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Abstract

Convective weather conditions limit airspace capacity and increase the complexity of air traffic. Currently, air nav-
igation service providers calculate sector capacity using air traffic controller workload as reference. The aim of the 
research is to propose a method for predicting sector capacity in convective weather using air traffic complexity 
model. In this proposal existing air traffic complexity model should be remodeled to enable finer resolution of com-
plexity results. Also, the model should be upgraded with a new type of indicator showing aircraft-weather interactions. 
The adopted air traffic complexity model, in combination with the trajectory prediction model and the Weather En-
semble Forecast, should be able to provide a statistical characterisation of sector capacity under impending convec-
tive weather conditions.
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1. Introduction

One of the main goals of air traffic development in Eu-
rope is to increase capacity in order to meet traffic de-
mand while maintaining the necessary levels of safety 
and efficiency. In the second quarter of 2018, traffic 
growth of 3.5% was recorded, which is considered a high 
growth rate [1][2]. Up to 2040, traffic growth of 1.9% 
per year is forecasted for a regulated growth scenario, 
while the global growth scenario forecasts growth of 
2.7% per year [3].

In order to meet the traffic demand, it is necessary to 
increase the airspace capacity. Reducing the air traffic 
complexity is one of the ways of increasing airspace ca-
pacity. The first published papers researching air traffic 
complexity date from 1960s [4] when Davis et al. stud-
ied effect of traffic density, traffic mixture and number 
of terminal areas on air traffic controller. Since the con-
cept of air traffic complexity has not been clearly defined 
until recent years, most of early research is based on 
controller workload. It is important to emphasize that air 
traffic complexity is not the same as air traffic controller 
workload: rather, these concepts are closely related and 
directly interdependent. Schmidt [5] approached the 
problem of complexity from the perspective of controller 
workload. He created the control difficulty index, which 
can be calculated as a weighted sum of the expected 
frequency of occurrence of events that affect controller 
workload. Each event is given a different weight deter-
mined by the time the controller needed to perform the 
task. Hurst and Rose [6] calculated the correlation be-
tween workload and traffic density and proved that only 
53% of the variance in reported workload ratings can be 
explained by traffic density. Stein [7] used Air Traffic 

Workload Input Technique (ATWIT), in which control-
lers reported workload levels during the simulation to 
determine which of the workload variables mostly af-
fected the workload. Regression analysis proved that out 
of five starting variables, four variables (localized traffic 
density, number of handoffs outbound, total amount of 
traffic, number of handoffs inbound) could explain 67% 
of variance in ATWIT scores. These variables are also 
the first defined complexity indicators in literature. In 
further research, the number of indicators only increased. 
Kopardekar et al. [8] successfully validated additional 
35 indicators, and the same group of researchers demon-
strated that only 17 indicators were statistically signifi-
cant for the calculation of complexity [9]. Masalonis et 
al. [10] reduced the number of indicators to 12 by refer-
ring to probability, predictability, and validity of the giv-
en indicator. Klein et al. [11] selected only seven from 
those 12 indicators by weighting them and using linear 
regression.

EUROCONTROL experimental center published a de-
tailed complexity study of the Maastricht upper airspace 
centre [12] in which various complexity indicators were 
analyzed. Also, in 2006, the EUROCONTROL Perfor-
mance Review Commission published a final report de-
fining complexity metrics for air navigation service pro-
viders benchmarking [13]. In concept of dynamic 
demand capacity balancing it is suggested that short-
term air traffic flow and capacity measures (short-term 
ATFCM measures) can be used to influence complexity 
[14]. The proposed short-term ATFCM measures include 
short notice ground regulations, ground delay, Take Off 
Not Before, Take Off Not After, re-routing, change in 
standard instrument departure, flight level reassignment/ 
level capping, and speed regulation. EUROCONTROL 
continues further exploration of the complexity through 
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the SESAR PJ.09 project and the first phase will end by 
the end of October 2019.

So far only Krozel et al. [15] have carried out research 
on the impact of convective weather on the air traffic 
complexity. In their research traffic complexity is ex-
pressed as a function of velocity variance and traffic 
density. However, there are many studies that explore the 
impact of convective weather on flight trajectory, air 
traffic controller workload, airspace sectorization and air 
traffic capacity, which is essentially the core of air traffic 
complexity and complexity reduction measures. Nilim et 
al. [16] were one of the first to describe the impact of 
convective weather on the aircraft using Markov deci-
sion process and dynamic programming to minimize fuel 
burn and trip cost or to maximize profit and safety. De-
Laura et al. [17] used trajectory data of aircraft flown 
through convective weather to develop a model for pre-
dicting pilot decisions and aircraft trajectories in the 
three-dimensional space. McNally et al. [18] proposed a 
weather avoidance system for near-term trajectory-based 
operations. Considering the shortcomings of previous 
research, Hentzen et al. [19] proposed a method for mod-
elling the uncertain development of thunderstorms and 
combined the developed method with an optimal trajec-
tory planning algorithm based on the reach-avoid meth-
od. Although all studies on controller workload indicate 
that with degrading weather, workload increases, Cho et 
al. [20] were the first to use regression analysis for de-
veloping a model which calculates airspace capacity 
based on controller workload during convective weather. 
Welch et al. [21] upgraded the controller workload cal-
culation model and repeated the regression process on a 
new set of data. The result of the regression process is 
more accurate capacity prediction in all sectors and un-
der all-weather conditions.

Hadley and Sollenberger [22] were the first to combine 
dynamic sectorization and convective weather by de-
signing by designing a convective weather scenario in 
their study of the effects of dynamic rectorization on air 
traffic controllers. Klein et al. [23] demonstrated that 
dynamic sectorization, together with rerouting can even-
ly distribute sector occupancy and reduce its peak load. 
In all previous research dynamic sectorization was ap-
plied to two-dimensional space, i.e. the horizontal plane. 
Klein et al. [24] published a method of dynamic sector-
ization in three-dimensional space.

Even though Schmidt [5] tried to determine the capacity 
of airspace through the controller workload, Mitchell at 
al. [25] were the first to determine the distribution of 
potential airspace capacity with given probabilistic 
weather forecast. Krozel et al. [15] published a compre-
hensive survey assessing airspace capacity in convective 
weather. In their paper four specific types of traffic flows 
were considered passing through defined airspace in two 
operational concepts (free flights and centralized pack-
ing systems).

2. Air traffic complexity

Meckiff et al. defined air traffic complexity as a difficulty 
of monitoring and managing a specific air traffic situation 
[26]. Complexity is not synonymous with workload, al-
though it has been proven on several occasions that in-
creasing complexity leads to an increase in workload, 
which in turn limits the capacity of the airspace sector.

Since complexity is a psychological construct, the best 
estimate of complexity in any traffic situation is the value 
given by the air traffic controller. By observing traffic data 
the air traffic controller can evaluate and determine if the 
traffic situation is complex or not. The main problem with 
expert-based evaluation is inconsistency between asses-
sors. Different assessors can give different complexity 
values for the same traffic scenario. This is the main rea-
son why new methods for complexity estimation are de-
veloped without human input. Such methods should be 
validated by comparing them with the experts.

There are three main groups of methods for determining 
air traffic complexity:

• Expert-based air traffic complexity estimation – as 
mentioned above, it is a method where experts, in 
most cases an air traffic controller, gives their estima-
te of air traffic complexity.

• Indicator-based air traffic complexity estimation – it 
is method were air traffic complexity is determined 
using a set of indicators derived from air traffic data.

• Interaction-based air traffic estimation – it is a method 
where air traffic complexity is described as number 
of interactions between different aircraft within given 
airspace cell (this method could also be defined as a 
very narrow indicator-based air traffic complexity 
estimation where complexity is estimated using a very 
small number of indicators).

It further explains only the interaction-based air traffic 
estimation, as this method is also used by the EURO-
CONTROL Performance Review Unit (PRU).

3. Interaction-based air traffic complexity 
 model

As already mentioned, interaction-based air traffic esti-
mation is a method that attempts to enumerate all aircraft 
to aircraft interactions in the defined airspace. The inter-
actions are sorted according to the complexity dimen-
sions that they attempt to describe. This method was 
proposed in 2006 by EUROCONTROL Performance 
Review Commission in the final report defining com-
plexity metrics for air navigation service providers 
benchmarking [13]. The developed method is used by 
the PRU to calculate the complexity for each air naviga-
tion service provider (ANSP) on annual basis and it is 
one of the indicators for evaluating the effectiveness of 
ANSPs.
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3.1. PRU complexity model

In order to quantify complexity, the EUROCONTROLs 
working group has defined complexity dimensions that 
separately describe the characteristics of an air traffic 
management system, and to the greatest extent affect the 
complexity experienced by the controller. The complex-
ity dimensions are classified into three groups; traffic 
characteristics, airspace and external constraints. Each 
dimension of complexity is described by a set of indica-
tors. The working group extracted four dimensions from 
the identified complexity dimensions and indicators, 
each with one indicator. Selected dimensions and indi-
cators have the greatest influence on the route complex-
ity. Complexity dimensions and their indicators are list-
ed in Table 1.

Table 1. Different microreactor types based on specific characte-
ristics

Complexity 
Dimension Complexity Indicator

Traffic density Adjusted density

Traffic in evolution Potential vertical interactions (VDIF)

Flow structure Potential horizontal interactions (HDIF)

Traffic mix Potential speed interactions (SDIF)

Complexity indicators were calculated using a grid of 
identical 4D cells laid over the desired airspace. As 
shown in Figure 1, each 4D cell is 20 [nm] wide, 20 [nm] 
long and 3000 [ft] high, and within the cell there is flight 
movement data for 60 minutes. The time interval of the 
data is one day, which means that each day has 24 data 
sets for each cell (one set for each hour).

Due to the different overlap limits of different airspaces 
and cell boundaries, a boundary effect occurs where 
some aircraft are not taken into account in the complex-
ity calculation. To avoid the border effect associated with 
using the grid, the grid is moved four times horizontally 

and three times vertically. The horizontal shift is by 10 
[nm] and the vertical shift is by 1000 [ft].

Aircraft interaction is the interaction of two aircraft in a 
single cell. Each pair of planes in a cell forms two inter-
actions. Therefore, when two planes are in a cell, there 
are two interactions in a cell, but when three planes are 
in a cell, then there are six interactions in that cell. As 
indicated in Table 1, there are three types of interaction.

Potential vertical interactions (rVdif) – It is expressed 
as the duration of potential vertical interactions (in 
hours) per flight hour. Two aircraft are considered to 
interact vertically if both are present in the same cell and 
have different flight phases (one is in climbing and the 
other is in cruise or any other combination of climbing, 
descending and cruising). Flight phase of each aircraft 
is determined when aircraft enters the cell, an aircraft is 
considered to be in a descending or climbing phase if its 
rate of change is greater than 500 feet per minute.

Potential horizontal interactions (rHdif) – It is expressed 
as the duration of potential horizontal interactions (in 
hours) per flight hour. Two aircraft are considered to 
interact horizontally if both are present in the same cell 
and their flight direction differs by more than 20 °.

Potential speed interactions (rSdif) – It is expressed as the 
duration of potential velocity interactions (in hours) per 
flight hour. Two aircraft are considered to be in speed 
interaction if both are present in the same cell and have a 
difference in speeds greater than 35 knots. Cruise speeds 
for each aircraft were taken from the EUROCONTROL 
Base of Aircraft Data (BADA) aviation database.

Forth indicator is Adjusted density – the adjusted densi-
ty is defined as the ratio of sum of aircraft interaction 
time and sum of aircraft flight time.

Air traffic complexity is the product of adjusted density 
and the sum of potential vertical, horizontal and speed 
interactions. The calculation of air traffic complexity is 
given in equation 1.

 Complexity Adjusted density= � *  
 rVdif rHdif rSdif� �� �  

(1)

3.2. Model improvements

The current PRU complexity model was developed for 
the macroscopic evaluation of various ANSPs. As such 
it is not precise enough for the microscopic evaluation 
of different sectors within an airspace. To adopt the cur-
rent PRU model for microscopic complexity calcula-
tions, the following changes must be made:

• Resizing of cell dimensions

• Shortening time window

As the PRU complexity model was developed to calcu-
late air traffic complexity across the European airspace, 
the cell size (20 x 20 [nm]) was designed to reduce the 
calculation time. Smaller countries, such as Croatia, cov-Fig. 1. Cell dimensions
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er a relatively small volume of airspace. If the current 
model were applied to calculate the complexity of sec-
tors in such an airspace, some sectors would have a small 
number of cells. A small number of cells is not sufficient 
to locate traffic hotspots within the sector or to calculate 
the weather effect. To allow a better spatial resolution of 
the complexity measurement, the horizontal dimensions 
of cells will be reduced. Further research will investigate 
the reduction of the cell size to 5 by 5, 7 by 7, 10 by 10 
and 15 by 15 [nm].

Convective weather conditions are of short duration. On 
average, life cycle of cumulonimbus (CB) is 30 minutes. 
Considering that time frame of PRU complexity model is 
one hour, a CB cloud could form and dissipate within a time 
frame. To allow a better temporal resolution, the time frame 
should be shortened. According to EUROCONTROL [13] 
in their sensitivity analysis, different time frames had very 
little effect on the ranking of the centers. The smaller time 
frames also increased the required computation time. But 
for microscopic analysis, smaller time frames should allow 
the localization of peaks in the complexity of air traffic and 
the possible localization of convective weather.

Even though some indicators are affected by convective 
weather, e.g. rHdif will increase due to weather avoiding, 
impact of convective weather on complexity is much 
higher than indicated by rHdif. To determine the complex-
ity of convective weather conditions, model should be 
upgraded with another indicator which would relate to 
aircraft-weather interactions. The weather interaction in-
dicator can be expressed as the ratio of the duration of 
weather interaction and flight time. Aircraft would be con-
sidered for weather interaction if it is in convective weath-
er occupied cell or it is flying in close proximity.

4. Capacity prediction

The calculation of sector capacity is currently based on air 
traffic controller (ATCO) workload. At sector level, capac-
ity is obtained by measuring or calculating how much time 
ATCO has actively worked in one hour. Due to safety 

concerns the maximum allowable workload of ATCO is 
70% of the calculated workload. According to Mogford et 
al. [27] complexity is a source factor for controller work-
load. However, complexity and workload are not directly 
linked. Their relationship is mediated by several other 
factors, such as equipment quality, individual differences, 
and controller cognitive strategies. If all mediating factors 
remain constant, complexity can be used as proxy measure 
of workload or capacity. Under such conditions, traffic 
situations of higher complexity will have a higher work-
load than traffic situations of lower complexity. Sector 
capacity in convective weather conditions is even harder 
to calculate due to uncertainties caused by constantly 
changing weather and mitigating measures taken by pilots. 
As mentioned in the introduction, DeLaura et al. [17] de-
veloped a model that predicts pilots’ mitigating actions in 
convective weather conditions. In their work they pro-
posed a set of weather-based indicators upon which the 
model determines pilot actions. Since their work is based 
on historic traffic data in the USA from 2000s it is recom-
mendable to recalculate the indicators in future research. 
The indicators should be recalculated in the light of ad-
vances in aircraft avionics and weather radar, as pilots’ 
actions may not be the same as at the time of data record-
ing. In order to ensure safe separation from other aircraft, 
the ATCOs must give each pilot permission to avoid ac-
tion. To allow pilots to avoid action, ATCO must evaluate 
pilots desired trajectory and confirm that it doesn’t create 
conflict with other aircraft. Such tasks require a lot of time, 
so that the workload of the ATCOs is significantly in-
creased and the capacity reduced.

Sector capacity in convective weather conditions should 
be predicted using Ensemble Weather Forecasts (EWF). 
EWF is a set of forecasts created with multiple weather 
simulations where each simulation has slight variation 
of its initial conditions. Sector capacity should be calcu-
lated for each weather forecast in EWF and the calcula-
tion of sector capacity should employ the above-men-
tioned trajectory prediction model and the improved 
complexity prediction model in its calculation method. 
All results from capacity calculation should be statisti-
cally characterized (Fig. 2).

Fig. 2. Sector capacity prediction
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5. Conclusions

By applying an improved air traffic complexity assess-
ment method to the current trajectory prediction model, it 
is possible to increase the reliability of sector capacity 
prediction. Using such a method with Ensemble Weather 
Forecast will allow statistical characterization of predicted 
capacity in uncertain convective weather conditions.

To enable such a prediction, the current air traffic com-
plexity model should be modified to calculate complex-
ity at microscopic level with finer spatial and temporal 
resolution. Also, air traffic complexity model needs to 
be improved with a new indicator that will enable quan-
tification of aircraft-weather interaction.

In further development, the developed method for calculat-
ing sector capacity will be used to optimize the sector open-
ing scheme. For each forecast given by EWF it is possible 
to propose ideal sector opening schemes. With such a set 
of data Flow Manager Position (PMF) will be given pre-
pared opening schemes for the person who created the fore-
cast. Such information enables him to be better prepared 
for the upcoming traffic flow. Such information will enable 
him to be more prepared for the upcoming traffic flow.

Another application of predicted sector capacity is to help 
FMP decide which measures to apply to balance demand 
capacity. Demand capacity balancing measures are ac-
tions implemented by the FMP to reduce or balance work-
load of ATC. The proposed method can be used to deter-
mine which measure would have the minimum impact on 
aircraft operating costs and the environment in order to 
maintain maximum traffic flow in a given airspace.. The 
most commonly used measures are sectorisation and 
changes in sector configuration, as the addition of more 
ATC does not have a negative impact on aircraft. But in 
situations where resources are limited, FMPs use meas-
ures such as short term air traffic flow and capacity man-
agement measures (STAM). As stated in the introduction 
STAM measures include short notice ground regulations, 
ground delay, Take Off Not Before, Take Off Not After, 
re-routing, change in standard instrument departure, flight 
level reassignment, level capping, and speed regulations. 
The complexity model can be used to determine the effect 
of various measures on air traffic complexity. With such 
calculations it is possible to determine an almost optimal 
set of measures to reduce the initial complexity and thus 
help FMT to increase or balance the capacity.
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