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Summary 

This paper looks at sizing optimization results, and attempts to show the practical 
implications of using a novel constraint. Most truss structural optimization problems, which 
consider sizing in order to minimize weight, do not consider the number of different cross-
sections that the optimal solution can have. It was observed that all, or almost all, cross-
sections were different when conducting the sizing optimization. In practice, truss structures 
have a small, manageable number of different cross-sections. The constraint of the number of 
different cross-sections, proposed here, drastically increases the complexity of solving the 
problem. In this paper, the number of different cross-sections is limited, and optimization is 
done for four different sizing optimization problems. This is done for every number of 
different cross-section profiles which is smaller than the number of cross-sections in the 
optimal solution, and for a few numbers greater than that number. All examples are optimized 
using dynamic constraints for Euler buckling and discrete sets of cross-section variables. 
Results are compared to the optimal solution without a constrained number of different cross-
sections and to an optimal model with just a single cross-section for all elements. The results 
show a small difference between optimal solutions and the optimal solutions with a limited 
number of different profiles which are more readily applicable in practice. 

Key words: truss optimization, cross-sections, Euler buckling, sizing, optimization 
constraints 

1. Introduction 
In recent years, structural optimization in general has evolved from being a tool for 

finding optimal solutions to specific parts of engineering problems to basically giving a 
completely developed design ready for manufacturing, thanks to improvements in the 
CAD/CAM/CAE software and the use of intricate optimization methods. Structural 
optimization of trusses is a complex real-world problem which must consider many different 
aspects in defining a mathematical model in order to achieve results which can be used for the 
construction. The most commonly optimized aspect of a truss is the bar cross-section 
selection, or sizing optimization, as it is called in the literature.  
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Research in the field of truss structural optimization has lately become mostly focused 
on the use of novel methods to solve standard problems and show improvements in the 
algorithm. A lot of studies published to date, which use various optimization methods for 
sizing optimization, consider cross-section variables as continuous. Bekdas et al. [1] used a 
flower pollination algorithm to achieve competitive results in continuous sizing optimization, 
having tested their algorithm on numerous standard truss problems. Researchers in [2] 
presented a new method for size optimization of trusses; they compared their continuous 
results to discrete and continuous solutions from the literature. In [3], a heuristic method to 
achieve optimal weight was developed, using sizing of standard 10, 18, 72, and 200-bar 
trusses with continuous variables. Researchers in [4-6] also used continuous variables for 
sizing and showed the improved convergences of their methods. Kanarachos et al. [7] 
developed an optimization algorithm for efficient truss optimization and tested it on a 
continuous and a discrete variable cross-section problem of a 25-bar truss.  

Since continuous variables for cross-section areas are not a realistic representation of 
what is possible in practice, researchers have also considered the use of discrete variables. 
This approach, though it appears to be simpler, actually drastically increases the difficulty 
with which the method finds an optimal solution as the search space is discontinuous, non-
linear, non-convex and implicit with respect to design variables.  

Hasancebi and K. Azad [8] developed an adaptive dimensional search algorithm 
specifically for discrete truss sizing optimization. Their research considers fixed slenderness 
ratios for tension and compression members as well as stress and displacement constraints. In 
their research, Cheng et al. [9] presented a variant of the harmony search algorithm for 
solving discrete sizing optimization and tested it on numerous truss problems without 
buckling constraints.  

A few studies which consider dynamic buckling constraints have been published in 
recent years [10-15]. In [12], the authors made a comparison between using and not using 
buckling constraints for truss sizing problems with continuous variables. In their research, 
they also tested existing results from the literature which do not consider this constraint and 
found that all models have some bar elements which would not meet buckling criteria. 

The inflation of novel optimization methods in the literature has led research away from 
improving the way engineering problems are solved in this field, and has focused it on 
incremental improvements in the used algorithm performance. This is the case in most 
aforementioned publications. In an attempt to achieve optimal results which have a practical 
value, this research considers the use of buckling constraints with discrete sizing variables. 

Based on a research overview and personal experience, it has been found that the 
number of different cross-sections used in optimal solutions is very high. A large number of 
different cross-sections is impractical for many reasons. Namely, the number of different 
profiles of stock to be purchased and cut to size is large and leaves a lot of wasted material; in 
addition, there are problems caused by the onsite assembly with a great possibility of human 
error. This paper aims to introduce a novel constraint for sizing optimization which would 
limit the maximum number of different cross-sections used in the optimal solution. Such a 
constraint dramatically increases the complexity of the problem. As there are no other studies 
dealing with this constraint, in this paper, a comparison between optimal results for typical 
truss sizing optimization problems and optimal models limited to reasonable numbers of 
different cross-sections. This is done to show the influence of decreasing the number of 
different cross-sections on optimal weight, and to find a recommended value for the 
constraint. 
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2. Truss sizing optimzation: problem formulation and examples 
In order to achieve applicable results, the truss sizing optimization problem must use an 

optimization method which can handle a large number of variables and search spaces. The 
problem becomes even greater when considering all necessary constraints which further 
complicate finding the global optima. In order to verify the effectiveness of introducing new 
constraints, the process has to be tested on comparable examples frequently found in the 
literature. 

2.1 Optimization  
Optimization is the process of finding solutions from a group of possible solutions to a 

given, mathematically defined, problem. Such solutions are difficult or impossible to find in 
other ways; these solutions provide favourable characteristics while decreasing the invested 
effort and cost. As heuristic optimization methods are able to work with a large number of 
variables, can overcome local extremes, are very fast and efficient, and have a low threshold 
of needed inputs about the problem to find the solution, they are favoured for solving 
engineering optimization problems. For the purpose of this research, a genetic algorithm (GA) 
[16] is used due to its favourable characteristics and availability. This research does not 
consider comparisons between algorithm performances. 

Truss sizing optimization uses cross-sectional geometrical dimensions as variables. Our 
research looks at cross-section variables as a discrete set of values. The objective is to find a 
combination of cross-sections which gives a minimal weight. Typical truss sizing problems 
found in the literature view the minimal weight design problem as follows: 
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where W is the weight of the truss, n is the number of truss elements, k is the number of 
nodes, li is the length of the ith element, Ai is the area of the ith element cross-section, σi is the 
stress of the ith element, and uj is the displacement of the jth node. 

In order to achieve results which can be applied in practice, constraints for Euler 
buckling are added to the optimization problem. As the Euler critical buckling load equation 
(3) has a change in the moment of inertia in each iteration, due to the change in cross-sections, 
this constraint is considered to be dynamic. The addition of this constraint increases the 
complexity of the optimization problem significantly. In the expression for Euler buckling, 
(2), the same areas figure as denominators on both sides of the expression; therefore, the 
critical force load (3) can be used as the buckling constraint to minimize calculation. Then,   
the constraint is used as given in (4). 
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where σAi is the axial compression stress of the ith bar element, and σKi is the critical buckling 
stress of the ith element; FAi

comp is the axial compression force, FKi is Euler’s critical load of 
the ith element, Ei is the ith element’s modulus of elasticity and Ii is the minimum area moment 
of inertia of the ith element’s cross-section. The condition from equation (4) is added to the 
existing constraints from equation (1).  

Experience has shown that the use of sizing optimization gives models with a large 
number of different cross-sections, which is hard to manage in practice. As stock is available 
in fixed lengths, it is desirable if more than one piece for a bar element can be cut from a 
single piece of stock. Having to purchase a large number of different cross-sections of stock is 
therefore potentially more expensive and wasteful. With the goal of achieving the most 
practically applicable model from optimization, the authors of this paper suggest the use of a 
new constraint which limits the number of different cross-sections used. Such a constraint 
increases the complexity of solving the already multi-modal discontinuous function. The 
mathematical formulation for this constraint is given as: 
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where AG
n is the cross-section geometry area of the nth element, m is the cardinal of the cross-

section area geometry set, and mmax is the maximal allowed number of different cross-
sections. In the original software developed for the purpose of this research, two variable sets 
were created for sizing optimization. The first set includes m variables which can each adopt a 
cross-section diameter from the list of available profiles. The second set of variables assigns 
the cross-sections to each bar from the previous set of variables. This way, the constraint set 
by (5) is always satisfied. In this paper, in order to see the influence of limiting the number of 
different cross-sections, the first set of variables was forced to have all different cross-sections 
selected, and the second was forced to have at least one of each different cross-section from 
the set. This means that the inequality in expression (5) is set to an equality, and that there are 
mmax different first variables. 

This type of constraint has never been used in papers published to date. This research 
aims to show the influence of adding such a constraint to 2D and 3D truss examples 
depending on the number of different cross-sections allowed. Some of the most frequently 
used sizing optimization problems in the literature are 10, 17, and 25-bar truss problems. 
These examples were previously analysed in [12], where the authors, using the same models 
with continuous cross-section variables, showed the influence of adding the Euler buckling 
constraints. The addition of the Euler buckling constraints to truss structural optimization 
problems ensures that the optimal truss configurations can stay in the elastic zone and 
maintain stability. This research will use discrete values for cross-section areas as well as 
buckling and other constraints given in the examples.  

2.2 Examples 
A 10-bar truss problem setup and the node layout are shown in Figure 1. Truss elements 

are made of aluminium 6063-T5, whose characteristics are: Young modulus of 68947 MPa 
and density of 2.7g/cm3. Two load cases are tested, the first load case (LC1) has point loads of 
P1=444.82 kN, P2=0 kN, and the second load case (LC2) has point loads of P1=667.233 kN 
and P2=222.411 kN, Figure 1. Optimization is limited with a maximal displacement of 
±0.0508 m of all nodes in all directions, axial stress of ±172.3689 MPa for all bars, and the 
Euler buckling constraints for all bars. A discrete set of variables for full round cross-sections 
made of aluminium 6063-T5 was compiled from available standard dimensions acquired from 
several vendors. There are 50 possible cross-section profile diameters ranging from 12 mm 
(1.131 cm2) to 356 mm (995.382 cm2). 
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A 17-bar truss problem setup and the node layout are shown in Figure 2. Material 
characteristics for all elements are: Young modulus of 206842.719 MPa, and density of 
7.4g/cm3. A load of 444.82 kN is applied in node 9, as shown in Figure 2. The optimization is 
constrained by a displacement limitation of ±0.0508 m for all nodes, in both x and y 
directions, and by the Euler buckling constraints for all bars. This example does not have a 
fixed stress constraint. A discrete set of variables for full round cross-sections of this steel was 
compiled from available standard dimensions acquired from several vendors. There are 49 
possible cross-section profile diameters ranging from 6mm (0.283 cm2) to 250 mm 
(490.894 cm2). 

        
 Fig. 1  10-bar truss problem setup Fig. 2  17-bar truss problem setup 

A 25-bar truss problem setup and the node layout are shown in Figure 3. Material 
characteristics for all elements are the same as for the 10-bar truss example, as well as the 
cross-section variable set. Force vectors in nodes are as follows: node 1 (4.448, -44.48, -
44.48) kN, node 2 (0, -44.48, -44.48) kN, node 3 (2.224, 0, 0) kN, and node 6 (2.6688, 0, 0) 
kN. The space truss cross-sections are grouped as follows: 1 (A1), 2 (A2 – A5), 3 (A6 – A9),  
4 (A10 – A11), 5 (A12 – A13), 6 (A14 – A17), 7 (A18 – A21), and 8 (A22 – A25). Optimization is 
limited by a tensile stress limit of 40kN for all bar groups and a maximal displacement of 
±0.00889m for all nodes in all directions.  

 
Fig. 3  25-bar truss problem setup 
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3. Results 
As conventional optimal solutions give a large number of different cross-sections, 

results of each limited optimal model are compared to both the optimal solution and a solution 
which uses only one cross-section.  

For the 10-bar truss model, the optimal weights of limited models and their differences 
from the optimal solution and single cross-section models are given in Tables 1 and 3 for load 
cases 1 and 2, respectively. 

Table 1  Optimal weights and differences for the 10-bar truss problem LC1 
No. of different cross-

sections Weight / kg Difference from the solution with a 
single cross-section Difference from the optimal solution 

1 13089.261 - 172.936% 

2 6752.918 48.409% 40.811% 

3 5924.592 54.737% 23.539% 

4 5643.872 56.882% 17.685% 

5 5552.247 57.582% 15.775% 

6 5292.524 59.566% 10.359% 

7 5251.098 59.882% 9.495% 

8 4795.734 63.361% - 

9 5223.248 60.095% 8.914% 

10 5506.26 57.933% 14.816% 

The cross-section areas of all bars for each model are given in Tables 2 and 4, for load 
cases 1 and 2, respectively.  

Table 2  Cross-section areas of optimal models for the 10-bar truss problem LC1 

Bar number 
Cross-section areas /cm2 for models constrained to specific numbers of different cross-sections 

1 2 3 4 5 6 7 8 9 10 

1 452.389 452.389 452.389 452.389 415.476 415.476 415.476 78.540 415.476 452.389 

2 452.389 452.389 314.159 201.062 201.062 153.938 153.938 15.904 181.458 153.938 

3 452.389 78.540 78.540 78.540 78.540 23.758 23.758 415.475 33.183 23.758 

4 452.389 78.540 78.540 78.540 78.540 44.179 63.617 240.528 113.097 38.485 

5 452.389 78.540 78.540 78.540 78.540 113.097 113.097 1.131 86.590 113.097 

6 452.389 78.540 78.540 78.540 78.540 23.758 23.758 15.904 7.069 28.274 

7 452.389 78.540 78.540 78.540 78.540 113.097 95.033 122.718 86.590 122.719 

8 452.389 78.540 78.540 78.540 78.540 113.097 95.033 415.476 103.869 103.869 

9 452.389 452.389 452.389 452.389 452.389 380.133 380.133 103.869 380.133 380.1327 

10 452.389 452.389 314.159 314.159 314.159 380.133 380.133 181.458 346.361 415.476 

Weight /kg 13089.261 6752.918 5924.592 5643.872 5552.247 5245.509 5251.098 4795.734 5223.248 5506.26 

For the 17-bar truss model, the optimal weights of limited models and their differences 
from the optimal solution and single cross-section models are given in Table 5. Table 6 shows 
the optimal cross-section areas for the bars. 
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Table 3  Optimal weights and differences for the 10-bar truss problem LC2 
No. of different 
cross-sections Weight / kg Difference from the solution with a 

single cross-section Difference from the optimal solution 

1 13089.26 - 211.954% 

2 6623.126 49.400% 57.848% 

3 5630.351 56.985% 34.187% 

4 5258.692 59.824% 25.329% 

5 4977.002 61.976% 18.616% 

6 4508.238 65.558% 7.444% 

7 4442.876 66.057% 5.886% 

8 4263.527 67.427% 1.612% 

9 4229.672 67.686% 0.805% 

10 4195.899 67.944% - 

Table 4  Cross-section areas of optimal models for the 10-bar truss problem LC2 

Bar number 
Cross-section areas /cm2 for models constrained to specific numbers of different cross-sections  

1 2 3 4 5 6 7 8 9 10 

1 452.389 452.389 452.389 415.476 415.476 452.389 452.389 380.133 415.476 415.476 

2 452.389 452.389 226.980 254.469 226.980 283.529 283.529 283.529 254.469 254.469 

3 452.389 452.389 56.745 56.745 56.745 103.869 86.590 86.590 63.617 63.617 

4 452.389 70.882 56.745 56.745 33.183 9.621 9.079 9.079 12.566 12.566 

5 452.389 70.882 226.980 103.869 103.869 70.882 70.882 70.882 122.718 122.718 

6 452.389 70.882 56.745 56.745 33.183 33.183 28.274 28.274 3.142 3.142 

7 452.389 70.882 56.745 56.745 56.745 33.183 28.274 28.274 33.183 33.183 

8 452.389 70.882 56.745 103.869 103.869 103.869 113.097 113.097 103.869 103.869 

9 452.389 452.389 226.980 415.476 415.476 452.389 452.389 452.389 314.159 314.159 

10 452.389 70.882 452.389 254.469 226.980 9.621 9.079 9.079 122.718 113.097 

Weight / kg 13089.261 6623.126 5630.351 5258.692 4977.002 4508.238 4442.876 4263.527 4229.672 4195.899 

Table 5  Optimal weights and differences for the 17-bar truss problem 
No. of different 
cross-sections Weight / kg Difference from the solution with a 

single cross-section Difference from the optimal solution 

1 3181.777 - 102.419% 

2 2047.368 35.653% 30.250% 

3 1836.005 42.296% 16.803% 

4 1774.722 44.222% 12.905% 

5 1692.007 46.822% 7.643% 

6 1675.086 47.354% 6.566% 

7 1572.28 50.585% 0.026% 

8 1571.875 50.598% - 

9 1710.898 46.228% 8.844% 

10 1688.375 46.936% 7.412% 
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Table 6  Cross-section areas of optimal models for the 17-bar truss problem 

Bar number 
Cross-section areas /cm2 for models constrained to specific numbers of different cross-sections 

1 2 3 4 5 6 7 8 9 10 

1 86.590 44.179 44.179 44.179 44.179 44.179 44.179 44.179 44.179 44.179 

2 86.590 44.179 44.179 44.179 23.758 23.758 23.758 23.758 23.758 23.758 

3 86.590 86.590 86.590 86.590 86.590 86.590 86.590 86.590 95.033 95.033 

4 86.590 44.179 44.179 44.179 23.758 23.758 0.503 0.503 23.758 11.341 

5 86.590 44.179 44.179 44.179 56.745 56.745 56.745 56.745 38.485 38.485 

6 86.590 44.179 44.179 44.179 23.758 23.758 23.758 23.758 23.758 23.758 

7 86.590 86.590 86.590 86.590 86.590 86.590 86.590 86.590 86.590 86.590 

8 86.590 44.179 44.179 38.485 23.758 23.758 0.283 0.283 0.283 0.503 

9 86.590 86.590 44.179 38.485 38.485 38.485 38.485 38.485 78.540 78.540 

10 86.590 44.179 44.179 38.485 38.485 38.485 38.485 38.485 38.485 38.485 

11 86.590 86.590 56.745 56.745 56.745 56.745 56.745 56.745 78.540 78.540 

12 86.590 44.179 44.179 38.485 38.485 38.485 38.485 38.485 38.485 38.485 

13 86.590 44.179 44.179 38.485 38.485 38.485 38.485 38.485 38.485 38.485 

14 86.590 44.179 44.179 44.179 44.179 44.179 44.179 44.179 44.179 44.179 

15 86.590 44.179 44.179 44.179 56.745 50.265 50.265 50.265 50.265 50.265 

16 86.590 44.179 44.179 44.179 56.745 56.745 56.745 56.745 50.265 50.265 

17 86.590 86.590 56.745 56.745 56.745 56.745 50.265 50.265 56.745 56.745 

Weight / kg 3181.777 2047.368 1836.005 1774.722 1692.007 1675.086 1572.28 1571.875 1710.898 1688.375 

For the 25-bar space truss model, the optimal weights of limited models and their 
differences from the optimal solution and single cross-section models are given in Table 7. 
Table 8 shows the optimal cross-section areas for the bar groups according to the number of 
different cross-sections of the model.  

Table 7  Optimal weights and differences for the 25-bar truss problem 

No. of different cross-sections Weight / kg Difference from the solution 
with a single cross-section 

Difference from the optimal 
solution 

1 1007.379 - 46.611% 

2 819.530 18.647% 19.272% 

3 770.276 23.537% 12.104% 

4 736.686 26.871% 7.215% 

5 703.108 30.204% 2.328% 

6 702.455 30.269% 2.233% 

7 697.573 30.754% 1.523% 

8 687.111 31.792% - 

The differences in weight from the optimal solution for each limited number of different 
cross-sections, for all examples, are shown in Figure 4 with an expanded view in order to 
better illustrate the values. 
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Table 8  Bar group cross-section areas of optimal models for the 25-bar truss problem 

Bar group 
Cross-section areas /cm2 for models constrained to specific numbers of different cross-section groups  

1 2 3 4 5 6 7 8 9 10 

1 44.179 33.183 44.179 4.909 3.142 1.131 1.131 1.131 44.179 33.183 

2 44.179 33.183 44.179 33.183 23.758 28.274 23.758 23.758 44.179 33.183 

3 44.179 33.183 33.183 28.274 38.485 33.183 33.183 33.183 44.179 33.183 

4 44.179 33.183 4.909 4.909 3.142 1.131 1.131 2.011 44.179 33.183 

5 44.179 33.183 4.909 33.183 3.142 4.909 15.904 4.909 44.179 33.183 

6 44.179 33.183 33.183 28.274 28.274 28.274 28.274 28.274 44.179 33.183 

7 44.179 33.183 33.183 33.183 38.485 38.485 38.485 38.485 44.179 33.183 

8 44.179 50.265 44.179 50.265 44.179 44.179 44.179 44.179 44.179 50.265 

Weight / kg 1007.379 819.530 770.276 736.686 703.108 702.455 697.573 687.111 1007.379 819.530 

 
Fig. 4  Differences from optimal solutions without a limited number of cross-sections used. 

All optimizations were conducted a number of times, and the best solutions for each 
setup were selected as representative choices in the results. It should be noted that due to the 
increased complexity of the added forced constraints, convergence was difficult, and the 
termination criteria for the optimization method had to be considered in order to avoid local 
optima. The termination criterion was therefore set as a maximum stagnant population. The 
optimization method used was a genetic algorithm, GA, due to the availability of the software 
and the abundance of use in the literature. 

Results show a substantial decrease in weight in all models when going from using only 
a single cross-section to using two different sizes. This is, namely, due to the influence of the 
Euler buckling constraint which warrants larger cross-section areas for bars subjected to axial 
compressive forces. By precisely determining the number of different cross-sections which 
can be used, the results presented here were much more difficult to optimize. For the 17-bar 
truss, the examples were only run for a maximum number of 10 different cross-sections, as 
the optimal number of 8 different cross-sections is already a large number. It can be seen that 
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once the optimal number of cross-sections is exceeded, the weight of the optimized models 
begins to increase again. This is due to the fact that the model must use larger, available cross-
sections where it would normally use the same areas as with another bar which is similarly 
loaded. 

4. Conclusion 
Most research studies published in recent years in the field of truss structural 

optimization are focused on optimization algorithm performances. In engineering practice, 
designed trusses use a few different cross-sections. In the literature, the sizing optimization 
generally gives optimal results without limiting the number of used cross-section sizes; this 
result in structures which use a large, impractical, number of different cross-section profiles. 
In this paper, examples of planar 10 and 17-bar trusses, as well as of a 25-bar space truss, 
were optimized using discrete sizing variables. In addition, buckling constraints were added to 
those of the standard examples in order to ensure structural integrity. The new constraint, 
which limits the number of cross-section profiles that the optimization can use in a single 
solution, is intended for making the results of truss design optimization directly applicable in 
practice. 

The 10-bar truss problem was optimized for two different load cases. The results show 
that the optimal number of different cross-sections for the sizing optimization of these trusses 
is 8 or more. This corresponds to other examples of discrete sizing optimization solutions 
found in the literature. In practice, one to four different cross-sections would be used on these 
types of constructions because an increased number of different bar cross-sections increases 
the complexity of the calculations and assembly, as well as potential costs due to a larger 
amount of unused stock. This research presents the optimal results obtained using the novel 
constraint which limits the number of different cross-section profiles that the optimal solution 
can have. 

Two differences were considered in this research in terms of the weight difference with 
respect to the number of different cross-section profiles used. The first is the difference in 
weight from the solution with a single profile, and the other is the difference from the optimal 
solution without a limited number of different cross-section profiles. For the 10-bar truss in 
LC1, an optimal weight of 4795.734kg is achieved with 8 different cross-sections, or 
63.361% less than with the single profile model. In LC2, the optimal weight is achieved with 
all bars using different cross-sections; the weight is 4195.899kg, which is 67.944% less than 
with the single profile model. The 17-bar truss gives an optimal weight of 1571.875kg, with  
8 different cross-section profiles without the new constraint, which is 50.598% less than with 
the single cross-section profile model. The 25-bar truss is specific not only because it is a 
space truss, but also because the bars are grouped. The optimal weight for this model is 
687.111kg with all 8 different cross-section profile group areas, giving a model 31.792% 
lighter than its single profile counterpart. 

In order to determine how much heavier the models with a limited number of cross-
sections would be, the optimal mass of the models with a limited cross-section were 
compared to the optimal solution without this constraint. For the 10-bar truss in LC1, the 
model with 6 different cross-section profiles has ~10% (10.359%) greater weight, while that 
with 3 different cross-section profiles has a weight which is greater by ~20% (23.539%) than 
the optimum, where 8 different cross-section profiles are used. For the 10-bar truss in LC2, 
the model with 6 different cross-section profiles has <10% (7.444%) greater weight and that 
with 5 different cross-section profiles <20% (18.616%) greater weight than the optimum, 
where 10 different cross-section profiles are used. The 17-bar truss with 4 different cross-
section profiles has <10% (7.643%) greater weight, while that with 3 different profiles has a 
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weight which is greater by <20% (12.905%) than the optimum, where 8 different cross-
section profiles are used. The 25-bar truss with 3 different cross-section profile bar groups 
weighs by ~10% (12.104%) more, while that with 2 different cross-section profiles used in 
bar groups weighs by <20% (19.272%) more than the optimal model, where 8 different cross-
section profile groups are used.  

The approximate 10% and 20% differences from the optimum without the constrained 
number of different cross-sections were used in order to find the average number of different 
cross-section profiles which are used within this range; subsequently, it is used to determine a 
recommendation for the mmax constraint from expression (3). The average number of different 
cross-section profiles used in this range is 4. This being a reasonable number for practical 
application, the authors recommend its use in sizing optimization problems as a new 
constraint in order to achieve optimal solutions which are more practically applicable.  
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