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Polymeric elastomers like Poly (1,3-diamino-2-hydroxypropane-co-polyol sebacate) (APS) have 

gained importance in soft tissue engineering applications due to their tunable mechanical 

properties and biodegradability. The fabrication of extracellular matrix (ECM)-mimetic 

nanofibrous scaffolds using APS is however limited due to its poor solubility in commonly used 

solvents, low viscosity and high temperatures required for thermal curing. In this study, we have 

overcome these limitations of APS by blending un-crosslinked APS pre-polymer with 

polycaprolactone (PCL), and have successfully fabricated ECM-mimetic nanofibrous APS 

scaffolds for the first time. The developed fibrous scaffolds were further characterized for their 

physicochemical, thermal, mechanical and degradation properties. Effects of APS:PCL weight 

ratios (0:1, 1:1, 2:1 and 4:1) and total polymer concentration (15-30% w/v) on the fiber 

morphology, tensile properties, chemical and thermal properties of the APS-PCL composite 

scaffolds were investigated. Higher APS concentrations in the polymer blend resulted in 

formation of fused fibers and thus, increased fiber diameters. The degree of hydration and 

consequently, degradation rate of the scaffolds increased with the APS concentration. The FTIR 

and DSC studies showed selective loss of APS polymer from composite scaffolds after 

degradation. Scaffolds with 1:1 APS:PCL ratio exhibited maximum elastic modulus (EM) of 30 

± 2.5 MPa compared to 0:1, 2:1 and 4:1 ratios. Increasing total polymer concentrations (15-30% 

w/v) at constant (2:1) APS:PCL ratio increased stiffness and tensile strength of the electrospun 
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scaffolds. Biocompatibility studies using C2C12 mouse myoblast cells showed enhanced cell 

spreading on APS containing scaffolds after 6h as compared to PCL-only scaffolds. Thus, the 

present study demonstrates successful development of APS-based thermoset elastomeric 

nanofibrous scaffolds by blending with semicrystalline PCL polymer for the first time. Tunable 

physicochemical, mechanical and degradation properties of these composite APS-PCL scaffolds 

will be further exploited for skeletal muscle tissue engineering applications. 

Keywords Poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)(APS); Polycaprolactone 

(PCL), myoblasts, electrospinning, nanofibrous scaffolds 
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1.0  INTRODUCTION 

Tissue engineering aims to develop functional synthetic or biological substitutes to repair or 

replace damaged organs/tissues in the body [1]. For successful therapeutic tissue engineering, it 

is important to recreate biomimetic cellular microenvironments that consist of extracellular 

matrix (ECM), cells as well as biochemical and mechanical cues to promote tissue regeneration 

[2, 3]. Polymeric scaffold serves as an important component in the initial process of tissue 

regeneration by providing necessary mechanical support and extracellular matrix (ECM)-

mimetic three-dimensional environment to the cells in vitro and in vivo. A number of natural and 

synthetic polymers have been used to facilitate scaffold design for tissue engineering which 

include chitosan [4, 5], polyglycerol sebacate (PGS) [6-8], polycaprolactone (PCL) [6, 9], 

polylactic acid (PLLA) [10, 11] etc. While natural biopolymers offer advantages like good 

biocompatibility, batch to batch variability in the properties limits their usefulness. On the other 

hand, synthetic polymers provide choice of wide variety of methods for scaffold fabrication and 

allow fine tuning of chemical, physical and mechanical properties suitable for regeneration of 

target tissue [12]. Of particular interest is the design of synthetic biodegradable elastomers with 

tunable physicochemical/ mechanical/ biological properties suitable for soft tissue engineering 

[7, 13-16]. Such elastomeric scaffolds can promote regeneration of damaged soft tissues such as 

skeletal/cardiac muscles by providing dynamic mechanical environment experienced by cells in 

these tissues.  
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There are two types of elastomeric materials,that can be used for scaffold fabrication. 

They are thermoplastic and thermoset elastomers. Thermoplastic elastomers, such as α-hydroxyl 

polyesters, which include Polyglycolic acid (PGA), poly (L-lactic) acid (PLA) and the co-

polymer Polylactic-co-glycolic acid (PLGA) are approved for sutures[16]. These thermoplastic 

elastomers melt upon application of heat. Their degradation profile in vivo cannot be accurately 

predicted. Therefore, the structural integrity of the scaffolds can be lost with degradation, leading 

to decreased mechanical support to the cells adhered on the scaffold. Hence, there is a lot of 

focus on tailoring the mechanical and degradation properties of thermoplastic elastomers [17, 

18]. Recently, there are increasing applications of thermoset elastomers like PGS. Thermoset 

elastomers do not melt upon heating, once they are thermally cross-linked. The degradation of 

scaffolds in vivo can be predicted. Thus, structural integrity of scaffolds can be maintained, 

when thermoset elastomers are used.  Some of the limitations of thermoset polymers are the 

amorphous and waxy nature of the polymers, which limit their application[19].  

 To date, biodegradable synthetic thermoset elastomer PGS has been widely explored for 

various tissue engineering applications [6, 8, 20-30]. PGS exhibits faster degradation rate of 17% 

in 9 weeks in PBS, elastic modulus of around 0.282 MPa, and it’s tensile strength is above 0.5 

MPa [7, 31]. To prolong the degradation profile of PGS, Bettinger et al. synthesized Poly(1,3-

diamino-2-hydroxypropane-co-polyol sebacate)s (APS) [32]. APS elastomers are a class of 

biodegradable poly(ester amide)s consisting of amino alcohol-based cross-linked networks with 

tensile strength of 1MPa, reversible elongations up to 92% and projected in vivo degradation 

half-lives of about 20 months [32, 33]. Although APS has better mechanical strength and longer 

degradation times than PGS, poor solubility of APS polymers in the most commonly used polar 
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solvents such as ethanol, acetone and non-polar solvents like dichloromethane limit its utility. 

APS pre-polymer is only soluble in hexafluoroisopropyl alcohol (HFIP) [7, 16, 32]. Moreover, 

low viscosity of APS pre-polymer solution hampers it’s processing into fibrous scaffolds that can 

mimic native ECM of many tissues. In general, poor solubility and amorphous waxy nature of 

the most thermoset elastomers has restricted their processing only to thermally cured smooth 

films [33] or microfabrication [34]. Recently, PGS has been blended with other materials such as 

polycaprolactone (PCL) [6], Poly(L-lactide) [35], gelatin [24] and porcine urinary bladder matrix 

[36] to facilitate it’s processing into ECM-mimicking nanofibrous scaffolds and to further 

improve their mechanical, biological and degradation properties.  

PCL is a semicrystalline thermoplastic polyester with hydrophobic properties, slow 

degradation profile (over years) and poor cell attachment [6, 27, 37]. However, solubility in most 

common organic solvents and ease of processability into electrospun fibrous scaffolds has led to 

its widespread use in electrospinning. In our study, addition of small quantity of PCL to 

amorphous APS elastomer improved the solution viscosity. It was hypothesized that addition of 

PCL will facilitate fiber formation of APS while presence of APS will enhance hydrophilicity, 

degradation and cell adhesion properties of hydrophobic PCL. Here, we report fabrication and 

characterization of APS-based fibrous composite scaffolds by blending with small quantities of 

PCL. The effect of PCL addition on the physicochemical properties (hydration, in vitro 

degradation) and mechanical properties (elastic modulus and ultimate tensile strength) of APS-

PCL composite scaffolds are investigated. Biocompatibility of composite scaffolds was also 

investigated by seeding C2C12 mouse myoblast cells on the composite scaffolds for future 

applications in skeletal muscle repair.  

. 
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2.0  MATERIALS AND METHODS 

1,3-diamino-2-hydroxy-propane (DAHP), glycerol (G), sebacic acid (SA) and Poly (ε-

caprolactone) (PCL, Mw 70-90 kDa) were purchased from Sigma-Aldrich (St. Louis, MO) and 

used as received. Hexafluoroisopropanol (HFIP) was obtained from Acros Organics. All other 

chemicals were purchased from Sigma-Aldrich unless otherwise mentioned. Cell culture supplies 

including media, trypsin-EDTA and antibiotics were obtained from Corning, unless otherwise 

mentioned. 

 

 

 

 

 

 

 

 

 

 

                    Figure 1 Synthesis of APS elastomer 
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2.1 SYNTHESIS OF POLY (1,3-DIAMINO-2-HYDROXYPROPANE-CO-POLYOL-

SEBACATE (APS) 

APS elastomer with DAHP:G:SA ratio of 2:1:3 was synthesized as shown in Figure 1, following 

the procedure described earlier [32]. Briefly, DAHP, glycerol (G) and sebacic acid (SA) were 

charged in a dry round bottom flask in 2:1:3 molar ratios. The flask was sealed and heated in oil 

bath at 120°C for 1h under inert atmosphere using Argon gas. The pressure was then slowly 

dropped to approximately 100 mTorr and the reactants were allowed to react at 120°C for 10h 

under constant stirring. At the end of the reaction, a semisolid, light yellow colored APS pre-

polymer elastomer was obtained and it was stored at 4°C until further use. 

2.2 PREPARATION OF APS-PCL FIBROUS SCAFFOLDS 

Composite APS-PCL fibrous scaffolds with different compositions were fabricated using a 

conventional electrospinning setup. Solvents such as dichloromethane, ethanol and acetone could 

not dissolve APS pre-polymer. APS pre-polymer is soluble only in HFIP, so HFIP was selected 

as solvent for dissolving APS and PCL. The fibers were collected on a wax paper placed on top 

of aluminum foil and dried in vacuum desiccator to evaporate residual organic solvent. Initially, 

effect of voltage (6, 10 and 12 kV) and collector to needle distance (6, 10 and 14 cm) on fiber 

morphology was studied by keeping polymer concentration (22.5%w/v), APS:PCL ratio (2:1) 

and distance (10 cm) or applied voltage (10kV) constant. These studies were used to determine 

the optimum voltage and collector to needle distance. Based on these initial studies, applied 

voltage of 10kV and distance of 10 cm were selected as optimum and kept constant during 
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further studies. To study effect of APS:PCL ratio on the scaffold properties, APS and PCL were 

dissolved in HFIP at different weight ratios (1:1, 2:1 & 4:1, respectively) keeping total polymer 

concentration constant at 22.5% w/v. These solutions were electrospun at a constant voltage 

(10kV) and constant distance (10 cm) between the collector and needle. The effect of polymer 

concentration (15, 22.5 and 30% w/v) on fiber morphology was studied by keeping APS:PCL 

ratio, voltage, and distance constant at 2:1, 10kV and 10cm, respectively. Thus, total 6 scaffold 

formulations were prepared with varying APS:PCL ratio or total polymer concentrations as 

summarized in Table 1. Needle diameter (21G), polymer solution flow rate (1ml/h) and 

electrospinning time (40 min) were kept constant during all scaffold preparations. The scaffolds 

were stored in vacuum desiccator until further use.  

Table 1. Different formulations of APS-PCL fibrous scaffolds 

 

Effect of 
Polymer concentration 

(% w/v) 

APS:PCL  

Ratio 

Distance 

(cm) 

Voltage 

(kV) 

Polymer 

concentration 

15 

2:1 10 10 22.5 

30 

Polymer ratio 22.5 

0:1 (PCL) 

10 10 
1:1 

2:1 

4:1 
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2.3 SCANNING ELECTRON MICROSCOPY 

Effect of polymer concentration (15-30% w/v) and APS:PCL ratio (0:1-4:1) on fiber morphology 

was studied using Field Emission scanning electron microscopy (JEOL 6335F). Fibrous 

scaffolds were sputter-coated with 5nm of gold-palladium using Cressington 108 auto sputter-

coater and images were obtained using accelerated voltage of 3kV and a working distance of 8 

mm. The SEM images were analyzed using the NIH ImageJ software to quantify the fiber 

diameter. The fiber diameters of more than 100 fibers per sample were measured and box plots 

were used to determine the effect of each factor (polymer concentrations and APS: PCL ratios) 

on the fiber diameter distribution. 

2.4 MECHANICAL PROPERTIES 

The uniaxial tensile testing was performed using the Texture Analyzer (TA-XT plus). The 

rectangular scaffolds (15 x 5 mm2, n=5) were tested using a load cell of 10N and crosshead speed 

of 10 mm/min until fracture. Elastic modulus (EM) was calculated from the slope of linear 

region (1-8%) of stress-strain curve and ultimate tensile strength (UTS) of the scaffolds is 

reported as the highest stress value at the scaffold failure.  

 

 7 



2.5 HYDRATION STUDIES 

Effect of various polymer concentrations and APS:PCL ratios on water absorption capacity of 

the scaffolds was investigated via hydration studies. The scaffolds (2 x 1 cm2, n=4) were 

immersed in Dulbecco’s phosphate buffered saline (DPBS) for 24h at 37°C in a water bath 

shaker. The percentage hydration was estimated by using the formula,  

% Hydration = [(Wt-W0)/W0 x 100, 

where W0 is initial scaffold weight (t=0) and Wt is hydrated scaffold weight (t=24 h).  

2.6 IN VITRO DEGRADATION 

In vitro degradation rate of scaffolds was studied under accelerated conditions using 0.05M 

sodium hydroxide (NaOH) at 37oC in a water bath shaker. The scaffolds (2 x 2 cm2, n=4) were 

immersed in 0.05M NaOH solution and the mass loss was studied over a period of 5 days by 

measuring the weight of the samples on day 0 and on pre-determined time points (1, 2, 3 and 5 

days). The percentage mass loss was calculated using the formula, 

% Mass loss = [(W0–Wt)/W0] x 100 

The samples were then rinsed with distilled water, lyophilized and used further for SEM 

imaging, chemical and thermal characterization as described below. 
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2.7 FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) 

Effect of APS:PCL ratio and accelerated degradation study on chemical composition of the 

scaffolds was studied using FTIR spectroscopy with attenuated total reflection (ATR-FTIR). The 

spectra were recorded in absorption mode with a resolution of 4 cm-1 using Bruker Vertex 70 

FTIR spectrometer. The final results are presented as an average of 256 scans. The peaks were 

analyzed using the Spectra Viewer Software (Perkin Elmer). 

2.8 THERMAL CHARACTERIZATION 

The thermal properties of the scaffolds before and after degradation were determined by 

differential scanning calorimetry (DSC, Mettler Toledo 1 STARe System). One to four mg of the 

sample was weighed in sealed aluminum pans. The samples were initially heated at a rate of 

10ºC/min from 25ºC to 150ºC, followed by cooling from 150ºC to -70ºC and subsequent heating 

from -70ºC to 150ºC. Data analysis was done using STARe software Version 11.00. Pure APS 

pre-polymer, PCL polymer and PCL scaffolds (0:1) were used as controls to correlate effects of 

APS:PCL ratio before and after degradation on the thermal properties such as the melting point 

(Tm), crystallization temperature (Tc), melting (∆Hm) and crystallization (∆Hc) enthalpies. 

 9 



2.9 CELL STUDIES 

2.9.1 Cell culture 

The mouse myoblast cells (C2C12) ATCC (CRL-1772™) were obtained from Dr. Adam 

Feinberg’s lab (Carnegie Mellon University, Pittsburgh PA). The cells were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM, Corning cellgro ) supplemen     

Bovine Serum (FBS, Hyclone, Thermofisher Scientific) and 1% Penicillin/Streptomycin 

(Corning cellgro ). The scaff              

isopropanol under UV light for 30 min, washed with DPBS thrice and seeded with C2C12 cells 

using a seeding density of 70,000 cells/cm2/scaffold. The media was changed every day and the 

scaffolds were stained for actin-phalloidin staining as described below.  

2.9.2 Cell viability, adhesion and spreading 

The scaffolds seeded with C2C12 cells were fixed in 4% paraformaldehyde solution (30 min) 

after 6h and 24h in culture to study cell adhesion and spreading. The scaffolds were then washed 

with DPBS thrice, followed by blocking and permeabilization using 5% bovine serum albumin 

(BSA) containing 0.1% Triton X-100 in PBS for 1h. The phalloidin staining was done using 

Alexa Flour Phalloidin 647 (Cell Signaling Technologies) in 1:20 dilution in PBS containing 1% 

BSA. The scaffolds were incubated with conjugated antibody for 30 min at room temperature 

and then washed with PBS containing 0.1% Triton X-100. Cell nuclei were stained using the 

Hoechst dye and confocal images were obtained using inverted confocal laser scanning 

microscope (Olympus Fluoview 1000) under 20X and 40X objectives.  
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The cell proliferation was studied on 0:1 (PCL) and 4:1 APS:PCL scaffolds over a period 

of 7 days using Alamar Blue Assay (Invitrogen) according to the manufacturer’s protocol. The 

Alamar Blue assay is an indicator of metabolic activity of the cells and it can be used to study the 

time-dependent proliferation of the cells, based on their ability to reduce resoruzin (blue) to 

resorufin (pink). Cell-seeded scaffolds (n=5) were treated with 10% v/v Alamar Blue in growth 

media at pre-determined time and incubated for 4h at 37°C. The fluorescence intensity was then 

measured using microplate reader (Gen5 Biotek) at excitation/emission wavelengths of 530/590 

nm. Alamar Blue solution in media (10% v/v) incubated without any cells were used for blank 

correction. 

2.10 STATISTICS 

The results are represented as mean ± standard deviation (n = 4-5 from 2-3 independent 

experiments). The statistical significance between multiple groups was analyzed using One-way 

or Two-way ANOVA for multiple comparisons followed by Tukey post-hoc analysis 

(OriginPro8 SRO v. 8.07). The p values less than 0.05 were considered statistically significant.  
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3.0  RESULTS AND DISCUSSION 

The APS-PCL scaffolds were electrospun by varying processing conditions such as total polymer 

concentration, ratios of individual polymers, applied voltage and the collector-needle distance. 

Electrospun fibers could not be formed at low polymer concentration (less than 15% w/v) due to 

low solution viscosity causing dripping from the needle. On the other hand, fiber formation was 

not observed at high concentrations of polymer (more than 30% w/v) due to high solution 

viscosity. Hence polymer concentrations between 15% and 30% w/v were considered for the 

present study. When applied voltage was varied, fibers could not be formed below 6kV whereas 

splitting of fibers was observed at voltage above 14kV. Although fibers could be produced using 

voltages between 6-14kV, continuous and uniform fibers with narrow fiber diameter distribution 

were obtained at 10kV (data not shown). Thus, voltage of 10kV was selected as optimum voltage 

in this study. Similarly, when collector to needle distance was varied, fibers were obtained 

between 8-12cm distances. Smaller distance (8cm) resulted in fusion of fibers and broad fiber 

diameter distribution (0.3-1.6µm) whereas distances at 10 and 12cm resulted in reasonably 

narrow fiber diameter distribution (0.6-1.2µm; data not shown). Hence, further studies were 

conducted with 10cm distance between the collector and needle, which was an intermediate point 

in the range tested. The effects of total polymer concentration and APS: PCL ratios on the 

properties of the elastomeric composite scaffolds are summarized below. 
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3.1 EFFECT OF POLYMER CONCENTRATION ON THE SCAFFOLD 

PROPERTIES 

In this study, HFIP was used as common solvent for electrospinning APS and PCL solutions due 

to the limited solubility of APS in other organic solvents. Fibers were electrospun by varying 

total polymer concentration ranging from 15% to 30% w/v, keeping other parameters such as 

ratio of the APS:PCL (2:1), voltage (10kV), distance between needle and collector (10cm), flow 

rate (1mL/h) and needle diameter (21G) constant. The concentration range was selected based on 

the solution viscosity and ability to form continuous fibers by electrospinning. The solution 

viscosity was too low below 15% w/v and too high above 30% w/v polymer concentration 

impeding continuous fiber formation. Hence, scaffolds were fabricated by varying total polymer 

concentration between 15-30% w/v. 

3.1.1 Fiber Morphology 

The SEM images and fiber diameter distribution of APS-PCL scaffolds prepared by varying total 

polymer concentration are shown in Figure 2A and 2B, respectively. It was observed that fiber 

diameter increased with polymer concentration. Indeed, the median fiber diameter increased 

from 0.4μm for 15% w/v to around 2μm for 30% w/v polymer concentration (Figure 2B). As 

reported in the literature, increase in polymer concentration results in higher solution viscosities 

and enhanced polymer chain entanglements leading to increase in the fiber diameters [38-42]. 

Similarly, higher polymer concentration also exhibited broad fiber diameter distribution profiles 

(1-3.5μm) for 30% w/v scaffolds compared to narrow diameter distribution (0.2-1.2μm) for 15% 

w/v scaffolds. The broad fiber diameter distribution may result from incomplete/slower drying 
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and thus, fusion of fibers at higher solution viscosity (white arrows, Figure 2A). Our results are 

in accordance with Stankus et al.[43]  who also reported increased fiber diameters of poly(ester 

urethane)urea with increasing polymer concentrations possibly due to increased solution 

viscosity.  

 

 

 

Figure 2 Effect of total polymer concentration on A) fiber morphology studied by scanning electron 

microscopy (white arrows indicate formation of fused fibers with increased polymer concentration) and B) fiber 

diameter distribution. (Significant differences at p < 0.05 compared to 15% w/v (*) and compared to 30% w/v (#); 

One-way ANOVA followed by Tukey test for n ≥ 100 fibers). 
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3.1.2 Mechanical properties 

We also investigated effect of polymer concentration on mechanical properties of the APS-PCL 

scaffolds (Figure 3A). Elastic moduli of the scaffolds with 15 and 22.5% w/v polymer 

concentration were comparable (21.7±4.36 MPa and 24.27±4.59 MPa, respectively) while 30% 

w/v polymer scaffolds showed a three-fold increase in the elastic modulus (p<0.05, compared to 

15 and 22.5% w/v, One-way ANOVA). The ultimate tensile strength (UTS) (Figure 3A) showed 

opposite trend where the scaffolds with 15% w/v polymer concentration exhibited  significantly 

higher UTS (10.4±6 MPa) compared to 15 and 30% w/v scaffolds (p<0.05, One-way ANOVA). 

Thus, higher polymer concentration led to higher elastic modulus suggesting increased scaffold 

stiffness, which in turn led to faster failure and decreased tensile strength. This mechanical 

behavior may be attributed to formation of thicker fibers due to their fusion (Figure 2, white 

arrows). Similar decrease in tensile strength with increase in fiber diameter has been reported 

earlier for electrospun scaffolds of PCL and PVDF [44, 45]. 

3.1.3 Hydration and degradation 

The water absorption capacity of scaffolds is an important measure of scaffold hydrophilicity as 

it can affect rate of scaffold degradation as well as cell attachment. Indeed, hydration serves as 

the first step to degradation. The percent hydration of APS-PCL scaffolds at different polymer 

concentrations is shown in Figure 3B. Scaffolds prepared with 22.5% w/v polymer 

concentration showed significantly higher (p<0.05) degree of hydration as compared to 15% and 

30% w/v concentration while 30% w/v polymer scaffold exhibited least hydration implying 

increased hydrophobicity (Figure 3B) with higher polymer concentration. 
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The fibrous scaffolds are made of physical mixture of APS and PCL in the present study. In this 

combination, PCL is a slowly degrading polymer and follows acid or base-catalyzed bulk 

degradation mechanism [37]. APS has been shown to degrade by hydrolysis in vivo via 

hydrolases, esterases and proteases, and the crosslinking degree plays a significant role in its 

degradation [33]. The APS polymer with low crosslinking degree was found to be more 

susceptible to degradation [32, 33]. Here, we investigated the effect of addition of uncrosslinked 

APS pre-polymer on the degradation rate of APS-PCL composite scaffolds. Due to slow 

degrading nature of PCL, the study was conducted using 0.05M NaOH to accelerate degradation 

of scaffolds. The degradation rate of scaffolds prepared by varying polymer concentration (15-

30% w/v) at constant APS:PCL ratio (2:1) is shown in Figure 3C. It was observed that 

degradation rate decreased with increasing total polymer concentrations. On day 5, scaffolds 

prepared with 15% w/v polymer concentration showed 61.9±3.4% mass loss while those made of 

30% w/v polymer concentration exhibited only 36.4±2.7% mass loss in 0.05M NaOH solution 

(Figure 3C). The mass loss results correlated well with the hydration study, where 30% w/v 

polymer scaffolds had least water uptake (Figure 3B) and hence, the least mass loss. It should be 

noted that 30% w/v scaffolds also exhibited higher fiber diameters with broad diameter 

distribution (Figure 2). This may also have contributed to the decreased hydration and slower 

degradation due to lower surface area. The SEM images of scaffolds after 5 days degradation 

showed enhanced roughness on the surface of 15% w/v scaffolds and pore formation in case of 

22.5 and 30% w/v scaffolds (Figure 3D, white arrows) confirming changes in fiber morphology 

due to degradation. Overall, polymer concentration had an impact on scaffold morphology (fiber 

size distribution), elastic modulus, hydration rate and degradation rate. Considering all these 

variables, 22.5% w/v polymer concentration generated uniform fibrous scaffolds with highest 

 16 



degree of hydration and intermittent degradation rate. This polymer concentration was used 

further to study the effect of APS: PCL ratio on scaffold properties. 

 

Figure 3 Effect of total polymer concentration on A) elastic modulus and ultimate tensile strength (UTS); 

B) hydration; C) degradation rate (mass loss) under accelerated condition (0.05M NaOH); and D) morphology of 

fibers before and after accelerated degradation. White arrows indicate formation of pores after degradation. (n=4-5; 

Significant differences at p < 0.05 (*) compared to 15% w/v and (#) compared to 30% w/v, One-way ANOVA 

followed by post-hoc Tukey test). 
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3.2 EFFECT OF APS: PCL RATIO ON THE SCAFFOLD PROPERTIES 

The effect of APS: PCL ratio on the fiber morphology was studied at 1:1, 2:1 and 4:1 APS: PCL ratios at 

constant polymer concentration (22.5% w/v), voltage (10kV), distance between needle and collector 

(10cm), flow rate (1mL/h) and needle diameter (21G). As more than 15% w/v PCL concentrations could 

not be electrospun due to high solution viscosity, pure PCL scaffolds (denoted as 0:1) were fabricated 

using 15% w/v PCL and used as a control for all further experiments. 

3.2.1 Fiber Morphology 

The SEM images and distribution of fiber diameters for scaffolds of varying APS:PCL ratios are 

shown in Figure 4A and 4B, respectively. APS-PCL scaffolds prepared with 0:1 and 1:1 ratio did 

not have significant effect on the fiber diameter with median diameter of 1.2µm (range of 0.8-

1.4µm) (Figure 4B). Increasing the ratio of APS:PCL to 2:1 and 4:1 resulted in the fusion of the 

fibers (white arrows, Figure 4A) and significantly broader size distribution compared to lower 

APS concentrations (Figure 4B, p<0.05 One-way ANOVA). These findings are in accordance 

with the previous studies where fiber diameters of composite electrospun PGS-PCL scaffolds 

also increased with increasing proportion of PGS [27]. This may be due to waxy nature of both 

APS and PGS pre-polymers and their low electrospinnability.  
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Figure 4 Effect of varying APS:PCL ratio on A) fiber morphology studied by scanning electron 

microscopy (SEM) and B) fiber diameter distribution. White arrows indicate fused fibers with increased APS 

concentration. (Significant differences at p < 0.05 *compared to 0:1 and 1:1 APS:PCL scaffolds; #: compared to 0:1, 

1:1 and 2:1 scaffolds; One-way ANOVA followed by Tukey test for n ≥ 100 fibers). 
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3.2.2 Fourier Transform Infrared Spectroscopy (FTIR) 

To study specific intermolecular interactions between APS and PCL as well as effect of 

electrospinning on crystalline structure of the polymers, FTIR of APS-PCL electrospun scaffolds 

for 1:1, 2:1 and 4:1 ratios was compared with that of PCL polymer, APS polymer and 

electrospun PCL (0:1) scaffold (Figure 5A). The FTIR spectra of PCL polymer showed 

absorption peaks corresponding to carbonyl stretching in the amorphous phase (1734cm-1) (blue 

shaded box in Figure 5A) and asymmetric COC stretching (1242cm-1) [46, 47]. In addition to the 

characteristic PCL peaks, PCL scaffolds also showed two new peaks at 1188cm-1 and 1167cm-1 

corresponding to OC-O and symmetric COC stretching [46], which were not evident in PCL 

polymer spectrum (green shaded box in Figure 5A). As pointed out by Coleman et al. [48], these 

absorption peaks are associated with ordered conformation of the PCL chains and are sensitive to 

orientation of polymer chains. Thus, appearance of these peaks in electrospun PCL scaffolds 

implies that electrospinning may have changed the orientation of PCL chains. In case of 1:1, 2:1 

and 4:1 APS:PCL scaffolds, absorption peak at 1188cm-1 was weak whereas symmetric COC 

stretching peak at 1167cm-1 shifted to 1170-1174cm-1. The same peak was also observed in pure 

APS polymer although at higher wavenumber (1176cm-1). In addition, pure APS polymer 

showed carbonyl stretching (1731cm-1), primary amine (NH2 scissors, 1642 cm-1), secondary 

amide peaks (N-H in plane bend at 1556cm-1 and C-N stretch at 1261cm-1) as reported earlier 

[32]. These amine/amide peaks were absent in the spectra of PCL polymer as well as electrospun 

PCL scaffold. However, all the APS-PCL scaffolds with varying APS ratio showed presence of 

amine/amide peaks at 1642cm-1 and 1556cm-1 (Red shaded box, Figure 5A), along with 

characteristic PCL peak around 1240cm-1 (asymmetric COC stretching). Compared with pure 
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PCL polymer, intensity ratio of peaks at 1642cm-1 (primary amine) and 1724cm-1 (carbonyl 

stretching) increased with increasing APS concentration in the blend (Table 2). 

These results confirm presence of both APS and PCL in the composite APS-PCL scaffolds. 

Interestingly, carbonyl stretching peak in amorphous phase of pure PCL polymer shifted from 

1734cm-1 to 1724cm-1 in all electrospun scaffolds including PCL (0:1), signifying formation of 

crystalline phases in scaffolds [46, 48, 49] . In addition, all electrospun scaffolds including PCL 

(0:1) exhibited a new peak at 1294cm-1 corresponding to C-C and C-O stretching in crystalline 

phases (blue shaded boxes, Figure 5A) [46, 48, 49] . Taken together, these observations suggest 

that the electrospinning process led to increase in the crystallinity of scaffolds as compared to 

pure PCL and APS polymers. However, the intensity of the peak at 1294cm-1 decreased with 

increasing APS concentration in the blend (Figure 5A). This suggests that higher APS 

concentration decreased crystallinity in the composite scaffolds. Interestingly, no new peaks or 

significant peak shifts other than the characteristic APS & PCL peaks were observed in the 

composite scaffolds, indicating lack of new molecular interaction between APS and PCL during 

electrospinning. This implies that the composite scaffolds are physical blends of APS and PCL 

polymers without any significant intermolecular interaction between them. 
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Table 2 Quantitative analysis of intensity ratio of amide to carbonyl peaks as a function of APS: PCL ratios 

in the composite scaffolds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Composition 

Intensity ratio 

Primary Amine (1642 

cm-1): C=O (1724 cm-1) 

Secondary  Amide (1556 cm-

1): C=O (1724 cm-1) 

0:1 NA NA 

1:1 0.49 0.72 

2:1 0.73 1.11 

4:1 1.06 1.55 

APS 2.12 3.42 
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               Figure 5 Physicochemical, thermal and mechanical properties of APS-PCL composite scaffolds; A) 

Comparison of FTIR spectra of 0:1 (PCL), 1:1, 2:1 and 4:1 APS:PCL scaffolds with that of pure PCL and APS 

polymers; DSC thermograms showing B) heating cycle and C) cooling cycle of various scaffolds compared with 

APS polymer and 0:1 (PCL) scaffold; D) Elastic modulus (EM) and ultimate tensile strength (UTS) of APS-PCL 

scaffolds, n=5; E) Hydration properties of APS-PCL scaffolds after 24h immersion in Dulbecco’s phosphate 

buffered saline (DPBS), n=4 (Significant differences at p < 0.05 compared to *: 0:1, #: 1:1 and ##: 2:1; One-way 

ANOVA followed by Tukey test) 
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3.2.3 Thermal properties 

Effect of APS concentration on thermal properties of scaffolds was evaluated using differential 

scanning calorimetry (DSC). Figures 5B and 5C show the DSC thermograms of APS polymer 

and electrospun scaffolds for second heating (endothermic) and cooling (exothermic) cycles, 

respectively and corresponding thermodynamic data is listed in Table 3.  Pure APS polymer 

exhibited glass transition (Tg) around -0.72°C whereas Tg of PCL in electrospun scaffold was 

below -50°C. APS polymer showed multiple endothermic melting peaks (Tm) around 89°C and 

123°C whereas PCL scaffold showed single Tm at 55°C. The Tg of composite APS-PCL scaffolds 

was found to be shifted to 4-5°C; however, there was no significant change in their Tm. In fact, 

all composite scaffolds exhibited Tm peaks corresponding to pure APS polymer or PCL scaffolds 

(Figure 5B, Table 3). Similarly, single exothermic peak corresponding to crystalline PCL phase 

was evident around 30-31°C in all electrospun scaffolds (Figure 5C, Table 3); however, the 

peak intensity decreased with increasing APS concentration. These observations confirm FTIR 

data that APS-PCL composite scaffolds are immiscible blends exhibiting properties of individual 

APS and PCL polymers and there was no molecular interaction between the two polymers. It 

should be noted that there was decrease in the melting (ΔHm) and crystallization (ΔHc) enthalpies 

with increasing weight fraction of APS polymer indicating reduced crystallinity and PCL chain 

mobility in the composite APS-PCL scaffolds as reported earlier [49, 50]. PCL is a semi-

crystalline polymer whereas APS is amorphous in nature. Therefore, it is anticipated that higher 

ratio of amorphous APS reduced semi-crystalline PCL proportion in the blend. For instance, 4:1 

APS:PCL scaffold contained only 20% PCL whereas 1:1 APS:PCL had 50% PCL proportion. 

Thus, higher amount of APS in the blend reduced overall crystallinity of the blend thereby 

reducing crystallization enthalpies in a concentration-dependent manner. Similar trend were 
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observed for melting enthalpy (ΔHm) also suggesting reduced mobility of PCL chains in presence 

increasing concentrations of APS polymer in scaffolds [49, 50]. In fact, ΔHm of 4:1 scaffold was 

almost 5-6 times lower than PCL scaffolds and identical to that of APS polymer (Table 3). 

Taken together, DSC results confirm FTIR results suggesting that APS and PCL are physically 

blended in the APS-PCL composite scaffolds.   

Table 3 Thermal properties of various APS: PCL scaffolds before or after degradation 

 

3.2.4 Mechanical properties 

The mechanical properties (elastic modulus and ultimate tensile strength) of various APS-PCL 

composite scaffolds are shown in Figure 5D. Addition of APS to APS-PCL scaffolds even at 1:1 

APS:PCL ratio led to higher stiffness values. Elastic moduli of all APS containing scaffolds 

(APS:PCL ratios of 1:1, 2:1 and 4:1) increased significantly (p < 0.05) as compared to PCL 

scaffolds (0:1 APS:PCL). A similar trend was observed with UTS, where pure PCL scaffolds 

(0:1 APS:PCL) showed lowest UTS. This is in accordance with previous findings where increase 

in PGS concentration led to a 3-4 fold increase in the elastic moduli of PGS-PCL scaffolds [27].  
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Tc (°C) ∆Hc  (J/g) Tm  (°C) ∆Hm PCL (J/g) 

Before After Before After Before After Before After 

0:1 30.6 30.4 55.4 50.9 55.6 56.2 59.6 58.9 

1:1 30.9 33.6 24.3 59.7 56.1 59.5 19.7 67.2 

2:1 31.4 33.1 10.2 54.4 56.2 58.4 10 63.4 

4:1 31.3 32.5 8.8 47.6 55.6 57.6 8.37 57.7 

APS 
polymer NA NA NA NA 88.5, 

123.7 NA - - 
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Higher mechanical properties of APS-PCL scaffolds may be attributed to the complex interplay 

between crystallinity (DSC data) and fiber diameter distribution/ fiber morphology (fusion of 

fibers and formation of wedges, thus further enhancing the reinforcement of the scaffolds [27, 

37]. 

3.2.5 Hydration 

Effect of varying APS:PCL ratios on hydration of the scaffolds is shown in Figure 5E. 

Increasing APS amount in the polymer scaffolds significantly enhanced degree of hydration, 

with 4:1 APS:PCL scaffolds showing the maximum hydration (p<0.05). This may be attributed 

to decreased scaffold crystallinity (decreased ΔHc and ΔHm, Table 3) due to addition of APS and 

more hydrophilic nature of APS due to presence amine groups as compared to PCL). Indeed, 

high hydrophilicity of APS-containing scaffolds prevented from getting meaningful contact 

angle measurements on these scaffolds. However, the contact angle of PCL (0:1) scaffold was 

found to be 135° whereas that of thermally cured APS films was about 55° supporting our 

observation of higher hydrophilicity and thus, hydration of APS-containing scaffolds. Lack of Tc 

in the DSC thermograms of APS further confirms the amorphous nature of APS. Indeed, degree 

of crystallinity, polymer chain flexibility and hydrophilicity have been known to affect the 

degradation rate of biodegradable elastomers [14]. 

3.2.6 Degradation 

The in vitro degradation rate of different APS:PCL scaffolds were monitored under accelerated 

conditions using 0.05M NaOH and the change in mass loss is shown in Figure 6A. PCL 
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scaffolds (0:1 ratio) showed least degradation in 5 days with mass loss of 12.5±4.9%. Addition 

of APS accelerated the scaffold degradation rate with 4:1 APS:PCL showing maximum mass 

loss (86±2.3%) in 5 days. This could be attributed to decrease in the crystallinity ((decreased ΔHc 

and ΔHm, Table 3) and increase in the rate of hydration of scaffolds (Figure 4E) by addition of 

APS in scaffolds. Also, the scaffolds prepared in present study contain uncured (uncrosslinked) 

APS pre-polymer and it is reported that uncured pre-polymer of APS have faster degradation rate 

than its crosslinked counterparts [33]. As discussed in earlier section 3.2.3, higher concentration 

of APS also reduced ΔHm indicating reduced crystallinity and increased polymer chain flexibility 

of the composite scaffolds, which may lead to faster degradation rate as compared to crystalline 

polymers [14]. Similar behavior has been reported for amorphous polymers such as poly(d,l-

lactic-co-glycolic acid) (PLGA) which degrade faster than crystalline poly(l-lactic acid) (PLA) 

microspheres based on differences in their morphology [51]. In order to confirm that APS is 

indeed responsible for accelerating the degradation rate of the scaffolds, FTIR spectra of 

degraded scaffolds (0:1 and 4:1 ratios; dotted lines) was compared with their corresponding 

spectra before degradation (solid lines). 

As shown in Figure 6B, 0:1 (pure PCL) scaffolds did not show significant differences in the 

FTIR spectra before or after degradation. However, peak intensity of primary (1642cm−1) and 

secondary (1556cm−1) amine groups in 4:1 APS:PCL scaffolds decreased significantly after 

degradation while there was very little change in carbonyl stretching peak at 1724cm−1. Indeed, 

ratio of intensities of primary and secondary amine to carbonyl stretching in ester (1724cm−1) in 

degraded samples of 4:1 scaffolds were found to be 0.22 and 0.57 respectively as compared to 

non-degraded scaffolds (1.06 and 1.55). Thus, FTIR data suggests preferential degradation of 

APS pre-polymer from the composite scaffolds. To further confirm this observation, we 
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investigated thermal properties of degraded scaffolds. There was little effect on melting 

temperature (Tm) and melting enthalpy (ΔHm) as well as crystallization temperature (Tc) and 

crystallization enthalpy (ΔHc) before or after degradation for pure PCL scaffolds (0:1 ratio) as 

shown in Table 3 and Figure 6C. On the other hand, Tc, ΔHc, Tm, and ΔHm values of composite 

APS-PCL scaffolds increased significantly after degradation compared to those before 

degradation suggesting increased crystallinity. Notably, ΔHm and ΔHc became identical to PCL 

scaffold (Table 3 and Figures 6C, 6D) further suggesting preferential degradation of APS pre-

polymer from the APS-PCL scaffolds. Similar trend of increased crystallinity was observed for 

polymers such as PGA by You et al. [52]. It was observed that amorphous regions in the 

electrospun PGA were preferentially degraded before the crystaline phase leading to increased 

crystallinity during degradation [52]. Similar observation was reported for poly(3-

hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-23%-3-hydroxyvalerate) (PHB/V) with 

a clear preference for amorphous polymeric chains during initial phase of enzymatic degradation 

[53]. The change in surface morphology of scaffolds after degradation was determined by SEM 

as shown in Figure 6E. It can be seen that morphology of PCL (0:1 ratio) scaffolds before or 

after degradation study was similar without appearance of any surface pores. However, surface 

porosity in composite APS-PCL scaffolds after degradation increased with increasing APS 

concentration in scaffolds (white arrows, Figure 6E). This also correlated well with the mass 

loss results shown in Figure 6A, where scaffolds with higher APS concentration showed faster 

degradation rate. Furthermore, FTIR and DSC studies also confirmed preferential loss of APS 

from composite scaffolds suggesting that APS plays a considerable role in promoting 

degradation of APS-PCL scaffolds. This increased degradation rate of amorphous portion of the 
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blend can be exploited to tailor the degradation rate of APS-PCL scaffolds for a suitable tissue 

engineering application. 

 

Figure 6 In vitro degradation studies A) Percentage mass loss of APS-PCL scaffolds under accelerated 

conditions after immersion in 0.05M NaOH solution; (Significant differences at p < 0.05 compared to *: 0:1, #: 1:1 

and 2:1; One-way ANOVA followed by Tukey test for n = 4); B) Comparison of FTIR spectra of 0:1 (PCL) and 4:1 

APS:PCL scaffolds before (solid lines) and after (dotted lines) degradation; C) Heating and D) cooling DSC 

thermograms of 0:1 (PCL) and 4:1 APS:PCL scaffolds before (solid lines) and after (dotted lines) degradation; E) 

Morphology of degraded (Day 5) 0:1, 1:1, 2:1 and 4:1 APS:PCL scaffolds compared to as-prepared (Day 0) 

scaffolds; white arrows indicate pore formation in degraded samples. 
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3.3 CELL ATTACHMENT AND VIABILITY 

In order to target any material for biomedical applications, biocompatibility is a very critical 

factor. Earlier, there have been lot of studies showing that the cell attachment and viability can 

be improved using polymer blends or nanoparticles [6, 24, 26, 27, 54]. PCL is a hydrophobic 

polymer that exhibit poor cell attachment [27, 37]. Previous studies on APS have shown good 

cell viability and adhesion on thermally cured APS films [32].  In order to determine if addition 

of APS to the APS-PCL composite scaffolds had any effect on cellular adhesion, spreading and 

growth, cellular behavior of C2C12 mouse myoblasts were studied by immunostaining and 

metabolic activity assay and the results are depicted in Figure 7. The phalloidin staining for actin 

cytoskeleton after 6h showed that addition of APS promoted faster spreading of C2C12 cells 

while the cells seeded on PCL (0:1) were still round after 6h (Figure 7A). 

          This shows that presence of APS in APS: PCL scaffold facilitates cell spreading as early 

as 6h after cell seeding. Faster adhesion and spreading of cells to the scaffold is advantageous for 

tissue engineering applications where time for cells to get integrated with the scaffold plays an 

important role. However, by 24h, C2C12 cells seeded on all composite and PCL (0:1) scaffolds 

exhibited spreading (Figure 7B). Metabolic activity of the cells seeded on the scaffolds 

containing 0:1 and 4:1 APS: PCL was studied by Alamar blue assay. APS:PCL (4:1) scaffolds 

exhibited slightly reduced metabolic activity at earlier time point of 24h suggesting lower cell 

attachment on 4:1 composite scaffold. However, at later time points, both 0:1 (PCL) and 4:1 

APS:PCL scaffolds promoted cell proliferation as shown in Figure 7C. These results are in 

accordance with previous cell attachment and viability studies conducted on thermally cured 

APS films [32]. 
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Figure 7 Adhesion and spreading of C2C12 mouse myoblast cells after A) 6h and B) 24h in culture. Cells 

were cultured on APS-PCL composite scaffolds for 6 and 24h respectively, fixed and actin cytoskeleton was stained 

with phalloidin (green) and nuclei stained with Hoechst (blue). Hydrophobic PCL scaffolds show round cell 

morphology at earlier time point of 6h whereas cells can easily spread on composite APS-PCL scaffolds by 6h. 

However, at later time point of 24h, no difference was observed in cell morphology on all the scaffolds including 

PCL. C) Metabolic activity (Alamar blue) of C2C12 cells on 0:1 and 4:1 APS:PCL scaffolds showing increased cell 

proliferation over 7 days on both, PCL as well as APS-PCL scaffolds 
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4.0  CONCLUSION AND FUTURE DIRECTION 

In conclusion, elastomeric nanofibrous scaffolds of APS pre-polymer can be successfully 

fabricated by blending with PCL, a biodegradable polymer. The electrospun scaffolds can be 

prepared with up to 80% w/w APS concentration. The APS addition significantly enhanced 

mechanical properties of the scaffolds and increased their degradation rate. Further, these 

APS:PCL scaffolds supported adhesion, spreading and viability of C2C12 cells in vitro. These 

scaffolds can be promising candidates for skeletal muscle regeneration based on their improved 

physicochemical and mechanical properties.  

Regeneration of skeletal muscle is significantly improved by two cues, 1. Alignment and 2. 

Electrical stimulation. Alignment cues in the scaffolds enable them to mimic the structure of in 

vivo skeletal muscle. This can be done by electrospinning method using two parallel plates 

collectors designed to provide the necessary difference in potential and thereby collecting highly 

aligned fibers between them[55].  

Another important cue for skeletal muscle differentiation is electrical conductivity. As reported 

in literature, upon electrical stimulation, increased myogenic differentiation is observed.  Thus, 

these scaffolds can be loaded with nanoparticles such as carbon nanotubes (CNT) and graphene 

oxide to increase electrical conductivity of the scaffolds. These particles have been shown to 

promote myoblast differentiation and also provide a platform which is electrically conductive 

[56-58]. Hence, upon myoblast cell seeding and adhesion, the scaffolds can be electrically 
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stimulated[59]. This will enable the APS-PCL scaffolds to be a promising candidate for skeletal 

muscle tissue engineering.   
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APPENDIX A 

                                                            ABBREVIATIONS 

Term Abbreviation 

ECM Extracellular matrix 

PCL Polycaprolactone 

APS Poly(1,3-diamino-2-hydroxypropane-co-polyol 

sebacate) 

PLA Poly (L-lactic) acid (PLA)  

PGA Polyglycolic acid (PGA) 

PLGA Polylactic-co-glycolic acid (PLGA) 

HFIP Hexafluoroisopropanol 

FTIR Fourier Transform Infrared Spectroscopy 

DSC Differential Scanning calorimetry 

SEM Scanning electron microscopy 

CNT Carbon nanotube 
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