluorophore strand. 

Thus, an increase in fluorescence corresponds to an active cycle. The fuel-catalyst cycle 

amplification arises from the release of a surplus of signal and output strands from a limited 

supply of catalyst. If the catalyst strand is synthetically caged (Table 3.10), the caging groups 

will prevent activation of the cycle by blocking hybridization of the catalyst strand to the 

substrate complex. To turn the amplification cycle OFF, a caged inhibitor strand was conceived 

(Table 3.10), which is completely complementary to the catalyst thereby blocking its function. 

 

Table 3.10: Strands for photochemically controlled fuel-catalyst cycle.  

NPOM-caged thymidine residues are underlined, bolded, and highlighted red (“T”). Caged DNA 

oligonucleotides were synthesized according to the general protocol 5.2. 

Strand Sequence (5' → 3') 

Catalyst C0 CATTCAATACCCTACGTCTCCA 

Catalyst C4 CATTCAATACCCTACGTCTCCA 

Inhibitor I0 TGGAGACGTAGGGTATTGAATG 

Inhibitor I4 TGGAGACGTAGGGTATTGAATG 

  

In the absence of caging groups, adding a catalyst strand to the substrate complex and 

fuel strands will release the signal and output strands. Removal of the catalyst caging groups 

with 365 nm light will initiate the cycle (Figure 3.33A). When the inhibitor strand is caged, 

hybridization to the catalyst is prevented and the cycle operates normally. After irradiation, the 
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inhibitor will bind to the catalyst prohibiting continuation of the cycle (Figure 3.33A). In order to 

generate a fluorescent output signal, a reporter gate can be added (Figure 3.33B). The gate will 

interact with the output strand, releasing the fluorophore strand. The free fluorophore is then able 

to emit a fluorescent signal. Activation or deactivation of the cycle through photochemical means 

enables reliable regulation of amplification by optically switching the cycle from either OFF → 

ON or ON → OFF. 
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Figure 3.33: Photochemcial control of the fuel-catalyst cycle. 

A) Schematic of the fuel-catalyst cycle with caged inhibitor and caged catalyst strands. B) 

Schematic of the fluorescent reporter gate. Colored lines represent DNA oligomers and red boxes 

indicate caging groups. The output strand is able to interact with the reporter gate, releasing a 

fluorophore strand. Quencher Q = Iowa Black RQ. Fluorophore F = tetramethylrhodamine 

(TAMRA). Image adapted with permission from Prokup et al, ACS Synth. Bio. 2015. 
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Oligonucleotide strands and preformed gate structures were mixed in solution, and a 

fluorescence reporter gate was used to measure the activity of the fuel-catalyst cycle. After 

replacing C0 with the caged C4, no signal was produced, effectively turning the amplification 

cycle OFF (Figure 3.34A). Removal of the caging groups with UV light restored catalyst 

activity, generating a signal. Conversely, introduction of I4 to the substrate complex, fuel strand, 

and C0 did not affect normal operation of the cycle, and strand exchange cascades continued to 

produce signal. However, irradiating the caged inhibitor strand prevented amplification by 

sequestration of the catalyst strand, which switched the cycle OFF (Figure 3.34B). Thus, the 

activity of the fuel-catalyst cycle could be photochemically controlled through the use of the 

caged inhibitor or caged catalyst strand. More than 5-fold changes in fluorescence signal were 

observed upon light-activation of the caged catalyst or caged inhibitor strand. This corresponds 

to efficient photoswitching of the amplification cycle, since a similar change was observed for 

the addition of noncaged catalyst and inhibitor strands. 
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Figure 3.34: Optical OFF → ON and ON → OFF switching of the fuel-catalyst cycle. 

A) Fuel-cycle with caged catalyst C4. B) Fuel cycle with caged inhibitor I4. Samples labeled +UV 

were irradiated with 365 nm light for 10 min before addition. Additional single letter abbreviations 

are used for substrate (S) and fuel (F). Excitation and emission wavelengths were 545 and 585 nm, 

respectively. Error bars represent standard deviations from three independent experiments. Image 

adapted with permission from Prokup et al, ACS Synth. Bio. 2015. These experiments were 

conducted by Alexander Prokup. 

 

With successful demonstration of optical control in a solution-based amplification cycle, 

this system was then transitioned semisolid media. Amplification of a signal inside a semisolid 

can expand the applications of DNA computation systems beyond solution-based devices, since 

it greatly constrains diffusion thereby enabling spatial control. Additionally, a solid structure 

creates a modular unit that could facilitate the physical separation of components in a DNA 

cascade. Much like electric components, embedded DNA computation devices can act as stand-

alone elements of a larger circuit. To demonstrate spatial control of the fuel-catalyst cycle using 
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the caged catalyst C4, oligonucleotide components were embedded into low-melt agarose. 

Spatially restricted illumination of the gel with a fiber optics probe (Figure 3.35A) or through a 

mask (Figure 3.35B) enabled the amplification cycle to be activated in specific and independent 

regions. Although masks allowed for customizable shapes, the edges were not as well-defined as 

those produced by an LED fiber optic light source. To create a gradient effect, the gel was 

irradiated for different time intervals (Figure 3.35C). The gradient demonstrated how signal 

intensity could be tuned by varying the applied UV irradiation. Variable light intensities will 

create diverse populations of signal intensity, adding depth to the recognition of an OFF → ON 

transition. The ability to create signals in any desired pattern using optical regulation could allow 

for better control in investigating or modeling biological events. Thus, spatial and temporal 

control of the gel-based fuel-catalyst cycle offers enhanced flexibility in controlling signal 

amplification. 
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Figure 3.35: Spatial control of the fuel-catalyst cycle by using low-melt agarose gels. 

1–2% gels were embedded with the substrate complex, fuel strand, and caged catalyst C4. A) A 

fiber optics probe was used to irradiate (1 min, 365 nm) spatially independent areas in the shape of 

the big dipper constellation. B) Illumination through a mask was used to pattern “PITT”. C) 

Multiple irradiation time intervals were used to create a gradient effect, tuning activation of the 

catalyst cycle. All fluorescent imaging was performed using green LED excitation, and emitted 

light was detected at 580–630 nm. Image adapted with permission from Prokup et al, ACS Synth. 

Bio. 2015. These experiments were conducted by Alexander Prokup. 
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In conclusion, modification of oligonucleotides with nucleobase-caging groups enabled 

optical control over HCR and a fuel-catalyst cycle, DNA devices that allow for DNA signal 

amplification. Crucial DNA strands were modified with photocleavable caging groups to 

optically control the individual reaction circuits. For HCR, a caged initiator strand was 

synthesized. Upon decaging, the initiator strand was able to interact with the hairpins, causing 

amplification through DNA strand polymerization. Only a low concentration of initiator is 

necessary to start the HCR, which can be achieved through minimal light exposure. A fuel-

catalyst cycle was also successfully optically switched from OFF → ON or ON → OFF by using 

either a caged catalyst or a caged inhibitor, respectively. To prevent DNA/DNA hybridization in 

the absence of illumination, and thus to control the cycle with light, four evenly spaced caging 

groups were added to the DNA strands. Quantification of the output was made possible with a 

reporter gate generating a fluorescent signal. Conducting light-activation in a semisolid 

containing the DNA circuits led to remarkable spatial and temporal control. Localized 

illumination of the gel embedded with the DNA circuits enabled triggering of signal 

amplification in customizable patterns as well as tunable gradients. For each cycle, light acts as a 

dependable switch for triggering computational events as it is tunable and noninvasive. Caged 

oligonucleotides represent a modular framework that can be easily fitted to existing DNA-based 

architectures. 

The methodology development reported here may find application in more complex 

DNA computation circuits that contain output amplification. Temporal control enables precise 

sequencing of gate and subnetwork functions and, in the case of temporal control of an 

amplification cycle, allows for upstream circuit completion before output amplification, thereby 

potentially reducing the background signal by preventing premature activation. In addition, 
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temporal control of DNA circuits enables modification of any system (e.g., drug treatment of 

cells) that is interfaced with a DNA computation network before circuit activation. Light is an 

excellent external control element that can be used as a switch with very high temporal and 

spatial resolution without the need for other physical or chemical alterations (e.g., injections). 

The application of light-activated DNA circuits and amplification devices is especially 

advantageous in systems that do not allow for later addition of oligonucleotide triggers, for 

example, in semisolid media as shown here or in enclosed biological environments, such as 

organisms. 

3.5 DNA Computation in Mammalian Cells: Signal Amplification of miRNA  

In addition to developing a miR-21 AND gate (as described in Section 3.2), a miR-21 DNA fuel-

catalyst cycle (as described in Section 3.4) was also tested to enable signal amplification of 

miRNA sensing in mammalian cells. The catalytic cycle has been described by Winfree to 

increase the fluorescent output signal through amplification of a single oligonculeotide,
206

 and 

may decrease the detection limit requirements of miRNA logic gates for cellular applications. 

Oligonucleotide hybridization reactions have shown utility in the amplification and detection of 

nucleic acids in live cells. The hairpin DNA cascade reaction was recently applied to the 

amplification of low abundance mRNA in cells and subsequent detection using a fluorescent 

reporter gate.
218

Additionally, the cascade hybridization reaction (CHR) was applied to the 

amplification and detection of low abundance miRNAs in cells through the activation of FRET 

pairs (Figure 3.36).
231
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B
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Figure 3.36: Cellular miRNA imaging using a DNA cascade hybridization reaction (CHR).  

A) Scheme illustrating the activation of a miRNA CHR. Molecular beacon hairpins containing a 

Cy3 and Cy5 fluorophore interact with the miR-21 target, forming linked hairpin chains. The 

fluorophores are then brought in close proximity to activate FRET donor emission. B) FRET 

analysis of miR-21 CHR in HeLa cells. Cy3 green channel (left), Cy5 red channel (middle) and 

FRET donor channel (right) are shown. Confocal mages were taken 4 h after transfection. Scale 

bars indicate 25 μm. Image adapted from Cheglakov et al, J. Am. Chem. Soc., 2015, 137(19):6116-

6119. Copyright 2015 American Chemical Society. 

 

Two programmable molecular beacon hairpins were modified to recognize miR-21 and 

produce a FRET emission signal through CHR (Figure 3.36A). A single input sequence is 

amplified from the continuously increasing FRET signal generated as the hairpin cascade 

reaction occurs, polymerizing long chains of connected hairpins. The miR-21 CHR device was 

evaluated through transfection into the HeLa cell line that overexpress miR-21, followed by 
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imaging of the fluorophores (Figure 3.36B). When both the hairpins were transfected into cells, 

the FRET donor emission could be observed, confirming the detection of miR-21. Therefore, it 

was determined that a similar approach utilizing the fuel-catalyst cycle would be tested for 

amplified miRNA detection in live cells. 

In order to develop biologically relevant fuel-catalyst cycles, the toe-hold mediated 

displacement cascade was redesigned for the recognition of two miRNAs (miR-21 and miR-

122). The substrate gate duplex contains a recognition domain that is sequence-specific for a 22 

mer oligonucleotide catalyst, and the mature miRNA sequences of 22 bases allows for facile 

reconstruction of the catalytic domains without any changes to the recognition domains. 

Therefore, the substrate gate and fuel strands were altered for a sequence-specific strand 

exchange cascade in response to miR-21 or miR-122 catalysts (Table 3.11 and Table 3.12). After 

a completed cycle, the substrate:fuel duplex becomes a waste product, the catalyst strand is 

recycled to initiate further catalytic cycles, and an output strand is released that interacts with a 

reporter gate to activate a fluorescent output signal (see Figure 3.33). It was proposed that the 

catalytic cycle could be used to recognize miRNAs as catalysts and activate the reporter gate for 

in vivo miRNA detection in mammalian cells with a highly sensitivity DNA computation 

modules.  

The miR-21 and miR-122 catalytic cycles were first tested for activation of the reporter 

gate. The reporter gate is not activated by the substrate gates and fuel strands alone, but the 

addition of 20 nM miRNAs enhanced the fluorescent signal (Figure 3.37). Both the miR-21 and 

miR-122 cycles showed similar levels of activation with low background. Higher concentrations 

of the substrates and fuel strands produced an increase in reporter gate activation with the same 

amount of miRNA catalyst. Therefore, the reporter gate activation demonstrates the miRNA-
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based catalytic cycles enabled amplified fluorescent detection of miR-21 or miR-122, dependent 

upon the substrate gate and fuel strand concentrations. Although activation of the catalytic cycle 

was demonstrated, these results (4-fold increase in fluorescence) are significantly lower than the 

amplification observed in the original fuel-catalyst cycle publication (over 100-fold increase in 

fluorescence),
206

 suggesting further optimization of the component concentrations should be 

examined to increase the overall amplification of miRNA catalysts. 
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Figure 3.37: Validation of miRNA fuel-catalyst cycles. 

A) The miRNA-based catalytic fuel cycle for miR-21. B) The miRNA-based catalytic fuel cycle 

for miR-122. The reporter gate (50 nM) was combined in solution with the substrate gates and fuel 

strands (200 or 800 nM), then the amplification cycles were initiated with miRNA catalysts (20 

nM). TAMRA fluorescence was observed at 4 h (non-optimized) and normalized to the highest 
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activated condition. An average of three independent experiments is shown and error bars 

represent standard deviations.  

 

Further analysis was then performed to determine the minimal concentration requirement 

for miRNA detection with the optimized catalytic cycle conditions, using the miR-21 catalytic 

cycle. For these experiments, the 800 nM concentration of substrate gate and fuel strand were 

used with a dilution series of miR-21, and subsequent signal amplification was determined with 

the reporter gate (Figure 3.38). While the 20 nM concentration of miR-21 signal matched the 

complete activation of the reporter gate with an output strand control at 200 nM, there are still 

significant increases in fluorescence at reduced concentrations down to 1 nM, which shows a 2-

fold increase over the fuel-catalyst cycle in the absence of miR-21. The 5 nM and 10 nM 

concentrations of miR-21 show 3- and 5-fold increases, respectively. This data suggests that 

while the miRNA catalytic cycle can confidently detect 20 nM catalysts in solution, there is the 

potential to reduce the detection limit even further and get signal amplification of low abundance 

miRNAs. 
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Figure 3.38: Analysis of miR-21 detection limit. 

The miR-21 catalytic fuel cycle was performed with the reporter gate (50 nM) along with the 

corresponding substrate gate and fuel strand (800 nM). The miR-21 catalyst was tested from 1-20 

nM, and compared to complete activation of the reporter gate with the output strand (200 nM). 

TAMRA fluorescence was observed at 4 h and normalized to the activated reporter gate. An 

average of three independent experiments is shown and error bars represent standard deviations.  
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In order to apply the miRNA-based catalytic cycles for the detection of endogenous 

miRNAs in live cells, the reporter gate duplex activation in the absence of the fuel-catalyst 

components was first analyzed in vivo. HEK293T cells were transfected with the reporter gate 

duplex in the absence and presence of the output strand and imaged after 4 h. The reporter gate 

showed no background fluorescence and is activated only in the presence of the output strand, 

validating its activity in a cellular environment (Figure 3.39). 

 

Reporter gate + Output

 

Figure 3.39: Fuel-catalytic cycle reporter gate analysis in HEK293T cells. 

The reporter gate was transfected into HEK293T cells alone at 50 nM (left) and with 200 nM 

output stand (right). TAMRA fluorescence was observed at 4 h. Scale bar indicates 200 μm. 

 

Co-transfection of the reporter gate with the catalytic cycles was then performed into 

different cell lines in order to determine the feasibility of detecting miRNAs in vivo with signal 

amplification. Initial experiments were performed with the miR-21 catalytic cycle in HEK293T 

(↓), HeLa (↑), and Huh7 (↑) cell lines. When all of the catalytic cycle components were 

transfected, very few cells remained for analysis, and no fluorescence was observed. 

Unfortunately, these experiments showed minimal success, as decreased cell viability and cell 

adhesion inhibited the ability to use the catalytic cycle in vivo. Further investigation of the 

singular components of the catalytic cycle did not indicate any trends for which gate or strand 

was causing the loss of cells (data not shown). Additionally, efforts to increase cell viability, 

such as replacing the gate elution buffers with water or PBS, and modifying the transfection 
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concentrations, were unsuccessful. Reporter gate activation with the miRNA-based catalytic 

cycles in vivo was not demonstrated due to these limitations. 

In summary, catalytic cycles have been developed that recognize miR-21 or miR-122 and 

produces a fluorescent output signal. Substrate gates with miRNA-based toe-hold regions were 

used to initiate the catalytic cycles with low concentrations of synthetic miRNA. However, the 

concentrations of each component of the miRNA-based catalytic cycles need to be further 

optimized to enhance the amplification of miRNA catalysts. Since the goal of this project was 

not to perform amplification and detection of miRNA in solution, but rather in cellular 

environments, the transfection experiments were more critical to gauge the ability of the catalytic 

cycles for endogenous miRNA detection. To that end, the reporter gate activation with the output 

strand has been demonstrated in mammalian cells. Current research is focused towards activating 

the reporter gate with the miRNA-based catalytic cycles in vivo. For amplification of endogenous 

miRNA sensing, the in vivo link between the reporter gate and catalytic cycle must be 

established. The many strand exchanges have been difficult to optimize within a cellular 

environment, since this system is more complex than the reported AND gates, which involve 2-4 

strand dissociations compared to 5 dissociations required for the reporter gate activation with the 

catalytic cycle. Similar reports for detection of RNAs in live cells with signal amplification have 

been demonstrated through hybridization cascades using FRET pair assembly
231

 and hairpin 

amplifiers,
218

 suggesting that different designs may be optimal for signal amplification of nucleic 

acid signatures in live cells. The use of DNA-based catalytic cycles and signal amplification 

system will presumably enable a lower detection limit for the endogenous sensing of miRNAs 

than the AND gates demonstrated in Sections 3.2 and 3.3. One benefit of this system is that the 

reporter gate has an interchangeable design, in which the substrate gates can be altered to 
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respond to a new catalyst, and the catalytic cycle can be developed to recognize alternate 

miRNAs or other endogenous oligonucleotides of biological interest. Once the in vivo link 

between a miRNA-based catalytic cycle and the output reporter gate has been successfully 

completed, the next step will be light-activation of the catalytic cycle with a caged fuel strand to 

enable spatial and temporal sensing of low abundance miRNAs in live cells. 

3.5.1 Methods and Materials 

 Fuel-catalyst Duplex Purification. See Section 5.6 for specific information on DNA 

computation techniques. Duplexes were purified following protocol 5.6.1. All oligonucleotide 

sequences are shown in the following tables; a letter prior to the base indicates sugar 

modification (r = RNA), miRNA recognition sequences are underlined, Q = BHQ2 quencher, F = 

Tetramethylrhodamine (TAMRA) fluorophore: 

 

Table 3.11: miR-21 fuel-catalyst cycle. 

Strand Sequence (5' → 3')  

Catalyst miR-21 rUrArGrCrUrUrArUrCrArGrArCrUrGrArUrGrUrUrG  

Substrate
21 

 TCAACATCAGTCTGATAAGCTAAGGGCCGTAAGTTAGTTGGAGACGTAGG  

Fuel
21

 CCTACGTCTCCAACTAACTTACGGCCCTTAGCTTATCAGACTGA  

Signal strand
21

 CCACATACATCATATTCCCTTAGCTTATCAGACTGA  

Output strand CTTTCCTACACCTACGTCTCCAACTAACTTACG  

Reporter gate F F-CTTTCCTACACCTACG  

Reporter gate Q TGGAGACGTAGGTGTAGGAAAG-Q  
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Table 3.12: miR-122 fuel-catalyst cycle. 

Strand Sequence (5' → 3')  

Catalyst miR-122 rUrGrGrArGrUrGrUrGrArCrArArUrGrGrUrGrUrUrUrG  

Substrate
122

 CAAACACCATTGTCACACTCCAAGGGCCGTAAGTTAGTTGGAGACGTAGG  

Fuel
122

 CCTACGTCTCCAACTAACTTACGGCCCTTGGAGTGTGACAATGG  

Signal strand
122

 CCACATACATCATATTCCCTTGGAGTGTGACAATGG  

Output strand CTTTCCTACACCTACGTCTCCAACTAACTTACG  

Reporter gate F F-CTTTCCTACACCTACG  

Reporter gate Q TGGAGACGTAGGTGTAGGAAAG-Q  

 

 Fuel-catalyst Cycle Examination. See Section 5.6 for specific information on DNA 

computation techniques. Fluorescence was measured following protocol 5.6.2. 

Fuel-catalyst Cellular Transfections. See Section 5.4 for specific information on cell 

culture techniques and Section 5.6 for specific information on DNA computation techniques. 

Cells were passaged into a 96-well plate and grown to ∼70% confluence within 24 h following 

protocol 5.4.1. The cells were transfected with the fuel-catalyst cycle using X-tremeGENE 

following protocol 5.6.3. 

Live Cell Imaging of TAMRA Fluorescence. See Section 5.4 for specific information 

on cell culture techniques and Section 5.6 for specific information on DNA computation 

techniques. Transfected cells were imaged on a Zeiss Observer Z1 microscope (20X 

magnification) following protocol 5.4.5. 
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4.0  Application of Caged Proteins in the Regulation of Gene Function 

As discussed in Section 1.2, proteins can be caged with light-responsive amino acids through 

UAA mutagenesis. This chapter will discuss the application of NPOC-caged lysine (Figure 1.22, 

further abbreviated as PCK) for the optical control of RNA polymerization and gene editing in 

mammalian cells. Additionally, a system for the incorporation of unnatural amino acids in live 

animals was developed in efforts to produce the first vertebrate species with an expanded genetic 

code. 

4.1 Genetically Encoded Light-Activated Transcription for Spatiotemporal Control of 

Gene Expression and Gene Silencing in Mammalian Cells 

This material was reprinted, in part, with permission from Hemphill, J.; Chou, C.; Chin, J.W.; 

Deiters, A. J. Am. Chem. Soc. 2013, 135(36), 13433-13439. 

 A caged T7 RNA polymerase was expressed in cells with an expanded genetic code and 

used in the photochemical activation of genes under control of an orthogonal T7 promoter, 

demonstrating tight spatial and temporal control. The synthetic gene expression system was 

validated with two reporter genes (luciferase and EGFP) and applied to the light-triggered 

transcription of short hairpin RNA constructs for the induction of RNA interference. 

http://pubs.acs.org/doi/abs/10.1021/ja4051026
http://pubs.acs.org/doi/abs/10.1021/ja4051026
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The addition of nonmammalian RNA polymerases to the genetic circuitry of cells enables 

the development of orthogonal genetic expression platforms that can be manipulated to activate 

specific genes that will not be expressed by the endogenous cellular genetic machinery. Caged 

polymerases are versatile building blocks for the construction of synthetic gene networks to 

control gene expression with light as an input.
256

 Protein expression under photochemical control 

can be used to build synthetic biological circuits that respond to light with specific gene function 

outputs, thus conveying precise spatial and temporal control over these circuits. A genetically 

encoded light-activated T7 RNA polymerase was developed that enables the promoter-specific 

photochemical regulation of transcription for both coding and noncoding RNAs in a mammalian 

cell system. 

T7 RNA polymerase (T7RNAp) is a bacteriophage RNA polymerase that is related to the 

PolI family of DNA polymerases,
257

 which is especially useful for exogenous gene control in the 

reprogramming of genetic and network relationships, as the polymerase and its corresponding 

promoter are completely orthogonal to all endogenous polymerases in mammalian cells.
258

  

Therefore, genes of interest can be conditionally expressed through the light activation of a 

T7RNAp temporarily rendered inactive through the incorporation of a caged amino acid in its 

active site. Importantly, photochemically activated transcription can be used to not only control 

gene expression but also to express noncoding RNA sequences of other biological function. A 

light-activated T7RNAp has previously been generated in through the site-specific incorporation 

of an o-nitrobenzyl caged tyrosine in E. coli cells with an expanded genetic code.
127

 However, its 

application for the photochemical control of transcription in mammalian cells was hampered 

since the M. janaschii tRNA synthetase/tRNA pair is not orthogonal in mammalian cells and 

transfection of the caged protein was required. To overcome this limitation, site-specific 
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incorporation of a genetically encoded PCK into T7RNAp through an engineered, fully 

orthogonal pyrrolysine synthetase/tRNA pair was used to photochemically control RNA 

polymerization in mammalian cells with (Figure 4.1). The photocaged lysine exhibits increased 

solubility in mammalian growth media, more rapid decaging due to better leaving group qualities 

of the released carbamate, a bathochromic shift in absorbance maximum and thus decaging 

wavelength, and produces a less reactive byproduct upon photolysis than the previously 

employed caged tyrosine.
114
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Figure 4.1: Schematic for expression and function of caged T7RNAp. 

Light-activated T7RNAp is expressed in mammalian cells through site-specific incorporation of 

PCK (red circle) into its active site in response to an amber stop codon (TAG) via an engineered 

tRNA synthetase (PCKRS) that misacylates an amber-suppressor tRNA (PylT) with PCK. The 

caged T7RNAp is completely inactive until irradiation with 365 nm UV light induces decaging 

and activation of T7-driven transcription. Depending on the function of the transcribed RNA, 
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light-induced protein expression from mRNA or light-induced gene silencing via RNA 

interference from shRNA is achieved. 

 

Transcription catalyzed by T7RNAp involves a number of protein conformational 

changes, and the active site of T7RNAp, which is conserved among a number of polymerases 

found in nature, has been studied in detail.
259

 These structural and kinetic studies indicate that the 

active site lysine 631 (K631) is critical for T7RNAp function, as it interacts with phosphate 

groups of the incoming nucleotide triphosphates (NTPs) at the interface of the DNA template 

and RNA product strands, stabilizing the NTPs through hydrogen bonding with the 1α-phosphate 

residue.
260, 261

 Mutations at the K631 position have been shown to inhibit transcription.
262

 Thus, 

it was hypothesized that a sterically demanding caging group installed on K631 will block 

incoming NTPs from the active site and inhibit T7RNAp activity. In addition, the carbamate 

linker changes the electronic nature of the ε-amino group, effectively preventing protonation and 

removing the positive charge. The caged T7RNAp is expected to be completely inactive until a 

brief UV irradiation at 365 nm removes the caging group from K631 and enables transcription 

(Figure 4.2). 
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caged, inactive T7RNAp decaged, active T7RNAp

365 nm

 

Figure 4.2: Structural representation of caged T7RNAp active site residue. 

K631-caged (left) and wild-type (right) T7RNAp are depicted. The K631 residue is indicated in 

green, and the DNA template and RNA transcript are indicated in red and yellow, respectively. 

Images were generated in PyMol from PDB 1S76.
261

 

 

An amber stop codon TAG was introduced at K631 of T7RNAp (Table 4.1), and the gene 

was cloned with a 6-His tag into a plasmid (pAG31) containing the MbPylRS synthetase mutant 

for PCK incorporation (PCKRS: M241F, A267S, Y271C, and L274M), derived from the M. 

barkeri pyrrolysine tRNA synthetase.
114

  Previous studies for the incorporation of UAAs have 

shown that there are no off-target effects on endogenous gene expression through the 

repurposing of the low-frequency TAG stop codon in mammalian cells.
108, 263

 As a positive 

control, wild-type (WT) T7RNAp was also cloned into the same vector. For the expression of 

caged T7RNAp, cotransfections were performed with a plasmid (pAG38) containing four copies 

of the pyrrolysine tRNACUA (PylT). Western blot analysis of HEK293T cells that were 

transfected with the T7RNAp expression constructs and incubated for 24 h in the absence or 

presence of PCK revealed the expression of hexahistidine-tagged T7RNAp only in the presence 

of PCK, indicative of the high fidelity of the engineered synthetase (Figure 4.3).  

 

http://www.rcsb.org/pdb/search/structidSearch.do?structureId=1S76
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Figure 4.3: Expression of caged T7RNAp.  

HEK293T cells were transfected with pAG31:T7RNAp WT, or pAG31:T7RNApK631TAG  and 

pAG38 expression plasmids then incubated in the presence of PCK (2 mM) for 24 h. Western blot 

analysis was performed using 6-His and GAPDH primary antibodies with a FITC-labeled 

secondary antibody for detection. 

 

The activity and photochemical control of K631-caged T7RNAp was investigated using a 

firefly luciferase reporter gene under control of the T7 promoter.
127

 First, the effects of UV 

exposure on the luciferase assay were studied, revealing that an irradiation times up to 20 min 

had only minor detrimental effects on T7-driven luciferase activity in cells expressing the wild-

type polymerase, demonstrating a low UV sensitivity for the luciferase assay (Figure 4.4A). 

Cells were then transfected with the T7-driven luciferase reporter and the K631-caged T7RNAp 

expression plasmids, incubated in PCK for 24 h, and irradiated with 365 nm light at increasing 

intervals up to 20 min (Figure 4.4B). Light-activated luciferase expression was observed in cells 

expressing the caged T7RNAp, with a tunable linear response of gene expression to an 

increasing irradiation time. A 3 min irradiation exhibited a 9-fold increase compared to the 

nonirradiated control, and luciferase activity did not significantly increase with additional UV 

exposure of up to 20 min. Importantly, the presence of the caging group at K631 fully blocked 

transcriptional activity of the enzyme, since the absence of polymerase (−T7), caged T7RNAp 

(−PCK), or light exposure (0 min UV) all showed identical, very low levels of background 

luminescence. 
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Figure 4.4: Luciferase reporter UV irradiation and photochemical activation. 

A) HEK293T cells were transfected with the pAG31:T7RNAp WT and T7‐IRES‐Luc plasmids. 

Luminescence units were normalized to a no UV control. An analysis of variance (ANOVA) was 

conducted. Luciferase activities after a 1 and 2 min irradiation were statistically identical (p = 

0.24). A similar statistical insignificance in variance was observed between 3, 10, and 20 min 

irradiations (p = 0.23).  B) HEK293T cells were transfected with the pAG31:T7RNApK631TAG, 

pAG38, and T7‐IRES‐Luc plasmids then incubated with 2 mM PCK overnight. Luminescence 

units were normalized to the activation observed after a 20 min irradiation. UV irradiations were 

performed on a 365 nm transilluminator, and luciferase bright glow assays were performed 24 h 

after UV exposure. Error bars represent standard deviations of experimental triplicates. 

 

A T7-IRES-EGFP reporter plasmid was also constructed for fluorescent imaging of the 

photochemical gene expression system. The T7-driven EGFP reporter construct was validated in 

cells expressing the wild-type polymerase and transfection conditions were optimized for 

enhanced EGFP expression (Figure 4.5). The 48 h expression transfected with 2‐fold increase of 

lipofectamine reagent showed the highest EGFP levels. 
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Figure 4.5: Wild‐type T7RNAp expression of an EGFP reporter. 

HEK293T were transfected with the pAG31:T7RNAp WT and T7‐IRES‐EGFP plasmids under 

various conditions. Fluorescence was observed at 24 and 48 h. Scale bar indicates 200 m.  

 

The photochemical activation of caged T7RNAp for the expression of T7-driven EGFP 

was then confirmed through cotransfection with the PCKRS/PylT expression machinery, and 

conditions were optimized for optimal OFF → ON switching of EGFP expression (Figure 4.6A). 

The 48 h incubation increased total EGFP expression, and no enhancement was observed 

through longer UV irradiation times. No background EGFP fluorescence was observed in cells 

containing the caged T7RNAp construct in the absence of PCK or UV exposure (Figure 4.6B). 

Photochemical control over EGFP expression was only achieved through treatment of cells with 

both PCK and UV irradiation. Fluorescent cell counting was performed to quantify the 

photochemical activation of T7RNAp-dependent expression of EGFP (Figure 4.6C). A 5-fold 

increase in the number of fluorescent cells was observed after both 2 and 10 min UV irradiations, 

while the absence of either PCK or UV exposure showed only basal levels of fluorescence, 

indicating that the caged polymerase is completely inactive and displays no background 

expression. 
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Figure 4.6: Light activation of EGFP transcription in HEK293T cells. 

A) UV irradiation time course for the activation of K631‐caged T7RNAp. Cells were transfected 

with the pAG31:T7RNApK631TAG, pAG38, and T7‐IRES‐EGFP plasmids then incubated with 2 

mM PCK overnight. UV irradiations were performed on a 365 nm transilluminator for 2, 5, and 10 

min. The expression of EGFP was observed at 24 and 48 h time points after UV irradiation. B) 

K631-caged T7RNAp expression of EGFP in the absence of PCK or UV irradiation at 48 h. Scale 

bar indicates 200 m. C) Fluorescent cell counting was performed 48 h after UV exposure. The 

frequencies of EGFP-positive cells (gated/total) were normalized to the 10 min UV irradiation, 

and error bars represent the standard deviation obtained from three experimental replicates. 

 

In order to demonstrate spatial control of RNA expression in mammalian tissue culture, 

the photochemical activation of the T7RNAp-driven EGFP reporter was performed as in Figure 

4.6A; however, spatially restricted UV irradiations were conducted through specifically shaped 
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masks (pinhole and horizontal slit). Only areas exposed to the patterned UV light were EGFP-

positive due to localized activation of RNA polymerization (Figure 4.7). These experiments 

successfully demonstrated spatial and temporal control of gene function using a site-specifically 

caged T7RNAp encoded in mammalian cells. 
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Figure 4.7: Spatial control of photochemically activated gene expression.  

Cells were cotransfected with the K631-caged T7RNAp polymerase expression system and EGFP 

reporter as previously described, then incubated with 2 mM PCK for 24 h. Masks were used to 

irradiate small populations of cells at 365 nm for 2 min, and EGFP expression was observed at 48 

h. Irradiations were performed through a small pinhole (top) and a horizontal slit (bottom). Scale 

bar indicates 200 μm.  

 

To further demonstrate the applicability of the light-activated T7RNAp/promoter system, 

it was subsequently applied to the photochemical activation of RNA interference through T7-

driven expression of short hairpin RNAs (shRNAs).
264

 These shRNAs are processed into siRNAs 

exhibiting prolonged activity for gene knockdown.
22

 The shRNAs can be designed to exhibit 

promoter-specific expression,
265

 and can be genetically integrated to generate stable RNAi 

regulators.
266

 The use of plasmid-based shRNA for gene suppression has been successfully 
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applied in a variety of mammalian cell systems,
267

 and T7RNAp-driven shRNAs have been 

reported for the regulation of gene expression in live mammalian cells
268

 as well as zebrafish 

embryos.
269

 Here, the developed photochemical gene regulation system was coupled with an Eg5 

shRNA component as a proof of principle study in the photochemical regulation of RNA 

interference. The Eg5 gene encodes a motor protein involved in mitosis,
270

 and inhibition of Eg5 

with siRNA oligonucleotides has been shown to produce binucleated cells,
271, 272

 providing a 

distinct phenotypic readout for RNAi activity. The Eg5 shRNA expression cassette was cloned 

into the T7-IRES-EGFP reporter plasmid with built-in T7RNAp expression components 

including the T7 RNA promoter and terminator sequences (Table 4.2). This construct was 

designed to fluorescently track cells that were successfully transformed, as well as exhibit 

expression and photochemical activation of caged T7RNAp. 

First, shRNA expression was tested for activity in the presence of a WT T7RNAp gene in 

HeLa cells. The resulting binucleated cellular phenotype was observed, in agreement with the 

phenotype observed through transfection of an siRNA oligonucleotide positive control, as 

expected (Figure 4.8). A binucleated phenotype was observed with both the Eg5 siRNA and 

plasmid-based WT T7-expressed shRNA controls, while EGFP expression successfully tracked 

cells for the identification of T7RNAp-driven shRNA activity. The K631-caged T7RNAp 

expression system was then used to achieve UV activation of Eg5 shRNA expression through 

cotransfection of the required plasmids, followed by incubation in the presence of PCK and UV 

irradiation (Figure 4.8). The EGFP expression and cellular binucleation were fully dependent 

upon UV irradiation and activation of the caged T7RNAp. The shRNA construct has been 

validated to enable light-activated RNA interference.  
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Figure 4.8: Light activation of Eg5 shRNA using the caged T7RNAp system. 

HeLa ells were transfected with an Eg5 siRNA (50 pmol), as well as WT T7RNAp or the K631-

caged T7RNAp expression system with the T7-IRES-EGFP-Eg5 shRNA construct. The caged 

T7RNAp expressions were incubated in 2 mM PCK for 24 hr, and irradiated for 2 min at 365 nm. 

At 48 h post treatment, cells were fixing and staining with DAPI (nucleus) and rhodamine-

phalloidin (actin) prior to imaging. Scale bar indicates 20 μm, and binucleated cells are labeled 

with a white arrow.  

 

Light activation of shRNA expression was verified through the observation of a 

binucleated cell phenotype only after UV irradiation, which was then quantified through cell 

counting (Figure 4.9). The relative frequency of binucleated cells observed indicated that the 

photochemically regulated expression of Eg5 shRNA with K631-caged T7RNAp is activated to 

nearly identical levels as wild-type T7RNAp. The frequency of binucleated cells observed for the 

Eg5 siRNA was also similar to the frequency observed for the T7RNAp plasmid‐driven Eg5 
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shRNA. In the absence of UV irradiation the relative frequency of cellular binucleation was 

similar to nontreated cells. The photochemical activation of K631‐caged T7RNAp produced a 

similar binucleation frequency as the Eg5 siRNA and WT T7RNAp. 
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Figure 4.9: Relative frequency of binucleated phenotype in HeLa cells. 

Transfections were performed with an Eg5 siRNA control and the T7RNAp plasmid‐driven Eg5 

shRNA as previously described. A) The cells were fixed 48 h post treatment and stained with 

DAPI (nucleus) prior to imaging. Scale bar indicates 20 μm.  Binucleated cells are labeled with a 

white arrow. B) Counts of 50 cells were performed for each condition to determine the relative 

frequency of binucleated cells, normalized to the Eg5 siRNA positive control. Error bars represent 

standard deviations from triplicates.  
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Additionally, qRT-PCR was performed on cellular RNA extracts to quantify the relative 

Eg5 mRNA expression levels and to further validate the photochemical gene silencing (Figure 

4.10). A 55% reduction of Eg5 mRNA was observed in the case of both wild-type T7RNAp-

driven shRNA expression and light-activated T7RNAp, in accordance with the Eg5 siRNA 

reagent as a positive control. In the absence of UV irradiation, the caged T7RNAp expression 

system showed similar levels of Eg5 mRNA as nontreated cells. These findings demonstrate that 

the caged T7RNAp-controlled genetic circuit can be applied to the photochemical regulation of 

gene expression and the light induction of noncoding RNAs to achieve external control over 

RNA interference.  
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Figure 4.10: Quantification of Eg5 mRNA in HEK293T cells.  

Transfections were performed with an Eg5 siRNA control and compared to T7RNAp 

plasmid‐driven Eg5 shRNA as previously described. Total RNA was isolated from cells 48 h after 

the corresponding treatment and qRT‐PCR was performed with Eg5 specific primers. The Eg5 

mRNA was normalized to GADPH mRNA as a control and set relative to nontreated cells (NT), 

with error bars representing standard deviations from triplicates.  

 

In summary, a light-activated T7RNAp gene expression system was successfully 

developed in mammalian cells engineered with additional protein biosynthetic machinery for 

genetically encoded protein modification with a caged lysine amino acid (PCK). Site-specific 

incorporation of PCK at the K631 active site residue in T7RNAp led to full inactivation of RNA 
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polymerization. Light irradiation at 365 nm removed the caging group from the active site and 

enabled the expression of transcripts that were placed under control of the T7 promoter. This was 

successfully demonstrated for two reporter genes, luciferase and EGFP. Temporal control of UV 

exposure allowed for finely tuned gene expression that gradually increased with longer durations 

of irradiation. In addition, precise spatial control of T7RNAp activity through localized UV 

irradiation was achieved, as shown by the patterned expression of an EGFP reporter in a 

monolayer of mammalian cells. Furthermore, photochemical regulation of T7RNAp activity was 

used to achieve precise control over the expression of noncoding RNAs, as exemplified by the 

light induction of shRNA transcription and thus RNA interference. Here, a unique combination 

of individual parts, including an orthogonal tRNA/tRNA synthetase pair, a photocaged lysine 

amino acid, a caged T7RNAp, and T7 promoter-driven shRNA expression cassette, were 

interfaced with the RNA interference pathway to construct the circuitry for light-triggered, 

sequence-specific gene silencing. The ability to photochemically control the expression of 

shRNAs allows for spatial and temporal dissection of the RNAi pathway. Overall, a genetically 

encoded expression platform has been developed that can photochemically regulate specific 

genes under control of the T7 promoter in mammalian cells. In theory, any gene under control of 

a T7 promoter can now be photochemically regulated in live cells. The engineered spatial and 

temporal control can be applied to the precise triggering of genetic networks allowing for a wide 

range of cellular applications. 

4.1.1 Methods and Materials 

 Plasmid Construction. See Section 5.3 for specific information on molecular biology 

techniques. An amber stop was introduced into T7 RNA polymerase through mutagenesis of the 
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pBH161 plasmid.
273

 A single nucleotide was changed for the K631 AAG → TAG mutation 

using primers shown in Table 4.1 following protocol 5.3.2. The T7RNAp gene was then PCR 

amplified from the pBH161 plasmid with primers to introduce NheI and EcoRI restriction sites 

following protocol 5.3.1. The ∼2.7 kB T7RNAp gene was cloned between 

the NheI and MfeI restriction sites of the pAG31 plasmid
114

 following protocols 5.3.3 and 5.3.4. 

The Eg5 shRNA insert was prepared with the T7 RNA promoter, Eg5 shRNA sense and 

antisense strands connected with a loop sequence, then followed by a T7 RNA terminator region 

(Table 4.2). These elements were purchased as single-stranded DNA oligos (IDT) and ligated 

into the T7-IRES-EGFP plasmid at BglII and SacI restriction sites following protocols 5.3.3 and 

5.3.4. Plasmid maps are shown in Figure 4.11. 

 

Table 4.1: Primer sequences used in the development of K631TAG T7RNAp. 

The T7RNAp gene PCR products were into pAG31. Mutations introduced are underlined and 

restriction sites are bolded. 

Primer Sequence (5' → 3')  

K631TAG Forward  GTTACTCGCAGTGTGACTTAGCGTTCAGTCATGACGC 

K631TAG Reverse  GCGTCATGACTGAACGCTAAGTCACACTGCGAGTAAC  

Forward Nhe1  TTAAGCTAGCACCATGGGCAGCAGCCATC  

Reverse EcoR1  CGGTGAATTCTTACGCGAACGCGAAGTC 

 

Table 4.2: Sequences of the Eg5 shRNA construct and the siRNA oligonucleotides. 

Restriction enzyme sites indicated in bold, T7-promoter and terminator underlined, and 

ribonucleic acid bases indicated with “r”.   

Strand Sequence (5' → 3')  

Eg5 shRNA insert 
GATCTAATACGACTCACTATAGGGAGAATAGACTTCATCCTTGTTGT

TCAGAGCTAACAACAAGGATGAAGTCTATATCTGTTTTTTTAGCT 

Eg5 shRNA insert 
AAAAAAACAGATATAGACTTCATCCTTGTTGTTAGCTCTGAACAAC

AAGGATGAAGTCTATTCTCCCTATAGTGAGTCGTATTA  

siRNA sense rCrArArCrArArGrGrArUrGrArArGrUrCrUrArUTT 

siRNA antisense rArUrArGrArCrUrUrCrArUrCrCrUrUrGrUrUrGTT 
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Figure 4.11: Plasmid constructs for T7RNAp experiments. 

A) Plasmids used for the expression of caged T7RNAp. B) Plasmids used for the analysis of 

activity with specific reporter genes. C) The Eg5 shRNA construct segments. 

 

 Western Blot of Caged T7RNAp. See Section 5.4 for specific information on cell 

culture techniques. HEK293T cells were passaged into 6-well plates and grown to ∼70% 

confluence within 24 h following protocol 5.4.1. Transfections were performed with 2 μg of each 

plasmid using lipofectamine for 4 h following protocol 5.4.2. The cellular growth media was 

supplemented with PCK (2 mM) for 24 h. Protein isolations were performed following protocol 

5.4.8. Western blots were performed following protocol 5.4.9 using a mouse anti-6-His primary 

antibody and a mouse anti-GADPH control (Santa Cruz Biotechnology). The primary antibodies 

were detected with a goat anti-mouse-FITC fluorescent secondary antibody. 

Photochemical Regulation of Reporter Genes. See Section 5.4 for specific information 

on cell culture techniques. HEK293T cells were passaged into 96-well plates and grown to 



 

 196 

∼70% confluence within 24 h following protocol 5.4.1. Transfections were performed with 200 

ng of each plasmid using lipofectamine for 4 h following protocol 5.4.2. The cellular growth 

media was supplemented with PCK (2 mM) for 24 h. The PCK-containing media was removed 

after the overnight incubation followed by exposure at 365 nm using a UV transilluminator (25 

W) following protocol 5.4.3. For the luciferase reporter, a Bright-Glo assay (Promega) was 

performed 24 h post UV irradiation to quantify luciferase activity by removing 150 μL of cell 

media, adding 50 μL of the kit reagent, and shaking for 20 min. Chemiluminescence was 

measured on a BioTek Synergy 4 plate reader. For the EGFP reporter, fluorescent imaging was 

performed using a Zeiss Observer Z1 microscope (20X magnification) following protocol 5.4.5. 

Spatially distinct UV irradiations were performed through precut vertical slits in tinfoil, and 

irradiated at 365 nm with a transilluminator (25 W) for 2 min following protocol 5.4.3. 

Fluorescent Cell Sorting. See Section 5.4 for specific information on cell culture 

techniques. HEK293T cells were passaged into 96-well plates and grown to ∼70% confluence 

within 24 h following protocol 5.4.1. Transfections were performed with 200 ng of each plasmid 

using lipofectamine for 4 h following protocol 5.4.2. The cellular growth media was 

supplemented with PCK (2 mM) for 24 h. The PCK-containing media was removed after the 

overnight incubation followed by exposure at 365 nm using a UV transilluminator (25 W) 

following protocol 5.4.3. Following a 48 h incubation cells were trypsinized, pooled, washed, 

and resuspended in PBS. Flow cytometry was performed on a FACSCalibur (Becton-Dickinson) 

instrument (488 nm argon laser, 530/50 nm BPF). Cells were gated for EGFP fluorescence 

(above 10
2.5

 RFUs) then analyzed with Cellquest Pro Software until 20,000 cells were counted 

for each condition tested. The frequency of EGFP positive cells (gated/total) was averaged from 

three replicates and normalized to the UV-activated EGFP expression. 
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Eg5 shRNA Expression and Imaging. See Section 5.4 for specific information on cell 

culture techniques. HeLa cells were passaged into 4-well chamber slides following protocol 

5.4.1, and transfected with 1 μg of each plasmid using lipofectamine for 4 h following protocol 

5.4.2. The Eg5 siRNA duplex was prepared by annealing the oligonucleotides (Table 4.2)
274

 at 

10 μM in TAE/Mg
2+

 buffer (0.04 M tris-acetate, 1 mM ethylenediaminetetraacetic acid (EDTA), 

12.5 mM magnesium acetate, pH ~7.4) from 65 to 12 °C over 10 min, and transfected at 50 pmol 

as a positive control with X-tremeGENE siRNA for 4 h following protocol 5.4.2. The cellular 

growth media was supplemented with PCK (2 mM) for 24 h. The PCK-containing media was 

removed after the overnight incubation followed by exposure at 365 nm for 2 min using a UV 

transilluminator (25 W) following protocol 5.4.3. After 48 h incubation cells were fixed with 

3.75% formaldehyde, followed by DAPI (Invitrogen) and rhodamine-phalloidin (Invitrogen) 

counter stains following protocol 5.4.4. Imaging was performed with a Zeiss Observer Z1 

microscope (63X magnification) following protocol 5.4.5. Relative frequencies of binucleated 

cells were determined through three counts of 50 cells for each condition and were normalized to 

the Eg5 siRNA positive control. 

Quantification of Eg5 mRNA by qRT-PCR. See Section 5.4 for specific information 

on cell culture techniques. HEK293T cells were passaged into 6-well plates and grown to ∼70% 

confluence within 24 h following protocol 5.4.1. Transfections were performed with 2 μg of each 

plasmid using lipofectamine for 4 h following protocol 5.4.2. The Eg5 siRNA oligonucleotide 

was annealed as described and transfected at 200 pmol with X-tremeGENE siRNA for 4 h 

following protocol 5.4.2. The cellular growth media was supplemented with PCK (2 mM) for 24 

h. The PCK-containing media was removed after the overnight incubation followed by exposure 

at 365 nm for 2 min using a UV transilluminator (25 W) following protocol 5.4.3. After 48 h 
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incubation, total RNA was isolated from cells following protocol 5.4.6. Quantitative RT-PCR 

was performed with a GAPDH primer set
275

 and an Eg5 primer set
271

 (Table 4.3) following 

protocol 5.4.7. The threshold cycles (Ct) of each sample were normalized to the GAPDH control 

gene, and the inhibition of Eg5 expression is represented relative to nontreated cells.  

 

Table 4.3: Sequences of qRT-PCR primers used. 

Primer Sequence (5' → 3')  

GAPDH forward  TGCACCACCAACTGCTTAGC  

GAPDH reverse  GGCATGGACTGTGGTCATGAG  

Eg5 forward CAGCTGAAAAGGAAACAGCC 

Eg5 reverse GGCATGGACTGTGGTCATGAG 

 

4.2 Optical Control of CRISPR/Cas9 Gene Editing 

This material was reprinted, in part, with permission from Hemphill, J.; Borchardt, E.K.; Brown, 

K.A.; Asokan, A.; Deiters, A. J. Am. Chem. Soc. 2015, 137(17), 5642-5645. 

 The CRISPR/Cas9 system has emerged as an important tool in biomedical research for a 

wide range of applications, with significant potential for genome engineering and gene therapy. 

In order to achieve conditional control of the CRISPR/Cas9 system, a genetically encoded light-

activated Cas9 was engineered through the site-specific installation of a caged lysine amino acid. 

Several potential lysine residues were identified as viable caging sites that can be modified to 

optically control Cas9 function, as demonstrated through optical activation and deactivation of 

both exogenous and endogenous gene function.  

http://pubs.acs.org/doi/abs/10.1021/ja512664v
http://pubs.acs.org/doi/abs/10.1021/ja512664v
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 Many bacteria and archaea utilize an adaptive immune defense based on a system of 

clustered regularly interspaced short palindromic repeats (CRISPR) that target invasive nucleic 

acids through the interaction of CRISPR-associated (Cas) proteins and CRISPR arrays, which 

are transcribed and processed into short CRISPR RNAs (crRNAs).
276

 The crRNA guides the Cas 

proteins to sequence-specific duplex cleavage. Type II CRISPR systems employ an additional 

RNA, the trans-activating crRNA (tracrRNA), which hybridizes with the crRNA.
277

 These two 

RNAs can be combined to allow Cas9 targeting with a single guide RNA (gRNA).
278

 The Cas9 

enzyme has been optimized for site-specific DNA cleavage and nicking followed by non-

homologous end-joining (NHEJ) or homology-directed repair (HR), enabling gene editing, gene 

deletion, and gene mutation
279

 in human cells
280

 and animal models.
281

 The ease of customized 

gRNA design allows for sequence-specific and highly efficient gene targeting without the need 

for protein engineering.
282

 In addition, a catalytically inactive Cas9 has been engineered into a 

transcriptional activator and repressor, expanding the utility of Cas9 as a gene regulatory tool.
283

 

  Optically regulating Cas9 function enables precise spatial and temporal control of gene 

editing. In order to develop a system for optochemical control of CRISPR/Cas9 gene editing 

(Figure 4.12), genetic code expansion was used by adding an engineered pyrrolysyl tRNA 

(PylT)/tRNA synthetase (PCKRS) pair to the translational machinery of human cells to enable 

the site-specific incorporation of PCK into proteins (as discussed in Section 1.2).
114

 Recently, the 

use of Cry domains was applied to the light-induced recruitment of a transcriptional activator for 

a DNA-bound enzymatically inactive Cas9 variant (dCas9).
284

 Additionally, a fully functional 

Cas9 was modified with Cry domains in the development of light-activated CRISPR/Cas9 gene 

editing.
285

 These optogenetic systems utilized blue light optical dimerization of Cry2 and CIBN 

(discussed in Section 1.2) domains fused to split protein fragments to control transcription or 
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genomic editing for multiple targets in cellular systems, and successfully demonstrated both 

spatial control as well as light switching reversibility of Cas9 activity. In contrast, our approach 

for Cas9 modification with a site-specific caged lysine analogue enables the generation of wild-

type Cas9 through light-induced decaging, which is not encumbered by photosensitive fusion 

domains. 
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Figure 4.12: Light-activation of caged Cas9 enables optochemical control of gene editing. 

The caged Cas9 protein contains a site-specifically incorporated PCK, rendering it inactive until 

the caging group is removed through light exposure. This generates wild-type Cas9, which induces 

sequence-specific DNA cleavage followed by subsequent non-homologous end-joining (NHEJ) or 

homology-directed repair (HR).  

 

Multiple lysines of interest were identified as potential caging sites for the inhibition of 

CRISPR/Cas9 function (Figure 4.13). K76, K163, K510, and K742 are in close proximity to the 

gRNA nucleic acid binding sites based on recent crystal structures,
286

 and thus may be essential 

for Cas9-gRNA interaction. K866 undergoes a significant conformational change upon binding 

of the gRNA, orienting the lysine to become surface exposed, which may be necessary to 

properly position the target DNA strand for cleavage. However, the exact role of this residue has 

not been determined. 
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Figure 4.13: Structural annotation of critical lysines on Cas9.  

A) Lysines of interest (red) depicted on a surface model of unbound Cas9 (PDB: 4CMP). B) 

Lysines of interest depicted on a surface model of bound Cas9 (PDB: 4OO8), with gRNA (yellow) 

and target DNA (blue) shown. C) Detailed view of each lysine of interest in the unbound Cas9 

structure. D) Detailed view of each lysine of interest in the bound Cas9 structure. 

 

The Cas9 gene was first cloned into the PCKRS expression plasmid (pAG31, described 

in Section 4.1)
114

 and an HA-tag was added. Alanine mutations were introduced at the five lysine 

sites to assay the lysine residues of interest for Cas9 activity. Western blots confirmed all Cas9 

http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4CMP
http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4OO8
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alanine mutants expressed well in HEK293T cells (Figure 4.14A). Amber stop codon (TAG) 

mutations were introduced at all sites of interest since the K→PCK mutation may induce an 

additional level of perturbation compared to a K→A mutation. For the expression of caged Cas9, 

cotransfections were performed with the PylT expression plasmid (pAG38) in HEK293T cells 

and the cells were incubated for 24 h in the absence or presence of PCK. Western blots 

confirmed PCK-dependent expression of the caged Cas9 mutants (Figure 4.14B). 
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Figure 4.14: Western blot analysis of Cas9 expressions.  

HEK293T cells were transfected with the plasmid expression systems and protein was purified for 

chemiluminescent detection of the C-terminal HA tag. A) Cas9 expressions with the pAG31:Cas9 

K→A mutant plasmids. B) Caged Cas9 expressions with the pAG31:Cas9 K→TAG mutant and 

pAG38 plasmids, incubated in the absence or presence of PCK (2 mM) for 24 h. Western blot 

analysis was performed using HA and GAPDH primary antibodies with a HRP secondary 

antibody for chemiluminescent detection. The Cas9-HA and GAPDH control bands are annotated, 

and a horizontal line indicates a cut site on the transfer membrane for antibody staining. These 

experiments were conducted by Kalyn Brown. 

 

A dual reporter assay based on pIRG
287

 was developed by the Asokan lab, which 

switches from expressing DsRed to expressing EGFP in the presence of functional Cas9 and 

matching gRNAs (Figure 4.15A and B). Two gRNAs (Table 4.7) were designed to target 

sequences upstream and downstream of the DsRed-terminator cassette. Upon cotransfection with 

active Cas9, these gRNAs direct the excision of DsRed, and the reporter plasmid is repaired to 

activate EGFP expression, as successfully demonstrated in HEK293T cells with wild-type (WT) 
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Cas9 (Figure 4.15C and D). It was also verified that the reporter plasmid assay is not responsive 

to UV exposure in the absence of Cas9 (Figure 4.15C). 
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Figure 4.15: Dual reporter CRISPR/Cas9 activity assay.  

A) Depiction of the dual reporter locus. A DsRed gene (red arrow) and an EGFP gene (green 

arrow) are separated by a transcription termination sequence (grey boxes). In the absence of Cas9, 

transcription terminates immediately following DsRed, allowing only DsRed expression. B) When 

functional Cas9 (blue) and gRNAs (orange) are present, the complex mediates excision of the 

DsRed-terminator cassette and NHEJ repair allows expression of EGFP. C) HEK293T cells were 

transfected with the pRG dual reporter, pAG31:Cas9 WT, and gRNA2 expression plasmids. 

DsRed and EGFP fluorescence were imaged (10X magnification) at 48 h. Scale bar indicates 200 

µm. D) Analysis of EGFP expression by imaging cytometry. Error bars represent standard 

deviations from three replicates. 

 

This assay was used in an initial alanine scan of residues K76, K163, K540, K742, and 

K866, showing that four of the Cas9 alanine mutants were still active (Figure 4.16). However, 



 

 204 

K866 was identified as being essential for activity, suggesting it was a potential target for the 

introduction of PCK.  
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Figure 4.16: Cas9 alanine mutant activity scanning. 

The pAG31:Cas9 K→A mutant expression plasmids were transfected into HEK293T cells 

together with the dual reporter system (pRG and gRNA2 plasmids). DsRed and EGFP 

fluorescence were imaged (10X magnification) at 48 h. Scale bar indicates 200 µm. 

 

The function of the caged Cas9 mutants was then tested in the presence and absence of 

UV exposure (365 nm, 2 min) using the dual reporter assay (Figure 4.17). The incorporation of 

PCK at K76, K163, and K866 showed full inhibition of Cas9 activity in the absence of UV 

exposure, while the K742PCK mutant was still functional, similar to wild-type. Additionally, the 

K510PCK mutant showed a low level of undesired background activity in the absence of UV 

exposure. After light-activation, the K163PCK, K510PCK, and K866PCK mutants showed 

successful light-activation of Cas9 as observed through the expression of EGFP, while the 

K76PCK mutant was surprisingly not activated. In contrast to wild-type Cas9, all cells 
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expressing light-activated Cas9 mutants still showed DsRed fluorescence, since the caged Cas9 

activation occurred 24 h after transfection, while the wild-type Cas9 was immediately active 

once expressed. Thus, in the case of light-activated Cas9, DsRed protein that has already been 

expressed persists, with a half-life greater than 4 days.
288
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Figure 4.17: Cas9 PCK mutant activity scanning.  

HEK293T cells were transfected with the caged Cas9 expression system (pAG31:Cas9 K→TAG 

and pAG38) as well as the dual reporter constructs (pRG and gRNAs), then incubated in the 

presence of PCK (2 mM) for 24 h. The cells were kept in the dark or UV irradiated for 2 min and 

imaged (10X magnification) after 48 h. Scale bar indicates 200 μm. 

 

Two lysine sites were successfully identified that are amenable to optically control of 

Cas9 function, presenting two different pathways for the light-activation of CRISPR/Cas9 gene 

editing: (1) K163, which might interact with the gRNA, and (2) K866, which may play a role in 

positioning the nontarget DNA strand (Figure 4.13). The Cas9 K866PCK mutant showed 
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minimal background activity before irradiation and high activity after light exposure for 2 min, 

reaching wild-type Cas9 levels (Figure 4.18A). In order to show spatial control of CRISPR/Cas9 

gene editing in mammalian cells, the activation of K866-caged Cas9 was performed through 

patterned UV irradiation of a layer of HEK293T cells (Figure 4.18B).  
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Figure 4.18: Analysis of K866-caged Cas9 light activation. 

A) HEK293T cells were transfected with WT Cas9 or the K866-caged Cas9 expression system 

and dual reporter constructs as previously described, then incubated in the presence of PCK (2 

mM) for 24 h. UV irradiations were performed on a 365 nm transilluminator for 2 min. Imaging 

was performed 48 h after UV exposure (10X magnification) and EGFP expression was quantified 

by imaging cytometry. Error bars represent standard deviations from three replicates. B) 

HEK293T cells were transfected with the K866-caged Cas9 expression system and dual reporter 

construct then incubated in the presence of PCK (2 mM) for 24 h. Spatial control of CRISPR/Cas9 

gene editing was performed with UV irradiation of a subset of cells through a defined mask. 

Imaging was performed (20X magnification) with tile stitching (2X3) after 48 h. Scale bar 

indicates 200 μm.  

 

A UV irradiation time course was also performed with the WT and K866-caged Cas9 

(Figure 4.19), demonstrating that exposure of >2 min did not further enhance activation. Taken 

together, these experiments successfully demonstrate spatial and temporal control of gene 

function using a site-specifically caged Cas9 that is genetically encoded in mammalian cells, 

allowing for conditional light-activation of CRISPR/Cas9 gene editing. 
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Figure 4.19: Cas9 UV irradiation optimization.  

A) WT Cas9. B) K866-caged Cas9. Expression plasmids were transfected into HEK293T cells 

with the dual reporter system and PCK incorporation constructs, then incubated in the presence of 

PCK (2 mM) for 24 h. The cells were then UV irradiated for 0-10 min and imaged after 48 h 

incubation. The images were counted for EGFP expressing cells. Error bars represent the standard 

deviations of three replicates. 

 

The mechanism of deactivation by the K163PCK and K866PCK mutations was further 

analyzed through plasmid cleavage assays with purified Cas9 (Figure 4.20), showing no DNA 

cleavage or nicking activity in the absence of UV irradiation. The absence of any catalytic 

activity of the caged enzyme suggests that interaction with the gRNA and/or target DNA may be 

inhibited through introduction of PCK, thereby deactivating Cas9 function.  

 

NT    WT   K163PCK K866PCK
‒ ‒ ‒ + ‒ +    2 min UV

supercoiled

nicked

linear

 

Figure 4.20: Cas9 DNA cleavage assays. 

The Cas9 proteins were expressed in HEK293T cells and purified from lysate using the HA-tag. 

Nontreated (NT) and wild-type (WT) Cas9 purifications are included. The PCK-caged Cas9 

proteins were UV irradiated for 2 min prior to purification. The Cas9 purifications were then 

incubated with the dual reporter plasmid and synthetically transcribed EGFP gRNA overnight at 
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37 °C. The cleavage assay products were analyzed on an agarose gel. Nicked, linear, and 

supercoiled plasmid populations are indicated. 

 

Silencing of an endogenous gene was then demonstrated through light-activated gene 

editing using the optically activated Cas9. The transmembrane transferrin receptor CD71 (also 

known as TfR1), associated with leukemia and lymphoma,
289

 was selected as a target. Multiple 

gRNAs for the 5′UTR
283

 and exons within the coding region of CD71 were designed in order to 

inhibit protein function via disruption of upstream regulatory elements or disruption of the amino 

acid sequence, and subsequently cloned into the PylT expression plasmid. First, CD71 

knockdown by wild-type CRISPR/Cas9 was confirmed through quantification via both qRT-

PCR and phenotype analysis with fluorescent antibody staining of HeLa cells (Figure 4.21). 

Indeed, repression of CD71 mRNA with the 5′UTR targeting gRNA was observed (∼70%) while 

the exon-targeting gRNAs showed no effect on mRNA levels. In addition, reduced levels of 

CD71 protein (∼75%) were observed for all gRNAs, relative to nontreated cells. 
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Figure 4.21: Silencing of CD71 expression with wild-type Cas9.  

HeLa cells were transfected with the pAG31:Cas9 WT and pAG38:CD71 gRNA expression 

constructs then incubated for 48 h. A) Quantitative real-time PCR analysis of CD71 mRNA, 

normalized to the GAPDH control gene. B) Fluorescence detection of cell-surface CD71 protein. 

Data are shown relative to nontreated (NT) cells, and error bars represent the standard deviations 

of three replicates. 

 

Next, CD71 suppression was performed with the K866-caged Cas9 in the absence and 

presence of light-activation. Quantification of CD71 mRNA revealed a reduction by 

approximately 60% only in the case of the gRNA targeting the CD71 5′UTR (Figure 4.22A). 

This is not surprising, as the introduction of mutations into the coding region of the CD71 gene 

should not affect transcription. Light-activation of Cas9 function reduced the presence of CD71 

protein on the cell surface by approximately 50% (Figure 4.22B), demonstrating the ability to 

optically control the silencing of endogenous genes with a caged CRISPR/Cas9 system. The 

reduced repression observed for the light-activated K866-caged Cas9 compared to wild-type 
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Cas9 (10–25%) may require further optimization for endogenous gene editing applications, 

although the frequency of indels has not been determined, limiting quantitative assessment on the 

genomic level. Thus, the optically activated CRISPR/Cas9 system can be applied to the control 

of endogenous genes on the genomic level. 
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Figure 4.22: Light-activated CRISPR/Cas9 silencing of CD71 in HeLa cells.  

HeLa cells were transfected with the pAG31:Cas9K866TAG and pAG38:CD71 gRNA expression 

constructs then incubated in the presence of PCK (2 mM) for 24 h. The cells were then UV 

irradiated for 2 min and analyzed after 48 h. A) Quantitative real-time PCR analysis of CD71 

mRNA, normalized to the GAPDH control gene. B) Fluorescence detection of cell-surface CD71 

protein. Data are shown relative to nonirradiated cells for each condition, and error bars represent 

standard deviations from three replicates. 

 

In summary, a genetically encoded light-activated CRISPR/Cas9 system was successfully 

developed for conditional control of gene editing and gene expression. Through both alanine and 

UAA scanning, lysine residues that are important for Cas9 function were identified. Of these 
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sites, K866 was shown to be essential for activity and was utilized in the generation of a light-

activated CRISPR/Cas9 system through incorporation of a photocaged lysine at that position. It 

was shown that the genetically encoded caged Cas9 could be applied to gene editing—for 

activation and deactivation—of both fluorescent reporters and endogenous genes in human cells. 

Importantly, the caged enzyme was completely inactive before UV illumination, and its activity 

could be restored up to wild-type levels through a brief 120 sec exposure to 365 nm light. Many 

cell types and model organisms have been modified by Cas9-mediated gene 

editing,
290

 demonstrating the broad applicability of the CRISPR/Cas9 system. UAA mutagenesis 

based on the pyrrolysine system is expanding into model organisms, such as C. elegans and D. 

melanogaster,
291

 providing future opportunities for optical control of CRISPR/Cas9 function 

beyond cell culture. Light-activation of CRISPR/Cas9 may allow for the study of gene function 

with high precision, and may reduce toxicity from off-target mutations
292

 by restricting the 

function of Cas9 to certain locations or time points. 

4.2.1 Methods and Materials 

 Plasmid Constructs. See Section 5.3 for specific information on molecular biology 

techniques. The CMV-driven Cas9 gene was PCR amplified from the hCas9 expression vector
280

 

(Addgene 41815) with primers shown in Table 4.4 to introduce both NheI and MfeI restriction 

sites as well as an HA tag on the C-terminus following protocol 5.3.1. The ~4.9 kB Cas9 gene 

insert was cloned between the NheI and MfeI restriction sites of the pAG31 PCKRS expression 

plasmid
114

 following protocols 5.3.3 and 5.3.4. Alanine mutations and amber stop codons were 

introduced into Cas9 at five sites through site-directed mutagenesis with primers shown in Table 

4.5 and Table 4.6 following protocol 5.3.2. The U6-driven CD71 gRNAs (Table 4.7) were also 
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constructed from gBlocks through PCR amplification with primers to introduce Bsu36I and PacI 

restriction sites following protocol 5.3.1, and then cloned between the Bsu36I and PacI 

restriction sites of the pAG38 PylT expression plasmid
114

 following protocols 5.3.3 and 5.3.4. 

Exon-based gRNA sequences were identified from the human CD71 mRNA coding regions 

(NIH Gene ID: 7037) for target sites containing downstream PAM sequences and minimal 

predicted off-target effects against the human genome (hg19) using the Optimized CRISPR 

Design Tool from the Zhang lab, with a minimum quality score cutoff of 92. Plasmid maps are 

shown in Figure 4.23. The pRG dual reporter and gRNA2 plasmids were generated by Erin 

Borchardt in the Asokan lab. 

 

Table 4.4: Sequences for gene insertion of Cas9 into pAG31.  

Restriction sites bolded and HA tag underlined. 

Strand Sequence (5' → 3')  

hCas9 

Nhe1 Forward  
TTAAGCTAGCACCATGGACAAGAAGT  

hCas9-HA 

Mfe1 Reverse  

CGGTGAATTCTTAAGCGTAATCTGGAAC

ATCGTATGGGTACACCTTCCTCTTCTTC  

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/gene/7037
http://crispr.mit.edu/
http://crispr.mit.edu/
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Table 4.5: Sequences of primers used in the development of K→Ala Cas9 mutants.  

Mutations introduced capitalized and bolded. 

Primer Sequence (5' → 3')  

K76AlaForward gcagaGCgaatcggatctgctacctgcaggagatc  

K76ala Reverse cgattcGCtctgcgggtatatctgcgccgtgctgt  

K163Ala Forward  tatgatcGCatttcggggacacttcctcatcgagggg  

K163Ala Reverse  cccgaaatGCgatcatatgcgccagcgcgagatagat  

K510Ala Forward  cttcctGCacactctctgctgtacgagtacttcacagtttataacgagctcaccaa  

K510Ala Reverse  agagtgtGCaggaagcaccttttcgttaggcagatttttatcaaagttagtcatcc  

K742Ala Forward  accgttGCggtcgtggatgaactcgtcaaagtaa  

K742Ala Reverse  cgaccGCaacggtctgcagtattccctttttgat  

K866Ala Forward  agagggGCgagtgataacgtcccctcagaag  

K866Ala Reverse  tcactcGCccctctatttttatcggatcttgtcaacac  

 

Table 4.6: Sequences of primers used in the development of K→TAG Cas9 mutants. 

Mutations introduced capitalized and bolded. 

Primer Sequence (5' → 3')  

K76TAG Forward cgcagaTagaatcggatctgctacctgcaggagatc  

K76TAG Reverse ccgattctAtctgcgggtatatctgcgccgtgctgt   

K163TAG 

Forward  

tatgatcTaGtttcggggacacttcctcatcgagggg  

K163TAG Reverse  cccgaaaCtAgatcatatgcgccagcgcgagatagat  

K510TAG 

Forward  

cttcctTaGcactctctgctgtacgagtacttcacagtttataacgagctcaccaa  

K510TAG Reverse  agagtgCtAaggaagcaccttttcgttaggcagatttttatcaaagttagtcatcc  

K742TAG 

Forward  

accgttTaggtcgtggatgaactcgtcaaagtaa  

K742TAG Reverse  cgacctAaacggtctgcagtattccctttttgat  

K866TAG 

Forward  

agagggTagagtgataacgtcccctcagaag  

K866TAG Reverse  tcactctAccctctatttttatcggatcttgtcaacac  
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Table 4.7: Sequences of gRNA constructs.  

Primer binding sites capitalized, restriction sites bolded, poly-T transcription terminator sequences 

underlined, and gRNAs in blue (guide target sequences capitalized and underlined). 

Strand Sequence (5' → 3')  

DsRed gRNA 
U6:TCGACTCTAGAGGATCCACgttttagagctagaaatagcaagttaaaataaggctagtccgttat

caacttgaaaaagtggcaccgagtcggtgcttttttttt 

EGFP gRNA 
U6:TAGCTAGTCTAGGTCGATGCgttttagagctagaaatagcaagttaaaataaggctagtccgtt

atcaacttgaaaaagtggcaccgagtcggtgcttttttttt 

Bsu361 Forward atatcctaaggACTGGTCAACTGGCTAATCG 

Pac1 Reverse atatttaattaaCGATACGATGAGCTAGGCAT 

CD71 gRNA  

5’UTR 

U6:GGACGCGCTAGTGTGAGTGCgttttagagctagaaatagcaagttaaaataaggctagtccgtt

atcaacttgaaaaagtggcaccgagtcggtgctttttttttATGCCTAGCTCATCGTATCG 

CD71 gRNA  

Exon 1 

U6:GTCATATACCCGGTTCAGCCgttttagagctagaaatagcaagttaaaataaggctagtccgtt

atcaacttgaaaaagtggcaccgagtcggtgctttttttttATGCCTAGCTCATCGTATCG 

CD71 gRNA  

Exon 2 

U6:CTGCAGCACGTCGCTTATATgttttagagctagaaatagcaagttaaaataaggctagtccgtta

tcaacttgaaaaagtggcaccgagtcggtgctttttttttATGCCTAGCTCATCGTATCG 

CD71 gRNA  

Exon 4 

U6:GGGTTATGTGGCGTATAGTAgttttagagctagaaatagcaagttaaaataaggctagtccgtt

atcaacttgaaaaagtggcaccgagtcggtgctttttttttATGCCTAGCTCATCGTATCG 

U6-promoter 

ACTGGTCAACTGGCTAATCGtgtacaaaaaagcaggctttaaaggaaccaattcagtcgactggat

ccggtaccaaggtcgggcaggaagagggcctatttcccatgattccttcatatttgcatatacgatacaaggctgttaga

gagataattagaattaatttgactgtaaacacaaagatattagtacaaaatacgtgacgtagaaagtaataatttcttgggt

agtttgcagttttaaaattatgttttaaaatggactatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatatat

cttgtggaaaggacgaaacaccg  
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Figure 4.23: Plasmid constructs for light-activated CRISPR/Cas9. 

A) Expression of caged Cas9. B) Analysis of activity with specific reporter genes. C) CD71 gRNA 

construct. 

 

Western Blots. See Section 5.4 for specific information on cell culture techniques. 

HEK293T cells were passaged into 6-well plates and grown to ∼70% confluence within 24 h 

following protocol 5.4.1. Transfections were performed with 2 μg of each plasmid using 

lipofectamine for 4 h following protocol 5.4.2. For the expression of caged Cas9, the cellular 

growth media was supplemented with PCK (2 mM) for 48 h. Protein isolations were performed 

following protocol 5.4.8. Western blots were performed following protocol 5.4.9 using a mouse-

anti-HA primary antibody and a mouse-anti-GADPH control (Santa Cruz Biotechnology). The 

primary antibodies were detected with a goat-anti-mouse-HRP secondary antibody for 

chemiluminescent analysis with the VisiGlo kit (Amresco). 
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Optical Activation of Reporter Gene Editing.  See Section 5.4 for specific information 

on cell culture techniques. HEK293T cells were passaged into 96-well plates and grown to 

∼70% confluence within 24 h following protocol 5.4.1. Transfections were performed with 200 

ng of each plasmid using bPEI overnight following protocol 5.4.2. The transfection mixtures 

were supplemented with PCK (2 mM) and removed after overnight incubations, followed by 

exposure to 365 nm using a UV transilluminator (25 W) following protocol 5.4.3. Fluorescent 

imaging of the dual reporter was performed after 48 h incubations on a Zeiss Observer Z1 

microscope (10X magnification) following protocol 5.4.5. Fluorescent cell counting was 

performed in ImageJ software (NIH - settings: threshold 5-10%, size >200 pixels
2
, and 

circularity 0-1). Error bars represent the standard deviations of three replicates. For the spatial 

control experiments, UV irradiations were performed through a tin foil mask to only expose a 

subset of cells to 365 nm light following protocol 5.4.3. Microscopy imaging was then 

performed on a Nikon A1 confocal microscope (20X magnification) in a tiled grid (10x10) and 

stitched using Elements software. 

DNA Cleavage Assays. See Section 5.4 for specific information on cell culture 

techniques. HEK293T cells were passaged into 6-well plates and grown to ∼70% confluence 

within 24 h following protocol 5.4.1. Transfections were performed with 2 μg of each plasmid 

using lipofectamine for 4 h following protocol 5.4.2. For the expression of caged Cas9, the 

cellular growth media was supplemented with PCK (2 mM) for 48 h. Protein isolations and HA-

tag immunoprecipitation were performed on total protein lysate (~200 μL) following protocol 

5.4.8. Synthetic EGFP gRNA was produced from a PCR template for in vitro T7RNAp 

transcription. The single stranded template (Table 4.8) was PCR amplified with T7 forward and 

reverse primers and used in 20 μL transcription reactions with the MEGAscript T7 transcription 
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kit (Life Technologies) using 500-1000 ng of PCR template according to the manufacturer’s 

protocol. The DNA cleavage assays were performed by incubating 40 μL of the Cas9 HA-bead 

immobilized protein purifications, 2 μL of synthetic EGFP gRNA purification (~6000 ng total, 

pre-annealed by cooling from 65 to 12 °C over 10 min in TAE/Mg
2+

 buffer [0.04 M tris-acetate, 

1 mM EDTA, and 12.5 mM magnesium acetate]), and 200 ng of the dual reporter plasmid in 

Cas9 activity buffer
278

 [20mM HEPES, 150 mM KCl, 0.5 mM DTT, 0.1 mM EDTA, 10 mM 

MgCl2, pH 7.4] shaking overnight at 37 °C. The reaction products were then denatured at 72 °C 

for 20 min, ran on a 0.8% agarose gel (200V, 1 h), and stained with ethidium bromide. 

 

Table 4.8: Sequences of templates and primers used for synthetic gRNA transcription. 

T7RNAp promoter sequence capitalized. 

Strand Sequence (5' → 3')  

EGFP gRNA 

template 

TAATACGACTCACTATAGGGAGAtagctagtctaggtcgatgcgttttagagct

agaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgctt  

T7 Forward TAATACGACTCACTATAGGG 

T7 Reverse aaagcaccgactcggtgcca 

 

 Photochemical Regulation of Endogenous CD71. See Section 5.4 for specific 

information on cell culture techniques. HeLa cells were passaged into 96-well plates and grown 

to ∼70% confluence within 24 h following protocol 5.4.1. Transfections were performed with 

200 ng of each plasmid using lipofectamine for 4 h following protocol 5.4.2. The cellular growth 

media was supplemented with PCK (2 mM) for 24 h. The PCK containing media was then 

removed after the overnight incubation, followed by exposure to 365 nm using a UV 

transilluminator (25 W) following protocol 5.4.3. After 48 h incubation, both quantification of 

CD71 mRNA and fluorescent antibody detection of CD71 protein were performed. 

Quantification of CD71 mRNA was performed by qRT-PCR, in which total RNA was isolated 
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from cells following protocol 5.4.6. Reverse transcription and qRT-PCR was performed with the 

primer sets shown in Table 4.9 following protocol 5.4.7. The threshold cycles (Ct) of each 

sample were normalized to the GAPDH control gene, and set relative to either nontreated or 

nonirradiated cells. Protein quantification of cell-surface expressed CD71 was performed with 

anti-human CD71 APC fluorescent antibody (eBioscience) after the media was removed and a 

200 μL 37 °C PBS wash was performed. The antibody was added (5 μL of 0.06 μg antibody in 

50 μL of PBS) for 1 h at 37 °C. The cells were then washed three times in 200 μL 37 °C PBS and 

analyzed on a Tecan M1000 plate reader (ex: 635/5; em: 660/10).  

 

Table 4.9: Sequences of qRT-PCR primers used. 

Primer Sequence (5' → 3')  

GAPDH forward  TGCACCACCAACTGCTTAGC  

GAPDH reverse  GGCATGGACTGTGGTCATGAG  

CD71 forward  AAAATCCGGTGTAGGCACAG  

CD71 reverse  GCACTCCAACTGGCAAAGAT  

 

4.3 Expression of Caged Proteins in Live Zebrafish 

In order to express caged proteins in a live animal, initial attempts were made to transition the 

technology for the pyrrolysyl tRNA/tRNA synthetase pair (PylT/PylRS) system of UAA 

incorporation to zebrafish embryos. Previously, UAA mutagenesis technology has been 

demonstrated in both C. elegans and D. melanogaster through utilization of orthogonal 

synthetase/tRNA pairs.
291, 293

 However, this will be the first example of an expanded genetic 

code in a live vertebrate animal, which is a major advancement in the field of UAA 
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incorporation. The initial goals of this project focused on the incorporation of light-activated 

amino acids to enable precise optical control over protein function with unprecedented spatial 

and temporal resolution in zebrafish.  

To rapidly assay for incorporation of the UAAs into an exogenous gene, the mCherry-

TAG-EGFP fusion reporter containing a TAG amber codon inserted between the two fluorescent 

proteins
294

 was used for microinjection into zebrafish embryos (Figure 4.24). The reporter 

mRNA was injected into 1-cell stage embryos together with mRNA encoding the synthetase 

(PylRS) and its cognate tRNA (PylT). In the absence of the UAA incorporation machinery, only 

expression of mCherry should be detected. However, in the presence of the PylRS/PylT pair and 

the amino acid of interest, the TAG codon will be recognized for site-specific incorporation 

allowing for EGFP to be translated.  

 

noninjected

(NI)

reporter
injected

reporter

PylRS/PylT
amino acid

injected

mCherry EGFPTAG

no fluorescence

red fluorescence

red and green 

fluorescence  

Figure 4.24: Schematic for analysis of UAA incorporation in zebrafish.  

The mCherry-TAG-EGFP reporter (left) contains a TAG codon between mCherry and EGFP gene 

constructs. The mRNA is microinjected into zebrafish embryos at the 1-cell stage, and the 

developed embryos are imaged at 24 h for fluorescence (right). In the absence of the reporter 

mRNA, there is no fluorescence observed (top). With the reporter mRNA alone, only mCherry is 

expressed (middle). When the reporter mRNA, synthetase mRNA, and PylT are injected, both 

mCherry and EGFP are expressed with the amino acid present (bottom).  
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The coding sequences of both the fluorescent reporter and PylRS mutants of interest were 

cloned into vectors for in vitro transcription of the mRNAs (generated by Michael Tsang). Each 

component of the incorporation machinery was then tested individually for the effects of 

microinjection on mortality rates. The reporter mRNA and synthetase mRNA injections were 

tolerated at 100 pg, showing only a ~2.5-fold increases in mortality (Figure 4.25). 
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Figure 4.25: mRNA injection toxicity in zebrafish embryos.  

Embryos were injected with the mCherry-TAG-EGFP reporter and PylRS mRNAs (100 pg) at the 

1-cell stage. Mortality rates were calculated at 24 h. N  = 26–29. 

 

When the PylT was expressed from a U6 promoter via plasmid injection, near total 

toxicity was observed at 100 pg (Figure 4.26). However, when the PylT was injected as a 

synthetic oligonucleotide, injections up to 5 ng were tolerated. The PylT sequence contains a 3’ 

CAA overhang, which is the site of amino acid attachment that is normally added by endogenous 

RNA polymerases in cells,
295

 and typically is not included in the tRNA sequence on plasmid 

expression vectors.
296

 Since the synthetic PylT will not be transcribed, the addition of a synthetic 

3’ CCA will skip processing from endogenous RNA polymerases in the zebrafish and enable a 

more direct path to aminoacylation by the synthetase. All subsequent experiments were 

performed with the synthetic PylT. 
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Figure 4.26: PylT injection toxicity in zebrafish embryos.  

Embryos were injected with the PylT as either a DNA plasmid expression construct (100 pg) or 

synthetic oligonucleotide (200-5400 pg) at the 1-cell stage. Mortality rates were calculated at 24 h. 

N = 38-70. 

 

The function of the reporter mRNA was then validated through injection and imaging of 

mCherry in zebrafish embryos after 24 h. The mCherry expression was observed in ~80% of 

embryos injected with the reporter mRNA, and an increased amount of mRNA did not increase 

the number of mCherry positive embryos (Figure 4.27A). The mCherry expression was observed 

at high intensity throughout the embryo (Figure 4.27B). Although yolk sac auto fluorescence was 

observed, no distinct EGFP expression was observed in any of the injected embryos since the 

TAG codon was read as a stop codon.  
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Figure 4.27: mCherry expression from reporter mRNA.  

Embryos were injected with the reporter mRNA (100 or 300 pg) at the 1-cell stage. A) Frequency 

of mCherry positive embryos. B)  Embryo micrographs (30X) of mCherry (top) and EGFP 

(bottom) fluorescence at 24 h from injection of mCherry-TAG-EGFP mRNA. N = 25-29. 

 

To test the incorporation of amino acids with the PylRS/PylT pair, a “sloppy” synthetase 

mutant (generated by Jihe Liu) that incorporates phenylalanine (Phe) at the TAG codon was used 

for microinjection (PheRS, containing N311A and C313K mutations).
297

 Mortality studies of Phe 

supplementation (up to 2 mM) through injection into the yolk were performed, and only minor 

increases in mortality were observed (Figure 4.28A). Previous experiments without Phe injection 

did not yield robust results. The incorporation of Phe was then tested with injection of the 

reporter mRNA, PheRS mRNA, PylT synthetic RNA, and yolk injection of the amino acid. Since 

the optimal amount of each component for successful amino acid incorporation was not known, 

the embryos were injected with the RNA mix at a 1:2:20 ratio (reporter:PheRS:PylT) based on 

the toxicity studies, which was followed by Phe yolk injection of 1 mM. After 24 h, the fish were 

imaged and counted for the expression of the fluorescent reporter genes (Figure 4.28B). The 

reporter mRNA produced mCherry expression in ~70% of the embryos analyzed, and EGFP 

expression was observed in ~40% of the mCherry positive embryos. These findings confirmed 

the site-specific incorporation of Phe at the TAG codon using the synthetase/tRNA pair through 
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EGFP expression (Figure 4.28C). Since the reporter alone did not exhibit any EGFP 

fluorescence, these early findings indicate that the PylRS/PylT system can be applied to live 

zebrafish embryos to potentially expand the genetic code and incorporate new amino acids in 

response to the TAG amber codon. However, continued optimization of site-specific amino acid 

incorporation needs to be performed to find optimal conditions (i.e., increase the amount of 

EGFP expressed) that enhance the efficiency of the system.  
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Figure 4.28: Incorporation of Phe in response to the TAG codon.  

A) Phe was direct injected into the yolk of zebrafish embryos at 1-2 mM. Mortality rates were 

calculated at 24 h. B) Embryos were injected with the reporter mRNA, PheRS mRNA, and PylT 

synthetic RNA in the blastomrere at the 1-cell stage. Yolk injections of Phe (1 mM) were then 

performed. Fluorescent counts were determined at 24 h, and error bars represent standard 

deviations from three replicates. C) Embryo micrographs (60X) of mCherry (left) and EGFP 

(right) fluorescence at 24 h. N = 36-55. 
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While the Phe incorporation results were very encouraging, the system is based on a 

common amino acid found endogenously in the organism, and the incorporation of a truly UAA 

still needs to be demonstrated. Therefore, the injection of PCK into embryonic yolks was tested. 

Initial examination of PCK showed that yolk injections of the amino acid produced undesirably 

high rates of mortality, even at concentrations as low as 0.25 mM (Figure 4.29A). Efforts to 

reduce the toxicity of the synthetic amino acid solution, including pH balancing in Tris buffer, 

which increased the pH of the PCK solution from ~3 (acidic) to ~7 (neutral), proved to be 

unsuccessful. While the project was initially designed for the incorporation of PCK, the toxicity 

of the amino acid in this particular instance was determined to be too high to move forward. 

Thus, the toxicity of a coumarin-based caged analogue of lysine (HCK)
115

 was tested, which 

showed greatly reduced toxicity compared to PCK (Figure 4.29B). These results demonstrated 

that the amino acid sensitivity of zebrafish embryos should always be examined prior to 

developing amino acid-specific incorporation systems. 
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Figure 4.29: Toxicity of photocaged amino acids.  

Caged lysine analogues were direct injected into the yolk of zebrafish embryos at the 1-cell stage, 

and mortality rates were calculated at 24 h. A) PCK (TFA salt) was diluted in Tris buffer pH 7.4 

and water. B) HCK (TFA salt) was diluted into DMSO. The chemical structures of the amino 

acids are shown to the right, with the photolabile moieties indicated in red. N = 26-32. 

 

With the initial studies on the PylT and amino acid toxicity completed, as well as 

successful demonstrations of Phe incorporation, future work includes the encoding of HCK and 

downstream expression of caged proteins. Once the activity of the PylRS/PylT pair for UAA 

incorporation in zebrafish has been confirmed through RNA injection, transgenic lines will be 

generated for caged amino acid incorporation and the expression of caged proteins. This will be 

the first vertebrate species with an expanded genetic code, and the precise spatiotemporal control 

of protein function will have a transformative effect on the entire zebrafish field. 



 

 226 

4.3.1 Methods and Materials 

 Plasmid Constructs and RNA Preparation. The mCherry-TAG-EGFP reporter and 

pyrrolysyl synthetase (wild-type and mutant versions) were cloned into the pCS2+ plasmid for in 

vitro transcription of the mRNA by the Michael Tsang. The synthetic PylT was ordered from 

IDT with a 3’ CCA overhang: rGrGrArArArCrCrUrGrArUrCrArUrGrUrArGrArUrCrGrArArC 

rGrGrArCrUrCrUrArArArUrCrCrGrUrUrCrArGrCrCrGrGrGrUrUrArGrArUrUrCrCrCrGrGrGr

GrUrUrUrCrCrGrCrCrA. The PylT oligo was resuspended to 100 μM in DEPC-treated water. 

Zebrafish Maintenance and Injections. See Section 5.5 for specific information on 

zebrafish techniques. Embryos were microinjected into the blastomere at the 1-cell stage with the 

reporter mRNA, synthetase mRNAs, PylT expression vector (pAG38), and PylT synthetic RNA 

diluted 1:1 in phenol red following protocol 5.5.2. For Phe incorporation, a 1:2:20 ratio of RNAs 

(100 pg reporter mRNA, 200 pg synthetase mRNA (PheRS), and 2000 pg tRNA (PylT)) was 

injected in 2.2 nL. Yolk injections of amino acid solutions were performed with the final 

concentrations based on an approximate yolk volume of 110 nL.
298

 Embryos were incubated in 

the dark at 28 °C for 24 h, then counted and imaged following protocol 5.5.3. mCherry scores 

were calculated with embryo counts of [(mCherry positive/alive)·100%]. EGFP scores were 

calculated with embryo counts of [(EGFP/mCherry)·100%]. For the fluorescent counts, the data 

from three independent experiments were averaged and standard deviations were calculated. 
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5.0  Expanded Methods and Materials 

5.1 Sequences of Synthesized Oligonucleotides  

Table 5.1: All oligonucleotides synthesized.  
Nucleobase sequences are noted with capital letters (A = adenine, C = cytosine, G = guanine, T = 

thymine, and U = uracil). A letter prior to the base indicates sugar modification (m = 2’OMe). An 

asterisk (*) indicates phosphorothioate linkages between bases. Caged bases have been underlined 

and colored red, while cleavable linkers are shown with a triangle or box (DEACM = ▽, ONB = 

☐). Terminal modifications are indicated (AmMO = amino modified, Uaq = 2′-

anthraquinoylamido-2′-deoxyuridine cap). 

Strand Sequence (5' → 3') Application 

NF-kB  

HP decoy 
TGGGGACTTTCCAGTTTCTGGAAAGTCCCCA  Hairpin decoy 

DsRed  

HP decoy 

GCGCGCGCAAACGCGCGCTACAACTCGGTGATGACGTTCTCG

GAGGAGCGGCGCGCGCAAAGCGCGCG   
Hairpin decoy 

Eg5  

HP decoy 

GCGCGCGAAACGCGCGCTACCCGAGCTCTCTTATCAACAGCG

GCGCGCGCAAAGCGCGCG  
Hairpin decoy 

CDTFO  

uncaged 

GCGCGCGAAACGCGCGCTACGTGGGTGGGGGTGGGGGGTAT

CGCGCGCAAAGCGCGCGATACCCCCCACCCCCACCCACGTA   

Deactivated Triplex 

forming oligo 

CDTFO  

2C caged 

GCGCGCGAAACGCGCGCTACGTGGGTGGGGGTGGGGGGTAT

CGCGCGCAAAGCGCGCGATACCCCCCACCCCCACCCACGTA 

Deactivated Triplex 

forming oligo, caged 

CDTFO  

4C caged 

GCGCGCGAAACGCGCGCTACGTGGGTGGGGGTGGGGGGTAT

CGCGCGCAAAGCGCGCGATACCCCCCACCCCCACCCACGTA 

Deactivated Triplex 

forming oligo, caged 

CDTFO  

5C caged 

GCGCGCGAAACGCGCGCTACGTGGGTGGGGGTGGGGGGTAT

CGCGCGCAAAGCGCGCGATACCCCCCACCCCCACCCACGTA 

Deactivated Triplex 

forming oligo, caged 

miR-21 

antagomir 

mA*mU*mC*mA*mA*mC*mA*mU*mC*mA*mG*mU*mC*mU*m

G*mA*mU*mA*mA*mG*mC*mU*mA 

PS-2'OMe miRNA 

antagomir 

miR-21  

2U caged 

antagomir 

mA*mU*mC*mA*mA*mC*mA*mU*mC*mA*mG*mU*mC*mU*m

G*mA*mU*mA*mA*mG*mC*mU*mA 

PS-2'OMe miRNA 

antagomir, caged 
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Strand Sequence (5' → 3') Application 

miR-21  

4U caged 

antagomir 

mA*mU*mC*mA*mA*mC*mA*mU*mC*mA*mG*mU*mC*mU*m

G*mA*mU*mA*mA*mG*mC*mU*mA 

PS-2'OMe miRNA 

antagomir, caged 

miR-22 

antagomir 

mA*mA*mC*mA*mG*mU*mU*mC*mU*mU*mC*mA*mA*mC*m

U*mG*mG*mC*mA*mG*mC*mU*mU 

PS-2'OMe miRNA 

antagomir (Nguyen 

collaboration) 

miR-22  

3U caged 

antagomir 

mA*mA*mC*mA*mG*mU*mU*mC*mU*mU*mC*mA*mA*mC*m

U*mG*mG*mC*mA*mG*mC*mU*mU 

PS-2'OMe miRNA 

antagomir, caged 

(Nguyen 

collaboration) 

miR-122 

antagomir 

mA*mC*mA*mA*mA*mC*mA*mC*mC*mA*mU*mU*mG*mU*m

C*mA*mC*mA*mC*mU*mC*mC*mA 

PS-2'OMe miRNA 

antagomir 

miR-122  

3dT antagomir 

mA*mC*mA*mA*mA*mC*mA*mC*mC*mA*dTmU*mG*dT*mC*

mA*mC*mA*mC*dT*mC*mC*mA 

PS-2'OMe miRNA 

antagomir mixmer 

miR-122  

3U caged  

antagomir 

mA*mC*mA*mA*mA*mC*mA*mC*mC*mA*mU*mU*mG*mU*m

C*mA*mC*mA*mC*mU*mC*mC*mA 

PS-2'OMe miRNA 

antagomir, caged 

miR-124 

antagomir 

mA*mG*mG*mC*mA*mU*mU*mC*mA*mC*mC*mG*mC*mG*m

U*mG*mC*mC*mU*mU*mA 

PS-2'OMe miRNA 

antagomir (Nguyen 

collaboration) 

miR-124  

3U caged 

antagomir 

mA*mG*mG*mC*mA*mU*mU*mC*mA*mC*mC*mG*mC*mG*m

U*mG*mC*mC*mU*mU*mA 

PS-2'OMe miRNA 

antagomir, caged 

(Nguyen 

collaboration) 

miR-134 

antagomir 

mC*mC*mC*mC*mU*mC*mU*mG*mG*mU*mC*mA*mA*mC*mC

*mA*mG*mU*mC*mA*mC*mA 

PS-2'OMe miRNA 

antagomir (Schratt 

collaboration) 

miR-134  

3U caged 

antagomir 

mC*mC*mC*mC*mU*mC*mU*mG*mG*mU*mC*mA*mA*mC*m

C*mA*mG*mU*mC*mA*mC*mA 

PS-2'OMe miRNA 

antagomir, caged 

(Shratt collaboration) 

miR-221 

antagomir  

(full) 

mG*mA*mA*mA*mC*mC*mC*mA*mG*mC*mA*mG*mA*mC*m

A*mA*mU*mG*mU*mA*mG*mC*mU 

PS-2'OMe miRNA 

antagomir 

miR-221 

antagomir  

(18 mer) 

mC*mC*mA*mG*mC*mA*mG*mA*mC*mA*mA*mU*mG*mU*m

A*mG*mC*mU 

5' truncated miR-221 

antagomir 

miR-221 

antagomir  

(13 mer) 

mA*mG*mA*mC*mA*mA*mU*mG*mU*mA*mG*mC*mU 
5' truncated miR-221 

antagomir 

miR-221 

antagomir  

(full) 3'Uaq 

mG*mA*mA*mA*mC*mC*mC*mA*mG*mC*mA*mG*mA*mC*m

A*mA*mU*mG*mU*mA*mG*mC*Uaq 

PS-2'OMe miRNA 

antagomir, 3'Uaq 

miR-221 

antagomir 

(18 mer) 3'Uaq 

mC*mC*mA*mG*mC*mA*mG*mA*mC*mA*mA*mU*mG*mU*m

A*mG*mC*Uaq 

5' truncated miR-221 

antagomir, 3'Uaq 

miR-221 

antagomir  

(13 mer) 3'Uaq 

mA*mG*mA*mC*mA*mA*mU*mG*mU*mA*mG*mC*Uaq 
5' truncated miR-221 

antagomir, 3'Uaq 
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Strand Sequence (5' → 3') Application 

Chordin 

antisense (PO) 

mAmUmCmCmAmCmAmGmCmAmGmCmCmCmCmUmCmCmAm

UmCmAmUmCmC   

2'OMe zebrafish 

antisense agent 

(Yoder collaboration) 

Chordin 

antisense (PS) 

mA*mU*mC*mC*mA*mC*mA*mG*mC*mA*mG*mC*mC*mC*mC

*mU*mC*mC*mA*mU*mC*mA*mU*mC*mC   

PS-2'OMe zebrafish 

antisense agent 

(Yoder collaboration) 

Chordin 

antisense (PS) 

mA*mU*mC*mC*mA*mC*mA*mG*mC*mA*mG*mC*mC*mC*m

C*mU*mC*mC*mA*mU*mC*mA*mU*mC*mC   

PS-2'OMe zebrafish 

antisense agent, 

caged (Yoder 

collaboration) 

Pitx2 antisense 
mGmGmUmAmCmAmGmUmAmCmAmGmUmAmGmGmCmUmCm

AmCmAmGmAmCmA  

2'OMe Xenopus 

antisense agent 

(Yoder collaboration) 

Jnk1 antisense 
mUmGmCmUmGmUmCmAmCmGmCmUmUmGmCmUmUmCmGm

GmCmUmCmAmUmA  

2'OMe Xenopus 

antisense agent 

(Yoder collaboration) 

Wnt11 

antisense 

mCmCmAmGmUmGmAmCmGmGmGmUmCmGmGmAmGmCmCm

AmUmUmGmGmUmA  

2'OMe Xenopus 

antisense agent 

(Yoder collaboration) 

Renilla luc 

antisense  

5'Amino mod 

AmMOmC*mG*mU*mU*mU*mC*mC*mU*mU*mU*mG*mU*mU*

mC*mU*mG*mG*mA* 

PS-2'OMe antisense, 

5'Amino (Chakrabarti 

collaboration) 

Firefly luc 

antisense 

5 'amino mod 

AmMOmU*mU*mC*mU*mU*mU 

mA*mU*mG*mU*mU*mU*mU*mU*mG*mG*mC*mG* 

PS-2'OMe antisense, 

5'Amino (Chakrabarti 

collaboration) 

GFP  

antisense  

5' amino mod 

AmMOmU*mA*mG*mU*mU*mG*mA*mA*mC*mG*mC*mU*mU*

mC*mC*mA*mU*mC* 

PS-2'OMe antisense, 

5'Amino (Chakrabarti 

collaboration) 

Renilla luc 

antisense  

3' amino mod 

mC*mG*mU*mU*mU*mC*mC*mU*mU*mU*mG*mU*mU*mC*m

U*mG*mG*mA*AmMO 

PS-2'OMe antisense, 

3'Amino (Chakrabarti 

collaboration) 

Firefly luc 

antisense 

3' amino mod 

mU*mU*mC*mU*mU*mU*mA*mU*mG*mU*mU*mU*mU*mU*m

G*mG*mC*mG*AmMO 

PS-2'OMe antisense, 

3'Amino (Chakrabarti 

collaboration) 

GFP  

antisense  

3' amino mod 

mU*mA*mG*mU*mU*mG*mA*mA*mC*mG*mC*mU*mU*mC*m

C*mA*mU*mC*AmMO 

PS-2'OMe antisense, 

3'Amino (Chakrabarti 

collaboration) 

TATA box  

T
0
 noncaged 

TAAACCAGCTCTGCTTATATAGACCTCCAACCGT TATA box 

TATA box  

T
1
 caged 

TAAACCAGCTCTGCTTATATAGACCTCCAACCGT TATA box, caged 

TATA box  

T
2
 caged 

TAAACCAGCTCTGCTTATATAGACCTCCAACCGT TATA box, caged 

TATA box  

T
3
 caged 

TAAACCAGCTCTGCTTATATAGACCTCCAACCGT TATA box, caged 

Dro TATA CGCGTTTCCAAAATGTATAAAGAGTCACCG  

Drosophila TATA 

box (Reeves 

collaboration) 
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Strand Sequence (5' → 3') Application 

Dro TATA  

2T caged 
CGCGTTTCCAAAATGTATAAAGAGTCACCG  

Drosophila TATA 

box, caged (Reeves 

collaboration) 

Dro TATA  

3T caged 
CGCGTTTCCAAAATGTATAAAGAGTCACCG  

Drosophila TATA 

box, caged (Reeves 

collaboration) 

DsRed 

antisense 

addition A1 
ATGAAGGTGCCGT▽CCTGCAGGGAGGAG 

DsRed antisense 

agent, cleavable 

DsRed 

antisense 

deletion D1 
ATGAAGGTGCCGT▽CTGCAGGGAGGAG 

DsRed antisense 

agent, cleavable 

DsRed 

antisense 

deletion D2 
ATGAAGGTGCCG▽CTGCAGGGAGGAG 

DsRed antisense 

agent, cleavable 

DsRed 

antisense 

deletion D3 
ATGAAGGT▽CCGTCCTG▽AGGGAGGAG 

DsRed antisense 

agent, cleavable 

EGFP  

antisense (PO) 
GAGCTGCACGCTGCCGTC EGFP antisense agent 

EGFP  

antisense (PS) 
G*A*G*C*T*G*C*A*C*G*C*T*G*C*C*G*T*C* EGFP antisense agent 

EGFP  

antisense 

addition A1 
GAGCTGCAC▽GCTGCCGTC 

EGFP antisense 

agent, cleavable 

EGFP  

antisense 

deletion D1 
GAGCTGCAC▽CTGCCGTC 

EGFP antisense 

agent, cleavable 

EGFP  

antisense 

deletion D2 

 

GAGCTGCA▽CTGCCGTC 

 

EGFP antisense 

agent, cleavable 

EGFP  

antisense (PO) 

deletion D3  
GAGCTG▽ACGCT▽CCGTC 

EGFP antisense 

agent, cleavable 

EGFP  

antisense (PS) 

deletion D3   
G*A*G*C*T*G▽A*C*G*C*T▽C*C*G*T*C 

EGFP antisense 

agent, cleavable 

Catalyst CATTCAATACCCTACGTCTCCA Catalytic fuel cycle 

Catalyst  

3A caged 
CATTCAATACCCTACGTCTCCA 

Catalytic fuel cycle, 

caged 

Catalyst  

4A caged 
CATTCAATACCCTACGTCTCCA 

Catalytic fuel cycle, 

caged 

Catalyst  

C1 cleavable 
CATTCAATAC☐CTACGTCTCCA 

Catalytic fuel cycle, 

cleavable 
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Strand Sequence (5' → 3') Application 

Catalyst  

C2 cleavable 
CATTCAA☐ACCCTA☐GTCTCCA 

Catalytic fuel cycle, 

cleavable 

Inhibitor TGGAGACGTAGGGTATTGAATG Catalytic fuel cycle 

Inhibitor (10) TGGAGACGTA Catalytic fuel cycle 

Inhibitor  

3G caged 
TGGAGACGTA 

Catalytic fuel cycle, 

caged 

Inhibitor  

4G caged 
TGGAGACGTA 

Catalytic fuel cycle, 

caged 

Inhibitor  

4A caged 
TGGAGACGTAGGGTATTGAATG 

Catalytic fuel cycle, 

caged 

Output  

4T caged 
CTTTCCTACACCTACGTCTCCAACTAACTTACGG 

Catalytic fuel cycle, 

caged 

A input 

1T caged 
TATGGTTGTTTATGTGTTCCCTGATCTTTAGCCTTA 

AND gate caged 

input, caged 

A input 

2T caged 
TATGGTTGTTTATGTGTTCCCTGATCTTTAGCCTTA 

AND gate caged 

input, caged 

A input 

3T caged 
TATGGTTGTTTATGTGTTCCCTGATCTTTAGCCTTA 

AND gate caged 

input, caged 

A input 

4Tcaged 
TATGGTTGTTTATGTGTTCCCTGATCTTTAGCCTTA 

AND gate caged 

input, caged 

GT  

1T caged 
GGCTAAAGATCAGGGAACACATAAACAACCATA 

AND gate caged gate 

toehold, caged 

B input GTTAGATGTTAGTTTCACGAAGACAATGATTAAGGC AND gate input 

B input 

4T caged 
GTTAGATGTTAGTTTCACGAAGACAATGATTAAGGC 

AND gate caged 

input, caged 

Toehold (6) TATATA AND gate 

B21 input GTTAGATGTAGTTCACGAAGACAATGATCAACA 
miR-21 AND gate 

input 

B21 input  

4T caged 
GTTAGATGTAGTTCACGAAGACAATGATCAACA 

miR-21 AND gate 

input, caged 

B21 input  

4G caged 
GTTAGATGTAGTTCACGAAGACAATGATCAACA 

miR-21 AND gate 

input, caged 

HCR Initiator  AGTCTAGGATTCGGCGTGTATATA  
Hybridization chain 

reaction 
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Strand Sequence (5' → 3') Application 

HCR Initiator 

3T caged 
AGTCTAGGATTCGGCGTGTATATA  

HCR toehold caged 

initiator 

HCR Initiator 

4T caged 
AGTCTAGGATTCGGCGTGTATATA  

HCR evenly caged 

initiator 

Strand 1 
ACATTCCTAAGTCTGAACATTACAGCTTGCTACACAGAAGAG

CCGCCATAGTA 

DNA tetrahedron 

assembly 

Strand 2 
TATCACCAGGCAGTTGAAGTGTAGCAAGCTGTAATGATGCGA

GGGTCCAATAC 

DNA tetrahedron 

assembly 

Strand 3 
TCAACTGCCTGGTGATAAACGACACTACGTGGGAACTACTAT

GGCGGCTCTTC 

DNA tetrahedron 

assembly 

Strand 4 
TTCAGACTTAGGAATGTCTTCCCACGTAGTGTCGTTGTATTGG

ACCCTCGCAT 

DNA tetrahedron 

assembly 

Strand 1 

2-cleavable 
ACATTCCTAAGTCTGAA☐CATTACAGCTTGCTACAC☐AGAA

GAGCCGCCATAGTA 

DNA tetrahedron 

assembly, cleavable 

Strand 2 

2-cleavable 
TATCACCAGGCAGTTGA☐AGTGTAGCAAGCTGTAAT☐GATG

CGAGGGTCCAATAC 

DNA tetrahedron 

assembly, cleavable 

Strand 3 

2-cleavable 
TCAACTGCCTGGTGATA☐AACGACACTACGTGGGAA☐CTAC

TATGGCGGCTCTTC 

DNA tetrahedron 

assembly, cleavable 

Strand 4 

2-cleavable 
TTCAGACTTAGGAATGT☐CTTCCCACGTAGTGTCGT☐TGTAT

TGGACCCTCGCAT 

DNA tetrahedron 

assembly, cleavable 

SSO #623 
mG*mU*mU*mA*mU*mU*mC*mU*mU*mU*mA*mG*mA*mA*m

U*mG*mG*mU*mG*mC 

PS-2'OMe splice-

switching 

SSO  

4dT 

mG*dT*mU*mA*mU*dT*mC*mU*mU*dT*mA*mG*mA*mA*dT*

mG*mG*mU*mG*mC 

PS-2'OMe splice-

switching mixmer 

SSO  

2U caged 

mG*mU*mU*mA*mU*mU*mC*mU*mU*mU*mA*mG*mA*mA*m

U*mG*mG*mU*mG*mC 

PS-2'OMe splice-

switching, caged 

SSO 

4U caged 

mG*mU*mU*mA*mU*mU*mC*mU*mU*mU*mA*mG*mA*mA*m

U*mG*mG*mU*mG*mC 

PS-2'OMe splice-

switching, caged 

SSO  

1-cleavable 
mG*mU*mU*mA*mU*mU*mC*mU*mU*☐mA*mG*mA*mA*mU*

mG*mG*mU*mG*mC 

PS-2'OMe splice-

switching, cleavable 

SSO  

2-cleavable 
mG*mU*mU*mA*mU*☐mC*mU*mU*mU*mA*mG*mA*☐mU*m

G*mG*mU*mG*mC 

PS-2'OMe splice-

switching, cleavable 

Sox31 SSO 
mA*mG*mC*mC*mC*mU*mU*mU*mU*mC*mU*mC*mA*mA*m

A*mA*mC*mA*mA*mA*mC*mC*mU*mG*mU   

PS-2'OMe splice-

switching zebrafish 
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Strand Sequence (5' → 3') Application 

Sox31 SSO  

4U caged 

mA*mG*mC*mC*mC*mU*mU*mU*mU*mC*mU*mC*mA*mA*m

A*mA*mC*mA*mA*mA*mC*mC*mU*mG*mU   

PS-2'OMe splice-

switching zebrafish, 

caged 

SSO gate 

mU*mU*mC*mU*mA*mA*mA*mG*mA*mA*mU*mA*mA*mC*m

U*mA*mG*mC*mU*mU*mA*mU*mC*mA*mG*mA*mC*mU*mG*

mA 

PS-2'OMe miR-21 

SSO AND gate 

SSO input B 
mA*mA*mG*mC*mU*mA*mG*mU*mU*mA*mU*mU*mC*mU*m

U*mU*mA*mG*mA*mA 

PS-2'OMe miR-21 

SSO AND gate 

SSO toehold 
mU*mC*mA*mA*mC*mA*mU*mC*mA*mG*mU*mC*mU*mG*m

A*mU*mA*mA*mG*mC*mU*mA 

PS-2'OMe miR-21 

SSO AND gate 

ZFN Comp 

3T caged 
CACTGCGGCTCCGGCCCCGTC 

Zinc finger nuclease 

binding domains, 

caged 

ZFN HP  

4T caged 

GACGGGGCCGGAGCCGCAGTGGATGTAGGGAAAAGCCCGGC

CCTTTTGGGCCGGGCTTTTCCCTACATCCACTGCGGCTCCGGC

CCCGTC 

Zinc finger nuclease 

binding domains, 

caged 

ZFN PHP  

3T caged 

GACGGGGCCGGAGCCGCAGTGGATGTAGGGAAAAGCCCGGG

GGTTTTCCCCCGGGCTTTTCCCTACATC 

Zinc finger nuclease 

binding domains, 

caged 

T7 template 

GGGAGAATTCAACTGCCATCTAGGCACAGGTAAATTAATTAG

AGATGAAATAGAGTGGAGTGAGGGATTAGTTTTGGAGTACTC

GCT 

T7RNAp PCR 

template 

 

5.2 Oligonucleotide Synthesis  

Standard synthesis cycles were used for all oligonucleotide production on either a refurbished 

Applied Biosystems Model 394 automated DNA/RNA synthesizer (Life Technologies) or a new 

MerMade4 synthesizer (Bioautomation) using β-cyanoethyl phosphoramidite chemistry. The 

synthesizers required an argon tank (4.8, 300 SZ, Matheson, PARN30048) at >500 PSI to 

perform a complete synthesis cycle. A high-quality (>99.9%), low-water (<50 ppm) source of 

anhydrous acetonitrile was also required (VWR, EM-AX0152-1). When the synthesizer had not 

been used in several weeks, a startup cleaning cycle performed block and line flushes with 

acetonitrile then argon, followed by filling the lines with fresh reagents. The startup cycle on the 
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ABI Model 394 was performed automatically with the “ABI Begin” function, while the 

MerMade4 startup cycle was performed manually.  All reagents for oligonucleotide synthesis 

were purchased from Glen Research (Table 5.2).  

 

Table 5.2: Glen Research reagents for oligonucleotide synthesis. 

Reagent Catalog # Amount 

Activator 30-3100-52 200 mL 

Cap Mix A 40-4110-52 200 mL 

Cap Mix B 40-4220-52 200 mL 

Oxidizing Solution  40-4330-52 200 mL 

Deblocking Mix 40-4140-57 450 mL 

Diluent 40-4050-50 100 mL 

dA-CE phosphoramidite 10-1000-10 1g 

dC-CE phosphoramidite 10-1010-10 1g 

dG-CE phosphoramidite 10-1020-10 1g 

dT-CE phosphoramidite 10-1030-10 1g 

DNA 1000Ǻ 40 nM supports (ex. A) 20-2101-45 4 pack 

2'OMe-A-CE phosphoramidite 10-3100-10 1 g 

2'OMe-C-CE phosphoramidite 10-3110-10 1 g 

2'OMe-G-CE phosphoramidite 10-3121-10 1 g 

2'OMe-U-CE phosphoramidite 10-3130-10 1 g 

2’OMe 1000Ǻ  0.2 μM supports (ex. A) 20-3700-42 4 pack 

Beaucage sulfurizing reagent 40-4036-10 1 g 

5'Amino C6 TFA phosphoramidite 10-1916-02 0.25 g 

3'Amino PT C6 CPG support 20-2956-42 pack of 4 

 

Reagent bottles were connected to the synthesizer in a hood using the bottle change 

function. Each reagent has a specific shelf date and an estimated usage volume provided by Glen 

Research, as predicted by the synthesis scale. The amidites were manually dissolved in 

anhydrous acetonitrile to 0.1 M according to the manufacturer’s protocol. Specialized caged 



 

 235 

phosphoramidites were dissolved in anhydrous acetonitrile to a final concentration of 0.05 M to 

reduce reagent usage. DNA oligonucleotides were synthesized at the 40 nM scale with 1000Ǻ 

solid-phase CPG support columns. 2’OMe phosphorothioate oligonucleotides were synthesized 

at the 0.2 μM scale with solid-phase CPG support columns. All solid-phase supports contained 

the 3’ terminal base. Synthesis cycles were provided by Applied Biosystems and Bioautomation. 

Coupling times of 25 sec were used for DNA monomers. Synthesis of modified oligonucleotides 

was also performed using β-cyanoethyl phosphoramidite chemistry but with increased coupling 

times according to the manufacturer’s instructions, such as 6 min coupling times for 2’OMe 

monomers. The amino modifications (3’ and 5’ AmMo) did not require any alterations the 

standard synthesis conditions. The coupling time required for caged phosphoramidites was 

typically 10 min. The sulfurization steps were performed by replacing the oxidizing reagent with 

the Beaucage sulfurizing reagent (3H-1,2-benzodithiole-3-one-1,1-dioxide) at 0.05 M in 

acetonitrile for 15 min. All cycle alterations were made following the user manual instructions. 

Each synthesis cycle was monitored visually by observing the release of DMTr cations after the 

first- and last-two deprotection steps, which produced a bright orange solution from the trityl 

collection outlet. The end procedure included removal of the last DMTr protecting group (DMT 

OFF) and automated column elution (CE). At the completion of a synthesis cycle, the 

oligonucleotides were automatically eluted from the solid-phase supports with ~1 mL 

ammonium hydroxide methylamine (AMA, 1:1) and then deprotected at 65 °C for 2 h in an oil 

bath. The full-length oligonucleotides were then purified with GE Healthcare illustra Nap-10 

Sepahdex
TM 

G-25 resin columns (VWR, 95017-011). The columns were rinsed 3 times with 1 

mL of water, the entire deprotection solution was applied to the column, and a 1 mL water 

elution was collected. Oligonucleotides are all stored in solution at -20 °C. UV absorbance was 
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used to confirm the presence of nucleic acids through the absorption at 260 nm (NanoDrop) and 

calculate molar concentrations with the oligonucleotide extinction coefficient (IDT 

OligoAnalyzer 3.1). Gel analysis provided a method to confirm the size as well as to calculate 

the accurate concentration for the full-length oligonucleotide through a dilution series and 

comparison to a control standard. Typically, 10 pmol (10 μL of 1 μM) of each oligonucleotide 

was loaded onto a 20% TBE-PAGE gel (45 min, 200 V). Run times and gel percentages may 

vary based on the oligonucleotide size. Staining was then performed with Sybr Gold nucleic acid 

stain (Life Technologies, 16500100). The gel was soaked for 15 min in 1:10,000 Sybr Gold 

diluted in 50 mL TBE, then rinsed with water and imaged on a fluorescent gel imager (Bio-Rad 

ChemiDoc Sybr Gold settings; standard filter 1, UV transillumination). Purity of the final 

product was determined by comparison of the full-length product in relation to the total yield 

through normalization of a fluorescently stained gel. In cases where the purity was <90%, 

typically through contaminating truncation products, the oligonucleotides were further purified 

with a 20% TBE-PAGE gel through UV shadowing using a handheld UV lamp against a TLC 

plate while shielding the caged oligos, band excision of the full-length product, and elution 

(overnight at 37 °C or 2 h at 65 °C) in 500 μL water. Multiple elution steps have been shown to 

increase the total yield by 50%, since passive elution is dependent on a concentration equilibrium 

between the gel slice and the buffer system. The eluted oligonucleotides solutions were spun 

down to remove any debris, such as contaminating gel pieces, and were analyzed through UV 

absorption followed by additional PAGE analysis. Oligonucleotides were concentrated through 

water evaporation (SpeedVac) or ethanol precipitation (separation of nucleic acids from solution, 

resuspension in decreased volume) when necessary. 
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5.3 General Molecular Biology Techniques 

5.3.1 Polymerase Chain Reaction (PCR)  

Several kits were used for different PCR requirements (all purchased from New England 

Biolabs). Taq DNA polymerase was used for general PCR where a low mutation rate is not 

required, such as PCR screening or amplification of a short insert (<100 bp). However, for gene 

amplification (e.g., from plasmids), a high fidelity Phusion polymerase was used to limit the 

introduction of mutations. The size and reaction inputs for PCRs varied based on the application 

requirements (Table 5.3). Reactions were performed in commercial polymerase buffers with 200 

μM dNTPs and ~2 μL enzyme per 200 μL reaction. Primers were added at 0.5-1 mM.  

 

Table 5.3: PCR reaction scales and input amounts based on application. 

Application Input  Scale 

Colony Screen  colony 15 μL 

Gene amplification  Plasmid (5 ng) 200 μL 

T7RNAp template  ssDNA (20 pmol)  1 mL  

 

The cycle times and temperature for each PCR step (denature, anneal, extend) were performed 

according to the manufacturer’s provided protocols and the melting temperatures of each 

oligonucleotide primer (IDT). Anneal times varied depending on the base content and size of the 

primers for extension, while extension times varied depending on the total size of the PCR 

product (~30 sec per kilobase). PCR products were column-purified with PCR cleanup kits, such 

as the QIAQuick (Qiagen) or E.Z.N.A. Cycle Pure (Omega) kits. The PCR product was typically 

eluted in 50 μL of 65 °C water, but smaller volumes were sometimes used to increase the 

concentration. 
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5.3.2 Site-Directed Mutagenesis (SDM) 

SDM was first performed with the QuikChange Lightning kit (Agilent) following the 

manufacturer’s protocol. Primers for the QuikChange mutagenesis reactions were designed to be 

fully complementary, with the desired mutations placed approximately in the middle on both 

primer strands, and ~15-20 bases that bind to the plasmid on either side, for a total size of ~35-45 

bases as well as TMs > 78 °C. Alternatively, an overlap extension SDM method was utilized,
299

  

in which the extension was performed with high fidelity Phusion polymerase (New England 

Biolabs). Primers for the overlap SDM reactions were designed to be partially complimentary for 

~15 bases, again with the desired mutations placed approximately in the middle on both primer 

strands, but in this case there were ~20 bp on either end of the primers that are only 

complementary to the plasmid, and the TM of the duplex region should be at least 10 °C less than 

the full-length primer TMs.  

For both methods, polymerization reactions were performed in 25 μL reactions with 1 

μM primers and 5-10 ng of plasmid DNA. The annealing and extension temperatures were 

altered depending on the primer TMs and the size of the gene product or plasmid. After the 

reactions were completed, the SDM reactions were treated with 0.4 μL Dpn1 (New England 

Biolabs) at 37 °C for 1 h to digest the methylated parent plasmid isolated from E. coli. The SDM 

reactions were then transformed into chemically competent bacteria (see protocol 5.3.5) and 

analyzed for the proper base mutations through sequencing. 
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5.3.3 Restriction Enzyme Digestion 

Sequence-specific restriction enzymes (REs) were ordered from New England Biolabs and 

buffer components were provided by the manufacturer. RE reactions were typically performed 

for 2 h at 37 °C, unless the enzyme requires a different temperature for activity, and the enzyme 

was then heat inactivated at 80 °C for 20 min. The reaction volume varied based on the 

application requirements. For plasmid mapping, 10 μL reactions with 200 ng of the plasmid were 

performed with 0.2 μL of each RE. The entire reaction mixture was subsequently analyzed by 

agarose-gel electrophoresis. For gene insert or plasmid backbone digestion, 200 μL reactions 

with 8 μg of the plasmid were performed with 4 μL of each RE. Plasmid backbones that were 

utilized as vectors for ligation were then treated with 4 μL of alkaline phosphatase (New England 

Biolabs) for 2 h at 37 °C to remove the phosphate groups and reduce self-circularization during 

ligation reactions (see protocol 5.3.4). The resulting digested products (inserts or backbones) 

were gel purified on 0.8% agarose gels through band excision and isolation with the QIAQuick 

(Qiagen) or E.Z.N.A. (Omega) gel extraction kits, followed by elution with 30 μL of 65 °C 

water. The DNA concentrations (ng / μL) were determined with a NanoDrop spectrophotometer. 

5.3.4 Plasmid Ligation. 

The backbone and insert gene products were produced via PCR, followed by RE digest and gel 

purification, as described above (protocols 5.3.1 and 5.3.3). When synthetic oligonucleotides 

were used as an insert and were not previously digested by an RE, an intermediate step was 

required prior to ligation to add a 5′ phosphate group with T4 polynucleotide kinase (PNK, New 

England Biolabs). The T4-PNK reaction was performed with 10 μM DNA in 20 μL with 1 μL 
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T4-PNK for 1 h at 37 °C in commercial T4-PNK buffer containing ATP, according to the 

manufacturer’s protocol. The T4-PNK treated oligonucleotides were then combined (10 μM in 

40 μL) and annealed (95 °C to 12 °C over 10 min) in  TAE/Mg
2+

 buffer (0.04 M tris-acetate, 1 

mM ethylenediaminetetraacetic acid (EDTA), and 12.5 mM magnesium acetate). Ligation 

reactions were then performed at a 10 μL scale, most commonly with a 1:6 vector:insert ratio, 

using 100 pg of the vector backbone and either Quick ligase or T4 DNA ligase (New England 

Biolabs). The quick ligations were performed for 15 min at room temperature, while the T4 

DNA ligations were performed overnight at 4 °C. Negative control reactions were performed 

with the appropriate amount of water without any insert. Additionally, quick ligations were 

subsequently spiked with T4 DNA ligase and stored overnight at 4 °C to potentially increase the 

efficiency of the ligation protocol; both ligations were transformed into bacterial cells (see 

protocol 5.3.5). 

5.3.5 Plasmid E. coli Transformation 

Competent cells for plasmid transformation are either included in commercial DNA 

manipulation kits or are generated separately. For all cloning in this thesis the E. coli strains 

Top10, BL21, and NovaBlue were used. The generation of chemically competent cells was 

performed with streaking out cell stocks on an LB-agar plates and incubating overnight at 37 °C. 

A single colony was then used to inoculate 5 mL of LB-broth which was incubated shaking 

overnight at 37 °C. The overnight culture (1 mL) was then transferred into 50 mL of LB-broth 

and incubated shaking at 37
 o

C until the OD600 reached 0.3-0.5, usually within 2-3 h. The culture 

was then chilled on ice for 20 min and cells were pelleted by centrifugation (16,000 g, 5 min, 4
 

o
C). The pellet was resuspended in an ice-cold transformation solution (85% LB-broth, 10% 
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PEG wt/vol, 5% DMSO vol/vol, 50 mM MgCl2, pH 6.5) with a calculated volume of OD600 

(determined above from the 50 mL culture) X 10 mL. The suspension was then aliquoted into 1.5 

mL tubes cooled to –80 
o
C (50-100 μL) and placed in a dry ice ethanol bath before long-term 

storage at –80
 o

C for. The competency of the cells was calculated through transformation of a 

pUC19 control plasmid DNA (colony count X (transformation volume μL / plating volume μL) / 

plasmid DNA μg), and should be greater than 10
6
 colonies per μg of plasmid DNA. The 

transformations were typically performed with 50 μL competent cell stocks, which were briefly 

thawed on ice. The DNA of interest was then added to the competent cells, mixed gently through 

pipetting up and down once or twice, and stored on ice for 20 min. For plasmids, 1-5 μL of ~100 

ng total DNA was added. For SDM and ligation reactions, a range of 1-10 μL was added. When 

high transformation efficiency was expected (plasmid transformations), the amount of competent 

cells could be reduced to 25 μL per reaction. After the 20 min on ice, the cell-DNA mixture was 

heat shocked in a 42
 o

C water bath for 30 sec, and placed back on ice for an additional 2 min. 

SOC media was then added (100-450 μL) and grown in the absence of antibiotic for 1 hr shaking 

at 37
 o

C.  The cultures were then plated onto LB-agar plates that were prepared with antibiotic, 

depending upon the resistance for the plasmid of interest. To prepare the culture plates, LB-agar 

was heated in the microwave for 2 min and stock antibiotic solutions were diluted into an 

appropriate volume. Frequently used antibiotics include ampicillin (50 mg/mL stock in water, 50 

μg/mL final, 1:1000), kanamycin (50 mg/mL stock in water, 50 μg/mL final, 1:1000), and 

tetracycline (5 mg/mL stock in ethanol, 25 μg/mL final, 1:200). For co-transformation of two 

plasmids, multiple antibiotics can be used on a single plate. The LB-agar was poured into 10 cm 

plates (~10 mL) and cooled on the bench until solidified. Plating of different amounts was 

performed until the entire SOC culture was plated, e.g., from a 500 μL culture, 100 and 400 μL 
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would be spread onto two separate agar plates. The cultures were spread, typically with a glass 

rod that was dipped in ethanol and flame sterilized, while spinning the plate. LB-agar plate 

cultures were incubated overnight at 37 
o
C, at which time individual colonies were picked and 

inoculated into 5 mL cultures. All further cultures were grown in the presence of the 

corresponding antibiotic. Glycerol stocks of the transformed cells for all plasmid bacterial 

cultures were produced by mixing saturated LB-broth culture with glycerol (1:1 to a final volume 

of 1 mL) and storing at –80 
o
C. 

5.3.6 Plasmid Purification 

Plasmids were purified from bacterial cultures grown to saturation in LB-broth containing the 

appropriate antibiotics. Cultures of 5 mL and 100 mL were used for plasmid production. Smaller 

cultures were purified using spin column miniprep kits, such as QIAprep (Qiagen) or E.Z.N.A. 

Plasmid (Omega) kits. These purifications were eluted with 50 μL of 65
 o

C water. Larger 

cultures were purified using midiprep kits (same manufacturers), and eluted with 500 μL of 65
 o
C 

water. The plasmid concentrations (ng/μL) were determined with a NanoDrop 

spectrophotometer. 

5.3.7 Plasmid Analysis 

Plasmids were analyzed through a number of different methods. PCR-based screens were 

directly performed on bacterial colonies with 15 μL reactions (see protocol 5.3.1). The 

supercoiled plasmids were also analyzed on a 0.8% agarose gel with 200 ng of the plasmid and 

ethidium bromide DNA staining. RE digests of the plasmids (see protocol 5.3.3) were used to 
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confirm insert sizes with 10 μL reactions of 200 ng plasmid and 0.2 μL of each RE. These 

reactions were incubated at 37 
o
C for 2 hr and analyzed on a 0.8% agarose gel. All plasmid 

constructs were confirmed through sequencing (Genewiz or University of Pittsburgh Genomics 

and Proteomics Core Laboratories) with 15 μL solutions of 1 μg DNA and 20 pmol of primer for 

the region of interest. 

5.4 General Cell Culture Techniques 

5.4.1 Cell Growth and Maintenance 

All cell stocks were maintained at 37 °C and 5% CO2 in 10 cm culture plates, and manipulations 

were performed in a biosafety cabinet. The majority of the cell lines (including HEK293T, HeLa, 

HeLa:EGFP654, HeLa:Luc705, HepG2, Huh7) used in this research were grown in Dulbecco’s 

modified Eagle’s medium (DMEM, Hyclone), supplemented with 10% fetal bovine serum (FBS, 

Hyclone) and 2% penicillin/streptomycin (PS, MP Biomedicals). The DMEM solution was made 

by dissolving 5.89 g DMEM powder, 1.63 g sodium bicarbonate, and 0.145 g L-glutamine in 445 

mL of Milli-Q purified water (EDM Millipore) that was autoclaved. The pH was then adjusted to 

~7.4 with 65% hydrochloric acid (~10-15 drops). Subsequently, 50 mL of FBS and 5 mL of a 

100X PS solution were added and the media was filter sterilized. The PC-3 cell line was grown 

in F-12K medium (Hyclone), which was prepared from a commercial reagent according to the 

manufacturer’s protocol. A fresh media exchange (10 mL) was performed every 2-3 days for 

each plate (10 cm). The cell lines were passaged when confluence reached >90% by removing 

the media and adding 1 mL of TrypLE Express reagent (Invitrogen), then shaking at room 
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temperature for ~5 min. Cells were lifted from the plate through pipetting and 9 mL of growth 

media was added. The passages were then performed in a 1:10 dilution by adding 1 mL of the 

cell resuspension to 9 mL of media in a new 10 cm plate. For passages into multi-well plates, the 

following volumes were used: 200 μL per well in a 96-well plate (∼10
4
 cells), 500 μL per well 

(∼2.5 X 10
4
 cells) in a 8-well chamber slide, 1 mL per well (∼5 X 10

4
 cells) in a 4-well chamber 

slide, and 2 mL per well (~10
5
 cells) in a 6-well plate. The specific cell dilution and number 

varied based on the cell line or confluency at passage, and cells were grown for 1-2 days prior to 

transfection. White plates were used for chemiluminescence experiments, while black plates 

were used for fluorescence experiments. Plates were purchased from BD-Falcon, Greiner, or 

CoStar (Fisher, VWR). Passages of cell stocks were tracked by date, cell line, media 

requirements, and passage number. Cells were discarded once the passage number went above 

25, and new cells were thawed. To thaw cells, the frozen cell vials were placed in a 37 °C water 

bath for 5 min, and then added to plates containing growth media. The media was changed after 

1 day to remove residual DMSO. Frozen stocks of cell lines were made by passaging ~5 mL of 

cell resuspension into a 25 cm plate (25 mL total), growing the cells to confluency (5-7 days), 

lifting the cells with 5 mL trypsin, pelleting the cells at 3,000 g for 10 min, and resuspending the 

cells in 5 mL growth media containing 5% DMSO. The cell suspension was then aliquoted into 1 

mL cryogenic preservation vials (~10
6
 cells) and placed into a –80 °C overnight freezer before 

transfer to a liquid nitrogen dewar.  

5.4.2 Cell Transfection 

Cell transfections were performed to introduce foreign DNA into the cells, such as an expression 

plasmid or synthetic oligonucleotide. The cellular growth media was removed and replaced with 
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75% total volume of Opti-MEM media (Invitrogen) per well (150 μL for 96-well, 750 μL for 6-

well). Transfection mixes were then prepared by mixing the nucleic acids in Opti-MEM media 

(50 μL per well for 96-well plate, 250 μL per well for 6-well plate) and incubating with the 

appropriate transfection reagent. Plasmid transfections were typically performed with 200 ng 

each plasmid in a 96-well plate (chemiluminescence or fluorescence readouts) and 2,000 ng of 

each plasmid in a 6-well plate (protein or RNA isolations). These transfections were performed 

with either branched polyethylene imine (bPEI), linear polyethylene imine (lPEI), or 

Lipofectamine 2000 (Invitrogen) at 1-2 μL per well for 96-well plates and 5-10 μL per well for 

6-well plates, according to the manufacturers’ protocols. The PEI reagents were used for 

overnight transfections, while the lipofectamine reagent was used for 4 h transfections 

(preferred). The PEI transfections could also be performed with PS-free DMEM in replacement 

of Opti-MEM. Oligonucleotide transfection concentrations varied based on the application, and 

are noted in each experimental section. Typically, 20-200 pmol were used for genetic regulators 

(TFOs, antagomirs, siRNA duplexes) and 50-200 mM were used for logic gates. Oligonucleotide 

transfections were performed with the X-tremeGENE siRNA reagent (Roche) for 4 h with 1-2 

μL reagent per well for 96-well plates and 5-10 μL reagent per well for 6-well plates. The 

transfection reagents were mixed with the plasmid(s) or oligonucleotide(s), then incubated for 20 

min at room temperature, and added to the cells for the appropriate amount of time. The media 

was removed at the completion of the transfection and replaced with fresh growth media. At this 

step, the photocaged lysine amino acid (PCK) was added at 1-2 mM concentration for expression 

of caged proteins. The protocols presented above should be used as points of reference, with the 

understanding that they can be modulated based on the experiment of interest. Every new 

experiment requires some degrees of optimization, including analysis of transfection 
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reagents/amounts, alterations in nucleic acid concentrations, applications in different cell lines, 

and different cell culture plate sizes. 

5.4.3 Cell Irradiations 

The photochemical control of proteins and oligonucleotides was commonly performed in cell 

culture with UV exposure. Whole well irradiations were performed directly on top of a UV 

transilluminator (25 W, 6.3 mW/cm
2
) for various exposure times, typically 2 min were found as 

optimal unless otherwise noted. No temperature control was performed. Spatially distinct UV 

irradiations were performed with the UV transilluminator through precut designs in tinfoil 

sheets, which were taped onto the underside of the cell culture plates and left on during 

incubation periods to locate the area of interest. Additionally, localized irradiations were 

performed with a Zeiss Observer Z1 microscope (40X objective, NA 0.75 plan-apochromat; 

Zeiss) and a DAPI filter set (68 HE ex. BP377/28) with a partially closed aperture to irradiate 

only a specific subset of cells, with the x:y location noted to locate the area of interest. 

5.4.4 Cell Fixing 

Fixed cells were prepared in Nunc Lab-Tek II 4-well chamber slides (Thermo Scientific), which 

can be stained and stored for imaging. Cells were transfected and incubated for the required 

period of time, then washed twice with 500 μL PBS pH 7.4 at 4 °C. The cells were then fixed on 

ice with 500 μL of 3.75% formaldehyde in PBS for 15 min. After the fixing step, the cells were 

washed with PBS three times, and permeabilized with 200 μL of 0.5% TritonX100 for 30 sec at 

room temperature. The cells were again washed and stained with various reagents, including 
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fluorescent protein-specific antibodies (specific manufacturer’s protocol), rhodamine-phalloidin 

actin staining (7 μL per mL of PBS containing 1% of BSA, 200 μL per well, 20 min room 

temperature, Life Technologies), and DAPI nuclear staining (15 μL of a 14.3 mM solution per 

mL PBS, 200 μL per well, 2 min room temperature, Invitrogen). After staining procedures, the 

cells were washed three times with 200 μL of PBS, the chamber slide top was removed, and the 

mount was air-dried. Prolong Gold antifade reagent (Life Technologies) was then gently added 

dropwise, and a coverslip was placed on the top to dry overnight. 

 

5.4.5 Cell Imaging 

Before imaging, growth media was replaced with 37 °C phenol red-free DMEM-high modified 

growth media (Thermo Scientific). The following filter cubes were used on a Zeiss Observer Z1 

microscope: DAPI (filter set 68 HE; ex. BP377/28; em. BP464/100), GFP/EGFP/FITC (filter set 

38 HE; ex. BP470/40; em. BP525/50), and DsRed/mCherry/Rhodamine/TAMRA (filter set 43 

HE; ex. BP575/25; em. BP605/70). The following Zeiss objectives were used: 5X (NA 0.16 

plan-neofluora), 10X (NA 0.25 plan-apochromat), 20X (NA 0.8 plan-apochromat) and 63X oil 

(NA 1.4 plan-apochromat). Cellular images were taken in brightfield as well as fluorescent 

channels, and then processed in Zen Pro 2011 imaging software. Additional images were taken 

on a Nikon A1 confocal microscope with the assistance of Nikon representatives. Fluorescent 

cell counting was performed with ImageJ software (settings: threshold 5-10%, size >200 pixels
2
, 

and circularity 0-1). 
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5.4.6 RNA Isolation 

Total RNA isolations from ∼10
6 

cells were performed using Trizol reagent (Invitrogen) in 6-well 

plates following the manufacturer’s protocol. The cellular media was removed, cells were rinsed 

with 4 °C PBS pH 7.4, and 1 mL of Trizol reagent was added. The cells were then lifted via 

pipetting, incubated for 5 min at room temperature, and collected with centrifugation at 16,000 g 

for 10 min at 4 °C. Cholorform was added (200 μL), mixed by shaking, and incubated for 5 min 

at room temperature. The reaction was then phase separated by centrifugation at 16,000 g for 10 

min at 4 °C, and the upper aqueous layer containing the RNA (~50% volume) was transferred to 

a new tube. The RNA was precipitated from the reaction through addition of 600 μL of 

isopropanol, stored at –20 °C for 30 min, and centrifuged at 16,000 g for 20 min at 4 °C. The 

RNA pellets were then dried with open caps for 30 min, resuspended in ~20 μL nuclease free 

water, and the final concentrations (ng/μL) were determined with a NanoDrop 

spectrophotometer. 

5.4.7 RNA Analysis by Quantitative Real-Time PCR (qRT-PCR) 

The first step of qRT-PCR was the reverse transcription of the RNA into DNA with the iScript 

cDNA Synthesis kit (Bio-Rad), using 20 ng of the RNA isolations (2 μL of 10 ng/μL dilutions) 

in 40 μL reactions with 1 μL of the reverse transcriptase enzyme, according to the 

manufacturer’s protocol. The RT reactions were heated to 25 °C for 5 min, then 42 °C for 45 

min, and finally 85 °C for 5 min before being cooled on ice.  Quantitative PCR was then 

performed with the SsoFast Evagreen Supermix (Bio-Rad) in 20 μL reactions using gene-

specific primers, according to the manufacturer’s protocol. The cDNA product from the RT 
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reaction (5 μL) was added to the qPCR reactions containing 10 μL of the 2X SSoFast reagent 

and 10 μM primers, one set for the target gene and one set for the control gene (e.g., GAPDH) in 

separate reactions (each in triplicate). Primer sequences are shown in each project-specific 

experimental section. The qPCRs were heated at 95 °C for 3 min then cycled 40 times from 95 

°C for 10 sec to 55 °C for 30 sec. Amplification of the PCR product was monitored with Sybr 

Green fluorescence using a Bio-Rad CFX96 Real-Time System. The Ct values and relative gene 

expressions (Δ(ΔCt))
300

 were determined with the Bio-Rad CFX Manager 3.1 software. 

Technical triplicates of the qPCRs were used to determine normalized gene expression relative to 

the GAPDH controls. 

5.4.8 Protein Isolation from Mammalian Cells 

Total protein isolation from ∼10
6
 cells in a single well of a 6-well plate was used to perform 

western blot analysis of caged protein expression or purification of protein from mammalian cell 

expressions.  The cells were rinsed with 1 mL 4 °C PBS pH 7.4, 200 μL of GE Healthcare 

mammalian cell lysis buffer (Sigma-Aldrich) was added, and cells were incubated while shaking 

on ice for 10 min. The cells were then lifted via pipetting and centrifuged at 16,000 g for 20 min 

at 4 °C. The lysis solution was removed from the cell debris. HA-tag purification was performed 

on total protein lysate with 20 μL of mouse-anti-HA antibody (Santa Cruz Biotechnology) and 

100 μL of Protein A Sepharose 4B suspension (Life Technologies) overnight at 4 °C in a 

refrigerator (preferably shaking or rocking). The sepharose beads were then washed three times 

with 300 μL 4 °C PBS by pelleting the beads through centrifugation (3,000 g for 2 min at 4 °C) 

and resuspended to 100 μL total volume with PBS. 
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5.4.9 Protein Analysis 

Standard western blot techniques were used for analysis of proteins. Total protein extract (40 μL) 

was denatured with  protein loading dye at 75 °C for 20 min. The denatured protein solution was 

then size separated on a 1.5 mM 10% SDS-PAGE gel, which was subsequently soaked in 

transfer solution (25 mM Tris-base, 192 mM glycine, 20% methanol, 0.025% wt/vol SDS). The 

protein gel was then transferred to a GE Healthcare Hybond-LFP PVDF membrane (Fisher) at 80 

V for 90 min on ice in a Bio-Rad Mini Trans-Blot module. Blocking of the membrane was 

performed with 5% milk in TBST buffer (10 mM Tris-base, 150 mM NaCl, pH 7.6, 10% wt/vol 

Tween 20) at room temperature for 1 h. Primary antibody (1:1000 in 15 mL TBST) binding was 

performed at 4 °C overnight, followed by several rinses and secondary antibody (1:1000 in 15 

mL TBST, depending on the manufacturer’s suggestions) binding for 1 h at room temperature. 

All specific antibodies are indicated in the methods and materials sections. Chemiluminescent 

detection was performed with the VisiGlo kit (Amresco) and imaged on a ChemiDoc MP (Bio-

Rad), according to the manufacturer’s protocol.  

5.5 General Zebrafish Techniques 

5.5.1 Zebrafish Mating 

All zebrafish experiments were performed with the University of Pittsburgh’s Institutional 

Animal Care and Use Committee approval. The Oregon AB* strain was maintained under 

standard conditions at the University of Pittsburgh School of Medicine in accordance with 
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Institutional and Federal guidelines. All feeding schedules, temperature control, water quality 

monitoring, and light cycles were controlled by the zebrafish facility staff. Natural matings were 

set up the afternoon before planned injections, typically at 3 pm. Male and female fish (5-20 

each) were placed in a breeding tank with a separating divider and placed on the breeding 

shelves. It is preferred that these fish have not been breed for about two weeks, and that they 

range in age from 6 months to 18 months old, based on the hatch date written on the tank. The 

following day, the divider was removed to obtain embryos from natural matings, typically at 9 

am. Once the fish have breed, the fertilized embryos were collected and the breeding tank 

replaced with fresh water. Breeding would typically occur over the course of 1-2 h, and several 

hundred embryos could be gathered from a single successful breeding set. Once breeding is 

complete, the male and female fish were separated and then placed back onto the maintenance 

shelves with the corresponding breeding results indicated on the tank by date.  

5.5.2 Zebrafish Injection 

Borosilicate glass capillary tubes needles (World Precision Instruments, 1.0 mm; 4 in) were 

heated and pulled to form micropipette needles. The needles were then marked every 1 mm, 

representing a volume of ~30 nL between the hash marks. Injections solutions were diluted 1:1 

in phenol red dye (1% phenol red in water). The injection solutions were then transferred to 

small petri dishes and covered with mineral oil. The needles was clipped to form an opening at 

the tip, and then loaded with ~2 μL of the injection solution. Microinjects were performed with 

using a World Precision Instruments Pneumatic PicoPump injector. Three injections of 30 nL 

(volume between two hash mark) were performed and timed with a stopwatch. The times were 

averaged and divided by 30 to determine the gating time required for injection of a single nL. 
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Gating times were then multiplied by the volume necessary to deliver the proper amount of 

reagent. The embryos were aligned in a 3% agarose injection tray containing divots to hold the 

embryos in place. The loaded needle was then lowered to slowly penetrate the chorion. Plasmid 

constructs and oligonucleotides were injected directly into the blastomere at the 1-cell stage for 

maximum efficiency. Blastomere injections were performed in volumes of 1-5 nL for plasmids 

(50-200 ng), SSOs (1-5 ng), mRNAs (100-300 pg), and tRNAs (0.2-5.4 ng). Amino acids (0-2 

mM) were injected into the yolk in volumes of 1-10 nL to allow for diffusion into each cell. 

Once injections were completed, the embryos were rinsed out of the agarose tray with E3 

zebrafish medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.1% methylene blue, pH 7.8) 

and placed into clean 10 cm dishes. UV irradiations (365 nm transilluminator) were then 

performed if necessary. Embryos were incubated in the dark at 28 °C, followed by imaging 

analysis. 

5.5.3 Zebrafish Imaging 

Early-stage zebrafish embryos (<8 hpf) were directly imaged. Late-stage zebrafish (>16 hpf) 

were treated with Tricaine (Sigma, MS-222) using a 20X stock solution diluted in E3 zebrafish 

medium for 5 min and manually dechorionated with forceps. All imaging was performed on a 

Leica MZ16FA stereo fluorescence microscope with a 1X objective (0.14 NA) at zooms ranging 

from 30X to 60X, depending on the number and size of the fish. EGFP (filter 41017), mCherry 

(filter 41043), and brightfield (no filter) images were collected with a QImaging Retiga-EXi Fast 

1394 digital camera.  
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5.6 General DNA Computation Techniques 

5.6.1 Duplex Gate Purification 

Oligonucleotides were ordered from IDT (nonmodified) and Alpha DNA (5′ TAMRA and 3′ 

BHQ2 modifications). Gate complexes were assembled at 20 μM in 200 μL of TAE/Mg
2+

 buffer 

(0.04 M tris-acetate, 1 mM ethylenediaminetetraacetic acid (EDTA), 12.5 mM magnesium 

acetate, pH ~7.4) and annealed by cooling the solution from 95 to 12 °C over 10 min. The gates 

were then purified on 1.5 mm 20% native TBE-PAGE gels (200 V, 40 min). The full size duplex 

bands were identified through UV back shadowing on a TLC plate, excised, cut into small pieces 

of ~1 mm
3
, and eluted by shaking overnight in 500 μL TAE/Mg

2+ 
buffer. The supernatant was 

removed and a second elution was performed for the gel slice through shaking overnight in 500 

μL TAE/Mg
2+ 

buffer to increase the total yield of purified gate. All elutions were subsequently 

centrifuged at 3,000 g for 5 min to remove any contaminating agarose debris from the solution. 

Elutions were also performed in water and PBS buffer pH 7.4 for the fuel-catalysts cycle 

substrate gate. Gate concentrations (typically 5-10 μM) were determined by UV absorption at 

260 nm (Nanodrop) and calculated with the duplex extinction coefficient (IDT OligoAnalyzer 

3.1). All oligonucleotide sequences are shown in tables for each experimental section. 

5.6.2 Fluorescence Analysis 

Synthetic miRNA strands were ordered from Sigma. Each reaction was set up in 50 μL 

TAE/Mg
2+

 buffer in triplicate wells and incubated at 37 °C for 4 h. The AND gates were used at 

200 nM with 200 nM translator gates and 800 nM input strands. The OR gate was used at 200 
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nM with 800 nM input strands. The (miR-21 OR miR-122) AND miR-125b gate circuit was used 

at 200 nM with 200 nM translator gates and 800 nM input strands. The fuel-catalyst cycle 

reporter gate was used at 50 nM with 200 nM or 800 nM substrate gate and fuel strand, and a 

range from 1-20 nM of the synthetic miRNA. TAMRA fluorescence was measured on BioTek 

Synergy 4 (ex. 532; em. 576; reading from bottom) and Tecan M1000 (ex. 545; em. 585; reading 

from bottom) plate readers in black 96-well plates (BD Falcon) after 4 h reaction time and 

normalized to the positive control for the activated logic gate or fuel-catalyst cycle. 

5.6.3 Logic Gate and Catalytic Cycle Cellular Transfections 

Transfections were performed in 96-well plates using 1-2 μL of X-tremeGENE siRNA 

transfection reagent (Roche) per well in 100 μL of Opti-MEM. The light-triggered AND gate 

was transfected at 200 nM with 800 nM input strands. The miRNA-based AND gates were 

transfected at 50 nM with 50 nM translator gates and 200 nM input strands. The OR gate was 

transfected at 200 nM. The (miR-21 OR miR-122) AND miR-125b gate was transfected at 50 

nM with 200 nM translator gates. The catalytic cycle reporter gate was transfected at 50 nM with 

200 nM of the output activating strand. The substrate gates and fuel strands were transfected at 

200 nM or 800 nM. For 4-well chamber slides, 4 μL of the X-tremeGENE reagent in 200 μL of 

Opti-MEM was used per well, with the same concentrations as indicated above. After 4 h at 37 

°C, the Opti-MEM transfection mixtures were removed from the cells and replaced with clear 

growth media for imaging following protocol 5.4.5. The TAMRA signal was normalized to a 

standard setting for fluorescence intensity (black = 300; white = 2000; gamma = 0.6) in Zen Pro 

2011. Fluorescence merged with brightfield images are shown. 
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Appendix A 

List of Abbreviations 

2’OMe  2’-O-methyl modification 

5′UTR  5’ untranslated region 

A  adenine (oligonucelotides) 

A  alanine (proteins) 

ABI  Applied Biosystems 

AMA  ammonium hydroxide/methyl amine 

AmMo  amino modified 

Amp  ampicillin 

AS  alternative splicing 

ATP  adenosine triphosphate 

bp  base pair 

bPEI  branched polyethylene imine 

C  cytosine 

cAMP  cyclic adenosine monophosphate 

Cas9  CRISPR-associated endonuclease 
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CD71  transmembrane transferrin receptor (TfR1) 

CDB-TFO caged dumbbell TFO 

CHP-TFO caged hairpin TFO 

CHR  cascade hybridization reaction 

CIBN  cryptochrome-interacting basic-helix-loop-helix 

cMO  caged MO 

CMV  cytomegalovirus promoter 

CoREST corepressor silencing transcription factor 

Cre  tyrosine recombinase enzyme 

CREB  cAMP response element-binding protein 

CRISPR clustered regularly interspaced short palindromic repeats 

Cry  cryptochrome domain 

Cys  cysteine 

DAPI  4',6-diamidino-2-phenylindole fluorophore, nuclear stain 

dCas9  catalytically inactive Cas9 variant 

DEACM diethyl amino coumarin 

DEPC  diethylpyrocarbonate 

DMEM Dulbecco’s modified Eagle’s medium 

DMSO  dimethyl sulfoxide 

DMTr  dimethoxytrityl-[bis-(4-methoxyphenyl)phenylmethyl] 

DNA  deoxyribonucleic acid 

DsRed  Discosoma sp. red fluorescent protein 

EDTA  ethylenediaminetetraacetic acid 
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Eg5  kinesin-5 motor protein 

EGF  epidermal growth factor 

EGFP  enhanced green fluorescent protein 

ERK  extracellular signal-regulated kinases 

FACS  fluorescence-activated cell sorting 

FAD  flavin adenine dinucleotide 

FRET  fluorescence resonance energy transfer 

G  guanine 

GAPDH glyceraldehyde 3-phosphate dehydrogenase 

GFP  green fluorescent protein 

gRNA  guide RNA 

H2O   water 

HA  human influenza hemagglutinin 

HCR  hybridization chain reaction 

HCK  coumarin-based caged analogue of lysine 

hpf  hours post fertilization 

HR  homology-directed repair 

IRES  internal ribosome entry site 

IZ   intermediate zone 

K  lysine 

Kan  kanamycin 

kb  kilobases 

LARI  light activated RNA interference 
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LASSO light activated SSO 

LDSSO light deactivated SSO 

LED  light-emitting diode 

LOV  light-oxygen-voltage domain 

lPEI  linear polyethylene imine 

Luc  luciferase 

Lys  lysine 

MAP  mitogen-activated protein kinase 

MBT  midblastula transition 

mCherry Discosoma sp. red fluorescent protein 

MEK  mitogen-activated protein kinase kinase 

MH2  functional domain for homotrimerization of Sma2 

MO  morpholino 

mRNA  messenger RNA 

miRNA micro RNA 

NHEJ  non-homologous end-joining 

NPE  ortho-nitrophenylethyl caging group 

NPOM  6-nitropiperonyloxymethyl caging group 

NPOC  6-nitropiperonyloxycarbonyl caging group 

NTP  nucleoside triphosphate 

ONB  ortho-nitrobenzyl caging group 

PAGE  polyacrylamide gel 

PBS  phosphate-buffered saline 
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PCB  phycocyanobilin chromophore 

PCK  photocaged lysine (NPOC) 

PCKRS PCK-tRNA synthetase mutant 

PCR  polymerase chain reaction 

Phe  phenylalanine 

PheRS  Phe-tRNA synthetase mutant 

Phy  phytochrome domain 

PKA   cyclic-AMP dependent kinase 

PKI  PKA inhibitory peptide 

PIF  phytochrome interaction factor 

Plk3  pololike kinase 3 

PS  phosphorothiotate modification 

PylRS  pyrrolysyl-tRNA synthetase  

PylT  pyrrolysyl tRNACUA  

qRT-PCR quantitative real-time PCR 

Rac1  Ras-related C3 botulinum toxin substrate 1 

RISC  RNA inducing silencing complex 

RLU  relative luminescence unit 

RFP  Discosoma sp. red fluorescent protein 

RFU  relative fluorescence unit 

RNA  ribonucleic acid 

RNAi  RNA interference 

SARA  Smad anchor for receptor activation 
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SARA-SBD SARA binding domain 

SDM  site-directed mutagenesis 

shRNA short hairpin RNA 

siRNA  small interfering RNA 

sox31  member of the B1 Sox gene family 

SSO  splice-switching oligonucleotide 

T  thymine 

TAG  amber codon 

T7RNAp T7 RNA polymerase 

TAE/Mg
2+

 tris base, acetic acid, EDTA, magnesium buffer 

TAMRA tetramethylrhodamine 

TATA box Goldberg-Hogness transcription initiator sequence 

TBE  tris base, borate, EDTA buffer 

TBP  TATA box binding protein 

TCA  trichloroacetic acid 

Tet  tetracycline  

TFIID  transcription factor IID 

TM  melting temperature 

TFA  trifluoroacetic acid 

TFO  triplex-forming oligonucleotide 

THF  tetrahydrofuran 

tRNA  transfer RNA 

Tyr  tyrosine 
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U  uracil 

U6  Pol III promoter 

UAA  unnatural amino acid 

UV  ultraviolet light 

UV-A  wavelength of ultraviolet light 320 – 400 nm 

VZ  ventricular zone 

WT  wild-type 

YFP  yellow fluorescent protein 
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