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In this dissertation, I develop a novel inconsistency detection and data fusion method for data 

integration systems. Inconsistent data may lead to incorrect query results and induce 

unexplainable outcomes. I propose an inconsistency detection method to find out which data 

items (e.g., temporal or spatial report) have the higher potential to cause data conflicts as well as 

to estimate a reasonable consistent reported value. My approach is based on representing 

overlapping data reports as a characteristic linear system. The characteristic linear system can be 

used to estimate consistent reported values within overlapping time and space intervals. I explore 

applicability of the proposed approach in different domains. In particular, I perform temporal 

data fusion with time-overlapping reports using a historical database. I also experiment with 

spatial data fusion involving space-overlapping reports using simulation of sensor data sets of 

robots performing search and rescue task. Finally, I apply the proposed approach to combine 

temporal and spatial fusion and demonstrate that such multidimensional fusion improves 

inconsistency detection and target value estimation. 
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1.0  INTRODUCTION 

1.1 MOTICATION AND PROBLEM STATEMENTS 

With the emergence of new data sources on the Internet, integrating data from heterogeneous 

data repositories has become critical. For example, RFID (radio frequency identification) tags 

circulation increased from 1.3 billion to 30 billion from 2005 to 2011; the data generated from a 

single engine of an airplane in a half hour is about 10 terabyte; and generally Facebook can have 

2.5 billion likes and 300 million photo uploads per day (Zikopoulos et al., 2012). The general 

ground truths we can acquire from the data above include the amount and location of products 

obtained by RFID, airplane and flight circumstance records provided by log data, and the 

relationship of a photo and specific users on social media. In addition to the basic information 

above, aggregating data from heterogeneous data repositories can provide us with other aspects 

of data analysis such as logistic optimization for saving storage and transportation costs using 

RFID, risk management, and maintenance of aircraft and analysis of social networks in cyber 

space. “This data comes from everywhere: sensors used to gather climate information, posts to 

social media sites, digital pictures and videos, purchase transaction records, and cell phone GPS 

signals to name a few. This data is big data…and big data spans four dimensions: volume, 

velocity, variety, and veracity…. Big Data is all about better analytics on a broader spectrum of 

data, and therefore represents an opportunity to create even more differentiation among industry 
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peers” (Zikopoulos et al., 2012). The amount of data is increasing on a large scale and at a fast 

pace due to the improvement of storage devices and processing ability. Therefore, researchers 

have started to explore methods and techniques to process and analyze big data, and to solve 

related problems that did not exist or have not been valued before. The size of available data, the 

connectivity between data sources, and abilities of analytic technologies make the information 

integration for big data prominent.  

Using multiple data repositories and sensors provide users with comprehensive and 

complementary information. However, multiple sources of data introduce problems such as 

redundancy, conflicts, or missing data reports. The two major categories of challenges for large 

scale data integration systems are (1) heterogeneous data and (2) conflicting data (Zadorozhny & 

Hsu, 2011). Heterogeneous data refer to data stored in different schemas or in different 

representations, and conflicting data refer to data stored in multiple databases with inconsistent 

attributes (i.e. time/location/name). The solutions for heterogeneous data have been researched 

for many years, but the challenges of conflicting data are not well explored yet. My approach 

aims at improving the quality of information integration via data inconsistency detection and 

information fusion. Of interest to me in the case studies are historical data sources which include 

numerous events with a wide range of time duration, as well as the simulated sensor data sets of 

robots performing search and rescue task with overlapping temporal and spatial reports. These 

historical or sensor data may overlap due to redundancy of records, or inaccuracy of original 

data. Inaccurate results and poor decision making may occur during the integration process if the 

data is redundant and inconsistent. Users should spend a large amount of time and effort to 

analyze and extract the correct information from the distributed data sources, which involve 

conflict detection and processing of conflicting reports. Related reliability assessment protocols 
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based on analysis of data inconsistencies is critical to form a consistent repository of integrated 

data.  

1.2 OBJECTIVE AND FOCUS OF THIS STUDY 

The unified repository of a large number of data sets provides researchers an easier way to access 

multiple resources in a single set with a homogeneous schema. However, some implicit problems 

for this mass of data will obstruct the analysis of these historical data. For example, Table 1 

shows the mockup data of two historical reports with overlapping time intervals: 

 

Table 1. Example of historical report with time overlapping 

ID Value Name Location Start time End time 

1 100 Measles Pittsburgh, PA 1/1/2001 12/31/2013 

2 500 Measles Pittsburgh, PA 1/1/2001 12/31/2005 

 

This time overlapping condition is very common in historical data sets. For example, when 

researchers interested in the total Measles cases in the greater Pittsburgh area, they collect data 

sets from different resources with varying time coverage. The above example shows an 

erroneous number of incompatible total cases of Measles – we cannot calculate the total cases of 

Measles by simply summing up the reports values. The reports’ times are overlapping and for 

larger time interval the reported value is smaller, which indicates inconsistency. We cannot 

differentiate what caused this error because it may result from human error of recording tuple 

name, time, or location. However, we should be able to detect this inconsistency. 
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I propose to represent the overlapping reports using an underdetermined linear system 

called characteristic linear system in my dissertation. For reports be modeled in the 

characteristic linear system, I can detect data inconsistencies before performing data fusion to 

estimate most likely consistent value. This reduces the consumption of time and effort for the 

fusion, and also reduces potential incorrect query results. The underdetermined linear system and 

its solution set can be used to detect the occurrence of inconsistent reports, ascertain the ID of 

conflict reports, decrease the inconsistency by suggesting possible real report values or eliminate 

these conflict reports, and improve data accuracy and reliability.  

In this dissertation, I test my algorithm for temporal data fusion using the historical data 

source of an integrated epidemiological data warehouse that records sequential diseases 

information from heterogeneous data sources. This data warehouse contains about 50,000 reports 

for more than 100 years of United States epidemiology data. The data I use in this dissertation is 

integrated from these 50,000 reports across different data sources that are represented as 

heterogeneous data formats. I perform inconsistency detection and data fusion for aggregated 

epidemiological records. After conflict detection, I perform temporal data fusion for this data set 

to provide reasonable estimated value for each time interval. In addition, I test my proposed 

algorithm of spatial data fusion through the simulation of the task of robots conducting urban 

search and rescue mission. Robots mounted with lasers and cameras can explore the environment 

and produce video streams and laser logs for the user. Robots detect immobilized targets when 

they explore different areas, but the laser logs may have multiple scans with overlapping areas 

from different robots. The overlapping spatial logs may result in double counted targets. In order 

to further involve both temporal and spatial dimensions in the process of data fusion, I extend the 

scenario of the search and rescue task of target detection at specific locations and time intervals 
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with dynamic targets. My major research questions and corresponding hypothesis for this 

dissertation are: 

 Research question 1: How to detect inconsistency in temporal and spatial data? 

Hypothesis 1: My proposed characteristic linear system and reverse substitution method can 

be used to indicate which report(s) have the higher degree of inconsistency, or to indicate 

which report(s) cause the inconsistency. Thus, the user can spend less time to find the 

targeted problem reports.  

 Research question 2: How can inconsistent temporal and spatial data be processed?  

Hypothesis 2: I can detect inconsistency for different configurations of temporal and spatial 

reports (i.e. overlap, subsumption, number of report, etc) through the degree of inconsistency 

and perform data fusion through the estimated values generated by the characteristic linear 

system. 

 Research question 3: How can the inconsistency detection and analysis be used for scalable 

data fusion? 

Hypothesis 3: The reverse substitution method can provide a good estimate of aggregate 

value for reports with inconsistency in any single data dimension as well as in 

multidimensional data such as the temporal and spatial dimensions in this dissertation. 

1.3 STRUCTURE AND OVERVIEW OF THIS DISSERTATION 

The remainder of this dissertation is structured as follows: Section 2.0 describes the background 

knowledge of data inconsistency detection, data fusion (Section 2.1) and other related works of 

information integration (Section 2.2.1) and multisensory information fusion (Section 2.2.2). My 
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proposed Reverse Substitution (RS) method of characteristic linear system for temporal data 

fusion will be introduced in Section 3.0 . I present the background knowledge of historical data 

sources in Section 3.1. The proposed RS method (Section 3.2 ) includes the generation of the 

characteristic linear system (Section 3.2.1) and the nonnegative least squares method to generate 

the solution set (Section 3.2.2).  The experiment of inconsistency detection using real data set 

and simulation-based study is presented in Section 3.3 and Section 3.4 correspondingly. The 

evaluations and comparisons of my proposed approach and the related conflict degree method 

are shown in Section 4.1, 4.2, and 4.3. Section 4.4 discusses performance of the proposed RS 

method. Section 5.1 and 5.2 outline the work of target observation for the task of temporal and 

spatial data fusion, which includes target identification and target movement trajectory 

estimation at specific locations and time intervals. Section 5.3 addresses the spatial fusion, and 

Section 5.4 and 5.5 address the multidimensional temporal-spatial fusion. Section 6.0  concludes 

discussing applications of the proposed approach (Section 6.1) as well as the future work for its 

possible improvements (Section 6.2). 
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2.0  BACKGROUND AND RELATED WORKS 

2.1 EFFICIENT DATA FUSION FOR HETEROGENEOUS DATA SOURCES 

Data integration from heterogeneous data sources requires a tremendous amount of work. The 

possible problems that users may encounter during data integration processes are inaccurate data, 

inconsistent data and redundant data. These problems are either caused by heterogeneous data 

sets or conflicting data sets. Heterogeneous data is defined as data stored in different schemas or 

in different representations. Redundant data is defined as data stored in multiple databases with 

overlapping time, location, or name. These redundant data may result in inconsistency if the 

overlapping parts are inconsistent (i.e. temporal/spatial/naming inconsistency) (Zadorozhny & 

Hsu, 2011).  

From the database point of view, data integration may be performed when there is 

heterogeneity at the schema level, tuple level, or value level. Information resulted from data 

integration process at different levels may have different representations, information types, and 

functionality, etc. Thus, when a designer starts to create a data integration system, the factors that 

needs to be considered includes the type of data, the algorithm of data merge and the level where 

the data integration process happens. A common approach to perform data integration involves 

the following steps: (1) identify the corresponding attributes in the sources, (2) differentiate 

objects that originate in different sources and if these data describe the same attributes, and (3) 

merge these sources into a single representation. Figure 1 describes an architecture of 
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information integration proposed by (Zadorozhny, Manning, Bain, & Mostern, 2013) to integrate 

historical data from heterogeneous data sources using collective intelligence. Information 

providers in each repository submit their data sources through wrapper generation into a 

structured historical data in a homogeneous global schema. The wrapper transforms different 

kinds of data source, such as CSV, into a target schema. The data submission system contains 

wrapper generation, wrapper registration, and external data reliability assessment.  

 

                

Figure 1. Data integration architecture in historical data center based on collective intelligence 

Heterogeneous historical data sources 

Structured homogeneous historical data 

 

Internal data reliability assessment 

Annotated historical data 

Fused historical data 

External data reliability assessment 

Wrapper generation 

Data 

submission 

system 

Data curation 

Data fusion 

Fusion 

resolution 
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In this dissertation, the information integration is defined as two major processes: the 

heterogeneity resolution and the data fusion as shown in Figure 2. The heterogeneity resolution 

refers to unify the heterogeneous data sources from various schemas, types, and representations 

into a global format. The data fusion refers to process of data inconsistency conflicts resolution 

in the integrated data repository. In this dissertation I focus mostly on the data fusion, since this 

area becomes more significant and is not well explored. The duplicate detection, also known as 

record linkage, object identification, or reference reconciliation are relevant  for data fusion  

(Bleiholder & Naumann, 2008). It can be accomplished by comparing each object using 

similarity measurement. A drawback to this method is that sometimes it is neither effective nor 

efficient especially when the amount of data is very large. Moreover, conflicts may still occur 

after heterogeneity is resolved. Therefore, the problems are how to detect data redundancy or 

inconsistency before performing similarity measurements to improve scalability as well as how 

to correct these inconsistent data during data fusion.  

 

 

Figure 2. Information integration architecture 
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2.2 INFORMATION FUSION 

The term "information fusion", or "data fusion" has been used in different contexts. According to 

(Bleiholder & Naumann, 2008): “There are two other fields in computer science that also use the 

term (data) fusion. In information retrieval it means the combination of search results of different 

search engines into one single ranking, therefore it is also called rank merging. In networking it 

means the combination of data from a network of sensors to infer high-level knowledge, 

therefore also called sensor fusion. Beyond computer science, in market research, the term data 

fusion is used when referring to the process of combining two datasets on different, similar, but 

not identical objects that overlap in their descriptions”. 

 The most important problem or premise that both multisensory data fusion and 

information integration data fusion face is the huge volume of heterogeneous data. The 

emergence of the Internet makes it easier to access different data resource systems worldwide in 

order to obtain information. Types of sensors are usually classified by their physical nature such 

as electromagnetic spectrum, vision (e.g. video camera), sound waves (e.g. sonar), touch (e.g. 

tactile sensor), odor, or the absolute position of the system (e.g. range finder) (Esteban, Starr, 

Willetts, Hannah, & Bryanston-Cross, 2005). And systems usually use a large number of sensors 

for their tasks. Integrating data from those large-scale data resources, therefore, becomes critical. 

Here I focus on two major applications of information integration data fusion and multisensory 

data fusion. 
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2.2.1 Information fusion for data integration 

For databases information integration, data fusion can happened at schema level, tuple level, or 

value level. A variety of techniques for data fusion at each level are described below: for Schema 

level, (Rahm & Bernstein, 2001) surveyed data integration (or schema matching) approaches 

following varying criteria such as instance vs. schema, element vs. structure matching, language 

vs. constraint, matching cardinality, or auxiliary information, etc.; for Tuple level, (Han et al., 

1997) proposed merging identical tuples when each attribute in the relevant set of data is 

generalized to a minimally generalized concept; and for Value level, (Naumann, Bilke, 

Bleiholder, & Weis, 2006) specified that data fusion occurs at the value level to resolve value 

inconsistency. This is the last step of their data fusion process which is described as Step1: 

Schema matching (i.e. resolve inconsistencies at schema level), Step 2: Duplicate detection (i.e. 

resolve inconsistencies at tuple level), and Step 3: Data fusion (i.e. resolve inconsistencies at 

value level). 

There are many advantages to using data integration systems such as: 1.Completeness 

(i.e. no object will be ignored or missed by adding more data sources (i.e. more objects, 

attributes describing objects) to the system); 2. Robustness (i.e. increase the reliability of 

datasets); 3. Conciseness (i.e. to access data in different categories or to capture data that 

happened in different time periods after performing the data fusion process) (Bleiholder & 

Naumann, 2008). 

However, problems or conflicts may occur when accessing data stored in multiple 

heterogeneous databases. The heterogeneous databases either do not use the same schema or do 

not represent the same entities in the same way (Hernandez & Stolfo, 1998). Two types of the 

later incompatibility of heterogeneous databases also addressed in (Chatterjee & Arie, 1991; 
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Elmagarmid, Ipeirotis, & Verykios, 2007) in two categories: Structural incompatibility: 

including type mismatch, formats, units, and granularity; and Semantic incompatibility (i.e. 

lexical heterogeneity in (Elmagarmid et al., 2007): including synonyms, homonyms, codes, 

incomplete information, recording errors, surrogates, and asynchronous updates.  

Some techniques, in addition to query optimization, to resolve these structural or 

semantic incompatibility issues are listed below: (a) Schema matching approaches in (Rahm & 

Bernstein, 2001) presented in the similarity session above; (b) Data exchange: uses a set of 

potential answers instead of a single universal solution to the target schema (Fagin, Kolaitis, & 

Popa, 2005); (c) Conflict handling strategies such as 1. Conflict ignoring: consider all 

possibilities (i.e. ignore conflicts and pass all possibly combinations of values to the user, the 

user needs to choose and decide from these data) and pass it on (i.e. pass all conflicts to users); 2. 

Conflict avoiding: trust your friends (i.e. avoid conflicts by leaving values only from a specific 

resource through a decision rule), no gossiping (i.e. return consistent tuples only), and take the 

information; 3. Conflict resolving: cry with the wolves (i.e. resolve conflicts by leaving the 

values that are most often used), roll the dice (i.e. take the random values), meet in the middle 

(i.e. resolve conflicts by creating a new value which is a compromise among all possible values, 

for example averaging over all numerical values), and keep up to date (i.e. takes the most recent 

value) (Bleiholder & Naumann, 2008; Naumann et al., 2006); (d) Relational operators: basic 

operators include union (union-based techniques) and join (join-based techniques). Other 

techniques extending the relational models for example by considering all possibilities or 

considering only consistent possibilities (Bleiholder & Naumann, 2008). Another technique of 

entity operators (i.e. Entity Join) for entities named differently inter-databases is addressed in 

(Chatterjee & Arie, 1991). The authors also surveyed other strategies such as standardizing the 
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names, rule based approach, information theoretic approach, and imprecise query specification 

for heterogeneous databases; (e) Wrapper construction: (Chawathe et al., 1994) focus on 

translator and mediator generators and proposes the OEM (object exchange model) to provide 

resource access and information integration; (f) Mass collaboration approach: adjusts system 

parameters for semantic mapping by users feedback (Doan & McCann, 2003); (g) Virtual 

attribute (Ex. maybe tuple): expands the notion of dynamic attributes to map conflicting 

attributes to a common domain that then can use extended relational algebra operations 

(DeMichiel, 1989); (h) Combining with data clustering: modifies the sorted-neighborhood 

method by cut the data cleaning process to multiple small windows of passes (Hernandez & 

Stolfo, 1998); (i) Semantic correspondence: uses degree and cardinality measurements to 

represent closeness of links between data and mappings between domains (Mahoui, Kulkarni, Li, 

Ben-Miled, & Borner, 2005); (j) Self-configuration system: based on the probabilistic mediated 

schema from sources to the mediated schema (Sarma, Dong, & Halevy, 2008); (k) Graph-based 

data integration framework: combining three basic methods such as accession based mapping 

(i.e. use an accession coding system to link concepts with same reference between different 

databases), synonym mapping (i.e. link two concepts if they have same preferred concept names) 

and StructAlign mapping (i.e. use the graph neighborhood of two concepts to disambiguate their 

meaning) (Taubert et al., 2009); (l) Google Fusion Table: allows users uploading tabular data 

files to a big cloud storage and management service which supports SQL queries (Gonzalez et 

al., 2010); or (m) Similarity metrics: uses metrics such as character-based similarity metrics 

(including edit distance, affine gap distance, Smith-Waterman distance, Jaro distance metric, and 

Q-gram distance), token-based similarity metrics (including atomic string, WHIRL system, and 

Q-grams with tfidf), phonetic similarity metrics (including soundex, NYSIIS, ONCA, and 
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metaphone), and numeric similarity metrics to detect similar field entries (Elmagarmid et al., 

2007).  

In the data fusion, conflict handling strategies can be seen as a subarea or as a synonym 

of data fusion. There is a huge volume of techniques to resolve conflicts for information 

integration data fusion and multisensory data fusion, some are listed in this dissertation. The 

benefits of data fusion have motivated a variety research in areas such as maintenance 

engineering, robotics, pattern recognition and radar tracking, mine detection and other military 

applications, remote sensing, traffic control, aerospace systems, law enforcement, medicine, 

finance, metrology, and geo-science (Esteban et al., 2005). Other application areas are such as 

integrate data from earth’s ecosystem (i.e., climate data, geospatial data, etc.), biomedical data, 

web service, and business or any other areas have mass data collection.  

2.2.2 Multisensory information fusion 

Data fusion is most used in multisensory environment and the advantages of using multiple 

sensors over a single sensor including higher signal-to-noise ratio, robustness and reliability in 

the evident of sensor failure, parameter coverage, dimensionality of the measurement, confidence 

and resolution, hypothesis discrimination with the aid of more complete information arriving 

from multiple sensors, obtaining information regarding independent features in the system, and 

lower uncertainty, measurement time, as well as possibly costs (Esteban et al., 2005). Typically, 

more sensors can accomplish more tasks than a single sensor or can accomplish these tasks with 

better performance. The advantages of using multiple sensors are: (a) Redundancy (i.e. each 

sensor provides part of information in the environment, through data integration or fusion of data 

the accuracy can be increased and uncertainty will be decreased); (b) Complementarity (i.e. 
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different type of sensors can enforce the information perceived when sensors are independent. 

For example, using both atmospheric sensors and a Webcam for detecting an operators’ absence 

will be more accurate compared with only using one type of sensor); (c) Timeliness (i.e. 

providing information within one integration process by processing multiple sensors parallel); 

and (d) Cost of the information provided by the system (i.e. less costly information from a 

multiple sensor system compare with potentially more costly information obtained from a single 

sensor) (Luo & Kay, 1989).  

 Some research distinguishes between data fusion and data integration in multisensory 

environment. In (Luo & Kay, 1989), multisensory integration “refers to the synergistic use of the 

information provided by multiple sensory devices to assist in the accomplishment of a task by a 

system” and multisensory fusion “refers to any stage in the integration process where is an actual 

combination (or fusion) of different sources of sensory information into one representational 

format.” Although many researchers use these terminologies, this differentiation is not standard 

and other researchers may treat these terms as applying to the same process. Early previous 

approaches to data fusion and data integration were considered in (US Navel Observatory & 

Almanac, 1960). (Hall & McMullen, 2004) separated data fusion model of functional model (i.e. 

model contains primary functions, relevant database, and interconnectivity to perform data 

fusion), architectural model (i.e. focus on the hardware/software, the data flow and external 

operator interfaces), and mathematical model (i.e. describes the algorithm performing data fusion 

and logical process).  

The data fusion process can happen in a hierarchical or sequential manner or hybrid of 

these two. Where the fusion process takes place needs to be considered when constructing the 

data fusion system in a hierarchical framework. Multisensory fusion can happen at different 
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levels depending upon the requirements of the users and the characteristics of the system. Here, 

some data integration models and their process levels are described (Esteban et al., 2005) such as 

Thomopoulos architecture that divided into signal level fusion (i.e. data correlated through 

learning), evidence level fusion (i.e. data correlated through statistical model or decision 

making), and dynamics level fusion (i.e. data correlated through mathematical models) 

(Thomopoulos, 1990); Luo and Kay’s framework that divided into signal, pixel, feature, and 

symbol levels of fusion as the level of representation increases from signal to symbol, the level 

of information provided to users also increases (Luo & Kay, 1989); or the Waterfall model that 

divided into signal (i.e. preprocessing the raw data), feature (i.e. feature extraction and pattern 

processing), and interrogation (i.e. situation assessment and decision making) level (Harris, 

Bailey, & Dodd, 1998). 

Some researchers have classified multisensory data fusion as one subarea of data fusion 

for information integration. A variety of solutions have been proposed for the problems faced by 

both of these data fusion tasks. Apart of some common algorithms such as averaging, weighted 

averaging, or data mining techniques, here are some techniques for these two data fusion areas. 

First area focuses on data fusion process such as (a) The JDL framework (Hall & Llinas, 1997), 

(b) Waterfall model (Harris et al., 1998), (c) Omnibus data fusion model: focuses on functional 

objectives at different data fusion steps (Bedworth & O’Brien, 2000), (d) System-based data 

fusion architecture: address the requirements for engineering guidelines; there are three steps, 

identification, estimation, and validation, in this framework (Esteban et al., 2005); (e) 

Thomopoulos’s architecture (Thomopoulos, 1990); and (f) Luo & Kay’s framework (Luo & Kay, 

1989). The second area focuses on data fusion strategy which will be explained in the following 

section 
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(Hackett & Shah, 1990) also put data fusion and data integration into two different 

categories in which the sensor fusion uses fusion strategy to put multiple sensors into equivalent 

form to perform fusion and consent of all sensors must reached; the sensor integration uses 

sensors sequentially to achieve a particular task, consensus for all sensors is not need and data of 

prior sensor can used to help next sensor performing its task. The sensor fusion also can put into 

two categories that direct fusion method using raw data from sensors without any manipulation 

and indirect fusion method using transformed sensor measurements. Bayesian theory was being 

introduced in their work to check consistency of sensor data before any direct/indirect fusion 

performed. The type of sensors and the level at which data fusion will occur are all need to take 

into account. For same type of sensors the data screening and data fusion are required, however, 

for different types of sensors are used then the collected data from heterogeneous sources need to 

be transformed into the same schema/form and perform data fusion according to the occurrence 

time, etc. 

The most simple algorithm to perform data fusion is using averaging (or weighted 

averaging in extension) under the environment of same type of sensors (Hackett & Shah, 1990). 

The complexity increases while there has a large number of sensors or sensors interaction are 

complex, this condition can be modeled using a probability distribution and a more sophisticated 

method is needed. The fusion strategies for multisensory are such as (a) Distributed blackboard 

data fusion model: assigns confidence level to each sensor by supervisors (Schoess & Castore, 

1988); (b) Six basic methods of Segmentation, Representation, 3-D shape, Sensor modeling, 

Autonomous robots, and Recognition are addressed in (Hackett & Shah, 1990); (c) Basic 

arithmetic methods such as deciding, guiding, averaging, weighting, Bayesian, statistics,  

integration, and maximum-likelihood are also mentioned in (Hackett & Shah, 1990; Marano, 
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Matta, & Willett, 2008; Zubko, Leptoukh, & Gopalan, 2010); (d) Locally optimum estimator 

(LOE) consider a quantize design in the case of an unknown quantity of sensors in a wireless 

network of a group of independent sensors (Marano et al., 2008); (e) Fuzzy inference method 

with heterogeneous sensors such as Webcam and atmospheric sensor (Lecce & Amato, 2009), 

the authors introduced a data fusion approach combining different sensor types in the task of user 

presence monitoring; and (f) (Chang, Costagliola, Jungert, & Orciuolo, 2004) introduced a 

spatial/temporal query language ∑QL to perform retrieval and fusion of multimedia sensor data 

fusion. 

The frameworks used to perform data fusion of multisensors are as follows: Joint 

Directors of Laboratories Data Fusion Framework, Thomopoulos architecture framework, multi-

sensor integration fusion model, behavioural knowledge based data fusion model, waterfall 

model, distributed blackboard data fusion architecture, and omnibus data fusion model. 

Therefore, some difficulties may encounter for multisensory data fusion are diversity and 

registration of sensor and data representation, calibration of the sensors when errors in the 

system operation occur, sensors operability limitations, and deficiencies in the statistical model 

of the sensors and limitations in the algorithm development (Esteban et al., 2005). In general, the 

multisensory data fusion strategies include more arithmetic methods because the data’s unity and 

the simplicity of the sensors. The goals of multiple sensors also has a wide variety for object 

recognition using different types of sensor (Hackett & Shah, 1990). 
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3.0  SYSTEM DESIGN – TEMPORAL INFORMATION FUSION  

In this dissertation, I consider merging data of reports from integrated heterogeneous data 

sources with temporal or spatial overlapping of events. In this section I focus on inconsistency 

detection and information fusion for time-overlapping historical data. First I introduce the 

historical data in Section 3.1and then consider my proposed model approach in Section 3.2. 

3.1 HISTORICAL DATA SOURCES 

The historical data reports record events of users’ interest within a time range. The 

characteristics of historical data reports of dynamic changing and data continuity require a 

comprehensive consolidation of data sets. These continuous data reports can be found in 

different areas such as environmental data (ex. climate change), health data (ex. disease 

contagion), biological data (ex. species migration), or financial data (ex. stock rating), and the 

data analysis is based on events within some time intervals or location intervals. For example, 

users may be interested in getting to know the climate change in the Arctic Circle within the past 

decade or the migration track of zebras across South Africa last year. The type of data introduced 

in Chapter 2.0 such as the RFID data log, the airplane data log, or the web usage log also have 

the same features. These data can be stored in disparate data warehouses at distinct locations in 

which each warehouse contains a portion of the whole data source. The consolidated data 
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composed of heterogeneous data sources and various time intervals have great potential of data 

overlap in time, name, or location. Conflicts may still exist after the heterogeneous data have 

been transformed into a structured historical data with a homogeneous global schema. This 

dissertation focuses on solving temporal and spatial inconsistency as a pre-procedure for data 

fusion on integrated data reports. My proposed algorithm formalizes the historical data as a 

mathematical model of an underdetermined linear system and performs consistency checking of 

data sets in a global repository. Therefore, we can merge data into a large-scale data integration 

repository with consistent data to provide completeness and robustness. When the consistency 

detection fails, my model can perform consistency adjustment with two possible approaches: (1) 

eliminate inconsistent report data; (2) adjust the data value by suggesting possible real report 

values. The proposed algorithm has to consider either temporal fusion or spatial fusion 

separately. Therefore, in the following descriptions I will use temporal fusion as an example for 

explanation.  

For historical data, I assume that reported events reflect aggregated historical statistics 

(e.g. the total number of cases of specific disease in a duration of time). The historical 

information can be represented in the following generic schema: 

| Data Source Reference | Data Reference | Time Duration | Data Value | 

The schema contains four components: Data Source Reference, Data Reference, and Time 

Duration, each of which are comprised of several components. The Data Source Reference is 

comprised by Source Identifier (SID), Source Publication Date (SPD) and Data Recording Date 

(DRD). SID is a unique identifier for data resource. SPD indicates the date when the data item is 

published from the data source. DRD refers to the date when data item is referred to in a 

historical document such as in a recorded history of the data source. The Data Reference is 
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comprised by Data Name (DName), Location (Loc), and Aggregation Type (AggrType). DName 

refers to the name of data item, Loc indicates where it exists (i.e. city, state, or continent), and 

AggrType represents its statistic function (i.e. total number of case). Time Duration contains a 

pair of  From and To time points. In addition, the Time Duration can be days, years, or any time 

granularities and may not represent the smallest granularity of time (i.e. time unit). Data Value 

(DValue) is the report value generated according to the function of AggrType. For example, the 

DValue 700 represents the total number of cases if I have the AggrType as Total_cases. I use the 

epidemiology data set Tycho to test my system and the descriptions of Tycho. 

Aggregation of data from different resources has been exploited. These data may describe 

the same type of event but occurring at a different time. Table 2 shows an example of two 

sources for the same data reference with different data source reference, time duration, and data 

value. Assuming we consider measles cases from 1900 to 1920 from multiple sources S1 and S2, 

Table 2 shows these integrated historical tuples reporting the total number of measles cases in 

LA from 10/10/1900 to 10/10/1920 and from 1/1/1908 to 10/10/1920 respectively.  

 

Table 2. Example of an integrated historical tuple 

Data Source Reference Data Reference Time Duration Data Value 

SI SPD DRD DName Loc AggrType From To DValue 

S1 9/9/1930 11/10/1920 Measles LA Total_cases 10/10/1900 10/10/1920 700 

S2 12/1/1930 11/10/1920 Measles LA Total_cases 1/1/1908 10/10/1920 1000 

 

Figure 3 shows these two sources on the time series. Therefore, there should be one 

consistent data value for each time interval, and the value is identical across reports since these 

sources describe the same data reference even though they were collected from disparate 

resources. If the data value in each interval is inconsistent across reports, for example source S1 
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and S2 have an overlapping time duration but records contradict data values where the Dvalue for 

S1 is 700 but the Dvalue for S2 is 1000, then this inconsistency cannot be caught by traditional 

algorithms.   

 

                          

Figure 3. Example of two measles reports in overlapped time interval 

3.2 PROPOSED APPROACH 

Figure 4 shows a high-level overview of my proposed model. As an input the user 

expects an integrated data, or reports, having uniform homogeneous schema. If reports refer to 

the same data reference, any overlap in time or location between reports may cause an 

inconsistency, e.g., the total number of specific diseases in a specific location within a time 

duration is incompatible, or that number in specific time around a region is incompatible. 

Therefore, first the user has to perform a consistency check of the integrated data. The user can 

further perform data fusion if he/she cannot find any inconsistency; otherwise he/she needs to 

correct the reported values to make them consistent. The consistency adjustment aims to 

consolidate as many reports as possible under the presumption of consistent data. Therefore, the 

users can (1) eliminate the inconsistent report(s), or (2) adjust report values (using the solution 

1900 1908 1920 

S2 

S1 
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set generated from the nonnegative least squares method for characteristic linear system, as 

explained in the next section) and to modify the report values as little as possible. 

  

 

Figure 4. Proposed data fusion model overview 

 

3.2.1 Characteristic linear system 

To provide inconsistency detection my model generates an underdetermined linear 

system corresponding to overlapping reports. The linear system is called characteristic linear 

system in this dissertation. After the system is built, the solution set for this it is generated by the 

nonnegative least squares method. The solution sets can be used to determine if these reports are 

inconsistent or to approximate reported interval values. The approach of solution set generation 

and inconsistency determination is called reverse substitution (RS) method. The goals of this 

method are to detect inconsistency occurrences and to provide proper values for each reported 

interval to mitigate diminish inconsistent data skewing the result. In this section I consider the 
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details of the characteristic linear system generating and solving along with related background 

theory. The reverse substitution method is introduced in Section 3.2.1 and 3.2.2. 

When data sources are integrated, reports can be grouped in several linear systems 

depending on their overlapping conditions. The unknown variable vector X represents unknown 

event density for each time interval as shown below, 

 

The size of vector X depends on the overlap condition of these reports; in other words, n is 

different for every linear system. The coefficient matrix A denotes the existence of reports at 

corresponding time interval of X is 

, 

where  and  for . The aggregated statistic value of 

reports as a constraint value vector b is 

. 

And the linear system represents as .  

I am going to illustrate this approach with a simple example. Consider four reports from 

heterogeneous data sources of events with temporal overlapping (Table 3). The four reports 

represent the cases of pneumonia in Pennsylvania from epidemiological records in the 19th 

century. Ri represents report ID and the corresponding number of cases is denoted as Vi (i: report 
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ID). When we position these reports sequentially on the timeline by their occurrence time the 

timeline will be divided into smaller units of time intervals. The number of intervals is varied by 

overlapping condition of reports and range from 1 to 2n-1(n: the number of report). There are six 

intervals in this example denoted as Xj (j: interval ID) in Figure 5. Ideally, redundant reports 

from heterogeneous data sources are consistent. Thus, each interval must have a non-negative 

value shared by all reports, and the sum of corresponding intervals will be equal to the sum of 

the reported values. 

 

Table 3. Example of report overlapping 

Report ID 

(Ri ) 
Disease Location From To 

Duration 

(year) 

Report 

Value(v) 

R1 pneumonia Pennsylvania 1900 1970 70 700 

R2 pneumonia Pennsylvania 1920 1970 50 500 

R3 pneumonia Pennsylvania 1940 1980 40 600 

R4 pneumonia Pennsylvania 1950 1990 40 700 

 

 

Figure 5. Example of four reports with overlapped time intervals 
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In this example, four reports divide the timeline into six intervals. The number of 

intervals depends on the number of reports and how they overlap. The above report configuration 

can be represented as the following underdetermined linear system:  

Max.     

Subject to       

  

             

  

  

The equations provide consistency constraints for the reported values.  The unknown vector of 

interval values can be computed using nonnegative least squares method for this 

underdetermined system. In case of inconsistent reported values we will not be able to find 

nonnegative solutions of this characteristic linear system. 

The above underdetermined linear system in matrix form  is as follows: 

. 

The matrix A represents interval coefficients of equations where 1 represents the existence 

(coverage) of a given report for a specific time intervals and 0 indicates that corresponding report 
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does not cover that interval. Take the first row as an example, it shows this report covers  from 

time interval x1 through x4 with report value 700  as recorded in Table 3. The unknown variable 

vector X represents values of a given report at each time interval, and the constraint value vectors 

b represents reported values. My goal is to generate a reasonable solution set for unknown vector 

X. 

3.2.1.1 Underdetermined linear system 

Considering the number of unknown variables (n) and equations (m), the system of linear 

equations will be described as an underdetermined linear system if there are more unknown 

variables than equations (n>m). The linear system is overdetermined if there are less or unknown 

variables than equations (n<m), or an exact if the number of unknown variables is equal to the 

number of equations (n=m). Underdetermined linear systems naturally appear my data fusion 

problem with overlapping reports.  

Another subarea of underdetermined linear system application uses sparse matrix to 

represent original data to reduce costs of transmission and storage space, capacity of information 

transmission channel, and complexity of computation. The k-term approximation selects k 

element to approximate the original data matrix (k < m). “Coding with (this model) assumes the 

packing of k-sparse n-dimensional vectors in m-dimensional space…compressed sensing 

approach is an opportunity to reduce dimension(compression) of the data with a linear method 

even without solid knowledge about the data or the type of the basis providing sparse 

representation (Kozlov & Petukhov, 2010).” The goal of k-term approximation is to select which 

vectors should be kept/purged and minimize the approximation error with estimation and signal 

basis. A considerable amount of research is related to this task  (Cevher & Guerra, 2008). 
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An example of efficient utilization of linear system is compressive sensing. The 

compressive sensing (i.e. compressed sensing) is the approach used in many areas such as image 

compression, data transmission, and signal processing to generate an underdetermined linear 

system of sampling recorded using much less data, and to reconstruct the original signal. There 

are two methods used to reconstruct the original signal in (Candès & Wakin, 2008)’s paper: the 

L1-minimization (i.e. L1 norm) and the greedy algorithm. The L1-minimization under the linear 

constraints can be considered as a linear programming problem.  

In the real world, the case of underdetermined linear system is more popular compared 

with the overdetermined system. Other algorithms to solve linear system such as the Gauss-

Jordan elimination is widely used, but cannot compute nonzero solution set only, and the 

Cramer’s rule solves for square matrix only. For algorithms to solve linear system iteratively, 

they can be categorized in two areas of stationary iterative methods. The Jacobi method, the 

Gauss-Seidel method, the successive over-relaxation method, and the Krylov subspace method 

contain the conjugate gradient method, the generalized minimal residual method, and the 

biconjugate gradient method (Wikipedia). In addition, I would like to use less time points (i.e. in 

my case, only the start and end time of the report) to detect conflict because using this causes 

most cases in my system to be an underdetermined system. Therefore, I focus on solution set 

generation for underdetermined linear system in this dissertation. Some algorithms known as 

finding sparse solutions such as greedy algorithm, linear programming, or least squares 

algorithm are used to find solutions of underdetermined linear system. It is an NP-hard problem 

to find the sparsest solution for an underdetermined linear system (Natarajan, 1995). Given the 

wide selection of solution algorithms for the underdetermined linear system, I have investigated 

which method is more suitable for my needs. I am going to explain more of the nonnegative least 
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squares algorithm and the comparison with other methods such as linear programming in the 

following Section 3.2.1.2 and Section 3.2.1.3.  

3.2.1.2 Linear programming 

Linear programming is a method used to determine the optimal solutions to maximize the profit 

or minimize the cost for a model that includes linear equations representing a list of restriction or 

requirements. “The word linear suggests that feasible plans are restricted by linear constraints 

(inequalities), and also that the quality of the plan (e.g., costs or duration) is also measured by a 

linear function of the considered qualities.” (Matoušek & Gärtner, 2007) The linear 

programming model can be applied in many areas such as investment planning in economic 

analysis, resource allocation for engineering problems, the salesman traveling problem in 

logistical algorithm, genome analysis in biological problems, and most popular, profit/cost 

estimation in industry problems. In my model, I want to minimize the difference between 

solution sets and the real report values for each interval, which can be referred to as restrictions 

for these linear equations. The linear programming (with m constraints and n variables) is shown 

below, and each row is linearly independent from each other: 

Max (or Min)              C1x1+C2x2+…+Cnxn  

Subject to                     a11x1+a12x2+…+a1nxn ≤b1  

a21x1+a22x2+…+a2nxn ≤ b2 

⁞ 

am1x1+am2x2+…+amnxn ≤ bm 

x1,x2,…xn ≥ 0, b1, b2,…bm ≥ 0,  

The linear programming shown in canonical form is:   
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 , ,  and  . 

Here  is a  matrix,  is the vector of unknown variables,  and 

 are given vectors. There are three conditions that must be met: (1) all constraints must be 

stated as equalities of the form  where  is a linear function of , (2) the right hand 

side for each constraint must be nonnegative, i.e. b ≥ 0, (3) all variables must be nonnegative, i.e. 

X ≥ 0.  

Then the linear programming can be described as  

Max (or Min) C
T
X,  

S. t. AX ≤ b, X ≥ 0,  

where b ≥ 0, 0 is the zero vector. 

Any  to the augmented system that satisfies these linear constraints the non-negativity are 

feasible solutions and when the vector X reaches the maximum or minimum value of the given 

objective function (i.e. Max (or Min) C
T
X ) it is the optimal solution.  Note that the augmented 

system above does not have to include the nonnegative conditions. Also note that this system has 

these possible states: (1) feasible with a unique optimum solution, (2) feasible with infinitely 

many optimal solutions, (3) feasible with acceptable solutions because the objective function is 

unbounded, (4) infeasible and no optimum solution. If the solution set for the objective function 

is as well as or better than other solution sets, then this solution set is optimal for the linear 

programming. I use an iterative procedure listed below, to find the optimal solution and a 

detailed flow chart is shown in Figure 6.   
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Step one is to find an initial optimal solution set and make it the current candidate. If one 

cannot be found, the Linear Programming is infeasible. Step two checks if the solution 

unboundedness is detected. If yes, then there is no optimum solution. If no, check if the objective 

function at the current optimal solution set is at least as good as or better than all of its other 

solution sets. If yes, then this solution set is optimal and stop iteration; otherwise, go to Step 

three. Step three: if at least one of the solution sets is better, make it the current candidate and go 

to Step one.  

 Each linear programming system falls into one of three possible statuses: (1) no solution, 

(2) exactly one solution, or (3) infinitely many solutions, and hence a single optimal solution or 

none. Every feasible solution satisfies constraint of the objective function and all constraint 

equalities. In addition, it provides a bound of optimal solution until the single optimal solution is 

generated by the iterative procedure. However, this single optimal solution may reach the 

objective function Max (or Min) C
T
X but the difference under all constraint equalities may also 

be large. Another restriction I have for data fusion is to find an optimal solution set of integer 

values. This constraint is common in scenarios such as case of death, hiring worker number, or 

purchase equipment amount. However, solving an integer programming system is more difficult 

than normal non-integer-restriction programming systems in computation and generating optimal 

solutions. For the cost of computation, I do not include integer constraint in this algorithm.  
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Figure 6. Iterative procedure 

 

The linear programming system can be presented in an inequality form or equation form 

within its requirements. The equation form of linear programming shown below is also known as 

the nonnegativity constraints (Matoušek & Gärtner, 2007): 
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T
X, 

S. t. AX = b, X ≥ 0, where b ≥ 0.  
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There are many algorithms for finding optimal solutions for the linear programming 

system such as the basis exchange method Simplex algorithm (George Dantzig,1947) and Criss-

cross algorithm; the interior point method Ellipsoid Algorithm, Projective algorithm, and Path-

following Algorithm; and the branch and cut method. The Simplex algorithm finds feasible 

solution sets by determining vertices of edges of feasible region plants. Similar to the Simplex 

algorithm, the Criss-cross algorithm is a basis-exchange algorithm, but have loose restriction of 

feasible solution sets. Interior point methods such as Ellipsoid algorithm, Projective algorithm, 

and Path-following algorithm were developed to finds feasible solutions for minimizing convex 

functions for worst-case polynomial-time solutions (Wikipedia). 

Here is an example of the Simplex algorithm which is one of the most widely used 

algorithms that uses iteration procedure from one solution set of the feasible polyhedron to 

another set in order to find the unique feasible optimal solution set: 

Max   x1+x2+x3+x4   

S.t.      x1+x2 = 16  

x2+x3 = 25 

x3 + x4 = 17 

x1, x2, x3, x ≥ 0. 

In the form of a matrix, , ,  and  . Letting 

the variable equal 0, i.e. x1 = 0, the first equation results in x2 = 16. Substituting x1, x2  to other 

equations then it generates x3 = 9  and x4 = 8. This solution set is feasible and optimal compared 

with other candidate solution sets. Given the solution generating methods for the 

underdetermined system provided above, the restriction of simplex algorithm in linear 
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programming is that it generates solutions from zero and stops when it finds a feasible solution. I 

assume the intervals for each report has a consistent value. In addition, I would like to make the 

generated solution set closer to the consistent report values. Therefore, I adopt the nonnegative 

least squares method, which will be described in following Section 3.2.1.3. 

3.2.1.3 Nonnegative least squares method 

The least squares method is an algorithm for solving linear equations and widely used in 

statistics, signal processing, or optimization. In general, the least squares method is used to find a 

solution that minimize errors in an overdetermined system, the system that having more 

equations than unknown variable and has no solution. It also includes the following algorithms: 

the nonnegative least squares algorithm, the least-square primal-dual algorithm, the least-square 

network flow algorithm, and combined-objective least-square algorithm, etc (Kong, 2007). In 

addition, we can also use the least squares method to find a solution or find solutions in 

underdetermined linear system that has more unknown variables than equations. We can also 

find infinite solutions if we pick the solution that has smallest errors (Horn, n.d.). To calculate 

two vectors’ distance, similarity, or fitness, the least squares method is complemented by the -

norm and the -norm. “The -norm  is that if  is a vector with complex components 

, then ; The -norm  or the Euclidean norm means if  is a 

vector with complex components , then ” (Jeffrey & 

Zwillinger, 1971).  
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The nonnegative least squares method is one of the least squares methods with a specific 

constraint of nonnegative solutions. It solves linear programming systems by QR-factorization 

that adds/deletes a column iteratively and updates the R matrix (Kong, 2007). The model can be 

written as  

 

 

. 

Or it can be written similar to the Simplex algorithm (Phase I) that minimizes the L2 norm of the 

residual  

 

 

 

“The nonnegative least squares algorithm was introduced by (Lawson & Hanson, 1974) and was 

used to solve the Phase I problem in linear programming in (Davis & Dantzig, 1992)”(Kong, 

2007). X is the solution set of the linear programming system. The paper of (Horn, n.d.) shows 

how to solve underdetermined linear system and is briefly described here.  

To find the minimal solution set X of system AX = b, the Lagrange multipliers is used to 

add a term to the equations to minimize 

. 



 36 

Differentiating with respect to X and setting the result to zero we get 

.  

Multiply by A therefore 

. 

Replace by , 

  

, and 

. 

Therefore the solution set is  

        

and  called as a pseudo-inverse. 

The nonnegative least squares method iterates to reach an acceptable approximation or an 

optimal solution. Each iteration of the nonnegative least squares tries to . 

To prove that  is the optimal solution that is the minimum , we 

assume the optimal solution as  where . If we can find the optimal solution 

makes  

 and 
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Therefore 

   

and  

. 

Therefore, is the optimal solution that minimize . 

The nonnegative least squares method generates the solution set that minimizes the 

difference between the actual values and estimated values by iteration. To empirically prove the 

viability of the nonnegative least squares method, I am going to implement it in simulations in 

the following sections. 

3.2.2 Reverse substitution method: inconsistency detection 

There are many solution generation methods for underdetermined linear system. In this 

dissertation, I use the nonnegative least squares method to solve the linear system  and 

the solution sets of unknown variables X can be computed by . The 

underdetermined condition is more common in reports modeling for the characteristic of linear 

system generation when there is a high degree of overlapping. The theory of the 

underdetermined linear system and how to solve it was explained in detail in the previous 
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sections. I use  to indicate the solution set value computed by the nonnegative least squares 

method. Below I illustrate computing X’ for the example in Figure 5 of Section 3.2.1;  

. 

Then, I substitute  in the original equation to obtain consistent values . The matrix   

generated by the solution set  is  

 

I compare this value of  with the original value b. This process of checking the difference 

between estimated value and actual values is called the reverse substitution method (RS) in my 

dissertation. Consider the solution set for my example from Table 3: Ideally the report values are 

consistent if  and thus delta ( ) equals zero in , 

 

These δ values can be zero or nonzero; zero δ indicates that the reports are consistent, but 

nonzero δ values give us a warning of inconsistent reports. After generating δ values of the 

underdetermined linear system, the temporal data fusion system performs further analysis using 
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these δ values and the number-of-conflict-report(C) values to point out which reports have a 

higher potential to cause inconsistency (i.e. the nonzero δ value).  

 I use the following example to show how to use the δ values and the C values to point out 

which reports have the higher potential to cause inconsistency. If I manipulate the report values 

of R2 from 500 to 900 to introduce some inconsistency as shown in Table 4, Report R2 has 

shorter time duration but higher value of report compare with R1. This condition will be valid if 

one report partly overlies on the other report, but it will be conflicting if one report is subsumes 

the other.  

 

Table 4. Example of inconsistent report values 

Report ID 

(Ri) 
Disease Location From To 

Duration 

(year) 

Report Value 

(Vi) 

R1 pneumonia Pennsylvania 1900 1970 70 700 

R2 pneumonia Pennsylvania 1920 1970 50 900 

R3 pneumonia Pennsylvania 1940 1980 40 600 

R4 pneumonia Pennsylvania 1950 1990 40 700 

 

The new linear system is   

. 

And the value for each interval generated by nonnegative least squares method is 
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. 

The corresponding matrix   is  

 

 since the nonnegative least squares method cannot find a feasible solution for 

reported values b. Therefore the difference δ is  

. 

If we only consider the largest subset which contains all reports, some consistent reports may be 

punished by a nonzero δ. The reason is that the nonnegative least squares method can generate 

interval values, which satisfy most equalities, but cannot find a perfect solution set for all 

inconsistent equalities. Thus, I search through all subsets of reports from the largest subset 

(includes all reports) to the smallest subset (includes only one report). Some reports have 

nonzero δ values inside of larger subsets, but not inside of smaller subsets. By comparing the list 

of conflict report to non-conflict list of reports, I can find the exact list of reports that are in 

conflict with one specific report. For example, the large subset contains reports {R1, R2, R3} 

which has nonzero δ value. The smaller subsets contain reports {R1, R2} and {R2, R3} all with 
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zero δ value, but the other subset contains reports {R1, R3} with nonzero δ value. Therefore, I can 

deduce that inconsistency only exists in reports {R1, R3}. 

Using the δ vector I define the largest subset listed above as 

. 

By summing up the absolute value of  (s: subset ID) across all subsets I can get 

 

. 

 can be used to indicate the existence of inconsistency between reports because when the 

merged data is inconsistent, I will not be able to find identical values for each time interval. If the 

non-negative least squares method cannot find identical values for each time interval between 

reports, or there is no feasible solution, the merged data contain report values that conflict with 

others. The matrix  generated by solution set  cannot satisfy all linear equations in this 

underdetermined linear system, and this is reflected in the nonzero  when .  

In order to identify the existence of conflict between reports and the IDs of conflict 

reports, I consider both δ and the C values for each report of all subsets. In this example, I have 

 combinations of report subset for four reports. Each report has a delta 
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value  and a number-of-conflict-report ( ) in each subset. After calculation, there are only 

four subsets with nonzero δ shown in Table 5.  

 

Table 5. Subsets with nonzero delta 

Vector 
Subset 

Subset ID: 1 Subset ID: 2 Subset ID: 3 Subset ID: 6 

R1, R2, R3, R4 R1, R2, R3 R1, R2, R4 R1, R2 

     

 
    

     

 

The vector  represents the computed interval value for the subset s; the vector   is 

the report value for the subset s, and the difference vector . Any nonzero  

indicates that the report values are inconsistent in the subset. If the report has one subset 

containing inconsistent values, then I set the C value as one for this report such as in subset 1, the 

 and the . By going 

through all subsets with zero δ and nonzero δ, I list the conflicting condition for each report:  
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Table 6. Find conflict report ID 

Report ID potential conflict report list Non-Conflict report list Difference 

R1 R2, R3, R4 R3, R4 R2 

R2 R1, R3, R4 R3, R4 R1 

R3 R1, R2, R4 R1, R2, R4 

 
R4 R1, R2, R3 R1, R2, R3 

 

 

Take R1 as an example, there is a non-zero δ value in subset 1, therefore the potential conflict 

report list for R1 is R2, R3 and R4. However, other smaller subsets (i.e. Subset 4: R1, R3, R4; 

subset 7: R1, R3,… etc.) have zero δ values for R1. Therefore, R1 is not in conflict with these 

reports. After comparing the potential conflict report list with the non-conflict report list, I found 

that R1 is only in conflict with R2, but not in conflict with reports R3 and R4. The C value and the 

 value in each subset have a notable impact on indication of conflict report ID. The 

 represents the summation of the C value across all subsets. These  values, 

, and  for corresponding subsets are the only nonzero  values for all combination 

of subsets. In addition, I observe that the C value and nonzero  value only occur in subsets that 

contain R1 and R2. The  represents the C value for each report after 

excluding the conflict subsets caused by indirect conflict (i.e. in subset 2, R3 has non-zero  

value because it is inside the subset with real conflict reports R1 and R2). Thus, comparing all 

subsets can help users find the exact inconsistent reports. The values of C and δ provide 

information of the report consistency for each subset. The higher the value of C of a report 



 44 

indicates the higher the conflict is between this report with other reports. In this example, R1 and 

R2 have the highest potential for inconsistency, and they are actually contradicted in report values. 

Here I present another example to illustrate the C value. 

 

                            

Figure 7. Example of number-of-conflict-report 

 

The linear system for Figure 7 is  

. 

The nonnegative least squares method generated solution set, the corresponding report value, the 

 value, and the C value are given as  

,  , , and . 

In this case, both  and  have inconsistent report values with , which cause  to 

have the highest C value. Therefore, I expect the  value is higher for  because it has a higher 

C value (i.e. conflict with many other reports). The total number of conflict  indicates 

R1 

R2 R3 

time x1  x2  x3  
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which report causes problems inside the system. Therefore the nonzero C value can be used as an 

indicator of the occurrence of conflict, and its value represents the critical level of conflict. 

Figure 8 shows the C value accumulated across nonzero C value subsets. Subset 1 contains 

report R1, R2 and R3 with nonzero C value, Subset 2 contains nonzero C value with R1 and R2, 

and Subset 3 contains nonzero C value with R1 and R3. Therefore the summation of these C 

values across subsets is . The number of subsets with nonzero C value 

depends on the linear system. My evaluations of the C values inside the  vector indicate 

that it can accurately represent the reliability of these reports.  

 

 

Figure 8. Example of nonzero number-of-conflict-report subsets 

3.2.3 Reverse substitution method: data fusion 

In the previous section I showed the proposed RS method that can be used for inconsistency 

detection. In this section I will illustrate how the RS method can be used for efficient data fusion. 

0 
R1 

1 

R3 

Report ID 

Number-of-conflict-report 

Subset 
R2 
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Specifically, I will use generated solutions for characteristic linear system to estimate values 

from historical reports. The nonnegative least squares method iterates to reach an acceptable 

approximation or an optimal solution. Each iteration of the nonnegative least squares tries to 

minimize . The generated optimal solution set provides us the reference for data 

fusion. I use the same examples from previous sections to explain how to use the RS method for 

data fusion. Under consistent conditions, the example in Section 3.2.1 that report values are 700, 

500, 600, and 700 for R1, R2, R3, and R4. My proposed RS method first shows there is no 

inconsistency with these reports since the δ values of the corresponding characteristic linear 

system are zero. Second, the RS method suggests potential case values for each time intervals are 

200, 0, 0, 500, 100, and 100 by iterating the equation for optimize solution set where 

 

 

 

Figure 9. Example of data fusion and values for each time interval 
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The generated solution set provides users a general idea of possible value for each time interval. 

The estimated interval values sometimes are too arbitrary since some interval values are zero; 

however, the accuracy of the estimated values can be improved by increasing the number of 

reports or overlapping of the report structure. Under inconsistent conditions, the example in 

Section 3.2.2 that report values are 700, 900, 600, and 700, but the actual values are 700, 500, 

600, and 700 respectively. And the value for each interval generated by nonnegative least 

squares method is 

. 

The corresponding matrix   is 

 

Figure 10 shows the new values of reports and time intervals. 

 

Figure 10. Example of inconsistent reports and interval values 
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 since the nonnegative least squares method cannot find a feasible solution for 

report value b. Therefore the difference δ is  

. 

In this example, the R1 and R2 have equal probability to cause inconsistency according to the  δ 

matrix. I randomly select R1 as the report that has erroneous and adjust its report value to 700. 

Therefore, the report set will be adjusted as: 

. 

By decreasing the degree of freedom, or in other words, increasing the number of reports, I can 

find report sets with increased accuracy.   

3.3 STUDY 1 – INCONSISTENCY DETECTION IN REAL DATA 

I implement the proposed approach and apply it to both simulated and real data sets in study 1. In 

the simulation, I generate the actual inconsistent data references and the number of reports 

randomly. In each simulation run, the number of actual inconsistent data references is randomly 

chosen within the range of the total data references. The number of data references and the 

number of reports for each data reference are also randomly generated between 0 and 100. The 

result of this simulation in Figure 11 shows that the number of inconsistent reports detected by 
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the proposed RS method (indicated with x) and the number of actual inconsistent reports 

(indicated with circles) matches under different configurations of conflicts/reports/data 

references. We observe that, my proposed RS method was able to detect accurately the 

occurrences of data inconsistency.   

 

Figure 11. Simulation result of inconsistency detection 

 

For real data set, I have tested my algorithm on the Tycho database. The integrated Tycho 

repository, an integrated epidemiological data warehouse that records diseases information from 

heterogeneous data sources, has 1,826,583 reports. The Tycho database describes the 

epidemiology reports for more than 100 years from 01-Jan-1895 to 03-Nov-2001. This data is 

collected in the School of Public Health at the University of Pittsburgh. Each disease was 

described by multiple reports of different time durations (i.e. weeks). Therefore I have about 

9,416 data references in which each data reference contains information of a given disease in a 

given location reported at different times. I perform the simulation with Matlab environment 

version 7.12.0.635 (R2011a) 32-bit.  
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The Tycho database I worked with contains nineteen diseases with different outcomes (a 

case or a death). Each row in the disease-reference-table consists of disease ID, disease name, 

empty column, city, state, start number of the data reference report, end number of the data 

reference report, and number of data reference report as shown in Figure 12.  Take row 1 as an 

example; it shows data reference ID#1, which is a case of brucellosis in New York City, NY. 

The reports about this disease start from row 1 to row 14 with 14 reports in data-number-table. 

 

 

Figure 12. Tycho disease reference table 

 

The data-number-table contains reports of each disease at various times in a specific location. It 

contains disease ID, start date of the report, end date of the report, number of cases, date when 

the report was published and sequence number as shown in Figure 13. For example, row 1 shows 

the first report of data reference ID#1 starts from datestr(718097)=30-Jan-1966 to 

datestr(718103)=05-Feb-1966 with one case and the date of publishing datestr(718109)=11-Feb-

1966. 
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Figure 13. Tycho data reference report table 

 

Although this repository has about 1.8 million reports after initial data integrating and 

about 9,000 data references, I only consider 4836 data references, whose time intervals overlap 

or subsume each other. After implementing the proposed RS approach I detect fifty-seven 

conflicts, and all of them are confirmed with inconsistent report values.   

3.4 STUDY 2 – INCONSISTENCY DETECTION IN SIMULATED DATA 

In this dissertation, I consider several simulations in the study 2: 

 Simulation 1: The effect of the number of conflicting reports on the degree of inconsistency 

In order to investigate the relationships between the C values, the δ values, and reported values, I 

use a simple example to illustrate inconsistency in a controlled environment. Gaussian 

distribution is widely used for simulations of error distribution; however, it cannot give us 
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enough error to simulate inconsistency for the experiment (i.e. most runs have no inconsistency 

or have partially overlapping reports). Therefore, I manipulate reported values from the bottom 

of a triangle subsumption report hierarchy (Figure 14).  I swap reports in order to create 

inconsistency, or to increase the degree of inconsistency. The degree of inconsistency can be 

defined by the number of conflicting reports, the overlap of reported time intervals, or the 

differences between reported values. In this simulation I only use the number of conflicting 

reports as a measure of inconsistency degree. The inconsistency is due to swapping report values 

making a report of a longer length have a lower reported value compared to a value of a 

subsumed report. The triangle structure forms a total subsumption hierarchy, in which shorter 

reports are subsumed by longer reports. Figure 14 shows five reports in the subsumption 

hierarchy. 

 

 

 

 

 

 

Figure 14. Example of 5 reports 

 

At the beginning, we do not have any conflicts in the subsumtion hierarchy. At each 

swap, I exchange the report value from bottom-up to inject inconsistency in this data reference 

since reports that have longer length should have greater report value compared with shorter 

reports under total subsuming condition. Take swap 1 as an example. The V1 changes to 4 from 5 

R1 

R2 

R3 

R4 

R5 

time 
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and the V2 changes to 5 from 4 at the same time. Obviously these reported values are going to 

cause conflict since the length of R1 is larger than R2. Table 7 shows these report lengths, and 

how these report values are going to exchange in each swap.   

 

Table 7. Example of pyramids with 5 reports 

Report 

ID 

Report Length 

(1: shortest, 5: longest) 

Report Value 

(1: smallest, 5: largest) 

Original Swap 1 Swap 2 Swap 3 Swap 4 

R1 5 5 4 3 2 1 

R2 4 4 5 4 3 2 

R3 3 3 3 5 4 3 

R4 2 2 2 2 5 4 

R5 1 1 1 1 1 5 

 

 

Figure 15. Simulation results of 5 reports 

 

Figure 15 shows the δ value and the C value of every report in each swap. In the default 

configuration, the δ value and the C value for each report are all zero since reports are consistent. 
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At the first swap, I have nonzero δ value and nonzero C value for R1 and R2, which indicate that 

there is inconsistency between the reported values since I exchange the reported values of R1 and 

R2. For the second swap, the δ value for R1, R2, and R3 are nonzero, and so is the C value for 

these three reports. Continuing to swap the rest of the reports will generate more conflicting 

reports. Figure 15 shows that the C value increases when I exchange more reported values. The δ 

value for each report increases as the C value increases at each swap, but the δ value does not 

always increase proportionally with higher degree of inconsistency. Therefore, the δ value 

indicates the existence of inconsistency, but cannot represent the degree of the conflict. 

In Figure 16, the three-dimensional figure of frequency of the C value and the δ value 

shows an implicit trend that the δ value increases proportionally when the C value increases. The 

δ value is zero when the C value is zero. Therefore, the existence of inconsistency can be 

expected with nonzero C and nonzero δ value.  

 

 

Figure 16. Relation between number of conflicting reports and delta value 
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 Simulation 2: The effect of the magnitude of value difference between conflicting reports on 

the degree of inconsistency. 

Here is another simulation to explain the effect of the δ value and the magnitude of value 

difference between conflicting reports. In other words, this simulation uses the magnitude of 

value difference between conflicting reports as a measure of conflict degree. For two conflicting 

reports, I denote the reported values as Vi (i: report ID) and the difference between reported 

values as Vi1i2 (i1 ≠ i2) . The characteristic linear system of these two reports is  

. 

I increase V1 by 5 units and also decrease V2  by 5 units at each turn to increase the magnitude of 

difference between reports R1 and R2 under conflict conditions in order to investigate whether 

the magnitude of reported value difference impacts the δ value. Figure 17 plots the magnitude of 

difference of report value versus summation of δ values across reports in each turn. Figure 17 

shows the summation of the δ values is the same with the magnitude difference. The δ value 

increases when the magnitude of difference increases. Under conflict conditions, meaning there 

are no feasible solutions of linear equations, the solution set generated by the nonnegative least 

squares method aims to satisfy as many equations as possible. For example, when there are two 

inconsistent equations in the characteristic linear system, the solution set generated by 

nonnegative least squares method can satisfy one of the linear equations. Thus, the δ value 

increases when the difference between values of these two reports increases. If there is any 

conflict, then the δ value will not be zero and its value is proportional to the magnitude of 

difference between reports. Therefore, the nonzero δ value can be used as an indicator of the 

occurrence of inconsistency and the degree of inconsistency in this simulation.  
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 Summarizing the simulations that I have described in this section, the better way to show 

an inconsistency degree is combining the δ value and the C value. The nonzero δ value and C 

value show that reports are inconsistent and identify these inconsistent report IDs. In addition, 

the  δ value increases when the number of conflicting reports increases, or the magnitude of 

difference between reported values increases. As a result, this proposed approach can work as an 

inconsistency detector and as an indicator to assist users with early awareness of data 

inconsistency before performing data fusion.  

 

 

Figure 17. Magnitude difference and delta with two reports 
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4.0  IMPLEMENTATION AND EVALUATION OF TEMPORAL FUSION  

4.1 BACKGROUND OF THE CONFLICT DEGREE METHOD  

The inconsistency detection can assess the reliability of data, and the data fusion procedure can 

further improve the quality and utility of data.  I am going to elaborate and compare my proposed 

data fusion strategy with a well-known optimal conflict degree method in the following sections.   

 In my simulations, I compare the difference between the actual value and the estimated 

value generated by the conflict degree (CD) method and my reverse substitution (RS) method 

from reports from heterogeneous resources. The concept of the CD method is proposed by 

(Zadorozhny & Hsu, 2011), where the authors use the CD method to estimate aggregate values 

from redundant (overlapping) reports. Each report is represented as a tuple/triple (From, To, 

Value) or abbreviated as (F, T, V) which stands for report start time (From),  report end time 

(To), and the number of events reported within that time interval (Value). The value of CD 

between two historical tuples r1 and r2, where  and , is 

computed by the equation below 

. 

The relative contribution (RC) in the equation is defined as 
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. 

And the relative overlap (RO) is  

, where  and  

The , which represents the intersection of time intervals 

of  r1 and r2. In a similar way, the , which represents the 

total time range of these two tuples. The length of time interval  , or the number of time 

unit covered by , can be computed as . The value of CD varies between 0 and 1 

where 0 means no overlapping and 1 means total overlapping with the same report values. The 

higher the CD, the more similar the report values are or the higher time overlap is. A 

disadvantage of the CD method is that we cannot differentiate whether the high CD value is a 

result of the high relative contribution or high relative overlap. In addition, we do not know 

whether these reported values are trustworthy. The example of CD values for the different 

configurations are shown in Figure 18 and Table 8. 

 

 

Figure 18. Scenarios of CD 
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Table 8. Corresponding RO, RC, and CD for different report structure 

CD Scenarios in Figure 18. (a) (b) (c) 

 
1 4 10 

 
10 10 10 

RO 0.1 0.4 1 

R1=100, R2=100 
RC 1 1 1 

CD 0.1 0.4 1 

R1=100, R2=10 
RC 0.18 0.18 0.18 

CD 0.0478 0.24456 1 

 

Scenario (a) shows the reports R1 and R2 with no overlap, scenario (b) shows partial 

overlap, and scenario (c) shows total subsumption. As we observe from Table 8, both high 

overlap and small value difference between reports will cause high CD value. However, this 

method cannot ascertain that this high CD value indicates the existence of inconsistency, or that 

the smaller value difference really has higher probability to cause conflict. 

There is an optimal CD threshold for each configuration that minimizes the estimation 

error. The authors observed that there is an optimal CD threshold associated with each scenario. 

The optimal CD threshold for each group of conflicting reports that would minimize the 

estimation error cannot be defined without the knowledge of actual time unit numbers. This pre-

generated optimal CD threshold differs under various event densities, report numbers, and report 

densities. Therefore, this CD algorithm is sensitive to prior knowledge of actual time unit 

numbers.  

I compare the performance of the CD method and the RS method of data fusion under 

consistent scenario and also explored the effect of inconsistency. The inconsistency condition 



 60 

was reflected in three error probability settings: 25%, 50%, and 95% with 100 runs of simulation. 

These conditions where simulated by swapping have reported values to create inconsistency. In 

each swap, I exchange the report values between shortest and longest of overlapping reports. 

Therefore, each swap is able to create inconsistency. The closer the report time stamps, the 

higher the probability to have overlapping or subsumption between reports, which increases the 

likelihood of inconsistency (i.e. reports for the same events at different time intervals with 

contradicting values). The maximum number of subsumptions for each report structure is n(n-

1)/2 (n: report number).  Finding a way to introduce more inconsistency and to increase the 

degree of inconsistency will be discussed in the future study section.  

The swap probability distribution also represents the degree of inaccuracy of the real 

data. Inaccurate report values are difficult to detect, and make it difficult to recover the original 

interval values. This causes problems in my proposed inconsistency detection system since it 

may be unaware of the inaccurate reports. For example, report R1 is subsumed by R2, and values 

are 500 and 1000 respectively. The system cannot detect the occurrence of inaccuracy if the 

report values of R1 and R2 have been accidentally recorded as 50 and 100. The modified report 

values will not cause any inconsistency since the shorter report still has smaller value even 

through these report values are inaccurate. 

4.2 EXPERIMENT SETUP AND CONSISTENCY CONDITIONS  

I have two different conditions for the performance comparison: the simulations in Section 4.2 

are under consistency condition and the simulations in Section 4.3 are under inconsistency 

condition. In my simulation, I varied the event density, report number, report duration of 20 and 
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100, and the total number of time units of 150 and 1000. In reality, we have no information about 

data distribution, optimal CD threshold, and the actual event density for each interval in advance. 

The only available information in the historical data center is the start time, end time, and a value 

of each report. Therefore, the goal is to find a method for each configuration to minimize the 

misestimating error with little or no knowledge of actual number of events. The performance 

measurement compares the estimation error, which is the difference between the summation of 

the actual value and the summation of the estimated value of the event values across each 

interval. I use the relative distance for performance measurement, and it is defined as   

 

The configurations of the experiment are described in Table 9. I use normal distribution to 

configure the experiment. The numbers in the table for the event density, report number, and 

report duration are expected values of corresponding normal distribution. In each case we set the 

deviation of 5. Take the first row as an example, the expected number of reports is 20, and the 

expected duration for each report is 20 time units. Each time unit contains a number of events. 

The expected density of events in each time unit is 20 units, and there are a total number of time 

units 1000. The reports aggregated from events will be allocated sparsely on the time line since 

we expect about 20 short reports over 1000 time units. Figure 19 and Figure 20 show simulation 

results when the total number of time units is 1000 and 150 respectively. The smaller the RD, the 

better the performance is because the difference between estimated and actual values is smaller. 

For the case of consistent reports, the measurement of performance is mainly focused on RD 

because the user does not need to worry about inconsistency. 
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Table 9. Configuration of inconsistency simulation 

Event 
densi

ty  

Report 
number 

Report 
duration 

Total 
number 
of time 
units  

Description 

20 20 20 1000 Low event density, few short report, and sparse overlap 

20 20 100 1000 Low event density, few long report, and sparse overlap 

20 100 20 1000 Low event density, many short report, and sparse overlap 

20 100 100 1000 Low event density, many long report, and sparse overlap 

100 20 20 150 High event density, few short report, and dense overlap 

100 20 100 150 High event density, few long report, and dense overlap 

100 100 20 150 High event density, many short report, and dense overlap 

100 100 100 150 High event density, many long report, and dense overlap 
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Figure 19. Relative distance of CD and RS for 1000 time units 
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Figure 20. Relative distance of CD and RS for 150 time units 

 

Both figures show the performance evaluation of RD in percentile. Figure 19 shows the 

performance of the CD and the RS with a large total number of time units of 1000. Generally in 

all cases in this figure, the CD method has lower RD except for the cases [20, 100, 100] and 

[100, 100, 100]. Figure 20 shows the same configurations with the total number of time units of 

150. The performances of the CD and the RS are slightly different in this situation. For all cases 

of report number 20, the CD performs equally or better than the RS. Only for the cases [20, 20, 

20] and [100, 20, 20] are the values of RD in Figure 20 significantly lower than those in Figure 

19. For all cases with report number 100, the RD of the RS is generally lower in Figure 20. 

There are fewer intervals with larger number of time units, while other configuration 

settings remain the same. In other words, the sparse report distribution will reduce the report 

overlapping. Therefore, I assume the performance for both methods will be better in this case, 

especially for the RS since higher overlapping may increase the number of unknown variables in 
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the underdetermined linear system. However, we observe that the RD is lower for both the CD 

and the RS method for 150 time units when compared with the case of 1000 time units. 

Comparing the CD and RS for different number time units gives us the same observation. For 

my proposed RS approach, I assume that decreasing the number of time units will increase the 

overlapping of events, which provides more information to determine the values from the 

characteristic linear system.  

Moreover, for all cases with expected report number of 100, the RS outperforms the CD. 

The values of RD of the CD under different conditions with the same report number are similar, 

but the values of  RD for the RS method is significantly lower for expected total number of time 

units of 150 and expected report number of 100. In this simulation, I observe that increasing the 

number of reports leads to performance improvements of RS. The effect of report number may 

be explained by the fact that more reports can provide more information for the underdetermined 

linear system, and the degree of freedom of the system is decreased. Therefore the generated 

solution set tend to decrease from finitely many solutions to one unique solution. In summary, 

for both methods, as the number of time units decreases, the RD decreases. Increasing the report 

number will cause the RS method to outperform the CD method. Therefore, the RS is a better 

option for data fusion for large number of reports with more overlapping and more 

subsumptions.  

4.3 EFFECT OF INCONSISTENCY    

I generate inconsistency between reports by swapping values of reports. If the reports overlap 

considerably, then there will be a higher chance of inconsistency produced by this method. For 
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consistent reports, the δ values and the C values will be zero across all configurations. For 

inconsistent reports, my proposed RS method will produce nonzero δ value, which is the 

indicator of inconsistency. The concept of the degree of inconsistency was demonstrated with the 

process of swapping in the triangle subsumption hierarchy as explained in Study 2. At each 

swap, I exchange the value of shortest reports with the values of longest reports to generate 

inconsistency. The inconsistency increases as the number-of-swap increases. In this simulation, I 

keep the same report structure (i.e. the number, duration, and allocation of reports) in each run, 

but with different probability of swapping overlapping reports. I use Normal distribution to 

configure the probability of swapping. As previously, the inconsistency condition is reflected in 

three error probability settings: 25%, 50%, and 95% with 100 runs of simulation. For example, 

the scenario of 25% probability of inconsistency means that 25% of the 100 runs will have their 

reports swapped. The percentiles of RD for both CD and RS with 150 time units comparing 

configurations of 25%, 50%, and 95% probability of swap are shown in Figure 21 and Figure 22.  

These figures show similar aspects relating to the probability of swap. The values of RD 

are higher in these figures than in case of the consistency conditions. The RD values of RS are 

higher than the RD values of CD when the expected report number is 20 across the swap 

probabilities. The RS performs better than the CD for expected report number of 100 for swap 

probability 25% and 95%. At swap probability of 50%, the performance is only slightly better. 

The difference between the RS and the CD increases as the swap probability increases. In case of 

expected report number of 100, the RS performs better than the CD for about 50% of the 

simulation runs at swap probability 95%. The RS method and the CD method perform similarly 

at different swap probabilities for 150 time units.  
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Figure 21. Comparison with 25% and 95% probability of swap 
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Figure 22. Comparison with 50% and 95% probability of swap 
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Figure 23. Total delta for 25%, 50%, and 100% probability of swap 

 

To verify if the performance difference is caused by different swap probabilities, I 

compare the total δ value (i.e. the summation of the δ value across the reports for each run) for 

each number-of-swap condition. As seen in Figure 23 I found that the total δ value is 

proportional to the swap probability and its percentile. The nonzero δ value can be used as an 

indicator for the existence of inconsistency. Its value is also related to many other variables such 

as the magnitude of difference between reported values and the-number-of-inconsistent-reports 

(C). However, the total δ value still represents the degree of inconsistency (the total δ value is 

nonzero if the report values are inconsistent within a run); and the higher percentile of nonzero 

total δ value corresponds to the higher the number of runs that are inconsistent. According to 

Figure 23, the total δ value has about 100% zero values at swap probability 25%, about 60% 

nonzero values at swap probability 50%, and about 90% nonzero values at swap probability 

95%. The RS method also has a significant improvement compared with the CD method as the 
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swap probability increases. Therefore, the degree of inconsistency is represented as a function of 

the probability of number-of-swap. 

In Figure 24 I compare the performance of the CD method and the RS method across 

number-of-swap conditions. We observe, that the RD between these two methods increases when 

the probability of number-of-swap increases.  
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(b) 

Figure 24. Comparison of CD and RS in each probability of swap conditions 

 

In each run, I change the CD from 0 to 1 with steps of 0.01. The optimal conflict degree 

(OCD) is the CD threshold that has the minimum estimation error. The OCD is generated based 

on the pre-generated estimated event distribution at each run. The CD value between reports in 

each run changes along with the probability of the number of swaps. This is because RC of the 

CD is a function of the probability of the number of swap. Therefore, CD, which is a function of 

RC will be affected by this probability. Thus, the OCD is not a stable value at each run even 

though the report structure is the same. The change of OCD across the probability of the number-

of-swap is shown in Figure 25. 
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In this simulation, I found that when the probability of swap increases, the total δ value 

also increases. The RS method can identify this inconsistency and perform well in data fusion. 

As the probability of the swap increases, the performance of the RS method improves, and the 

performance difference between the RS method and the CD method also increases in favor of 

RS.        
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Figure 25. OCD distribution for all inconsistent condition 

4.4 ACCURACY AND CONSISTENCY  

Assuming every report refers to the same data reference, my proposed algorithm formalizes the 

historical data as a mathematical model of a characteristic linear system and performs 

consistency checking and data fusion of data sets in an integrated repository. The redundant 

reports may produce issues of inaccuracy and inconsistency in an integrated database. An 

accurate report reflects correct reported value, and a consistent report does not conflict with 
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overlapping reports. Here are some possible cases of redundant reports for inconsistency 

detection:  

(1) Accurate and consistent: δ = 0  of the linear system and these reports will be described 

as consistent. 

(2) Inaccurate and consistent: δ = 0,  and reports will be described as consistent. 

(3) Inaccurate and inconsistent: δ ≠ 0, and reports will be described as inconsistent. 

(4) Accurate and inconsistent: δ = 0, this not possible under my model. 

For case (2), the integrated database includes inaccurate report values. As a result, it is 

hard to detect this inaccuracy when there are recording errors and these report values do not 

contradict each other (For example, the miss-recorded report values for R1 and R2 are 100 and 50 

respectively even though the actual values are 1000 and 500. This will not cause any 

inconsistency even when R2 is subsumed by R1).   

In case (3), my proposed method can detect the occurrence of inconsistency and perform 

data fusion with the estimated interval values close to the ground truth (i.e., decreasing the level 

of inaccuracy). Other data fusion methods used in sensor network such as averaging, Bayesian, 

or Dempster-Shafer are focused on the consensus of sensor data to achieve the advantages of 

multiple sensors for reducing data uncertainty and unreliability. However, these methods cannot 

easily handle the case (3), or even to find out which report causes the inconsistency. A single 

sensor or many sensors that only include one type of sensor may be insufficient or ambiguous in 

many applications such as user appearance detection, map merging, and surveillance monitoring. 

As a result, the data from multiple sensors, or the information combining different types of 

sensors becomes more important since they can be integrated and provide more concrete and 

comprehensive information. For example, combining the thermal, acoustic, and oxygen sensors 
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to detect a living object’s existence will be more accurate and reliable as opposed to using only a 

camera.  

The taxonomy of inconsistency detection for different subsumption and different 

inaccuracy conditions is shown in Table 10. 

 

Table 10. Inaccuracy and subsumption condition 

 
Inaccuracy condition 

No inaccuracy Low inaccuracy High inaccuracy 

Subsumption 

condition 

Random No inconsistency Low inconsistency Low inconsistency 

Low 

subsumption  
No inconsistency Low inconsistency Low inconsistency 

High 

subsumption  
No inconsistency Low inconsistency High inconsistency 

 

Under no inaccuracy conditions, I assume that the RS method will outperform the CD method if 

the number of reports in the linear system is large enough to generate a correct solution set. For 

low inaccuracy, if the report structure is sparse, then the probability of being diagnosed as 

inconsistency using the proposed RS method may be very low since the inaccuracy is hard to 

identify when the overlapping is scarce. Therefore, the low inaccuracy is hard to detect, 

especially under random or low subsumption conditions. For the case of high inaccuracy, it 

would problematic to detect which report is correct. Therefore, when the report structure has low 

subsumption, only some inaccurate overlapping reports could be found and diagnosed as low 

inconsistency. The high subsumption condition with highly inaccurate reports will lead to larger 

δ values. I assume that the proposed RS method will perform better under no inaccuracy 

conditions as well as high inaccuracy conditions when there are numerous overlapping reports.  
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5.0  SYSTEM DESIGN – TEMPORAL SPATIAL INFORMATION FUSION  

5.1 GENERAL ARCHITECTURE OVERVIEW 

In order to further involve spatial dimension in the process of data fusion, I adopt a scenario of 

an urban search and rescue task using mobile robots.  I extend my information fusion strategy for 

the task of target detection at specific locations and time intervals. The search targets can be 

either static or dynamic within the environment. The issue of moving target detection in the robot 

search and rescue task is a major focus of the environmental knowledge. In this dissertation, I 

address the RS method that includes temporal and spatial fusion for inconsistent report detection 

and target detection. I implement this approach with the simulated data sets of sensors on 

ground-moving robots. For the inconsistent report detection, the overlapping routes with a large 

group of robots will mislead the result since targets may be double counted. For the target 

projection, knowing the accurate number of targets at each location and the trajectories of 

moving targets can help systems to make decisions with prior knowledge of the environment and 

using related data mining techniques. My proposed approach RS can be interpreted in terms of 

multisensory integration and data fusion. 

The problems of targets observation are focused on targets’ local information that 

includes the location, number, appearance time, and trajectory of targets. One application of the 

moving target observation is utilizing robots to perform the search and rescue task to find targets 
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(victims) in an extremely harsh environment that is dangerous for humans. Robots and targets 

may be static or dynamic; the moving target will increase the task difficulty significantly. The 

techniques used to detect local information of targets can be categorized into three major 

methods. The first type of method uses sensors mounted on robots such as camera, laser, or GPS, 

and users can only identify robots’ locations by the sensor feedback. The second type uses 

multiple static sensors spread throughout the environment and these sensors are located at 

specific locations, such as the entrances of corridor. The last type uses robots moving around 

following the targets in the environment. The report type of local information from multiple 

sensors or multiple types of sensors can be homogeneous or heterogeneous. The issue of data 

duplication across reports is very common since designers often use redundant sensors with 

location overlap or time overlap to achieve the benefits of data reliability, accuracy, 

complementary, timeliness, and cost reduction of the information (Luo & Kay, 1989).  

The problem of two-dimensional fusion becomes more complex if we consider issues of 

reports overlapping and dynamic target moving together. In Section 3.0 of my previous temporal 

fusion studies, the proposed RS method models report structure using the characteristic linear 

system, and generates the solution set using the nonnegative least squares method. The RS 

method can be used for temporal data conflict detection and data fusion. The strategy of the RS 

method is to map data from heterogeneous sources into a linear system, and to find potential 

inconsistent reports based on the fact that the number of data references in each time interval 

should be identical across all data sources. To detect potential data inconsistency for data sets 

along more than one-dimension, my approach works for the multidimensional inconsistency 

detection when the user tackles one-dimension of inconsistency at a time, and progressively 

extends to all the other dimensions.  
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I use the simulated robot laser log data to test the RS method of target observations and 

temporal and spatial fusion. The purposes are to provide greater scalability from one-dimension 

(temporal fusion) to two-dimensions (temporal fusion and spatial fusion), to provide better 

accuracy in inconsistency detection, and to provide target observation in each location for a 

specific time. The processes for the two-dimensional fusion studies are to use the temporal 

fusion to estimate the number of targets per time interval for a given location (according to the 

laser data of robots, location can be defined by a group of points) and to use the spatial fusion to 

estimate the number of targets per location (group of points) for a given time. Finding the 

potential temporal and spatial conflicts requires at least two linear system models – one focused 

on temporal fusion that generates the solution set (i.e. estimated value) for time intervals, and 

another focused on spatial fusion that generates the solution set for spatial intervals. The 

sequence of this two-dimensional fusion has two steps. First, it generates estimated values for 

each time interval of the characteristic linear system. These values can be used in another 

characteristic linear system. Second, it generates estimated values for each spatial interval. The 

tasks of conflict detection and target number identification at a specific time and location can be 

accomplished after these two steps. Given the estimated values generated by multiple linear 

systems for each time and location, I can acquire the local information of targets, and describe 

the target moving trajectories. 

For different datasets, I observe four basic patterns that provide us with more information 

to determine the functional dependency of data. From the data references (reports) recorded in 

each table, I can differentiate between these four patterns.   

(1) Static target, static robot 
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Table 11. Static target, static robot 

Location Time_From Time_To Target_Num 

L1 T1 T3 V1 

L1 T2 T4 V1 

 

Table 11 shows a log example of one robot. The first row indicates that there is V1 number of 

targets at location L1 from time T1 to time T3. Reports from each robot show activities at the 

fixed locations during different times and record the same numbers of targets. These log data of 

the same locations refer to the static robots, and the unchanged number of targets in a specific 

location refers to static targets. Therefore, I can use locations or robot IDs to determine the 

number of targets. The functional dependency for this condition is 

 

The minimum number of total targets denoted as x   

,  

where the time i ranges between 1 to m and space j ranges from 1 to n. The number of targets at a 

given time i and location j is denoted as . 

(2) Static target, moving robot 

 

Table 12. Static target, moving robot 

Location Time_From Time_To Target_Num 

L1 T1 T3 V1 

L2 T1 T3 V2 

L1 T2 T4 V1 

L2 T2 T4 V2 
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If I release the constraint of robots’ moving ability, reports from each robot will contain 

information about different locations, but the number of targets will remain unchanged for each 

location at different times. The functional dependency is 

 

The equation for condition (2) is  

,  

where  represents the estimated value of the RS method. 

(2) Moving target, static robot 

 

Table 13. Moving target, static robot 

Location Time_From Time_To Target_Num 

L1 T1 T3 V1 

L1 T2 T4 V1' 

 

Reports contain tuples of the same location, but different number of targets at different times. In 

this condition, I rely on collaborative data from different robots to achieve general information of 

the whole environment. Each robot contains data in a specific location, but with different number 

of targets at different times. The functional dependency is  

 

The equation for condition (3) is  

. 
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(3) Moving target, moving robot 

 

Table 14. Moving target, moving robot 

Location Time_From Time_To Target_Num 

L1 T1 T3 V1 

L2 T1 T3 V2 

L1 T2 T4 V1' 
L2 T2 T4 V2' 

 

There are different numbers of targets for the same location at different times. I assume that 

targets and robots are moving at a dynamic speed and are more coordinated. The functional 

dependency is 

 

The equation for condition (4) is  

. 

From these characteristic patterns of data in these aggregated tables, researchers can (1) verify 

the moving accessibility of the targets and the robots (static or dynamic); and (2) determine the 

number of targets at a given time and location with these four dependency functions. Calculation 

of the number of targets from these equations will be introduced in detail in the following 

section. 
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5.2 INFORMATION FUSION TAXONOMY 

In the previous section I identified the four patterns of the functional dependency of data sets for 

the search and rescue task. In this section I will elaborate on which fusion method we should use 

under different circumstances. Definitions of fusion strategies can be specified for time and 

space as follows: 

(A) Temporal fusion: to find the number of targets per time interval per location;  

(B) Spatial fusion: to find the number of targets per location per time interval. 

The sequences of creating the underdetermined linear system for temporal or spatial fusion and 

the analysis for these four patterns may be different. From the four cases above, the functional 

dependencies are specified as follows: 

(1) Static targets: . The locations can be used to 

determine target numbers since the targets are static. The number of targets at each location 

should be unchanged at various times. 

(2) Static robots: . The time can be used 

to determine target locations and to determine target numbers. Targets are moving randomly 

inside the environment, but the recorded logs provide only partial information about these targets 

since the number of robots or sensors are not enough to cover the entire environment. For 

example, the information about minimum number of targets at a given time or location is 

incomplete and the logs are insufficient for target number determination in every location at a 

specific time. However, the time factor is usually related to the properties of space, i.e. the 

number of targets at a specific time and location is unique. Therefore, knowing the minimum 

number of total targets across all locations at a given time provides the researchers with a general 
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overview of the data properties (e.g. the minimum target number), accessibility of robot and 

target (e.g. static or dynamic), and the sequence of performing multidimensional data fusion (e.g. 

perform temporal or spatial fusion first).  

 Integrated information from multiple reports of different robots provides users the data of 

interest with better coverage compared with single data source. Figure 26 shows which of the 

data fusion should be used under various conditions. For example, if we consider the case that (1) 

there are enough sensors or robots so all targets can be observed across all the areas, and (2) data 

about recorded locations and times may be redundant (time overlapping), the temporal fusion 

and spatial fusion should be performed sequentially. The type of data fusion for various 

conditions depends on the factors in Figure 26 (where TF denotes temporal fusion, SF denotes 

spatial fusion, and X denotes that neither TF nor SF will improve target number estimation since 

there is no overlapping reports).  

 

Figure 26. Target(victim) detection categories of temporal and spatial fusion 
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Researchers can also consider some basic constraints listed below to decrease the degree 

of freedom on the linear system in order to have better accuracy of the estimated number: 

(a) All targets can be observed: the summation of total number of targets across all 

locations at any time unit is a fixed value. This condition provides the characteristic linear 

system with more information (i.e. decrease the degree of freedom by adding one extra equation 

restricting the total number of targets), and then computes the solution set with better accuracy. 

However, this constraint may be not satisfied in real life.  

(b) Total number of target for each location (cell) at time Tx+1 ≤ summation of number of 

target of each cell’s neighbor cells at Tx: e.g. Total number of targets for cell C1 at T2 ≤ 

summation of total target of all cells C2, C4, C5 around C1 at T1. This constraint ensures the 

number of targets in each report is a reasonable value.  

5.3 SPATIAL INFORMATION FUSION SIMULATION  

A key application of my proposed RS method is in two different situations: using the temporal 

data fusion to track the number of dynamic targets changing their positions across time durations, 

as well as using the spatial data fusion to monitor the number and allocation of static targets in a 

specific area. In order to further investigate spatial dimension in the process of data fusion, I use 

the scenario of search and rescue task using mobile robots. I extend my information fusion 

strategy to the problem of target detection at specific locations and time intervals. The occupancy 

status of each space unit of the environment is represented as an occupancy grid (Elfes, 1989; 

Konolige, 1997). The targets can be either static or dynamic in the environment. I then describe 

my current effort in applying the proposed approach through the simulation of the data sets of 
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sensors on ground-moving robots searching for static targets to the problem of spatial fusion. 

Robots exploration is problematic with overlapping routes with a large group of robots. Some 

targets may be double counted and mislead the result. The following simulations illustrate the 

strategies underlying my approach:  

 Simulation 1: The timing of spatial fusion 

The time to performing data fusion is one parameter of the spatial fusion simulation because it 

may important for the accuracy and computation time. In Figure 27 I take a time series with 10 

time units as an example; the number of space reports is accumulating as the number of time unit 

increases. As a result, there has been only one space report at T1, but two reports at T2 since more 

areas are explored by the moving robots. I assume the accuracy will increase as the time unit 

increases because the number of space reports is also increasing; however, the delay may 

increase as well. In that context, I have two fusion timings in the figure below referred to as 

fusion points. Under fusion point 1, I perform spatial fusion at each time unit, under fusion point 

2 I perform spatial fusion at each 2 time units. 

 

 

Figure 27. Fusion point 
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The functional dependency of the scenario of static target and dynamic robot are 

formalized as . The locations can be used to determine target 

numbers. Targets in each cell are immobilized at their locations. Robots move around the 

environment and generate the space reports. The space reports contain the log of robot reports 

including the robot location, the target location and the number of targets. Thus, I can use the 

spatial fusion to determine the number of targets in each location. In the following simulation of 

spatial fusion, the number of time units is 300, and the number of space reports is increasing one 

as at each time unit. The number of space reports varies from only one report at T1 to three 

hundred reports at T300 to simulate the robots continuous exploring of the environment. The 

fusion point configurations are: at each time unit, at each 10 time unit, and at each 100 time unit, 

so there will be 300, 30, and 3 data fusion points correspondingly. The ground truth of the total 

number of targets in the environment at each time unit (i.e. number of events) aggregates the 

values from detected space units. The size of the ground truth table is 100 (space unit) * 300 

(time unit).  
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Figure 28. The RD of the RS method and the CD method for 300 time units 

 

Figure 28 shows the average RD across simulation iterations at each time unit. The RD 

decreases when the time increases for both the CD method and the RS method. The RDs of the 

CD method and the RS method drop significantly at the beginning before T10 and then reach a 

saturation point. The RD of the RS method has minor slope change beyond T10 and stays 

invariant after T160. The saturation point of T10 shows a more efficient way to reach a high degree 

of accuracy with minimum number of reports equal to the total number of the space units. The 

performance graph with fusion point at every 10 time units and at every 100 time units is shown 

in Figure 29. 
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Figure 29. Avg. RD for fusion point at 10TU (left) and 100TU (right)  

 

The fusion point at every 10 time units has similar performance with fusion point at every 

time unit; moreover, the fusion point at every 100 time units has sharper slope and lower RD. 

The average RDs in these fusion points are lower than the RD at each time unit since there are 

more space reports in the characteristic linear system; therefore, the system can achieve higher 

accuracy. Performing data fusion at an early point may generate the estimated result in a shorter 

period of time, but it requires more reports in the characteristic linear system in order to have 

good performance. If there aren’t enough reports, chances are the RD will be high. Meanwhile, 

the computation time may increase when the number of reports in the system increases.  

To explore the tradeoff between accuracy and efficiency, I evaluate the run time 

difference for each time unit. Run time difference (RT diff.) is the time difference in seconds 

between the time that the model of the characteristic linear system is generated and the time that 

the solution set is generated. From the left part of Figure 30, the time difference figure shows 

that the RD decreases as the RT diff. increases. The more reports are in the characteristic linear 

system, the more time the system requires to compute the solution set; however, the accuracy 

will be higher since information of target location is increasing. The RT diff. values dominate the 
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RT diff. distribution in the left part of Figure 30. I observe that the characteristic linear system 

generates solutions very quickly with a few reports most of the time. However, the accuracy 

varies significantly. The right part of Figure 30 shows the RT diff. is increasing but the average 

RD is decreasing when time unit increases. The average time difference is minor, and from 0 to 

13 seconds; however, as the number of time units increases, the number of reports also increases, 

and the accuracy versus the computation time will be the trade off of this system. 

 

 

Figure 30. Run Time difference of TU300 

 

 Simulation 2: The size of space unit 

The following simulation compares RD and RT diff. at different size of space unit. I hypothesize 

that the RT diff. will be similar if I keep the same size of time unit, but the RD may be different 

because of changing granularity of space units. 
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Figure 31. The RD of SU100(left) and SU25(right) 

 

The left part of Figure 31 shows the comparison of the CD method and the RS method of 100 

time units (100TU), and 100 space units (100 SU) and the right part of Figure 31 shows 100 time 

units (100TU) and 25 space units (25SU). The average RD drops to a steady level at around T25. 

The average RD keeps decreasing as time unit increases and becomes lower than CD around T50. 

With lower space unit or lower granularity of occupancy grid of space on the right part of Figure 

31, the RD of the RS method is lower compared with the RD with larger space unit on the left 

part of Figure 31. Decreasing the total grid number of space units may indicate considerable 

performance advantage, which supports my hypothesis that more overlapping reports can be 

utilized to compute more accurate solution sets. In addition, my approach supports performing 

data fusion over different granularity of space corresponding to users’ needs.    
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Figure 32. The Avg. RD and RT diff. of SU100 (left) and SU25 (right) 

 

Figure 32 shows the comparison between RT diff. and average RD; the left part shows 

performance of TU100 and SU100, and the right part is for TU100 and SU25. At the beginning 

of simulation 2, I observed that lower space granularity could derive lower RD at the end. 

Considering the computation cost to achieve better performance, the RT diff. in Figure 32 did 

not show critical difference. The maximum RT diff. of SU100 is around 2 seconds, while the 

maximum of RT diff. of SU25 is around 0.8 second. The size of the space grid of SU100 is 4 

times bigger than the size of SU25, but the RT diff. increases 2.5 times. The computation time is 

not much different between different space unit sizes since the number of reports increases at the 

same rate. 

 Simulation 3: Event density and coverage of space report   

In my temporal fusion simulation I have considered three major parameters, which are event 

density, report number and report duration. The report number is critical when the conflict 

degree of the report is large. As a result of the pilot multidimensional fusion simulation, we 

observe that the coverage of the space report affects the performance. For example, the space 

report covering the whole area provides more information than the space report covering one 
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specific area. Therefore, I consider the space report coverage as the main factor in the following 

simulation. 

The event density, i.e. ED, and space report coverage (the same as report duration), i.e. 

RC, will be considered in the following experiment. I vary the event density to be 10 or 100 for 

each space unit, and vary the report coverage to be 2, 4, 10, 15, 50 and 70 space units for each 

report. The configurations are in the Table 15. The event density indicates how many targets are 

in each cell, which can also be referred to as target density. The report coverage specifies how 

many space units are included in the space report. The more the robots explores, the wider report 

coverage will correspond to its space reports. I consider a maximal time unit of 100 and maximal 

space unit of 100.  

 

Table 15. Configurations of space report coverage 

 Space Report coverage (RC) 

Low RC Mid RC High RC 

2 4 10 15 50 70 

Event 

density 

(ED) 

[10, 5] Low overlap reports, 

low target density 

Medium overlap reports, 

low target density 

High overlapping reports, 

low target density 

[100, 5] Less overlap reports, 

high target density 

Medium overlap reports, 

high target density 

High overlapping reports, 

high target density 

 

For every configuration of simulation scenario, I performed multiple simulation 

iterations. Figure 33 shows RD for the CD method, and the RS methods for different RC of 

ED10. There are two different RCs in each group; RC2 (left) and RC4 (right) belong to the low 

RC group, RC10 (left) and RC15 (right) belong to the medium RC group, and RC50 (left) and 

RC70 (right) belong to the high RC group. I observe that the RDs of the RS method and the CD 

method share the same trend; the RDs are close to 1 at the beginning of time unit and decrease as 
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the time unit increases. In RC2, RC4 and RC50 the RS method has lower RD than the CD 

method at high time unit; however, in medium RC group and the RC70, the RS method has 

higher RD. In general, the RS method has similar performance with the CD method of ED10. 

However, the RD is lower in the high RC group for both methods. 

 

 

Figure 33. RC comparisons of ED10 

 

The simulation result for configurations in ED100 is shown in Figure 34. In all cases of 

ED100, the RS method has a notable impact on the RD compared to the CD method. The high 

RC group, RC50 and RC70, has lower RD at the beginning time unit. The lowest RD of the high 

RC group in ED10 is about 0.6, and in ED100 is about 0.4. In the high RC group, although the 

RS method cannot outperform the CD method, it has lower RD in ED100 at the beginning of 
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time unit, and converges in a shorter time. I plot the RD difference between the CD method and 

the RS method of all scenarios in Figure 35; the difference will be negative if the CD method has 

the lower RD. In the scenario of ED10, the RC2, RC4 and RC50 become positive at around T25; 

in the scenario of ED100, the CD method is outperform in all configurations so the lines are all 

negative. The medium RC group, RC50 and RC70, has the largest RD difference, and the 

differences in other RC groups are less than 0.2. Overall, the RS method can outperform the CD 

method at the scenario of high RC at low ED.   

 

 

Figure 34. RC comparisons of ED100 
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Figure 35. RD diff. between CD and RS of ED10 (left) and ED100 (right) 

 

Next I compare the total RD values of the RS methods at ED10 and ED100 together. 

Figure 36 shows the comparison of RC size to RD performance for different ED size of the RS 

method. The Sum RD value returns the summation of the RD value across time units. The lower 

Sum RD corresponds to higher accuracy. I observe that the Sum RD for ED100 is higher than for 

ED10 in most groups of different RCs except the RC70; the groups of RC10, RC15 and RC50 

have major differences of Sum RD value. From this result I could suggest that users choose 

either low RC of the report that provides more location information, or high RC that has more 

overlapping reports. Both can help the characteristic linear system to compute more accurate 

solution sets. 
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Figure 36. Sum RD of the RS method 

 

 

Figure 37. RD of the RS method of ED10 
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Figure 38. RD of the RS method of ED100 

 

Figure 37 and Figure 38 report the RD value across different RC of the RS method in 

different ED respectively. A major observation here is a decrease of RD of variability in RC 

increases from TU1 to TU10. For ED10 the RD varies between 0.66 and 0.96, while for ED100 

the RD varies between 0.38 and 0.97. Both figures appear to have RD saturated beyond TU10 

with variety of rates. Simulations reveal the RD is inverse relational to the RC size in both ED 

size; the RD decreases when RC size increases. Therefore, I would like to compare the RD and 

the RT diff. in order to choose the most efficient configuration.  

In Figure 39, I compare the RT diff. with RD value for each RC size. In Figure 39, RT 

diff. in ED10 and ED100 share the same curve and often overlap. The differences of the Run 

time for each RC size are not significant. The range of run time is between 0 and 2 seconds. 

There is a significant effect for ED size in the group of RC10, RC15, RC50 and RC70, p<0.01. 

In RC70, the RD of ED100 is slightly less in ED10; the RD of ED100 is higher than in ED10 in 

the rest of the groups. Figure 39 shows that the change of RT diff. is minor even though the ED 

is different. I believe this is because the run time is related to the size of the characteristic linear 
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system, or the number of report; therefore, the RT diff. is very close across RCs at each time 

unit. I observe that the lower RD value results from lower ED size with similar value and slope 

of the RT diff. The system can achieve better performance of target number estimation with 

lower target density in the search area. In other words, the dense target distribution will penalize 

the characteristic linear system by generating a high RD from high report value. 
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Figure 39. RD vs. RT diff. 

 

Overall, this simulation introduces the following strategies of space fusion: to perform 

data fusion with a longer sampling time; to have lower space granularity; and to choose either 

low RC, which provides more location information, or to choose high RC, which has more 

overlapping reports. I conduct a series of comparisons to explore the tradeoff between accuracy 

and computational cost.  
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 Simulation 4: Probability distribution over the occupancy grid 

I utilize two different methods, which are the basic method and the naïve Bayesian method, to 

compare their performance with the RS method in this simulation. The basic method considers 

any space unit overlapping with robot scan lines as a potential target location. The probability of 

a potential target in a time unit can be calculated as a ratio of number of target scans overlapping 

with the space unit to the total number of space units. For example, there are three cells C1, C2, 

C3 covered in one scan, and there are two cells C3, C4 covered in another scan in Table 16. The 

probabilities for each cell in Scan 1 are 1/3, 1/3 and 1/3; and the probabilities in Scan 2 are 2/4 

and 1/4. The probability of a target in C3 is increased from 1/3 to 1/2 with 2 scans. It is expected 

that, as the number of scans grows, the estimated probability distribution converge to the actual 

distribution of targets over the occupancy grid. 

 

Table 16. Probability distribution of basic method 

Scan ID Covered Cell Probability distribution 

Scan 1 C1, C2, C3 1/3, 1/3, 1/3 

Scan 2 C3, C4 2/4, 1/4 

  

In another comparison I use Bayes’ rule to estimate the probability distribution as a 

conditional probability P(V|VS), where V is a property reflecting target presence in a cell, VS is  a 

condition that the cell overlaps with a target scan (Zadorozhny & Lewis, 2013). This probability 

can be estimated as follows: 

)()|()()|(

)()|(
)|(

noVPnoVVSPVPVVSP

VPVVSP
VSVP
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In the simulation, I set up three different levels of sparsity. Sparsity refers to the number 

of spatial cells that have zero targets, with up to 20 robots exploring the spatial environment of 

36 space units of an occupancy grid within 20 time units. I use Jensen-Shannon Divergence (JSD) 

to measure similarity between two probability distributions of estimated and actual target 

distribution across spatial units. The lower JSD is better since the two probability distributions 

have less difference. Another measurement I use is area-under-the-curve (AUC) that reflects 

sensitivity about the results’ true positive and false positive rate. The higher AUC means better 

performance since the true positive rate is higher. 

The Figure 40 shows JSD for low sparsity (around 78 cells out of 360 have zero target), 

medium sparsity (around 147 cells), and high sparsity (around 195 cells) scenarios. I observe that 

both the basic method and the RS method are very close to each other when the sparsity is low. 

The performance of the basic method is more invariant under different spasities, but the RS 

method has higher variability at medium and high sparsity. Overall, at the early search stage of 

time unit and at low sparsity the RS method can overperform the basic method. 
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Figure 40. JSD of different sparsity 

 

 Figure 41 shows target detection sensitivity. I observe that the RS method outperforms 

the Bayes method under low sparsity. For medium sparsity, the performance of both methods 

varies. The RS method has better performance at the beginning as well as from the middle to the 

end of the time unit. For high sparsity, the Bayes method improves its performance with time. 

The RS method has lower AUC compared with the Bayes method except at the very end part of 

time unit. In general, both methods improve their performance with time. However, the 

performance of these two methods shows different trends; the Bayes method degrades as sparsity 

decreases, while the RS method performs better. 
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Figure 41. AUC of different sparsity 

 

From these results I would recommend to use the RS method in the scenario of low 

sparsity environment. I compare the RD of the RS method under different sparsities. Figure 42 

shows that the RDs in these three scenarios are very close, but the medium sparsity corresponds 

to the highest RD followed by low and high sparsity. 
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Figure 42. RD of the RS method of different sparsity 

5.4 PILOT STUDY OF TEMPORAL SPATIAL FUSION SYSTEM  

In this section I will use a pilot example to illustrate how the proposed RS method performs 

temporal and spatial fusion for the target observation task. The space layout in Figure 43 shows 

an office like environment that has been divided into occupancy grids of small spatial units, 

which are also called space cells. The size and the numbering of each cell depend on designers’ 

preference or area of interest. The number of targets in each cell is recorded continuously 

throughout the time interval. There are five time units and nine spatial cells in the example 

shown in Figure 44; this Time-Space matrix shows the actual number of targets and their 

locations. The targets are moving across cells during time units. 

There are two constraints that I have introduced in Section 5.2: (1) all targets are being 

observed and (2) total number of target for each cell at Tx+1 ≤ summation of the number of 

targets for each cell’s neighbor cells at Tx. I hypothesize that more constraints will help to detect 
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inconsistency and help tp compute optimal solution sets. The total number of targets moving 

around the environment is forty-five.  

 

 

Figure 43. Spatial layout in grids 

 

 Time unit 

T1 T2 T3 T4 T5 

Spatial 

cell 

C1 1 7 4 4 8 

C2 2 3 2 1 6 

C3 8 1 3 3 1 

C4 6 4 1 7 7 

C5 7 5 5 9 9 

C6 5 2 6 8 4 

C7 3 9 9 2 2 

C8 4 6 8 6 3 

C9 9 8 7 5 5 

Sum 45 45 45 45 45 

Figure 44. Number of target in each cell and time unit 

 

I use two comparisons to evaluate the performance of the multidimensional fusion 

approach. For the first comparison, I compute the RD value of the RS method considering either 

the one-dimensional temporal or spatial fusion. In the second comparison, I compare the RD 

values given the combination of temporal and spatial fusion together. I expect two-dimensional 
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fusion will provide better accuracy of target observation and will have lower RD value. The 

following are the results of my comparisons. 

(1) Report number and accuracy of temporal fusion  

I perform temporal fusion across cells, and the RD value is calculated based on the actual cell 

value. I try to use the least amount of information from reports as possible to estimate the 

number of targets in each spatial interval. This can save the cost of time and computation. 

Therefore, I only consider the start time, end time, and total number of targets detected in the 

overall report duration.  

 

Table 17. Example of temporal spatial fusion 

Report ID Report Value Time_from Time_to 

R1 V1 T1 T3 

R2 V2 T2 T5 

R3 V3 T3 T4 

R4 V4 T3 T5 

R5 V5 T4 T5 

 

Reports record target number at given locations that can be cells or space intervals 

depending on the granularity of users’ interest. For example, R1 describes the number of targets 

as V1 at different locations from time T1 to T3. In Figure 45, I compare the accuracy between 

different numbers of temporal reports of the underdetermined linear system for predicting target 

numbers in each cell. The notation TF3R on the figure indicates that there are three temporal 

reports available from sensors or robots in time fusion. Similarly, TF4R and TF5R mean that 

there are four and five reports available respectively. The RD value is summarized across cells 

C1 to C9 at each time interval. 
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Figure 45 shows that the total RD decreases as the number of report available increases. 

The total RD decreases about 50% when the number of report increases from three to four. In 

addition, the total RD is zero when I have five reports for five time intervals. Therefore, I 

hypothesize that the number of reports that a linear system needs to generate the optimal report 

value estimation is the same as the number of interval. This also confirms my results (in Section 

4.3) that show that the more reports there are, the better performance of the RS method. Having 

more reports provides the characteristic linear system with more equations.  

 

Figure 45. Accuracy of different number of report 

 

 (2) Report type and accuracy of spatial fusion  

In this example I compare RD of spatial fusion for three conditions that are (a) two reports 

(SF2R), (b) three reports, two of which from condition (a) and the other report covers all space 

units from C1 to C9, SF3R19, and (c) three reports, two of which from condition (a) and the other 

report covers a given cell C4, SF3R44). In Figure 46, the SF3R19 performs better than SF3R44 

even though these two conditions consider the same number of reports. In addition, the total RD 
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of three reports SD3R44 is even higher than the two reports condition SD2R. I hypothesize that 

the increase of RD is proportional to the increase of intervals. Therefore, providing more 

information to the linear system in order to have better accuracy by increasing report number is 

reasonable strategy, but I also need to take the report structure into account. 

 

 

Figure 46. Example of spatial fusion 

 

(3) Combining with temporal fusion and spatial fusion  

To perform the two-dimensional temporal and spatial fusion, users have to decide which fusion 

strategy is to be performed first. The strategy of how to determine the sequence of performing 

different types of data fusion depends on the report number and interval size. For example, if we 

perform temporal fusion with five reports first, the estimated value for each time interval will be 

close to the actual values. This improves the result accuracy for the following spatial fusion 

because the result of temporal fusion provided to it is quite accurate.  
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5.5 MULTIDIMENSIONAL TEMPORAL SPATIAL INFORMATION FUSION  

 

Figure 47. Two-dimensional reports generation 

 

The report generation and data fusion process of the multidimensional temporal and 

spatial fusion are shown in Figure 47. The purple arrow indicates the generation process of 

temporal and spatial reports and ground truth tables; the yellow arrow shows the computation 

sequence of unit value estimation. In reports values generation step, the values of space reports 

are aggregated from the actual space unit values of the given space region. The time unit values 

are the aggregated value from observed areas at each time unit. And in the same way, the value 

of time reports are from the given time period. In the estimated values generation step, we first 

generate the solution set for the estimated time unit value using the RS method from time reports, 

then compute the solution set for the estimated space unit value by space reports. The two-

dimensional fusion processes can be broken down as follows: use the characteristic linear system 

from time reports to generate estimated time unit value, and then use the characteristic linear 

system from space reports as well as the fusion result of the estimated time unit value to compute 
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the solution set of the second characteristic linear system. We use the temporal fusion result, 

which is the estimated time unit value, to approximate the space unit values; therefore, the 

accuracy and complexity of the system may be affected. 

Here I use a small characteristic linear system for multiple regions at T1 to illustrate the 

two-dimensional data fusion process. Take the ground truth value of space unit at T1 in the two-

dimensional pilot study as an example; the space reports only cover partial areas and I am going 

to find out the values in each space unit at T1. The ground truth table of the four space reports at 

T1 is in Table 18. There are 4 space reports covering partial space units and the table shows the 

number of target in each space unit in T1. Because I am considering the condition of dynamic 

targets, the ground truth in each space unit will be different at other time units.  

 

Table 18. Ground truth of space reports at T1 

 Time Unit T1 

Ground truth 
Space Report 

S1 S2 S3 S4 

Space Unit 

C1 1 1 1 0 0 

C2 2 1 1 0 0 

C3 8 0 1 0 0 

C4 6 0 0 1 0 

C5 7 0 0 1 0 

C6 5 0 0 0 0 

C7 3 0 0 0 1 

C8 4 0 0 0 1 

C9 9 0 0 0 0 

Sum 45 3 11 13 7 
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The characteristic linear system from the time reports is 

 

and the corresponding solution set for each time unit is 

 

The estimated value for time unit T1 is 31, which is going to be added in the second 

characteristic system. Therefore, the characteristic linear system of the four space reports and the 

estimated T1 number is  

. 

The solution set for every space unit at T1 is  

 

The values for each time unit are the aggregated value from all space units at each time unit. The 

estimated time unit value of T1 will be the summation of estimated values of all space units, 

which is 31. The actual value and the estimated value for each time unit are  
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In addition, the actual and the estimated value for each space unit at time unit T1 are 

 

Therefore, the RD of temporal fusion of each time unit is [0.3111, 0.2, 0, 0.0889, 0.0222], and 

the summation of all RDs is 0.6222. On the contrary, the RD of spatial fusion in T1 is [0.667, 1, 0, 

0.5385, 1, 1, 0.5714, 1, 1], and the summation of all RDs is 6.7766.  

This example shows the characteristics of the data set contains moving robots and targets 

for which time reports of the given locations have different numbers of targets at different times. 

In this condition, I rely on collaborative data from different robots to achieve general information 

of the whole environment. Each robot’s log may contain data of the same location, but with 

different number of targets at different times. Figure 48 illustrates the target number changes 

across time and locations. At time unit T1, there are three space reports that record the space unit 

1, 2, 3; space unit 4, 5; and space unit 7, 8. The aggregated space report value V1 is the time 

report value for T1. Similarly, there are two space reports covered space unit 1, 4, 7 and space 

unit 3, 6, 9 at time unit T2. The aggregated value from space reports V2 is also the time report 

value for T2. In summary, since the location L1 covered nine space units and the targets are 

moving around the closed space, I will have different target numbers at different times for the 

same location. 
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Figure 48. Two-dimensional data of dynamic target 

 

The configurations of following simulations are the accessibility of targets and robots (i.e., 

dynamic or static), the number of reports, the number of intervals, and the value of reports. I vary 

the report number and report duration of 5 and 20 in the simulation in the same way I conducted 

the one-dimension temporal information fusion with 10 targets randomly distributed in each cell 

at each time unit. Each time report value comes from aggregating the values of reported time unit 

during the given time interval. The reported value of each time unit represents the statistical 

summation by aggregating the reported values in each space unit. I use Normal distribution of 

the value in each configuration. The descriptions and configurations of the experiment design are 

described in Table 19. Take the first row as an example; there are 5 time reports and the duration 

for each report is up to 5 time units. Each time unit contains up to 5 spatial reports.    
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Table 19. Configurations of two-dimensional fusion  

Time 

Report 

Number 

Time 

Report 

Duration 

Space 

Report 

Number 

Description Scenario 

5 5 5 
Few short time reports and 

sparse spatial overlap 

Few intervals with low 

report values 

5 5 20 
Few short time reports and 

dense spatial overlap 

Few intervals with low 

report values 

5 20 5 
Few long time reports and 

sparse spatial overlap 

Few intervals with high 

report values 

5 20 20 
Few long time reports and 

dense spatial overlap 

Few intervals with high 

report values 

20 5 5 
Many short time reports and 

sparse spatial overlap 

Many intervals with low 

report values 

20 5 20 
Many short time reports and 

dense spatial overlap 

Many intervals with low 

report values 

20 20 5 
Many long time reports and 

sparse spatial overlap 

Many intervals with high 

report values 

20 20 20 
Many long time reports and 

dense spatial overlap 

Many intervals with high 

report values 

 

The simulation considers targets moving randomly in a closed space. The space is evenly 

divided into 9 space units (i.e. cells) and the numbers as well as the coverage of space reports are 

randomly generated. The time series is evenly divided into 24 time units. The ground truth of the 

number of total targets across the space at each time unit (i.e. event) is the aggregated number of 

space reports. Then the number of targets in this closed space for specific time duration can be 

computed. Every entity value in each time unit is aggregating from all detected space unit values. 

The ground truth table will be a 9 (space unit) * 24 (time unit) matrix. Figure 47 shows an 

example of the hierarchical structure of the multidimensional data. In most cases, I can use 

reports which have numbers less than the number of units to recover the values for all units. 

However, the estimated value of units may not be accurate if the number of report is not enough, 

or the reports did not cover all units well. In my preliminary study of temporal fusion, I focus on 

figuring out the number of cases in each time unit; however, in the two-dimensional temporal 
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spatial fusion I am able to compute the case number and where these cases are located at each 

time unit.  

 Simulation 1: Compare the performances of the CD method and the RS method 

To compare the performance of one-dimensional temporal fusion and two-dimensional temporal 

spatial fusion of the same data set, I perform a simple simulation. These configurations are 

illustrated in Table 19. First, I compare the RDs of time units from the RS method and the CD 

method. Figure 49 shows the performance of time fusion (i.e. the first fusion result of the two-

dimensional fusion). The RS method leads to larger average RD compared with the CD method. 

The comparison is based on the average of value difference between the actual values and the 

estimated value of each time unit and the optimal CD threshold is selected for each 

configuration. In my earlier simulation of time fusion with the number of report 20 and 100, the 

RS method required larger number of report to have better performance. The percentile plot of 

these two methods is shown in Figure 50. I observe that the configuration [5, 5, 5] shows a 

significant difference between the CD, and that the RS method and the RDs values are closer in 

other configurations.  
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Figure 49. RD across time units after temporal fusion 
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Figure 50. Percentile plot across time units after temporal fusion 

 

In the second step, I analyze the performance of space unit at each time unit at the micro 

level. The targets are randomly distributed across 9 space units and keep changing location 

across 24 time units. The comparison of these two methods with 8 configurations is shown in 
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Figure 51. The value of average RD is the mean value of all space units in each time unit. The 

performances of the RS method with large number of time reports are better than small number 

of time reports since the estimated values of the time unit are more accurate. The CD method has 

weaker performance than the RS method of the two-dimensional fusion in each configuration. 

The estimated space unit value of the RS method is computed using the second characteristic 

system from spatial reports, and the estimated value of the given time unit. The estimated space 

unit value of the CD method is the estimated time unit value evenly divided by the number of 

covered cells because we do not have any prior information of the space unit distribution. For 

example, if the estimated target value of T1 is 18, then the estimated target number for each 

space unit at T1 will be 2 (i.e. 18 (case number in T1) / 9 (number of total cell) = 2). In one-

dimensional data fusion, I assume that the estimated space unit values are Uniform distributed. In 

two-dimensional data fusion, the space report values in the characteristic linear system are based 

on the estimated value of time unit and space reports to compute the estimated value of space 

units. Therefore, the RS method could have better accuracy than the CD method. 

 

 

Figure 51. RD across space units after temporal spatial fusion 
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 Simulation 2: Compare the performance of the RS method in one-dimensional fusion and 

two-dimensional fusion 

This simulation considers the similar configurations: 24 time units and 9 space units with 5 

dynamic targets in each space unit. The parameters are the number or time report, the length of 

time report, and the number of space report varying between 5 and 20. In my hypothesis, the 

performance of the RS method in time unit level and in space unit level should be the same if 

there are enough temporal and spatial reports with good coverage. The performance comparison 

between one-dimensional and two-dimensional fusion uses the RS method for the same data set 

shown in Figure 52, and the percentile figure shown in Figure 53. 

 

5,5,5 5,5,20 5,20,5 5,20,20 20,5,5 20,5,20 20,20,5 20,20,20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Set

A
v
g

. 
R

e
la

ti
v
e

 D
is

ta
n

c
e

 

 

TF

TFSF

 

Figure 52. Avg. RD of TF and TFSF fusions 
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Figure 53. Percentile RD of TF and TFSF fusions 

 

The configuration [5, 5, 5] has the fewest time reports, shortest duration of time reports, and 

fewest space reports; therefore, it has the highest RD in the figure. Comparing the configurations 

[5, 5, 5] and [5, 5, 20] together, these two figures have similar RDs for the TF fusion, but the RD 

of [5, 5, 20] is lower for TFSF fusion because it has higher number of space reports. Comparing 

the configurations [5, 5, 5] and [5, 20, 5], the configuration [5, 20, 5] has lower RD in both TF 

and TFSF fusions since it has more report overlapping. Comparing the configurations [5, 20, 5] 

and [5, 20, 20], the RD of TF fusion in these two configurations are close, but the RD is 

significantly lower in [5, 20, 20]. This shows that increasing the space report number will have 

lower RD in TFSF fusion. For the configurations [5, 5, 5] and [20, 5, 5], they both have short 

time reports and fewer numbers of space reports, but the scenario [20, 5, 5] has lower RD in both 

TF and TFSF fusion. I hypothesize that this is because the increasing of time report provides 

better accuracy of solution set; therefore, the RD is lower in the TFSF fusion. Comparing groups 

of configuration with the same length of time report and same number of space report such as [5, 
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5, 20] and [20, 5, 20], [5, 20, 5] and [20, 20, 5], as well as [5, 20, 20] and [20, 20, 20], I found 

that the higher number of time report usually results in lower RD in both TF and TFSF fusions. 

However, the RD of TFSF fusion in [20, 20, 5] is slightly higher than the RD in [5, 20, 5]. For 

the configurations [20, 5, 5] and [20, 5, 20], the RDs of TF fusion are similar, but the RD of [20, 

5, 20] in TFSF fusion is better than [20, 5, 5]. There is the same performance tendency for the 

configurations [20, 20, 5] and [20, 20, 20]. There are some scenarios which have higher RD in 

TFSF fusion than in TF fusion: [5, 20, 5], [20, 5, 5], and [20, 20, 5]. Additionally, these all have 

fewer numbers of space reports. 

In order to get a better understanding of the effects of the configuration, I compare the 

RD of both TF fusion and TFSF fusion in the group of Low Time Report Number (LowTRN), 

High Time Report Number (HighTRN), Low Time Report Duration (LowTRD), High Time 

Report Duration (HighTRD), Low Space Report Number (LowSRN), and High Space Report 

Number (HighSRN). Figure 54 shows that the RD of TFSF fusion in High groups is lower than 

in the Low groups. The RD of TF fusion shows a similar trend except in the SRN group. 

Therefore, I observe that the number of space reports will not affect the performance of TF 

fusion much, but will affect the performance of TFSF fusion.  
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Figure 54. Avg. RD in Low/High TRN/TRD/SRN 

 

In summary, the factors of time report number, time report duration, and space report 

number all affect the fusion performance. To have higher numbers of these factors improves the 

performance of the characteristic linear system. In addition, the effectiveness of the time report 

number and duration is higher than the space report number in the CD method. 
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6.0  CONCLUSIONS 

6.1 DISCUSSIONS AND APPLICATIONS 

This dissertation covers three major topics: temporal fusion, spatial fusion, and multidimensional 

temporal spatial fusion. For the one-dimensional temporal fusion, I have implemented my system 

with two studies of inconsistency detection and data fusion. The inconsistency detection study 

contains inconsistency occurrence detection and inconsistent reports identification. I have 

observed that the C value and the δ value could be used as an indicator of the existence of 

inconsistent reports. The data fusion section considers report value estimation and accuracy 

improvement. In addition, an efficient approach of using the underdetermined linear system to 

detect inconsistency and to perform data fusion of large amounts of data is required. I have found 

that the RD decreases as the number of events increases, and the RS method outperforms the CD 

method when the report number increases. Therefore, the RS method is a better option for data 

fusion of reports with more overlapping, more subsumptions, and a large report number. 

For the one-dimensional spatial fusion, I have implemented my approach for simulated 

multi-robot search and rescue task. In simulation 1, I observed lower RD at high fusion points 

since there are more space reports in the characteristic linear system. As a result, the system can 

achieve better accuracy. Meanwhile, the computation time may increase when the number of 

reports in the system increases. In my simulation with 300 time units and 9 space units, the time 
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difference was less than 13 seconds. The time difference is minor in this configuration; however, 

having a smaller characteristic linear system in order to have better performance and efficient 

computation time is suggested. In simulation 2, my results showed that the RD of the RS method 

is lower with smaller occupancy grid of space compared to the RD with larger space grid. 

Decreasing the number of grid cells (number of space units) indicates considerable performance 

advantage, which supports the hypothesis that more overlapping reports can be utilized to 

compute more accurate solution sets. Results in simulation 3 revealed that the RD is inverse 

relational to the RC size at different event densities (ED10 and ED100). The system can achieve 

better estimation of target number with lower target density in the search area. These results 

suggest strategies that include performing data fusion over a longer period of sampling time, 

using lower space granularity, and choosing either low RC, which provides more location 

information, or choosing high RC, which has more overlapping reports. In simulation 4, both the 

basic method and the RS method are very close to each other when the sparsity is low, and the 

RS method outperforms the basic method at the early search stage (i.e., at lower time units). In 

addition, the RS method also outperforms the Bayesian method under low sparsity; however, the 

performance of RS method degrades as sparsity increases. My approach implements major 

functionalities of space fusion and supports data fusion over different granularity of space units 

corresponding to users’ needs. I introduced an automatic information fusion method for multi-

robot search and rescue representing overlapping reports form robots as an underdetermined 

linear system (characteristic linear system). The solution sets from the characteristic linear 

system efficiently approximates number of targets in particular locations. My simulation-based 

study demonstrated high performance of the proposed approach. 
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I also implemented an approach for two-dimensional temporal and spatial fusion to test 

my system with different types of data sets. From the simulation results in pilot studies we were 

able to understand the effect of the event density, report number, report duration, and total 

number of time unit on system performance. More reports and higher overlap of report structure 

(i.e. the smaller number of time unit) elicit better performance of my characteristic linear system. 

In addition, I would like to explore other algorithms that can overcome the deficiency of report 

numbers so I can apply appropriate data fusion strategies depending on the number of reports. 

My goals is to find an approach that can estimate interval values accurately, satisfy most 

constraints of linear equations, timely detect the inconsistency occurrence, and adjust the 

difference between estimated and actual values.  

This study was conducted to explore the effectiveness of my proposed RS method of 

inconsistency detection and data fusion in multidimensional data. I would like to make the 

following observations related to my major research questions hypothesis:  

 Research question 1: How to detect inconsistency in temporal and spatial data?   

Hypothesis: My method can be used to indicate which report(s) has the higher degree of 

inconsistency, or to indicate which report(s) causes the inconsistency. Therefore, the user can 

spend less time finding the targeted problem reports. 

Observation: The obtained results showed that the number of inconsistent reports detected 

by the characteristic linear system using the RS method and the number of actual inconsistent 

data reference matches well under any configuration of conflict/report/data reference density 

in the temporal simulation. In addition, after implementing the proposed approach, I detected 

the occurrence of fifty-seven conflicts all of which were confirmed with inconsistent report 

values in Tycho database. The proposed approach can be used to indicate the degree of 
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inconsistency, or the conflict with the nonzero C values and δ values. In the simulation of the 

effect of the number of conflicting reports on the degree of inconsistency, the δ value and the 

C value both increase when inconsistency increases; however, the δ value does not always 

increase proportionally with higher degree of inconsistency. Therefore, the δ value indicates 

the existence of inconsistency, but cannot represent the degree of conflict.    

 Research question 2: How can inconsistent temporal and spatial data be processed? 

Hypothesis: I can detect inconsistency for different configurations (i.e. overlap, 

subsumption, number of reports, etc) of temporal and spatial reports by the estimated value 

generated from the characteristic linear system.  

Observation: I have implemented my system for inconsistency detection and data fusion. 

The nonzero C values and δ values represent the existence of inconsistency and the solution 

sets generated by the characteristic linear system provide approximate interval values. In 

temporal fusion simulation, I used the RD for performance measurement to compare the 

estimation error, which is the difference between the summation of the actual values and the 

estimated total value of the event values across each interval. In the configuration of different 

event size, the RD is lower for both the CD and the RS method for 1000 total number of time 

units when compared with 150 total number of time units. Moreover, for all conditions of 

report number 100 (many reports), the RS outperforms the CD. In spatial data fusion, 

simulations revealed that the RD of the CD method and the RS method are very close with 

respect to the following strategies of space fusion: to perform data fusion over a longer 

period of sampling time; to have lower space granularity; and to choose either low RC, which 

provides more location information, or to choose high RC, which has more overlapping 

reports. In two-dimensional spatial temporal fusion, the factors of time report number, time 
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report duration, and space report number all affect the fusion performance. Having a higher 

number of these factors improves the performance of the characteristic linear system. In 

addition, the effectiveness of the time report number and duration is higher than the space 

report number. 

 Research question 3: How can the inconsistency detection and analysis be used for scalable 

data fusion? 

Hypothesis: The RS method can provide a good estimation of aggregate value for reports 

with inconsistency in any single dimension data as well as in multidimensional data, such as 

temporal and spatial dimensions in this dissertation. 

Observation: The simulations of one-dimensional temporal and spatial fusion demonstrated 

low RD value at high fusion point, small occupancy grid (low number of cells), low target 

density, and either low or high report coverage. The number of reports has a major effect on 

the RD, but the value of RD becomes stable after a certain number of reports are considered. 

In addition, the computation time does not change considerably for different space unit sizes 

since the number of reports increases at the same rate. I extend the scenario of the search and 

rescue task of target detection at specific locations and time intervals with dynamic targets to 

test the two-dimensional fusion. In temporal-spatial fusion, the RS method has better 

accuracy than the CD method. Furthermore, the factors of time report number, time report 

duration, and space report number all affect the fusion performance. 

To summarize, my proposed approach can provide an estimation of aggregate value for 

reports with inconsistency in any single dimension data or in multidimensional (temporal and 

spatial) data. The estimated value generated by the RS method has higher accuracy when there 

are a large number of reports. In spatial data fusion, simulations reveal that the RD of the CD 
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method and the RS method are close with the following strategies of space fusion: to perform 

data fusion in a longer period of sampling time; to have lower space granularity; and to choose 

either low RC, which provides more location information or to choose high RC, which has more 

overlapping reports. In temporal-spatial fusion, the RS method has better accuracy with higher 

number of time reports, duration of time reports, and number of space reports. 

The major goals of this dissertation are to provide a systemic approach of inconsistency 

detection and data fusion in different domains in an efficient way. The importance of 

inconsistency detection for data fusion is increasing because of amount of data is thriving from 

distributed heterogeneous databases. There are many areas that require data reliability 

assessment and data fusion such as multisensory systems, image processing, interactive online 

systems, and data mining.  My methods can be applied in each of those areas. Data centers can 

take advantage of increasing robustness and reliability of data by using multiple sensors data or 

multiple data sources. However, reaching consensus between all data reports is a considerable 

problem. One application of the temporal and spatial fusion is the target observation in sensor 

networks. The tasks focus on checking the origin of the information from sensor registrations, 

checking the consistency of sensor data, and tracking target movements. It will be more efficient 

when the system can provide these benefits automatically rather than requiring a feedback from 

humans, especially when there is a large number of sensors/robots. 

Another application of my method is related to the usage of web data. Using data sources 

from Internet often applies concept of crowdsourcing or collective intelligence. In order to 

benefits from this data, companies should have (1) multiple data sets from inter-company or data 

sources, (2) prediction and optimization models to help them analyze data and make decisions 

more robust, and (3) organizational transformation that allow them to manipulate and extract 
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information from these data to be more concise (Barton & Court, 2012). My approach 

contributes to proper utilization of this data in terms of agility, scalability, and lower cost. 

6.2 FUTURE WORK 

My proposed characteristic linear system approach can be used to detect the inconsistency 

between reports, reveal the ID of inconsistent reports, and decrease the inconsistency by 

eliminating inconsistent reports or substituting more accurate estimated report values in order to 

improve data accuracy and reliability. The estimated report values, which are generated by the 

RS method, provide users with the more accurate information at each interval. There are several 

ways to adjust a group of inconsistent reports that may help to improve data reliability. The first 

method is to eliminate the inconsistent reports entirely, the second method is to adjust reported 

values to make it consistent, and the third method is to modify report values by the δ value and 

the C value. The first method is simple and straightforward, but will affect the accuracy of data 

fusion dramatically if the report has large reported values and a small degree of overlap. The 

second method uses the generated solution set by the RS approach. This method relies on the 

generated solution set; the accuracy can be improved if there are many overlapping reports. The 

third method uses additional information about reports; the nonzero C value (i.e. number-of-

conflict-report) and the nonzero δ value (i.e. difference with the original report value) of each 

report indicate how exactly these reports contradict each other. Thus, I can eliminate or modify 

reports using their C value or the δ value separately. I performed a prior test of using the C value 

and the δ value separately for report value modification, and I found that using the descendent 

ranking of the δ value as the order to eliminate reports results in reaching consistency faster (i.e. 
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it converges faster) compared to using the descendent ranking of C value. This is because the 

reports often have the same C value, which slows down finding a consistent system. From these 

three methods, the second method adjusts reported values without eliminating any one of them. 

The solution set generated by nonnegative least squares method provides estimated interval 

values and corresponding reported values of a consistent system. My simulations show that the 

estimated values of the RS approach are close to the actual interval values at various 

configurations of reports and measured events. One or more reported values should be modified 

to make the linear system consistent if the researchers do not want to eliminate reports with 

nonzero C value or nonzero δ. The nonnegative least squares method I use in this dissertation 

will generate an optimal solution set via iterative computation. Through this approach, I can find 

a solution set that satisfies all equations and adjusts reported values minimally.   

Finding methods to optimize the solution set of the underdetermined linear system with 

the presence of inconsistent reports is an area for further research. The optimal solution would 

improve inconsistency detection, temporal, and spatial data fusion and estimation accuracy. This 

may require developing a pre-screening algorithm to group reports with overlap into several 

smaller linear systems, as well as to apply parallel computing to speed up the computation. 
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