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A SEQUENTIAL METHOD FOR PASSIVE DETECTION,

CHARACTERIZATION, AND LOCALIZATION OF MULTIPLE LOW

PROBABILITY OF INTERCEPT LFMCW SIGNALS

Brandon M. Hamschin, PhD

University of Pittsburgh, 2015

A method for passive Detection, Characterization, and Localization (DCL) of multiple low

power, Linear Frequency Modulated Continuous Wave (LFMCW) (i.e., Low Probability of

Intercept (LPI)) signals is proposed. We demonstrate, via simulation, laboratory, and out-

door experiments, that the method is able to detect and correctly characterize the parameters

that define two simultaneous LFMCW signals with probability greater than 90% when the

signal to noise ratio is -10 dB or greater. While this performance is compelling, it is far

from the Cramer-Rao Lower Bound (CRLB), which we derive, and the performance of the

Maximum Likelihood Estimator (MLE), whose performance we simulate. The loss in perfor-

mance relative to the CRLB and the MLE is the price paid for computational tractability.

The LFMCW signal is the focus of this work because of its common use in modern, low-cost

radar systems.

In contrast to other detection and characterization approaches, such as the MLE and

those based on the Wigner-Ville Transform (WVT) or the Wigner-Ville Hough Transform

(WVHT), our approach does not begin with a parametric model of the received signal that

is specified directly in terms of its LFMCW constituents. Rather, we analyze the signal

over time intervals that are short, non-overlapping, and contiguous by modeling it within

these intervals as a sum of a small number sinusoidal (i.e., harmonic) components with

unknown frequencies, deterministic but unknown amplitudes, unknown order (i.e., number

of harmonic components), and unknown noise autocorrelation function. It is this model of the
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data that makes the solution computationally feasible, but also what leads to a degradation

in performance since estimates are not based on the full time series. By modeling the signal in

this way, we reliably detect the presence of multiple LFMCW signals in colored noise without

the need for prewhitening, efficiently estimate (i.e., characterize) their parameters, provide

estimation error variances for a subset of these parameters, and produce Time-Difference-

of-Arrival (TDOA) estimates that can be used to estimate the geographical location (i.e.,

localize) of each LFMCW source. We demonstrate the performance of our method via

simulation and real data collections, which are compared to the Cramer-Rao Lower Bound

(CRLB).
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PREFACE

The main three chapters that comprise this dissertation are drawn almost entirely from

three journal papers. At the time of the defense of this dissertation, the first [19] is in

the final stages of preparation for submission to the IEEE Transactions on Aerospace and

Electronic Systems and the other two [18, 20] were nearly complete. Chapter 1, which is

drawn from [19], focuses on the theory of the method developed for Detecting, Characterizing,

and Localizing (DCL) multiple low power Linear Frequency Modulated Continuous Wave

(LFMCW) signals. Chapter 2 is drawn from [18] and develops the Cramer Rao Lower Bound

(CRLB) associated with the LFMCW signal model. Finally, Chapter 3 is drawn from [20]

and focuses on experimental results. We expand on some aspects of these chapters and

provide preliminary results associated with areas of future work in the Appendices. Since

the three chapters are so closely related to [18–20], each of which require introduction and

background material, some content in the chapters may appear redundant.
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1.0 THEORY

This dissertation is devoted to developing and testing a practical method for Detecting,

Characterizing, and Localizing (DCL) an unknown number of low-power Linear Frequency

Modulated Continuous Wave (LFMCW) (i.e.., Low Probability of Intercept (LPI)) radar

signals. In this chapter we focus on developing the method analytically and analyzing its

performance via simulation, wherein we found that practicality comes at the expense of a

loss in estimation accuracy when compared to the Maximum Likelihood Estimator (MLE).

In contrast to the MLE, the practicality of the method is a consequence of it being simul-

taneously 1) computationally tractable, 2) capable of determining the number of LFMCW

signals in the environment, 3) capable of estimating the parameters that define each LFMCW

signal, 4) able to operate without knowledge of the background noise power or autocorre-

lation function and 5) capable of yielding estimates of Time Difference of Arrival (TDOA)

between multiple receivers which enables localization of the radar source, without requiring

high capacity data-links. Simulation results indicate that the parameters of two simultane-

ous LFMCW signals in complex additive white Gaussian noise can be estimated to within

10% of their true values with probability greater than 90% when input Signal to Noise Ra-

tios (SNR) are -10 dB and above. In future chapters we evaluate the performance of the

method on data collected in the laboratory using software defined radios and outdoors, in

the presence of non-stationary noise with unknown autocorrelation function (i.e., Chapter

3) and develop the Cramer-Rao Lower Bound (CRLB) of the parameters that define the

multiple LFMCW signal model (i.e., Chapter 2).
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1.1 INTRODUCTION

The recent development of low cost radar systems that employ low power waveforms with

long duration and large bandwidths were, in part, born out of the advent and proliferation

of solid-state amplifier technology [37]. This technology enabled the production of small,

lightweight radar systems that are capable of reliable detection (due to the signal’s long

duration), and precise ranging (due to the signal’s wide bandwidth) at moderate standoff

ranges. In many maritime environments, these radar systems are not only attractive in terms

of size, cost, and performance, but also because of their potential to operate covertly in the

presence of many current ELectronic INTelligence (ELINT) systems.

Since the majority of ELINT receivers are designed for high power, pulsed signals that

were employed by most past threat radars [41–43], current ELINT systems suffer in the

presence of low power, long duration, wide band signals since it was not until recently that

these signals were feasible for practical radar applications [37, 56]. Consequently, these low

power, wide band radars stand to replace high-power, pulsed radars of the past, which in turn

prompts the need for modern ELINT techniques. The development of a set of techniques

tailored to low power, Linear Frequency Modulate Continuous Wave (LFMCW) signals is

the focus of this paper.1

1In the literature the terms LFMCW and Frequency Modulated Continuous Wave (FMCW) are sometimes
used to refer to the same signal structure, while other times they refer to different signal structures. For
example, sometimes FMCW refers to a signal whose instantaneous frequency has a periodic triangular
structure. As we will see later when our LMFCW signal model is defined, our model assumes an instantaneous
frequency that has a periodic sawtooth structure.

2



While numerous practical approaches exist for passively Detecting, Characterizing, and

Localizing (DCL) high power, pulsed radar systems [56], relatively few exist for modern

radar systems employing low-power LFMCW signals, in spite of their popularity [37, Ch.

2]. For this reason low power LFMCW signals are examples of radar waveforms that have

become known as Low Probability of Intercept (LPI) signals. In Pace [37], LPI and Low

Probability of Identification (LPID) are defined as:

Definition 1 A low probability of intercept (LPI) radar is defined as a radar that uses

a special emitted waveform intended to prevent a non-cooperative intercept receiver from

intercepting and detecting its emission [37, pgs. 3,4].

Definition 2 Low probability of identification (LPID) radar is defined as a radar that uses

a special emitted waveform intended to prevent a non-cooperative intercept receiver from

intercepting and detecting its emission but if intercepted, makes identification of the emitted

waveform modulation and its parameters difficult [37, pgs. 3,4].

In Wiley [56], LPI radar is defined as:

Definition 3 ...a radar system whose signal is below the level of threshold of detection of

opposing ELINT receivers while still being able to detect targets at useful ranges [56, pg.

211].

The common thread between both Pace’s and Wiley’s definitions of LPI and LPID 2 radar

is that the non-cooperative (i.e., passive) intercept receiver in question is ill-suited to collect

ELINT for the waveform employed. Given that the majority of commercial and military

grade radars operate using high peak power, short duration, pulsed signals and, therefore,

that most ELINT systems have been designed for those threats, a case can be made that

modern signals are considered LPI because outdated ELINT receivers are being used to judge

their intercept-ability and identifiability. In other words, attempts to use ELINT receivers

designed for a different class of radar signals to detect and identify (i.e., characterize) new

threats yields results that have a Low Probability of success. Hence, new algorithms for

detecting the presence and characterizing the structure of these signals are needed.

2For the remainder of this chapter we refer to the low-power, long-duration, LFMCW signals that we
focus on as LPI, rather than, say, LPID.
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All current methods for detecting, characterizing, and localizing LFMCW signals are

afflicted by one or more of the following shortcomings:

1. computational requirements limit applicability

2. unable to handle case when more than one LFMCW is present

3. unable to automatically and efficiently determine number of LFMCW signals present

4. unable to set a meaningful detection threshold without knowledge of the statistics of the

additive noise process corrupting the LFMCW signals

5. unable to operate at input Signal to Noise Ratio (SNR) levels characteristic of LPI radar

signals observed at long ranges

6. unable to provide parameter estimates to enable localization, such as Time Difference of

Arrival (TDOA), without access to high speed data links

The main contribution of this work is the development of a sequential method that, while

suboptimal relative to the MLE, addresses each of these shortcomings. To summarize, the

most salient features of our work are:

1. no calibration is necessary, either on-line or off-line in the laboratory, to determine de-

tection threshold η settings as a function of Probability of False Alarm, PFA

2. one does not need to assume the system noise present in the received time-series is white

or has a known autocorrelation function

3. environments containing multiple LFMCW signals can be treated without adding a sti-

fling computational burden

4. automatic recognition of the number of LFMCW signals present in the environment is

achieved

5. in addition to estimates of the parameters that define the instantaneous frequency of

each LFMCW signal, our approach produces estimates of the variances of a subset of

these parameters directly from the data;

6. estimates of the TDOA associated with each LFMCW signal are obtained without the

need for a high speed data-link to transmit raw signal samples to a central node.

4



In the next section we provide background on current methods to justify our statements

regarding their shortcomings. In Section 1.1.3 we overview the sequential method developed

in this chapter that is designed to exhibit the above features.

1.1.1 Background: Detection and Characterization

Whether they are designed for high power, pulsed signals or modern wide-band Continuous

Wave (CW) signals, passive detection and characterization approaches can be broken into

three categories: Noncoherent, Coherent, and Sequential. In the following three sections

we describe each of these approaches. Section 1.1.1.1 provides background on noncoherent

approaches, which requires our focus to be on legacy high power, pulsed signals, since they

were the signals for which noncoherent methods were designed. Next, in Sections 1.1.1.2

and 1.1.1.3 our background discussion shifts to modern signals that utilize phase modula-

tion to increase their bandwidths, with a particular emphasis on the LFMCW variety. In

each of these three sections we assume that the signal in question is the complex envelope

representation [21, pgs. 493-496] of the real-valued signal present at the output of the re-

ceiver’s antenna. The reason for using this model of the data is that many Radio Frequency

(RF) receivers designed for radar and communications applications utilize quadrature re-

ceiver architectures [52, pgs. 566-572], providing the complex envelope representation of the

“real” RF signal. Doing so often leads to simplified analysis and processing, particularly for

demodulation. We develop the complex envelope signal representation in Appendix A and

relate it to the analytic signal representation [4, Ch. 2].
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1.1.1.1 Noncoherent Approaches Noncoherent approaches remove signal phase in-

formation during processing, usually by considering only the magnitude of the signal, thus

simplifying the resulting approaches and making them well suited for high power, pulsed

threats. Some examples of noncoherent detection are integrated energy detectors and M of

N detectors, [56, pg. 212-226], [44, Ch. 6], [22]. In practice, both of these approaches require

one to assume that the noise is white and its power level is known and constant [44, pg.

347] over the collection duration in order to set a threshold that relates to the PFA. Another

approach, known as Constant False Alarm Rate (CFAR) detection [44, pgs. 347-382], does

not require that the noise power is known or constant, but does require that it is white and

Gaussian for a PFA based threshold selection.

A vice and virtue of all noncoherent approaches is that they operate using detection

statistics that are functions of energy alone, which makes them independent of any potential

phase modulation3. This is a virtue because one does not need to assume anything about

the structure of the transmitted signals, making the resulting approaches very general and

well suited for the high power pulsed waveforms that typically contain no intentional phase

modulation. The downside to this, which is especially pronounced when attempting to collect

ELINT on LFMCW signals, is that in the absence of further processing one cannot ascertain

information that characterizes the signal through its instantaneous frequency, since this

information is typically embedded in the phase. Hence, the determination of the number of

signals and a characterization of their full structure is impossible with noncoherent methods.

1.1.1.2 Coherent Approaches Coherent, in contrast to noncoherent approaches, use

signal phase during processing. Since most systems that employ signals with sophisticated

modulation schemes to make themselves LPI are based on Linear Frequency Modulation

(LFM) [37, Ch. 1,2, and 4] [56, pg. 226], the most popular of the coherent approaches for

LPI ELINT are based on the Wigner-Ville Transform (WVT). From the viewpoint of time-

frequency analysis [4], the prominence of the WVT is owed to the fact that for a single LFM

chirp the Wigner-Ville Distribution (WVD) is completely concentrated along the signal’s

instantaneous frequency [4, pg. 121], which is defined by a single straight line in the time-

3This is true since we are assuming a complex envelope representation of the signal.
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frequency plane, and characterized by its slope (a/k/a chirp-rate) β and frequency intercept

f int. Since these are precisely the parameters that serve to characterize LFM signals, the

WVT has become the most common among the many Time-Frequency Distributions (TFD’s)

that have been proposed to analyze LFM and LFMCW signals. In particular, the WVT of an

LFM or LFMCW signal is commonly used as input to image processing techniques that are

designed to detect edges or lines, such as the Radon or Hough Transforms. Unfortunately,

these approaches tend to be computationally demanding and lack meaningful guidance for

threshold selection.

From a detection and estimation theory viewpoint, the use of the WVD was first mo-

tivated by [25], wherein the Generalized Likelihood Ratio Test (GLRT) [22, pgs. 187-189 ]

was derived to decide between the following hypotheses

H0 : r (t) = w (t) (1.1)

H1 : r (t) = b · s
(
t; θ̄
)

+ w (t) (1.2)

where s
(
t; θ̄
)

is a complex, unit magnitude (i.e.,
∣∣s (t; θ̄)∣∣ = 1) deterministic signal with

known structure but unknown parameters θ̄, r (t) is the noisy received signal, and b = bR+jbI

is a zero mean complex Gaussian random variable with variance σ2
b that models the signal

amplitude. Additionally, w (t) is band-limited, zero mean, complex, white Gaussian noise

with known variance. Under these assumptions, the GLRT statistic was found to be the

maximum of the magnitude-squared of the 1-D correlation between the received signal r (t)

and all possible templates of the transmitted signal s
(
t; θ̄
)
. More specifically, the GLRT was

shown to decide H1 if

L = arg max
θ̄

∣∣∣∣∣∣
T∫

0

r (t) s∗
(
t; θ̄
)
dt

∣∣∣∣∣∣
2

> η (1.3)

In accordance with the theory associated with the GLRT, the Maximum Likelihood Estimate

(MLE) of θ̄, denoted by ˆ̄θ, is the value of θ̄ that maximizes (1.3) when the threshold η is

exceeded. Unfortunately, while the detection and characterization scheme is optimal in the

GLRT sense, no guidance is given for selecting η, which implies no control over PFA. In

other words, when the signal is actually present the detector will likely do a very good

job of indicating such, but when the signal is not present false detections are beyond the
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designer’s control. The reason for the lack of guidance in selecting η is because there are

no general results for the Probability Density Function (PDF) of L under H0 [22, pg. 187].

The main mathematical challenge is in deriving a PDF of a random variable that is defined

through a max operation. However, even if an informative threshold could be set, when

the dimension of θ̄ is large and the number of samples of r (t) necessary for the full signal

structure to be observable is high, a computationally practical implementation of (1.3) is

typically impossible [9, 34]. More will be said on this topic in Section 1.5.

The WVD was brought into the solution found in [25] by invoking Moyal’s formula [4, pgs.

128-129] to show that 1-D correlation in (1.3) is equivalent to a 2-D correlation between the

WVD of the received signal Wr (t, ω) and the WVD of s
(
t; θ̄
)
, denoted by Ws

(
t, ω; θ̄

)
.

Specifically, ∣∣∣∣∣∣
T∫

0

r (t) s∗
(
t; θ̄
)
dt

∣∣∣∣∣∣
2

=

∞∫
−∞

∞∫
−∞

Wr (t, ω)Ws

(
t, ω; θ̄

)
dt
dω

2π
(1.4)

where

Wx (t, ω)
∆
=

1

2π

∫
x∗
(
t− 1

2
τ
)
x
(
t+ 1

2
τ
)
e−jτωdτ (1.5)

If s
(
t; θ̄
)

is assumed to be a single LFM chirp, defined by

s
(
t; θ̄
)

= ej(2πf intt+πβt2) (1.6)

where θ̄ =
[
f int β

]T
, then Ws

(
t, ω; θ̄

)
reduces to

Ws

(
t, ω; θ̄

)
= 2πδ

(
ω − 2πf int − 2πβt

)
(1.7)

where δ (·) is the Dirac delta function. Substituting (1.4) and (1.7) into (1.3) yields

L = arg max
f int,β

∞∫
−∞

Wr

(
t, 2πf int + 2πβt

)
dt > η (1.8)

Hence the GLRT for a single LFM chirp is equivalent to path integration of the WVD along

paths determined by different chirp-rates and frequency intercepts. If the value of any such

path integral, which is equivalent to a point in the Hough or Radon Transform domain of the

WVD, exceeds the detection threshold η, then a single LFM signal is detected with the MLE

of its parameters being the f̂ int and β̂ that defined the maximum path integral exceeding
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the threshold. Unfortunately, even for this special case, no direction on how to select η

was given, which suggests one’s only recourse is to either assume a PDF for r (t) under H0,

estimate it on-line with built-in testing equipment, or estimate it off-line with laboratory

experiments. Each of these options is potentially costly and error prone but we speculate

that it must be common-practice given the absence of any alternatives in the literature.

In [9] the authors show that if one assumes that r
(
t; θ̄
)

is the sum of multiple LFMCW

signals with deterministic but unknown amplitudes, the resulting GLRT is equivalent to that

derived in [25] and given above in (1.3). They also demonstrate the relationship between the

GLRT and a form of the WVD. Their model for the received signal under H0 is the same as

in [25] but H1 becomes

H1 : r (t) = s
(
t; θ̄
)

+ w (t) (1.9)

where

s
(
t; θ̄
)

=
M∑
m=1

sm
(
t; θ̄m

)
(1.10)

sm
(
t; θ̄m

)
= bme

jΦm(t) (1.11)

Φm (t) = ϕm + 2πf start
m t

+ πβm mod (t+ ∆m, Tswp,m)2 (1.12)

θ̄ =
[
θ̄T1 . . . θ̄TM

]T
(1.13)

θ̄m =
[
f start
m βm ∆m Tswp,m

]T
(1.14)

where each of the parameters in this model is defined in Table 2. In order to reduce the

dimensionality of their estimation problem they exclude the amplitude bm and phase ϕm from

(1.14) and circumvent the need to estimate them by treating them as nuisance parameters.

Figure 1 shows the spectrogram of a received signal containing two LFMCW components,

each observed with high input Signal to Noise Ratio (SNR), and of the form used in [9] and

summarized in Equations (1.9)-(1.14). For the purposes of this chapter we define the input

SNR of the mth LFMCW signal as

SNRm =
b2
m

σ2
w

(1.15)
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This example signal, with slight modifications to reflect the more general signal model we

consider, is used throughout the paper to highlight various aspects of the sequential detection

and characterization process.

f2
start

f2
start + β2 ⋅mod Δ2 ,Tp,2( )

B2 = β2 ⋅Tswp,2
Tswp,2 β2 =

B2
Tp,2

Figure 1: (main panel) Spectrogram (20 dB dynamic range) of two LFMCW signals signals

based on signal model given in (1.11) by way of [9] (left panel) Frequency marginal of

spectrogram (bottom panel) Real part of time-series r (t)

While the characteristically high SNR at the output of a GLRT detector is desirable since

it yields high Probability of Detection (PD), its practicality is limited since the detection

statistic admits no systematic method for determining η. Furthermore, the authors of [9]

make it clear that for a practical (i.e., computationally feasible) implementation of their

detector for the simplest case when M = 1, a priori knowledge about each dimension of θ̄ is

required to define a search space. Additionally, limits on the number of grid points used to

define each dimension of the search space must be imposed if computational tractability is

to be achieved, which will ultimately limit the accuracy of the estimator. This, however, is

an issue that afflicts all grid based techniques. Furthermore, if M > 1, or even worse, if M

is unknown, the resulting computational burden makes their optimal estimator impractical.

Finally, careful consideration of (1.11) reveals that their signal model forces the entire ob-
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Table 1: Signal Parameters for Figure 1

Variable Description Variable Name Values (m=1, m=2) Units

Amplitude bm 1,1
√
J/s

Phase ϕm 0,0 rad

Starting Frequency f start
m -11,4 MHz

Chirp-Rate βm 0.125,0.0267 MHz/µs

Time-Offset ∆m 0,75 µs

Sweep Time Tswp,m 80,150 µs

No. of LFMCW Signals M 2 —

Sampling Rate Fs 25 MHz

Observation Duration T 655.36 µs

servation interval to be occupied by LFMCW energy, which is a limitation for two reasons.

First, a passive receiver cannot control when the emitter beings to transmit relative to when

the receiver begins to record. A way around this might be to limit r (t) so that it adheres to

(1.11), but such a procedure runs the risk of losing valuable signal information, such as Time

of Arrival (TOA). Second, without a parameter that models delay relative to t = 0, the TOA

of each signal may be unobservable. Without the capacity to estimate TOA, multi-platform

localization, which we discuss in Section 1.1.2, based on Time Difference of Arrival (TDOA)

is impossible.

1.1.1.3 Sequential Approaches A third category of methods, which can be thought of

as “hybrid” approaches, break the process of detecting and characterizing LFMCW signals

into a sequence of subproblems, each leading to a tailored solution. The first example of

such a solution that is tailored to estimating the parameters of (1.12) is found in [34], where

the author develops a method to sequentially estimate each of the parameters in (1.14) for
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the case when M = 1. The method is shown in simulation to perform well, by comparison to

the MLE, for SNR≥ 0 with a markedly lower computational expense. However, because of

the tools used in the sequential method proposed, the approach is limited to the single signal

case. Furthermore, the author focuses completely on the parameter estimation problem (i.e.,

characterization) and therefore gives no guidance on how to select a threshold that indicates

the presence of an LFMCW signal. In other words, the detection problem is not considered.

The approach we develop in this chapter, which is based upon our previous work [16,17],

most appropriately falls in the category of Sequential Approaches. Our method differs from

[34] by the subproblems chosen, the sequence in which they are addressed, and the tools

that are applied to them. These differences account for the ability of the method to handle

a problem formulation that allows M to be estimated, but at an increased computational

expense compared to [34].

1.1.2 Background: Localization

In addition to detecting and characterizing LPI signals, ELINT systems are often tasked

with estimating the location of the sources that transmit them. In passive localization

applications [11], the three primary measurement types used for estimating source location

are Direction of Arrival (DOA) [13], Frequency Difference of Arrival (FDOA), and Time

Difference of Arrival (TDOA).

The primary advantage of DOA based localization systems is that a single moving ELINT

receiver can estimate source locations [13]. However, this method often requires the use of

an antenna array and accompanying receivers that are not only costly, but also necessitate

time-consuming calibration in order to produce accurate DOA estimates. In contrast to

DOA based methods, TDOA and FDOA methods require less sophisticated receiver systems

and as few as one antenna element per receiver. Some level of calibration is required of the

TDOA/FDOA measurement generation process, but it is typically much less involved and,

therefore, less time-consuming and costly than that required for DOA antenna arrays. How-

ever, TDOA/FDOA systems require a network of at least two spatially separated receivers,

synchronized in time, to operate collaboratively to produce TDOA/FDOA estimates. On
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its own, this multi-node requirement limits the applicability of TDOA/FDOA solutions in

many scenarios. Further compounding the practicality of classical TDOA/FDOA methods

is the need to transmit signal samples to a central node so that methods based on cross-

correlation [48] can be implemented to produce estimates of TDOA and FDOA. In scenarios

where wired links between nodes are unavailable, this requirement becomes even more limit-

ing since wireless data-links often have insufficient bandwidth to handle timely transmission

of the quantity of data required to form accurate TDOA/FDOA estimates [48].

1.1.3 Overview of This Work

This section is devoted to summarizing the method developed in this chapter by putting it

into the context of some closely related past work.

While the detection problem framed in (1.1) and (1.2) and the time series defined by (1.9)

- (1.14) are necessary starting points to pose the detection and characterization problems,

the complexity of the signal model (i.e., the large number of parameters necessary to define

it) and the number of samples required for a LFMCW signal to show its full structure in a

received time series makes the optimal correlation-based procedures, like that given in (1.3),

doomed to computational limitations. To depart from this course we adopted an approach

rooted in the field of spectral estimation [40,49] that attempts to extend methods developed

for stationary processes to processes with time-varying spectral content. In particular, our

approach breaks the signal down by analyzing the received time-series over short, non-

overlapping, contiguous time intervals. Within each interval the received signal is modeled

as a sum of harmonic components with unknown order and, within this interval, zero or more

frequency components are detected and estimated. Section 1.2 develops this simplified signal

model and the associated detection and estimation procedure. Over time, the frequency

estimates are collected and used to produce estimates of the parameters that define a more

general model of the received signal than that given in (1.9)-(1.14). The methods used to

process these frequency samples are described in Section 1.3.

The increased generality comes by way of two modifications to the signal model. First,

we include two temporal parameters that allow for the specification of both start-time, tstart
m ,
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and stop-time, tstop
m . Second, we no longer restrict w (t) to be white, stationary, or have

completely known autocorrelation properties. Mathematically, this means that the method

can accommodate w (t) such that

E {w (t1)w∗ (t2)} = R (t1, t2) (1.16)

without assuming R (t1, t2) = R (t1 − t2) = R (τ) or precise knowledge of the autocorrela-

tion function R (t1, t2). One does need to assume that w (t) is Gaussian, locally wide-sense

stationary over short time intervals [8], and that the Power Spectral Density (PSD) associ-

ated with each short time interval does not change abruptly in frequency intervals of width

2W . Both the width of a short time interval and the resolution bandwidth 2W are defined

in Section 1.2. For the purposes of this dissertation, noise processes that do not change

abruptly on over frequency intervals of 2W are referred to as “slowly-varying” [40, pgs. 370,

498]. However, if any or all of these assumptions do not hold for some short time intervals, we

believe the overall method can recover4. The modifications to (1.9)-(1.14) are summarized

as follows, where again

H1 : r (t) = s
(
t; θ̄
)

+ w (t) (1.17)

and

s
(
t, θ̄
)

=
M∑
m=1

sm
(
t; θ̄m

)
(1.18)

θ̄ =
[
θ̄T1 . . . θ̄TM

]T
(1.19)

but now

sm
(
t; θ̄m

)
= Λm

(
t; θ̄m

)
· bmejΦ(t;θ̄m) (1.20)

where

Λm

(
t; θ̄m

)
= u

(
t− tstart

m

)
− u

(
t− tstop

m

)
(1.21)

Φ
(
t; θ̄m

)
= ϕm + 2π

t∫
0

fm (ν) dν (1.22)

fm (t) = f start
m + βm mod (t+ ∆m, Tswp,m) (1.23)

4We believe that the assumptions for w (t) to have a Gaussian distribution and its power spectrum to be
slowly-varying can be broken over short, infrequent periods of time. We describe the theoretical basis for
this belief in Section 1.2 and test it in Chapter 3.
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and u (t) is the unit-step function. In contrast to the definition of the instantaneous phase

of the mth signal given in (1.12), we define Φ
(
t, θ̄m

)
in (1.22) as a function of the integrated

instantaneous frequency defined by (1.23). The reason for this is that our detection and char-

acterization procedures are more naturally suited to a definition of instantaneous frequency

than a definition of the instantaneous phase. Consequently, we avoid the mathematical diffi-

culties of expressing the instantaneous frequency as the time derivative of the instantaneous

phase, which is undefined since the mod (·, ·) operation used in (1.23) is not differentiable.

Finally, the unknown parameter vector is modified to include bm, ϕm, tstart
m , and tstop

m

θ̄m =



bm

ϕm

tstart
m

tstop
m

f start
m

βm

∆m

Tswp,m



(1.24)

Since the signal model given in (1.17)-(1.24) is a generalization of that given in (1.9)-(1.14),

Figure 1 and the parameters given in Table 1 serve as a concrete example of our signal model

with tstart
m = 0 and tstop

m = T .

The remainder of this chapter is devoted to developing our approach theoretically and

analyzing its performance via simulation. To do so it is organized as follows. Sections 1.2-1.4

cover the algorithmic details associated with each part of the DCL process. In particular, the

detection and characterization algorithms are detailed in Sections 1.2 and 1.3. To describe

the method we carry an example through these sections that is based on the signal shown

in Figure 1 and Table 1. The noisy signal used in these examples is at high SNR (i.e., 0

dB) in order to highlight the algorithm’s operation. The localization concept is described in

Section 1.4 along with the relevant TDOA measurement model. In Section 1.5 we provide

mean and Mean Squared Error (MSE) estimates derived from Monte Carlo experiments that

compare our sequential method to the MLE for M = 1. For the M = 2 case, we show similar
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performance metrics but omit a comparison to the MLE because implementing it in a Monte

Carlo simulation was too time consuming. In contrast to the example signal used to develop

the theory in Sections 1.2 and 1.3, we reduce the SNR until the algorithm breaks down to

determine its limitations. We found that the breakdown point occurred at -10 dB SNR.

Finally, we summarize the strengths and weaknesses of our approach in Section 1.6 and give

suggestions for future work in Section 1.7.
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1.2 DETECTION

In this section we describe the detection step of the algorithm. The term ‘detection’ is used

to to refer to this step since it is where we formulate the first hypothesis test and where

control over PFA is obtained through our choice of a detection threshold. To be clear, in

our problem formulation a false alarm is not the incorrect declaration of the presence of

one or more LFMCW signals, as it would be if we were deciding between (1.1) and (1.2).

Instead it is the incorrect declaration of the presence of one or more complex exponentials

in a short-time interval. A more precise definition of what is meant by a short-time interval

is given below.

Consider the following hypothesis test 5

H0 : rn,k = wn,k (1.25)

H1 : rn,k = sn,k + wn,k (1.26)

where rn,k is the nth sample, for n = 1, . . . , N , of r (t) in the kth time interval. The kth time

interval is given by

δk = {t : (k − 1) ·NTs ≤ t ≤ k ·NTs)} (1.27)

where k = 1, . . . , K = b T
N ·Ts c. That is,

rn,k = r ((k − 1) ·NTs + nTs) (1.28)

Within this short time interval we model the received time-series as a sum of a small number

harmonic components, which gives rise to the following Short Time Harmonic Model (STHM)

of the data

sn,k ≈ sSTHM
n,k =

Lk∑
c=1

Cc,k · ej2πfc,knTs (1.29)

where Lk ≤ M is the number of constant frequencies fc,k present in δk. The complex

amplitude is given by Cc,k = bc,ke
jφc,k where bc,k is as defined in (1.20) and φc,k is the phase

of the cth harmonic component in the kth short-time interval. We emphasize that Lk and each

bc,k, fc,k, and φc,k are assumed to be unknown, but deterministic. From this point forward

5Samples of a continuous time signal x (t) are denoted by xn ≡ x (t) |t=nTs
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we take the approximation in (1.29) to be an equality. Furthermore, in δk we assume that

wn,k is a wide sense stationary, band-limited, zero mean, complex Gaussian random process

with unknown PSD Pwn,k (f) that is not necessarily constant (i.e., {wn,k} can be colored

noise), but is slowly-varying. 6 The ability to handle an unknown colored noise process is

what justifies Item 2 from the features list given in Section 1.1, and is a key feature for a

practical implementation since the PSD of the noise is rarely known a-priori. This feature

is a byproduct of Thomson’s method for harmonic analysis, which we apply to (1.28) to

decide between (1.25) and (1.26), and results because no further assumptions on the noise

autocorrelation function are required in the method’s development. Making few assumptions

on the structure of the autocorrelation function is common in the field of spectral analysis,

from which this method is drawn.

The STHM of the received multicomponent LFMCW signal in δk is

rn,k = sSTHM
n,k + wn,k (1.30)

So, within δk selection between H0 and H1 can be achieved using Thomson’s multi-taper

method for harmonic analysis, which was first proposed in [51] and later summarized in [40,

pgs. 331-374, 496-514]. In what follows we overview the method by following [40, pgs.

331-374, 496-514] closely and highlighting its main features in the context of our LPI DCL

problem.

6The assumption that the PSD is slowly-varying is a mathematical necessity for the development of the
test statistic outline in Section 1.2.1. However, in practice we only need the PSD to not exhibit dramatic
variations (i.e., be slowly-varying) in most of the short-time intervals since a small percentage of missed
detections or erroneous detections that are a result of instability in the detector can be tolerated by the later
steps devoted to characterization outlined in Section 1.3.
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1.2.1 Steps for Detecting and Estimating STHM Parameters via Thomson’s

Method

UnderH1, {rn,k} is a set of samples with a sinusoidally varying mean. Accordingly, the goal of

the decision procedure designed to decide between (1.25) and (1.26) is to determine whether

the mean is statistically different from zero and consistent with the harmonic model of the

mean given in (1.29). The key idea behind making this determination is to express (1.30)

in the frequency domain and, upon application of Thomson’s multi-taper method, recognize

the regression problem that results. The decision procedure then amounts to determining

the statistical significance of the computed regression coefficients, which leads to estimates

of bc,k, fc,k and, φc,k. For the sake of brevity the detailed development of Thomson’s method

is omitted from this chapter, but the reader can consult [40, pgs. 331-374, 496-514] for an

excellent description of the method for harmonic analysis of real-valued signals or Appendix

B for the derivation for the complex envelope data model adopted in this chapter. The

following steps amount to an extension of the approach given in [40, pgs. 331-374, 496-514]

to apply to the complex envelope model adopted in this chapter.

We now give a summary of the steps necessary to test whether the samples in δk contain

significant frequencies, determine estimates of their values, and compute estimates of Lk,

bc,k, fc,k and φc,k.

Step 0 – For q ∈ {0 . . . Q − 1}, with Q = 2NW − 1, compute the associated length N

DPSS data taper7 {hq,n} [40, Ch. 8] where N is the number of samples taken in δk at

the sample rate Fs. The resolution bandwidth W , for W in the normalized frequency

range 0 ≤ W ≤ 0.5, determines the minimum separation between frequencies in the

same δk that can be resolved. In other words, distinct frequencies f1,k and f2,k will be

indistinguishable if |f1,k − f2,k| /Fs < 2W . Assuming N and W are fixed for all δk, this

step only needs to be performed once and the tapers applied to each δk.

Step 1 – Let Jq,k (f) be the Fourier Transform of {
√
Ts · hq,n · rn,k}. Then, for p =

−NFFT
2
, . . . NFFT

2
− 1, compute samples of Jq,k (f) using an NFFT point Fast Fourier

7The MATLAB c© Signal Processing Toolbox [30] provides a routine that computes the required Q tapers.
In particular, h = dpss(N,NW,Q) is a matrix of size NxQ whose qth column is {hq,n}.
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Transform (FFT). Specifically, let Jq,k (p ·∆f), where ∆f ≡ Fs/NFFT , be the pth point

of the FFT of {
√
Ts · hq,n · rn,k}.

Step 2 – For q ∈ {0, . . . , Q− 1}, compute Hq (0) = Ts
N∑
n=1

hq,n

Step 3 – For p = −NFFT
2
, . . . , NFFT

2
− 1, compute C (p ·∆f) ≡

√
Ts ·

Q−1∑
q=0

Jq,k(p·∆f)Hq(0)

Q−1∑
q=0

H2
q (0)

Step 4 – For each q ∈ {0, . . . , Q − 1} and each p = −NFFT
2
, . . . , NFFT

2
− 1, compute

Ĵq,k (p ·∆f) ≡ C (p ·∆f) Hq(0)√
Ts

Step 5 – For p = −NFFT
2
, . . . , NFFT

2
− 1 compute Dk (p ·∆f) =

(Q−1)|C(p·∆f)|2
Q−1∑
q=0

H2
q (0)

Ts
Q−1∑
q=0
|Jq(p·∆f)−Ĵq(p·∆f)|2

Step 6 – For a given PFA, compute the detection threshold η by η =
(Q−1)(1−PFA1/(Q−1))

P
1/(Q−1)
FA

,

since under H0, Dk (p ·∆f) ∼ F2,2Q−2 [40, pg. 501], where F2,2Q−2 is an F-distribution

with 2 and 2Q− 2 degrees-of-freedom.

Step 7 – Select the indices, denoted by pc, corresponding to the largest values of {Dp,k}

such that Dk (p ·∆f) ≥ η and |pi − pj| >
⌈

2W ·FS
∆f

⌉
. The number of peaks meeting these

criterion is the estimate of Lk, with associated frequency estimates given by f̂c,k = pc∆f .

Amplitude and phase estimates are given by b̂c,k =
∣∣∣Ĉc,k∣∣∣ and φ̂c,k = 2 · tan−1

(
Im{Ĉc,k}
Re{Ĉc,k}

)
,

respectively.

Following Step 6 we have a (potentially empty) set of ordered pairs

Sk =
{(
tk, f̂1,k

)
, . . . ,

(
tk, f̂Lk,k

)}
(1.31)

corresponding to frequency estimates made at time tk, where tk is defined to be the sample

time closest to the center of δk. Hence, the PFA specified controls the probability of detecting

the presence of a harmonic component when one is not actually present. This way of speci-

fying PFA leads to a different interpretation than if PFA were specified in the context of (1.1)

and (1.2), but doing so still provides the designer control over incorrect decisions related to

the detection of one or more LFMCW signals. Implementing this sequence of steps for all k

produces the set S = {S1, . . . ,SK} containing all frequency estimates obtained in the time

interval (0, T ). The set S is the main input to the Characterization step, which is described

in Section 1.3.
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If no significant frequency components exist in any of the time intervals δk then the DCL

process is terminated and declares no LFMCW signals are present in the environment.

1.2.2 Selecting N and W

In this section we provide guidance for selecting N and W . To do so it is instructive to

summarize the trade-offs one faces as N and W are varied.

1. Pro: As N grows detection performance increases as long as the STHM model given in

(1.30) holds [22, pgs. 484,485]

2. Con: As N grows the less the samples of (1.17) will adhere to (1.30) since the true

instantaneous frequency of the signal (1.23) is increasing or decreasing linearly with time

3. Pro: As W increases the number of usable tapers Q = 2NW − 1 increases, which yields

an estimate of Cc,k with lower variance [40, pg. 499]

4. Con: As W increases the minimum separation between frequencies in same δk that

can be resolved increases [40, pg. 335], as does the computational effort required to

implement Steps 0-7

Based on items 1 and 2 above, it becomes evident that we would like to find the largest

possible N such that the STHM holds. To find such an N we analyze the spectrogram of a

single LFM chirp. The spectrogram, which we have already utilized in Figure 1 to visualize

the time-frequency content of two simultaneous LFMCW signals, is a general analysis tool

that can be used to uncover properties of signals whose frequency content varies with time.

The spectrogram accomplishes this goal by breaking the signal into small time segments,

applying a window that is centered on each segment and falls off rapidly outside it, then

applies a Fourier Transform. The time ordered collection of each of these spectra is called the

Short-Time Fourier Transform, and its magnitude-squared is referred to as the spectrogram

[4, Ch. 7]. Given its nature, it is well suited to draw conclusions about our STHM. In

particular, to determine the relationship between N and β, such that N is as large as

possible without deviating too much from a constant frequency, we model a single segment
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of an LFMCW signal as

s (t) =

(
1

2σ2
sπ

)1/4

e−t
2/(4σ2

s)+jβt2/2+jω0t (1.32)

which is an LFM chirp with a Gaussian amplitude. Next, suppose that the window used to

construct the spectrogram is also Gaussian such that

h (t) =

(
1

2σ2
hπ

)1/4

e
− t2

2σ2
h (1.33)

where σs and σh are related to the temporal duration of s (t) and h (t), respectively. Then, it

can be shown [4, pgs. 104-105] that the spectral variance of s (t) conditioned on t, computed

with a spectrogram having window defined by h (t) is

σ2
ω|t =

1

2

(
σ2
s + σ2

h

2σ2
sσ

2
h

+
2β2σ2

sσ
2
h

σ2
s + σ2

h

)
(1.34)

This expression quantifies the amount of spectral deviation that occurs at a given instant

in time for a fixed β as a function of the temporal duration of the chirp and the window.

Hence, it can be used to determine how to control spectral spread based on the window

chosen [5]. So, if we assume β and σ2
s are fixed, minimizing σ2

ω|t with respect to σ2
h gives us

an indication of the maximum amount of time that can elapse while keeping the deviation

of frequency about the conditional mean small. The necessary condition
∂σ2
ω|t

∂σ2
h

= 0 yields 8

σ2
hσ

2
s

σ2
h + σ2

s

=
1

2 |β|
⇒ σh ≈

1√
2|β|

, for σ2
h � σ2

s (1.35)

Requiring that σ2
h � σ2

s is equivalent to requiring that the observation duration of an entire

chirp segment is much greater than the duration of a short-time interval δk. This is true by

definition δk. So, a reasonable starting point for selecting an upper bound on N is to let

Nmax = d2σhFse =

⌈
2Fs√

2 |βmax|

⌉
(1.36)

where |βmax| is the maximum possible absolute chirp-rate expected and d·e is the ceiling

operator.

8It can also be shown that the second derivative of σ2
ω|t with respect to σh evaluated at σh = 1√

2|β|
is

greater than zero, which guarantees that our solution is a local minimum as desired.
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With a value for N chosen as given above, selecting NW requires one choose W , which

fixes Q. From Items 3 and 4 above, the main trade-off faced by the selection of W is a

common one faced in spectral analysis: spectral estimator variance vs. resolution. In general

spectral estimation, where one applies a spectral estimator in order to uncover the structure

of the signal’s power distribution over frequency, often little can (and should) be assumed

about that structure a-priori. However, our application of Thomson’s Method as a spectral

estimator is tailored for a specific model of the data given through (1.29). Furthermore, in

practice it is possible that multiple LFMCW signals are present in the same operating band,

like those given in the example shown in Figure 1, and possibly even have instantaneous

frequencies that cross in the time-frequency plane. However, it is unlikely that multiple

signals overlap for a significant percentage of time, such that their instantaneous frequencies

are within ±WFS of one another. To illustrate this, consider the example of the signal given

by (1.18) and defined in Table 1. If we assume that the maximum possible chirp-rate is

1.8β1 then Nmax = 76 and a selection of NW = 15, which is very large compared to more

typical selections [40, pg. 335] of NW = 2, 3, or 4, yields a resolution half-bandwidth of only

W · Fs = 0.023 MHz. It is reasonable to assume that no other LFMCW signals will exist

within ±0.023 MHz of one another at a given instant of time, and even less likely to be the

case over long periods of time. If this were not the case the radar systems employing these

waveforms would likely interfere with one another and, if possible, at lease one of the radars

would modify its signal properties to avoid the interference. While NW is not limited in

the same way it is when multitaper methods are applied to general spectra, NW cannot be

chosen arbitrarily large though since the more tapers that are used the more computation

that is required, as noted in Item 4 at the beginning of this subsection.
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1.2.3 Detection Example

In this section we give an example of detection based on the STHM. The signal used is very

close to that given in Figure 1 and Table 1 except that noise is added with σ2
ω = 1 so that

SNR1 = SNR2 = 0 dB. Additionally, tstart
m and tstop

m parameters are included. The specific

parameters of the example signal used throughout the rest of this chapter are given in Table

2. The particular parameters required of Steps 0-7 are summarized in Table 3.

Table 2: Signal Parameters for Detection and Characterization Examples

Variable Description Variable Name Values (m=1, m=2) Units

Amplitude bm 1,1
√
J/s

Phase ϕm 0,0 rad

Start Time tstartm 10,20 µs

Stop Time tstartm 650,620 µs

Starting Frequency f start
m -11,4 MHz

Chirp-Rate βm 0.125,0.0267 MHz/µs

Time-Offset ∆m 10,20 µs

Sweep Time Tswp,m 80,150 µs

No. of LFMCW Signals M 2 —

Sampling Rate Fs 25 MHz

Observation Duration T 655 µs

The top panel of Figure 2(a) shows the whole time-series {rn} in blue and {rn,15} overlaid

in red. A closer look at {rn,15}, which we assume adheres to the STHM given in (1.29), is

shown in the lower panel of Figure 2(a). Figure 2(b) shows the detection statistic that results

from Steps 0-5, plotted as a function of frequency, and the associated detection threshold

computed based on Step 6. Following execution of Step 7, we arrive at the following set of
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frequency estimates for δ15 and t15 = 44.08 µs

S15 = { (44.08 µs,−6.753 MHz) ,

(44.08 µs, 4.639 MHz)} (1.37)

which are plotted, along with truth at t15 on the spectrogram given in the main panel

of Figure 2(c). For comparison, the true instantaneous frequency at t15 for s1

(
t; θ̄1

)
is

−6.740 MHz and 4.642 MHz for s2

(
t; θ̄2

)
.

Table 3: Implementation Parameters for Detection Example

Variable Description Variable Name Value Units

FFT Length NFFT 214 —

SHTM Window Length N 76 —

Resolution Bandwidth W · Fs 0.023 MHz

Number of Tapers Q 29 —

False Alarm Probability

Per Short Time Interval PFA 10−4 —

Performing Steps 1-7 for each k yields the set S, which is plotted in Figure 2(d), along

with truth. A close look at Figure 2(d) reveals that the estimates associated with the instan-

taneous frequency of each LFMCW signal appear to be very close to their true instantaneous

frequencies. While visual confirmation is satisfying, any firm conclusion on the estimation

accuracy is deferred to Section 1.5, wherein we determine how well these frequency esti-

mates enable the estimation of each element of each θ̄m. The set S is the main input to the

Characterization step, which is described next.
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(a) (b)

(c) (d)

Figure 2: Detection Example: (a) Received Time-Series {rn} (Blue) and Received Time-

Series in δ15 (Red), (b) Detection Test Statistic Computed based Steps 0-6 using {rn,15},

(c) (main panel) Spectrogram (20 dB dynamic range) of {rn} with Frequency Estimates via

STHM in δ15 (left panel) Frequency Marginal of the Spectrogram (lower panel) Real part of

time-series {rn}, (d) Frequency Estimates vs. Sample Time tk
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1.3 CHARACTERIZATION

The characterization stage picks up where the detection stage leaves off by operating on

S. The purpose of this step is to produce estimates of θ̄m given by the signal model that

accompanies (1.24). The process by which these estimates are obtained is broken into 3

steps:

1. Clustering, wherein the frequency samples in S are clustered by chirp segment;

2. Association, wherein the chirp-segments, and their associated frequency estimates, are

associated to individual LFMCW signals;

3. Estimation, wherein the estimates of all unknowns specified in (1.20) and (1.24) are

computed for each LFMCW signal.

1.3.1 Clustering

The core ideas associated with this stage are drawn from the clustering method proposed

in [10, 15], wherein the authors seek to estimate the locations of an unknown number of

Radio Frequency (RF) sources using Line-of-Bearing (LOB) measurements by clustering the

measurements into groups using a Mahalanobis distance criterion. Among the potentially

numerous candidate clusters that arise due to one RF source, the optimal cluster is chosen

to be the one that maximizes a likelihood function. Once the LOB measurements associated

with the Maximum Likelihood (ML) cluster are determined, they are removed from the

overall list of LOB measurements and the process is repeated until no feasible clusters are

generated. For the purposes of our work the frequency estimates in S are analogous to the

LOB measurements and the chirp segments are analogous to RF source locations.
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As in [10,15], we assume the number of chirp segments present in S is unknown a-priori.

It is the ability to make this assumption in conjunction with the assumption that Lk from

(1.29) is unknown that allows our sequential method to handle situations where M is not

only greater than unity, but also unknown and possibly zero. Additionally, we assume the

frequency estimates can be modeled as f̂c,k = fc,k (xc,k) + ζfc,k , where fc,k (xc,k) is the true

instantaneous frequency and xc,k =
[
f int
c,k βc,k

]T
is the vector of unknown parameters of

the cth chirp-segment in time interval δk corresponding to measurement time tk. Hence f̂c,k

can now be interpreted as a measurement of the instantaneous frequency of the cth chirp-

segment at time tk. Since the instantaneous frequency of each chirp-segment is, by definition,

a linear function of time, fc,k (xc,k) = f int
c,k + βc,ktk we have that

f̂c,k = f int
c,k + βc,ktk + ζfc,k (1.38)

= Hkxc,k + ζfc,k (1.39)

where Hk =
[

1 tk

]
is referred to as the model matrix. To account for the error induced on

f̂c,k by the random noise {wn,k} and the modeling error resulting from the assumed STHM

found in (1.29), we include an Additive White Gaussian Noise (AWGN) error term ζfc,k that

we assume is zero mean with variance σ2
f̂c,k

. The fact that ζfc,k is assumed to be zero mean

is equivalent to assuming that f̂c,k is an unbiased estimator for fc,k. This is a reasonable

assumption since we ensure, by Step 7 in Section 1.2, that multiple frequency components

within the same δk are well-separated9 and, therefore, avoid influence, or bias, due to spectral

leakage from neighboring frequencies. Whiteness of ζc,k is justified if {wn} is white and the

error terms are from different δk’s, but perhaps only approximately true otherwise. The

assumption that Pw (f) in each δk is slowly varying is, however a reasonable justification

for why this assumption will hold approximately when {wn} is colored. Assuming that the

noise has a Gaussian distribution is a convenient mechanism for developing the maximum

likelihood solution. Finally, the estimation error variance σ2
f̂c,k

can be approximated by [40,

Eq. 477b, pg. 477]

σ2
f̂c,k
≈ 3

N3R̂c,k (πTs)
2

(1.40)

9With reference to Step 7 from Section 1.2.1, “well-separated” means adjacent peaks are at least d 2W ·Fs

∆f e
Hz apart.
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where R̂c,k =
Â2
c,k

2·σ̂2
wn,k

is an estimate of the SNR associated with the cth sinusoid in the kth

time interval, and σ̂2
wn,k

is the sample variance of the residuals ŵn,k = rn,k − ŝn,k where

ŝn,k =
L̂k∑
c=1

Ĉc,k · e2πf̂c,ktk . Then,

(
f̂c,k−Hkxc,k

σf̂c,k

)2

is approximately Chi-Square distributed with

one degree-of-freedom, an approximation we take to be a fact in what follows. So,

(
f̂c,k −Hkxc,k

σf̂c,k

)2

∼ χ2
1 (1.41)

where χ2
1 denotes a chi-squared distribution with one degree-of-freedom.

With all the preliminaries in place we are now positioned to describe the 4 steps of the

clustering algorithm. Before we do so we point out a simplification in notation that we will

adopt throughout the remainder of this Section. In particular, we index the sample times

and associated frequency estimates in S with a single index, rather than the (·)c,k used up

to this point. As a result, when a time-interval δk gives rise to more than one frequency

estimate there will be indices i and j, where i 6= j, such that ti = tj and f̂i 6= f̂j. While this

notation is generally more convenient, we will occasionally need to refer to the time interval

δk that gave rise to a particular frequency estimate f̂i. To do so we define the mapping

I (i) = k, which is not one-to-one. This mapping amounts to book keeping in a computer

implementation.

Step 1 – Compute Candidate Chirp-Segments : The first step is to compute all pos-

sible chirp-segment parameters from pairs of frequency estimates
(
f̂i, f̂j

)
, such that

|I (i)− I (j)| > g, where g > 0 is a user-defined integer. This integer specifies the min-

imum number of time intervals that must separate frequency samples used to compute

candidate chirp-segment parameters. A trade-off exists in the selection of g. Choosing g

to be too small will result in an unnecessarily large computational burden since a very

large number of candidates will result. Furthermore, solutions resulting from sample

times too close together will be ill-conditioned. On the other hand, choosing g to be too

large will limit the number of candidates available from which to form clusters. For the

time-scales and sample-rates considered in this example, g = 5 works well. However, if
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the conditions on N given in Section 1.2.2 are met then g = 5 will likely work well in

general. Hence, the MLE of xij [21, pg. 186] is

x̂ij =
(
HT
ijR

−1
ij Hij

)−1
HT
ijR

−1
ij f̂ij (1.42)

=

 β̂ij

f̂ int
ij

 (1.43)

where

Hij =

 Hi

Hj

 (1.44)

f̂ij =

 f̂i

f̂j

 (1.45)

Rij =

 σ2
f̂i

0

0 σ2
f̂j

 (1.46)

The associated estimation error covariance [21, pg. 186] is

Pij = E
[
(x− x̂ij) (x− x̂ij)

T
]

(1.47)

=
(
HT
ijR

−1
ij Hij

)−1
(1.48)

and the associated estimation error covariance is [21, pg. 186]

Pij = E
[
(x− x̂ij) (x− x̂ij)

T
]

=
(
HT
ijR

−1
ij Hij

)−1
(1.49)

Each computed x̂ij and associated Pij are only considered chirp-segment candidates if

the resulting β̂ij is within a specified range of chirp-rates. In practice, chirp-rate can be

bounded since the physical limitations of hardware will prohibit arbitrarily large or small

chirp-rates.
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Step 2 – Determine Frequency Estimates that are Statistically Similar to each Candidate:

In this step we use the statistical distance metric known as the Mahalanobis distance

to compare each frequency estimate from S to each candidate chirp-segment computed

in the previous step. Specifically, for frequency estimate f̂i, for i = 1, . . . , Nest, and

chirp-segment candidate xj, where j = 1, . . . , Ncand, the Mahalanobis distance is Mij =(
f̂i−Hj x̂j

σf̂i

)2

, which, like in (1.41), we assume is approximately χ2
1 distributed when x̂j

is the actual chirp-segment associated with f̂i. We use this approximation to formulate

a hypothesis test whose null hypothesis is that the frequency estimate f̂i falls on the

candidate chirp-segment defined by x̂j. Let αC be the probability of Type I error (i.e.,

the probability that the null hypothesis is rejected when it is true) and let γ be the

critical value from the χ2
1 distribution such that

Pr
(
χ2

1 ≤ γ
)

=

∫ γ

0

χ2
1 (ξ) dξ = 1− αC (1.50)

which can be determined numerically 10 or using standard tables [7]. So, we let f̂i be

a member of cluster Cj if Mij ≤ γ. In other words, Cj is the set of indices such that

Cj = {i :Mij ≤ γ}. Since the two indices associated with the frequency estimates that

are used to compute x̂j from Equation (1.43) will always appear in Cj, we require that

the number of elements in a feasible cluster, denoted |Cj|, be at least 3. Finally, we note

that elements of Cj are indexed by j1, . . . , j|Cj |.

Step 3 – Find ML Cluster Among Feasible Clusters : The third step is to determine the

ML cluster. This is accomplished by first using all frequency estimates in each cluster

to compute a combined chirp-segment parameter estimate, x̂Cj . Based on this chirp-

segment parameter estimate and the associated frequency estimates in Cj we compute

the likelihood value, Lj.

10With the Statistics Toolbox in MATLABr, the Chi-Squared critical value can be computed as γ =
chi2inv

(
1− αC, ν

)
, where ν is the number of degrees of freedom and α is the probability of Type I error.
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First, we note that similar to Equation (1.43) the MLE of xCj is

x̂Cj =
(
HT
CjR

−1
Cj HCj

)−1

HT
CjR

−1
Cj f̂Cj (1.51)

where

HCj =

[
HT
j1
· · · HT

j|Cj|

]T
(1.52)

f̂Cj =

[
f̂j1 · · · f̂j|Cj|

]T
(1.53)

RCj =


σ2

f̂j1
· · · 0

...
. . .

...

0 · · · σ2
f̂j|Cj|

 (1.54)

and the associated estimation error covariance is

PCj =
(
HT
CjR

−1
Cj HCj

)−1

(1.55)

Hence, the value of the likelihood function is

Lj =

|Cj |∏
l=1

1

σf̂jl

√
2π
e
− 1

2

(
f̂jl
−Hjl

x̂jl
σ
f̂jl

)2

(1.56)

which is equivalent to the PDF of f̂Cj evaluated at f̂Cj and x̂Cj . Hence, the cluster giving

the largest likelihood value is

jmax = arg max
j

Lj (1.57)

Step 4 – Retain ML Cluster Estimates and Remove Associated Frequency Estimates

from S: The fourth step is to retain the ML chirp segment estimate x̂jmax and the

associated estimation error covariance matrix Pjmax . Finally, we remove the elements of

Cjmax from S and repeat Steps 1-3 until no candidate clusters are formed.
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1.3.1.1 Clustering Example In the remainder of this section we apply the clustering

approach just developed to the results from the example given in Section 1.2.3. In particular,

we use the frequency estimates f̂i vs. sample time t̂i shown in Figure 2(d) as the elements

of S and attempt to find one cluster for each chirp-segment present in the data. In other

words, if the clustering approach functions properly then we will produce twelve clusters Cj
whose elements correspond to the indices associated with frequencies falling on the correct

chirp-segment.

Figure 3 shows the clustering results in terms of the elements of each Cj and the result-

ing x̂Cj , with implementation parameters given in Table 4. Figure 3(a), which resembles

2(d), shows the frequency estimates within each of the twelve clusters automatically formed

by the algorithm described in Steps 1-4 of this Section. Each color/marker-style combina-

tion corresponds to a unique Cj. The most interesting result associated with Figure 3(b) is

that all frequency estimates in S were correctly associated with estimates of chirp-segment

parameters that were very close to their true values. In other words, each Cj contained fre-

quency estimates from S that resulted from the associated true chip-segment, xj. Using the

same color/marker-style combinations as Figure 3(a), Figure 3(b) shows the chirp-segment

parameter estimates computed via (1.51) along with truth, xj. This figure is another way

of showing that each of the twelve chirp-segments present in the data gave rise to a unique

cluster that resulted in a chirp-segment parameter estimate that was very close to truth.

Figure 3(c) is a magnified view of the frequency estimates in C2 from Figure 3(a). The intent

of this figure is to show that the frequency estimates via the STHM fall along a straight line.

Figure 3(d) is a magnified view of x̂C2 from Figure 3(b). In addition to truth and x̂C2 , Figure

3(d) shows the 95% containment region resulting from the estimation error covariance matrix

given by (1.55). The resulting ellipse is equivalent to the level-set of a bivariate Gaussian

distribution with mean x̂C2 and covariance PC2 that contains 95% of the total probability

mass. The main takeaway from Figure 3(d) is that for this example and this cluster, all

of the modeling assumptions leading up to it were accurate enough to produce estimates

of x̂C2 and PC2 that are statistically consistent since the ellipse contains truth. This same

characteristic is true of the remaining 11 clusters. The observation of statistical consistency

at this stage is compelling evidence for the validity of our modeling assumptions.
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(a) (b)

(c) (d)

Figure 3: Clustering Example: (a) Chirp-Segments Clustered by Frequency, (b) Chirp-

Segment Parameter Estimates Associated with Each Frequency Cluster, (c) Magnified View

of Frequency Estimates Contained in Cluster 1, (d) Magnified View of Chirp-Segment Pa-

rameter Estimates Resulting from Cluster 1
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Table 4: Implementation Parameters for Clustering Example

Variable Description Variable Name Value Units Relevant Clustering Step

Minimum # of time intervals δk

that must separate frequency samples

to compute candidate chirp segment g 5 — 1

Maximum Feasible Chirp Rate βmax 0.225 MHz/µs 1

Minimum Feasible Chirp Rate βmin -0.225 MHz/µs 1

Probability of Failing to

Associate a Frequency Sample

to Correct Chirp Segment αC 10−4 — 2

Minimum Number of

Elements in Cluster Nmin 6 — 2
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By contrast to all other detection and characterization steps of or sequential method,

this step is the most time consuming and would benefit most of improvements related to

increasing executing speed.

1.3.2 Association

The goal of the association stage is to associate Cj’s corresponding to the same LFMCW

signal. With reference to Figure 3(a), if the association stage performs properly the four

higher frequency chirp-segments will associate with one LFMCW signal and the remaining

eight lower frequency chirp-segments with associate with the other LFMCW signal. To

accomplish this association within a statistical framework we will perform two hypothesis

tests.

In the first hypothesis test we treat the samples within each Cj as realizations from an

unknown PDF. This view of the data motivates a hypothesis test where the null hypothesis

is that frequency estimates contained in Ci and Cj are realizations from the same underlying

PDF. Rejecting this null hypothesis, and accepting the alternative hypothesis, amounts to

concluding the data are from different PDF’s. The most common approach for deciding

between these hypotheses is the so-called Kolmogorov-Smirnov (KS) test [57, pgs. 620,

623-626]. The KS test statistic is

DKS
ij = arg max

−∞<f<∞

∣∣SCi (f)− SCj (f)
∣∣ (1.58)

where, for |Cj| frequency estimates f̂j1 , . . . , f̂j|Cj|
, SCj (f) is the function that gives the fraction

of estimates less than a given value f (i.e., an estimate of the Cumulative Distribution

Function (CDF)). Under the null hypothesis, the CDF of DKS
ij can be closely approximated

by a computable function. So, the null hypothesis is rejected if

αKS ≤ CDFDKS
(
DKS
ij

)
= Pr

(
DKS < DKS

ij

)
(1.59)

where αKS is the significance level of the test (αKS = 0.05 is a common value) and

Pr
(
DKS < DKS

ij

)
≈ QKS

([√
Ne + 0.12 + 0.11/

√
Ne

]
·DKS

ij

)
(1.60)
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is a useful approximation to the CDF of DKS [53] where

QKS (λ) = 2
∞∑
l=1

(−1)l−1 e−2j2λ2 (1.61)

Ne =
|Ci| · |Cj|
|Ci|+ |Cj|

(1.62)

The second hypothesis test uses the estimation error variance associated with chirp-

rate σ2
β̂Cj

, contained in PCj , to formulate a chi-squared test that, under the null hypothesis,

assumes β̂Ci = β̂Cj . The test statistic is

Dβ
ij =

(
β̂Ci − β̂Cj
σβ̂Ci

)2

(1.63)

which has a χ2
1 distribution when β̂Cj is the true chirp-rate of the ith chirp-segment. Hence,

the critical value γ for a probability of Type I error αβ is computed as in Equation (1.50).

The following steps implement the association approach.

Step 1 – Compute Test Statistics : For i, j = 1, . . . , Nchirps compute DKS
ij and Dβ

ij.

Step 2 – Find ML Association Based on Chirp-Rate: For a fixed j and all i such that

αKS > QKS

([√
Ne + 0.12 + 0.11/

√
Ne

]
·DKS

ij

)
(1.64)

and Dβ
ij < γ (i.e., H0 is accepted) compute the combined estimation error variance

as σ2
β̂j

= 1∑
i

1

σ2
β̂i

and the combined chirp-rate estimate as β̂j = σ2
β̂j
·
∑
i

β̂i
σ2
β̂i

. Based on

these combined estimates, determine which set of associated chirp-segments maximizes

its chirp-rate likelihood function

Lj =
∏
i=1

1√
2π · σβ̂j

· e
− 1

2

(
β̂i−β̂j
σ
β̂j

)2

(1.65)

jmax = arg max
j

Lj (1.66)

Let Wm be the set containing β̂jmax , σ2
β̂jmax

, and all frequency estimates associated with

Ci. This set of parameter estimates and corresponding frequency estimates from each Ci
serves to represent the mth LFMCW signal component.
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Step 3 – Remove Contents of Wm from Consideration and Recompute: Remove all β̂i,

σ2
β̂i

, and associated Ci corresponding to Wm from consideration. If, after removal, only

one Ci remains, assign it and the associated β̂Ci and σ2
β̂Ci

toWM , then terminate. If, after

removal, no Ci remain, then terminate. Otherwise, repeat Steps 1-3.

1.3.2.1 Association Example In the remainder of this section we apply the association

approach developed above to the results obtained in Section 1.3.1.1, with implementation

parameters given in Table 5.

Table 5: Implementation Parameters for Association Example

Variable Description Variable Name Value Units Relevant Association Step

Probability of failing

to associate two chirp segments

that belong to same LFMCW signal

based on distribution

of their frequency samples αKS 0.05 — 2

Probability of failing

to associate two chirp segments

that belong to same LFMCW signal

based on their chirp-rate estimates αβ 10−20 — 2

Figure 4 shows that the twelve clusters formed from the steps outlined in Section 1.3.1

were correctly associated to two LFMCW signals. This is represented in the Figure by using

red markers to denote all frequency samples associated to s1

(
t; θ̄1

)
and blue markers to

denote all frequency samples associated to s2

(
t; θ̄2

)
.
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Figure 4: Association Example
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1.3.3 Estimation

At this stage in the algorithm it is worthwhile to remind ourselves what our goal is and what

we have at our disposal. The goal is to estimate the parameters of (1.20) given in (1.24). So

far we have at our disposal

1. estimates of the mean and variance of the instantaneous frequency of each sm
(
t; θ̄m

)
2. estimates of the mean and variance of the chirp rate associated with each sm

(
t; θ̄m

)
3. estimates of the mean and variance of the frequency intercept of each chirp-segment,

which can be thought of as conservative approximations to the mean and variance of the

starting frequency of each LFMCW signal

In this section we propose a method, which we refer to as initial estimation, for estimating

the elements of θ̄m. We refer to this as initial estimation because one could use the output of

this step as the initial conditions to a MLE procedure like that originally derived in [25]. This

approach to implementing the MLE, in contrast to [9], may be computationally tractable for

M > 1 since one has an estimate of the number of signals in the environment and estimates

of the means and variances the parameters that define each. The author of [34] also proposed

the initialization of the MLE at the conclusion of his sequential method, but was limited to

the case for M = 1. We also note that while these estimates are referred to as initial, they

may be sufficiently accurate for some applications. If very high accuracy is not required,

then computational requirements of the MLE, which [34] clearly provides for M = 1, can be

drastically reduced by avoiding the MLE search all together.

To obtain the initial estimates of θ̄m, denoted θ̂0
m, let the true instantaneous frequency

of sm
(
t; θ̄m

)
at the sample times in Wm, denoted tm,i, be given by

fm,i = f start
m + βm mod (tm,i + ∆m, Tp,m) (1.67)

and let the associated frequency estimates in Wm be denoted by f̂m,i, for i = 1, . . . , Nm,

where Nm is the number of frequency estimates inWm. Then we can obtain initial estimates

of f start
m , βm, ∆m, and Tswp,m by solving the following optimization problem

arg min
f startm ,βm,∆m,Tswp,m

{
Nm∑
i=1

∣∣∣f̂m,i − fm,i∣∣∣} (1.68)
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Unfortunately, since the objective function in (1.68) is not only non-differentiable but also

nonlinear, standard optimization techniques based on gradients of the objective function

will likely fail. Therefore, to obtain initial estimates of f start
m , βm, ∆m, and Tswp,m we im-

plement the Nelder-Mead simplex direct search algorithm [31], which is one example of an

unconstrained, derivative-free optimization method. Finally, we can obtain initial estimates

of tstart
m and tstop

m by taking them to be

t̂0,start
m = min

i
tm,i (1.69)

t̂0,stop
m = max

i
tm,i (1.70)

In Section 1.5 we evaluate the performance of the method based on only initial estimates.

1.3.3.1 “Initial” Estimation Example In this example initial estimates of θ̄1 and θ̄2

are obtained by computing t̂0,start
m , t̂0,stop

m as described above, and solving the optimization

problem posed in (1.68) by using MATLAB’sr implementation of the Nelder-Mead simplex

direct search algorithm found in the Optimization Toolbox. The results are summarized in

Table 6.

Table 6: Initial Estimation Results

Parameter θ̄1
ˆ̄θ0
1 θ̄2

ˆ̄θ0
2 Units

t0,start
m 10 10.640 20 22.800 µs

t0,stop
m 650 649.04 620 618.64 µs

f 0,start
m -11 -11.018 4 3.9890 MHz

β0
m 0.125 0.12510 0.0267 0.02671 MHz

∆0
m 10 9.8556 20 19.9267 µs

T 0
p,m 80 79.998 150 149.95 µs
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1.4 LOCALIZATION

While the use of Time Difference of Arrival (TDOA) in a passive sensor network is not a

new concept for locating Electromagnetic (EM) signal sources, successful implementation is

often complicated by any number of hardware or environmental limitations. One common

approach for obtaining TDOA estimates is to cross-correlate two sampled versions of the

same transmitted signal, taken at spatially separated receivers, and use the peak of the cross-

correlation as the estimator for TDOA. This approach, which is explained in detail in [48]

and [12], is attractive when hardware to support high bandwidth data links is available for the

transmission of the data samples taken at each node to a central node that performs the cross

correlation. This type of TDOA estimation is especially useful when very little is known,

or needs to be known, about the detailed structure of the signal. However, this approach

becomes less attractive when the number of signals residing in the operating bandwidth of

the receiver is large or when the interference (i.e., extraneous signals that are not of interest)

environment becomes dense. Furthermore, if one has general knowledge of the structure of

the signal, like that which we assume of the LFMCW signal modeled in (1.20), classical

cross-correlation provides no means for exploiting this information to improve processing

accuracy or to aid ambiguity resolution that inevitably arises in a multi-source environment.

If the structure of the transmitted signal is known, but the time the signal began to

transmit is unknown, an alternative method for obtaining TDOA estimates is available that

is better suited to multi-source environments. In particular, one can design a matched

filter, which gives the MLE of TOA, to estimate the TOA of each source at each receiver

in the network. Since the detection and characterization steps outlined above culminate in

estimates of all of the parameters that define the signals, a matched filter based estimate of

the TOA of each signal can be approximated by

τ̂m = arg max
τm

∣∣∣∣∫ r (t) s∗
(
t− τm; θ̂m

)
dt

∣∣∣∣ (1.71)

where τm is the TOA of the mth signal relative to a clock that is assumed to be synchronized

between each node, and τ̂m is the associated estimate. Then, upon transmission of only

the parameters that define the signal structure to a central node, in particular TOA, TOA
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differences can be taken to eliminate the unknown transmit time and yield TDOA estimates,

which are a function of only the source’s position and the positions of receivers. Furthermore,

since matched filtering is equivalent to correlating a known signal with an observed signal,

additive interference components present in the observed signal that are uncorrelated with

the signal defining the matched filter tend to have little effect on the output. In other words,

interference that is uncorrelated with the EM source of interest is naturally suppressed. An

additional benefit of our approach to TDOA generation and source localization is that since

each TOA estimate can be unambiguously associated with a particular source, association

of TOA estimates to the same source at a central node can be aided by the other parameters

(i.e., chirp-rate, sweep-time, starting frequency, etc.) that define the signal structure of the

source. Associating observations to the same source is referred to as the data association

problem, and is a major undertaking in all multi-source localization applications [2]. Our

approach naturally provides additional information, often referred to as features in the multi-

target tracking literature, that can improve data association performance.

1.4.1 Measurement Model

In this section we develop the measurement model that relates estimates of TOA τ̂m obtained

via (1.71) to TDOA, and ultimately to the latitude and longitude of each LFMCW source.

In order to do this we need at least three stationary or two moving receivers collaborating

in the sensor network with synchronized clocks and an ability to resolve their own Earth

Centered Earth Fixed (ECEF) [6, 35] position. We denote an estimate of the TOA of the

mth LFMCW source taken by the ith receiver as τ̂m,i, where i = 1, . . . , Nrx and Nrx is the

number of receivers.11

11If any of the receivers are moving, each TOA estimate would need to be indexed by time as well. For
simplicity, we do not add this extra index and assume the receivers are stationary.
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Let t = 0 be defined as the common time at which all receivers begin to sample the

signal environment and tm,0 be defined as the time, relative to t = 0, at which the mth source

begins to transmit. The true TOA of the mth LFMCW source, observed by the ith receiver

is then

τm,i = tm,0 + rm,i/c (1.72)

where rm,i = ‖ps,m − prx,i‖ is the range from the mth LFMCW source to the ith receiver, ‖·‖

denotes the Euclidean vector norm, ps,m is the ECEF position vector of the mth source, prx,i

is the ECEF position vector of the ith receiver, and c is the speed of light. TDOA can then

be expressed as

TDOAij
m = τm,i − τm,j (1.73)

= tm,0 + rm,i/c− tm,0 − rm,j/c (1.74)

= (rm,i − rm,j) /c (1.75)

where i, j = 1, . . . , Nrx. We can relate the unknown position of the mth source to TDOAij
m

using our knowledge of the ECEF position of the ith receiver prx,i. Hence, (1.75) can be

rewritten as

TDOAij
m = (rm,i − rm,j) /c (1.76)

= ‖ps,m − prx,i‖ /c− ‖ps,m − prx,j‖ /c (1.77)

As the name implies, the ECEF position of an object is defined relative to the earth’s

center and, therefore, is not constrained to the earth’s surface. Since we are interested in

estimating the location of stationary, ground-based LPI radar systems we can incorporate

the shape of the earth as a constraint on the position by employing a model of the earth’s

surface. A particularly popular choice is the World Geodetic System 1984 (WGS84) earth

model [6, 35], which models the earth’s surface as an oblate spheroid (ellipsoid) and allows

position on the earth’s surface to be represented using the angles longitude and geodetic

44



latitude. In particular, the WGS84 earth model relates ECEF position to longitude Ψ and

latitude Θ as

p (q) =


(rE + a) cos (Ψ) cos (Θ)

(rE + a) sin (Ψ) cos (Θ)

(rE (1− ecc2) + a) sin (Θ)

 (1.78)

where q =
[

Ψ Θ
]T

, a is the altitude above the WGS84 ellipsoid, and ecc is the earth’s

eccentricity. The term rE is the earth’s transverse radius of curvature defined by

rE =
req√

1− ecc2 sin2 (Θ)
(1.79)

where req is the earth’s radius at the equator. Finally, we can rewrite (1.77) as

TDOAij
m = ‖ps,m − prx,i‖ /c− ‖ps,m − prx,j‖ /c (1.80)

= ‖p (qs,m)− prx,i‖ /c− ‖p (qs,m)− prx,j‖ /c (1.81)

= h (qs,m; prx,i,prx,j) (1.82)

where qs,m is the vector containing the longitude and latitude of the the mth source.

In our localization approach we will assume that the altitude of each LFMCW source is

either known or can be closely approximated by a constant value. This is typically a reason-

able assumption in passive ELINT applications and will lead to algorithms for estimating

qs,m that are extremely stable and rapidly convergent [11, 13]. However, if the terrain is

particularly mountainous, making the assumption of locally constant altitude invalid, one

can incorporate terrain information, such as that found in Digital Terrain and Elevation

Data (DTED), a data product published by the Department of Defense (DoD).

Equation (1.82) leads to the following model of the TDOA measurements associated with

the mth LFMCW source

zm = h (qs,m; prx) + vm (1.83)

where h (qs,m; prx) is an Nmeas × 1 vector-valued function with elements defined by (1.82),

with Nmeas determined by the number of unique pairwise sensor node combinations. Addi-

tionally we define prx to be a Nrx × 3 matrix containing all ECEF receiver positions, with

Nrx being the number of receivers in the network. The term vm is also Nmeas×1 and models
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the errors associated with the TDOA estimates, which we take to be independent Gaussian

random variables with covariance Rm.

One approach to estimating qs,m is by solving the following optimization problem

arg min
qs,m

(zm − h (qs,m; prx))TR−1
m (zm − h (qs,m; prx)) (1.84)

which amounts to solving a set of nonlinear equations for qs,m. Since the argument in (1.84)

is a differentiable function of qs,m, numerous numerical methods exist for determining the

qs,m that minimizes (1.84) [28]. The most popular of these is Newton’s method, and a

simplification of Newton’s method known as Iterated Least-Squares (ILS). We develop the

ILS method in detail in [17], but pursue it no further here in order to keep focus on the

signal processing methods developed to yield θ̂m. Further implementation issues, beyond

those discussed here and in [17], are given in [14].

1.5 RESULTS

In this section we analyze the performance of the algorithms proposed in this chapter in

terms of their ability to detect and characterize one (i.e., M = 1) and two (i.e., M = 2)

LFMCW signals, with the focus being on evaluating the estimation accuracy of f start, β, ∆,

and Tswp. The true structure of the signals used in the simulations is defined in Table 2. The

results for each of these cases divides this section into three main parts, wherein the first

two parts quantify performance using estimates of the mean and variance of the parameters

derived from Monte Carlo simulations. The third part concludes with a comparison of the

estimated probability of correct characterization (PC) between the M = 1 and M = 2 cases.

1.5.1 Comparison of Mean and Variance of Sequential Method and the MLE

for M = 1

In this section we compare the performance of the methods developed in this chapter to the

performance of the MLE given in (1.3) [25]. In general, the MLE of a parameter observed in
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the presence of AWGN is known to be asymptotically unbiased and efficient [21, pg. 164]. In

our context, asymptotic unbiasedness means that as the number of samples of (1.17) grows

the expected value of the mean of the MLE is equal to (1.19). Similarly, asymptotic efficiency

means that as the number of samples of (1.17) increases the covariance matrix associated

with the MLE of (1.19) approaches the Cramer-Rao Lower Bound (CRLB) [21, pg. 27-62].

Hence, a comparison of the mean and variance of a suboptimal method, such as ours, to the

MLE indicates the amount of performance that is lost.
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The parameters that define the signal we used in the simulation are given in Table 2 for

m = 2. Additionally, we set tstart
2 = 0 and tstop

2 = T and, for the sake of the MLE simulation,

assumed they were known. To simulate the MLE we discretized (1.3) as

L
(
f start, β,∆, Tswp

)
=

∣∣∣∣∣
Ns−1∑
n=0

r [n] s∗
[
n; f start, β,∆, Tswp

]∣∣∣∣∣ (1.85)

where Ns = bT/Tsc and s [n; f start, β,∆, Tswp] are discrete-time samples of (1.20) - (1.23).

To obtained estimates of f start, β, ∆, and Tswp based on the MLE we maximized (1.85)

using a four-dimensional grid-search with the grid centered at the true parameter values and

discretized to have 11 samples per dimension. The search range used for each dimension was

4− 1.54× 10−5 ≤ f start ≤ 4 + 1.54× 10−5

0.0267− 8.11× 10−7 ≤ β ≤ 0.0267 + 8.11× 10−7

0− 2.68× 10−5 ≤ ∆ ≤ 0 + 2.68× 10−5

150− 1.21× 10−4 ≤ Tswp ≤ 150 + 1.21× 10−4

The mean and variance for each parameter were estimated based on a Monte Carlo simulation

with 50 trials per SNR level for the MLE estimator. To simulate the performance of the

sequential method we used the implementation parameters described in Tables 3 through 5

and used 200 Monte Carlo trials per SNR level. The reason for the relatively few number of

trials used in the MLE simulation, compared to that used to simulate the sequential method,

was primarily due to the fact that the search ranges given above were so narrow, in order

to make simulating the MLE computationally realizable, that few trials were necessary for

estimates of the mean and variance of the parameter estimates to converge.

Figure 5 compares the mean of our proposed estimator to that computed with the MLE.

Above -10 dB SNR we see that the proposed sequential estimator is reasonably unbiased

in each of the parameters. Similarly, Figure 6 shows a comparison between our sequential

method and the MLE based on the standard deviation estimated from the simulation for

each SNR level. Again, above -10 dB SNR the MSE of each parameter achieved by the

proposed sequential estimator improves more steadily to a lower standard deviation than

when SNR is below -10 dB SNR. We see then that for the conditions we simulated, the

48



(a) (b)

(c) (d)

Figure 5: Monte Carlo Simulation Results for Mean of Parameter Values for M = 1 based

on s2
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so-called Threshold Region of the sequential estimator is below -10 dB SNR. The threshold

region of an estimator is typically defined as the level of SNR below which an estimators

performance is dramatically worse than when operating just above this ‘threshold.’ Finding

an acceptable balance between the trade-off driving sub-optimality (in our case the primary

one is computational burden) and the size of the threshold region is a key consideration when

designing suboptimal estimators. Figure 6 also makes it clear that each of the parameters

estimated with the sequential approach yield performance gaps in their MSE that are several

orders of magnitude; this is the price we pay for a solution that is computationally tractable

and practically useful when M is unknown. The primary reason for the performance gap is

that our method operates on short-time intervals of length N · Ts = 3.04µs while the MLE

operates on the entire signal, which is of length T = 655.36µs.

As a point-of-reference for computational requirements, to obtain an estimate of each of

the parameters in (1.18) using our method took approximately 2 seconds on a MacBook Pro

with a 2.6 GHz Intel Core i7 processor and 16 GB of DDR3 RAM using MATLAB R2015a.

1.5.2 Mean and Variance of Sequential Method for M = 2

For simplicity, in this section we discuss results based on the performance of only the sequen-

tial estimator since a Monte Carlo simulation of the MLE where the grid is even restricted

to a narrow regions about the true parameter values would have taken a prohibitively long

time to complete for M = 2. The simulation uses all the same implementation parameters

used to define the simulation described in Section 1.5.1. The main difference is that both

signals from Table 2 are summed together with noise to get the simulated signal. Also, when

SNRs are reported in this section the implication is that noise is added to (1.18) so that

SNR1 = SNR2.

Figures 7 and 8 show that for both signals the sequential estimator is reasonably unbiased

and has well-behaved and decreasing MSE for SNR levels, again, above -10 dB. We stress

that, aside from the maximum and minimum chirp-rates given in Table 4, there is no a-priori

knowledge required about the values of the parameters required, as in the MLE to define

the search grid. However, the a-priori knowledge we do use on maximum and minimum
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(a) (b)

(c) (d)

Figure 6: Monte Carlo Simulation Results for Standard Deviation of Parameter Values for

M = 1 based on s2
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possible chirp-rates can correspond to a fairly large range of possibilities without imposing

unmanageable additional computational burdens. We also emphasize that we did not inform

the algorithm that two LFMCW signals were in the environment, rather the algorithm

informed us. This is a feature that is absent from any other computationally feasible and

practical approach. Finally, on the same MacBook Pro described in Section 1.5.1 one set of

estimates of the parameters that defined both LFMCW signals took 30 seconds.

1.5.3 Probability of Correct Characterization for M = 1 and M = 2

In this section we investigate the performance of the algorithms by determining the proba-

bility of correct characterization PC as a function of SNR and range form source to receiver.

For our purposes we declare a correct characterization for signal m if f start
m , βm, and Tswp,m

are all within 10% of their true values. The results, which are given in Figures 9 and 10, are

obtained from the same Monte-Carlo simulations described in Sections 1.5.1 and 1.5.2.

Figure 9 shows three PC vs. SNR curves, which correspond to two separate simulation

experiments. The curve that is the furthest to the left corresponds to the first simulation

where only one signal is present (i.e., M = 1) with specific parameters defined by m = 2 from

Table 2. The second simulation, which was performed with both signals from Table 2 present,

produced the middle curve (corresponding to signal m = 2) and the curve the furthest to the

right (corresponding to signal m = 1). There are a few main takeaways that can be drawn

from the comparison of these two experiments. First, the fewer the signals present in the

environment, the better the algorithm will perform. This is evident from Figure 9 since the

single signal case yields a PC vs. SNR curve that has the greatest PC for the lowest values of

SNR (i.e., it is the furthest to the left). Second, signals with lower chirp-rates yield better

performance. For this experiment, this is the case because the signal with the greater chirp

rate (i.e., m = 1) also had the smaller sweep time. Hence for a fixed number of samples

N per short time interval signal m = 1 yielded fewer frequency samples per chip segment,

which degraded the algorithms performance relative to signal m = 2. To summarize Figure

9 we note that among both experiments, PC exceeds 90% for SNR≥ −10dB. This was the

claim made at the outset of this chapter. Finally, the value of SNR at which PC = 90% for
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(a) (b)

(c) (d)

Figure 7: Monte Carlo Simulation Results for Mean of Parameter Values for M = 2 Based

on s1 and s2
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(a) (b)

(c) (d)

Figure 8: Monte Carlo Simulation Results for Standard Deviation of Parameter Values for

M = 2 Based on s1 and s2
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each experiment is close to the threshold region defined previously observed in Figures 6 and

8. That is, when SNR gets low enough that PC ≤ 90% the algorithm begins to operate in

its threshold region.

To obtain Figure 10 we mapped the SNR to range through [36, pg. 24]

R =

√
EIRP ·GTX · λ2

c

(4π)2k · T0 ·NF ·BW · SNR
(1.86)

with the parameters used to implement (1.86) are summarized in Table 7 and it is assumed

that the parameters specified in dB are converted to linear units before being used to evaluate

(1.86). The range specified by this equation can be interpreted as the range at which an

ELINT receiver passively collecting a radar signal transmitting with a fixed EIRP, center

frequency and antenna gain, will observe the specified level of SNR assuming fixed operating

bandwidth BW and noise factor NF of the receiver. The motivation for this example was

to emphasize the ability of our method to operate at moderate standoff ranges with good

characterization performance for an actual radar that is considered LPI, since the parameters

given in Table 7 were derived from [46].

55



Table 7: Parameters Used to Compute Range from SNR

Variable Description Variable Name Value Units

Effective Isotropically

Radiated Power

of LFMCW Source EIRP 0.165 Watts

Gain of Transmitter GTX 25 dBi

Wavelength of

LFMCW Center Freq. λc 0.032 m

Standard Noise

Temperature of Receiver T0 290 K

Noise Factor

of Receiver NF 5 dB

Bandwidth of Receiver BW 25 MHz
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Figure 9: Characterization Probability vs. Input SNR
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Figure 10: Characterization Probability vs. Range
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1.6 CONCLUSION

In this chapter we developed the theory associated with a method that exhibits features

that do not exist in any one approach otherwise available in the literature. The performance

of the method is assessed via simulation and found to perform well when SNR ≥ −10 dB.

In contrast to classical approaches to signal detection, such as those found in [22, 25], our

approach is sequential. The benefit to such an approach is that the virtuous aspects of

methods from a wide variety of disciples, such as signal processing [21,22], statistics [40,57],

optimization [31], and optimal state estimation/geo-location [15], can be brought to bear

on an old problem and yield new fruit that is not only of theoretical interest, but also has

promise for practical implementation. The practicality of the method is by virtue of the facts

that it is computationally realizable, does not require detailed assumptions about or prior

knowledge on the statistics of the noise and interference, and can operate in multi-signal

environments. The downside is that we give up the optimality that the MLE boasts in order

to gain computational benefits and generality in terms of the environments it can operate.

In the next chapter we assess the best case estimation accuracy achievable via the Cramer-

Rao Lower Bound. In Chapter 3 we asses the performance of the proposed method via

laboratory-based hardware-in-the-loop and outdoor, over-the-air experiments using Software

Defined Radios to transmit and receive LFMCW signals like those analyzed in this work and

in Chapter 2.
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1.7 FUTURE DIRECTIONS

There are at least six areas where future effort should be devoted.

• The first is in developing new or applying existing spectral search methods that are

capable of determining the frequency bands where these signals exist. In other words, up

to this point we have assumed that the receiver knows the appropriate center frequency

and bandwidth that it should tune to in order to be able to sense the signals modeled

in (1.17)-(1.23), if present. Prior information may be available to inform the receiver in

practice, but if it is not then one must potentially search a large range of frequencies

in order to determine what sub-band to sample and apply the methods developed in

this chapter. Since a large range of frequencies can be several gigahertz, efficient search

methods are required.

• The second area relates to speeding up the clustering approach found in Section 1.3.1.

This is by far the most time consuming step in the proposed sequential method. More

specifically, recall from Section 1.5.2 that the algorithm took 51 seconds to compute

estimates of the parameters of both signals. Approximately two-thirds of this execution

time was devoted to the search described in Section 1.3.1.

• The third area relates to extending the parameters estimated in the STHM of the data

given in Section 1.2 from primarily just frequency to frequency and chirp-rate. Doing

so could inform the clustering step in a way that could decrease overall execution speed.

We take preliminary steps in this direction in Appendix C.

• The fourth is on a complexity study that determines the number of floating point oper-

ations required to produce parameter estimates, such as that provided in [34].

• The fifth is on extending the methods developed here to other LPI signal types. For ex-

ample, signals that have LFM constituents, but are not CW or signals whose constituents

are nonlinear frequency modulations. Such signals are also of practical interest.

• The sixth is on developing the localization component of this work more fully.
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2.0 PERFORMANCE ANALYSIS

In this chapter we focus on deriving an approximate Cramer-Rao Lower Bound (CRLB)

for the parameters of a multi-component Linear Frequency Modulated Continuous Wave

(LFMCW) signal corrupted by complex additive white Gaussian noise. The approximation

is necessary due to the discontinuities inherent in the mathematical model of the instan-

taneous phase of each LFMCW signal model. By comparing our approximate bound to a

simulation of the Maximum Likelihood Estimator (MLE) of the LFMCW parameters, we

confirm our analysis. In general, the CRLB is a useful tool for feasibility studies or in eval-

uating the degree of sub-optimality that non-MLE methods exhibit. For passive detection

and estimation of LFMCW signals, the Generalized Likelihood Ratio Test and the associ-

ated MLE are difficult to implement in practice, primarily due to their large computational

requirements. So, lower bounds on performance, such as those provided by the CRLB, are

necessary to evaluate sub-optimal methods that are more suited for practical implementa-

tions.

2.1 INTRODUCTION

At the heart of estimation theory is the derivation of algorithms (i.e., estimators) that

operate on measured data with the goal being to estimate the value of a set of parameters

that are related to the measurements in some way. A complementary point-of-view to the

derivation of estimators is the derivation of performance bounds that predict the accuracy

of a class of estimators. One popular approach to deriving performance bounds is based on

the Cramer-Rao Theorem [21, Ch. 3], the application of which yields the so-called Cramer-
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Rao Lower Bound (CRLB). The CRLB quantifies the best possible performance that can be

achieved by the class of unbiased estimators in terms of their estimation error variance. In

practice, the CRLB is a useful tool in performing feasibility studies or in determining the

degree to which an algorithm is suboptimal.

In the context of ELectronic INTelligence (ELINT), feasibility studies requiring the use

of the CRLB might be those that attempt to determine the minimum Signal-to-Noise Ratio

(SNR) that can be tolerated while still achieving acceptable estimation accuracy. Based on

this SNR, a link-budget analysis [45] can be performed to determine the maximum range from

the radar source that an ELINT receiver can operate, which would aid in mission planning.

Another use of the CRLB is in assessing whether an estimator achieves the best possible

performance and, if not, the degree to which the performance of the estimator is deficient

relative to the bound. Utilizing the bound in this way is particularly useful in practice

since one is often faced with modifying optimal algorithms to account for practical issues or

limitations encountered by the application. In particular, optimal algorithms can sometimes

require computationally intractable numerical methods to implement them precisely or be

derived based on simplified noise models that are mathematically convenient, but practically

limited. Such is the case with the problem of estimating the parameters of an unknown

number of LFMCW signals in noise with incompletely known properties. So, in order to

solve the problem in a computationally effective way we, sought a suboptimal approach

that allows us to trade estimation accuracy for computational tractability and the ability to

operate under more general noise assumptions. The details of this method were the focus of

Chapter 1 [19] of this dissertation. While the focus of this chapter [18] is on the derivation

of the bound, Chapter 3 [20] of this dissertation, in part, looks at evaluating performance

loss by comparing experimental and simulation results to the CRLB.
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2.1.1 LFMCW Signal Model

The main element that differentiates one CRLB from another is the signal model and the

parameters that define it. Hence, the CRLB can be thought of as a mechanism for quantifying

the amount of information that exists in noisy observations of the signal model about the

parameters that define it. For the case of estimating (i.e., characterizing) the parameters of

multiple LFMCW signals in noise, our observation model is

r (t) = s
(
t; θ̄
)

+ w (t) (2.1)

where the M component LFMCW signal model is

s
(
t, θ̄
)

=
M∑
m=1

sm
(
t; θ̄m

)
(2.2)

θ̄ =
[
θ̄T1 . . . θ̄TM

]T
(2.3)

with each individual LFMCW signal expressed as 1

sm
(
t; θ̄m

)
= bme

jΦ(t;θ̄m) (2.4)

The instantaneous phase of each LFMCW component is

Φ
(
t; θ̄m

)
= ϕm+2πf start

m t+

πβm mod (t+ ∆m, Tswp,m)2 (2.5)

with the vector of unknown parameters defining the mth LFMCW component given as

θ̄m =
[
bm f start

m βm ∆m Tswp,m ϕm

]T
(2.6)

with of the parameters in (2.1)-(2.6) defined in Table (8). For simplicity in our derivation

we assume that w (t) is white and Gaussian such that w (t) ∼ CN (0, σ2
w). 2 The goal of this

chapter is to derive the CRLB associated with the signal model given in (2.1)-(2.6). Other

researchers [39] have studied the CRLB for signals similar to this signal model, but sufficiently

1Compared to [19], the signal model used here is lacking parameters to define start- and stop-time. We
omitted them to simplify the analysis and focus on the main parameters that serve to characterize the
structure of LFMCW signals and the radar systems that employ them.

2We take CN
(
0, σ2

w

)
to denote a complex normal distribution with mean zero and variance σ2

w
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different that a new approach is warranted. In particular, in [39] the author derives the

CRLB for the polynomial coefficients of constant amplitude signals with polynomial phase.

Since (2.5) can be viewed as a piecewise polynomial, one might be tempted to apply the

bounds derived in [39]. Unfortunately, doing so would require a very high order polynomial

to capture the periodicity in (2.5) and lead to difficultly in translating the CRLB of these

numerous polynomial coefficients to a CRLB for the parameters of interest found in (2.6).

An example of the signal modeled by (2.1)-(2.6), for M = 2 is shown in Figure 11 with

parameters defined and specified in Table 8. Signal m = 2 is annotated in Figure 11 in order

to show the relationship between the variables that define the signal and the instantaneous

frequency of each component. The basic signal structure given in Figure 11 and Table 8 is

used in the examples we treat in this chapter.

With the problem framed, the signal model defined, and the motivation for and use of

the CRLB stated, the remainder of this chapter is devoted to developing the CRLB mathe-

matically. To do so the remainder of this chapterma is organized as follows. In Section 2.2 we

state the Cramer-Rao theorem in the context of our problem and outline the mathematical

components necessary to approximate the bound. The method for approximating (2.5) when

taken as a function of ∆m and Tswp,m is the key contribution of this chapter and the focal

point of this section. In Section 2.3 we compute the CRLB and compare it to the associated

MLE for the case when M = 1 using the signal defined by m = 2 in Table 8. Additionally,

we provide the bound for the case when M = 2 under the assumption that both signals, for

m = 1 and m = 2, are present simultaneously. Since even the most restrictive implementa-

tion of the MLE associated with this case was computationally prohibitive3, we provide only

the bound in this example to demonstrate the CRLB result for the M ≥ 1 case. Finally, in

Section 2.4 we summarize the main elements of the chapter and provide some suggestions

for future directions.

3A partial simulation of the MLE for M = 2 using Monte-Carlo settings similar to those described for
the M = 1 case was found to take in excess of 72 hours to complete a single trial for a single SNR.
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f2
start

f2
start + β2 ⋅mod Δ2 ,Tp,2( )

B2 = β2 ⋅Tswp,2
Tswp,2 β2 =

B2
Tp,2

Figure 11: (main panel) Spectrogram (20 dB dynamic range) of two LFMCW signals based

on signal model given in (2.1)-(2.6) (left panel) Frequency marginal of spectrogram (bottom

panel) Real part of time-series r (t)
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Table 8: Signal Parameters for Figure 11

Variable Description Variable Name Values (m=1, m=2) Units

Amplitude bm 1,1
√
J/s

Starting Frequency f start
m -11,4 MHz

Chirp-Rate βm 0.125,0.0267 MHz/µs

Time-Offset ∆m 0,75 µs

Sweep Time Tswp,m 80,150 µs

Phase ϕm 0,0 rad

No. of LFMCW Signals M 2 —

Sampling Rate Fs 25 MHz

Observation Duration Tobs 655.36 µs

2.2 CRAMER-RAO LOWER BOUND

The observation model given by (2.1)-(2.6) can be classified as a deterministic signal with

unknown parameters θ̄ in Complex Additive White Gaussian Noise (CAWGN). As a result,

the Cramer-Rao Theorem can be stated in the following form [21, pgs. 44-46, 530-531, 565]

Theorem 1 (Cramer-Rao) If the PDF p
(
r̄; θ̄
)

satisfies the regularity conditions 4

E

[
∂ ln p

(
r̄; θ̄
)

∂θi

]
= 0 ∀ θi (2.7)

where the expectation is taken with respect to p
(
r̄; θ̄
)
, then the covariance matrix of any

unbiased estimator θ̂ satisfies

Rˆ̄θ
− I−1 (θ) ≥ 0 (2.8)

4In the remainder of this chapter we use the notation θi to indicate indexing directly into (2.3). For
example, θ1 = b1, θ2 = f start

1 , θ8 = f start
2 , etc.
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where ≥ 0 is interpreted as meaning that the matrix is positive semidefinite and Rˆ̄θ
denotes

the covariance matrix of ˆ̄θ. The Fisher Information Matrix (FIM) I (θ) is given as

[
I
(
θ̄
)]
ij

=
2

σ2
w

Re

{
N−1∑
n=0

∂s∗
(
nTs; θ̄

)
∂θi

∂s
(
nTs; θ̄

)
∂θj

}
(2.9)

where the derivatives are evaluated at the true value of θ̄.

We see from (2.9) that the CRLB connects the accuracy of an estimator, which is manifest

in Rˆ̄θ
, to how sensitive the signal model s

(
t; θ̄
)

is to the parameters θi that define it.

We can see this by recalling that derivatives, in general, reflect how small changes in an

independent variable are reflected in the value of the dependent variable. For example,

consider
[
I
(
θ̄
)]
ii
. With reference to (2.9), if a small change in θi yields a large change in

s
(
t; θ̄
)

then, qualitatively speaking, the contribution of θi to
[
I
(
θ̄
)]
ii

will be large since
∂s(nTs;θ̄)

∂θi
will be large. This, in turn, will contribute to making

[
I−1
(
θ̄
)]
ii

small. That says

that the more sensitive a signal model is to one of its parameters the more accurately it

can be estimated since the associated CRLB will be small. Conversely, parameters that,

when varied, yield little or no change in the signal make it more difficult for an estimator to

distinguish between one parameter value and another, which results in a larger associated

CRLB.

The statement of the Cramer-Rao Theorem makes it clear that determining the CRLB

hinges on the computation of the inverse of the FIM, which in turn requires the computation

of
∂s(nTs;θ̄)

∂θi
. So, for the CRLB to exist the FIM must also exist, which requires the existence

of the derivatives
∂s(nTs;θ̄)

∂θi
. Upon examination of (2.5) it becomes clear that since neither

∂s(nTs;θ̄)
∂∆m

nor
∂s(nTs;θ̄)
∂Tswp,m

exist due to their placement as arguments in the mod (·, ·) operation,

the FIM does not exist if it is based strictly on the signal model defined via (2.5). However,

all is not lost if we realize that the mod (·, ·) operation is only a mathematical convenience

used to impose the periodic sawtooth structure of the instantaneous frequency, an example

of which can be observed in the spectrogram shown in Figure 11. So, approximations of the

mod (·, ·) operation that seek to make it differentiable are not only a mathematical necessity

for the derivation of the FIM, but are also practically justified since real hardware devices

that generate these signals will not reflect the instantaneous changes in frequency that are
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implied by (2.5). Specifically, they are likely to exhibit a more gradual transition between

maximum and minimum frequencies, which we build into the approximation we develop in

Section 2.2.1.

The remainder of this section is devoted to developing the approximations necessary to

make (2.5) a piecewise differentiable function of ∆m and Tswp,m. Once developed, they are

implemented, for the M = 1 case, to compute the FIM via (2.9) and its inverse as called

for by (2.8). These calculations culminate in the CRLB associated with estimating the

parameters that define a single LFMCW signal. In Appendix E we generalize the results to

the M > 1 case and show, in Appendix F, that the regularity conditions specified in (2.7)

are satisfied.

For simplicity, in the remainder of this section we drop the subscripts m and ‘swp’ from

∆m and Tswp,m and let ∆ and T denote time-offset and sweep time, respectively, for the

single signal case. As we will see in the next section, we reintroduce subscripts on ∆ and

T to indicate the points where mod (t+ ∆, T ) is discontinuous when taken as a function of

either of these parameters.

2.2.1 Approximating mod (t+ ∆, T )

In this section we motivate our approach for approximating mod(t + ∆, T ) when taken as

a function of ∆ and T , outline the key aspects of the derivation of the approximation, then

state the main results. Figure 12 is an examples of mod(t + ∆, T ) plotted as a function of

∆ for some specific values of t and T . Similarly, Figure 13 is an example of of the same

function, but plotted as a function of T for some specific values of t and ∆. These figures

are referenced extensively to aid in motivating and deriving the approximations and validate

these approximations for the example chosen.

2.2.1.1 Approximating mod (t+ ∆, T ) wrt ∆ Figure 12 is a plot of mod (t+ ∆, T )

for t = 50µs and T = 80µs. The first key take-away from this figure is that for fixed t and

T , mod (t+ ∆, T ) is discontinuous when t + ∆ is an integer multiple of T . This translates
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Figure 12: Diagram of mod (t+ ∆, T ) vs. ∆ and Approximation Highlighting Impact of ε

to the condition

t+ ∆d = d · T (2.10)

where d = 0,±1,±2, . . . . Solving for ∆d yields

∆d = d · T − t (2.11)

which are the locations in the ∆-dimension where mod (t+ ∆, T ) is discontinuous. Since a

discontinuous function is not differentiable [27, pg. 116], we are motivated to find a differen-

tiable approximation of mod (t+ ∆, T ) by alleviating the discontinuity through a piecewise

continuous approximation to mod (t+ ∆, T ) that is also differentiable ∀t and ∀T > 0 on

∆ ∈ [0, T ].

One approach for developing such an approximation is to specify a small approximation

region about each ∆d and approximate the discontinuous transition with a more gradual

transition using a 3rd order polynomial. A 3rd order polynomial is chosen because it is the

smallest order polynomial whose coefficients can be chosen to match both the value and

derivative of mod (t+ ∆, T ) at the endpoints of an approximation region given by

∆d − ε/2 ≤ ∆ ≤ ∆d + ε/2 (2.12)
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where the parameter ε controls the width of the transition region, which we constraint to

satisfy 0 < ε� T . Hence, in each approximation region we have that

mod (t+ ∆, T ) ≈ f (∆)
∆
=

3∑
p=0

ap (d) ∆p (2.13)

which yields the following piecewise polynomial approximation of mod (t+ ∆, T )

mod (t+ ∆, T ) ≈



t− (d− 1)T + ∆, if ∆d−1 + ε
2
≤ ∆ ≤ ∆d − ε

2

3∑
p=0

ap (d) ∆p, if ∆d −
ε

2
≤ ∆ ≤ ∆d +

ε

2︸ ︷︷ ︸
ApproximationRegion

(2.14)

To specify the coefficients ap (d) that define f (∆) we must satisfy two requirements:

1. the value of mod (t+ ∆, T ) at ∆ = ∆d ± ε/2 must equal f (∆d ± ε/2)

2. the slope of mod (t+ ∆, T ) at ∆ = ∆d ± ε/2 must equal ∂f
∂∆

∣∣
∆=∆d±ε/2

Satisfying these two conditions yields the following system of four equations with four un-

knowns

f
(

∆d +
ε

2

)
= T +

ε

2
(2.15)

f
(

∆d −
ε

2

)
= T − ε

2
(2.16)

∂f

∂∆

∣∣∣∣
∆=∆d+ε/2

= 1 (2.17)

∂f

∂∆

∣∣∣∣
∆=∆d−ε/2

= 1 (2.18)

Inverting this system of equations yields ap (d) given by

a0 (d) =
T

2
+ t− T d− 3T (t− T d)

2 ε
+

2T (t− T d)3

ε3
(2.19)

a1 (d) =
3T (2 t−2T d)2

2
− 3T ε2

2

ε3
+ 1 (2.20)

a2 (d) =
6T (t− T d)

ε3
(2.21)

a3 (d) =
2T

ε3
(2.22)
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Figure 13: Diagram of mod (t+ ∆, T ) vs. T and Approximation Highlighting Impact of α

2.2.1.2 Approximating mod (t+ ∆, T ) wrt T We approximate mod (t+ ∆, T ) when

taken as a function of T in a similar way as when taken as a function of ∆, with one

main difference. In contrast to Figure 12, we see that in Figure 13 for t = 50 and ∆ = 0

the interval between discontinuities when mod (t+ ∆, T ) is taken as a function of T is not

constant. The reason for this is that the condition given in (2.10), applied when T is an

independent variable yields

t+ ∆ = d · Td (2.23)

Solving for Td

Td =
t+ ∆

d
(2.24)

we see that as d increases, the distance between successive discontinuities decreases. To

model the transition that occurs at Td with a 3rd order polynomial, this time the transition

region must be a fraction of each Td − Td+1. We do this since if we were to fix the width

of the transition region to, say, δ > 0, then we could always find a d sufficiently large so

that δ > Td − Td+1, which would lead to a very poor approximation. Hence, we define each
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transition region to be

Td −
α (Td − Td+1)

2
≤ T ≤ Td +

α (Td − Td+1)

2
(2.25)

so that the width is α (Td − Td+1) with 0 < α � 1. So, similar to the last section, in each

transition region we have

mod (t+ ∆, T ) ≈ f (T )
∆
=

3∑
p=0

bp (d)T p (2.26)

which yields a piecewise polynomial approximation of mod (t+ ∆, T ), which is specified as

follows

mod (t+ ∆, T ) ≈



−Td+1

Td−Td+1
(T − Td), if Td+1 + α(Td+1−Td+2)

2
≤ T ≤ Td − α(Td−Td+1)

2

3∑
p=0

bp (n)T p, if Td −
α (Td − Td+1)

2
≤ T ≤ Td +

α (Td − Td+1)

2︸ ︷︷ ︸
ApproximationRegion

t+ ∆, if t+ ∆ ≤ T

(2.27)

To solve for bp (d) we again satisfy the boundary conditions at the edge of each approximation

regions, which leads to the following system of four linear equations in four unknown

f

(
Td −

α (Td − Td+1)

2

)
=
αd · (Td − Td+1)

2
(2.28)

f

(
Td +

α (Td − Td+1)

2

)
= − (d− 1) (Td− (2.29)

Td−1 +
α

2
(Td − Td+1)) (2.30)

∂f

∂T

∣∣∣∣
T=Td−

α(Td−Td+1)
2

= −d (2.31)

∂f

∂T

∣∣∣∣
T=Td+

α(Td−Td+1)
2

= − (d− 1) (2.32)
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Inverting these equations and solving for bp (d) yields

b0 (d) =
(∆ + t) (α3 − α2 + 2 d2 + 6 d+ 6)

α3

− α (∆ + t)

8 (d+ 1)
+

(∆ + t) (α2 − 4)
2

8α3 d
(2.33)

b1 (d) =
d+ 1

2α
− 6 (d+ 1)3

α3
− d+

1

2
(2.34)

b2 (d) =
d (d+ 1) (α2 + 12 d2 + 24 d+ 12)

2α3 (∆ + t)
(2.35)

b3 (d) = −2 d2 (d+ 1)3

α3 (∆ + t)2 (2.36)

One should select values of ε and α that are sufficiently small to produce small approxi-

mation regions, but not so small that numerical difficulties are encountered when inverting

the FIM. Numerical instabilities are more likely as ε and α approach zero since they appear in

the denominators of coefficients used to approximate mod (t+ ∆, T )) in the approximation

regions.

2.2.2 Evaluating (2.9)

To facilitate in evaluating (2.9) two properties of the FIM are important to note

1. ∂s∗

∂θi

∂s
∂θj

=
(
∂s∗

∂θj

∂s
∂θi

)∗
⇒ the FIM is symmetric

2. If a product ∂s∗

∂θi

∂s
∂θj

is purely imaginary then the corresponding FIM entry is zero

Also, we define input SNR

SNR =
b2

σ2
w

(2.37)

We now derive each element of the FIM. First consider the FIM entries such that i = 1

and j = 1, . . . , 6. For i = j = 1, we have that

∂s∗

∂θ1

∂s

∂θ1

=

∣∣∣∣ ∂s∂θ1

∣∣∣∣ = 1 (2.38)

Substituting this into (2.9) yields the i = j = 1 entry of the FIM

[I (θ)]1,1 =
2 · SNR ·N

b2
(2.39)
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For i = 1 and j = 2, . . . , 6 we have that

∂s∗

∂θi

∂s

∂θj
= j · b ∂Φ

∂θj
(2.40)

which is purely imaginary. Hence, by properties 1 and 2 given at the beginning of this section

we have that

[I (θ)]1,i = [I (θ)]i,1 = 0 (2.41)

Next, for i, j = 2, . . . , 6 we have that

∂s∗

∂θi

∂s

∂θj
= b2 · ∂Φ

∂θi

∂Φ

∂θj
(2.42)

Substituting this result in (2.9) and recalling property 2 above yields,

[I (θ)]i,j = [I (θ)]j,i (2.43)

= 2 · SNR
N−1∑
n=0

∂Φ

∂θi

∂Φ

∂θj
(2.44)

Computing (2.44) then amounts to determining ∂Φ
∂θi

for i = 2, . . . , 6, which are given below

∂Φ

∂θ2

=
∂Φ

∂f start
= 2πt (2.45)

∂Φ

∂θ3

=
∂Φ

∂β
= π · mod (t+ ∆, T )2 (2.46)

∂Φ

∂θ6

=
∂Φ

∂ϕ
= 1 (2.47)

and below in (2.48) and (2.49).

∂Φ

θ4

=
∂Φ

∂∆
≈



2πβ (t− (d− 1)T + ∆), if ∆d−1 + ε
2
≤ ∆ ≤ ∆d − ε

2

2πβ

(
3∑
p=0

ap (d) ∆p

)(
3∑
p=1

p · ap (d) ∆p−1

)
, if ∆d −

ε

2
≤ ∆ ≤ ∆d +

ε

2︸ ︷︷ ︸
ApproximationRegion

(2.48)
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∂Φ

θ5

=
∂Φ

∂T

≈



2πβd2 (T − Td), if Td+1 + α(Td+1−Td+2)

2
≤ T ≤ Td − α(Td−Td+1)

2

2πβ

(
3∑
p=0

bp (d)T p
)(

3∑
p=1

p · bp (d)T p−1

)
, if Td −

α (Td − Td+1)

2
≤ T ≤ Td +

α (Td − Td+1)

2︸ ︷︷ ︸
ApproximationRegion

0, if t+ ∆ ≤ T

(2.49)

To obtain ∂Φ
∂θ4

and ∂Φ
∂θ5

we substitute the approximations for mod(t+ ∆, T ) given in

(2.14) and (2.27) into (2.5) and compute the partial derivatives with respect to θ4 and θ5.

After the FIM is populated, it is inverted numerically. Since numerical matrix inversion is

sensitive to scaling it is advisable to evaluate the components of the FIM in units of MHz

and µs, and combinations thereof as specified in Table 8, to avoid producing entries that

vary by many orders of magnitude. This would otherwise be the case since the units of

some components are seconds (on the order of 10−6) and others are in units of frequency

(on the order of 106) , which would yield values that nominally differ in scale by 12 orders

of magnitude.
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2.3 RESULTS

To test our derivations we consider two examples, which are the focus of this section. The

first example, given in Section 2.3.1 computes the bound for signal m = 2 from Table 8 and

compares it to the result of a simulation of the MLE of f start, β, ∆, and T . The second

example, given in Section 2.3.2, evaluates the CRLB for both m = 1 and m = 2 from Table

8 for the case when M = 2. In both examples the bounds were computed with α = ε = 0.25.

2.3.1 Comparison Between MLE and CRLB for M = 1

In some cases, comparing the MLE to the CRLB is a useful way to test the derivation of

the CRLB. In general, the CRLB is known to reflect the minimum estimation error variance

that can be achieved by any parameter estimation algorithm that is unbiased [21, Ch. 3].

It is also known that if there exits an algorithm that can achieve the CRLB, then the MLE

will also achieve it asymptotically (i.e., as the number of samples of r (t) increases) [21, pg.

164]. Hence, if an estimator exists that can achieve the CRLB then the CRLB predicts the

asymptotic performance of the MLE. So, if the simulated performance of the MLE attains

the CRLB, we can conclude that the CRLB we derived is correct. For the signal model given

in (2.1)-(2.6) with w (t) ∼ CN (0, σ2
w), the MLE is derived in [25] and reproduced below in

a form relevant to our problem



f̂ start

β̂

∆̂

T̂

ϕ̂


= arg max

f start,β,∆,T

L
(
f start, β,∆, T, ϕ

)
(2.50)

where

L
(
f start, β,∆, T, ϕ

)
=

∣∣∣∣∣
Ns−1∑
n=0

r [n] s∗
[
n; f start, β,∆, T, ϕ

]∣∣∣∣∣ (2.51)

The MLE simulation was performed with 50 trials per SNR using a grid search centered

on the true values of the parameters with 11 equally spaced grid points. The width of
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the search region in each of the five dimensions was equal to four standard deviations,

with a standard deviation being that predicted by the CRLB of the parameter defining the

associated dimension for the specified SNR. In other words, we specified the width of the

search region for each dimension by using the standard deviation predicted by the CRLB for

the associated SNR. We took this approach to specifying the search in order to design an

efficient experiment since a grid that is too fine and a search region that is too large can easily

lead to simulations that would require multiple weeks to complete. The idea was that four

standard deviations were large enough to allow the MLE to exhibit its true Mean Squared

Error (MSE) performance. The estimated MSE 5 is plotted along with the CRLB in Figure

14. The close correspondence between the MLE and the CRLB suggest our approximations,

derivation, and implementation for the M = 1 case are correct.

2.3.2 CRLB for M = 2

Figure 15 shows the result of evaluating the CRLB when both signals m = 1 and m = 2

are included in the data model. In this example the CRLB was evaluated by following the

analysis for M > 1 discussed in Appendix E. Since comparing these results to a simulation of

the MLE would have been too time consuming, we justify them qualitatively by comparison

to the results shown in Figure 14. With reference to Table 9, the standard deviations

predicted by the CRLB for the M = 1 and signal m = 2 case is compared to the standard

deviations predicted by the CRLB for theM = 2 case. Columns 2 and 3 of Table 9 correspond

to the CRLBs of signal m = 2 for the M = 1 and M = 2 cases, respectively. The fact that

their values are identical suggests two things. First, the derivation of bound for M = 2 is

accurate to within the same approximation error as in the M = 1 case. Second, since the

values did not change between the M = 1 and M = 2 cases for signal m = 2, the parameter

estimates between signal m = 1 and m = 2 are uncorrelated.

5It is well known that the CRLB is overly optimistic in predicting the estimation error variance at
sufficiently low SNR levels. The values of SNR for which the CRLB are grossly incorrect for a particular
estimator is known as the estimators ‘threshold region’. All estimators, including the MLE, exhibit a
threshold region [3]. The simulation that yielded the performance results shown in Figure 14 does not show
the MLE’s threshold region because of the restrictive search range used to implement the MLE.
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Figure 14: Comparison of MLE Estimation Error Variance to CRLB

Table 9: Comparison of Standard Deviation Predicted by CRLB for M = 1 and M = 2

Cases at SNR = 0 dB

Variable Name M = 1, m = 2 M = 2, m = 2 M = 2, m = 1 Units

f start
m 5 · 10−6 5.5 · 10−6 5 · 10−6 MHz

βm 3 · 10−7 3 · 10−7 1 · 10−6 MHz/µs

∆m 1.5 · 10−5 1.5 · 10−5 8 · 10−6 µs

Tswp,m 7.5 · 10−5 7.5 · 10−5 1.75 · 10−5 µs

ϕm 1.25 · 10−2 1.25 · 10−2 1.25 · 10−2 rad
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Figure 15: CRLB Computed for m = 1 and m = 2 from Table 8

2.4 CONCLUSION

In this Chapter we derived an approximate CRLB associated with the LFMCW signal model.

Since the DCL approach [19] is inherently sub-optimal, relative to the MLE, the CRLB is

a useful tool for quantifying the associated performance deficit, in addition to its typical

application as a tool for use in trade studies. Since the instantaneous phase of the LFMCW

signal model is not differentiable, we developed an approximation to the phase. Using this

approximation, we developed an approximate CRLB, which we verified through simulation

by comparing it to the MLE. Our approximation leads to a bound expressed directly in

terms of the parameters of interest, rather than indirectly as would be required if previous

work [39] on this topic were applied.
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In the next chapter we assess the performance of the method based on laboratory

hardware-in-the-loop and outdoor over-the-air experiments using Software Defined Radios to

transmit and receive LFMCW signals like those analyzed in this chapter. The performance

observed from these experiments is compared to the bounds just derived.

2.5 FUTURE DIRECTIONS

In Section 2.2.1 we give broad guidance for selecting the values of ε and α. However, specific

analysis that provides more direct guidance on selecting these parameters so that the bound

exists is of practical interest.
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3.0 EXPERIMENTAL RESULTS

In this chapter we focus on testing the method developed in Chapter 1 [19] and comparing

these experimental results to the bounds derived in Chapter 2 [18]. The experimental results

are products of three experimental setups, which include 1) simulation, 2) hardware-in-the-

loop and 3) over-the-air configurations. Each of these experimental setups was based on

the same two test signals, but differ in the means by which the signals are generated, the

medium over which they propagate, and the way they are sampled. Overall, the goal of

these experiments was to incrementally introduce complicating factors that are inevitable in

the practice. Specifically, the simulation analyzed performance in the presence of Gaussian

system noise, the hardware-in-the-loop experiment added the potential for deviations from

the ideal signal models assumed of the transmitter and receiver, and the over-the-air config-

urations experiment introduced interference sources whose properties are not only unknown,

but also non-stationary. The data from these three experiments are analyzed in detail in

this chapter, but, in brief, indicate that two simultaneous LFMCW signals can be detected

and their parameters estimated to within 10% of their true values with probability greater

than 90% for signal to noise ratios that are greater than -10 dB.
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3.1 INTRODUCTION

Early in the history of radar is was known that low power signals existed that could simul-

taneously yield high probabilities of detection and accurate range/Doppler estimates [58]

by increasing the signal duration and bandwidth through frequency modulation. These sig-

nals became known as Frequency Modulated Continuous Wave (FMCW). Some examples of

applications and design architectures that are based FMCW signals were discussed in the

literature as far back as the 60’s (see [47, Ch. 16] and references therein), but the realiza-

tion of small, low cost implementations have only recently become available [37, 46]. The

hardware advancements that are enabling the practical realization of transmitters capable

of generating low power, continuous wave (CW) signals with sophisticated frequency modu-

lations is principally owed to the advancements in solid-state amplifier technology, while the

ability to successfully process returns is a result of high speed digital signal processing hard-

ware. These advancements in active radar systems have naturally perpetuated the ongoing

battle that exists between the active radar technology and ELectronic Intelligent (ELINT)

gathering methods, giving rise to the term Low Probability of Intercept (LPI) radar. The

goal of this chapter is to present the experimental results associated with a new method

for gathering ELINT on a specific LPI signal structure; the Linear Frequency Modulated

Continuous Wave (LFMCW) .

The focus of Chapter 1 [19] of this dissertation was on the development of a computa-

tionally tractable method for Detecting, Characterizing and Localizing (DCL) low power,

LFMCW 1 signals when the number of LFMCW signals and the autocorrelation properties

of the noise corrupting them are both unknown. The method broke the signal down into

small time intervals, estimated the frequency content in each, and through reconstructing

the instantaneous frequencies that define the LFMCW signals, estimated the parameters

that characterize them. In that work we evaluated the performance of the approach, which

we termed a sequential method, via Monte Carlo simulation only. The focus of Chapter

2 [18] was on predicting the performance of any unbiased estimator of the parameters of the

1FMCW typically refers to radar signals whose amplitude is constant with arbitrary frequency modulation.
In this work we focus on a specific type of frequency modulation that yields an instantaneous frequency that
exhibits a periodic sawtooth structure. We refer to this structure as LFMCW.
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LFMCW signals, via The Cramer-Rao Lower Bound (CRLB) [23, pgs. 35-48]. The focus of

this chapter is on extending the performance evaluation to data generated and collected using

Software Defined Radios (SDRs) [50]. These experiments demonstrate that this technique

can reliably detect and characterize multiple low power LFMCW signals in the presence

of noise processes with unknown autocorrelation properties and time-varying power spectra

(i.e., non-stationary) using low cost hardware. These results should be thought of as paving

the way for higher cost, more capable receivers to attain even better performance.

3.1.1 LFMCW Signal Model

We demonstrate this capability by performing three types of experiments: (1) Simulation,

(2) Hardware-in-the-Loop (HIL), and (3) Over-the-Air (OTA) on received signals that adhere

to the following signal s
(
t; θ̄
)

plus noise w (t) model [9, 16,17,19,34]

r (t) = s
(
t; θ̄
)

+ w (t) (3.1)

where the M component LFMCW signal is given by

s
(
t, θ̄
)

=
M∑
m=1

sm
(
t; θ̄m

)
(3.2)

θ̄ =
[
θ̄T1 . . . θ̄TM

]T
(3.3)

with each individual LFMCW signal expressed as

sm
(
t; θ̄m

)
= Λm

(
t; θ̄m

)
· bmejΦ(t;θ̄m) (3.4)

where

Λm

(
t; θ̄m

)
= u

(
t− tstart

m

)
− u

(
t− tstop

m

)
(3.5)

is the rectangular function used to embed start-time tstart
m and stop-time tstop

m of the signal

into the model, with u (t) denoting the unit step function. The instantaneous phase of each

LFMCW component is given by

Φ
(
t; θ̄m

)
= ϕm + 2π

t∫
0

fm (ν) dν (3.6)

fm (t) = f start
m + βm mod (t+ ∆m, Tswp,m) (3.7)
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We express Φ
(
t, θ̄m

)
in (3.6) as a function of the integrated instantaneous frequency defined

by (3.7) because our detection and characterization procedures are better suited to a def-

inition of instantaneous frequency that does not require a time-derivative of instantaneous

phase, due to the discontinuities in (3.7). Finally, the vector of unknown parameters defining

the mth LFMCW component is

θ̄m =



bm

ϕm

tstart
m

tstop
m

f start
m

βm

∆m

Tp,m



(3.8)

Unlike in [9, 34] we do not restrict w (t) to be white, stationary, or have completely

known autocorrelation properties. The autocorrelation function of a general zero mean noise

process w (t) is defined by

E {w (t1)w∗ (t2)} = R (t1, t2) (3.9)

for some function of t1 and t2. Accommodating a non-stationary noise process [8] means

we do not require that R (t1, t2) = R (t1 − t2) = R (τ). Additionally, the fact that we

can handle unknown (i.e., possibly colored) noise processes means that we do not assume

specific knowledge of the functional relationship defining the autocorrelation function [24,

pg.581], [38, pg. 376] R (t1, t2). One does need to assume that w (t) is Gaussian, locally wide-

sense stationary over short time intervals [8], and that the Power Spectral Density (PSD)

associated with each short time interval does not change abruptly in frequency intervals of

width 2W . Both the width of a short time interval and the resolution bandwidth 2W are

defined in Section 3.2. For the purposes of this chapter, noise processes that do not change

abruptly on over frequency intervals of 2W are referred to as “slowly-varying” [40, pgs. 370,

498]. However, if any or all of these assumptions do not hold for some short time intervals,
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we believe the overall method can recover2. We support this claim with a specific example,

given by way of Figure 20 in Section 3.3.3, and with a more complete analysis in Section

3.4. Allowing for such unrestrictive assumptions on R (t1, t2) is necessary in order to ensure

successful operation the presence of real-world interference sources.

A numerical example of this signal model for M = 2 is shown using a spectrogram

(i.e., magnitude squared of the short-time Fourier Transform) in Figure 16 with parameters

defined and specified in Table 10. Signal m = 2 is annotated in Figure 16 in order to show

the relationship between the variables that define the signal and the instantaneous frequency

of each component. The basic signal structure given in Figure 16 and Table 10 is used in

each of the three experimental setups that we treat in this chapter. The following three

sections describe the motivation for each of these experiments.

f2
start

f2
start + β2 ⋅mod Δ2 ,Tp,2( )

B2 = β2 ⋅Tswp,2
Tswp,2 β2 =

B2
Tp,2

Figure 16: (main panel) Spectrogram (20 dB dynamic range) of two LFMCW signals based

on signal model given in (3.1)-(3.8) (left panel) Frequency marginal of spectrogram (bottom

panel) Time-series r (t)

2We believe that the assumptions for w (t) to have a Gaussian distribution, locally stationary, and its
power spectrum to be slowly-varying in intervals of width 2W can be broken some short time intervals. We
describe the theoretical basis for this belief in briefly in Section 3.2, more fully in Section II of Part 1 [19],
and test it more fully with the experimental setup given in Section 3.3 and results in Section 3.4
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Table 10: Signal Parameters for Figure 16

Variable Description Variable Name Values (m=1, m=2) Units

Amplitude bm 1, 1
√
J/s

Phase ϕm 0, 0 rad

Start Time tstart
m 0, 0 µs

Stop Time tstop
m 655.36, 655.36 µs

Starting Frequency f start
m -11, 4 MHz

Chirp-Rate βm 0.125, 0.0267 MHz/µs

Time-Offset ∆m 0, 75 µs

Sweep Time Tswp,m 80, 150 µs

No. of LFMCW Signals M 2 —

Sampling Rate Fs 25 MHz

Observation Duration T 655.36 µs
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3.1.2 Simulation

In addition to aiding in the development of the theory, the simulation experiments are

intended to establish a performance baseline in a completely controlled fashion. In partic-

ular, we controlled the experiment by generating signals in software that adhere to (3.1)-

(3.7) and corrupting them with errors using a random number generator to model w (t) for

R (t1, t2) = σ2
wδ (t1 − t2) and w (t) ∼ CN (0, σ2

w) (i.e., Complex Additive White Gaussian

Noise (CAWGN)).

The results of these experiments are used in two main ways. The first way, which was

reported on in [19], is to demonstrate that reasonably good performance was achievable at

input Signal to Noise Ratios (SNRs) low enough to support reception of signals emitted by

transmitters with low Effective Isotropically Radiated Power (EIRP) at moderate ranges

between transmitter and receiver, and a capacity for doing so in a computationally tractable

way. Specifically, in [19] we showed that we could estimate the parameters of two simul-

taneous LFMCW signals to within 10% of their true values greater than 90% of the time

when SNR is greater than -11 dB and the signals are sampled at 25 MHz over an observation

period of 655.36 µs. Calculation of the signal parameters based on these samples required,

at most, 35 seconds. These results supported the operational viability of the concept.

The second way we use these results is to assess the impact of error sources that are not

reflected in a simple CAWGN model of w (t). In particular, these error sources include

1. the non-ideal nature of real hardware used to generate and transmit LFMCW signals

2. extraneous interference sources that are superimposed on (3.2), and

3. multi-path reflections that are superimposed on (3.2).

More specifically, real hardware devices that generate Radio Frequency (RF) signals are

likely to deviate from the mathematical models given in (3.1)-(3.5) and (3.6)-(3.7). Hence,

software simulations that adhere to these models will not fully reflect errors that are likely

present in practice. Next, since the RF spectrum is crowded in almost all bands, especially

from the viewpoint of a receiver operating at high altitudes, extraneous in-band interference

sources are likely to complicate w (t) in ways that will tax our Gaussian assumptions and

exercise our claims that neither stationarity nor knowledge of the autocorrelation function
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is required. Finally, since LFMCW based radar systems are attractive in maritime [46] and

in personnel-detection [47, pg. 16-35] applications, multi-path effects are likely to be faced

by passive receivers situated near the ground. The goal of the HIL and OTA experiments is

to quantify the performance loss, relative to simulation and the CRLB, from these sources

of error.

3.1.3 Hardware-in-the-Loop

The primary goal of the HIL experiment is to determine whether a laboratory experiment

using real RF hardware and an RF noise generator could approach the performance observed

in simulation. The results of this experiment answer the question of whether the ideal model

of the instantaneous frequency given (3.7), and upon which we develop our methods, are

reasonable approximations for what can be generated and received by real hardware.

3.1.4 Over-the-Air

The primary goal of the OTA experiment is to determine the performance loss incurred by

the presence of interference and multi-path 3 error sources that make the characteristics of

w (t) deviate significantly from R (t1, t2) = σ2
wδ (t1 − t2) and w (t) ∼ CN (0, σ2

w).

3.1.5 Chapter Organization

With the intent of the chapter clearly stated, the remainder of this work is devoted to

describing the experimental results. To do so the chapter is organized as follows. In Section

3.2 we overview the key aspects of the method reported on in [19] for the sake of motivating

the experimental methods and results, which are found in Sections 3.3 and 3.4, respectively.

More specifically, Section 3.3 details the approaches used for gathering the results, which

3Because multi-path is a practical concern for some operational environments, we have stressed that, in
principle, it may have a performance impact. However, because of the proximity of the transmitter, receiver,
and multi-path reflectors in the experimental setup used, if present at all, multi-path components were not
clearly evident in any of the recorded data. In other words, if multi-path was present in the data, it was
either too weak to be observed or the reflectors were at such short ranges that they were indistinguishable
from the direct path. In any case, multi-path did not appear to affect performance. Further simulation
analysis is planned to determine the performance impact of multi-path reflections.
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are described in Section 3.4. Finally, we conclude the chapter with a summary of the main

accomplishments and some suggestions for future directions.
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3.2 BACKGROUND

The purpose of this section is to summarize the main ideas behind the algorithms developed

in Chapter 1 [20], but only enough to so that the approach can be understood from a high

level. For a detailed description of the method the reader is encouraged to consult [19]

directly. Since the experimental results discussed in this chapter are primarily focused on

detection and characterization performance, we focus our background discussion on these

aspects of the method.

The problem of detecting and characterizing LFMCW signals is most commonly formu-

lated as [9, 25,34]

H0 : r (t) = w (t) (3.10)

H1 : r (t) = s
(
t; θ̄
)

+ w (t) (3.11)

where s
(
t; θ̄
)

and w (t) are as defined previously. When w (t) is complex, white, and Gaussian

the optimal detection and characterization method, in the Generalized Likelihood Ratio Test

(GLRT) sense, is given in [25] as

L = arg max
θ̄

∣∣∣∣∣∣
T∫

0

r (t) s∗
(
t; θ̄
)
dt

∣∣∣∣∣∣
2

> η (3.12)

In accordance with the theory associated with the GLRT, if the threshold η is exceeded

by

∣∣∣∣ T∫
0

r (t) s∗
(
t; θ̄
)
dt

∣∣∣∣2 then a detection is declared and the value of θ̄ corresponding to the

maximum is the Maximum Likelihood Estimate (MLE) of θ̄. While optimal, methods that

implement (3.12) directly, or thorough surrogates such as in [9], face computational difficulty

when M = 1 and are overwhelmed by computational burdens when M is unknown, as is

likely the case in practice. Furthermore, since deriving the probability density function of L

under H0 appears to be an unsolved problem, these methods give no guidance for selecting

η, which puts false alarm probability (PFA) outside of the direct control of the designer 4.

4The detection threshold can be selected using simulation or laboratory experiments that attempt to
model the worst-case environment, or through built-in test equipment that senses the noise environment
when it is known that no signal is present. While practical, these methods can be error prone or costly.
Hence, it would desirable to have detection and characterization methods that do not require detailed
knowledge of the noise properties to automatically select η.
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These and other methods designed for tracking instantaneous frequency [26] suffer from one

or more of the following shortcomings

1. their computational requirements limit their applicability

2. unable to handle case for M > 1

3. unable to automatically and efficiently determine M when unknown

4. unable to set a meaningful detection threshold the without detailed knowledge or as-

sumptions on the statistics of the additive noise process

5. unable to operate at input SNR levels characteristic of LPI radar signals

6. unable to provide parameter estimates to enable localization, such as TDOA, without

access to high speed data links

The detection problem framed in (3.10) and (3.11) and the time series defined by (3.1)-

(3.8) are useful starting points to formulate the detection and characterization problems.

However, the complexity of the signal model (i.e., the large number of parameters necessary

to define it) and the number of samples required for a LFMCW signal to show its full

structure in a received time series makes the optimal correlation-based procedures, like that

given in (3.12), prone to computational limitations. In an effort to retain the essence of this

problem formulation but redefine it so that some of these short comings could be addressed,

we adopted an idea common in the field of spectral estimation [40,49] that attempts to extend

methods developed for stationary processes to processes with time-varying spectral content.

In particular, our approach breaks the signal down by analyzing the received time-series over

short, non-overlapping, contiguous time intervals. Within each interval the received signal

is modeled as a sum of harmonic components with unknown order and, within this interval,

zero or more frequency components are detected and estimated. The new hypothesis test,

based on the redefined signal model is 5

H0 : rn,k = wn,k (3.13)

H1 : rn,k = sn,k + wn,k (3.14)

5We reference the samples of a continuous time signal x (t) as xn ≡ x (t) |t=nTs
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where rn,k is the nth sample, for n = 1, . . . , N , of r (t) in the kth time interval. The kth time

interval is given by

δk = {t : (k − 1) ·NTs ≤ t ≤ k ·NTs)} (3.15)

where k = 1, . . . , K = b T
N ·Ts c and Ts = 1

Fs
. That is,

rn,k = r ((k − 1) ·NTs + nTs) (3.16)

Within this short time interval we model the received time-series as a sum of harmonic

components, which gives rise to the so-called Short Time Harmonic Model (STHM) of the

data

sn,k ≈ sSTHM
n,k =

Lk∑
c=1

Cc,k · ej2πfc,knTs (3.17)

where Lk ≤ M is the number of constant frequencies fc,k present in δk. The complex

amplitude is given by Cc,k = bc,ke
jφc,k where bc,k is as defined in (3.4) and φc,k is the phase of

the cth harmonic component in the kth short-time interval. We emphasize that Lk and each

bc,k, fc,k, and φc,k are assumed to be unknown, but deterministic. From this point forward we

take the approximation in (3.17) to be an equality. Furthermore, in δk we assume that wn,k

is a band-limited, zero mean, complex, wide-sense stationary Gaussian random process with

unknown PSD Pwn,k (f) that is not necessarily constant (i.e., {wn,k} can be colored noise),

but is slowly-varying. 6 The ability to handle an unknown colored noise process is what

justifies the generality with which we can treat (3.9) , and is a key feature for a practical

implementation since the PSD of the noise is rarely known a-priori. Hence, the STHM of

the received multicomponent LFMCW signal in δk is

rn,k = sSTHM
n,k + wn,k (3.18)

So, within δk selection between H0 and H1 can be achieved using Thompson’s multi-taper

based method for harmonic analysis [51]. Collecting the frequency estimates from each δk

6The assumption that the PSD is slowly-varying is a mathematical necessity for the development of the
test statistic used to decide between (3.13) and (3.14). However, in practice we only need the PSD to
not exhibit dramatic variations in subintervals of the PSD having width 2W , where 2W is the resolution
bandwidth defined by Thomson’s method. If these assumptions are met in most of the short-time intervals
then the small percentage of missed or erroneous detections that are a result of an instability in the detector
can be tolerated by the later steps devoted to characterization, which are outlined in detailed in Section III
of [19].
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over the full observation duration T amounts to measuring the instantaneous frequency of

each LFMCW signal. Once these frequency estimates are obtained they are clustered by

chirp-segment by finding those frequency estimates that fall along the same straight line.

The method estimates the number of unique line segments and the slope and frequency

intercept of of each segment. The slope, frequency intercept, and corresponding frequency

estimates are compared to each of the other clusters in order to determine which chirp

segments correspond to the same LFMCW signal. Two statistical test are applied to these

data to make the associations. Once each cluster is assigned to an LFMCW signal, the

samples for each signal are used to estimate the parameters that define (3.7) by solving the

following optimization problem

arg min
f startm ,βm,∆m,Tswp,m

{
Nm∑
i=1

∣∣∣f̂m,i − fm,i∣∣∣} (3.19)

where fm,i denotes the ith sample of the instantaneous frequency of the mth LFMCW signal

and f̂m,i are the corresponding frequency estimates that resulted from the preceding STHM,

clustering, and association steps.

This simplification of the signal model and the algorithms developed to use the frequency

samples to estimate LFMCW parameters led to a sequential method with the following

features

1. no calibration is necessary, either on-line or off-line in the laboratory, to determine a

detection threshold η that is a function of PFA;

2. one does not need to assume the system noise present in the received time-series is white

or has a known autocorrelation function;

3. environments containing multiple LFMCW signals can be treated without adding a sti-

fling computational burden;

4. automatic recognition of the number (M = 0, 1, 2 . . . ) of LFMCW signals present in the

environment is achieved

5. in addition to estimates of the parameters that define the instantaneous frequency of

each LFMCW signal, our approach produces estimates of the variance of a subset of

these parameters directly from the data;
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However, with these benefits comes a loss in performance relative to the GLRT and the

associated MLE, which we quantify in Section 3.4. We do so by comparing performance

results from simulation, HIL, and OTA experiments to one another and to the CRLB, which

was derived in [18]. Comparison to the CRLB is a useful benchmark since the CRLB is known

to reflect the minimum estimation error variance that can be achieved by any parameter

estimation algorithm that is unbiased [21, Ch. 3].
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3.3 EXPERIMENTAL METHODS

In this section we describe the details associated with each experimental setup. In particular,

we describe how signals were generated, transmitted, received, and processed for each of the

three experiments. Figures 17-19 are block diagrams that describe how the components are

connected for the simulation, HIL, and OTA experiments. By comparing Figures 17-19 we

see that the common aspects between the three experiments are that each “transmit” the

same two simultaneous signals (i.e., m = 1, 2) , with parameters given in Table 10 and do

all of the calculations necessary to estimate θ̂1 and θ̂2 via post-processing using MATLAB

R015a. 7 The experiments differ in the means by which the signals are generated, the

medium over which they propagate, and the way they are sampled. The following three

sections elaborate on each of these three experimental setups, primarily in terms of 1) how

SNR was computed or estimated and 2) how repeated trails were initiated.

3.3.1 Simulation

The goal of the simulation was to divorce the performance of the algorithms from errors

sources that could not be completely controlled. Examples of such error sources are imper-

fections in the hardware that cause the transmitted and received signals, in the absence of

additive noise like that modeled by w (t), to deviate from (3.1)-(3.5) and (3.6)-(3.7). Addi-

tionally, in the real world we expect w (t) to not only have an unknown noise auto-correlation

function, but also exhibit non-stationarities resulting from extraneous interference sources.

3.3.1.1 Controlling SNR The blocks in Figure 17 that contain “lfmcw.m” and “cawgn.m”

emphasize that we developed MATLAB functions and scripts to generate controlled signals

and noise, with direct control over SNR. The parameters that define signals s1 and s2 are

given in Table 10 and the variance of the noise samples produced by the random number

7All post processing and timing values reported on in this chapter were preformed in MATLAB using
a MacPro 2.6 GHz Core i7 laptop wi th 16GB of 1600 MHz DDR3 RAM. The purpose of alerting the
reader to the approximate computation times and the platform they were derived from is to simply give a
ballpark sense for the computational burden to support the general claims that the method were evaluating
is computationally feasible.
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Figure 17: Block Diagram of Simulation Experimental Setup

generator to model w (t) are scaled to yield a variance given by

σ2
w =

b2
m

snr
(3.20)

where b2
m = 1 and snr is the signal to noise ratio, in linear units8, of r (nTs). For all three

experiments, we vary SNR and observe various metrics, which are defined in Section 3.4, to

assess performance. By scaling the output of the random number generator, which is signified

by the block with the arrow though it denoted “ATTN,” to abbreviate “attenuation,” we

vary SNR by keeping the signal amplitude constant.

3.3.1.2 Repeating Trials Since the simulation experiment was performed entirely in

software, we were able to repeat trials for a specific SNR with a new set of random draws

from MATLAB’s random number generators. The results given for this experiment are based

on 200 independent trials.

8We capitalized SNR when referencing it in units of decibels (dB).
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3.3.2 Hardware-in-the-Loop
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Figure 18: Block Diagram of HIL Experimental Setup

The goal of the HIL experiment was to determine whether the algorithms we developed

in [19] could, in the absence of extraneous interference, perform nearly as well as in simulation

when real hardware was employed for the transmission and reception of the LFMCW signals.

We avoided most interference by designing the experiment so all devices were connected via

shielded RF cabling and by adding controlled noise to corrupt the received signal. After

sampling and saving the baseband signals to disk, we used MATLAB to post-process each

T = 655.36µs segment of sampled data using the same algorithms developed and tested in

simulation.

Figure 18 shows how the SDR’s [50] were connected and controlled in addition to how the

data were received and corrupted. One SDR was programmed to produce s1 (t) and the other

to produce s2 (t) on a 3 GHz carrier. These signals were then superimposed using an RF

combiner and allowed to propagate over an RF cable to the input of another RF combiner.

The output of this combiner, laboratory generated noise was superimposed and the total

signal plus noise (as in (3.1))was received, down-converted to baseband, and sampled by a

third SDR of the same type as those used to generated the LFMCW signals.
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In order to ensure we observed a wide range of SNR’s, the noise source was attenuated

from 0 dB to 50 dB in steps of 1 dB. After each attenuation was applied the receiver

SDR was commanded, by the Digital Recorder, to record Ntotal = 24 · 220 samples, which

is approximately 1 second at 25 Mega Samples Per Second (MSPS). We also note that

both the in-phase and quadrature components of the complex baseband signal produced

by the SDR were sampled at 25 MSPS, yielding 25 MHz of bandwidth. Each attenuation

step corresponded to a unique 1 second data file, which was divided into 1536 segments

of length NTobs = 214 in order to produce observations of duration Tobs = 655.36µs to be

post-processed in MATLAB. Hence, each attenuation level contains enough samples for a

maximum of P = 1536 repeated trials for performance analysis.

3.3.2.1 Controlling SNR Since direct control over the SNR was not possible in the

same way it was in the simulation, we needed to estimate it instead. To do so we took

1 second noise only recordings (i.e., s1 and s2 turned off) at each attenuation level and

estimated the noise variance at the output of the receiver’s Analog to Digital Converter

(ADC) in each of the P segments of length NTobs . In particular, for each attenuation level α

we computed P estimates of noise variance

σ̂2
wα,p =

1

NTobs − 1

NTobs−1∑
np=0

|rα (npTs)− µ̂wα,p|
2 (3.21)

µ̂wα,p =
1

NTobs

NTobs−1∑
np=0

rα (npTs) (3.22)

where np is intended to denote the indices of pth length NTobs segment of rα. To compute the

uncertainty in these noise variance estimates, we computed the sample variance over the P

noise variance estimates, for each attenuation. Specifically,

∆σ̂2
wα =

√√√√ 1

P − 1

P−1∑
p=0

(
σ̂2
wα,p − µ̂σ̂2

wα

)2

(3.23)

µ̂σ̂2
wα

=
1

P

P−1∑
p=0

σ̂2
wα,p (3.24)
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Similarly, to estimate signal power b2
m, we disconnected the lab noise generator, transmitted

only s1 or s2, and computed

b̂2
m,p =

1

NTobs − 1

NTobs−1∑
np=0

|r (npTs)− µ̂sm,p|
2 (3.25)

µ̂sm,p =
1

NTobs

NTobs−1∑
np=0

r (npTs) (3.26)

Similar to (3.23) and (3.24), we estimated the uncertainties in these signal power estimates

as

∆b̂2
m =

√√√√ 1

P − 1

P−1∑
p=0

(
b̂2
m,p − µ̂b̂2m

)2

(3.27)

µ̂b̂2m =
1

P

P−1∑
p=0

b̂2
m,p (3.28)

The estimated SNR for each attenuation is then given by

ŜNRm,α= 10 · log10

(
µ̂b̂2m
µ̂σ̂2

wα

)
(3.29)

To determine the uncertainty associated with (3.29) due to ∆b̂2
m and ∆σ̂2

wα , we employ the

following approximation [21, pg. 39], which is based on a first-order Taylor expansion of

ŜNRm,α about
(
µ̂b̂2m , µ̂σ̂2

wα

)

∆ŜNRm,α =

√√√√√√√√√√√

(
∆b̂2

m ·
∂SNRm,α
∂µ

b̂2m

∣∣∣∣
µ
b̂2m

=µ̂
b̂2m

)2

+ . . .∆σ̂2
wα ·

∂SNRm,α
∂µ

σ̂2wα

∣∣∣∣
µ
σ̂2wα

=µ̂
σ̂2wα

2 (3.30)

We quantify algorithm performance for this experiment in Section 3.4 as a function of these

estimates of SNR. The uncertainties in SNR are used to develop the error bars 9 (i.e.,

confidence intervals) in Figure 24.

9The purpose of breaking up the signal and noise time series up and computing multiple estimates of
signal and noise power was so that the variance estimates of signal and noise power could be computed
and used to develop the error bars. Additionally, since the algorithms being tested are applied to intervals
of equal duration as those used to compute each estimate of signal and noise power, variations in SNR
levels that occur from interval to interval are captured on the same time scale as used to derive parameter
estimates.
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3.3.2.2 Repeating Trials In order to repeat trials for each SNR in this experiment we

treated each of the 1536 segments for each of the 1 second recordings as a candidate trial.

For the results given in 3.4 we randomly selected 200 segments per attenuation setting to

derive performance results.

3.3.3 Over-the-Air
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Figure 19: Block Diagram of OTA Experimental Setup

In contrast to the HIL experiment, the goal of the OTA experiment was to face all the

same challenges present in the HIL in addition to those posed by a wireless link between

unsynchronized transmitter and receiver. Consequently, two additional challenges followed

1. extraneous interference sources whose properties were unknown a-priori were intermit-

tently present in r (t)

2. synchronization between the Local Oscillators (LO’s) on the transmit and receive ADC’s

was not obtained

The first challenge was brought on by the general crowded nature of the RF spectrum

in the 25 MHz band centered at 2.47425 GHz. The reason this band is particularly crowded

is because it is allocated by the Federal Communications Commission (FCC) as an the

Industrial, Scientific, and Medical (ISM) band. The ISM designation allows for RF energy

to be radiated without a license if the Effective Isotropic Radiated Power (EIRP) [45, pg.

66, 80] is less than 1 Watt and the signal structure is such that the energy is spread, in
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our application, over the 25 MHz of bandwidth that our signals occupy. Hence, a large

number of devices (e.g., Cordless Phones, Bluetooth, near field communications, and wireless

computer networks) operate at low powers in these bands, which offers a rich set of potential

interference sources against which we can pit our algorithms. An example of a 655.36 µs

recording taken at an attenuation level such that the Signal to Interference Plus Noise (SINR)

levels are SINR1 = −6.3 dB, SINR2 = −9.6 dB, and where heavy interference was present

is given in Figure 20. It is interesting to note that this segment of data led to a correct

characterization, which is defined in Section 3.4, for both signals. We emphasize that in this

section that we are forced to deal with SINR rather than SNR, since interference and noise

cannot be separated in the experiment.

Figure 20: (main panel) Spectrogram of s1 and s2 observed during OTA experiment at low

SNR levels in the presence of strong interference and ambient noise (left panel) Magnitude

spectrum of associated r (t) (bottom panel) Real part of time-series r (t)
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The second challenge is related to the intentional lack of synchronization between the

LO’s on the transmitter and receiver. The reason we intentionally did not synchronize the

LO’s was because doing so would have produced received signals whose structure would

have been unrealistically close to that of the transmitted signals since synchronization would

have meant virtually no discrepancy, for example, between the tuned center frequency of

the transmitter and the receiver. Since it’s unlikely that a practical implementation of our

method will be able to synchronize with the clock of the transmitter, we avoided doing so

in our test. The result is difficult to perceive visually, but manifests in an instability in the

center frequencies of each signal. As a result, parameters like starting frequency f start
m will be

affected by this systematic error source in a way that’s not directly reflected in a CAWGN

model, but likely present in practice.
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3.3.3.1 Controlling SINR In contrast to the data collection strategy used in the HIL

experiment, the OTA experiment affects SINR by attenuating the transmitted signal rather

than the additive interference plus noise. Doing so is intended to emulate power loss that

occurs due to propagation over long distances, as would be the case in real world scenarios

where the receiver is a long distance away from the transmitter. In these scenarios, there is

no control over the noise power once the operating bandwidth is selected. Since the physical

distance between the transmitter and receiver, both of which were on rooftops to increase the

likelihood of observing interference sources, was only approximately 100 meters, power levels

were reduced by 0 to 30 dB in steps of 1 dB with a variable attenuator at the transmitter. We

sampled the signal environment at a center frequency of 2.47425 GHz at a rate of 25 MHz.

In the OTA data collection we opted to lengthen the duration of the recordings for each

attenuation level from approximately 1 second to approximately 5 seconds, which increased

the number of samples we collected to Ntotal = 119 · 220. The reason for doing so was to

increase the likelihood of observing interference in each recording.

To estimate interference plus noise variance in this experiment, Q = 14 individual 5 sec-

ond recordings were taken intermittently over a 1 hour period during intervals of time where

the transmitter was turned off. These interference plus noise recordings were taken over the

span of 1 hour in order to capture interference events that were as diverse as possible, with-

out collecting a burdensome amount of data. The calculations used to estimate interference

plus noise variance were similar to those used in the HIL experiment. In particular, since

we planned to apply our detection and characterization algorithms to observation intervals

such that Tobs = 655.36µs, we partitioned the total N samples corresponding to 5 seconds

of noise into Ntotal/NTobs = P = 7616 segments. Hence, for q = 1, . . . , Q we computed noise

power estimates as

σ̂2
wq ,p =

1

NTobs − 1

NTobs−1∑
np=0

∣∣rq (npTs)− µ̂wq ,p
∣∣2 (3.31)

µ̂wq ,p =
1

NTobs

NTobs−1∑
np=0

rq (npTs) (3.32)

where np again indexes the pth segment, but this time of the qth interference plus noise

recording, rq. The uncertainty in the interference plus noise power estimate is then computed
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over all PQ individual estimates as 10

∆σ̂2
w =

√√√√ 1

PQ− 1

PQ−1∑
i=0

(
σ̂2
w,i − µ̂σ̂2

w

)2
(3.33)

µ̂σ̂2
w

=
1

PQ

PQ−1∑
i=0

σ̂2
wα,p (3.34)

To estimate signal power b̂2
m we take a very similar approach to that taken to estimate the

signal powers in the HIL experiment via (3.25)-(3.28). In particular, we transmit each signal

individually then compute the signal power b̂2
m as in (3.25) and (3.26). To determine the

signal power associated with each of the attenuated values we scale these estimates by the

appropriate amount. Similarly, we compute the uncertainty in the estimates of b̂2
m as in

(3.27), which we assume is the same for each attenuation level. Finally, the uncertainty in

the SINR estimate is computed as in (3.29).

3.3.3.2 Repeating Trials In order to repeat trials for each SINR in this experiment we

treated each of the 7616 segments for each of the 5 second recordings as a candidate trial.

For the results given in 3.4 we randomly selected 200 segments per attenuation setting to

derive performance results.

10We now index noise power estimates as σ̂2
w,i from i = 1, . . . , PQ to reflect the PQ independent estimates

obtained over all Q recordings.
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3.4 RESULTS

Performance11 is quantified in two ways for each of the three experiments using parameter

estimation error variance and probability of correct characterization (PC). In general, as

reflected in Table 10 and in (3.8), there are 8 parameters that define each LFMCW signal.

Though each parameter is estimated at each trial for each experiment, we only evaluate the

performance of the algorithm in terms of chirp-rate, starting frequency, and sweep time. We

limit our performance analysis to this subset of parameters because it is difficult to know

truth for the others. Furthermore, these three parameters are the main identifiers that would

most likely be of interest to an ELINT operation. Estimation error variance is computed for

each of the three parameters, for each of the two signals, at each SNR12, over the 200 trials.

In trials where s1 or s2 is not detected, there is no contribution to the associated estimation

error variance.

Each of the three panels in Figures 21-23 show the estimated standard deviations derived

from each of the three experiments along with the associated CRLB, which is the same for

each experiment since the true parameter values are the same. As mentioned previously,

comparison to the CRLB is a useful benchmark since it is known to reflect the minimum

estimation error variance that can be achieved by any parameter estimation algorithm that

is unbiased [21, Ch. 3]. It is also known that if there exits an algorithm that can achieve the

CRLB, then the MLE will also achieve it asymptotically (i.e., as the number of samples of

r (t) increases) [21, pg. 164]. Hence, if an estimator exists that can achieve the CRLB then

the CRLB predicts the asymptotic performance of the MLE and serves as a means to assess

the degree of sub-optimality we suffer compared to the more computationally intensive, but

optimal, MLE. If an estimator does not exist that can achieve the CRLB, then the CRLB

still provides a useful benchmark for comparison that is widely accepted in the literature.

11In order to implement the algorithms that produce these various results, a number of parameter settings
are required. Since a detailed description of each of these parameters would require that we provide contextual
details that are outside of the scope of this chapter and would serve only to shift focus from the results, we
refer the reader to Part 1 [19] where these parameters were first defined. We also note that the parameter
settings given in [19] are the same settings used to derive the results in this section for each of the three
experiments.

12For simplicity, in this section we refer to performance as a function of SNR. However, the reader should
take SNR to mean SINR when considering performance results from the OTA experiment.
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The CRLB for the signals treated in this chapter was derived in Chapter 2 [18]. In general,

the more samples of a process that are observed the better the estimation error achieved.

The CRLBs reflected in Figures 21-23 are computed using all NT = T · Fs = 16384, while the

sequential method is computed using a series of non-overlapping intervals of length N = 76.

Hence, the majority of the performance gap that is apparent in these figures is a consequence

of the disparity between the number of samples used to form the estimates. However, the

short time harmonic model that requires N to be small is also the main mechanism for the all

of the benefits yielded by the sequential method; in particular its computational tractability

compared to the MLE.

Probability of correct characterization, per signal, is defined as the average number

of trails per SNR level that yield parameter estimates that are within 10% of their true

values. Figure 24 shows the estimated values of PC for each experiment, with the left

panel corresponding to s1 and the right panel to s2. The results from the HIL and OTA

experiments include confidence intervals, centered at each estimated SNR, that are derived

from the uncertainties in SNR computed according (3.29) and described in Sections 3.3.2.1

and 3.3.3.1. The confidence intervals widths are selected, assuming the errors in SNR are

Gaussian, to have a 95% probability of containing the true SNR. Hence, we are able to

quantify experimental uncertainty, thereby giving a basis from which to make inferences

about whether one experiment yielded statistically different performance than another. Each

solid dot in the this figure corresponds to an experimental data point, about which 95%

confidence intervals are centered for the HIL and OTA experiments. The solid lines are

least-squares fits of these data points to a logistic curve of the form [55]

f (SNR) =
1

1 + e−κ(SNR−SNR0.5)
(3.35)

where κ is a scale parameter and SNR0.5 denotes the SNR where PC = 0.5. We included

these fits to the data for ease of comparison between experiments that did not occur at the

same levels of SNR. Figure 24 is the most concise graphical summary of the performance of

the algorithms in each of the three experiments.

A common method for quantifying the performance of an algorithm in terms of a single

number is by defining the Minimum Detectable Signal (MDS). We define MDS as the SNR

106



Figure 21: Simulation Results

Figure 22: HIL Results
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Figure 23: OTA Results

Figure 24: Comparison of Probability of Correct Characterization Between Three Experi-

ments
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at which PC ≥ 90%. MDS is commonly used in link budget analyses that determine, under

assumptions on the transmitter, receiver, and link characteristics, the range between the

transmitter and receiver where the associated SNR would be observed. Table 11 summarizes

the MDS associated with each signal for each of the three experiments, along with the 95%

confidence interval ranges for the HIL and OTA experiments. The relatively large error bars

in the OTA experiment are likely due to fluctuations in the received signal power or the

presence of powerful, transient interfering sources.

Table 11: MDS for each Experiment

Simulation HIL OTA units

Signal No. 1 -10.0 -10.0 ± 0.2 -11.2 ± 1.8 dB

Signal No. 2 -11.1 -10.6 ± 0.2 -9.78 ± 1.0 dB
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3.5 CONCLUSIONS

In this chapter performance of the method was evaluated by comparing the results from

three experiments. We found that the simulation, hardware-in-the-loop, and over-the-air ex-

periments each indicate, to within their associated confidence intervals, that the parameters

of two simultaneous signals can be estimated to within 10% of their true values ≥ 90% of the

time as long as SNR≥ −10 dB. This is a powerful result given that the OTA experiments

were performed outdoors in the Industrial, Scientific, and Medical (ISM) band [54], which is

a band allocated by the FCC for unlicensed low-power use, with low-cost Software Defined

Radios [50] acting as the transmitters and receivers. Examples of some devices that operate

in this band are Bluetooth, cordless phones, wireless networks, short-range push-to-talk com-

munication devices, and other experimental equipment. Hence, the band is likely to contain

frequent transient interference sources whose noise characteristics are unknown a-priori.

3.6 FUTURE DIRECTIONS

Future work related to testing the DCL method originally developed in [19] should focus on

evaluating its ability to operate in more challenging environments. In particular, environ-

ments where multi-path is clearly present and interference is even stronger and more frequent

should be considered.
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4.0 SUMMARY OF CURRENT WORK

In this work we developed an approach to Detecting, Characterizing, and Localizing (DCL)

multiple Low Probability of Intercept Linear Frequency Modulated Continuous Wave sources

and demonstrated features of the approach that do not exist in any one approach in the

literature. We demonstrated the performance using a combination of simulation, Hardware-

In-the-Loop, and Over-the-Air testing, which we compared to the Cramer-Rao Lower Bound.

In contrast to classical approaches to signal detection, such as in [22, 25], our approach is

in large part ad-hoc, and implemented by breaking the DCL problem up into parts and

solving them sequentially. The upside to such an approach is that the virtuous aspects of

methods from a wide variety of disciplines, such as signal processing [21,22], statistics [40,57],

optimization [31], and optimal state estimation/geo-location [15], can be brought to bear on

a challenging problem.
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APPENDIX A

THE COMPLEX VALUED SIGNAL MODEL

In this appendix we describe some aspects related to the complex representation of real

valued signals. In most physical situations where signals are produced, such as through

vibrations, electromagnetic radiation, or neural transmissions, the signals that results are

most naturally treated as a real-valued quantities. It is only to this point that most signal

analysts would likely remain in agreement. Beyond this point the motives of the analyst

dictate how they go about relating a real-valued quantity to a complex valued one.

The motives of an analyst interested in uncovering theoretical properties of the signal

tend to avoid making assumptions, since doing so increases the chances of clouding the

emergence of new, fundamental signal properties. This group tends to appeal to the so-

called Analytic Signal [4, Ch. 2] [32, Ch. 3]. In contrast, the analyst whose interest is

in solving an engineering problem is at ease in making assumptions and applying them to

enable simplifications. This group, particularly those working in the areas of radar and

communications, tend to appeal to the so-called Complex Envelope [21, pgs. 493-496], [32,

Ch. 3] representation. Since this work is developed in context of a radar application,

our development of the complex signal will focus on the complex envelope representation.

However, the appendix concludes by showing its relationship to the analytic signal.
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Figure 25: Sensor Block Diagram

A.1 THE COMPLEX ENVELOPE SIGNAL MODEL

With reference to Figure 25, this appendix develops the block labeled ‘Analog/Digital Re-

ceiver’ (ADR), whose task is to translate the real signal sRF (t) into its complex envelop

representation r (t). The figure includes references to equations in order to put the block

diagram into the context of Chapter 1.

The output of the antenna sRF (t) is the real valued signal we translate, via the ADR, into

the complex envelope r (t) (1.17) which, under H1 is processed by the methods developed

in Chapter 1 to produce estimates of θ̄ (1.19) and qs,m (1.78)-(1.84). Our motives are to

construct a complex representation of sRF (t) that can be related to the LFMCW signals

model and facilitates efficient receiver designs.

The development of the complex envelope begins by assuming that is meaningful to

express sRF (t) as

sRF (t) = A (t) cos (ωCt+ φ (t)) (A.1)

where ωC is the carrier frequency, which we assume is known, and A (t) and φ (t) are unknown

functions, commonly referred to as the amplitude and phase modulations, respectively. We

can see, by inspection, that solving (A.1) for the unknowns A (t) and φ (t) based on obser-

vations of sRF (t) is an under determined problem since, for each t, we have two unknowns,

namely, A (t) and φ (t). So, for say NT observations of sRF (t) we have 2NT unknowns.

Hence, we need to apply constraints to (A.1) in order to make the problem well-defined.
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The development of the complex envelope model hinges two assumptions, which may

also be interpreted as constraints. In particular, we assume

1. sRF (t) is narrowband, with known bandwidth 2πB

2. ωC is known.

Assuming sRF (t) is narrowband amounts to assuming that the lowest frequency in sRF (t) is

much greater than zero. Mathematically, this is equivalent to ωC−2πB
2
� 0, where bandwidth

2πB is defined to be the range of frequencies about ωC where the majority 1 of the signal

energy is confined. In radar and communications applications the narrowband assumption

is standard since both types of transmissions are limited to certain regions of the frequency

spectrum either by law, such as those imposed by the Federal Communications Commission

(FCC), or by limitations on the transmitter. Assuming knowledge of 2πB and ωC are

somewhat less certain in passive applications, such as those treated in this dissertation. Some

typical methods for determining them though are through a-priori knowledge or through

wide-band search techniques that queue specialized processing methods (i.e., Chapter 1) to

focus on a particular center frequency and bandwidth. As we will see, these two assumptions

give rise to the complex envelope model which takes the familiar form

s (t) = A (t) ejφ(t) (A.2)

which is no longer under determined with respect to A (t) and φ (t). This is the case since,

now for each t we have two equations and two unknowns. Specifically,

Re {s (t)} = sI (t) = A (t) cos (φ (t)) (A.3)

Im {s (t)} = sQ (t) = A (t) sin (φ (t)) (A.4)

where A (t) and φ (t) can be solved for by

A (t) =

√
sI (t)2 + sQ (t)2 (A.5)

φ (t) = arctan

(
sQ (t)

sI (t)

)
(A.6)

1A precise definition of ‘majority’ is typically application dependent.
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This solution to (A.2) implicitly constraints A (t) to be non-negative. In radar and com-

munications applications additional constraints on s (t) arise naturally from knowledge of

signal used by the transmitter. The main benefits of expressing (A.1) as (A.2) is that it

reduces the rate at which the signal needs to be sampled, since the carrier ωC is removed,

in order to retain the information conveyed in A (t) and φ (t). This is beneficial since the

higher the sampling rate of the Analog to Digital Converter (ADC) the greater the cost.

Furthermore, slower sampling rates mean fewer samples need to be stored and therefore

storage requirements are minimized.

Developing the procedure that turns (A.1) into (A.2) begins by expanding (A.1) as

sRF (t) = A (t) cos (φ (t)) cos (ωCt)− A (t) sin (φ (t)) sin (ωCt) (A.7)

using the trigonometric identity

cos (α + β) = cos (α) cos (β)− sin (α) sin (β) (A.8)

From (A.7) we see that the components we seek, namely (A.3) and (A.4), are embedded in

the right hand side. The remainder of this derivation is devoted to extracting them. Since

the steps in the derivation mirror the receiver architecture used to implement the conversion

of (A.1) to (A.2) an example block diagram of the receiver, which is commonly referred to a

quadrature demodulator, is given in Figure 26. This figure is adapted from [21, Figure 15.2].

First, we manipulate (A.7) to extract (A.3). Multiplying sRF by cos (ωCt) yields

a (t) = sRF (t) · 2 cos (ωCt) (A.9)

= 2A (t) cos (φ (t)) cos (ωCt) cos (ωCt)− 2A (t) sin (φ (t)) sin (ωCt) cos (ωCt) (A.10)

= 2A (t) cos (φ (t))
1

2
(1 + cos (2ωCt))− 2A (t) sin (φ (t))

1

2
(0 + sin (2ωCt)) (A.11)

= A (t) cos (φ (t)) + A (t) cos (φ (t)) cos (2ωCt)− A (t) sin (φ (t)) sin (2ωCt) (A.12)

= A (t) cos (φ (t)) + A (t) cos (φ (t) + 2ωCt)︸ ︷︷ ︸
narrowband signal centered at 2ωC

(A.13)
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Figure 26: Analog/Digital Receiver Block Diagram [21, pg. 495]

where we go from (A.10) to (A.11) by applying the identities

cos (α) cos (β) =
1

2
(cos (α− β) + cos (α + β)) (A.14)

sin (α) cos (β) =
1

2
(sin (α− β) + sin (α + β)) (A.15)

As indicated, the second term in the right hand side of (A.13) has a spectrum whose lowest

frequency component, which is at 2ωC − 2πB
2

, is much greater than zero. Hence, filtering

a (t) with a low pass filter with cutoff frequency 2πB/2 yields

[a (t)]LPF = A (t) cos (φ (t)) (A.16)

= sI (t) (A.17)

= Re {s (t)} (A.18)
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where [·]LPF denotes the low pass filtering operation. In a similar fashion we get can manip-

ulate (A.7) to get (A.4)

[b (t)]LPF = [sRF (t) 2 sin (ωCt)]LPF (A.19)

= A (t) sin (φ (t)) (A.20)

= sQ (t) (A.21)

= Im {s (t)} (A.22)

Obtaining the complex envelope in this way allows sI (t) and sQ (t) to be sampled at B

Hz rather than requiring that sRF (t) be sampled at 2 (ωC + 2πB) /2π. Additionally, this

receiver architectures gives direct access to the amplitude and phase modulation functions

that contain the information imparted on the carrier by the transmitter. In our application

we extract that information by relating (A.2) to (1.18) and processing the noisy observations

r (t) using the methods described in Chapter 1. Applying our model from (1.18) to (A.2) is

equivalent incorporating another constraint.

A.2 RELATIONSHIP TO THE ANALYTIC SIGNAL

To those used to dealing with the analytic signal, the form of the complex envelope given by

(A.2) is familiar. The key difference between the analytic signal and the complex envelope

is that the analytic signal is derived without assumptions on bandwidth or center frequency.

This is the case because analysis that is based on the analytic signal, such as that found

throughout [4], seeks to keep such aspects of the signal unknown so that they may be

uncovered. To define the analytic signal [4, pg. 37] we begin with only the real-valued time

series sRF (t)), free of assumptions, and let

sa (t) =
2√
2π

∞∫
0

SRF (ω) ejωtdω (A.23)
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where SRF (ω) is the spectrum of the real signal

SRF (ω) =
1√
2π

∞∫
−∞

sRF (t) e−jωtdt (A.24)

From [4, Eq. 2.67] we have that

|sa (t)− s (t)| ≤ 2√
2π

0∫
−∞

|S (ω)| dω (A.25)

where S (ω) is the spectrum of the complex envelope

S (ω) =
1√
2π

∞∫
−∞

s (t) e−jωtdt (A.26)

So, if we replace s (t) by s (t) ejωCt then S (ω) is replaced by S (ω − ωC). Then (A.25) becomes

∣∣sa (t)− s (t) ejωCt
∣∣ ≤ 2√

2π

0∫
−∞

|S (ω − ωC)| dω (A.27)

By the narrowband assumption made on sRF (t) we have that the lowest frequency component

in S (ω − ωC) is much greater than zero, which drives the right hand side of (A.27) to zero.

So, we can conclude that

sa (t) = s (t) ejωCt (A.28)
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APPENDIX B

THOMSON’S MULTITAPER METHOD FOR HARMONIC ANALYSIS

Recall from Section 1.2, the hypothesis test that Thomson’s method for harmonic analysis

is designed to decide on is

H0 : rn,k = wn,k (B.1)

H1 : rn,k = sn,k + wn,k (B.2)

where

sn,k ≈ sSTHM
n,k =

Lk∑
c=1

Cc,k · ej2πfc,knTs (B.3)

and Lk ≤ M is the number of constant frequencies fc,k present in each short time interval

δk and M is the number of LFMCW signals present. The complex amplitude is given by

Cc,k = bc,ke
jφc,k where bc,k is as defined in (1.20) and φc,k is the phase of the cth harmonic

component in the kth short-time interval. Under H1, {rn,k} is a set of samples with a

time-varying mean. Thus, the decision procedure is designed to decide between (B.1) and

(B.2) by determining whether the mean of {rn,k} is statistically different from zero and

consistent with the harmonic model of the mean given in (B.3). As we will see, the key

idea behind making this determination is to express (B.2) in the frequency domain and,

upon application of Thomson’s multi-taper method, recognize the regression problem that

results. The decision procedure then amounts to determining the statistical significance of

the computed regression coefficients.
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To simply the derivations that follow, we develop the decision procedure for the case

when the goal is to determine whether one harmonic component is present (i.e., Lk = 1) in

{rn,k} or whether it is noise only. Subsequently we show how the derivation generalizes for

Lk > 1.

The expected value of rn,k is

E[rn,k] = C1,ke
j2πf1,knTs (B.4)

where E[·] is the statistical expectation operator. So,

rn,k = E[rn,k] + wn,k (B.5)

Next, we begin the development of the frequency domain representation of (B.2) by consid-

ering the Discrete Time Fourier Transform (DTFT) of
{
hq,nrn,k/

√
Ts
}

Jq,k (f) = Ts

N∑
n=1

(
hq,nrn,k/

√
Ts

)
e−j2πfnTs (B.6)

where {hq,n} is the order q Discrete Prolate Spheroidal Sequence (DPSS) [40, 378-390]. These

sequences have the property that for a given number, N , of time-domain samples, sampled

at a rate Fs, their DTFT has its energy maximally concentrated in the normalized frequency

range [−W,W ] (i.e., 0 ≤ W ≤ 0.5), where 2W is defined as the resolution bandwidth of

the spectral estimator. This property allows one to select the resolution bandwidth in terms

of N , or vice-versa. For our problem, having a resolution bandwidth of 2W means that we

cannot resolve the instantaneous frequencies of multiple LFMCW signals if they are closer to

one another than 2WFs in a given δk. Hence, Jq,k (f) is the DTFT of {rn,k} tapered (a/k/a

windowed) by {hq,n/
√
Ts}. Taking the expected value of Jq,k (f) and using (B.4) yields

E[Jq,k (f)] =
√
Ts

N∑
n=1

hq,nC1,ke
j2πf1,knTse−j2πfnTs

=
C1,k√
Ts
Hq (f − f1,k) (B.7)

where

Hq (f) ≡ Ts

N∑
n=1

hq,ne
−j2πfnTs (B.8)

120



is the DTFT of {hq,n}. Similar to (B.5) we express Jq,k (f) in terms of its mean as

Jq,k (f) = Ts

N∑
n=1

(
hq,nrn,k/

√
Ts

)
e−j2πfnTs (B.9)

= Ts

N∑
n=1

((
hq,ns

STHM
n,k + hq,nwn,k

)
/
√
Ts

)
e−j2πfnTs (B.10)

= Ts

N∑
n=1

(
hq,ns

STHM
n,k /

√
Ts

)
e−j2πfnTs+ (B.11)

Ts

N∑
n=1

(
hq,nwn,k/

√
Ts

)
e−j2πfnTs (B.12)

= E[Jq,k (f)] + Ts

N∑
n=1

(
hq,nwn,k/

√
Ts

)
e−j2πfnTs (B.13)

where we note that the magnitude-squared of the term containing wn,k is an estimator of

Pw (f) in δk using {hq,n} as the data taper. This is the frequency domain representation of

(B.2) we described as a key element to the method.

We now begin to develop a test statistic for deciding between the hypotheses given in

(B.1) and (B.2). The first step is to evaluate (B.6) at f = f1,k

Jq,k (f1,k) = E[Jq,k (f1,k)] +
√
Ts

N∑
n=1

hq,nwn,ke
−j2πf1,knTs (B.14)

where from (B.7)

E[Jq,k (f1,k)] =
C1,k√
Ts
Hq (0) (B.15)

By substituting (B.15) into (B.14) we arrive at the following complex-valued, first order

regression model for Jq,k (f1,k)

Jq,k (f1,k) = C1,k
Hq (0)√
Ts

+ ε̃q,k, q = 0, . . . , Q− 1, (B.16)

where

ε̃q,k ≡
√
Ts

N∑
n=1

hq,nwn,ke
−j2πf1,knTs (B.17)

and Q is the number of DPSS data-tapers used (typically Q < 2NW ), C1,k is the complex-

valued unknown to be estimated, Hq (0)/
√
Ts is the qth independent-variable, and ε̃q,k is the

error term. It is interesting to note that the magnitude-squared of the error term in (B.17) is
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equivalent to the estimated PSD of Pwn,k (f) using the qth data taper and evaluated at f1,k.

Intuitively, the requirement that Pwn,k (f) is slowly varying in [f1,k−W, f1,k+W ] is necessary

to ensure that Pwn,k (f) has structure different from a harmonic, which ideally appears as a

spike, at f1,k.

Before invoking the equation that solves for the least-squares estimate of C1,k [33, Eq.

(3.12)], we must establish two conditions on ε̃q:

Condition 1: ε̃q,k is zero-mean, complex-valued, and Gaussian distributed with uncorre-

lated real and imaginary components, with each component having equal semi-variances

σ2
ε̃q,k
/2.

Condition 2: For each q, ε̃q,k must be mutually uncorrelated and have equal variance σ2
ε̃k

.

Condtions 1 and 2 are established in [40, pg. 498]. Therefore, the least-squares estimator of

C1,k is given by [33, Eq. (3.12)]

Ĉ1,k =
√
Ts ·

Q−1∑
q=0

Jq,k (f1,k)Hq (0)

Q−1∑
q=0

H2
q (0)

(B.18)

In addition to the result given in (B.18), Theorem 8.1 of [33] establishes four useful properties

related to Equation (B.16), which will be necessary later when we eliminate the dependence

of the noise power from the calculation of the detection threshold.

Property 1: Ĉ1,k is a complex Gaussian random variable with mean C1,k (i.e., unbiased)

and variance σ2
Ĉ1,k

= σ2
ε̃k
Ts/

Q−1∑
q=0,2,...

H2
q (0).

Property 2: An estimator of σ2
ε̃k

is given by

σ̂2
ε̃k

=
1

Q

Q−1∑
q=0

∣∣∣Jq,k (f1,k)− Ĵq,k (f1,k)
∣∣∣2 (B.19)

where Ĵq,k (f1,k) is the value of Jq,k (f1,k) predicted by the estimate Ĉ1,k

Ĵq,k (f1,k) ≡ Ĉ1,k
Hq (0)√
Ts

(B.20)
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Property 3: The random variable 2Qσ̂2
ε̃k
/σ2

ε̃k
∼ χ2

2Q−2, where ∼ is read as ’is distributed

according to’ and χ2
2Q−2 denotes a chi-squared distribution with 2Q−2 degrees of freedom.

Property 4: Ĉ1,k and 2Qσ̂2
εk
/σ2

ε̃k
are independent of each other.

The development between (B.4) and (B.20) forms the basis for the test statistic that

determines whether periodicity exists in {rn,k} that adheres to (B.2) (i.e., H1) or whether

only the background random process {wn,k} exists in δk, in which case {rn,k} adheres to

(B.1) (i.e., H0). To decide between these two hypotheses we recognize that, for Lk = 1,

(B.1) is equivalent to the case where Jq,k (f1,k) = ε̃q,k. Likewise, (B.2) is equivalent to the

case where Jq,k (f1,k) = C1,k
Hq(0)√
Ts

+ ε̃q,k. Thus our approach will be to formulate a test that

rejects the null hypothesis if Ĉ1,k is statistically different from zero.

To do so first recall from Property 1 that under H0 the random variable Ĉ1,k has a

complex Gaussian distribution with zero mean and variance σ2
Ĉ1,k

= σ2
ε̃k
Ts/

Q−1∑
q=0

H2
q (0). Next,

recall that under the null hypothesis Jq,k (f1,k) = ε̃q,k and, by Conditions 1 and 2, we

have that for each q, ε̃q,k are mutually uncorrelated with independent real and imaginary

components. Therefore, since Ĉ1,k is the weighted sum of ε̃q,k for q = 0, . . . , Q − 1 implies

that Ĉ1,k has independent real and imaginary components as well. Hence, under the null

hypothesis Ĉ1,k/(σĈ1,k
/
√

2) has uncorrelated real and imaginary components that are zero

mean and unit variance (i.e., independent standard normal random variables). Since the

sum of the squares of two standard normal random variables is chi-squared distributed with

two degrees-of-freedom we have that

∣∣∣Ĉ1,k/(σĈ1,k
/
√

2)
∣∣∣2 =

2
∣∣∣Ĉ1,k

∣∣∣2 Q−1∑
q=0

H2
q (0)

σ2
ε̃k
Ts

(B.21)

∼ χ2
2 (B.22)

If one knew the value of σ2
ε̃k

, which would in turn require knowledge of the variance of

wn,k, then Equations (B.21) and (B.22) could be used as the basis for a statistical test that

determines whether Ĉ1,k = 0. However, this would contradict the claims made in Items 1
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and 2 of Subsection 1.1.3. To hold to these claims we seek a test statistic whose distribution

is not only obtainable under H0 but also free of σ2
ε̃k

. To obtain such a test statistic recall

from Properties 3 and 4 that the random variables Ĉ1,k and 2Qσ̂2
ε̃k
/σ2

ε̃k
are independent.

This implies that the right-hand side of Equation (B.21) is independent of 2Qσ̂2
ε̃k
/σ2

ε̃k
as well.

Next recall that if a ∼ χ2
ν and b ∼ χ2

κ, then

a/ν

b/κ
∼ Fν,κ (B.23)

where Fν,κ is an F-Distribution with ν and κ degrees-of-freedom [7]. Thus, if we let

Dk (f1,k) ≡

(
2
∣∣∣Ĉ1,k

∣∣∣2 Q−1∑
q=0,2,...

H2
q (0)

/
σ2
ε̃k
Ts

)/
2(

2Qσ̂2
ε̃k

/
σ2
ε̃k

)/
(2Q− 2)

(B.24)

then substitute Equation (B.19) from Property 2 into Equation (B.24) and simplify, we

get

Dk (f1,k) =

(Q− 1)
∣∣∣Ĉ1,k

∣∣∣2 Q−1∑
q=0,2,...

H2
q (0)

Ts
Q−1∑
q=0

∣∣∣Jq (f1,k)− Ĵq (f1,k)
∣∣∣2 (B.25)

∼ F2,2Q−2 (B.26)

At last, we have a test statistic that, under the null-hypothesis, has a known distribution

and is a function of all of the relevant known quantities.

To get the detection threshold as a function of PFA, let

PFA ≡ Pr (Dk (f1,k) > η|H0) (B.27)

where Pr (A|B) is the conditional probability that event A occurs given that the conditions

defined by B are true. Then

PFA = 1−
η∫

0

F2,2Q−2 (ξ) dξ (B.28)
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It can be shown [40, pg. 501] that the solution to this equation for η is

η =
(Q− 1)

(
1− PFA1/(Q−1)

)
P

1/(Q−1)
FA

(B.29)

which gives a detection threshold that is a function of PFA, as desired. Thus, if Dk (f) > η

for f = f1,k then f1,k is significant, the null hypothesis is rejected, and the resulting value of

Ĉ1,k can be used to solve for b̂1,k and φ̂1,k since C1,k ≡ b1,ke
φ1,k . Finally, suppose that Lk > 1.

If this is the case and fi,k /∈ [fj,k −WFs, fj,k +WFs] for i 6= j, then Dk (fi,k) is influenced

very little by fj,k, Dk (fi,k) is a F2,2Q−2 random variable, and Dk (fi,k) exceeds η for the same

value of PFA. The influence is small because the leakage properties of the Slepian sequences

used are very good [40, pg. 331, 334-335].

At this point we highlight the fact that this approach is equipped to deal with harmonic

components in colored noise because in the preceding development we treated Pwn,k (f) as

an unknown PSD corresponding to a Gaussian random process. Moreover, due to the short-

time model we impose, non-stationary random processes are naturally admissible as well

as long as N is small enough. That is, Pwk (f) can be different from one time interval to

the next, but, within each time-interval δk, {wn,k} must be wide-sense stationary and have

a slowly-varying spectrum [40, pgs. 496-501]. This is a common feature of window-based

spectral analysis methods.

We close the appendix with Figure 27, which is intended to walk the reader through

the implementation of Thomson’s method as it relates to the equations developed in this

appendix.
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Figure 27: Block Diagram Showing Implementation of Thomson’s Method for Harmonic

Analysis
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APPENDIX C

EXTENDING THE SHORT TIME HARMONIC MODEL

In this Appendix we develop an extension to the STHM developed in Chapter 1. The main

idea behind the extension is to increase the duration of the short-time interval (C.3) that

defines each STHM (C.5) so that within these intervals the frequency of each signal compo-

nent has enough time increase or decrease according to the chirp-rate. Hence, increasing the

duration of δk as such leads allows for the possibility to estimate chirp-rate, which results in

an ability to jointly estimate the center frequency and chirp-rate of each signal within each

short-time interval. With estimates of center frequency and chirp-rate we speculate that one

or more of the following future directions can be pursued:

1. By jointly estimating center frequency and chirp-rate, false alarms that are consistent

with a simplified harmonic model of the data could be eliminated on the basis that they

have no appreciable linear frequency modulation local to the harmonic energy. In other

words, one might expect environmental interference to appear as a sinusoidal component

if observed over a short-time interval, but less likely to appear to have linear frequency

modulation over longer time intervals. Hence, false alarms due to the appearance of in-

terference components, in addition to false alarms induced by random noise fluctuations,

will likely be reduced.

2. By jointly estimating center frequency and chirp-rate in each short-time interval, addi-

tional information becomes available to later processing steps; namely, clustering (see

Section 1.3.1). It is speculated that by adding estimates of chirp-rate to (1.44)-(1.45)
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or (1.52)-(1.53) the current process of clustering frequencies by chirp segment may be

accelerated and its performance improved. Accelerating this step would be a major

improvement since it is currently the most time consuming of all the algorithm steps.

3. Including an estimate of chirp-rate that results from each short-time interval may also

make tracking frequency with an estimator like a Kalman Filter (KF) or Extended

Kalman Filter (EKF) viable. These ideas were pursued in [1, pgs. 200-202] and by

others, which are reviewed in [26]. However, after a preliminary literature review it ap-

pears the ideas were pursued when either samples of the complex time-series or estimates

of frequency are treated as the measurement input to the KF or EKF. Formulating a KF

or EKF with estimates of frequency and chirp-rate as measurement inputs could make

tracking multi-component signals, which would be equivalent to multi-target tracking [2],

more feasible.

4. Finally, the most clear benefit of developing a capability to jointly estimate chirp-rate and

center frequency is that constraints on making the width in samples N of the short-time

interval (see 1.2.2) can be relaxed. This has two main benefits. First, one does not need

to rely as heavily on a-priori assumptions on the maximum chirp-rate to determine the

maximum N that will ensure the signal adheres to the STHM given by (C.5). Second,

allowing N to increase will enable more accurate estimates of center frequency since, in

general, more samples means increased estimation accuracy of estimators.

In the remainder of this Appendix we develop one approach to estimating chirp-rate

in addition to center frequency and test its performance compared to the CRLB [39]. We

found that the method did not substantially increase the computational requirements of

Thomson’s method and that for sufficiently high SNR the CRLB is achieved. Additionally,

a fundamental limitation of the methods proposed in this dissertation is clearly brought to

light, which joint estimation of center frequency and chirp-rate may possibly address.
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C.1 A JOINT FREQUENCY, CHIRP-RATE ESTIMATOR

The approach is an extension of the method developed in Section 1.2 for estimating the

frequency of each harmonic component, if present, in a short-time interval.

For convenience we reproduce some of the relevant equations from Section 1.2. Consider

the following hypothesis test 1

H0 : rn,k = wn,k (C.1)

H1 : rn,k = sn,k + wn,k (C.2)

where rn,k is the nth sample, for n = 1, . . . , N , of r (t) in the kth time interval. The kth time

interval is given by

δk = {t : (k − 1) ·NTs ≤ t ≤ k ·NTs)} (C.3)

where k = 1, . . . , K = b T
N ·Ts c. That is,

rn,k = r ((k − 1) ·NTs + nTs) (C.4)

Within this short time interval we model the received time-series as a sum of harmonic

components, which gives rise to the following Short Time Harmonic Model (STHM) of the

data

sn,k ≈ sSTHM
n,k =

Lk∑
c=1

Cc,k · ej2πfc,knTs (C.5)

where Lk is the number of constant frequencies fc,k present in δk. The complex amplitude

is given by Cc,k = bc,ke
jφc,k where bc,k is as defined in (1.20) and φc,k is the phase of the cth

harmonic component in the kth short-time interval. In this model of the data N is selected

(see Section 1.2.2) so that

N ≤ Nmax =

⌈
2Fs√

2 |βmax|

⌉
(C.6)

which determines each δk.

1Samples of a continuous time signal x (t) are denoted by xn ≡ x (t) |t=nTs
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Suppose that we let N = p · Nmax for some p > 1. Then the more appropriate Short

Time Chirp Model (STCM) of sn,k in the associated δk is

sn,k ≈ sSTCM
n,k =

Lk∑
c=1

Cc,k · ej2π((fc,k−βc,k·t0,k)nTs+
1
2
βc,k(nTs)

2) (C.7)

where Lk is now the number of short time chirp segments in δk. The complex amplitude of

each chirp is similarly defined as Cc,k = bc,ke
jφc,k , except that φc,k is now interpreted as the

initial phase of the cth short time chirp segment in the kth time-interval. The amplitude,

bc,k is still as defined in (1.20). There are two main differences in the STCM compared

to the STHM. First, fc,k is now interpreted as the center frequency of the cth short time

chirp segment at the center time t0,k in δk. That is, t0,k = (k − 1/2) (N − 1)Ts. Second, the

extended duration of δk means that chirp-rate is now observable in the data. Hence, βc,k is

the chirp-rate of the cth short time chirp segment in the kth short time interval.

The joint frequency/chirp-rate estimator is a three step process.

1. Solve the hypothesis testing problem from (C.1)-(C.2) assuming (C.5) holds in rn,k by

selecting N such that (C.6) is satisfied. The methods from Section 1.2 apply directly.

2. If Lk > 0 then we assume (C.7) holds by letting N = p · Nmax for p > 1. Each βc,k

is estimated by maximizing the discretized form of (1.3) for s
(
t; θ̄ = βc,k

)∣∣
t=nTs

= sn,k,

which becomes

β̂c,k = arg max
βc,k

|L1 (βc,k)|2 (C.8)

where

L1 (βc,k) =
N−1∑
n=0

rn,ke
−j2π((f̂c,k−βc,kt0,k)nTs+ 1

2
βc,k(nTs)

2) (C.9)

Note that Cc,k is omitted from the objective function because including it would not

change the point in the βc,k dimension where the argument is maximized.

3. With estimates of center frequency f̂c,k and chirp-rate β̂c,k we can refine our estimates of

each by jointly estimate these parameters by solving the following optimization problem

with f̂c,k and β̂c,k as initial conditions f̂c,k

β̂c,k

 = arg max
fc,k,βc,k

|L2 (fc,k, βc,k)|2 (C.10)
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where

L2 (fc,k, βc,k) =
N−1∑
n=0

rn,ke
−j2π((fc,k−βc,kt0,k)nTs+ 1

2
βc,k(nTs)

2) (C.11)

One could start by jointly estimating f̂c,k and β̂c,k in Step 2, but the objective function de-

fined by (C.10) is prone to numerous local extrema. So, reliable initial conditions on each

parameter are necessary in order to reliably find the global minimum using a numerical

minimization technique such as the Nelder-Mead simplex direct search algorithm [29,31].
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C.2 EXAMPLE

Figure 28: Spectrogram of Single Chirp (T = 80µs) of rn,k Under H1 at SNR = 5 dB and

40 dB Dynamic Range

In this section we describe an example where the above three steps are implemented to

jointly estimate fc,k and βc,k. The signal used in the example is given by m = 1 in Table

2 for T = 80µs. A spectrogram of rn,k under H1 at SNR = 5 dB is given in Figure 28.

At this same SNR and example plot of L1(β) is given in Figure 29, showing the result of a

grid based evaluation of (C.9) and the associated maximum value leading to the initial β̂c,k.

Figure 30 shows the surface corresponding to (C.9) evaluated over fc,k and βc,k. The main

take-away from this figure is that even over a limited range of fc,k and βc,k the objective

function exhibits a number of relative maxima. Hence, good initial conditions are required

in order to make convergence to the global maximum likely when implementing a numerical

optimization method.
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Figure 29: Objective Function L1 for Estimating βc,k Only

Figure 30: Objective Function L2 for Jointly Estimating fc,k and βc,k
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C.3 SIMULATION RESULTS

In this section we show the results of a simulation developed to test the method just described

for joint estimation. The same test signal described in Section C.2 is used in this example

with N1 = 113 for Step 1 and N2 = 3 ·N1 for Step 2. The full T = 80µs contained NT = 2000

samples. Figure 31 shows the Monte Carlo simulation results for jointly estimating fc,k and

βc,k compared to the CRLB associated with a single LFM chirp signal model, such as in our

STCM from (C.7), which was obtained from [39]. The settings required to implement Step

1 are the same as those given in Table 3 from Section 1.2.3. We see that estimator’s Mean

Squared Error (MSE) associated with both center frequency and chirp-rate achieves the

CRLB associated with a short-time interval having N2 samples when input SNR> −2.5dB,

where input SNR is as defined in (1.15). Since the estimator has only N2 samples upon

which to form each estimate it makes sense that this bound is achieved rather than the

bound corresponding to the actual total number of samples available, NT . The fact that

the estimator does not achieve the CRLB associated with NT is a manifestation of the

fundamental trade-off that we accept for the sake of computational tractability. However,

by jointly estimating fc,k and βc,k, which requires p > 1, we now have the possibility of

achieving lower and lower bounds as computational resources allow.
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(a) Center Frequency Standard Deviation

(b) Chirp-Rate Standard Deviation

Figure 31: Joint Frequency/Chirp-Rate Performance Results
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APPENDIX D

AN APPROXIMATE ANALYSIS FOR PREDICTING PROBABILITY OF

CORRECT CHARACTERIZATION

In this appendix an approximate analysis that predicts the Probability of Correct Charac-

terization (PC) is provided. Examples of PC derived from simulation, hardware-in-the-loop,

and over-the-air experiments are given in Figures 10 and 24. The main result relates PC to

SNR, Probability of False Alarm (PFA) per short time interval (see Section 1.2 and associ-

ated Step 6), number of samples per short time interval N (see (1.27) and Section 1.2.2),

and duration of the full signal observation T (see Table 2). In addition to these parameters,

which have already been defined, we connect PC to the percentage of short time intervals

wherein a harmonic component is correctly detected. The analysis is approximate for several

reasons, which we will highlight during the development, but primarily because the result

is independent of the specific signal parameters that define each LFMCW signal, such as

chirp-rate, sweep-time, initial frequency, etc. A full analysis would likely depend on the

true values of these parameters as well. Nevertheless, the approximate analysis provides a

tool for predicting PC as a function of key system parameters which can aid the designer in

performing trade studies or in making parameter selections.
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D.1 ANALYSIS

The analysis assumes that there is one signal present so that M = 1 and Lk = 1 ∀k. So,

(1.29) becomes

sn,k ≈ sSTHM
n,k =

Lk∑
c=1

Cc,k · ej2πfc,knTs (D.1)

= C1,k · ej2πf1,knTs (D.2)

for n = 0, . . . , N − 1 and k = 1, . . . , K =
⌊

T
N ·TS

⌋
. Under these assumptions (1.28) becomes

rn,k = sSTHM
n,k + wn,k (D.3)

= C1,k · ej2πf1,knTs + wn,k (D.4)

where C1,k is the complex amplitude, which is assumed unknown, of the harmonic component

with frequency f1,k, which is assumed known. Additionally, wn,k is assumed to be complex,

white, and Gaussian with known variance σ2
wk

. These assumptions on C1,k, f1,k, and wn,k

for each δk allows for the detection performance of the Generalized Likelihood Ratio Test

(GLRT) for the following hypothesis test

H0 : rn,k = wn,k (D.5)

H1 : rn,k = sn,k + wn,k (D.6)

to be derived in closed form [22, pgs. 484-485]. In particular, it can be shown that the GLRT

is given by

T (rk) =
rHk rk
σ2
wk/2

> γ′ (D.7)

where rk is an N ×1 vector of samples rn,k and γ′ is specified using the distribution of T (rk)

under H0. In particular, T (rk) adheres to the following distributions under H0 and H1

T (rk) ∼

 χ2
2 under H0

χ′22 (λk) under H1

(D.8)
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where χ2
2 is a chi-square distribution with two degrees-of-freedom and χ′22 is a noncentral

chi-square distribution with two degrees of freedom and noncentrality parameter λk [22, pgs.

24-26]. For our problem

λk =
N |C1,k|2
σ2
wk/2

(D.9)

= 2N · SNRk (D.10)

Assuming the signal power |C1,k|2 and noise power σ2
wk

are constant in each δk allows us to

drop the subscript k from λk and SNRk, which we do in the remainder of this appendix.

Given knowledge of the PDF’s of T (rk) we can determine PFA and the probability of

detection PD associated with a single harmonic in each δk

PFA = 1− Fχ2
2

(γ′) (D.11)

PD = 1− Fχ′22(λ) (γ′) (D.12)

where Fχ2
2

(γ′) and Fχ′22(λ) (γ′) are the Cumulative Distribution Functions (CDF) of chi-

square and non-central chi-square random variables, respectively. Solving (D.11) for γ′ and

substituting the result into (D.12) yields

PD = 1− Fχ′22(λ)

(
F−1
χ2
2

(1− PFA)
)

(D.13)

where F−1
χ2
2

(p) denotes the inverse CDF of a chi-square random variable with two degrees-

of-freedom. When evaluated at λ = 2N · SNR, (D.13) yields the probability of detecting a

single harmonic component in δk as a function of N , SNR, and PFA.

If we then interpret a detection in each δk as a Bernoulli random variable with probability

of success PD, then detecting a harmonic correctly in some fraction of the total number of

short time intervals is a binomial random variable. Let α be the percent of K total intervals,

where K =
⌊

T
N ·Ts

⌋
, then the probability of detecting a harmonic in bα ·Kc or more short

time intervals is

PC = 1− Fbin (bα ·Kc , K, PD) (D.14)

where Fbin (bα ·Kc , K, PD) is the CDF of a binomial random variable associated with K

trials and PD probability of success. To relate this probability to PC as represented in
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Figures 10 and 24 requires that we assume that α percent of the K intervals must yield

correct detections to yield estimates of the LFMCW parameters to within 10% of their true

values. The difficulty in accepting this assumption is that we don’t know, without first

performing a simulation, what α yields estimates accurate to within this tolerance. So, we

use this result to bound the true PC for fixed values of N , T , Ts, PFA, and SNR rather than

using it to predict PC exactly.

We develop this bound by making two arguments, one for the lower bound and one

for the upper bound on PC . First, the lower bound. If we let α be sufficiently small

so that bα ·Kc = 1 then interpreting (D.14) as the probability of observing at least one

success in K trials will yield the highest possible probability for every SNR, with all other

parameters fixed. Interpreting PC as the probability of estimating the parameters of an

LFMCW signal to with 10% of their true values makes it clear that doing so with, possibly,

only one frequency estimate is impossible. In other words, this ‘one-detection event’ reflects

the best possible harmonic detection performance that can never be achieved as a probability

of correct characterization. So, evaluating (D.14) as a function of SNR for bα ·Kc = 1

provides a lower bound on the probability of correctly estimating the LFMCW parameters.

See the blue curve in Figure 32.

The argument for the upper bound is similar to that for the lower bound. In particular,

suppose we choose α to be such that bα ·Kc = K − 1, then observing correct detections

in K − 1 or more time intervals becomes an extremely rare event1, which makes the prob-

ability of observing it at each SNR level low. Since the estimation accuracy increases with

increasing number of correct frequency estimates, the probability of estimating the parame-

ters correctly with a large number of correct frequency estimates must be greater then each

associated binomial probability. See the red curve in Figure 32. Finally, to test the bounds

we plotted the results form the simulation performed in Section 1.5.1 for M = 1 and found

the performance does in fact fall within these bounds.

In the example we used to facilitate the analysis, the definition of PC was accompanied

by a 10% tolerance on the parameter estimates. This was for illustrative purposes and can be

1Note that observing K − 1 or more successes is equivalent to observing K − 1 or K successes out of K
trails. Hence, it is a rare event.
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Figure 32: Bounding Probability of Correct Characterization

varied. With reference to Figure 32, for all other parameters fixed, increasing the tolerance

will shift the simulated PC vs. SNR curve to the left, but still to the right of the lower

bound. Similarly, decreasing the tolerance would shift the simulated results to the right, but

still to the left of the upper bound.

From Figure 32 we see that, though reliable, the gap between the upper and lower bounds

is large. To decrease the width of the gap one can manipulate α. However, doing so causes

our interpretation of the lower and upper bounds to be less reliable. Figure 33 includes to

the PC vs. SNR curve (in green) the value of α that yielded PC = 0.5 at the same SNR

as simulation. It was found to be α = 0.17, which suggests that 17% of the total intervals

needed to produce a correct frequency detection in order to achieve the performance of the

sequential algorithm tested.
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Figure 33: Result for α = 0.17
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APPENDIX E

CRLB GENERALIZATION TO M > 1

Recall that the Fisher Information Matrix (FIM) is[
I
(
θ̄
)]
h,q

=
2

σ2
w

Re

{
N−1∑
n=0

∂s∗
(
nTs; θ̄

)
∂θm,i

∂s
(
nTs; θ̄

)
∂θp,j

}
(E.1)

where rows of the FIM are now indexed by h = 6 (m− 1) + i, columns by q = 6 (p− 1) + j,

individual variables by i, j = 1, . . . , 6, and individual signals by m, p = 1, 2, . . . . Also, we

have that

θ̄ =
[
θ̄T1 θ̄T2 · · · θ̄TM

]T
(E.2)

θ̄Tm =
[
bm f start

m βm ∆m Tswp,m φm

]T
(E.3)

=
[
θm,1 θm,2 θm,3 θm,4 θm,5 θm,6

]T
(E.4)

So,

∂s

∂θm,1
=

∂s

∂bm
= ejΦm (E.5)

∂s

∂θm,2
=

∂s

∂f start
m

= j
∂Φm

∂f start
m

sm
(
t; θ̄m

)
(E.6)

∂s

∂θm,3
=

∂s

∂βm
= j

∂Φm

∂βm
sm
(
t; θ̄m

)
(E.7)

∂s

∂θm,4
=

∂s

∂∆m

= j
∂Φm

∂∆m

sm
(
t; θ̄m

)
(E.8)

∂s

∂θm,5
=

∂s

∂Tm
= j

∂Φm

∂Tm
sm
(
t; θ̄m

)
(E.9)

∂s

∂θm,6
=

∂s

∂φm
= j

∂Φm

∂φm
sm
(
t; θ̄m

)
(E.10)
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where our results for the single signal case, found in (2.45)-(2.49), apply directly for populat-

ing (E.1). In contrast to the M = 1 case, the term inside the sum in (E.1) does not simplify

to ∂Φ
∂θm,i

∂Φ
∂θp,j

.

143



APPENDIX F

DEMONSTRATION THAT CRLB REGULARITY CONDITIONS ARE

SATISFIED

In this Appendix we show that for an LFMCW signal with unknown parameters in CAWGN,

the regularity condition

E

[
∂ ln p

(
r̄; θ̄
)

∂θi

]
= 0 for all θi (F.1)

is approximately satisfied based on the development in Section 2.2.1.

Let r̄ be the Nx1 vector of samples defined by (2.1) so that

r̄ = s̄ + w̄ (F.2)

where w̄ ∼ CN (0, σ2
w). Hence, the Probability Density Function (PDF) of r̄ is given by

p
(
r̄; θ̄
)

=
1

πNσ2N
w

exp

{
−(r̄− s̄)H

1

σ2
w

(r̄− s̄)

}
(F.3)

So,

∂ ln p
(
r̄; θ̄
)

∂θi
= (r̄− s̄)H

1

σ2
w

∂s̄

θi
(F.4)

= w̄H 1

σ2
w

∂s̄

θi
(F.5)

Through our approximations of s̄ from Section 2.2.1 for ∆m and Tswp,m, (F.5) exits ∀θi and

since E {w̄} = 0, we have that

E

{
∂ ln p

(
r̄; θ̄
)

∂θi

}
= 0 (F.6)
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which completes the demonstration that the regularity condition is satisfied up to our ap-

proximation of the signal.
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