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Abstract 

The aim of the study was to explore to what extent small molecules (mostly from the Rule of 5 chemical 
space) can be used to predict the intrinsic aqueous solubility, S0, of big molecules from beyond the Rule of 
5 (bRo5) space. It was demonstrated that the General Solubility Equation (GSE) and the Abraham Solvation 
Equation (ABSOLV) underpredict solubility in systematic but slightly ways. The Random Forest regression 
(RFR) method predicts solubility more accurately, albeit in the manner of a ‘black box.’ It was discovered 
that the GSE improves considerably in the case of big molecules when the coefficient of the log P term 
(octanol-water partition coefficient) in the equation is set to -0.4 instead of the traditional -1 value. The 
traditional GSE underpredicts solubility for molecules with experimental S0 < 50 µM. In contrast, the 
ABSOLV equation (trained with small molecules) underpredicts the solubility of big molecules in all cases 
tested. It was found that the errors in the ABSOLV-predicted solubilities of big molecules correlate linearly 
with the number of rotatable bonds, which suggests that flexibility may be an important factor in 
differentiating solubility of small from big molecules. Notably, most of the 31 big molecules considered 
have negative enthalpy of solution: these big molecules become less soluble with increasing temperature, 
which is compatible with ‘molecular chameleon’ behavior associated with intramolecular hydrogen 
bonding. The X-ray structures of many of these molecules reveal void spaces in their crystal lattices large 
enough to accommodate many water molecules when such solids are in contact with aqueous media. The 
water sorbed into crystals suspended in aqueous solution may enhance solubility by way of intra-lattice 
solute-water interactions involving the numerous H-bond acceptors in the big molecules studied. A 
‘Solubility Enhancement–Big Molecules’ index was defined, which embodies many of the above findings.  

©2020 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/4.0/). 
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Introduction 

The aqueous solubility of compounds is an important physical property to assess in pharmaceutical 

research and development [1-4]. Solubility of potentially promising compounds not yet synthesized may be 

estimated computationally. Many methods for predicting solubility have been described [5-7], based on 

linear quantitative structure-property relationship (QSPR) approaches [8-16]. More recent methods have 
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evolved using machine learning statistical methods [17-20]. The molecular descriptors needed for these 

predictions are most often calculated from two-dimensional (2D) structures. 

In the early 1990s, attrition due to poor oral bioavailability and pharmacokinetics (PK) was responsible 

for nearly 40 % of compounds being rejected in clinical studies [21]. Lipinski’s Rule of 5 (Ro5) emerged as 

part of the effort to address critical issues underlying the high attrition [1]. The Ro5 guidelines suggest that 

compounds are more likely to be orally bioavailable if three or more of these rules are adhered to: 

molecular weight, MW ≤ 500 Da, calculated octanol-water partition coefficient, clogP ≤ 5, number of H-bond 

donors, NHD ≤ 5, and number of H-bond acceptors, NHA ≤ 10. High-throughput screening strategies of 

physicochemical properties of research compounds led to improvements. By the new millennium, attrition 

due to PK was reduced to below 10 % [22]. 

However, many recently approved drugs are larger, more lipophilic, and possess more H-bond 

acceptors, compared to drugs in the Ro5 chemical space [22]. Many of the newly-approved therapeutics 

are used in immunosuppression, treatment of infectious/viral diseases, and in oncology. Since 2014, an 

increasing number of ‘beyond the Rule of 5’ (bRo5) commentaries have stressed that the strict adherence 

to the Ro5 may result in lost opportunities [21-30]. Cell-permeable and orally-bioavailable drugs can be 

discovered far into bRo5 chemical space. Some of these drugs are derived from natural products, which 

appear to be better suited for the newer targets which possess large and flat binding sites. Nevertheless, 

concerns have been raised over the expected higher pharmacokinetic risks from bRo5 compounds: low 

solubility, poor cell permeability, increased cellular efflux, and extensive metabolism. Medicinal chemists 

have applied tactics to lessen some of the risks: (a) reducing or shielding polarity by N-methylation, or by 

bulky side chains, (b) selecting compounds with flexible rings structures allowing for conformational lability, 

and (c) selecting compounds which can reversibly form multiple intramolecular H-bonds (IMHB) to shield 

polar groups during passage across lipoidal cell barriers, in the manner of ‘molecular chameleons’ [26-31].  

Although most of the bRo5 commentaries have emphasized permeability, absorption, and potency 

topics, Bergström et al. [25] focused on solubility aspects and the promising computational bio-

pharmaceutical modeling strategies to help identify ‘formulate-ability’ during lead optimization and early 

development stages of bRo5 compounds. Caron et al. [29] considered case studies of kinetic solubility 

(measured in pH 7.4 phosphate buffer containing 1-5 % DMSO) of bRo5 molecules, in terms of the tendency 

to form IMHBs and their effect on solubility.  

In our preceding study [20], three methods of solubility prediction were compared: (a) Yalkowsky’s 

General Solubility Equation (GSE) [8], (b) Abraham Solvation Equation (ABSOLV) [11], and (c) Random Forest 

regression (RFR) [19] statistical machine learning. The linear ABSOLV and the RFR multiple decision-tree 

methods were trained with molecules in the Wiki-pS0 database. Thirty of the most important descriptors 

identified in the RFR analysis [20] were subjected to Principle Components Analysis (PCA). The scores plot 

had the appearance of a ‘comet’ – with a dense symmetrical core of Ro5 compounds about the origin of the 

first two principle components and a long sparsely-populated tail of big molecules queuing far into the 

lower-right quadrant. The molecules in the tail have high H-bond acceptor strength (NHA), topological polar 

surface area (TPSA), fraction of sp3 carbons (FractionCSP3), and possess MW > 800 Da – many of the 

recognized hallmarks of bRo5 chemical space.  

The aim of the present study was to explore to what extent small molecules (mostly Ro5) can be used to 

predict the intrinsic aqueous equilibrium solubility of big molecules (all bRo5 drugs), i.e., can the ‘head 

predict the tail’? 
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Methods 

Computational models  

Three computational approaches described below span from the theoretically sound and easy-to-use 

GSE, the sound and flexible ABSOLV, and the more accurate (but somewhat of a ‘black box’) RFR.  

General Solubility Equation (GSE) 

Expanding on the work of Irmann [32] and Hansch et al. [33], Yalkowsky and coworkers in 1980 

developed and thereafter popularized the General Solubility Equation (GSE), to enable the prediction of the 

solubility of organic molecules in water [8,9,34-38]. Just two variables, melting point (mp in °C) and octanol-

water partition coefficient, log P, are used in the equation to predict solubility (in log molar units): 

log S0
GSE = 0.5 - log P - 0.01(mp - 25)  (1)  

 Below, the derivation of Eq. (1) is briefly reviewed in terms of its underpinning assumptions to 

determine if any are incompatible with bRo5 molecules. Also, the thermodynamics of solubility are well 

cast by Eq. (1), which can apply to all models tested here. It is useful to start by dissecting aqueous 

solubility in terms of the Gibbs free energy based on the thermodynamic fusion cycle. The dissolution of a 

non-ionized crystalline substance suspended in water can be viewed in terms of two major contributions: 

(a) crystal lattice – energy has to be provided to break down the lattice to form a hypothetical ‘supercooled’ 

liquid (sliq), and (b) solvation – energy is released when the liquefied solute dissolves in water. The total 

solubility of the solute in water is the product of the above two contributions (lattice and solvation), which 

in logarithmic terms can be stated as the sum [36,37]: 

sliqm
m wlog ( ) log

2.3

S
S T T S

RT


       (2) 

Crystal lattice effect 

The lattice contribution, first term on the right side of Eq. (2), arises from the application of the van’t 

Hoff equation, where ∆Sm (kJ/mol·K) is the entropy of melting (fusion) and Tm is the melting point (in K 

units). By the ‘Walden’s rule’ approximation [36,37], ∆Sm = 0.0565 kJ/mol·K for many organic compounds 

(particularly for rigid planar molecules, but less so for spherical molecules). At 25 °C, 2.3 RT = 5.706 

kJ/mol·K. On substituting these constants, Eq. (2) at 25 °C reduces to: 

sliq
wlog 0.01( 25) logS mp S      (3) 

Solvation effect 

 The solvation contribution, right-most term in Eq. (3), was investigated by Hansch and coworkers 

[33]. For 156 simple organic liquid solutes, they demonstrated that solubility correlated with octanol-water 

partition data as described by a Collander-like linear equation: log S = c0 + c1log P. Octanol, possessing 

nearly identical calculated H-bond donor and acceptor strength, was selected as a model organic solvent. 

For a series of aromatics, alkyl halides, and alkanes liquid solutes, c0 intercepts were calculated to be +0.34, 

+0.83, and -0.25, respectively. The derived c1 slope factors were -1.0 for aromatics, -1.22 for alkyl halides, 

and -1.24 for alkanes.  

For a liquid solute, log P relates to the Gibbs free energy for the sum of solute-solute and water-water 

cohesive interactions minus twice the solute-water adhesive interactions [8]. For a liquid solute with the 

aqueous solubility of Sw
liq and the solubility in octanol as Soct

liq, it can be approximated that P = Soct
liq

 /Sw
liq 

(assuming activity equals concentration and that solute aggregates/micelles don’t form [39]). It follows that 
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if the slope c1 = -1, then the intercept c0 = log Soct
liq.  

Yalkowsky and coworkers surmised that c0 = 0.5, by the following reasoning. Entropy of mixing favors 

complete miscibility of the two liquids; i.e., the mole fraction = 0.5 [8]. (This is likely to be valid for apolar 

[37], but may not be accurate for large polar molecules like those found in the bRo5 chemical space.) Since 

the molar concentration of pure octanol is 6.32 M, the log Soct
sliq = log (6.32x0.5) = 0.5 (assuming the solute 

liquid density is near that of octanol). On rearranging the log form of P defined as the solubility ratio, 

log Sw
sliq = 0.50 – log P. On substitution of the latter term into Eq. (3), the GSE, Eq. (1), is so derived.  

The above considerations suggest that Eq. (1) may have possible limitations in bRo5 chemical space: 

(i) Lattice energy of rigid-planar molecules may be different from those of spherical molecules; (ii) Octanol 

as the model for the supercooled liquid solute may not be accurate for large polar or conformation-flexible 

molecules; (iii) Non-ideal activity may arise due to solute self-aggregation (e.g., dimer formation of 

vancomycin), possible micellization (e.g., ubiquinone, iodoxamic acid), and ‘molecular chameleon’ IMHB 

effects [29,31].  

Using Calculated log P (clogP) 

 The original two variables (mp , log P) were taken to be experimental values. In a pharmaceutical 

research setting, such experimental values may not be available in early studies. It has become a common 

practice to use calculated values, clogP, in place of measured log P in Eq. (1). Apparently, the accuracy of 

GSE lessens, but only slightly. The use of calculated mp is less frequent, since the accuracy of such predicted 

values is thought to be relatively low. In the present investigation, experimental values were applied when 

available, and were calculated in a small number of instances [40]. 

Abraham Solvation Equation (ABSOLV) 

Abraham and Le [11] amended the Abraham Solvation Equation [41] to predict intrinsic solubility 

(log molar): 

log S0
ABSOLV = c0 + c1 A + c2 B + c3 Sπ + c4 E + c5 V + c6 A∙B   (4) 

The independent variables are the five solute descriptors accounting for the transfer of solute from one 

phase to another: A is the sum of H-bond acidity (similar to NHD), B is the sum of H-bond basicity (similar to 

NHA), Sπ is the dipolarity/polarizability (subscripted here, so as not to be confused with solubility), E is an 

excess molar refraction in units of (cm3·mol-1)/10, and V is the McGowan characteristic volume in units of 

(cm3·mol-1)/100.  

In principle, the five solute variables could account for any shortcomings of just using clogP, as in Eq. (1). 

The A∙B cross-term in Eq. (4) was intended to address intermolecular H-bond interactions between acid and 

base functional groups in the solid or liquid environment. Its inclusion, as an alternative to using the mp 

term in Eq. (1), was intended to improve the prediction accuracy of Eq. (4). 

The c0-c6 coefficients in Eq. (4) are usually determined by multiple linear regression (MLR), trained on a 

set of intrinsic solubility values of a diverse collection of molecules. The five Abraham solvation descriptors 

may be calculated from 2D structure (introduced as a SMILES text or as coordinates in a ‘mol’ format) using 

the program ABSOLV [42] (cf., www.acdlabs.com). In the present study, the seven MLR coefficients were re-

determined using our own training data (Wiki-pS0 database), with log S0 data weighted in the regression 

analysis according to estimated measurement errors [20]. 

 Furthermore, we attempted to improve the accuracy of Eq. (4) when applied to big compounds, by 

introducing a nonlinear term, 
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log S0
mod-ABSOLV = log S0

ABSOLV + c7 B
 +z (5) 

Due to potentially high linear correlations among the descriptors, partial least squares (PLS) regression 

(open source package in R: https://cran.r-project.org/web/packages/pls/) was used (instead of MLR) to 

determine c0-c7 for given values of z. Several z values in the range 0.9 to 2.0 were tested; the best-fit 

exponent was selected as the minimum point in the fit of PLS root-mean-square error (RMSE) vs. z.  

Random Forest regression 

Of the new machine-learning statistical approaches, the Random Forest regression (RFR) method is 

thought to be one of the most accurate in predicting solubility [17-20]. RFR can be employed ‘off the shelf,’ 

requiring only minimal learning [19]. The provided default ‘tuning’ parameters are nearly optimal. 

However, its ‘black box’ nature makes the outcome of the analysis challenging to interpret in terms of the 

descriptors used, even when the most important descriptors are quantitatively ranked in RFR. 

The method was introduced in 2001 by Brieman [43], and is implemented in the open-source 

‘randomForest’ library for the R statistical software [44-46]. RFR works by constructing an ensemble of 

hundreds of decision trees [47]. The tutorial chapter by Walters [19] is highly recommended as a means to 

get started with RFR.  

The first applications of RFR to predict solubility appeared in 2007 [17,48]. Schroeter et al. [48] used Sw 

and SpH data to train a RFR method, using ~4000 measurements mostly taken from secondary sources 

[12,49,50] and some from in-house (Bayer Schering Pharma) sources. For the Huuskonen data [12] as test 

set, RMSE = 0.66 log unit (n=1290) was reported. For the solubility data in the domain of applicability (DOA) 

matching that of research compounds (10-3 to 10-7 M solubility), the RFR method indicated RMSE ~ 0.85 log.  

In the Palmer et al. [17] RFR study, aqueous solubility values of 998 structurally diverse druglike solid 

organic compounds were gathered from similar secondary sources [12,51,52]. The authors used the 

Molecular Operating Environment (MOE) [53] to generate 126 2D (clogP, MR, charged-surface properties, 

atom, group, and H-bond counts, connectivity and topological indices) and 36 3D (total potential energy, 

electrostatic contributions, molecular shape, and solvent-accessible surface area) descriptors. Randomly 

splitting the entire data into a training set (70 %) and an internal validation set (30 %) produces a good 

measure of the model predictivity of compounds not included in the training set: r2 = 0.89, RMSE = 0.69 log, 

n = 330.  

More recently, Walters [19] critically compared the Huuskonen thermodynamic Sw values (n = 1274) 

[12], the Llinas et al. thermodynamic S0 values (n = 94) [54] and PubChem (n=1000) kinetic high-throughput 

solubility [55] databases using the RFR framework. Avdeef [20] applied RFR, trained with 6355 log S0 values, 

to predict the solubility of four well-publicized small external test sets, occasioning in RMSE from 0.66 to 

1.05 log. 

Data  

Wiki-pS0 database 

The intrinsic aqueous solubility database Wiki-pS0 (in-ADME Research) [20,56] was used. It now contains 

6473 log S0 (log molar) entries, based on measured aqueous solubility values of 3065 different compounds 

(excluding agrochemicals) collected from 1415 cited references. The most reliable published data had been 

determined by the saturation shake-flask (SSF) method, particularly when measured as a function of pH. In 

the majority of the cases, the literature data were further processed, using pDISOL-X (in-ADME Research) 

[56-61], to extract intrinsic solubility (S0) values from reported aqueous free-acid/base or salt solubilities 
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(Sw), or solubilities at specified pH (SpH), or log S-pH profiles. All of the molecules are solids at room 

temperature (except propofol). There are 1127 log S0 entries derived from 10167 individual-pH log S 

measurements. About half of the data sources originate from secondary listings and the rest are from 

primary sources. In the case of secondary sources, the citations to the original work were generally 

available, and in many cases were consulted for clarifications. Melting points are included in the database. 

When measured mp were not found (19 % of entries), mp were calculated by the Lang and Bradley method 

[40] in the QsarDB open repository of data and prediction programs (http://qsardb.org/repository/-

predictor/10967/104?model=rf).   

Physicochemical properties of the big molecules 

In this study, the compounds in Wiki-pS0 were divided into two groups: ‘big’ (MW ≥ 800 Da, structures in 

Appendix) and ‘small’ molecules. The demarcation was motivated by the shape of the principle 

components scores plot (Fig. 10 in [20]). There are 31 molecules (58 log S0 entries) in the ‘big’ set. Table 1 

lists their characteristic properties. Figure 1 shows the distribution of big-molecule log S0 values. On the 

average, the big molecules are less soluble (-4.52) than the small molecules (-3.12).  

Table 1. Big-molecule (bRo5) physicochemical properties 

Compound log S0 SD n MW mp  clogP ΔH
0

sol NHA NHD nROT A B Sπ E V Ref 

Amphotericin B -3.52 0.69 2 924 179 0.71 -33 17 12 3 3.55 5.99 5.12 4.47 7.12 [63,64] 

Anidulafungin -4.36 0.45 
 

1140 250 -0.93 0 17 14 14 3.67 8.22 10.4 7.8 8.4 [63] 

Bryamycin -4.14 0.29 3 1665 210 0.77 -16 31 17 12 4.47 11.56 14.55 10.51 11.65 [64-66] 

Cyclosporine A -5.03 0.16 6 1203 151 3.27 -40 12 5 15 1.25 7.61 10.16 4.23 10.02 [63,67-69] 

Dactinomycin -3.22 0.16 2 1255 242 0.73 -10 18 5 8 1.36 8.49 11.45 6.12 9.49 [70] 

Docetaxel -5.14 0.05 2 808 232 3.26 -12 14 5 8 1.03 4.01 4.18 3.47 5.92 [63,71] 

Everolimus -5.02 0.58 
 

958 138 6.20 -36 14 3 9 0.63 4.73 4.73 3.29 7.68 [63,72] 

Gramicidin A -4.16 0.41 
 

1882 229 4.37 -31 17 21 53 5.57 11.3 17.8 10.26 14.81 [73] 

Gramicidin S -3.89 0.35 
 

1141 169 1.23 -14 12 10 16 2.46 7.42 10.69 5.38 9.12 [64] 

Iodipamide -5.47 0.67 
 

1140 307 6.85 45 4 4 9 2.25 1.87 4.84 5.86 4.38 [50] 

Iodoxamic Acid -5.49 0.36 
 

1288 224 6.13 35 8 4 19 2.25 2.73 5.48 6.01 5.46 [74] 

Ivermectin -5.56 0.39 5 875 140 5.60 -33 14 3 8 0.68 4.23 3.21 3.24 6.72 [72,75-78] 

Leuprolide -3.15 0.20 
 

1209 153 -1.44 -11 14 15 32 4.25 8.66 11.75 7.23 9.21 [63] 

Nafarelin -5.61 0.52 
 

1323 189 -1.62 2 15 16 33 4.74 9.32 13.46 8.93 9.88 [79] 

Nystatin -4.1 0.39 
 

926 170 0.94 -35 17 12 3 3.55 5.93 5.02 4.32 7.16 [80] 

Oxytocin -1.2 0.17 
 

1007 164 -3.61 2 15 12 17 3.96 7.67 11.34 5.9 7.47 [81] 

Paclitaxel -6.53 0.14 2 854 216 3.74 -3 14 4 10 0.9 4.13 5.22 4.05 6.2 [82,83] 

Paclitaxel analog12 -5.48 0.67 
 

808 187 3.20 -14 14 5 8 1.03 4.01 4.18 3.47 5.92 [71] 

Paclitaxel analog17 -4.52 0.48 
 

802 179 3.32 -24 14 5 9 1.03 3.97 3.67 2.87 6.02 [71] 

Paclitaxel analog23 -5.78 0.73 
 

807 187 3.23 -13 13 6 8 1.33 4.15 4.31 3.63 5.96 [71] 

Rapamycin -5.55 0.69 
 

914 184 6.18 -30 13 3 6 0.63 4.51 4.57 3.26 7.34 [84] 

Rifabutin -4.09 0.66 3 847 176 4.62 -9 14 5 4 1.31 4.39 4.43 4.24 6.47 [63,85,86] 

Rifampicin -2.96 0.27 9 823 164 4.34 -6 15 6 4 2.55 4.66 4.67 4.73 6.21 [87-91] 

Roxithromycin -3.98 0.37 
 

837 120 2.21 -47 17 5 13 1.05 5.12 2.9 2.58 6.55 [63] 

Solithromycin -6.23 0.14 
 

845 189 4.60 -12 15 2 11 0.35 4.46 4.7 3.67 6.44 [92] 

Stevioside -2.83 0.17 
 

805 198 -2.94 -21 18 11 9 2.74 5.49 4.29 4.25 5.67 [93] 

Tacrolimus -5.42 0.54 2 804 126 4.64 -27 12 3 7 0.71 3.98 3.98 2.82 6.38 [63,94] 

Telithromycin -3.02 0.17 
 

812 188 4.93 -13 14 1 11 0.12 4.40 4.53 3.49 6.32 [63] 

Temsirolimus -5.06 0.59 
 

1030 134 5.72 -39 16 4 10 1.02 5.07 5.25 3.46 8.17 [63] 

Ubiquinone -7.56 1.65 2 863 48 17.85 -53 4 0 31 0.00 2.20 1.16 2.15 7.95 [95,96] 

Vancomycin -2.13 0.14   1449 175 0.11 -22 25 19 13 5.81 10.56 12.32 9.73 9.88 [97] 
a
 log S0 averaged for n > 1 sources (references in last column). SD is the estimated standard deviation in the measured 

value. ΔH
0

sol (kJ/mol) are calculated enthalpies of solution (see text). nROT is the number of rotatable bonds in the 
molecule. For the other terms, cf. Abbreviations and definitions. 

Figure 2 shows the trend between measured log S0 and clogP (calculated in RDKit [62]: Wildman-Crippen 

sum of atomic contributions – cf., Abbreviations and definitions) for the two groups of molecules. The 
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scatter is substantial. Nevertheless, the small molecules (green circles) show the expected -1 slope, 

whereas the big molecules (red squares) show an apparent slope of -0.239. This is an important 

characteristic differentiating the two groups. 

 

 

Figure 1. Distribution of the big-molecule intrinsic 
aqueous solubility values in Wiki-pS0 

Figure 2. Plot of log S0 versus octanol-water partition 
coefficient, clogP, calculated using the RDKit software 
[62].  Squares refer to big molecules; circles refer to 

small molecules 

Characteristics of the big molecules 

Figure 3 shows property distributions as possible indicators of bRo5 ‘big-drug-likeness.’ Frame (a) shows 

the clogP distribution: on the average, clogP of the ‘big’ set (3.17) is greater than that of the ‘small’ set 

(1.89) [20]. Frame (b) shows the distribution of molecular weights about the mean value 1034 Da 

(compared to 280 Da in the entire set [20]). Frame (c) considers H-bonding characteristics. The red bars 

(tallest near 5) refer to H-bond donor counts (NHD). The black bars (tallest near 15) refer to H-bond 

acceptors (NHA). In the small-molecule set, the NHA and NHD groups overlap considerably, as illustrated 

elsewhere [20]. But, in the big-molecule set (Fig. 3c, Table 1) the NHA and NHD distributions are wider 

apart: the acceptor count increases, but not so much the donor count. This is an important characteristic 

differentiating the big-small molecule groups. 

 

Figure 3. Big-molecule property distributions: (a) clogP, (b) molecular weight (MW), and (c) number of H-bond 
donors (NHD) and acceptors (NHA). The separation between the groups is greater than that found in small 

molecules [20].  
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Results and discussion 

GSE applied to big compounds 

Hydrophilicity (clogP) effect in big lipophilic molecules 

The linear dependence of log S0 on clogP (Fig. 2) was further analyzed in the context of Eq. (1). MLR of 

the SD-weighted log S0 data confirmed the large difference in clogP contributions in the two groups of 

molecules: 

log S0
SMALL = -0.28(±0.04) -0.83(±0.01) clogP -0.0062(±0.0002)·(mp - 25)  (6a) 

r2 = 0.60, RMSE = 1.16 log, MPP = 37 %, n = 6392  

log S0
BIG = -1.77(±0.93) -0.40(±0.07) clogP -0.010(±0.005)·( mp - 25) (6b) 

r2 = 0.61, RMSE = 0.89 log unit, MPP = 36 %, n = 31   

The extent of ‘correct’ predictions is defined here by MPP (measure of prediction performance: 

percentage of the absolute residuals ≤ 0.5 log unit).  

Apparently, crystal lattice contributions are not appreciably different in the two groups of molecules; 

the refined temperature coefficients in the two sets are close to the GSE value (-0.01) in Eq. (1). Hence, 

solution-phase interactions appear to dominate solubility [98].  

The intercept constants suggest that big-molecule ‘supercooled’ liquid solutes are less miscible in 

octanol by 1-2 orders of magnitude than suggested by the original Yalkowsky analysis [8,37]. The intercepts 

in Eqs. (6a) and (6b) are nearer to those of alkane solutes found in the Hansch et al. [33] study, compared 

to the constant in Eq. (1). For the big molecules, the highly negative intercept (i.e., decreased solubility of 

the supercooled liquid in the octanol phase) depresses the solute water solubility by a constant amount.  

Countering that, the -0.4 slope factor lessens the contribution of lipophilicity to the calculated solubility 

of big molecules. The net result is that the traditional GSE overpredicts S0 for big molecules with 

experimental solubility above ~50 µM (e.g., oxytocin, nafarelin), and underpredicts S0 below the crossover 

point (e.g., everolimus, telithromycin).  

General Solubility Equation (GSE) 

Figure 4a shows the relationship between the measured solubility of small molecules and that 

calculated by the classic (‘untrained’) GSE. (Permanently-charged quaternary amines and big molecules are 

excluded in the training.) The r2, RMSE, MPP statistics are nearly identical to those associated with Eq. (6a), 

suggesting that ‘training’ does not improve the GSE predictivity for small molecules.  

However, the performance of the ‘untrained’ GSE degrades when the equation is applied to the big 

molecules, as shown in Figure 4b, with r2 = 0.0, RMSE = 3.0 log (2.3 without ubiquinone), and MPP = 16 %.  

Figure 4c plots the big-molecule ‘trained’ GSE result (cf., Eq. 6b). Note that this is not the equivalent of 

Ro5 molecules predicting the solubility of bRo5 molecules. Rather, it highlights the hydrophilicity solvation 

effect of big molecules discussed in the preceding section. The traditional GSE requires adjustments when it 

comes to predicting the solubility of big molecules (cf., Fig. 4b). 
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Figure 4. The log P in the figure refers to 
calculated octanol-water partition coefficients, 
clogP. The solid diagonals are the identity lines, 
and the dashed lines refer to ±0.5 log deviations. 
The MPP pie charts refer to percentage of 
‘correct’ prediction, based on absolute residuals 
being ≤ 0.5 log. The prediction of log S0 values of 
(a) small molecules and (b) big molecules using 
the classical General Solubility Equation (numeric 
compound labels are of paclitaxel analogs). 
(c) When using just the big-molecule data, the 
three constants in the GSE (Eq. 1) subjected to 
MLR analysis (cf., Eq. 6b) produce the modified 
GSE, which is valid only for molecules with 
MW > 800 Da. There are not enough big 
molecules in the Wiki-pS0 database to test the 
predictiveness of Eq. (6b). 
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Abraham solvation model (ABSOLV) – weighted MLR to predict solubility of big compounds 

Abraham linear equation for solubility prediction  

The ABSOLV MLR analysis of the small-molecule data, weighted according to the estimated errors in the 

measured log S0 values produced the equation  

log S0
ABSOLV = -0.15(±0.05) +0.20(±0.06)A +1.78(±0.04)B  

-0.11(±0.04)Sπ -1.17(±0.03)E -1.49(±0.03)V +0.01(±0.03)A∙B  (7) 

               r2 = 0.67, RMSE = 1.08 log unit, MPP = 38%, n = 6392  

    The plot of measured log S0 as a function of the calculated values according to Eq. (7) is shown in 

Figure 5a. This trained ABSOLV model only slightly outperforms the small-molecule untrained/trained GSE 

model (Fig. 5a/Eq. 7 compared to Fig. 4a/Eq. 6a). The A∙B cross term contribution appears to be negligible. 

The application of Eq. (7) to the big-molecule set produced unidirectionally-skewed plot, as shown in 

Figure 5b. According to the ABSOLV model trained on small molecules, the solubility of all big molecules is 

underpredicted. For example, the gramicidin A measured log S0 = -4.16 ±0.41 is underestimated by 10 

orders of magnitude. Vancomycin is underestimated by nearly 5 orders of magnitude.  

An effort was made to improve the fit. A distinguishing characteristic of big compounds is that they 

contain a high level of H-bond basicity (B) character (Table 1). We tested several nonlinear contributions of 

the B descriptor, with the aim of amplifying its uniquely high positive impact on solubility (Eq. 7). In order to 

avoid difficulties due to descriptor correlations, PLS regression was used in place of MLR. The modified 

model, depicted in Figure 5c, is the best improvement that was found. The modified solvation model 

consisted of an additional nonlinear term, B+z, with z > 1. The best-fit value of z was determined to be 1.11. 

This new descriptor was expected to amplify the positive H-bond acceptor contribution in Eq. (7) in the case 

of big molecules. Other modifications were explored, but only the latter descriptor appeared to improve 

ABSOLV to a level slightly better than that of the classic GSE (Fig. 4b).  

On inspection, the systematic errors in Figure 5b were found to correlate with the number of rotatable 

bonds (nROT): log S0
Obs – log S0

ABSOLV = 0.75 + 0.13 nROT, with r2 = 0.44 and RMSE = 1.62. Adding 0.75 + 0.13 

nROT to Eq. (7) reduced the RMSE from 3.4 to 1.6 and the bias from 2.6 to 0.13 (r2 remained unchanged). 

However, this did not result in a significantly improved training-set model when nROT was added to the list 

of ABSOLV descriptors in a repeated PLS analysis. Flexibility appears to be important, but nROT is not 

significantly predictive in the training process. Caron et al. [30] demonstrated that nROT may have 

limitations because it neglects the contribution to flexibility from cyclic fragments in big molecules.  

Random forest regression using RDKit combined with Abraham descriptors and melting points 

Descriptors 

 For the RFR model building, the 190 RDKit [62] descriptors (excluding those which were zero for all 

compounds) were combined with the mp and the ABSOLV descriptors. The Abbreviations and definitions 

section below identifies and defines the most important descriptors used in the RFR algorithm. 
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Figure 5. The prediction of log S0 values of 
(a) small molecules and (b) big molecules using 
the Abraham Solvation Equation (ABSOLV). (c) An 
additional nonlinear descriptor was added to the 
ABSOLV equation (cf., Eq. 5), which was then 
trained with the small-molecule set. This 
improved the prediction accuracy of the modified 
ABSOLV equation. The pie chart denotes MPP, the 
fraction of ‘correctly’ predicted molecules 
(absolute residuals ≤ 0.5 log unit). 
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Figure 6. Random Forest regression analysis. 
(a) Training set using the small molecules. 
(b) Internal validation test set, based on 30% of the 
small molecules randomly selected. (c) External test 
set prediction of big molecules, not used in the 
method training. 

Training set and internal validation 

Figure 6a shows the small-molecule training-set RFR analysis, resulting in the metrics: r2 = 0.98, 

RMSE = 0.27 log, bias = -0.001. This quality of fit indicates how well the model can incorporate the 

information presented by the descriptors and relate it to solubility in the training set [18]. The internal 

validation set of 1925 small-molecule solubility values (30 %), randomly selected by the method, better 

indicates the ability of RFR to predict external test compounds which are unknown to the training process. 
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Figure 6b shows the internal validation test set prediction results: r2 = 0.89, RMSE = 0.64 log, bias = 0.017. 

This performance is to be expected for external test molecules, provided they are adequately represented in 

the chemical space of the training set.  

Big-molecule external test set prediction  

Figure 6c illustrates the degree to which the RFR method, trained by small molecules, can predict the 

solubility of big molecules. The relative accuracy of the prediction (r2 = 0.42, RMSE = 1.06 log, MPP = 42 %) 

evidently exceeds that of the GSE and ABSOLV methods (predictive r2 = 0 and RMSE > 2 log). To wit, small 

molecules in the training set provide enough subtle ‘clues’ for the method to extract a sensibly accurate 

prediction of big-molecule solubility.  

 The most important descriptors (RDKit terminology – cf. Abbreviations and definitions) were found 

to be MolLogP >> MolMR > Ipc >> LabuteASA > BertzCT > HeavyAtomMolWt > MolWt > Chi1 > SMR_VSA7 > 

mp > Chi0v > SMR_VSA10 > PEOE_VSA7 > fr_benzene > Chi1v > E > Chi4v > B. Some of these are highly 

intercorrelated. There were additional ~100 descriptors that played lesser and somewhat hidden roles. 

In RFR, relationships between descriptors and the model are difficult to extract, and the influence of 

each compound property on calculated solubility cannot be readily deduced [98]. A major disadvantage to a 

medicinal chemist is that the RFR result does not directly suggest how compounds could be altered to 

increase/decrease their solubility. Unlike the intuitive and appealing descriptors in GSE and ABSOLV, many 

of the RDKit descriptors used are more abstract and not easy to interpret regardless of the modeling 

method [99]. 

Solubility Enhancement–Big Molecules (SEBM) 

Table 2 lists the calculated log S0 values of the big molecules. The last column lists the ‘Solubility 

Enhancement–Big Molecules’ – the ratio of the observed S0 to that calculated by the ABSOLV approach (cf., 

Eq. 7). The scale quantifies the big-molecule solubility enhancement not predicted by small molecules. A 

similar ratio using the classic GSE indicates two zones: (a) ‘enhancement’ for compounds to the left of the 

identity diagonal line in Figure 4b, and (b) ‘attenuation’ for compounds to the right of the line. The GSE 

zoning is directly linked to the partition coefficient (cf., Fig. 4c). The ABSOLV-based SEBM assigns a unified 

enhancement to all molecules, and separately addresses the role of H-bonding and molecular size (as well 

as the other Abraham solvation descriptors), whereas the GSE confines the relationship mainly to one 

descriptor – clogP, whose value may not be accurately calculated or measured for large molecules (e.g., 

ubiquinone). 

Figure 7 is a plot of log SEBM as a function of nROT. Although noisy, a trend is evident. The unfilled 

circles in the figure refer to two external test compounds, big molecules recently approved as drugs: 

givosiran [100] and tenapanor [101], with MW 1711 and 1145 Da, respectively. 

Factors that may shed light on the unusual intrinsic aqueous solubility of big molecules 

Lipophilicity behavior of big vs. small molecules differs 

 From the GSE analysis, the notable characteristic distinguishing small from big molecules is the 

dependence on lipophilicity (Fig. 2, Eq. 6b). Big lipophilic molecules (ubiquinone, iodipamide, everolimus, 

telithromycin) are more soluble and big hydrophilic molecules (oxytocin, stevioside, nafarelin) are less 

soluble than predicted by the traditional GSE (cf., Fig. 4b). The empirical Eq. (6b) compensates for this tilted 

relationship with the less negative (-0.4) clogP factor and the more negative intercept factor (-1.77) than 

those in the GSE (-1 and 0.5, resp.), as illustrated in Figure 4c. The solubility-partition correlation using 
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octanol works well for small molecules, but octanol does not appear to match the big-molecule solubility-

partitioning behavior in the same way, either because the big molecules are uncharacteristically more 

soluble in water (extra strong solute-water adhesive interactions) and/or less soluble in the octanol phase 

(extra strong solute-solute cohesive interactions).  

Table 2. Calculated log S0 and  'Solubility Enhancement-Big Molecules' 

Compound Obs GSE a ABSOLV b RFR c SEBM d 

Amphotericin B -3.52 -1.75 -4.86 -3.25 22 

Anidulafungin -4.36 -0.82 -7.16 -4.30 628 

Bryamycin -4.14 -2.12 -9.33 -3.90 156099 

Cyclosporine A -5.03 -4.03 -7.12 -4.65 123 

Dactinomycin -3.22 -2.40 -7.07 -3.82 7080 

Docetaxel -5.14 -4.83 -5.97 -4.86 7 

Everolimus -5.02 -6.83 -7.25 -5.93 172 

Gramicidin A -4.16 -5.91 -14.26 -6.00 12667592811 

Gramicidin S -3.89 -2.17 -7.20 -3.78 2056 

Iodipamide -5.47 -9.17 -10.11 -6.51 43888 

Iodoxamic Acid -5.49 -7.62 -10.42 -5.96 85035 

Ivermectin -5.56 -6.25 -6.48 -5.92 8 

Leuprolide -3.15 0.67 -6.89 -3.84 5514 

Nafarelin -5.61 0.48 -8.73 -4.24 1314 

Nystatin -4.10 -1.89 -4.84 -3.16 5 

Oxytocin -1.20 2.72 -4.57 -2.87 2350 

Paclitaxel -6.53 -5.15 -7.00 -5.67 3 

Paclitaxel analog12 -5.48 -4.32 -5.97 -4.84 3 

Paclitaxel analog17 -4.52 -4.36 -5.44 -4.61 8 

Paclitaxel analog23 -5.78 -4.35 -5.91 -4.98 1 

Rapamycin -5.55 -7.27 -7.09 -6.05 35 

Rifabutin -4.09 -5.63 -6.97 -5.65 765 

Rifampicin -2.96 -5.23 -6.40 -5.47 2780 

Roxithromycin -3.98 -2.66 -3.74 -3.76 1 

Solithromycin -6.23 -5.74 -6.39 -5.76 1 

Stevioside -2.83 1.71 -3.45 -2.22 4 

Tacrolimus -5.42 -5.15 -6.01 -5.53 4 

Telithromycin -3.02 -6.06 -6.15 -5.50 1340 

Temsirolimus -5.06 -6.31 -7.54 -5.97 301 

Ubiquinone -7.56 -17.58 -10.60 -6.59 1102 

Vancomycin -2.13 -1.11 -6.97 -4.01 69548 
a
 Calculated log S0 in Fig. 4b.  

b
 Calculated log S0 in Fig. 5b. 

c
 Calculated log S0 in Fig. 6c. 

d
 Observed S0 divided by the value calculated in ABSOLV analysis: SEBM = S0

Obs
/S0

ABSOLV
. 

Ermondi et al. [27,28] estimated lipophilicity of nine bRo5 drugs using the well-tested small-molecule 

ElogP and the new ‘block relevance’ BRlogP chromatographic methods, to investigate the role played by 

molecular flexibility. They also subjected the molecules to conformational analysis, in order to calculate 

lipophilicity of various conformers. ElogP chromatographic method appeared to provide an environment in 

which flexible compounds are driven to assume a more ‘folded’ apolar conformation (as expected in 

octanol), whereas the BRlogP method favored an ‘extended’ polar conformation for such molecules (as 

expected in water). Lipophilicity of bRo5 compounds strongly depends on their chameleonic properties: 

closed form preferred in apolar environments and open form in aqueous media. It is suggested that a non-
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traditional lipophilicity scale is needed for many bRo5 compounds, which takes into account the solute 

conformational flexibility and the polarity of the dissolution media [27,28]. 

 
Figure 7. Logarithm of the Solubility Enhancement–Big Molecules as a function of the number of rotatable 

bonds: log SEBM = log S0
Obs

 – log S0
ABSOLV

. 

Crystal structures of the big molecules and their ‘hydration’ in the solid state 

 The Appendix shows the 2D structures of the big molecules selected for the study. Many of these 

are derived from natural products, possessing flexible cyclic and polycyclic components in there structures. 

The crystal structures of only about half of these molecules have been deposited in the Cambridge 

Crystallographic Data Centre (CCDC). In many of the compounds the crystal lattices contain internal void 

space that may be filled non-stoichiometrically with water, either fixed at certain positions by H-bonds, or 

mobile in channels. There are numerous sites with which water could interact by donating H-bonds, 

possibly competing with acceptor groups in IMHB networks, to form stoichiometric hydrates.  

Since most of the crystals chosen for structure determination were grown in semi- or non-aqueous 

media, the reported X-ray structure of the molecules may not precisely reflect the conformational state 

found in crystals under conditions where they are equilibrated in aqueous solution, or of dissolved 

molecules in their unhindered states of hydration. In an exceptional study, the aqueous environment was 

well mimicked in the synchrotron X-ray determination of the structure of the glycopeptide antibiotic 

vancomycin [102]. Vancomycin crystals grown by the ‘hanging drop’ method were transferred into a pH 4.6 

acetate buffer solution containing 2.2 M NaCl and a cryoprotectant solvent. The suspension was then flash 

frozen for the low-temperature data collection. The crystal lattice was found to contain an H-bonded dimer 

of vancomycin, 2 chlorides, 1 acetate, and 105 solvent water molecules in the asymmetric unit. The 

organization of the lattice water was not described in the publication. 

Zografi and coworkers have conducted pioneering research [103-106] on the influence of adsorbed and 

absorbed water on the solid state properties of crystalline/amorphous solids, including multicomponent 

forms such as drug salts and cocrystals. The presence of stoichiometric/nonstoichiometric water in 
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crystalline solids is expected to impact the thermodynamic activity of the solid and thus could affect 

equilibrium solubility.  

Enthalpy of solution of big molecules is negative 

A computational procedure to normalize solubility data determined at various temperatures to values at 

a ‘reference’ temperature (e.g., 25 °C) was recently described [107]. The enthalpies of solution, ΔHsol, were 

predicted from 2D structure, from which the temperature dependence of log S0 is calculated as:  

log 𝑆0
ref = log 𝑆0

𝑇 − 0.175 ∆𝐻sol ∙ (1 −
298.15

𝑇
) (8) 

Small molecules, especially weak acids, generally have positive enthalpies of solution. For example, 

naproxen has the calculated ΔHsol = +29 kJ/mol. Its solubility at T = 310.15 K (37 °C) is log S0 = -4.03. The 

value decreases by 0.2 log (Eq. 8) to -4.23 at 25 °C. 

Particularly interesting in light of the current study is that just about all the big molecules studied here 

have negative enthalpies of solution (Table 1). The prediction equations [107], based on Abraham 

descriptors,  

ΔHsol 
ACIDS       = 17.1 + 0.024 mp + 5.8 A - 1.9 B + 3.0 Sπ  + 2.7 R  - 0.4 V - 4.3 AB (9a) 

ΔHsol 
NON-ACIDS = 11.2 IB + 7.3 IN + 8.9 IZ + 0.039 mp + 1.9 A - 9.1 B + 6.5 Sπ +10.2 R - 8.7 V - 0.9 AB (9b) 

indicate that high H-bond basicity (B) and large molar volumes (V) correlate with negative (exothermic) 

enthalpies of solution. Acids (e.g., iodipamide and iodoxamic acid) are less inclined to be exothermic, 

compared to non-acids. (In Eq. (9b), the indicator indices default to zero, except that for a basic molecule, 

IB =1; for a neutral molecule, IN = 1; for an ampholyte, IZ =1.)  

For big basic molecules this means that as temperature rises, the solubility decreases. If water is sorbed 

into the void/channel spaces of crystals containing big molecules, then the negative enthalpy could be 

rationalized in terms of H-bonding effects. Since water H-bonds weaken with rising temperature, the 

proportion of the ‘extended’ (water soluble) conformer may shift in favor of the ‘folded’ conformer, which 

is expected to be less soluble in water. With weakened water binding, the intramolecular H-bond 

interactions may stabilize the structure in a folded form. In this way, negative enthalpy is consistent with 

the conformational flexibility of ‘molecular chameleons’ [26-31], and highlights the possible role of sorbed 

water influences on solubility. 

Conclusion 

We have shown that traditional approaches to the prediction of solubility of big molecules (bRO5) do 

not work very well, unless modified. On the other hand, the RFR method works reasonably well, but it is not 

easy to understand what specific contributions the various molecular descriptors provide to the overall 

prediction. 

We attempted to link the Solubility Enhancement–Big Molecules (SEBM) to other physicochemical 

properties. A trend was evident in the log SEBM vs. nROT plot, suggesting that flexibility appears to 

enhance the solubility of big molecules. In the SGE model, a different lipophilicity scale might improve the 

performance of the approach, as empirically suggested in Figure 4c and as suggested by the 

chromatographic studies of Ermondi et al. [27,28]. The introduction of a nonlinear H-bond basicity term in 

the case of the ABSOLV approach is empirical, and it is not clear how to relate it to first-principle 

thermodynamic treatment. 
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Most of the big molecules have negative enthalpy of solution. That is, their solubility decreases with 

increasing temperature. This hints of an important H-bonding role for water sorbed into the solid state of 

the large molecules. Such molecules appear to have void spaces in their crystal lattices, sufficient to 

accommodate many water molecules under equilibrium conditions with crystals wet by aqueous media. 

The observation that the RFR method appears to work encourages us to further search for 3D-based 

descriptors arising from ‘conformational lipophilicity’ analysis akin to that developed by Caron and 

coworkers [27-30]. The accurate prediction of the solubility of newly approved molecules originating from 

the bRo5 chemical space would help in selecting/prioritizing candidates in early drug discovery, particularly 

if the bRo5 molecular basis of solubility were better understood. 

Abbreviations and definitions 

S0 “intrinsic” solubility (i.e., the solubility of the uncharged form of the compound) 

RMSE root-mean-square error: RMSE = [ 1/n Σi (yi
obs - yi

calc)2 ]1/2, where yobs/ ycalc = 

observed/calculated value of log S0 according to model, n = number of measurements of log 

S0 

r2 squared linear correlation coefficient, r2 = 1 - Σi (yi
obs - yi

calc)2 / Σi (yi
obs - <y>)2 , where y = log 

S0, and <y> is the mean value of log S0  

SD standard deviation: SD = [ 1/n Σi (yi
obs - <y>)2 ]1/2, where n = number of measurements, <y> = 

mean value of log S0  

F F-statistic: F = (n-p-1)/p · Σi (yi
obs - <y>)2 / Σi (yi

obs - yi
calc)2, where p = number of regression 

parameters 

MPP Measure of prediction performance [108]. It refers to the percent of ‘correct’ predictions, as 

defined by the count of absolute residuals |log S0
obs – log S0

calc| ≤ 0.5 divided by the number 

of measurements. MPP is represented as a pie chart in the correlation plots. 

Abraham solvation descriptors 

A H-bond total acidity 

B H-bond total basicity 

Sπ dipolarity/polarizability due to solute-solvent interactions between bond dipoles and 

induced dipoles 

E excess molar refraction (dm3 mol-1 / 10); which models dispersion force interaction arising 

from π- and n-electrons of the solute 

V McGowan molar volume (dm3 mol-1 / 100) 

A∙B  acid-base H-bonding product descriptor used in ABSOLV solubility prediction 

Most important RDKit descriptors in RFR analysis  

Subdivided Surface Area Molecular Descriptors [109] 

LabuteVSA sum of atomic contributions [110] to the accessible van der Waals surface area  

MolLogP sum of atomic contributions to octanol/water partition coefficient, log P 

MolMR sum of atomic contributions to molar refractivity, MR 

SMR_VSAk sum of accessible van der Waals surface area for those atoms with atomic contribution 

to molar refractivity; k refers to a small domain of atomic-contribution to MR; intended 

to capture molecular size & polarizability 

PEOE_VSAk intended to capture direct electrostatic interactions in a particular range; based on 

iterative equalization of atomic orbital electronegativities [111]. 
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Complexity descriptors 

BertzCT complexity index, based on size, symmetry, branching, rings, multiple bonds, and heteroatoms 

characteristic of solute [112]. 

Ipc          content information of topological graph [113] - entropy of atomic distribution in solute 

Topological and electrotopological connectivity indices 

Chi0, Chi0n, Chi0v, Chi1, Chi1n, Chi4n, Chi4v, α – Kier-Hall topological connectivity and shape indices 

[114,115]; numerical representations of topology of solute calculated from graphical depiction of the 

molecule 

Atomic and subroup counts, HeavyAtomCount, NumberAromaticCarbocycles, NumberAromaticRings, 

RingCount, fr_benzene 

Availability of the Wiki-pS0 Database 

The entire Wiki-pS0 database is planned to be released in book form: A. Avdeef. Intrinsic Aqueous 

Solubility Data for Pharmaceutical Research. Wiley-Interscience, Hoboken, NJ (under discussion with 

publisher). A sampling is presented in Table A5 in [20]. 
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Appendix  

Underlined names denote compounds whose crystal structures have not been deposited in the 

Cambridge Crystallographic Data Centre. 
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