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1. Introduction

Recently, a new definition of fractional derivative named conformable fractional
derivative, which is based on the classical definition of derivative was introduced
([34]). Conformable derivative aims to extend the concept of derivative and provide
new perspectives for differential equations via the concept of conformable differential
equations ([21]). Examples of these perspectives can be found e.g. in ([2, 3, 26, 35,
1, 14, 15, 27, 28, 9, 10, 11, 24, 41]).

Conformable calculus started with the work [34] in which conformable derivative
was presented. Next, the right and left conformable derivatives, the fractional chain
rule and the fractional integrals of higher orders were put forward by Abdeljawad
([1]). Since then, this topic has attracted the attention of many researchers (see, e.g.
[34, 16, 19, 17, 18, 40, 23, 22, 44, 33, 25, 45, 13]). In ([28]), Gulsen et al. studied
the conformable Sturm-Liouville equation with separated boundary conditions on an
arbitrary time scale T and extended some main spectral properties of the standard
Sturm-Liouville equation to the conformable fractional case. In ([2]), the concept
of Wronskian for conformable linear differential equations with variable coefficients
was given, and an Abel formula for fractional equations with variable coefficients was
obtained. In ([3]), the conformable heat equation was solved. In ([26]), the existence
and uniqueness theorems of consecutive linear conformable equations were studied.
In ([35]), some conformable equations are solved. The work in ([1]) deals with the
concepts of the chain rule for conformable derivative, conformable partial integra-
tion, the conformable Gronwall inequality, a conformable exponential function and
Laplace transformation. In ([14]), for the second-order conformable equations, the
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methods of order reduction and the change of constants are discussed and general so-
lutions of differential equations with constant coefficients and of Cauchy-Euler type
are given. Then, conformable problems and the properties of these problems are ex-
amined. In ([15]), fractional differential equations with proportional derivatives and
their properties are examined. In ([45]), Wang et al. introduced fractional Sobolev
spaces on time scales, characterized them, and defined weak conformable fractional
derivatives. In ( [49]), the authors provided a new version of the Gronwall inequality
within the framework of the generalized proportional fractional derivative.

On the other hand, in ([27]), Dirac systems defined on the time scale were
studied and some spectral properties of these problems were examined. Recently,
Allahverdiev et al. have considered the conformable fractional Sturm-Liouville
boundary-value problem ([10]). They proved the existence and uniqueness theorem
for this equation, and constructed the associated Green function of this problem.
Furthermore, the authors studied one-dimensional conformable fractional Dirac sys-
tems ([7, 9, 11] ).

Today it is widely accepted that spectral expansion theorems are useful in the
fields of science and engineering. If a partial differential equation is solved by sepa-
ration of variables (i.e., by the Fourier method), then the expansion of an arbitrary
function as a series of eigenfunctions and the completeness properties are obtained.
The first study done for the spectral expansion problem is that of Weyl’s in [46].
Later, this problem was investigated by many authors with different techniques.
Thus there are a lot of studies on eigenfunction expanding problems in the litera-
ture (see [38, 29, 30, 4, 5, 6, 7, 8, 9, 10, 11, 12, 31, 32, 39, 47, 48, 37, 42, 43, 20]).

The primary aim of this study is to prove the existence of a spectral function for
a singular conformable Sturm-Liouville equation of the form

−T 2
αy(t) + v(t)y(t) = λy(t), 0< t <∞, (1)

where λ is a complex parameter, and v(.) is a real-valued conformable locally inte-
grable function on [0,∞). Our work can be summarized as follows. In Section 2,
some necessary concepts and properties are reviewed. In Section 3, we construct
the resolvent in view of the Green function of the regular problem. We show that a
regular conformable Sturm-Liouville operator has a compact resolvent, thus it has a
purely discrete spectrum. Finally, in Section 4, the existence of a spectral function
for the singular conformable Sturm-Liouville problem is proved. The Parseval equal-
ity and a spectral expansion formula by means of the spectral function of singular
conformable Sturm-Liouville problem are constructed.

2. Preliminaries

In this section, we recall some basic definitions and properties related to conformable
calculus and operator theory. For more details, the reader may refer to [34, 21, 2, 3,
26, 35, 1, 36, 39]. Throughout this paper, we will fix α ∈ (0, 1) .

Definition 1. Let 0 < α < 1. For a function f : (0,∞) → R := (−∞,∞), the
conformable derivative of order α of f at t > 0 is defined by

Tαf(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
, (2)
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and the conformable derivative at 0 is defined by

(Tαf)(0) = lim
t→0+

(Tαf(t)).

Definition 2. The left conformable derivative of order α of a function f : [a,∞) →
R is defined by

(T aα f)(t) = lim
ε→0

f(t+ ε (t− a)
1−α

)− f (t)

ε
, 0 < α ≤ 1. (3)

When a = 0, we write Tα. If (Tαf)(t) exists on (a, b), then

(T aαf)(a) = lim
t→a+

(T aαf)(t).

Definition 3. The right conformable derivative of order α of f : (−∞, b] is defined
by

(bαTf)(t) = − lim
ε→0

f(t+ ε(b− t)1−α)− f(t)

ε
, (4)

where 0 < α ≤ 1 and (bTαf)(t) = limt→b−(
bTαf)(t).

In the next lemma, we consider some properties of the conformable derivative.

Lemma 1. Let f, g be conformable differentiable of order α (0 < α ≤ 1) at a point
t. Then

(i) Tα (λf + δg) = λTα (f) + δTα (g), where λ, δ ∈ R.

(ii) Tα (fg) = fTα (g) + gTα (f) .

(iii) Tα

(
f
g

)
= gTα(f)−fTα(g)

g2 .

(iv) If f is differentiable, then T aα (f) (t) = (t− a)
1−α

f ′ (t).

(v) Tα (t
n) = ntn−α for all n ∈ R.

Next, we recall the concept of conformable integral.

Definition 4. The conformable integral of order α (0 < α ≤1) of a function f :
[a,∞) is defined by

(Iaαf) (t) =

t∫
a

f(x)dα (x, a) =

t∫
a

(x− a)α−1f(x)dx.

Similarly, in the right case, we have

(bIαf) (t) =

b∫
t

f(x)dα (b, x) =

b∫
t

(b− x)α−1f(x)dx.
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Lemma 2. Assume that f is a continuous function on (a,∞) and 0 < α < 1. Then,
we have

T aαI
a
αf (t) = f (t) ,

for all t > a.

Theorem 1. Let f, g : [a, b] → R be two functions such that f and g are conformable
differentiable. Thus we have∫ b

a

f(t)T aα (g) (t) dα (t, a) +

∫ b

a

g (t)T aα (f) (t) dα (t, a) = f (b) g (b)− f (a) g (a) .

Let L2
α(0, b) (b ≤ +∞) be the space of all complex-valued functions f defined on

[0, b), where

∥f∥ :=

(∫ b

0

|f (t)|2 dα (t)

)1/2

=

(∫ b

0

|f (t)|2 tα−1dt

)1/2

< +∞,

and dα (t) := dα (t, 0) = tα−1dt.
The space L2

α(0, b) is a Hilbert space (see [34]) with the inner product

(f, g) :=

∫ b

a

f (t) g (t)dα (t) , f, g ∈ L2
α(0, b).

The conformable α-Wronskian of x and y is defined by

Wα(x, y)(t) = x(t)Tαy(t)− y(t)Tαx(t), t∈[0, b). (5)

Definition 5. A function M(t, x) of two variables with 0 < t, x < b is called the
α−Hilbert-Schmidt kernel if∫ b

0

∫ b

0

|M(t, x)|2dα(t)dα(x) < +∞.

We denote by l2 the aggregate of all sequences x = (x1, x2, ...) of complex num-
bers where

∞∑
n=1

|xn|2 < +∞.

The sequence space l2 is a Hilbert space (see [39]) with the inner product

< x, y >:=

∞∑
n=1

xnyn, where x, y ∈ l2.

Now we have a

Theorem 2 (see [39]). If
∞∑

i,k=1

|aik|2 < +∞, (6)
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then the operator A defined by the formula

A {xi} = {yi} , i ∈ N := {1, 2, 3, ...},

is compact on the sequence space l2, where

yi =

∞∑
k=1

aikxk, i ∈ N. (7)

Definition 6 (see [36]). A function f defined on an interval [a, b] is said to be of
bounded variation if there is a continual C > 0 as

n∑
k=1

|f (tk)− f (tk−1)| ≤ C

for every partition
a = t0 < t1 < ... < tn = b (8)

of [a, b] by points of subdivision x0, x1, ..., xn .

Definition 7 (see [36]). Let f be a function of bounded variation. Assume that f
is a function of bounded variation. By the total variation of f on [a, b], denoted by
b

V
a
(f) , we mean the quantity

b

V
a
(f) := sup

n∑
k=1

|f (tk)− f (tk−1)| ,

in which the least upper bound is taken over all (finite) partitions (2) of the interval
[a, b].

Now we recall the following renowned theorems of Helly.

Theorem 3 (see [36]). Let (wn)n∈N be a uniformly bounded sequence of real, non-
decreasing functions defined on a finite interval a ≤ λ ≤ b. Then there exists a
subsequence (wnk

)k∈N and a nondecreasing function w such that

lim
k→∞

wnk
(λ) = w (λ) , a ≤ λ ≤ b.

Theorem 4 (see [36]). Assume that (wn)n∈N is a uniformly bounded sequence of
real, nondecreasing functions defined on a finite interval a ≤ λ ≤ b, and suppose that

lim
n→∞

wn (λ) = w (λ) , a ≤ λ ≤ b.

If f is any continuous function on a ≤ λ ≤ b, then we have

lim
n→∞

∫ b

a

f (λ) dwn (λ) =

∫ b

a

f (λ) dw (λ) .



242 B.P.Allahverdiev, H.Tuna and Y.Yalçınkaya

3. Regular conformable Sturm-Liouville problem

In this section, we construct the Green function and prove that a regular conformable
Sturm-Liouville operator has a compact resolvent, thus it has a purely discrete spec-
trum, and we get a Parseval equality for this operator.

We consider the regular conformable Sturm-Liouville equation defined by

−T 2
αy(t) + v(t)y(t) = λy(t), 0< t <b <∞, (9)

where T 2
α := Tα ◦ Tα. Let y(t, λ) satisfy the boundary conditions

y(0, λ) cosβ + Tαy(0, λ) sinβ = 0, (10)

y(b, λ) cos γ + Tαy(b, λ) sin γ = 0, γ, β ∈ R, (11)

in which λ is a complex eigenvalue parameter, v(.) is a real-valued function defined
on [0,∞) and v ∈ L1

α,loc (0,∞) , where

L1
α,loc (0,∞) :=

{
f : [0,∞) → C :

∫ b

0

|f (t)| dα(t) <∞,∀b ∈ (0,∞)

}
.

We denote by θ(t, λ) and ψ(t, λ) the solutions of (9) subject to the initial conditions

θ(0, λ) = sinβ, Tαθ(0, λ) = − cosβ, (12)

ψ(b, λ) = sin γ, Tαψ(b, λ) = − cos γ. (13)

In this way, the Green function of the problem defined by (9)− (11) is given by

G(t, x, λ) =


ψ(t,λ)θ(x,λ)
W (θ,ψ) , 0 ≤ x < t

θ(t,λ)ψ(x,λ)
W (θ,ψ) , t < x < b.

(14)

(see [38, 10]). In what follows, without loss of generality, we assume that λ = 0 is
not an eigenvalue of problem (9)− (11). Hence, by (14), we have

G(t, x) = G(t, x, 0) =


ψ(t)θ(x)
W (θ,ψ) , 0 ≤ x < t

θ(t)ψ(x)
W (θ,ψ) , t < x < b.

(15)

Theorem 5. G(t, x) defined by (15) is an α−Hilbert-Schmidt kernel.

Proof. By the upper half of formula (14), we get∫ b

0

dα(t)

∫ t

0

|G(t, x)|2dα(x) < +∞;

and by the lower half of (14), we have∫ b

0

dα(t)

∫ b

t

|G(t, x)|2dα(x) < +∞
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because the inner integral exists and is a product θ (x)ψ (t) , and these products
belong to L2

α(0, b)×L2
α(0, b) since each of the factors belongs to L2

α(0, b). Then, we
obtain ∫ b

0

∫ b

0

|G(t, x)|2dα(t)dα(x) < +∞. (16)

Theorem 6. The operator S defined by the formula

(Sf)(t) =

∫ b

0

G(t, x)f(x)dα(x)

is compact and self-adjoint on L2
α(0, b).

Proof. Let ϕi = ϕi(x) (i ∈ N) be an orthonormal basis of L2
α(0, b). Since G(t, x) is

a α−Hilbert-Schmidt kernel, it can be defined as follows:

ti = (f, ϕi) =

∫ b

0

f(x)ϕi(x)dα(x),

yi = (g, ϕi) =

∫ b

0

g(x)ϕi(x)dα(x),

aik =

∫ b

0

∫ b

0

G(t, x)ϕi(t)ϕk(x)dα(t)dα(x) (i, k ∈ N).

Then, L2
α(0, b) is mapped isometrically onto l2. By this mapping, our integral oper-

ator transforms into the operator defined by formula (7) on the space l2. Condition
(16) is translated into condition (6). Thus the original operator is compact. Now
let f, g ∈ L2

α(0, b). Since G(t, x) = G(x, t), we have

(Sf, g) =

∫ b

0

Sf(t)g(t)dα(t)

=

∫ b

0

∫ b

0

G(t, x)f(t)dα(t)g(t)dα(x)

=

∫ b

0

f(t)
(∫ b

0

G(t, x)g(t)dα(x)
)
dα(t) = (f,Sg).

Thus we have proved that the operator S is self-adjoint.

4. Parseval equality and spectral expansion for the singular
conformable Sturm-Liouville problem

In this section, the existence of a spectral function for the singular conformable
Sturm-Liouville problem given by (9) − (10) will be proved. The Parseval equality
and a spectral expansion formula by means of the spectral function will be set up.
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Let λm,b (m ∈ N) denote the eigenvalues of regular problem (9) − (11) and
θm,b(t) = θ(t, λm,b) the corresponding eigenfunctions which satisfy conditions (10)−
(11). If f is a real-valued function defined on [0, b],∫ b

0

f2(t)dα(t) <∞,

and

γ2m,b =

∫ b

0

θ2m,b(t)dα(t),

i.e., f(.) ∈ L2
α(0, b), then it follows from Theorem 6 and the Hilbert-Schmidt theorem

([36]) that ∫ b

0

f2(t)dα(t) =

∞∑
m=1

1

γ2m,b

{∫ b

0

f(t)θm,b(t)dα(t)

}2

. (17)

Now let us define the non-decreasing step function ϱb on R by

ϱb(λ) =


−

∑
λ<λm,b<0

1
γ2
m,b

, for λ ≤ 0∑
λ<λm,b<0

1
γ2
m,b

, for λ ≥ 0.

Then equality (17) can be stated as∫ b

0

f2(t)dα(t) =

∫ ∞

−∞
F 2(λ)dϱb(λ), (18)

which is called the Parseval equality, where

F (λ) =

∫ b

0

f(t)θ(t, λ)dα(t).

Letting b→ ∞, we will demonstrate that the Parseval equality for problem (9)−(10)
can be obtained from (18).

Now we present

Lemma 3. For any N > 0, there exists a positive constant M = M (N) not de-
pending on b such that

N

V
−N

{ϱb(λ)} =
∑

−N≤λm,b<N

1

γ2m,b
= ϱb(N)− ϱb(−N) < M. (19)

Proof. Let sinβ ̸= 0. Since θ(t, λ) is continuous at zero, by condition θ(0, λ) = sinβ,
there exists a positive number k nearby 0 such that(

1

k

∫ k

0

θ(t, λ)dαt

)2

>
1

2
sin2 β. (20)
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Let us define fk (x) by

fk(t) =

{
1
k , 0≤t ≤ k
0, t > k

.

From (18), (19) and (20), we get∫ k

0

f2k (t)dαt =
1

αk2−α
=

∫ ∞

−∞

(
1

k

∫ k

0

θ(t, λ)dαt

)2

dϱb(λ)

≥
∫ N

−N

(
1

k

∫ k

0

θ (t, λ) dαt

)2

dϱb (λ)

>
1

2
sin2 β {ϱb (N)− ϱb (−N)} ,

which proves inequality (19).
If sinβ = 0, the function fk(t) is defined by

fk(x) =

{
( 1k )

2, 0 ≤ t ≤ k
0, t > k.

Thus we obtain inequality (19) by applying the Parseval equality.

Let ϱ be any nondecreasing function on −∞ < λ < ∞. Denote by L2
ϱ (R) the

Hilbert space of all functions f : R → R measurable with respect to the Lebesgue-
Stieltjes measure defined by ϱ, with the condition∫ ∞

−∞
f2 (λ) dϱ (λ) <∞

and the inner product

(f, g)ϱ :=

∫ ∞

−∞
f (λ) g (λ) dϱ (λ) .

The leading conclusion of this study is the following theorem.

Theorem 7. For the Sturm-Liouville problem (9)−(10), there exists a nondecreasing
function ϱ(λ) on −∞ < λ <∞ with the following properties.

(i) If f is a real-valued function and f ∈ L2
α(0,∞), then there is a function F ∈

L2
ϱ(R) such that

lim
b→∞

∫ ∞

−∞

{
F (λ)−

∫ b

0

f(t)θ(t, λ)dα(t)

}
dϱ(λ) = 0, (21)

and the Parseval equality∫ ∞

0

f2(t)dα(t) =

∫ ∞

−∞
F 2(λ)dϱ(λ) (22)

holds.
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(ii) The integral ∫ ∞

−∞
F (λ)θ(t, λ)dϱ(λ)

converges to f in L2
α(0,∞). That is,

lim
n→∞

∫ ∞

0

{
f(t)−

∫ n

−n
F (λ)θ(t, λ)dϱ(λ)

}2

dα(t) = 0.

We note that the function ϱ is named the spectral function for the singular
boundary value problem given by (9)− (10).

Proof. Assume that:

1. fξ(t) vanishes outside the interval [0, ξ] , where ξ < b.

2. fξ(t) and Tαfξ(t) are continuous.

3. fξ(t) satisfies boundary condition (10).

If we apply the Parseval equality (18) to fξ(t), then we obtain∫ ξ

0

f2ξ (t)dα(t) =

∫ ∞

−∞
F 2
ξ (λ)dϱ(λ), (23)

where

Fξ(λ) =

∫ ξ

0

fξ(t)θ(t, λ)dα(t). (24)

Since θ (x, λ) satisfies equation (9), we see that

θ(t, λ) =
1

λ

[
−T 2

αθ(t, λ) + v(t)θ(t, λ)
]
.

By (24), we get

Fξ(λ) =
1

λ

∫ ξ

0

fξ(t)
[
−T 2

αθ(t, λ) + v(t)θ(t, λ)
]
dα(t).

Since fξ(t) and θ(t, λ) satisfy boundary condition (12) and fξ(t) vanishes in a neigh-
borhood of the point ξ, we obtain

Fξ(λ) =
1

λ

∫ b

0

θ(t, λ)
[
−T 2

αfξ(t) + v(t)fξ(t)
]
dα(t),

via the integration by parts.
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For any finite N > 0, by using (18), we get∫
|λ|>N

F 2
ξ (λ)dϱb(λ)

≤ 1

N2

∫
|λ|>N

{∫ b

0

[
θ(t, λ)

[
−T 2

αfξ(t) + v(t)fξ(t)
]]
dα(t)

}2

dϱb(λ)

≤ 1

N2

∫ ∞

−∞

{∫ b

0

[
θ(t, λ)

[
−T 2

αfξ(t) + v(t)fξ(t)
]]
dα(t)

}2

dϱb(λ)

=
1

N2

∫ ξ

0

[
−T 2

αfξ(t) + v(t)fξ(t)
]2
dα(t).

From (23), we see that∣∣∣∣∣
∫ ξ

0

f2ξ (t)dα(t)−
∫ N

−N
F 2
ξ (λ)dϱb(λ)

∣∣∣∣∣
≤ 1

N2

∫ ξ

0

[
−T 2

αfξ(t) + v(t)fξ(t)
]2
dα(t). (25)

By Lemma 3, the set {ϱb(λ)} is bounded. By using theorems 3 and 4 with a = 0 , we
can find a sequence {bnk

} such that the sequence ϱbnk
(λ) converges to a monotone

function ϱ(λ). Passing to the limit as bnk
→ ∞ in (25), we get∣∣∣∣∣

∫ ξ

0

f2ξ (t)dα(t)−
∫ N

−N
F 2
ξ (λ)dϱ(λ)

∣∣∣∣∣
≤ 1

N2

∫ ξ

0

[
−T 2

αfξ(t) + θ(t)fξ(t)
]2
dα(t).

Hence, letting N → ∞, we obtain∫ ξ

0

f2ξ (t)dα(t) =

∫ ∞

−∞
F 2
ξ (λ)dϱ(λ).

Now suppose that f is an arbitrary real-valued function on L2
α(a,∞). It is known

that there exists a sequence {fs(t)} satisfying conditions 1–3 and such that

lim
s→∞

∫ ∞

0

(f(t)− fs(t))
2
dα(t) = 0.

Let

Fs(λ) =

∫ ∞

0

fs(t)θ(t, λ)dα(t).
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Then, we have ∫ ∞

0

f2s (t)dα(t) =

∫ ∞

−∞
F 2
s (λ)dϱ(λ).

Since ∫ ∞

0

(fs1(t)− fs2(t))
2
dα(t)→0 as s1, s2→∞,

we have∫ ∞

−∞
(Fs1 (λ)− Fs2 (λ))

2
dϱ (λ) =

∫ ∞

0

(fs1 (x)− fs2 (x))
2
dα(t) → 0

as s1, s2→∞. Consequently, there is a limit function F satisfying∫ ∞

0

f2(t)dα(t) =

∫ ∞

−∞
F 2(λ)dϱ(λ),

by the completeness of the space L2
ϱ(R).

Our next goal is to demonstrate that the sequence (Ks) defined by

Ks(λ) =

∫ s

0

f(t)θ(t, λ)dα(t)

converges to F as s→∞, in the metric of the space L2
ϱ(R). Suppose that h is another

function in L2
α (0,∞) . By similar arguments, H(λ) can be defined by h. It is clear

that ∫ ∞

0

(f(t)− h(t))
2
dα(t) =

∫ ∞

−∞
{F (λ)−H(λ)}2 dϱ(λ).

Now set

h(t) =

{
f(t), t ∈ [0, s]
0, t ∈ (s,∞) .

Then we have∫ ∞

−∞
{F (λ)−Ks(λ)}2 dϱ(λ) =

∫ ∞

s

f2(t)dα(t)→0 (s→∞),

which proves that (Ks) converges to F in L2
ϱ(R) as s→ ∞. This proves (i).

Now, we will prove (ii). Suppose that f (.) , h(.) ∈ L2
α(0,∞) and F (λ),H(λ) are

their Fourier transforms, respectively. Then F ∓ H are the transforms of f ∓ h.
Consequently, by (22), we get∫ ∞

0

[f(t) + h(t)]
2
dα(t) =

∫ ∞

−∞
(F (λ) +H(λ))

2
dϱ(λ),∫ ∞

0

[f(t)− h(t)]
2
dα(t) =

∫ ∞

−∞
(F (λ)−H(λ))

2
dϱ(λ).

Subtracting the second relation from the first, we get∫ ∞

0

f(t)h(t)dα(t) =

∫ ∞

−∞
F (λ)H(λ)dϱ(λ), (26)
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which is called the generalized Parseval equality.
Now set

fΛ(t) =

∫ Λ

−Λ

F (λ)θ(t, λ)dϱ(λ),

where F is the function defined in (21) and Λ is a positive number. Let h(.) be a
function which is equal to zero outside the finite interval [0, s] . Thus we obtain∫ s

0

fΛ(t)h(t)dα(t) =

∫ s

0

{∫ Λ

−Λ

F (λ)θ(t, λ)dϱ(λ)

}
h(t)dα(t)

=

∫ Λ

−Λ

F (λ)

{∫ s

0

θ(t, λ)h(t)dα(t)

}
dϱ(λ)

=

∫ Λ

−Λ

F (λ)H(λ)dϱ(λ). (27)

From (26), we get ∫ ∞

0

fΛ(t)h(t)dα(t) =

∫ ∞

−∞
F (λ)H(λ)dϱ(λ). (28)

By (27) and (28), we have∫ ∞

0

(f(t)− fΛ(t))h(t)dα(t) =

∫
|λ|>Λ

F (λ)H(λ)dϱ(λ).

By using the Cauchy-Schwarz inequality, we obtain∣∣∣∣∫ ∞

0

(f(t)− fΛ(t))h(t)dα(t)

∣∣∣∣2 ≤
∫
|λ|>Λ

F 2(λ)dϱ(λ)

∫
|λ|>Λ

H2(λ)dϱ(λ)

≤
∫
|λ|>Λ

F 2(λ)dϱ(λ)

∫ ∞

−∞
H2(λ)dϱ(λ).

If we apply this inequality to the function

h(t) =

{
f(t)− fΛ(t), t ∈ [0, s]

0, t ∈ (s,∞)
,

then we get ∫ ∞

0

(f(t)− fΛ(t))
2
dα(t) ≤

∫
|λ|>Λ

F 2(λ)dϱ(λ).

Letting Λ → ∞ yields the desired result since the right-hand side does not depend
on s.
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