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ABSTRACT
In order to optimize the spare parts supply network, 

a multi-objective optimization model is established with 
the objectives of the shortest supply time, the lowest risk, 
and the minimum supply cost. A decomposition-based 
multi-objective evolutionary algorithm with differential 
evolution strategy is introduced to solve the multi-objec-
tive model. A series of non-dominated solutions, that is, 
representing the optimal spare parts supply schemes are 
obtained. In order to comprehensively measure the per-
formance of these solutions, suitable quantitative metrics 
are selected, and the secondary goal-based cross-effi-
ciency Data Envelopment Analysis (DEA) model has 
been used to evaluate the efficiency of the obtained op-
timal schemes. The improved DEA model overcomes the 
problems that the efficient units cannot be sorted and the 
optimal weight is not unique in traditional DEA model. 
Finally, the self-evaluation efficiency and cross-evalua-
tion efficiency of each scheme are obtained, and the op-
timal supply scheme is found based on their cross-eval-
uation efficiency.

KEY WORDS
spare parts supply; multi-objective optimization; 
data envelopment analysis; cross-efficiency;

1. INTRODUCTION
The optimization problem of spare parts supply 

needs to consider many factors, such as time, risk, 
cost, and so on [1]. The optimization objectives 
are multiple, so the corresponding model is diffi-
cult to be solved. Therefore, the optimization and  

decision-making of spare parts supply are critical 
and a difficult issue for industry manufacture and 
maintenance.

At present, most of the research work is focused 
on spare parts supply network optimization. Wei 
et al. studied the wartime spare parts scheduling 
model under the condition of insufficient resourc-
es. They took the earliest supply start time and the 
least transfer line as objectives, and the multi-ob-
jective model was transformed into single-objective 
optimization by the weighting method [2]. Liu et 
al. established a multi-stage spare parts supply sup-
port planning model under the typical three-stage 
supply network, and established an unconstrained 
single-objective optimization model aiming at min-
imizing the spare parts shortage [3]. Zhang et al. es-
tablished a multi-objective material supply optimi-
zation model based on the credibility theory, and the 
bat algorithm was used to solve the multi-objective 
optimization problem [4]. In order to minimize the 
supply costs, Qin et al. established an optimization 
model of emergency resource allocation consider-
ing the constraints of the number of emergency re-
sources, reserve capacity, and location. The model 
was solved by using a genetic algorithm with ma-
trix real number coding [5]. Fazli et al. established 
a three-objective optimization model of emergency 
supply network in order to minimize the total sup-
ply cost and transportation time while maximizing 
the supply reliability [6]. Zhang et al. established a 
multi-objective three-stage stochastic programming 
model with the objectives of minimum lead time 
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distributed to the customers in a unified time after 
all the spare parts have arrived at the distribution 
centres. (5) The disruption risk of the supply net-
work occurs only between the distribution centres 
and customers.

2.2 Parameters
I    – index of manufacturers, i=1,2,...,I;
J    – index of distribution centres, j=1,2,...,J;
K    – index of customers, k=1,2,...,K;
Uj   – maximum capacity of distribution centre j;
Cj

open  – opening cost of distribution centre j;

Cj
inven – inventory cost of distribution centre j;

dk   – spare parts demand of customer k;
Ck

short – shortage cost of customer k;
Tk

lead  – maximum lead time of customer k;
Tij

trans  – unit transport time between manufacturer  
     i and distribution centre j;
Tjk

trans – unit transport time between distribution  
     centre j and customer k;
Cij

trans – unit transport cost between  
     manufacturer i and distribution centre j;
Cjk

trans – unit transport cost between distribution  
     centre j and customer k;
Rjk   – disruption risk between distribution centre    
     j and customer k;
decision variables
xij   – number of shipments from manufacturer 
     i to distribution centre j;
xjk   – number of shipments from distribution  
     centre j to customer k;
yj    – binary variable, 

,
,

y
if distribution centre j is open
otherwise

1
0j = )

2.3 Modelling
The first objective of the supply model is the 

minimum supply time:

min T x T xij
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The second objective is the lowest risk, which is 
formulated as follows: 
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 is step function. 

The third objective is the minimum supply costs, 
which is shown as follows: 

and costs, and adopted the substitute fuzzy auxilia-
ry variables to deal with the multi-objective model 
[7]. Mohammadi et al. took the maximum demand, 
minimum cost, and the maximum satisfaction rate 
as the objectives of their multi-objective stochastic 
programming model, and used the multi-objective 
particle swarm optimization algorithm to solve their 
model [8]. Su et al. constructed a two-objective inte-
ger linear programming model with the goal of min-
imizing the response time and emergency resource 
cost, and used the differential evolution algorithm 
to search the optimal solutions of the model [9].

It can be seen that the related research work can 
be divided into single-objective optimization mod-
el and multi-objective optimization model. The 
multi-objective optimization model is more rea-
sonable for spare parts supply; however, it is diffi-
cult to be solved and can hardly obtain the unique 
optimal solution. Therefore, this paper firstly con-
structs a multi-objective spare parts supply network 
optimization model with the objective of minimum 
supply time, risk, and costs. Secondly, an improved 
multi-objective evolutionary algorithm is used to 
solve the model, and the non-dominated feasible 
solutions are obtained. Finally, the evaluation met-
rics is calculated and these optimal solutions are 
evaluated and sorted based on their efficiency, and 
the solution with the largest cross-efficiency is the 
optimal supply scheme.

2. MULTI-OBJECTIVE SPARE PARTS 
SUPPLY OPTIMIZATION MODEL

2.1 Problem description
Spare parts supply network consists of three-ech-

elon nodes, that is, manufacturers, distribution cen-
tres, and customers. The spare parts are supplied 
from the manufacturers to the distribution centres, 
and then distributed to the customers. The proposed 
model should meet the spare parts demands with the 
shortest supply time, the lowest risk, and the least 
costs.

The spare parts supply model in this paper is 
based on the following assumptions: (1) Take a cer-
tain kind of critical spare parts as the research ob-
ject. (2) The transportation cost and transportation 
time are known and fixed. (3) The opening cost (the 
fixed cost of setting up and operating facilities), in-
ventory cost, and maximum capacity of distribution 
centres are known and fixed. (4) The spare parts are 
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an improved multi-objective evolutionary algorithm 
based on the decomposition algorithm (MOEA/D) 
to solve the model.

3.1 Tchebycheff decomposition strategy
The basic idea of MOEA/D algorithm is to de-

compose the multi-objective optimization prob-
lem into multiple single-objective optimization 
sub-problems and optimize them at the same time. 
The most common used decomposition methods 
are the weighted sum approach [10], Tchebycheff 
approach [11], penalty-based boundary intersection 
approach [12], and so on. In this paper, the Tche-
bycheff approach is adopted as the decomposition 
strategy, and the expression of the i-th sub-question 
is as follows: 

,min maxg x z f x z* *te i i
j m

j
i

j j
1

m m -=
# #

_ ^i h# -  (14)

where, i=1,2,...,N is the index of sub-question, 
N is the size of the population (also the number 
of sub-problems); j=1,2,...,M is the index of ob-
jectives, λi=(λi

1,λ
i
2,...,λ

i
M) represents the weight 

vector of the i-th sub-problem, ,1j
i

j

M

1
m =

=
/  M is 

the amount of objectives; z*=(z1
*z*

2,...,z
*
M) is the 

set of reference point vector, f(x) is the objective 
function. For the minimization problem, there is  
zj

*=min{fj(x)|x!Ω}. The principle of Tchebycheff 
decomposition strategy to ensure the popula-
tion convergence is explained in literature [13]. 
They also proved that if the individual vector 
xi is satisfied, Equation 14 with the weight vector  
λi=(λi

1,λ
i
2,...,λ

i
M), then, xi is also the Pareto optimal 

solution of multi-objective optimization problem, 
which is not discussed in this paper.

3.2 Evolution strategy
Because the sub-problems in MOEA/D are de-

fined by specific weight vectors, when the weight 
vector of the two sub-problems is similar, the Pareto 
optimal solution of the corresponding sub-problem 
is also similar. Therefore, the MOEA/D algorithm 
introduces the concept of neighbourhood, that is, 
neighbourhood B(i)=(i1,i2,...,iT) of a sub-problem 
is composed of T neighbour problems closest to it. 
The original MOEA/D algorithm selects two individ-
uals (sub-problems) from the neighbourhood of the 
sub-problem as the parent individuals, then generates 
the offspring individual by crossover and mutation. 
In this paper, the differential evolution strategy is 

min C C C C Copen inventtrans short= + + +  (3)

where, Copen is the opening cost of distribution cen-
tres, Ctrans is the transportation cost, Cinvent is the in-
ventory cost of distribution centres, and Cshort is the 
shortage cost. The costs are calculated as follows:

C C yopen
j
open

j
j J

$=
!

/  (4)
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The model satisfies the following constraints:

, , ,x y U j J1 2ij j j
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, , ,x N x N y 0 1ij jk j! ! =+ + " ,  (13)

where, Constraints 8 and 9 indicate that the closed 
distribution centres do not participate in the spare 
parts supply. They also specify that the number of 
supplied spare parts should not exceed the maxi-
mum capacity of the distribution centres. Constraint 
10 states that the spare parts demands of the custom-
ers must be met. Constraint 11 states that the output 
should not exceed the input of spare parts in each 
distribution centre. Constraint 12 specifies that the 
lead time of spare parts supply should not exceed 
the maximum allowable deadline. Constraint 13 spec-
ifies the type and range of decision variables.

3. IMPROVED MULTI-OBJECTIVE 
OPTIMIZATION ALGORITHM
The spare parts supply model developed in this 

paper is a multi-objective optimization model, and 
can be hardly solved by using the exact algorithm. 
At present, the meta-heuristic algorithm such as 
evolutionary computing and swarm intelligence are 
widely used. The meta-heuristic algorithm does not 
need prior knowledge of the optimization problem, 
and can deal with large-scale optimization problems 
in parallel computing. Therefore, this paper adopts 
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maximum number of iterations; MK is the penalty 
coefficient; xP y^ h  is constraint violation, which is 
formulated as follows:

P x xc j
j

m

1
=

=
y y^ ^h h/  (19)

where, for the inequality constraints, there is 
, ,maxc x xl0j j=y y^ _ ^h hi  where l x 0j #y^ h  is the j-th 

inequality constraint of the model; for the equality 
constraints, there is , ,maxx xc h0j j f= -y y^ _ ^h h i  
where h x 0j =y^ h  is the j-th equality constraint of 
the model, ε is a very small real number.

3.4 Framework of improved MOEA/D 
algorithm

The basic steps of the improved MOEA/D algo-
rithm are shown in the following algorithm:

Inputs:
Multi-objective Optimization problem (Equations 1-13)
Termination rules
N – The number of sub-problems (individuals), the number 

of weight vectors (population size). 
The weight vector of uniform distribution
T – Neighbourhood size of sub-problems
Mutation factor F, Equation 15
Selection threshold δ, Equation 16

Outputs:
Archive
Step 1: Initialize

1.1 Calculate the Euclidean distance between weight vec-
tors λ1, select the nearest T sub-problem to form neighbourhood 
B(i).

1.2 Initialize the population randomly and calculate the fit-
ness function of the population.

1.3 According to the Pareto dominance relationship of the 
individual, the non-dominant individuals in the population are 
put into the archive.

1.4 Initializing reference points z.
Step 2: Iteration

while termination condition has not been met
for i=1:N
2.1 Using evolutionary mechanism of section 3.2 to pro-

duce offspring individuals y.
2.2 Correction. If the variables of the new individual exceed 

the range of decision variables, then the variables are modified.
2.3 Update the reference point. For each j=1,2,...,M, if 

fj(y
')≤zj, then zj= fj(y

').
2.4 Update the neighbourhood. Update the neighbourhood 

according to the feasibility rules, if y is better than individual in 
neighbourhood it!B(i), then replace it by y.

2.5 Update the archiving, mix the new population with the 
archive, and take the non-dominant solution of the mixed pop-
ulation as the new archive.

end for 
end while
The final archive is the set of optimal solutions.

used to generate the offspring individuals. At the 
same time, in order to ensure the diversity of the 
population, a perturbation operator is set up, that is, 
the parent individuals are selected from the popula-
tion with a certain probability rather than from its 
neighbourhood completely.

The Differential Evolutionary algorithm (DE) 
provides a multivariate evolutionary mechanism 
for evolutionary algorithms. In this paper, the "DE/
rand/1" mutation strategy is adopted:

x F x xui
r r r1 2 3$= + -^ h  (15)

where, ui is mutation individual, xr1, xr2, xr3 are par-
ent individuals, r1≠r2≠r3. F![0,1] is mutation fac-
tor. In this paper, xr1 and xr2 are selected from the 
neighbourhood of the sub-problem, xr3 is selected 
from the population with certain probability to en-
sure the diversity of evolution:

,
,

x
B i rand
P x elser3 !

# d^
^
h
h*  (16)

where, B(i) is the neighbourhood of xi, P(x) is the 
population, rand is a random number between (0,1), 
δ!(0,1) is the selection threshold.

The crossover individual vector vi is generated 
from the original individual xr1 and the mutation in-
dividual ui by the crossover operation:

,
,

v
u if rand
x otherwise

CRi
i

ij

r1

#
=

^ h*  (17)

where, randij is a uniform distributed number be-
tween [0,1], and CR![0,1] is the crossover rate. It 
can be seen that the greater the value of CR, the 
greater the probability of cross operation.

The values of fitness functions of the parental in-
dividual xr1 and the crossover individual vi were cal-
culated respectively. According to the Pareto domi-
nance relationship between them, the non-dominant 
individual is selected as the offspring individuals yi.

3.3 Fitness function 
Since the multi-objective optimization model 

developed in this paper belongs to the constrained 
optimization problem, a dynamic penalty function 
method is used to deal with constraints [14]:

maxf x x xO M iter
iter M PK0 $ $= + -y y y^ ^ a ^h h k h  (18)

where, xf y^ h  is the fitness function, xO y^ h  is the 
objective function; M0 is initial penalty factor, iter 
are current iterations of the algorithm; maxiter is the 
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It is assumed that E*
dd is the self-evaluation ef-

ficiency of DMUd obtained by the CCR model, 
μ*

rd, υ*
id  are the corresponding weights. Then, the 

cross-evaluation efficiency of DMUj relative to 
DMUd is calculated as follows: 

E
y

y

*

*

dj

id ij
i

m

rd rj
r

s

1

1

$

$

y

n

=

=

=

/

/
 (23)

The self-evaluation efficiency of each DMU 
is obtained by using the CCR model, and the 
cross-evaluation efficiency of each DMU can be ob-
tained according to Equation 23. Then the cross-eval-
uation efficiency matrix can be obtained:

E

E
E

E

E
E

E

E
E

En nn

n

n

n

11

1
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1 1
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2

22

2

2

h h hh
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V
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The cross-evaluation efficiency of DMUj is as 
follows:

CE n E1
j dj

d

n

1
=

=
/  (24)

However, the cross-efficiency DEA still has its 
shortcomings, that is, the optimal weight combina-
tion obtained by CCR may not be unique, so the 
cross-evaluation efficiency calculated by Formulation 
23 is not unique either. To overcome such problems, 
Doyle et al. proposed a DEA method with second-
ary goals [18]. The most common used secondary 
goals include aggressive strategy and benevolent 
strategy [19]. In this paper, by using a DEA model 
proposed by Wang et al., the unique optimal weight 
combination can be obtained and the cross-evalua-
tion efficiency of each DMUs can be calculated with 
Equations 23 and 24. The improved model is shown as 
follows [20]:

min I zd j
d

j

n

1
=

=
/  (25)
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, , , ,h M z M j n0 1 2j
d

j
d$ f1# f+ + =  (30)

, , , , ,z j n0 1 1 2j
d f= =" ,  (31)

4. SECONDARY GOAL-BASED  
CROSS-EFFICIENCY DEA 
EVALUATION

The result of multi-objective optimization is not 
a unique optimal solution, but a series of Pareto 
optimal solutions. These Pareto optimal solutions 
cannot be further selected based on their dominat-
ing relation. Therefore, this paper further evaluates 
these non-dominant solutions from the aspects of 
reliability, timeliness, economy, and so on.

By using the MOEA/D algorithm, the exact 
values of all the metrics of these Pareto optimal 
solutions can be calculated, then, DEA is adopted 
to evaluate and sort these solutions. The traditional 
DEA was proposed by Cooper et al. His CCR model 
with constant returns to scale is as follows [15]:

max E
x

y
dd

id id
i

m

rd rd
r

s

1

1

$

$n

y
=

=

=

/

/
 (20)
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, , , , , ,r s i m1 2 1 2rd ij f f$ $n f y f = =  (22)

where, yrj is the r-th output of the j-th decision-making  
units (DMUs), μrj is the weight of yrj; xij is the i-th 
input of DMUj, υij is the weight of xij. The objec-
tive Edd is the self-evaluation efficiency of DMUd. 
Constraint 21 specifies that the efficiency of each 
DMU should be between 0 and 1. Constraint 22 states 
that all the weights should be greater than 0, ε is 
a non-Archimedes number that is smaller than any 
positive number.

In the CCR model, if the efficiency of DMU is 
equal to 1, it indicates that this DMU is efficient, 
and if the efficiency is less than 1, it is inefficient. 
Therefore, the traditional CCR model can distin-
guish between the efficient DMUs and the inef-
ficient DMUs; however, it cannot sort further the 
efficient DMUs. In order to further distinguish the 
efficient DMUs, the traditional DEA has been im-
proved by many scholars, such as cross-efficiency 
evaluation [16], super-efficiency evaluation [17], 
benchmark evaluation, and so on. In this paper, the 
cross-efficiency DEA method is used to sort both 
the efficient and the inefficient DMUs.
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According to the nature of DEA model, the eval-
uation metrics is divided into input metrics and out-
put metrics. 

The input metrics includes:
 – Supply cost: the calculation formula is shown as 

Objective function 3;
 – Supply time: the calculation formula is shown as 

Objective function 1.
The output metrics includes:

 – Reliability: measured by the risk of spare parts 
supply, the value of reliability is the reciprocal 
of the total risk. The calculation formula of risk 
is shown as Objective function 2

 – Timeliness: measured by lead time, the value of 
timeliness is the reciprocal of the lead time. The 
calculation formula of lead time is shown as Con-
straint 12;

 – Fill rate: calculated as the ratio of spare parts 
supply and demand of each customer.
Constraint violation: Because the model also in-

volves the constraints of capacity and flow balance, 
the reciprocal of the overall constraint violation 
of the model is used as one of the output metrics, 
and the calculation of overall constraint violation is 
shown as Equation 18.

The numerical experiments are solved by the im-
proved MOEA/D algorithm. The simulation studies 
were carried out in a MATLAB 2014b platform on 
an ASUS laptop with 5-6300HQ 2.3GBz CPU, 4GB 
RAM in Windows 7.0(64-bit) environment. The 
related parameters are set as follows: population 
size is 200, archiving size is 100, maximum num-
ber of iterations maxiter=500, neighbourhood size 
T=20, mutation factor F=0.9, selection threshold 
δ=0.8,  crossover rate CR=0.8, initial penalty factor 
M0=10,000,000, penalty coefficient Mk=10,000.

h Rj
d !  (32)

, , ,r s1 2rj f$n f =  (33)

, , ,i m1 2ij f$y f =  (34)

where, M is a very large positive number, ε is a 
non-Archimedes constant. Constraints 27-29 specify 
the value of self-evaluation efficiency. Since Con-
straint 32 specifies that the value of zd

j can only be be-
tween 0 and 1, when zd

j =0, Constraint 31 ensures hd
j ≥0. 

At this time, Constraint 30 ensures that the efficiency 
of DMUd is greater than that of DMUj. Similarly, 
when zd

j =1, Constraint 31 ensures hd
j ≤ ε. Constraint 30 

ensures that the efficiency of DMUd is smaller than 
that of DMUj. The objective function aims to obtain 

a set of weights to minimize ,I zd j
d

j

n

1
=

=
/  that is, to 

ensure the value of zd
j  to be zero. It can be seen that 

the improved secondary goal cross-efficiency DEA 
model can sort the efficient DMUs, and guarantee 
the efficiency of DMUd is larger than that of other 
DMUs.

5. EXPERIMENT AND ANALYSIS

5.1 Experiment description

There are two manufacturers, four alternative 
distribution centres and six customers in a supply 
network. Spare parts are shipped from manufac-
turers to distribution centres, and transferred to 
customers from distribution centres according to 
customers’ demands. The related data of manufac-
turers, distribution centres and customers are shown 
in Tables 1-5.

Table 1 – Unit spare parts transportation time

Distribution centre 1 Distribution centre 2 Distribution centre 3 Distribution centre 4

Manufacturer1 36 40 42 32

Manufacturer2 24 33 35 46

Customer1 6 5 5 4

Customer2 2 3 6 7

Customer3 2.5 5 6 3.5

Customer4 4 2 5 5.5

Customer5 6 6.5 2.5 4

Customer6 5 5 6.5 3
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Since these 24 schemes are non-dominated with 
each other, it is difficult to choose the optimal one 
only based on their fitness functions. Therefore, DEA 
method is used to evaluate and sort these 24 schemes 
further. The metrics of obtained non-dominated  
solutions are calculated and shown in Table 7. The 
supply cost, supply time and the risk corresponding 
to each solution can be visually observed in Table 7. 
It can also be seen that the spare parts fill rates of all 
the customers are greater than 1, that is, all solutions 
can meet the spare parts demand of all customers.

In order to verify the superiority of our meth-
od compared with the traditional self-evaluation 
DEA, the self-evaluation efficiency and secondary  
goal-based cross-evaluation efficiency of all DMUs 
are obtained respectively. The efficiencies are 
shown in Figure 1. 

It can be seen that, by using DEA, decision mak-
er are able to distinguish the efficient solutions from 
these non-dominated solutions. However, there are 

5.2 Results and analysis
By using the improved MOEA/D, we got 24 

non-dominated solutions which are shown in Table 6. 
Each column represents an optimal solution and 
each row represents the variables on the solution 
vector. These solutions provided 24 available sup-
ply schemes for the decision maker. It is further nec-
essary to pick up the optimal one from them.

Table 2 – Unit spare parts transportation time costs

Distribution centre 1 Distribution centre 2 Distribution centre 3 Distribution centre 4

Manufacturer1 260 240 320 350

Manufacturer2 330 280 270 160

Customer1 80 82 76 60

Customer2 65 70 75 65

Customer3 58 50 65 66

Customer4 70 72 80 65

Customer5 66 56 60 57

Customer6 70 55 62 75

Table 3 – Disruption risk between distribution centres and customers

Distribution centre 1 Distribution centre 2 Distribution centre 3 Distribution centre 4

Customer1 0.08 0.20 0.16 0.04
Customer2 0.16 0.12 0.15 0.05
Customer3 0.08 0.05 0.05 0.35
Customer4 0.17 0.09 0.10 0.12
Customer5 0.16 0.01 0.06 0.11
Customer6 0.27 0.05 0.25 0.06

Table 4 – Inventory capacity, unit spare parts inventory cost, and opening cost of distribution centres

Distribution centre 1 Distribution centre 2 Distribution centre 3 Distribution centre 4

Inventory capacity 35 25 20 30
Unit inventory cost 20 30 15 25
Unit opening cost 8,000 7,500 5,000 8,500

Table 5 – Spare parts demands, shortage loss, and the 
maximum lead time of customers

Demand Shortage 
cost

Maximum 
lead time

Customer1 12 500 55
Customer2 20 550 50
Customer3 18 500 55
Customer4 5 600 53
Customer5 16 500 55
Customer6 15 500 55
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Table 6 – Set of optimal supply schemes

DMUs
X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

X1 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35

X2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 3 4

X3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X6 19 20 22 22 22 22 22 23 23 25 19 19 20 21 21 21 22 23 23 24 18 20 18 16

X7 11 12 11 12 13 13 14 11 13 12 11 13 12 11 12 13 12 12 13 13 10 12 11 10

X8 24 24 26 26 25 26 27 25 25 24 26 24 25 26 25 25 24 26 26 25 27 24 25 25

X9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

X10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X11 19 19 18 18 18 19 18 21 18 19 18 21 18 19 19 18 18 19 18 18 18 20 19 18

X12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X14 6 5 3 2 2 0 0 1 1 0 6 3 3 2 2 1 3 0 0 0 5 2 4 6

X15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X16 10 9 9 9 8 7 6 9 8 9 10 7 8 9 8 7 9 9 8 10 10 8 9 10

X17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X20 9 11 12 13 13 15 15 14 14 16 9 12 12 13 13 14 12 15 15 15 10 14 11 9

X21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X22 10 11 11 11 12 13 14 11 12 11 10 13 12 11 12 13 11 11 12 10 10 12 11 10

X23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X27 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 4 3 3 4 4

X28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X30 5 5 5 5 5 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

X31 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 16 16 16

X32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table 7 – Evaluation metrics of decision-making units

Input metrics Output metrics
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DMU1 56,369 3,746 0.1054 0.0192 1 1 1.0556 1 1 1 0.0033
DMU2 57,484 3,822 0.1070 0.0192 1 1 1.0556 1 1 1.0667 0.0033
DMU3 57,076 3,937.5 0.1139 0.0192 1 1 1 1 1 1 0.0033
DMU4 57,336 3,972.5 0.1168 0.0192 1 1 1 1 1 1 0.0033
DMU5 57,456 3,964.5 0.1164 0.0192 1 1 1 1 1 1 0.0033
DMU6 58,149 4,016 0.1210 0.0192 1 1 1.0556 1 1 1 0.0033
DMU7 58,101 4,097.5 0.1210 0.0192 1 1 1 1 1 1 0.0033
DMU8 59,405 3,937.5 0.1149 0.0192 1 1 1.1667 1.2000 1 1 0.0033
DMU9 57,741 3,997.5 0.1195 0.0192 1 1 1 1 1 1 0.0033
DMU10 58,909 3,987 0.1212 0.0192 1 1 1.0556 1 1 1.0667 0.0033
DMU11 56,471 3,875.5 0.1063 0.0192 1 1 1 1 1 1 0.0033
DMU12 58,270 3,870 0.1101 0.0192 1 1 1.1667 1 1 1 0.0033
DMU13 56,846 3,903.5 0.1135 0.0192 1 1 1 1 1 1 0.0033
DMU14 57,549 3,947 0.1157 0.0192 1 1 1.0556 1 1 1 0.0033
DMU15 58,204 3,943 0.1148 0.0192 1.0833 1 1.0556 1 1 1 0.0033
DMU16 57,411 3,974.5 0.1190 0.0192 1 1 1 1 1 1 0.0033
DMU17 57,261 3,920.5 0.1139 0.0192 1 1 1 1 1 1 0.0033
DMU18 58,404 4,048 0.1220 0.0192 1 1 1.0556 1 1 1 0.0033
DMU19 58,171 4,083.5 0.1227 0.0192 1 1 1 1 1 1 0.0033
DMU20 58,791 4,068.5 0.1230 0.0192 1.0833 1 1 1 1 1 0.0033
DMU21 56,838 3,897.5 0.1075 0.0192 1 1 1 1 1.0625 1 0.0033
DMU22 58,507 3,907.5 0.1136 0.0192 1 1 1.1111 1 1 1.0667 0.0033
DMU23 57,559 3,886 0.1096 0.0192 1.0833 1 1.0556 1 1 1 0.0033
DMU24 56,416 3,819.5 0.1058 0.0192 1.0833 1 1 1 1 1 0.0033
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Figure 1 – Self-efficiency and cross-efficiency of each decision-making unit
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备件供应网络优化决策方法研究

摘要

为了对备件供应网络进行优化，本文首先以最短
时间、最低风险和最少成本为目标建立了多目标优
化模型。其次，采用差分进化策略下基于分解的多
目标优化算法求解模型。最后，再利用改进数据包
络分析法对非支配解集进行评估。通过对比自评效
率和互评效率找出有效方案、无效方案以及最优方
案。

关键词

备件供应；多目标优化；数据包络分析；交叉效率
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