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STUDY OF THE MOTOR COGNITIVE INTERACTION DURING

WALKING USING TRANSCRANIAL DOPPLER

Arthur Gatouillat, M.S.
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Gait is a complex process involving both cognitive and sensory ability and is strongly impacted

by the environment. In this thesis, we propose the study of the impact on cognitive task

during gait on the cerebral blood flow velocity through a dual task methodology. Both

cerebral blood flow velocity and gait characteristics of eleven participants with no history of

brain or gait conditions were recorded using transcranial Doppler on mid-cerebral artery and

a treadmill. The cognitive task was induced by a backward counting starting from 10,000

with decrement of 7. Central blood flow velocity raw and envelope features were extracted in

both time, frequency and time-scale domain along with information-theoretic metrics were

extracted, and statistical significances. A similar feature extraction was performed on the

stride interval signal. Statistical differences between the cognitive and baseline trials, between

the left and right mid-cerebral arteries signals and the impact of the anthropometric variables

where studied using linear mixed models. No statistical differences were found between the

left and right mid-cerebral arteries flows or the baseline and cognitive state gait features,

while statistical differences for specific features were measured between cognitive and baseline

states. These statistical differences found between the baseline and cognitive states show that

cognitive process has an impact on the cerebral activity during walking. The state was found

to have an impact on the correlation between the gait and blood flow features.

Keywords: transcranial Doppler, gait accelerometry, cerebral blood flow velocity, walking,

signal features.
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1.0 INTRODUCTION

1.1 HUMAN GAIT ANALYSIS

1.1.1 The Human Walk: a Quick Overview

Walking is a complex sensory-cognitive interaction which has various demands depending on

the environment [1, 2, 3], and it was considered as a topic of interest as early as the Greek

antiquity with Aristotle (384 – 322 BCE), who first commented, without the support of any

experimental argument, the human gait [4].

It was however much later, during the Renaissance, that this field was explored further

using the breakthrough achieved at that time: in physics, with the contribution of Newton

that allowed who conceptualized forces; in mathematics, with the improvement of a wide

variety of geometrical concepts; and eventually in anatomy. The advances in photography

realized 20th century allowed to improve the capture of the position of the human body

during walking [4].

Nowadays, several techniques are widely used to access human gait: the most commonly

used method is to employ video combined with computer vision algorithms to extract gait

features [5, 6], accelerometers [7, 8, 9, 10], or pressure mapping surfaces [11, 12]. This modern

techniques allowed to achieve a complete description of the gait.

Gait characteristics deterioration can be caused by a wide amount of causes: neurodegen-

erative disorders such as Parkinson’s or Huntington’s disease [13], lower-limb joint disease

[14, 15] or ageing [16, 17]. Because of the strong impact of gait on the quality of life of

the patients [18], developing diagnostics tools to assist the physicians with the medical

management of patients presenting a walking disorder [19] is crucial.
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Several research directions about gait and unrelated to the medical field. On of the recent

area of study is the biometric identification using gait features [20]. The research in this

area begun with the investigation of the ability for humans to identify a subject by its gait

[21, 22]. Later, development of computer vision allowed performing feature extraction and

recognition can be realized [20]. The features can either be holistic or model parameter

identification, yielding in encouraging results in terms of subject recognition with potential

practical implementation [20].

Another challenging field where human gait analysis is of interest is in the improvement

of the design of biped robots [20]. The main idea is to identify a human gait model and its

parameters to allow a stable walk in a static environment, or more ideally on different kind of

surfaces [20, 23]. Several designs of biped robots mimicking human gait have been successful

[24, 25].

Human gait is initiated with a shift of the center of mass of the body outside the base of

support. Then, a series of steps is initiated, where legs are moved forwardly alternatively

and where the center of mass is always located outside of the base of support. Because of the

periodic nature of this motion, a stride cycle can be described. The cycle is divided into two

phases: the stance phase and the swing phase. The right leg stance phase begins when the

right heel hits the ground. The right leg supports the body during the entire stance phase,

and this phase ends when the right toes leave the ground. The right leg is then swinged while

the left leg supports the body. This is called the right swing phase. Please note that the

right and left phases are inverted and overlapping. The overlapping periods are called double

support periods [26]. This cycle is the equivalent of two steps and its components are given

in Figure 1.1.

However, one must realize that walking is not only the result of a simple alternative leg

swinging, and that the processing of several sources of information (such as vision or touch

to maintain equilibrium) is necessary to achieve movement [28].
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Right leg stance phase (60% of cycle) Right leg swing phase (40% of cycle)

Figure 1.1: Illustration of the human gait cycle. Adapted from Schafer (1987) [27].

1.1.2 Moto-Cognitive Interferences

Initially, cognition and motor control of gait have been believed to be two completely

autonomous processes, with walking regarded as an automatic motor function, independent

of any cognitive tasks [29, 30]. However, recent research shows that a cognitive load has an

effect on gait [31, 32, 33], and that gait measures and executive function are correlated [29].

The executive functions indicate cognitive processes that controls the information produced

by cortical sensory systems located in the anterior and posterior brain regions to generate

behavior [34]. These functions make use of both intellectual and behavioral factors that are

crucial to achieve goal-directed action and for the regulation of attentional resources. Both

of these components are fundamental to achieve independent activity of daily living. The

executive functions can be divided into four components: volition (which is the capacity

to formulate an intention), planning, purposive action and effective performance, and an

impairment of each of this component has an effect on gait [29, 35].

Ordinarily, executives functions have been associated with the frontal lobes of the brain,

and several regions of this lobe (dorsolateral prefrontal cortex and cingulate cortex) have been

found to be correlated to the cognitive requirements of these functions [29, 35]. However, the

imaging studies performed in order to localize the brain regions origin from where the executive

functions originate suggest that these functions are based on a network between the anterior

and posterior brain areas [36, 29]. Similar conclusion where also drawn thanks to the study

of the executive functions performance of patients presenting localized brain damages [37].
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In fact among persons with pathological conditions, the dual-task methodology was

mainly used to observe the effect of concurrent stimuli while checking the gait state [38].

This technique may underline a cognitive-motor interference that indicates a conflict between

concurrent tasks (i.e. a motor and a cognitive challenges), as there may be a deterioration of

one or both of the tasks [38, 39].

In general, a dual task (i.e. a cognitive stimulus/walking) causes concurrent demands for

attention/cognitive resources. Hence, it generates a cognitive-motor interference that implies

tripping, falling, physical instability and/or a decline in the gait performance [29, 2, 40].

These falls occur mainly for elderly subjects and have a strong impact on the health of elderly

subjects [31]. These events also have an impact on the health costs [41], and the risk of falling

is associated with gait disruptions [42]. Prior studies have illustrated that individuals with

neurodegenerative disorders, those recovering from stroke or elderly adults, are more prone

to the effects of cognitive load on gait [32, 38, 43]. On the opposite, just a few investigations

have investigated the cerebral repercussions of a dual-task in the case of able-bodied young

participants [44]. Moreover, there has been limited research on the effects of cognitive load

on the cerebrovascular system during gait.

Because of the elderly population life quality and health concern, there is a growing

interest in clarifying the correlation between motor control and cognition. Brain imaging

methods have revealed activation of various cerebral regions associated with higher cognitive

functions during walking (i.e. the dorsolateral prefrontal cortex and anterior cingulate cortex

[45, 46, 47, 48]).

1.2 FUNCTIONAL BRAIN IMAGING

1.2.1 Brain Imaging Techniques and Transcranial Doppler

Estimating the response of the brain to a wide variety of stimuli or when various task are

realized is a crucial step in the understanding of how it operates, thus became essential in

neuroscience. Presently, several functional imaging methods are available and widely used:
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functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS),

computed tomography (CT), positron emission tomography (PET) and single positron

emission computed tomography (SPECT) [49]. A timeline of the major advances in the

functional imaging field is given in Figure 1.2. All of these techniques localize and record

regional changes in the brain activity, such as regional brain circulation and metabolism

[50]. These records are then used to link anatomical changes to neural activation. An

oversimplifying reason of the alteration of the cerebral blood-flow during cognition is that

specific brain region require an increased amount of glucose and oxygen to satisfy the active

zone energy need [51], particularly, this changes in the brain irrigation topology has been

shown to exhibit some changes during the processing of mathematical tasks [52]. The MRS

technique also uses magnetic information, but where the fMRI uses this information to form

images, the MRS uses it to gather concentration of a wide variety of brain metabolites [53].

More specifically, the fMRI tracks the hemodynamic activity using a method called blood

oxygenation level-dependent (BOLD) [54]. A simplified way to understand this method is

that the oxygenation of the blood flow in the brain is measured based of the difference of

magnetic susceptibility between oxygenated and desoxygenated blood flow [55]. Because of this

difference in the magnetic property of the blood depending on its oxygenation/desoxygenation

rate, it will appear with an altered intensity on the MRI images. This method is widely

used in the study of cognitive processes [56], and is appreciated because of its non-invasive

characteristics [57].

The CT scan uses multiple X-Ray images taken from different angles and combines

them into a reconstructed 2D “body-slices” representation or a 3D representation [58]. This

method, coupled with advanced image processing techniques, can be used to monitor the

brain perfusion [59]. Even though it is minimally invasive, the ionizing nature of X-rays used

by this technique and the associated cancer risks makes its repeated use dangerous for the

patients [60, 61].

The PET scan monitors brain activity using the detection of the gamma ray emitted by a

radionuclide. The radionuclide has to be β+ radioactive, i.e. emitting protons while decaying

[62]. This radionuclide, also called tracer, is embedded in the body using metabolically active

molecules [62]. The PET scanner then detects the tracers’ regional radioactivity and through
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signal processing techniques, reconstructs a 3D static or time varying representation of the

brain [62]. The SPECT scan works similarly. These techniques, because of the necessity of

the injection of a radio-tracer in the body, can not be considered as minimally invasive.

The blood flow changes occurring during cognition can also be monitored using transcranial

Doppler. Aaslid et al. introduced TCD as a non-invasive method of real-time measurement

through the skull of the main cerebral arteries blood flow velocity and its variation [63]. Since

the perfusion area and the diameter of the cerebral arteries do not change during a cognitive

process [64, 65, 66], the blood flow alterations are due to changes in the brain metabolism,

and because of its close relationship to the blood flow, the velocity measurement can be used

to access a mental task characteristics. The effect of a wide range of different tasks such

as visual stimuli [67], auditory stimuli [68] or memory tasks [69] on TCD signals has been

widely studied.

     1868           1878      1955      1963    1973    1975     1979      1982      1984-90     1986-88              1990        1991         1992       1996           

Mental 
chronometry 
introduced

Blood flow 
associated with 

human brain 
function

Regional brain 
blood flow in 

animals correlated 
with behaviour

Regional brain 
blood flow in 

human correlated 
with behaviour

Invention of the 
X-ray CT

Invention of 
PET

MRI introduced

Functional 
imaging whit 

PET and blood 
flowintroduced

Brain oxygen 
level first 

measured with 
MRI

Task analysis by subtraction, 
stereotaxic image 

normalization and image 
averaging introduced

Birth of cognitive 
neuroscience

Physiology of 
fMRI BOLD 

imaging 
discovered

Brain function is related 
to contrast-enhanced 

MRI changes

Oxygen proposed as 
an endogenous MRI 

contrast agent

fMRI begins 
in humans

fMRI BOLD 
began

Event-related 
fMRI began

Figure 1.2: Time line of major advances of the functional brain imaging field using fMRI and

PET. Adapted from Raichle (2009) [70].
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1.2.2 Comparison of Brain Imaging Techniques

This research is focused on accessing the effect of a cognitive load during walking on the

cerebral blood flow. All the procedures described herein above can retrieve information on

the cerebral blood flow, and comparing the different available functional imaging devices will

allow us to choose the more appropriate technique for our study.

The study of the advantages and drawbacks of each of the functional brain imaging

method is given in Table 1.1. Of all the functional brain imaging presented herein above,

all of them have been used to model the brain activity while walking. However, because of

the lack of portability of these devices and the fact that they require the subject to lie down

during the acquisition, the gait is usually modeled as a series of feet tapping in the fMRI

case [71, 72] and it is studied by the injection of a radio-tracer, the walking sequence, and a

scan for the PET/SPECT case [73, 74]. These devices, because of their lack of portability

and the strong constraints associated with their use, are not optimal to perform a real time

study of the brain during walking. Even though these techniques do present a good spacial

resolution, these methods features a poor temporal resolution.

Table 1.1: Comparison of functional brain imaging techniques. Adapted from Min (2010)

and Khalil (2011) [75, 76].

Type Advantage Disadvantage Cost

fMRI
• Excellent spacial resolution 
• Entire brain acquisition 
• Non invasive

• Poor temporal resolution 
• Incompatibility with ferro-magnetic materials 
• Poor mobility 
• High maintenance costs

High (≈ Few millions $)

PET • High sensitivity 
• Good spatial resolution

• Partially invasive (injection of a radio-tracer 
needed) 

• Poor mobility 
• Short acquisition window because of the short half 

life of radio-tracers.

High (≈ Few millions $)

SPECT
• High sensitivity 
• Use of long half life radio-tracers 

possible

• Partially invasive (injection of a radio-tracer 
needed) 

• Poor mobility 
• Low spacial resolution

High (≈ Few hundreds of 
thousands $)

fTCD
• Good portability 
• Good temporal resolution 
• Non invasive

• Low spacial resolution 
• Difficulties in finding the correct insonation path 
• Constrained to target large vessels

Low (≈ Few thousands)
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However, the TCD, because of its portability, can be used to perform a functional study

of the brain during walking, provided that the subject is asked to walk on a treadmill.

Furthermore, this method was highlighted by numerous publication for its excellent temporal

resolution [77], non-invasive and minimally stressful characteristics [78, 79].

Another strong argument in favor of the transcranial Doppler is its cost: high-spacial

temporal resolution techniques feature very high purchasing and maintenance costs [80, 81].

The cost of theses procedures originates from different sources: installation, material, radio-

tracers, personnel formation [80, 81]. Moreover, the operating of such imaging devices

requires appropriately trained technical personnel. Conversely, the transcranial Doppler can

be operated following a very short timing. Additionally, its low purchasing costs and absence

of regular maintenance makes it an extremely cost-efficient method compared to the fMRI or

PET/SPECT scans.

1.3 RESEARCH OBJECTIVE

The current study was focused on studying the associations between the cerebrovascular

system and gait and understanding the repercussions of cognitive load during walking on this

system. Specially, we examined CBFV signals in MCA. We examined both raw signals and

the envelope signals, which are maximum peak velocity outcomes.

Since it has been proven that CBFV modifications and neural activity can be correlated

[82, 83, 84, 85, 86, 86], we used transcranial Doppler recordings to monitor hemodynamic

activities of the main cerebral arteries [87] to study a motor-cognition interaction. Readings

were taken with ultrasonic transducers, placed bilaterally in the transtemporal window of the

skull of one participant, which allowed the monitoring of the left and right side of the circle

of Willis’ cerebral arteries [88, 89, 90, 91]. Most studies focused on activities of the middle

cerebral artery (MCA) given that the MCA carries more than 80% of blood to the brain

[92]. Moreover, previous papers highlighted brain perfusion changes during neural cognitive

challenges [93, 51, 94]. Concerning physical performance, global cerebral blood flow (CBF)

appears to be increased, unchanged or decreased during stimuli [95, 96, 97]. Nevertheless, a

regional increase of CBF was noticed during physical exercise [98].
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These signals were inspected along with gait-related features, and our major findings

include a comprehensive assessment of both the raw and envelope signals of the TCD in the

time, frequency, information-theoretic and time-frequency domain, along with the inspection

of the correlation between TCD features and gait features. Our major contributions are the

statistical differences found in the central blood flow velocity signals between the baseline

and cognitive states during walking. The feature extraction process is described in Chapter 3,

while the results are given and discussed in Chapters 4 and 5 respectively.
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2.0 BACKGROUND

2.1 STUDYING HUMAN GAIT

2.1.1 Usually Defined Human Gait Characteristics

The literature about human walking and dual-task methodology considered an important

amount of features aiming to accurately represent the gait performance. These metrics, along

with their use frequency, are summarized in Figure 2.1.

Even though the walking speed is the most commonly used feature, our experimental

setup prevents us to use it because the subjects are required to walk on a treadmill at a fixed

speed. Our final choice of features was the mean stride time, coefficient of variation (ratio of

the stride time standard deviation and the mean).

Moreover, it has been shown that the stride interval time series presents 1/fβ noise

properties [99, 100, 101]. The purpose of the fractal analysis is to compute a metric accurately

representing the time process parameters and possible long term correlation [102, 99, 103].

Even though several metrics characterizing fractal processes have been proposed, we chose

to compute the β coefficient because of its relation to numerous other fractal parameters

[102]. Because of the significant amount of information carried by this parameter, we chose

to evaluate it along with the other features described here-in above.

2.1.2 Collecting Gait Features: an Overview

2.1.2.1 Using Computer Vision to Access Gait On of the widely used technique

available to study gait characteristics is the use of video and appropriate algorithm to extract

the features of interest. One of the commonly used process is based on silhouette extraction
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Figure 2.1: Commonly used gait performance features. Adapted from Al-Yahya (2011) [2].

from the video. The silhouette of the walker, defined by the region of pixels the subject

occupies, is extracted either using simple background subtraction and thresholding (thus

requiring a knowledge of the background without the subject) [104] or more sophisticated

algorithms, based on the statistical analysis of the pixels and advances detection and estimation

techniques [6] or the modeling of the background [105]. An example of the feature extraction

algorithm is given in Figure 2.2.

Then, features such as the gait period can be extracted. To do so, several approached

have been considered: the simplest approach is to count the amount of pixels in the lower

half of the silhouette (i.e. the silhouette representation of the legs), assume that this number

will be maximized when the legs will be the farthest apart and eventually consider that

the time between two of these events can be considered as the gait period [6]; or with the

use of stance phases frame identification [104]. Others features such as silhouette contour

and centroid have been used [105] for identification intents. Furthermore, methods based

11



Figure 2.2: Illustration of a silhouette extraction algorithm. Adapted from [104].

on motion tracking of the limbs during gait have also been proposed for both medical and

identification purposes [106, 107].

Through this quick overview, we verified that it is possible to extract our chosen features,

i.e. the stride interval time series, using video associated with computer vision algorithms.

2.1.2.2 The Use of Accelerometers to Investigate Walking Accelerometers can

also be used to access gait parameters [7, 8, 9, 10]. The idea is to attach accelerometers to

parts of the subject’s body (the commonest location being trunk [7] and ankles [9]), and

perform an analysis on the accelerometer time series to infer the gait characteristics. As

displayed on Figure 2.3, it is possible to extract our feature of interest, the stride interval

time series using a technique as simple as the attachment of an accelerometer to a limb of a

subject. Please however notice that the placement of the accelerometer has to be determined

carefully to obtain exploitable signals.

2.1.2.3 Employing Pressure Sensitive Surface to Study Gait Another method

investigated by researchers is the use of pressure sensitive surfaces to extract gait characteristics

[11, 12]. These materials allow retrieving a mapping of the pressure applied on them. Used in

12
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Figure 2.3: Acceleration time series of the right ankle during walking, vertical direction.

Adapted from Ailisto (2005) [108].

the gait study context, the aim is to capture the pressure applied by the foot on the surface.

These surface are composed of an array of resistive or capacitive pressure sensors. If the

resistive technology is used, each cell presents a resistivity that changes as a function of the

pressure applied on the material [109]. Then, the cells are interfaced using a voltage divider

and the voltage-pressure relationship can be obtained trough accurate calibration. If the

capacitive method is chosen, the output of the sensor will be a pressure varying capacity. Even

though the interfacing of such sensors is often more difficult than their resistive counterparts,

they usually feature an improved sensitivity [110].

In our cases, a treadmill equipped with 5,376 capacitive cells was available, so we chose

this method to retrieve stride interval time series and perform the gait performance analysis.

An example of the foot pressure mapping acquired by the treadmill is given in Figure 2.4.
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Figure 2.4: Average foot pressure and maximum foot pressure of a selected subject in our

study.

2.2 THE ARTERIES OF THE BRAIN

2.2.1 The Circle of Willis

The transcranial Doppler is traditionally used to measure the blood flow velocity in the

major cerebral arteries [91, 89, 111]. The transducers are placed on skull regions where

the bone thickness is the thinnest. Three anatomical windows are usually considered: the

transtemporal window, through which the mid-cerebral (MCA), anterior (ACA) and posterior

(PCA) cerebral arteries; the transforaminal window, to access the blood flow of the vertebral

(VA) and basilar (BA) arteries; and eventually the transorbital window, that allows gathering

information on the ophthalmic (OA) and internal arteries. These arteries form the circle of

Willis, displayed on Figure 2.5.

Once a flow is captured by the TCD, one can identify the artery where the flow resides by

considering the set of characteristics used presented in Table 2.1. The ACA, MCA and PCA

are the most insonated arteries, because each of these arteries supply blood to different brain

regions, and because the blood flow in these arteries can characterize the neural activities in

the irrigated regions [113, 114, 115].

14
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Figure 2.5: Circle of Willis. Adapted from Gray (1918) [112].

Table 2.1: Flow characteristics of the cerebral arteries. Adapted from White (2006) [91].

Artery Window Transducer 
orientation Depth (mm) Flow direction Velocity 

(cm/s)

OA Orbital Slightly medial 40 – 50 Toward 16 – 26
MCA Temporal En face 35 – 60 Toward 46 – 86
ACA Temporal Anteriorly 60 – 75 Away 41 – 76
PCA Temporal Posteriorly 60 – 75 Toward 33 – 64

VA Foraminal Superiorly and 
obliquely 45 – 75 Away 27 – 55

BA Foraminal Superiorly 70 – 120 Away 30 – 57
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2.2.2 Insonating the Middle Cerebral Arteries

In this thesis, we insonated the MCA because of its good ability to track a cognitive activity

[116, 83, 82]. Additionally, this artery is easier to target with the Doppler probe. Two

ultrasonic probes were placed on the transtemporal window of the patients, and they were

moved until a good flow signal was found. When the optimal position was established, both

the probes were fixed. An illustration of the experimental set-up is given in Figure 2.6.

2 MHz ultrasonic probe

Gel

Skull

MCA

Figure 2.6: Experimental set-up to collect left and right MCA blood flow signals. Adapted

from Gray (1918) [112].
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2.3 MEASUREMENT OF THE CEREBRAL BLOOD FLOW VELOCITY

WITH TRANSCRANIAL DOPPLER

2.3.1 Modeling the Ideal Cerebral Blood Flow

The TCD assumes that the blood flow velocity can be modeled as the laminar circulation of a

fluid in a circular pipe. Under the assumption that the external forces can be neglected, that

the flow is laminar, that the viscosity η does not depend on the velocity, that the diameter of

the circle described by the pipe is constant, denoted as R0, and eventually that the liquid is

not compressible [51].

If these hypotheses are satisfied, the local velocity of the blood, denoted as v(r), can be

expressed as [51]:

v(r) =
R2

0 − r2

4η
× p1 − p2

`
(2.1)

where p1 and p2 are pressure in the pipes separated with the distance `, and r the radius of

the circles described be the sections of the pipe.

This equation describes a parabolic behavior and the velocity distribution is illustrated

in Figure 2.7. The maximum blood flow velocity is located at the centre of the pipe (r = 0),

and it can be easily computed:

vmax , v(r)|r=0 =
R2

0

4η
× p1 − p2

`
(2.2)

and vmax is called the envelope signal [51].

One can also compute the mean velocity of the blood by averaging over the area described

by the section of the pipe, and this velocity can be expressed as [51]:

vmean = A−1

∫∫
A

v(r) dA =
1

2

p1 − p2

4η`
R2

0 =
1

2
vmax (2.3)
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Figure 2.7: Ideal parabolic velocity distribution of the cerebral blood flow. Adapted from

Deppe (2004) [51].

2.3.2 The Doppler Effect

2.3.2.1 Introduction to the Doppler Effect The Doppler effect was introduced by

Christian Doppler in 1842. In a pulsed ultrasound Doppler, a frequency shift between the

incident and reflected wave when the reflecting object is moving can be observed [111]. In

the case of blood flow measurement, the reflector is composed of the erythrocytes composing

the moving blood.

A simple illustrative example of the Doppler shift is given in Figure 2.8. In this example,

the receiver, illustrated with a filled black circle, is moving at speed v with respect to the

fixed transmitter. The emitted wave has a wavelength λ0 = c/fem. The lower part of the

figures displays the state of the system at time T + 1, thus after one unit of time has passed.

18



Since the wavelength is constant, we can write [111]:

λ0 =
c

fem

=
c+ v

f1

(2.4)

However, in the blood flow measurement case, both the transmitter and receiver are both

gathered in the same device (called transceiver or Doppler probe), and the emitted wave is

reflected by a moving object, as illustrated in Figure 2.9. During the measurement of the

central blood flow velocity, the transceiver is placed with an angle φ with regard to the blood

flow direction, as displayed on Figure 2.9. The speed of one erythrocyte, denoted as v, can

be computed using [51]:

v =
c

2 cosφ

∆f

fem

(2.5)

where ∆f is the frequency shift between the incident and reflected wave, fem is the frequency

of the emitted sound wave, φ is the insonation angle and c is the velocity of the ultrasonic

wave.

Please note that the insonation angle is usually unknown, but that transcranial color

coded Doppler allows the angle-correction of the measure of the central blood flow velocity

because of the acquisition of both anatomical and hemodynamic information [117].

The equation (2.5) only holds for one blood cell. Since the blood flow comprises many

independent erythrocytes moving at different speed, the received signal is the sum of the

contribution of each cell and can be written as [51]:

srec = sem(fem) +
∑
i

ai sin(2πfit+ ϕi) (2.6)

where sem(fem) accounts for the reflection on the static tissue, ai represents the contribution

of each moving component and ϕi is the phase shift associated with each of these components.

One can easily notice the similarities between the Fourier series expansion and equation

(2.6), this is why Fourier series have been traditionally used to compute the weight ai, and

displays them [51].
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Figure 2.8: Illustration of the Doppler effect. Adapted from Aaslid (1986) [111].

2.3.2.2 Blood Flow Velocity Estimation Another critical point of this technology

is to estimate the blood-flow velocity. To do that, two approaches are widely used: the

quadrature demodulation and the Hilbert transformation [118].

The quadrature demodulation technique is illustrated in Figure 2.10. The signal received

by the Doppler probe, if the contribution of a single erythrocyte is considered, is a pulsed

sinusoid. It can thus be written as the windowing of a cosine function [118]:

s(t) = w(t) cos(2πf · t) (2.7)

where w(t) is a window function.

And if we ignore the low pass filters, one can write:

s∗(t) = s(t)[cos(2πfem · t)− j sin(2πfem · t)] = w(t) cos(2πf · t) · e−j2πfem·t (2.8)

Using Euler’s formula for cosine, the equation above becomes:

s∗(t) =
w(t)

2

[
ej2π(f−fem)·t + e−j2π(f+fem)·t] (2.9)
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φ

Figure 2.9: Illustration of the Doppler effect and insonation angle in the context of blood

flow velocity measurement. Adapted from Deppe (2004) [51].

From this equation, we can see that one of the exponential has a high frequency component,

of f + fem, while the other one has a frequency component of f − fem , ∆f . Since the high

frequency component are eliminated by the low pass filters, at the end of the procedure, only

remain two signals, both osculating at ∆f and in quadrature. This signal, as displayed on

Figure 2.10, are considered as the real and imaginary part of a complex number, denoted as

Q(t).

Alternatively, one can use the Hilbert transform method, illustrated in Figure 2.11. The

Hilbert transform is denoted as H is this thesis, is given by [119]:

H{x(t)} =
1

π

∫ ∞
−∞

x(τ)

t− τ
dτ (2.10)

The resulting signal, Q(t), is given as [118]:

Q(t) = w(t)ej2π·∆f ·t (2.11)
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Figure 2.10: Illustration of the quadrature demodulation technique. Adapted from

Azhari (2010) [118].

s(t) H{}

j

Σ

e j 2π fem
 t

Q(t)

Figure 2.11: Illustration of the Hilbert transform technique. Adapted from Azhari (2010) [118].

One can then easily estimate the velocity of the signal by plugging-in equation (2.5) in

equation (2.11). The results can be written as:

Q(t) = w(t)ej2πt
2vfem cosφ

c (2.12)

22



Now in the case several erythrocytes are considered, the received signal can be written as

in equation (2.6), and the signal used to estimate the speed can be written as:

Q(t) = qem(fem) + w(t)
∑
i

κi × qi(t) (2.13)

where qi(vi, t) is the signal obtained by the reflection on the ith erythrocyte. Please nose that

these component can have different phases, but that does not influence the frequency of the

contribution.

The weights of the contributions, κi, can be determined using a Fourier transform, for

the same reasons as specified above.
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3.0 METHODOLOGY

3.1 DATA ACQUISITION

For this preliminary data collection, eleven participants were recruited (4 females and 7 males,

ages ranging from 19 to 23 years). None of these subjects had history of concussion, heart

murmurs, migraines, strokes or other brain and gait conditions. Participants were asked to

signed the University of Pittsburgh Institutional Review Board approved consent form and

were explained the procedure prior to the beginning of the experiment and data collection.

The participants were briefed to walk at a pace of 2 mph on the Noraxon SciFit treadmill,

displayed on Figure 3.1, and to remain thought-free during this 6 minutes baseline testing

period. Upon the completion of this trial, the participants were asked to count backwards

from 10,000 in decrements of 7 while walking for 6 minutes for another trial referred as

cognitive. Approximately one week later, each participant repeated the experiment.

To observe stride time, Noraxon SciFit treadmill using capacitive sensor technology to

analyze individual foot pressure (ranging from 1 to 120 N/cm2) was used at a sampling

frequency of 100 Hz. The treadmill data was recorded and extracted using the manufacturer’s

software.

A SONARA TCD System (Carefusion, San Diego, CA, USA), displayed on Figure 3.1, was

used to measure blood-flow velocity in the mid-cerebral artery. Two 2 MHz transducers were

used to gather simultaneous bilateral CBFV acquisitions from the left-MCA and right-MCA.

The transducer were planted on transtemporal windows [120] to reach the MCA blood-flows.

The position, angle and insonation depth of transducers were adjusted in order to get a

correct MCA signal [91, 121]. Once these adjustment were performed, the transducers were

fixed with a headset on both sides of the subject’s head. The data was extracted as audio
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files sampled at 44.1 kHz, representing the cerebral blood flow from the R-MCA and L-MCA.

These signals were resampled at 8,820 Hz (factor 5) to increase the feature extraction’s

speed. The down-sampled signals, referred as raw signals, are composed of multiple sinusoidal

components due to the parabolic speed CBFV distribution [51]. In this study, these raw

CBFV along with the envelope of the CBFV were collected. The raw signals are composed

of the various velocities of blood particles in cerebral arteries and envelope signals constitute

the maximal Doppler shift [51, 122].

Furthermore, the end-tidal carbon dioxide ETCO2 (BCI Capnocheck Sleep Capnograph,

Smiths Medical, Waukesha, Wisconsin, USA) was monitored along with respiration rate,

electrocardiogram, head movement and skin conductance via a multi-system physiological

data monitoring system (Nexus-X, Mindmedia, Netherlands).

(a) (b)

Figure 3.1: TCD System (a) and treadmill (b) used for the data collection

3.2 ANALYSIS OF STRIDE INTERVAL TIME SERIES

The mean, standard deviation, coefficient of variation (which is the ratio of the standard

deviation to the mean) and the spectral exponent were estimated for stride interval time

series extracted from both feet.
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To determine the spectral exponents of the stride interval signals, the average wavelet

coefficient (AWC) method was used. This method can be summarized as follows [102, 123]:

1. The wavelet transform of the centered version of the signal, WVx(τ, s), is computed using

the Daubechies 12 wavelet.

2. The mean average with respect to translation coefficient τ of the magnitude of the wavelet

transform is evaluated for each scale. This quantity is called:

WVx(s) = 〈|WVx(τ, s)|〉τ (3.1)

3. The log-log plot of WVx(s) as a function of the scale s is plotted. The linear regression

of the resulting graph is computed. The slope of this line is HfBm + 1/2 [102].

4. The spectral exponent β is evaluated using the expression:

β = 2HfBm + 1 (3.2)

The number of scales were chosen with respect of the signal length, using the following

expression:

number of scales = 2n with n = min

[
max

(⌊
log2

(
length(x)

4

)⌋
, 7

)
, 3

]
(3.3)

where b·c is the floor function, length(x) is the number of discrete samples of the signal x

and log2(·) = ln(·)/ ln(2).
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3.3 ANALYSIS OF MCA SIGNALS

3.3.1 Statistical features

In this study, four distinct statistical features where evaluated. The standard deviation,

the skewness, the kurtosis along with the cross-correlation coefficient of right and left MCA

signals were extracted and compared. The first three parameters characterize the shape of

the signal’s distribution [124], while the last one characterizes the similarity between two

signals.

Herein bellow, the discrete signal is called x = [x1, . . . , xn].

The kurtosis of a distribution can be expressed as [124]:

β2 =

1

n

n∑
i=1

(xi − µ)4

[
1

n

n∑
i=1

(xi − µ)2

]2 (3.4)

where µ is the mean of the signal and n is its length.

The the expression of the skewness is [124]:

β1 =

1

n

n∑
i=1

(xi − µ)3

√√√√[ 1

n

n∑
i=1

(xi − µ)2

]3
(3.5)

In this study, similarity between right MCA and left MCA signals was calculated as

follows [125]:

CCX|Y =
1

n

n∑
i=1

xiyi (3.6)

where X and Y represent signals from the right and the left side of the MCA.
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3.3.2 Information-theoretic features

With regard to the information-theoretic feature space, the Lempel-Ziv complexity (LZC),

which represents the amount of new pattern formation in finite time sequences built upon

the original signal (which can be interpreted as the randomness, the predictability and the

regularity of a given discrete-time signal) [126] and the entropy rate, which represent the

statistic degree of recurrence of patterns in a stochastic process [127].

In order to obtain a finite time sequence to compute the LZC, the signal is divided into α

finite equal spaces using α− 1 threshold values given as Th|h ∈ {1, . . . , α− 1} [128].

Then, portions of the quantized signal Xn
1 = {x1, x2, · · · , xn} are assembled to shape

blocks such that [129]:

X`
j = {xj, xj+1, · · · , x`}, 1 ≤ j ≤ ` ≤ n | j, l ∈ Z+ (3.7)

where the length of each block is given as L = j − l + 1, and the length of the signal is n.

The blocks are a time series of successive data.

Then, for each length L, an analyse of each block is performed the following way: a

counter c(j) is defined to illustrate the amount of new pattern formation. If the sequence

represented in a block has not appeared in a previous analysis, this counter is incremented

by one.

Eventually, the LZC is computed as given herein bellow:

LZC =
c(n) logα(n)

n
(3.8)

where c(n) is the value that the counter takes when the entire analysis is performed and α

represents the total number of quantized levels in the signal, chosen such as α = 100 in that

study.

To compute the entropy rate ρ of a given stochastic process, the pattern distribution is

first normalized to feature zeros mean and unit variance. This distribution is then quantized

using 10 equally divided discrete amplitude levels, taking integer values between 0 and 9.

The quantized distribution X̃ = {x̃1, x̃2, . . . , x̃n} is then decomposed into blocks comprised

of successive samples, with length L such that 10 ≤ L ≤ 30, L ∈ Z+.
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Subsequently, the distribution made up of the different blocks was encoded into ΩL =

{ω1, ω2, · · · , ωn−L+1} such as [130]:

ωi = 10L−1 × x̃i+L−1 + 10L−2 × x̃i+L−2 + · · ·+ 100 × x̃i (3.9)

with wi varying from 0 to 9× (1− 10L)/(1− 10) = 10L − 1.

The Shannon entropy S(L), which represents the degree of complexity of ΩL, is defined

by [130]:

S(L) =
10L−1∑
j=1

pΩL
(j) ln pΩL

(j) (3.10)

where pΩL
(j) is the probability of the value j in ΩL, which is approximated by its sample

frequency in this study.

The normalized conditional entropy is then given as [131]:

N(L) =
S(L)− S(L− 1) + S(1)× pe%(L)

S(1)
(3.11)

where S(1) · pe%(L) is a correction term defined by the multiplication of the percentage of

patterns with length L arising only once in ΩL, pe%(L), with S(1) the conditional entropy

estimation of the process with unit length L, which is the Shannon entropy of white Gaussian

noise process. This term corrects the underestimation of S(L)− S(L− 1) for large lengths L

[132]. Considering the opposite nature of the variation of the terms in the denominator (the

first term decreases with L while the second term increases), the function N(L) exhibits a

minimum minL [N(L)]. This minimum is the best estimation of the normalized conditional

entropy, and it can be seen as an indicator of complexity of the process. Conversely, the

complement to one of this indicator, given as ρ = 1−minL [N(L)], is an index of regularity

of the stochastic process, ranging between 0 and 1 [131].

For comparison between two probability density functions purposes, one can use the

cross-entropy rate. This index quantifies the amount of mutual information between two

given distributions, and aims to predict the data of a considered signal using the previous and

current information found in another signal. The two distributions X and Y were normalized

and quantized similar to the one used to compute the entropy rate, giving as a result the two

quantized distribution X̃ = {x̃1, x̃2, . . . , x̃n} and Ỹ = {ỹ1, ỹ2, . . . , ỹn}.
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Eventually, the cross-entropy rate Ω
X|Y
L , which is the information amount that can be

found in one of the samples of the quantized process X̃ when a pattern of L− 1 samples of

the quantized signal Ỹ is assumed, was encoded using the following code [131]:

ω
X|Y
i = 10L−1 × x̃i+L−1 + 10L−2 × ỹi+L−2 + · · ·+ 100 × ỹi (3.12)

where SX(L), SY (L) and SX|Y are the Shannon entropies of the distributions X, Y and Ω
X|Y
L .

The normalized cross-entropy was then computed as:

NCX|Y (L) =
SX|Y (L)− SY (L− 1) + SX(1)× peX|Y (L)

SX(1)
(3.13)

where peX|Y (L) is the percentage of arrangements of length L that were present only once in

Ω
X|Y
L and SX(1) · peX|Y (L) is a corrective term added for the same reasons as the one stated

herein above. Similarly to the previously given algorithm, SX(1) is the conditional entropy

estimation of the stochastic process X for a unit length. The function NCX|Y (L) features a

minimum minL
[
NCX|Y (L),NCY |X(L)

]
. The synchronization index is then defined by:

ΛX|Y = 1−min
L

[
NCX|Y (L),NCY |X(L)

]
(3.14)

and it ranges from 0 (when X and Y are independent) to 1 (when X and Y are synchronized

stochastic processes).
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3.3.3 Frequency features

Features were also extracted with regard to the frequency domain: the peak frequency,

spectral centroid and bandwidth were computed as characterization indexes for the extracted

from the TCD signals [122].

The peak frequency, given as fp, is the frequency location where the largest spectral

power can be found, and it is thus computed as:

fp = argmax
f∈[0,fmax]

{
|FX(f)|2

}
(3.15)

where FX(f) is the Fourier transform of the signal X and fmax the spectrum’s maximum

frequency, equal to the sampling frequency divided by two.

The spectral centroid, fc, can be interpreted as the spectrum’s center of mass and is

calculated as follows [133]:

fc =

∫ fmax

0

f |FX(f)|2 df∫ fmax

0

|FX(f)|2 df

(3.16)

The bandwidth BW , representing the dispersion of the spectrum, was computed as [122]:

BW =

√√√√√√√
∫ fmax

0

(f − fc)2|FX(f)|2 df∫ fmax

0

|FX(f)|2 df

(3.17)

Please note that in this study, all of the features were implemented as:

∫ t2

t1

x(t) dt
∆
≈

n2−1∑
n=n1

x[n]Tsamp (3.18)

where n1 and n2 correspond to t1 and t2, and Tsamp is the sampling frequency. Please note

that x(t) denotes a continuous time signal while x[n] is in the discrete time domain.

31



3.3.4 Time-frequency features

Even though the Fourier transform is a powerful tool to access the frequency content of a

signal, it might be ill-fitted for the study of non-stationary signals [134]. To tackle this issue,

tools have been developed to examine the evolution of the frequency content of a signal

over time. One of the first and simplest development in that area is the short time Fourier

transform (STFT) [135]. The basic idea behind this concept is to compute and combine

Fourier transforms of windowed section of a signal. However, in this method, a fixed window

length is used, and numerous problems such as the complexity of the determination of the

optimal window or the fixed, lower bounded time-frequency resolution size might appear

[136]. The lower bound of the STFT resolution is given by [136]:

∆t∆f ≥ 1

4π
(3.19)

where ∆t and ∆f are respectively the time and frequency resolution.

To tackle these limitations, a frequency varying distribution known as the wavelet

transform was introduced. The idea behind this tool is to change the frequency resolution as

the frequency changes, using scaled and shifted versions of the window, also called mother

wavelet. This transform is given by [136]:

CW{x(t)}(s, τ) =
1√
s

∫ ∞
−∞

x(t) · ψ∗
(
t− τ
s

)
dt (3.20)

where s is the scaling parameter, τ is the shifting, (·)∗ is the complex conjugate and ψ(·) the

mother wavelet.

However, the computational complexity of this transform is high because of the redundant

information present in terms of scaling [137]. To reduce the redundancy of the transform, a

solution is to make the scale and translation parameters discrete [137, 138]:

ψj,k(t) =
1√
2j
ψ

(
t− k2j

2j

)
= 2−j/2ψ(2−jt− k) (3.21)
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The Mallat algorithm [139], which is used to compute discrete wavelet transform, is based

on the projection of the signal on a set of approximation and detail subspaces [137]:

x(t) =
∑
k

aj[k]2−j/2ϕ(2−jt− k) +
∑
k

dj[k]2−j/2ψ(2−jt− k) (3.22)

where ϕ(·) is called scaling function, and is related to the approximation coefficients aj(k),

and dj(k) are the detail coefficients.

The coefficients are given as [137]:
aj[k] = 〈x(t), ϕj,k(t)〉 =

∫
x(t)2−j/2ϕ∗(2−jt− k) dt

dj[k] = 〈x(t), ψj,k(t)〉 =

∫
x(t)2−j/2ψ∗(2−jt− k) dt

(3.23)

Now, considering that the scale and wavelet functions can be written as:
ϕ(t) =

√
2
∑
k

h[k] · ϕ(2t− k)

ψ(t) =
√

2
∑
k

g[k] · ψ(2t− k)
(3.24)

Where the coefficients h[k] and g[k] can be computed as [137]:
h[k] = 〈ϕ(t),

√
2ϕ(2t− k)〉

g[k] = 〈ψ(t),
√

2ϕ(2t− k)〉
(3.25)

where h[k] and g[k] are respectively a low-pass and high-pass filter.

The approximation coefficients captures the low-frequency content of the signal, while the

detail coefficients allow retrieving high frequency information on the signal. The coefficients

can be computed recursively using:
aj[k] =

∑
m

h[m− 2k] · aj−1[m]

dj[k] =
∑
m

g[m− 2k] · aj−1[m]
(3.26)

Since these expressions can be seen as the decimated responses of the signal to a low-pass

and high-pass filters [140], so it can be implemented as displayed on Figure 3.2.
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Figure 3.2: Illustration of the 10 levels discrete wavelet transform algorithm.

To extract features related to the time-scale domain, the signal was decomposed into

10 levels W = {a10, d10, d9, . . . , d1} (where a10 is the approximation coefficient and dk

represents detail coefficient at the kth level [141]) using a discrete wavelet transform approach

and the Meyer wavelet, given in Figure 3.3.

The relative wavelet energy from both the approximation coefficient and detail coefficients

are then computed as [142]:

Ξa10 =
‖a10‖2

‖a10‖2 +
10∑
k=1

‖dk‖2

× 100 (3.27)

Ξdk =
‖dk‖2

‖a10‖2 +
10∑
k=1

‖dk‖2

× 100 (3.28)

where ‖ · ‖ is the Euclidian norm, defined as ‖x‖ =
√∑

i

x2
i , x = [x1, . . . , xn].

These metrics describe the relative energies repartition within distinct frequency bands

based upon the ratio of the k-th level of decomposition to the total energy of the signal.
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Figure 3.3: Plot of the Meyer mother wavelet.

The wavelet entropy Ω is an indicator of the order of the decomposed signal [142].

It is a representation of the clustering of the wavelet energies comprised in the different

decomposition levels.

Ω = − Ξa10 log2 Ξa10 −
10∑
k=1

Ξdk log2 Ξdk (3.29)

where Ξ are the relative energies defined herein above.
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3.4 STATISTICAL TEST

The software SAS version 9.3 (SAS Institute, Inc., Cary, North Carolina) was used to conduct

our statistical analysis. Our chosen approach was to consider the two trials separately, and to

fit a complex enough model to accurately represent the between-trial correlation. The reason

for this approach is the maximization of the use of information and statistical power. Please

note that for the correlation analysis, the features were averaged between the two trials.

To explore the significance of differences in measures between the two trials, linear mixed

models were fitted with the gait/blood flow measures as the dependent variable, the trial

index as the factor of interest and a subject random effect accounting for numerous correlated

measurements from the same participant. The SAS MIXED procedure was used.

Then, the difference between the baseline trials and cognitive trials were calculated for

each feature, and similar mixed models were fitted with the difference as the dependent

variable, but in an intercept-only model to retrieve statistical significance for the baseline vs

cognitive difference under two correlated trials.

Next, the effect of the participant characteristics was considered. Another series of

models were fitted, with each features under each condition as the dependent variable, each

participant characteristic as the factor of interest and a participant random effect accounting

for multiple trials.

Eventually, the correlation coefficients across gait and blood flow measures were examined.

The first step was to average the measures across two trials in the same condition, and the

Peason correlation coefficients between the gait and blood flow measures and between the

left and right side signals of blood flow velocity features were then computed. Additionally,

partial correlations adjusted for the participant characteristics were calculated.

Because of the large number of measures and statistical tests performed in our analysis,

false discovery rate (FDR) methodology to adjust p-values for multiplicity was used [143].
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4.0 RESULTS

The end-tidal carbon dioxide level does not influence the mean diameter of the middle cerebral

arteries [66]. Consequently, it is not taken into consideration. The results are presented in

tables in the form of (mean± standard deviation) where the baseline period is pointed out

by an “B” and the cognitive task is indicated by a “C”. R-MCA indicates the right MCA,

while L-MCA indicates the left MCA. The test-retest were not found to introduce statistical

differences if the FDR adjusted p-values are considered.

4.1 STRIDE INTERVAL FEATURES

Feature extracted from the subjects’ stride intervals are provided in Table 4.1. No statistical

differences between the baseline (denoted as “B”) and cognitive states (denoted as “C”) were

found if the FDR adjusted p-values are considered.

Table 4.1: Stride interval features.∗ denotes a multiplication by 10−2.

Right foot Left foot

Mean (s)
B 1.24± 0.07 1.24± 0.07

C 1.26± 0.07 1.26± 0.07

Coefficient of variation
B (3.09± 0.97)∗ (2.89± 0.76)∗

C (2.76± 1.17)∗ (2.44± 0.82)∗

Spectral exponent β
B 0.64± 0.49 0.66± 0.42

C 0.41± 0.27 0.47± 0.22
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4.2 MCA SIGNAL FEATURES

4.2.1 Time features

Table 4.2 summarizes time-domain feature values for the raw and the envelope signals. For

every metric considered in that table, no statistical differences between the left side and

the right side were observed. However, statistical differences between cognitive state and

baseline state were observed for the standard deviation of the envelope signal (p ≈ 0.018) for

both R-MCA and L-MCA, and for both the envelope and raw signals’ R-MCA and L-MCA

cross-correlation (p ≈ 0.018).

Table 4.2: Time features from raw and envelope CBFV signals. ∗ denotes a multiplication by

10−3. † denotes FDR corrected statistical differences between baseline and cognitive runs.

RAW ENVELOPE

R-MCA L-MCA R-MCA L-MCA

Standard Dev.
B 0.13± 0.10 0.13± 0.08 3.77± 1.01† 4.03± 1.13†

C 0.15± 0.10 0.14± 0.08 5.02± 1.62† 5.44± 1.36†

Skewness
B (−4.99)∗ ± 0.02 (−1.52)∗ ± 0.01 −1.03± 0.74 −0.80± 0.76

C (−7.15)∗ ± 0.02 (−0.11)∗ ± 0.03 −1.22± 0.82 −1.07± 0.75

Kurtosis
B 4.38± 2.74 5.08± 3.31 5.50± 3.95 4.73± 3.13

C 4.51± 1.67 5.11± 3.22 5.41± 2.98 4.47± 1.91

Cross-Corr.
B (7.27± 2.04)∗† 0.98± 0.01†

C 0.02± 0.02† 0.97± 0.02†

4.2.2 Information-theoretic features

Information-theoretic features from both CBFV raw and envelope signals are presented in

Table 4.3. The LZC and synchronization index of the envelope signals exhibited significant

statistical differences between the two states (p < 0.02).
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Table 4.3: Information-theoretic features from raw and envelope CBFV signals. ∗ denotes a

multiplication by 10−3. † denotes FDR corrected statistical differences between baseline and

cognitive runs.

RAW ENVELOPE

R-MCA L-MCA R-MCA L-MCA

LZC
B 0.71± 0.04 0.71± 0.04 0.70± 0.02† 0.70± 0.02†

C 0.70± 0.04 0.70± 0.03 0.68± 0.02† 0.68± 0.03†

Entropy rate
B 0.09± 0.10 0.10± 0.15 (7.61± 1.75)∗ (7.56± 2.43)∗

C 0.11± 0.13 0.11± 0.11 0.01± 0.01 0.01± 0.01

Synchronization index
B 0.17± 0.13 0.07± 0.03†

C 0.16± 0.12 0.12± 0.06†

4.2.3 Frequency features

Table 4.4 summarizes the frequency characteristics of raw and envelope signals. These metrics

do not display any significant statistical differences between the left and right MCA raw

and envelope signals. The spectral centroid of the R-MCA raw signal was found to feature

statistical differences (p = 0.038), while the bandwidth of the raw CBFV shows statistical

differences for the L-MCA, with p < 0.01.

4.2.4 Time-frequency features

Table 4.5 shows the wavelet entropy values for raw and envelope signals, while Figure 4.1

displays the wavelet decomposition of the raw CBFV signal. In the case the wavelet entropies

are considered, the R-MCA and L-MCA CBFV wavelet entropies feature statistical differences

between baseline and cognitive states, with respectively p = 5.4 · 10−3 and p = 1.1 · 10−2.

Figure 4.1 exhibits that the majority of wavelet energy is massed in high order detail

coefficients (mainly for 7 ≤ k ≤ 10, k ∈ Z+). Statistical differences between the baseline and

cognitive state can be found in the bands d10 and d8 for the raw R-MCA and L-MCA signals

(p ≤ 0.03).
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Table 4.4: Frequency features from raw and envelope CBFV signals (values are in Hertz). †

denotes FDR corrected statistical differences between baseline and cognitive runs.

RAW ENVELOPE

R-MCA L-MCA R-MCA L-MCA

Spectral Centroid
B 546± 47.3† 523± 62.1 2.92± 0.43 2.91± 0.40

C 504± 80.6† 488± 68.2 2.80± 0.46 2.72± 0.49

Peak frequency
B 574± 115 539± 144 1.25± 0.62 1.08± 0.71

C 437± 202 421± 196 0.84± 0.81 0.71± 0.84

Bandwidth
B 172± 15.8 174± 12.4† 2.38± 0.33 2.40± 0.30

C 186± 16.1 193± 17.7† 2.43± 0.24 2.37± 0.21

Table 4.5: Wavelet entropy values for raw and envelope CBFV signals. † denotes FDR

corrected statistical differences between baseline and cognitive runs.

RAW ENVELOPE

R-MCA L-MCA R-MCA L-MCA

Ω
B 1.02± 0.21† 1.11± 0.27† 0.03± 0.02 0.04± 0.03

C 1.22± 0.23† 1.32± 0.23† 0.05± 0.06 0.06± 0.03

Figure 4.2 displays that entirety of wavelet energy is massed in the approximation

coefficient (a10 accounts for 99% of the energy).

4.2.5 Correlation between left and right MCA blood flow

Statistical significance for the correlation between the left and right MCA CBFV are only

found for the wavelet decomposition of the raw CBFV signals: the levels d5 to d7 exhibit

a correlation coefficient greater than 0.8 with p ≤ 0.005. The levels d2 and d1 feature a

correlation coefficient greater than 0.9 with p� 0.001.
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Figure 4.2: The 10 level wavelet decomposition of envelope signals

4.3 CORRELATION BETWEEN GAIT AND MCA FEATURES

The Pearson correlation coefficient ρ were thresholded using the following rule:

ρth =

 1 if |ρ| > 0.7 and p < 0.05

0 otherwise
(4.1)
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Figures 4.3 displays the correlation of the gait features and the CBFV features. From

this figure, it is clear that with the cognitive processing added task there was a greater

number of correlated gait and blood flow velocity features: in the baseline test, 9.1% of the

potential relations between gait and cerebral blood flow were correlated, while in the cognitive

processing added task condition, 14.5% of the potential gait and blood flow measures were

related.

More specifically, all the stride-related features except the right foot spectral exponent

coefficient are found to be correlated with at least one feature extracted from the cerebral

blood flow signals. Indeed, 4 blood flow related features are found to be correlated to both the

left and right feet mean stride interval (peak frequency of the R-MCA raw signal, standard

deviation of the L-MCA raw signal, both the skewness and kurtosis of the R-MCA envelope

signals). The standard deviation and coefficient of variation of the right foot stride interval

both are correlated with 10 of the features of the CBFV (with 9 of the correlated being

the same for the left and right foot). The same stride related features when the left foot

is considered are correlated with 11 and 10 features of the CBFV, respectively. Lastly, the

spectral exponent coefficient for the left foot stride interval is correlated to two of the central

blood flow velocity signals features: the R-MCA raw signal peak frequency and the R-MCA

envelope signal wavelet entropy.

4.4 IMPACT OF ANTHROPOMETRIC VARIABLES ON FEATURES

The anthropometric variables were not found to have an impact on any of the features.
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Figure 4.3: Correlation and adjusted correlation in the baseline and cognitive states.
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5.0 DISCUSSION AND LIMITATIONS

5.1 DISCUSSION

Our major finding is that there are statistical differences in cerebral blood flow velocities

in MCA between the baseline and cognitive states during walking. These differences were

observed both in the raw signals and in the envelope signals (i.e., the maximal velocities)

associated with cerebral blood flow velocities.

The statistical differences revealed in this study between blood flow during walking and

blood flow during walking with an added cognitive processing task illustrate the suggested

performance pattern seen in older adults with greater difficulty walking under challenging

conditions such as walking and talking or walking and thinking. Under the challenge of the

added cognitive task, it was more difficult to maintain usual gait performance. The difficulty

manifested in gait as largely greater inconsistency in the pattern of strides than in the mean

of the stride interval time series. This difficulty was also mirrored in the cerebral blood

flow. Thus under the cognitive processing task condition, the range of gait performance was

expanded for some variables, despite no change in the group mean for the gait characteristics.

The expanded range of gait performance may underlie the different and greater number of

correlations between gait and blood flow in the walking plus cognitive processing condition.

A cognitive challenging task during walking may alter the range of gait performance, which

is also associated with greater cerebral blood flow or ‘work’ of the brain.

Among the stride measures, the standard deviation of the stride interval exhibited the

strongest correlation with blood flow velocity features. This finding may indicate that while

the cognitive processing did not disrupt gait described by the mean of the stride interval,

the added cognition may have influenced the consistency of gait performance (eg, standard
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deviation). While all participants accomplished the task of walking and thinking on the

treadmill with no change in the mean stride characteristics, the difference in the level of

cognitive challenge for participants was apparent in the inconsistency of gait. The greater

cognitive challenge for some was associated with greater blood flow. The lack of statistical

differences between the first and second trials denotes that the extracted features tend to be

trial-independent.

The lack of statistical differences between the first and second trials denotes that the

extracted features tend to be trial-independent.

5.2 LIMITATIONS OF THE STUDY

A potential limitation of this study comes from the fact that the participants were instructed

to walk on a treadmill: indeed, changes in the gait characteristics are very likely concealed

by the walking rhythm induced by the treadmill.
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6.0 CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

In this thesis, the dual task methodology exhibited that the cerebral blood flow velocity

signals in the baseline and cognitive states during walking are statistically different. These

differences can be found in extracted features for both the raw and envelope of the L-MCA

and R-MCA central blood flow velocity signals. While the changes in gait features were

subtle, the different and more relations between gait and blood flow with the added cognitive

processing during walking suggests cerebral blood flow velocity may represent the work of

the brain when thinking and walking.

6.2 FUTURE WORK

Now that we exhibited that the correlation between the CBFV and the gait features changes

when a cognitive process is performed, an interesting direction would be to build a mobile

multi-system gait monitoring platform to access the effect of a cognitive load on other

physiological parameters in a real-world environment.

Then, data collection in a dual-task context using this device could be realized on a wide

panel of participants, and potential differences between the cognitive and baseline states,

along with some potential machine learning application in order to determine the state of a

patient could be investigated. This would allow notifying patients from a potential cognitive

overload resulting in a degradation of the gait characteristics, thus greatly increasing the

trips and falls risks.
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Moreover, collecting some data on elderly individuals to confirm our findings would be an

interesting research direction. Indeed, since our findings are very encouraging considering the

fact that the data was collected on healthy young adults, maybe it would lead to improved

results in terms of statistical differences if older people were recruited. If differences were

to be found in the gait features, that could mean that the system could be simplified and

embedded on portable devices, capable of warning the subjects of an increase in the falling

risk.
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