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White matter in the brain supports higher-order cognitive processes by facilitating signal 

transmission between diverse cortical regions.  White matter integrity declines with advancing 

age, leading to impairments in memory and executive processes in older adulthood.   Recent 

research suggests that higher-fit older adults may be less susceptible to white matter 

degeneration, although evidence for this relationship is limited.  Here we examine whether 

cardiorespiratory fitness correlates with white matter integrity and whether this relationship 

further predicts cognitive performance in a large, older adult sample.  Diffusion tensor imaging 

was used to determine microstructural white matter integrity in a group of 113 (mean age = 

66.61) neurologically healthy adults.  Measures of cardiorespiratory fitness (VO2), working 

memory, and executive function were also collected.  Using a whole-brain voxelwise analysis, 

we found that higher fitness levels predicted greater white matter integrity in multiple fiber 

pathways.  We explored this relationship further using a region of interest approach, and found 

that higher fitness was associated with greater microstructural integrity in the anterior internal 

capsule and corona radiata, which contain fibers that project from subcortical to prefrontal 

structures.  Further, statistical mediation analysis revealed that white matter integrity within the 

anterior internal capsule and corona radiata mediated the relationship between fitness and spatial 
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working memory performance.   Results suggest that higher levels of aerobic fitness may protect 

against age-related declines in white matter integrity, which may, in turn, preserve memory 

performance in older adulthood.  
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1.0  INTRODUCTION 

By the end of 2013, federal funds allocated to Alzheimer’s Disease (AD) care will be upwards of 

$142 billion dollars (Alzheimer’s Association, 2013). Currently, there are 5 million people in the 

United States with AD, but the prevalence is projected to triple within the next 40 years, making 

the study of dementia an important socioeconomic issue.  Additionally, normal aging is 

accompanied by a progressive deterioration in cognitive processes.  This systematic decline in 

cognitive function interferes with quality of life and increases the risk for Alzheimer’s disease, 

personal injury, hospitalization, and death (Salthouse, 2004; Amieva et al., 2005; Zahodne et al., 

2013; Johnson et al., 2007).  Considering the lack of successful pharmaceutical therapies for AD 

and subclinical cognitive decline, it is important to examine whether favorable alterations in 

modifiable risk factors can attenuate, prevent, or treat age-related decline in cognitive function. 

Along with progressive declines in cognitive function, aging is also associated with 

pronounced neural degeneration.  But, the neural and cognitive changes associated with 

advancing age are not inevitable.  Physical activity (PA) ameliorates age-related cognitive 

decline and increases the volume of grey matter regions that support higher-level cognitive 

processes, including the hippocampus and prefrontal cortex.  In fact, PA and fitness-related 

changes in grey matter volume are one way in which PA may be linked to improvements in 

cognitive processes.  But, grey matter changes do not fully account for the benefits of PA on 

cognitive function in older adulthood.  Notably, very few studies have examined the relationship 
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between PA, white matter (WM) tissue integrity, and cognitive function.  Given that higher-order 

cognitive processes rely on dynamic communication (signal transmission) between cortical 

regions, PA-related variation in WM structural integrity may partially mediate the relationship 

between PA and cognitive function in late life.  The aim of the current study was to examine 

whether individual differences in aerobic fitness were associated with variations in WM 

integrity, and if so, whether this relationship was related to cognitive function in older adulthood.  

Hypothesis 1: Higher levels of cardiorespiratory fitness will be associated with greater white 

matter integrity in a sample of healthy older adults.  

Hypothesis 2: Higher cardiorespiratory fitness levels will be associated with better performance 

on tasks involving executive function and memory.     

Hypothesis 3: Variation in white matter integrity will be one pathway by which  
 
cardiorespiratory fitness is associated with cognitive functioning.  Using a statistical mediation  
 
model, we will test whether variation in WM integrity mediates the relationship between aerobic  
 
fitness and cognitive performance. 

1.1 AGING AND COGNITIVE FUNCTION 

Advancing age, even in the absence of disease, is frequently accompanied by systematic decline 

in memory and executive function, which broadly involves the coordination and control of 

processes involved in complex, goal-directed behavior (Buckner 2004; Salthouse 2005).  The age 

at which cognitive decline first begins varies by domain and is a matter of contention in the 

literature, with some evidence that cognitive decline begins in early adulthood and other research 

suggesting stability of cognitive function until later adulthood (Schroeder & Salthouse 2004; 
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Salthouse 2009).  Prospective research, such as the Seattle Longitudinal Study of Aging which 

followed 5,000 adults, some for as long as 35 years, suggests that significant age decrements in 

psychometric abilities are not observable until age 60 (Schaie 1994; Schaie & Hertzog 1986).   

Cross-sectional and other longitudinal research has, on the other hand, demonstrated that age-

related cognitive decline may begin as early as the third decade (Salthouse, 2009).  While the age 

at which cognitive decline first begins remains under debate, there is unequivocal evidence 

demonstrating that cognitive performance diminishes in older adulthood.  

Between-subject designs comparing cognitive performance across different age groups 

emphasizes the pronounced declines frequently observed with advancing age.  For example, 

Kray and Lindenberger (2002) examined differences in executive function in young adults (ages 

18-25) and older adults (ages 60-75) using a task-switching paradigm.  In this sample, older 

adults demonstrated reduced accuracy and greater response time relative to young adults, 

suggesting age-related impairment in executive control. Similarly, Gunstad and colleagues 

(2006) administered a battery of neuropsychological tests to a sample of 364 healthy adults 

between the ages of 21-84.  After age stratification, they found a stepwise decrease in 

performance on executive function tasks with advancing age, with participants in the highest age 

tertile (50-84) demonstrating the lowest performance relative to all other groups (Gunstad et al., 

2006).  

Along with executive processes, advancing age also compromises memory function.  In a 

study by Small and colleagues (1999), 212 cognitively healthy subjects ranging from 60 to 93 

years old were followed prospectively and given annual neuropsychological evaluations.  The 

neuropsychological examinations included assessments of memory, language, and visuospatial 

ability.  After dividing the sample by age, specifically 60-69 and 70+, they found that age-related 
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decline was not represented across all cognitive domains.  Rather, those that were at least 70 

years old at baseline displayed a greater decline in memory performance over time relative to 

those aged 60-69 at baseline, while language and visuospatial abilities remained consistent 

across both age groups (Small et al., 1999).  While memory decline in the seventh decade may be 

underrepresented in this study due to the limited age range, these results emphasize the domain 

specificity often observed with age-related cognitive decline.   Similarly, progressive decline 

with advancing age has been observed in multiple memory domains, including working memory, 

long-term memory, and episodic memory (Nyberg et al., 1996; Buckner et al., 2004). Taken 

together, these results suggest that while cognitive decline may begin as early as young 

adulthood, cognitive abilities experience progressive decline with increasing age, with specific 

impairments in memory and executive function.  

1.2 AGING AND WHITE MATTER 

Advancing age is also associated with alterations in brain structure, including reductions in white 

matter integrity. Half of the human brain is composed of white matter, which consists primarily 

of glia and axons (Fields, 2008).  Axons provide communicative connections in the central 

nervous system by regulating the distribution of action potentials, passing information in the 

form of electrical signals between areas of grey matter in the brain and the spinal cord.  The 

axons are surrounded by myelin, a fatty tissue essential for alacrity of signal transmission, as 

well as maintenance of signal strength.  Although some cognitive processes are localizable, 

many complex cognitive processes depend on communication between widely distributed neural 

systems (Madden et al., 2009a). Thus, degeneration of white matter can interfere with signal 
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transmission and lead to impairments in cognitive processes.  Age-related white matter changes 

may be playing an underappreciated role in age-related cognitive decline since the focus of most 

prior research has been on changes in grey matter volume with age. 

Fortunately, imaging methodologies have provided researchers with the ability to 

examine this relationship more closely.  Magnetic resonance imaging (MRI) allows researchers 

to examine white matter structure in vivo.  There are multiple ways to measure WM structure 

including assessment of white matter hyperintensities (WMH), which represent white matter 

lesions, as well as estimation of global and regional white matter volume.  While both of these 

methods offer insight into WM development and pathology, they only provide information on 

macrostructural properties of WM, identifying complex fiber bundles as homogenous tissue, and 

neglecting important, microstructural properties. Within the last decade, Diffusion Tensor 

Imaging (DTI) has emerged as a novel approach to estimate white matter integrity.   DTI is 

sensitive to subtle alterations or abnormalities in tissue properties and is thus able to detect 

variations in WM microstructural integrity (Madden et al., 2009a, Charlton et al., 2006). To do 

so, DTI measures the rate and directionality of water diffusion along WM fibers, with two 

primary outcome measures: 1) fractional anisotropy (FA), with higher levels suggestive of 

greater WM integrity and 2) mean diffusivity (MD), with higher levels suggestive of reduced 

WM integrity.  Taken together, greater and more isotropic diffusion of water is indicative of 

compromised tissue integrity, specifically, demyelination, axonal fragmentation, and atrophy 

within WM fibers (Sullivan and Pfefferbaum, 2006).  Additionally, DTI has emerged as a 

preferred estimate of WM integrity as it has been demonstrated to identify abnormalities in tissue 

structure that appear as normal areas of WM on conventional MR images (Pfefferbaum & 

Sullivan 2002; Vernooij et al., 2009). 
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Using the above methodology, researchers have shown that aging is associated with a 

systematic increase in white matter degeneration.  Unlike grey matter volume, which, on a global 

level, decreases linearly with age (Ge et al., 2002; Good et al., 2002), WM changes throughout 

the lifespan follow a quadratic, inverted-u shaped pattern (Bartzokis et al., 2001; 2003).  This 

trajectory has been supported by Westlye and colleagues (2010), who assessed lifespan changes 

in WM using a sample of 430 subjects aged 8-85.  Using DTI estimates, they found a protracted 

growth of WM into the fourth decade, at which time DTI indices plateaued, followed by a slow 

decline into late adulthood. Further, beginning at approximately 65 years, there was an 

accelerated decline in WM integrity, suggesting that older adults are particularly vulnerable to 

precipitous declines in WM integrity.   Additionally, observational research suggests that the 

white matter damage observed with healthy aging may surpass grey matter damage in older 

adulthood (Salat et al., 1999; Jernigan et al., 2001; Guttmann et al., 1998). While the majority of 

work has placed an emphasis on grey matter changes in older adulthood, the above evidence 

underscores the pervasive degeneration of WM integrity with advancing age.  

White matter degeneration observed with normal aging occurs in regions that support 

higher-level cognitive processes, with tract disruption following an anterior to posterior gradient 

(Head et al., 2004; Jernigan et al., 2001, Salat et al., 2005; O’Sullivan et al., 2001; Pfefferbaum 

et al., 2000; Pfefferbaum and Sullivan, 2003).  Initial reports of this anterior-posterior trend 

showed that older adults displayed greater MD relative to younger adults, with maximal changes 

seen in the anterior WM (O’Sullivan et al., 2001).  More recent studies have provided 

converging support for the susceptibility of anterior WM to aging (Pfefferbaum et al., 2000; 

Salat et al., 2005; Gunning-Dixon et al., 2009).  For example, among 87 healthy subjects aged 

20-73, Grieve and colleagues (2007) found an age-dependent variation in FA, such that older 
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adults displayed reduced FA in frontal, temporal, and parietal regions.  The greatest differences 

were observed in the prefrontal regions, where FA declined at an approximate rate of 3% per 

decade (Grieve et al., 2007).  Additionally, Pfefferbaum and colleagues (2005) assessed 

variations in white matter integrity among 10 younger (ages 22-37) and 10 older (ages 65-79) 

adults.  Group differences were not observed in posterior regions of interest, suggesting that 

posterior fiber systems may be preserved with normal aging.  In contrast, relative to the younger 

adults, the older adults demonstrated higher MD in a number of anterior regions including the 

superior and inferior longitudinal fasciculi, anterior cingulate bundle, and middle frontal gyrus.  

Importantly, functional imaging studies have identified the anterior cingulate and middle frontal 

gyrus as involved in supporting executive control, episodic memory, and problem solving 

(Pfefferbaum et al., 2005; Duncan and Owen, 2000).  Even within particular fiber bundles there 

is an age-related preference toward degeneration in anterior WM segments.  For instance, WM 

integrity was assessed within two longitudinal association tracts that transverse the frontal lobe, 

the inferior longitudinal fasciculus and the cingulum bundle.  Differences in WM integrity 

between younger adults (mean age = 20.04) and older adults (mean age = 68.89) increased 

linearly from posterior to anterior regions within each tract, emphasizing the gradual increase in 

susceptibility of WM fibers to structural degeneration as fibers move along the posterior-anterior 

plane.  (Davis et al., 2009).  Taken together, these results suggest that normal aging is 

accompanied by WM alterations that are not diffusely represented across the brain.  Instead, fiber 

tracts within discrete brain regions are particularly susceptible to age-related tissue degeneration, 

specifically those that integrate signals among grey matter regions that support higher-order 

cognitive processes.  
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1.3 ASSOCIATIONS BETWEEN WHITE MATTER AND COGNITIVE PROCESSES 

The regionally specific white matter tract dysfunction observed with advancing age may provide 

a structural basis for age-related cognitive decline.  While grey matter alterations have been 

implicated in age-related cognitive decline, research has demonstrated that changes in white 

matter circuits may also contribute to cognitive aging. A large-scale quantitative review 

demonstrated an inverse relationship between white matter hyperintensities (WMH) and 

performance on tasks involving executive function, processing speed, memory, and indices of 

global cognitive function (Gunning-Dixon and Raz, 2000), with subsequent work in agreement 

(Tullberg et al., 2004; De Groot et al., 2000).  Recent work using DTI has also emphasized the 

contribution of degraded WM integrity to impairments in cognitive processes.  For instance, in a 

study by Vernooij et al., (2009) 860 cognitively healthy adults aged 60 and over had DTI scans 

collected.  All participants also underwent neuropsychological testing, which assessed various 

domains including memory, executive function, processing speed, motor speed, and global 

cognition.  After adjusting for lesion volume and WM atrophy, higher MD was related to poorer 

performance on tasks of executive function, processing speed, and global cognition.  Similarly, 

after accounting for variation in macrostructural WM, lower mean FA was related to poorer 

performance on tasks of processing speed.  These results indicate that WM integrity as assessed 

by DTI may be uniquely associated with cognitive function above and beyond associations with 

white matter lesion volume or atrophy, suggesting that cognitive decline may also be 

compromised by minute microstructural variations in WM tissue.   

While the aforementioned study examined global indices of WM integrity, additional 

work has found regionally specific relationships between WM integrity and cognitive function.  

For instance, in a sample of 20 older adults and 20 younger adults, Madden and colleagues 
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(2009b) found that older adults performed more poorly on an executive function task relative to 

younger adults.  Further, they found that the relationship between age and cognitive performance 

was mediated by WM integrity (FA) in the genu and splenium of the corpus callosum (Madden 

et al., 2009b).  Similarly, lower levels of FA in distinct regions have been linked to impaired 

performance on tasks involving working memory and executive processes (Charlton et al., 2006; 

Grieve et al., 2007; Gold et al., 2010).  For example, in a sample of adults ranging in age from 

20-73, Grieve and colleagues (2007) found that reduced FA within frontal, temporal, and parietal 

regions were associated with poorer cognitive performance on two executive function tasks.  

This relationship was particularly strong for FA within bilateral areas that extended from the 

prefrontal cortex to the parietal lobe (Grieve et al., 2007).  Additionally, elevated MD in anterior 

WM circuits has been negatively correlated with performance on executive function tasks 

(O’Sullivan et al., 2001). These results emphasize the integral role of WM in cognitive function, 

and demonstrate the overlap between cognitive processes associated with normal aging and those 

associated with variations in WM integrity.  The regional specificity suggests that tract 

degeneration within frontoparietal and frontotemporal regions is associated with impaired 

performance on tasks involving memory and executive processes.  

1.4 EXERCISE, AGING, AND COGNITIVE FUNCTION 

While cognitive and neural changes accompany normal aging, research has shown that these 

changes are not invariable, and instead may be altered by lifestyle factors.  Specifically, 

maintenance of cognitive function with advancing age may be achieved by engaging in physical 

activity, and in particular aerobic exercise. Aerobic exercise is defined as a type of physical 
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activity that depends on increased oxygen consumption to stimulate aerobic metabolism, and 

thus meet increased energy demands during physical activity.  Cardiorespiratory fitness (CRF) 

broadly refers to the ability of the body to supply oxygen to working muscles during sustained 

activity, and can be improved by aerobic exercise (Physical activity and health: A report of the 

Surgeon General, 1996). Maximal oxygen uptake (VO2) is considered the “gold standard” 

measure of cardiorespiratory fitness, and acts as an objective proxy or outcome for habitual 

physical activity (Lee et al., 2010; Barnes et al., 2003). 

While cognitive and neural changes accompany normal aging, research has shown that 

these changes are not invariable, and instead may be altered by lifestyle factors.  Specifically, 

maintenance of cognitive function with advancing age may be achieved by engaging in physical 

activity, and in particular aerobic exercise. Aerobic exercise is defined as a type of physical 

activity that depends on increased oxygen consumption to stimulate aerobic metabolism, and 

thus meet increased energy demands during physical activity.  Cardiorespiratory fitness (CRF) 

broadly refers to the ability of the body to supply oxygen to working muscles during sustained 

activity, and can be improved by aerobic exercise (Physical activity and health: A report of the 

Surgeon General, 1996). Maximal oxygen uptake (VO2) is considered the “gold standard” 

measure of cardiorespiratory fitness, and acts as an objective proxy or outcome for habitual 

physical activity (Lee et al., 2010; Barnes et al., 2003). 

Further, intervention research, which allows for causal inference, has demonstrated 

favorable cognitive outcomes even after just 6 months of increased PA. Exercise intervention 

studies typically include a group that receives aerobic exercise training (i.e., brisk walking) along 

with one or more control groups.  Importantly, these studies are often designed to ensure that 

each participant receives the same amount of social support/engagement, regardless of group 
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assignment.  In a study by Kramer and colleagues (1999), 124 sedentary older adults were 

assigned to an aerobic exercise or non-aerobic (stretching and toning) control group. Participants 

also completed a battery of cognitive tasks assessing executive function before and after the 

intervention.  Performance improvements were observed for the walking group, but not for the 

stretching and toning control group.  For instance, in a task-switching paradigm, response time 

on switch trials, a condition that relies on executive control processes, improved post-

intervention only for those assigned to the walking group.  Further, in a comprehensive meta-

analysis consisting of cognitive outcomes from exercise intervention trials, Colcombe & Kramer 

(2003) found that cognitive performance improved .5 standard deviations on average after 

exercise, regardless of the type of cognitive task.  The most robust effects, though, were present 

for tasks involving executive processes. Thus, higher levels of PA or fitness can effectively 

stabilize or enhance cognitive function in both clinical and non-clinical older adult populations, 

which offers broad implications for a non-pharmacological method of combating cognitive 

decline.   

1.4.1 Molecular Mechanisms 

Mechanistically, PA induces changes in cell proliferation and brain vasculature that may 

partially explain exercise-induced effects on cognitive performance.  In animal models, physical 

activity has been shown to stimulate neurogenesis, the growth of new neurons, in the 

hippocampus. In a seminal study by Kim and colleagues (2004), researchers examined the effect 

of treadmill exercise on cell proliferation in 4 week-old, 8 week-old, and 62 week-old rats.  

While the younger groups experienced the highest levels of new cell formation, the 62 week-old 

exercised rats also demonstrated significantly greater cell proliferation in the dentate gyrus 
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relative to sedentary controls, suggesting that exercise may combat age-related reductions in the 

rate of neurogenesis typically seen with advancing age.  

Additionally, efficient brain vascularization is needed to supply neurons with the 

nutrients needed for maintenance and survival.  Increased synaptic plasticity and neurogenesis 

resulting from increased PA require support from blood vessels.   In fact, between 3 weeks to 1 

month of regular PA has been shown to increase capillary growth in both young (Swain et al., 

2003) and aged rats (Ding et al., 2006). Specifically, exercise may promote angiogenesis by up-

regulating vascular endothelial growth factor (VEGF), which is principally involved in 

stimulating the growth of new blood vessels in the brain (Yao et al., .2004; Amaral et al., 2001). 

Additionally, exercise up-regulates brain-derived neurotrophic factor (BDNF) (Gomez-Pinilla et 

al., 2002; Vaynman et al., 2003;2004), which supports the birth and proliferation of newly 

developed neurons as well as the survival of existing neurons.  Although, for the sake of brevity, 

only a cursory explanation of molecular mechanisms is provided here, research suggests that 

exercise favorably affects synaptic plasticity, neurogenesis, and capillary growth.  The evidence 

surrounding neuromolecular changes associated with PA gives us cause to speculate about how 

exercise might influence brain morphology, particularly white matter integrity. 

1.4.2 Exercise alters brain morphology 

Given the capacity for sustained PA to induce synaptic plasticity and neurogenesis, research has 

suggested that related variations in brain morphology may account for the relationship between 

PA and cognitive function (Szabo et al., 2011; Weinstein et al., 2012). Intervention studies have 

found that aerobic exercise induces alterations in grey matter within frontal and temporal 

regions, specifically in the prefrontal cortex and the hippocampus (Colcombe et al., 2006; 
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Erickson et al., 2011; Erickson et al., 2010).  Further, research indicates that improvements in 

cognitive performance may accompany domain-specific grey matter changes initiated by PA or 

fitness (Weinstein et al., 2012; Erickson et al., 2011).  But, only a fraction of the relationship 

between fitness and cognitive function can be explained by variations in grey matter structure.  

 Although limited in number, studies using DTI have collectively demonstrated a positive 

association between PA and white matter integrity in older adulthood (Marks et al., 2007; Gons 

et al., 2013; Gow et al., 2012). For instance, Gons and colleagues (2013) examined the 

association between leisure-time PA, as assessed by self-report, and white matter integrity 

among 440 adults aged 50-85 with cerebral small vessel disease.  After stratification of PA into 

quartiles, they found a step-wise increase in FA with increased levels of PA.   Further, this 

relationship was present in almost all voxels of the WM skeleton, even after adjusting for age, 

sex, and cardiovascular risk factors.  Additionally, in the largest sample to assess this 

relationship, Gow and colleagues (2012) gathered estimates of PA using subjective self-reports 

from 691 adults aged 70, and followed-up with MRI scans three years later.  Within normal 

appearing white matter, higher levels of PA at baseline predicted greater white matter integrity 

three years later.  While these large-scale studies suggest an inverse relationship between PA and 

white matter degeneration, they are limited by the use of subjective assessments of PA, which 

are prone to reporter bias and may not accurately reflect actual PA patterns.   

Evidence using objective assessments of fitness has also demonstrated positive 

associations with white matter integrity (Johnson et al., 2012; Voss et al., 2012; Marks et al., 

2011, Tseng et al., 2013). For instance, in a group of 26 older adults, Johnson and colleagues 

(2012) found that cardiorespiratory fitness correlated with callosal FA.  Specifically, higher 

levels of cardiorespiratory fitness were positively associated with elevated FA in a majority of 
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the corpus callosum, a thick commissural fiber tract that regulates intrahemispheric 

communication.  Similarly, using a sample of 15 older adults, Marks et al., (2011) found that 

higher VO2 peak was associated with greater FA in the middle cingulum segment.  Further, 

cardiorespiratory fitness explained 28.5% of FA’s total variance in this region (Marks et al., 

2011).  Overall, results suggest that among older adults, PA and fitness are associated with 

higher levels of white matter integrity.  But, at present, there is a very limited amount of research 

that has examined this relationship in non-clinical samples (8 studies to date).  Additionally, 

there is a lack of consensus across studies regarding WM regions specifically associated with PA 

and fitness. Further, likely due to assessment cost and participant burden, current studies using 

aerobic fitness measures are comprised of small sample sizes.  Thus, while studies have 

consistently demonstrated a positive linear relationship between fitness and white matter 

integrity, regional specificity remains unclear, with small sample sizes and methodological 

limitations further restricting interpretation. Finally, the cognitive processes associated with 

fitness-related variations in WM integrity have yet to be elucidated.   

1.4.3 Linking exercise-induced changes in white matter to cognition 

Taken together, previous research suggests that older adults are more susceptible to WM 

degeneration as well as declines in cognitive function.  But, higher levels of aerobic fitness are 

associated with better cognitive performance as well as reduced white matter degeneration.  

While variation in grey matter structure may partially account for the association between fitness 

and cognitive function, there is a dearth of knowledge regarding the potentially influential role of 

WM in the relationship between fitness and cognitive processes.   To date, only two studies have 

examined whether the microstructural changes induced by PA affect cognitive function (Voss et 
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al., 2013; Prakash et al., 2010), only one of which was conducted in the context of normal aging.  

Following a one-year aerobic exercise intervention, Voss et al. (2013) found that gains in aerobic 

fitness within the exercise group were associated with enhanced memory performance, as well as 

significant increases in prefrontal and temporal FA.  Additionally, this result was not found in 

the stretching and toning control group.  But, the increases in white matter integrity post-

intervention were not associated with memory improvement (Voss et al., 2013).  The authors 

suggested that null results may be a product of lack of statistical power for the cognitive measure 

employed (backward digit span).  Additionally, in contrast to grey matter, it may be that a longer 

duration of aerobic exercise is needed to exert significant enough changes in WM to affect 

cognitive function.  But, results from this study are promising as they demonstrate that one year 

of moderate-intensity exercise was sufficient to induce increases in frontotemporal white matter 

integrity.  Further, positive associations between cardiorespiratory fitness, white matter integrity 

(FA) and cognitive performance (processing speed) have also been observed in populations with 

multiple sclerosis, a disorder characterized by demyelination (Prakash et al., 2010).  

In sum, the relationship between fitness and WM integrity as assessed by DTI is 

promising, with research suggesting that higher levels of aerobic fitness may protect against age-

related declines in white matter, although whether this relationship translates into cognitive 

change is currently unknown and requires further examination. 

1.5 CURRENT STUDY 

Aging is accompanied by degeneration in cerebral white matter, as well as declines in memory 

and executive functioning.  Exercise interventions have demonstrated that physical activity is 
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protective, and even restorative against cognitive and brain morphological decline in aged 

populations.  The relationship between aerobic fitness and cognitive performance may be 

partially mediated by white matter integrity, although most extant literature has focused on this 

relationship in structural grey matter. Therefore, we will test whether individual differences in 

fitness predict variations in white matter integrity, after accounting for demographic factors.  We 

predict that there will be a direct association between aerobic fitness and white matter integrity, 

particularly in anterior regions.  Second, we will test whether white matter integrity is positively 

associated with cognitive performance on executive function and memory tasks, after accounting 

for demographic factors.  Finally, using statistical mediation, we will explore the extent to which 

variation in white matter integrity accounts for the relationship between cardiorespiratory fitness 

and cognitive function.  

The present study has several advantages including a relatively large sample size and an 

objective measure of aerobic fitness.  Additionally, the proposed study will expand on the 

present literature in two important ways: 1) assist in clarifying the present ambiguity regarding 

the regionally specific relationship between white matter and aerobic fitness by exploring direct 

associations between fitness and white matter integrity 2) test whether white matter integrity is a 

key statistical mediator in the relationship between fitness and cognitive function.   
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2.0  RESEARCH DESIGN AND METHODS 

2.1 SUBEJCTS 

One hundred and seventy-three participants between the ages of 60 and 81 (mean age 66.6 years; 

standard deviation = 5.6 years) were recruited to take part in a one-year, single-blind randomized 

walking intervention.   Subjects were recruited through community advertisements and physician 

referrals.  Participants underwent an initial phone screen, followed by a group orientation that 

provided study details and responses to participant inquiries.  After the orientation, subjects 

participated in three baseline sessions.  During these sessions, cognitive and cardiorespiratory 

fitness assessments were administered, and high-resolution magnetic resonance imaging (MRI) 

data was collected.  As the objective of the present study is to examine associations between 

aerobic fitness, white matter integrity, and cognition rather than exercise-induced changes, only 

the baseline data will be used for analysis.  Of the 173 participants, 16 were excluded due to 

incomplete information on relevant behavioral data (cognitive, VO2, or demographic).  An 

additional 12 subjects that did not complete the baseline MRI scan were excluded.  Finally, 32 

participants were excluded due to problems with their diffusion data including 1) failure to finish 

the entire scan (n = 2) 2) poor orientation during image acquisition (n = 4) and 3) excessive 

noise/field distortion (n = 24).  Thus, the final sample consisted of 113 participants. 
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2.1.1 Exclusionary Criteria  

As mentioned in Erickson et al. (2011), participants were required to score ≥ 51 on the modified 

Mini Mental Status Examination (high score of 57) to rule out clinically present cognitive 

impairment (Stern, 1987). Additionally, to rule out depression, individuals that scored > 3 on the 

Geriatric Depression Scale were excluded from the study (Sheikh, 1986).  Participants were 

required to have normal color vision, a visual acuity of at least 20/40, and no history of 

neuropsychiatric conditions or neurological diseases or infarcts including Parkinson’s disease, 

multiple sclerosis, Alzheimer’s disease, or stroke.  Further, participants were excluded if they 

demonstrated a history of vasculature problems, including diabetes and cardiovascular disease.  

No MRI contraindications could be present.  In order to participate, subjects needed to obtain 

consent from their physician to engage in an exercise intervention, as well as a maximal graded 

exercise test (VO2 max).  Finally, participants were required to be 60+ years of age, and currently 

sedentary, defined as being physically active for 20 minutes or less each week within the six 

months prior to baseline examination, as assessed by the Physical Activity Scale for the Elderly 

(PASE) (Washburn et al., 1993). 

2.2 INSTRUMENTS 

2.2.1 Demographics 

A brief questionnaire assessed basic demographic information including participants’ age, 

gender, and education. 
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2.2.2 Cardiorespiratory fitness assessment 

Maximal oxygen uptake (VO2 max) was used in the present study as an objective measure of 

baseline cardiorespiratory fitness (CRF).  As detailed by Voss et al., (2010), assessment of CRF 

was done using graded maximum exercise testing on a motor-driven treadmill with continuous 

monitoring of respiration, heart rate, and blood pressure by a cardiologist and nurse.  During the 

assessment, subjects walked at a speed slightly faster than their normal walking pace with 

increasing graded increments of 2% every 2 minutes.  Oxygen uptake was measured at 30 second 

intervals until a max VO2 was attained or to the point of test termination due to exhaustion.  VO2 

max was defined as the highest recorded VO2 value when two of three criteria were satisfied: 

1) a plateau in VO2 peak between two or more workloads 2) a respiratory exchange ratio 

> 1.00 or 3) a heart rate equivalent to their age predicted maximum (i.e., 220-age). 

VO2 max scores are expressed in units of milliliters per kilogram per minute (ml/kg/min), 

after controlling for height and weight of the individual.   

2.2.3 Diffusion Tensor Imaging 

Diffusion weighted images were acquired using a 3 T Siemens head-only scanner.  The echo 

time (TE) was 94 ms, with repetition time (TR) = 4,200 ms. Twenty-eight 4 mm slices were 

obtained along the anterior-posterior commissural plane.  The protocol involved a T2-weighted 

acquisition followed by a 12-direction diffusion-weighted echo planar imaging scan (b-value = 

1,000 s/mm2), which was repeated six times. 
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2.2.4 Cognitive Assessments 

2.2.4.1 Task-switching paradigm 

 

The task-switching paradigm is used extensively in the literature to assess specific components 

of executive processes (Gold et al., 2010; Gratton et al., 2009; Kramer et al., 1999;  Kray & 

Lindenberger 2000; Voss et al., 2012), including cognitive flexibility and inhibition (Verstynen 

et al., 2012).  Associations between task-switching performance and WM integrity in older adults 

have been previously established (Kray and Lindenberger, 2002).  

As described in Voss et al., (2010), participants utilized color-based cues to determine 

whether they were to judge whether a number was odd or even, or whether it was low or high 

(i.e., smaller or larger than 5).   The numbers were presented individually for 1500 ms against a 

pink or blue background.  If the background was blue, participants had to determine whether the 

number was high (“X” key) or low (“Z” key).  If the background was pink, participants were to 

report whether the number was odd (“N” key) or even (“M” key).  In both cases, participants 

were asked to answer as quickly as possible (Voss et al., 2010).  Participants completed a 

practice block followed by a switching block, which included 120 trials with the task in each trial 

chosen randomly, from which performance results were recorded. 

Reaction time and accuracy rates for single trials (trials during the non-switch condition 

which involved only one task at a time), repeat trials (trials during the dual-task condition in 

which the preceding trial involved the same task), and switch trials (trials during the dual-task 

condition in which the preceding trial involved a different task) were recorded. Cost estimates 

are often calculated using these measures to assess variation in performance with increasing task 

demand (Verstynen et al., 2012).  Local and global costs tend to be more pronounced (increase) 
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with advancing age (Kray and Lindenberger, 2002; Madden et a., 2010) suggesting that older 

adults are more susceptible to deficits in executive control processes.   Therefore, four estimates 

of cost performance were calculated, including local and global accuracy and local and global 

RT costs, which were used as outcome variables in subsequent analyses.  Consistent with 

previous literature, differences in RT and accuracy rates between non-switch and switch trials 

within the same condition were calculated to reflect local accuracy and reaction time costs.  

Differences in RT and accuracy rates between the single-task condition and the dual-task 

condition were calculated to reflect global RT and accuracy costs.  

2.2.4.2 Spatial Memory Task 

 

This task assesses spatial memory, a cognitive domain that typically declines with advancing 

age. At the beginning of the task, participants were shown a fixation crosshair for 1 second, 

followed by the appearance of one, two or three dots placed in random locations on the screen 

for 500 ms. Then, a 3 second fixation crosshair appeared, during which time participants were 

asked to try to remember where the previous dot(s) were located.  Following the 3-second delay, 

a red dot appeared on the screen.  Subjects had to indicate whether the red dot displayed was in 

the same location (match) or a different location (non-match) than one of the previously 

presented black dot(s) by pressing a designated key on a computer keyboard (x = nonmatch; m = 

match).  There were 40 trials per set size (1, 2, and 3 black dots), with 20 match and 20 non-

match trials in each, totaling to 120 trials.    Prior to task administration, several practice trials 

were conducted to familiarize the participant with the task, during which time they were directed 

to respond as quickly and accurately as possible.  Accuracy rates and reaction time were 
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recorded separately for the 1, 2, and 3 dot conditions, which were then averaged to create mean 

RT and accuracy scores.  

2.2.4.3 Flanker Task 

 

Participants completed a modified flanker paradigm, which assesses attentional control and 

perceptual speed (Erickson et al., 2005).   During this task, participants were asked to identify the 

orientation of a central arrow cue that was embedded in an array of five arrows that pointed in 

either the left or right direction. In half of the trials, the surrounding arrows pointed in the same 

direction as the central cue (e.g., <<<<<), in the other half the flanking arrows pointed in the 

opposite direction of the central cue (e.g., <<<><).  Reaction times on congruent and incongruent 

trials were recorded, and flanker cost was calculated by subtracting the reaction times of 

congruent trials from those of incongruent trials.  

2.3 IMAGE PROCESSING 

DTI data was analyzed in order to determine the extent to which cardiorespiratory fitness is 

associated with white matter integrity, as well as the degree to which variation in white matter 

integrity accounts for the relationship between cardiorespiratory fitness and cognitive function.  

DTI estimates the rate and directionality of water diffusion in the interstitial fluid (between 

individual white matter fibers) and within the intracellular space.  The diffusion of water in brain 

tissue is highly affected by the local microstructural integrity of the tissue.  Water diffusion will 

be anisotropic, or directionally homogenous, when restricted by barriers such as axons, 
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neurofilaments, and myelin (Hagmann et al., 2006).  In contrast, when integrity is compromised 

by demyelination or axonal injury, diffusion within white matter becomes less constrained and 

therefore more isotropic.  Quantification of diffusion is completed by computing a tensor, a 

mathematical model of the directionality and magnitude of water diffusion in 3D space.  The 

shape of the tensor is determined by: 1) three eigenvectors, which represent directions of 

diffusion along 3 primary axes and 2) three eigenvalues, which represent the magnitude or rate of 

diffusion along the 3 axes.  The largest eigenvalue corresponds to the principle eigenvector and 

represents water diffusion that is parallel to the axon.  The other two eigenvalues represent the 

rate of diffusivity in the two orthogonal planes (Wozniak and Lim, 2006).    Fractional 

anisotropy (FA) is the most commonly used estimate of WM integrity, and represents overall 

anisotropy within a voxel.  FA is computed using a weighted ratio of the standard deviation of 

the 3 extracted eigenvalues of the mean, therefore taking into consideration the rate of diffusion 

parallel and perpendicular to the axon, or principle direction of diffusion.  FA values fall 

between a range of 0 and 1, indicating the degree of integrity.  For instance, an FA value of 0 

represents a spherical diffusion (i.e. no axons), as would be seen in the ventricles, while an FA 

value of 1 indicates that water diffusion only occurs along the primary axis and is fully restricted 

in all other directions (Sullivan and Pfefferbaum, 2006).  

In the present study, diffusion data was processed using tools in the FMRIB Software 

Library (FSL) (Image Analysis Group, FMRIB, Oxford, UK; http://www.fmrib.ox.ac.uk/fsl/; 

(Smith et al., 2004).  Using FMRIB’s Diffusion Toolbox (v2.0; 

http://fmrib.ox.ac.uk/fsl/fdt/index.html), each participant’s data was eddy current corrected, to 

adjust for field distortions, by affine registration to the reference, or Bo image.  This was 

followed by the removal of non-brain tissue using the Brain Extraction Tool (BET) (Smith and 

http://fmrib.ox.ac.uk/fsl/fdt/index.html
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Nichols, 2009).  Next, DTIfit was used to calculate the diffusion tensor at each voxel.  

Specifically, this step computes the voxelwise eigenvalues and eigenvectors of the diffusion 

tensor from each participant’s image, calculating various diffusion parameters, including FA.  

The FA data was then fed into the FSL tract-based spatial statistics toolbox (TBSS; v1.2, 

http://www.fmrib.ox.ac.uk/fsl/tbss/index.html; Smith et al., 2006) pipeline. TBSS is used 

frequently in DTI processing, and its algorithms for alignment of FA images across multiple 

subjects into a standard space have been tested and validated (Smith et al., 2006).  First, FA 

images were eroded to remove likely outliers from the diffusion tensor-fitting step.   Then, FA 

images were normalized to 1 X 1 X 1 mm MNI152 standard space via alignment to a common 

registration target.  As considerable atrophy occurs in older adulthood, it is standard to compute 

a study specific template when using older adult populations, as the standard FSL FA template 

(FMRIB58_FA) reflects an average of young to middle aged adults.   Therefore a study-specific 

template was created and was used as the target for registration.  To create the study specific 

template, we first affine registered all native-space FA images to the FA template in MNI space, 

then averaged across subjects to generate the study-specific template.  Registration to the study-

specific template is done by combining two transformations: 1) a non-linear transformation of 

each subject’s FA image to the study specific template and 2) an affine registration of the 

template to MNI152 space.  Following the MNI transformation for all subjects, a mean FA 

image was computed and an average skeleton was generated that represented major tracts 

common across all participants.  The skeleton was thresholded at an FA value of 0.2 (Smith et 

al., 2007), to ensure that major WM tracts were included and to exclude regions that may contain 

multiple types of tissue.   Then, in order to account for any residual misalignments not corrected 

for during registration, each participant’s normalized FA image was projected onto the mean FA 

http://www.fmrib.ox.ac.uk/fsl/tbss/index.html
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skeleton. This resulted in a common tract skeleton onto which each subjects FA image was 

aligned.  An example of the mean FA skeleton produced from the present study can be found in 

Figure 1.   

 

 

 

Figure 1. White matter skeleton 

2.4 STATISTICAL ANALYSIS 

To determine voxels significantly associated with fitness, a whole-brain voxel-wise analysis was 

performed using the randomize tool in FSL.   The randomize tool examines the association 

between VO2 and FA at each voxel by testing the t value at each voxel against the null 

distribution generated using 5000 permutations. Rather than specifying clusters using a priori 

thresholds, the Threshold-Free Cluster Enhancement (TFCE) technique was employed at a 

threshold of p < .05.  After whole-brain TFCE cluster analysis, we identified and labeled the 

specific pathways where FA values correlated with VO2 by overlaying the Johns Hopkins 
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University (JHU) white matter atlas to our statistically-derived images. Then, we used the 

average of the significant voxels within these anatomically identified regions in SPSS to test (1) 

whether the association between VO2 and FA continued to survive after the inclusion of 

confounding demographic factors and 2) whether FA values in specific white matter tracts 

mediated the association between fitness and cognitive performance.  

Once entered into SPSS, FA values were averaged across hemispheres for several 

reasons.  First, collapsing across hemispheres reduced the number of comparisons by half.  

Additionally, the left and right hemispheres for each region of interest (ROI) were highly 

correlated (all p < .0001), demonstrating considerable covariance across hemispheres.  Finally, 

we did not have any hypotheses about laterality effects of fitness or mediation.  Thus, using 

multivariate linear regression, we examined whether the association between VO2 and FA within 

each bilateral ROI remained significant after including relevant covariates in the model, 

specifically age, gender, and education.  Only regions that were significantly associated with 

VO2 after adjusting for demographic factors were used as mediator variables in subsequent 

mediation analysis.  

A mediating variable is a variable that accounts for all or some of the relationship 

between an independent variable (IV) and a dependent variable (DV).   Mediation does not 

require a direct effect of the IV on the DV.  Rather, mediation requires an indirect effect, such 

that the effect of the IV through the mediator on the DV is significantly different from zero.  In 

the present study, we examined whether variation in white matter integrity partially accounts for 

the association between cardiorespiratory fitness and cognitive performance.  This relationship is 

illustrated further, below (Figure 2). 
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Figure 2. Mediation model 

 

 

To determine if there was a significant indirect association between cardiorespiratory 

fitness and cognitive performance that is mediated by white matter integrity, we used the 

PROCESS macro created by Andrew Hayes (Preacher & Hayes, 2008).  The sampling 

distribution of the indirect effect (a*b) is often skewed. To account for this non-normality, the 

PROCESS macro uses bootstrapped sampling with replacement.  Therefore, the indirect effect of 

VO2 on cognitive performance was estimated using 10,000 bootstrapped samples that were 

drawn with replacement from observations within the study sample.  Along with the indirect 

effect, this technique also provides an estimate of 1) the direct pathway, specifically the 

association between VO2 and cognitive performance after accounting for covariates and the 

mediator and 2) the total effect pathway, which represents the relation between VO2 and 

cognitive performance, adjusting only for covariates (sum of indirect and direct pathways).  

Indirect, direct, and total path effects are represented by 95% bias corrected and accelerated 

a b 

c 
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confidence intervals (CI), with results considered significant if the confidence intervals do not 

contain 0.  The regression coefficients are displayed in unstandardized form, as the bootstrapped 

CI’s correspond to the unstandardized effects rather than the standardized effects.  All regression 

models controlled for potentially confounding variables that were correlated with the mediator or 

dependent variable, including age, gender, and years of education.  Outcome variables for 

mediation analyses included cost scores for RT and accuracy on task-switch trials, RT cost on 

the Flanker task, and average accuracy rates and RT on the spatial working memory task. 
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3.0  RESULTS 

Characteristics of the sample including demographics, average FA within each ROI, and task 

performance are described in Tables 1-3. Demographic characteristics including age, gender, 

education, as well as average fitness levels of the 113 participants included in the study were 

similar to those who were not included in the analyses (all p >.05).  Additionally, those included 

in the study did not differ from excluded subjects on measures of cognitive performance. 

 

 

Table 1. Demographics 

Demographics  Mean  (SD) 
(n = 113)  

Age  66.61 (5.653) 
Education (years)  15.48 (2.919) 

Gender (% female)  63.70% 
VO2peak  21.401 (4.890) 

      SD = standard deviation 
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Table 2. Average FA values for significant voxels in white matter regions of interest 

White Matter ROI’s (FA) 
Mean (SD) 

(n= 113) 
Genu of CC .6107 (.049) 
Body of CC .5087 (.056) 

Splenium of CC .6317 (.031) 
Anterior Internal Capsule .5955 (.040) 
Anterior Corona Radiata .4584 (.040) 
Superior Corona Radiata .4941 (.037) 

Fronto-occipital Fasiciculus .5197 (.053) 
Posterior Corona Radiata .4982 (.033) 

Fornix .3739 (.070) 
SLF .4466 (.033) 

SD = standard deviation; CC = corpus callosum; SFL = superior longitudinal fasciculus;  FA = 
fractional anisotropy; ROI = region of interest 
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Table 3. Means and standard deviations for task performance on individual tasks 

Cognitive Task Mean (SD) 
(n = 113) 

Flanker Reaction Time (ms)  
Flanker Congruent RT 591.314 (94.73) 
Flanker Incongruent RT 673.954 (123.60) 
Flanker Cost 82.883 (52.051) 

Task Switch Reaction Time (ms)  
Single trial RT 784.226 (104.77) 
Repeat trial RT 985.855 (142.80) 
Switch trial RT 1372.637 (217.56) 
Mixed RT 1181.538 (163.54) 
Local RT Cost 380.772 (179.56) 
Global RT Cost 396.334 (137.57) 

Task Switch Accuracy (%)  
Single Accuracy 92.617 (8.83) 
Mixed Accuracy 80.230 (20.77) 
Repeat Accuracy 83.082 (19.64) 
Switch Accuracy 77.325 (22.76) 
Local Accuracy Cost -5.757 (8.39) 
Global Accuracy Cost -12.038 (19.295) 

Spatial WM Task Reaction Time (ms)  
1-Dot RT 820.66 (188.13) 
2-Dot RT 933.16 (183.455) 
3-Dot RT 1016.434 (192.90) 
Average RT 923.419 (180.227) 

Spatial WM Task Accuracy (%)  
1-Dot Accuracy 86.347 (14.31) 
2-Dot Accuracy 81.694 (12.88) 
3-Dot Accuracy 77.389 (15.16) 
Average Accuracy 81.81 (12.86) 

Note: Italicized variables (above) were used as outcome variables in analyses. 
RT = reaction time; WM = working memory 
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3.1 CORRELATIONS BETWEEN FITNESS AND COGNITIVE PERFORMANCE  

Males (r = .437; p < .001) and those with greater years of education (r = .291; p = .002) had 

higher fitness levels compared to women and those with fewer years of education.  Additionally, 

older age was associated with lower levels of fitness (r = -.460; p < .001).   

 After accounting for age, gender, and years of education, partial correlation 

analysis revealed that higher levels of VO2 were correlated with shorter reaction times on the 

spatial working memory task (r = -.221; p = .021). Additionally, there was a trending association 

between VO2 and local accuracy cost, such that higher fitness levels were correlated with a lower 

switching cost (r = .180; p = .059) during the task-switch task.  There was not a relationship 

between VO2 and Flanker RT cost (r = -.001 p = .988), global RT cost (r = -.169; p = .078), local 

RT cost (r = -.053; p =  .581), global accuracy cost (r = .106; p = .268) or average spatial 

working memory accuracy (r = .138; p = .151).  See Table 4 for more details.  

 

Table 4. Correlations between cardiorespiratory fitness and cognitive performance 

Cognitive Tasks   r   p-value 
Flanker Cost  -0.001  0.988 

TS Global RT Cost  -0.169  0.078 
TS Local RT Cost  -0.053  0.581 

TS Global Acc. Cost  0.106  0.269 
TS Local Acc. Cost  0.18  0.059 

Spatial WM RT  -0.221  0.02 
Spatial WM Acc.   0.138   0.151 

Results from partial correlations, adjusting for age, gender, and 
years of education. 
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3.2 FITNESS PREDICTS WHITE MATTER INTEGRITY 

Prior to adjusting for covariates, whole-brain voxel-wise analysis revealed an association 

between fitness and multiple regions of the WM skeleton, particularly among voxels located in 

anterior fiber tracts.   These associations remained significant after familywise-error correction at 

p < .05.  An FA map of the voxels within the WM skeleton significantly associated with VO2 can 

be found in Figure 3A.   Regions in which significant associations between VO2 and FA were 

located include the genu, body, and splenium of the corpus callosum, the fornix, and the left and 

right anterior corona radiata, superior corona radiata, posterior corona radiata, anterior internal 

capsule, superior longitudinal fasciculus, and superior fronto-occipital fasciculus ( Figure 3B).   

FA values from each region of interest were extracted and subjected to multivariable 

linear regression analyses to assess the association between cardiorespiratory fitness and FA after 

correcting for age, gender and education.  Out of the ten ROI’s, three survived adjustment for 

demographic characteristics, with results demonstrating a positive relationship between VO2 and 

FA within each ROI.  Specifically, higher VO2 predicted greater FA in the splenium of the 

corpus callosum (β = .252; S.E. = .001; p = .036), the anterior internal capsule (β = .278; S.E. = 

.001; p = .016), and the superior fronto-occipital fasciculus (β = .238; S.E. = .001; p = .044).  

Additionally, the anterior corona radiata showed a trending association (β = .223; S.E. = .001; p 

= .051).   R2 estimates extracted from regression models suggest that fitness explained an 

additional 3-5% of the variation in FA within these regions, after including age, gender, and 

years of education in the model (Table 5).   

In contrast, fitness did not contribute significantly to explaining the variance in mean FA 

in the genu, body, fornix, superior longitudinal fasciculus, posterior corona radiata, or superior 

corona radiata after adjustment for demographic factors.  Only regions significantly associated 
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with fitness were included in subsequent mediation models.  The anterior corona radiata was also 

included in further analyses due to the trend at p<.06.   

 

 

Table 5. Results of multivariate linear regression analyses, predicting FA in each ROI 

with fitness 

    β  
St. 

Error  p-value  R2 

Genu  0.173  0.001  0.115  0.017 

Body   0.147  0.001  0.205  0.012 

Splenium   0.252  0.001  0.036*  0.036 

Anterior Internal Capsule   0.278  0.001  0.016*  0.044 

Anterior Corona Radiata   0.223  0.001  0.051  0.028 

Superior Corona Radiata   0.155  0.001  0.198  0.014 

Posterior Corona Radiata   0.207  0.001  0.084  0.024 
Superior Fronto-occipital 
fasciculus   0.238  0.001  0.044*  0.032 

Fornix   0.057  0.002  0.608  0.002 
Superior Longitudinal 
Fasciculus   0.114  0.001  0.332  0.007 
Above analyses adjusted for age, gender, and years of education. R2 = R2 change following addition of  
VO2 to the model.  
* indicates significance at p < .05. 
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A.     B. 
A) Results from voxel-wise whole-brain analysis.  Highlighted in red are voxels within the FA 
skeleton that were significantly associated with VO2, prior to adjusting for age, gender, and years 
of education.  B) Anatomically defined regions of interest using the JHU white matter atlas.   
 

Figure 3. FA skeleton and regions of interest 

3.3 WHITE MATTER MEDIATES THE ASSOCIATION BETWEEN FITNESS AND 

COGNITIVE PERFORMANCE 

Mediation analyses were conducted to test the hypothesis that brain white matter is one pathway 

by which cardiorespiratory fitness is associated with cognitive function.  After controlling for 

variance associated with age, gender, and years of education, mediation analysis showed 

significant indirect associations between VO2 and spatial working memory accuracy through the 

anterior internal capsule (B = .2084; CI (SE) .0301; .5472 (.1279)), the anterior corona radiata (B 

= .138; CI (SE) 0075; .3975 (.095)), and the superior fronto-occipital fasciculus (B =.152; CI 

(SE) .013; .426 (.101)) (Table 6). The positive direction of the coefficients show that higher 

levels of cardiorespiratory fitness were associated with greater FA in the anterior internal 
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capsule, anterior corona radiata, and the superior fronto-occipital fasciculus, which, in turn, 

predicted better performance (fewer errors) on the spatial working memory task.  As the spatial 

working memory accuracy variable represented an average of the accuracy rates across the three 

task conditions, we also ran separate post hoc mediation models for each of the spatial working 

memory conditions, namely, the 1-dot, 2-dot, and 3-dot conditions (Figure 4). All three regions 

showed significant indirect effects for the 1-dot and 3-dot conditions, while only the superior 

fronto-occipital fasciculus mediated the association between fitness and 2-dot accuracy rates 

(Figure 4). In contrast, the splenium of the corpus callosum did not mediate the association 

between VO2 and average spatial working memory performance. 

WM integrity in the splenium significantly mediated the association between VO2 and 

Flanker RT cost (B = -.4741; CI (SE) -1.4454; -.0033 (.3426)).  In particular, the association 

between VO2 and reaction time on Flanker trials occurred through an indirect pathway in which 

higher VO2 was associated with greater white matter integrity, which in turn predicted lower RT 

costs between congruent and incongruent trials. No other regions significantly mediated the 

relationship between VO2 and Flanker RT cost (Figure 5). 

FA values within each ROI did not independently mediate the relationship between VO2 

and performance on the remaining cognitive outcomes, including global and local task-switch 

accuracy and RT costs, and average spatial working memory reaction time (Table 6). 
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Table 6. Mediation: indirect effects, standard errors, and 95% confidence intervals for 

each cognitive variable 

 

  
Anterior 
Internal 
Capsule 

Anterior 
Corona 
Radiata 

Splenium 
Fronto-

Occipital 
Fasciculus 

Flanker Cost -.230 (.348) -.238 (.306) -.474 (.343) * -.269 (.289) 
B (SE) 

95% CI (-1.055; .353) (-1.106; .185) (-1.445; -.003) (-1.063; .142) 
TS Global RT Cost -.388 (.948) -.574 (.891) -.055 (.919) .470 (.761) 

B (SE) 
95% CI (-2.995; 1.025) (-3.247; .596) (-1.909; 1.888) (-.659; 2.542) 

TS Local RT Cost 
-1.415 (1.371) -1.585 (1.367) -.798 (1.171) -.876 (1.122) 

B (SE) 
95% CI (-5.468; .411) (-5.601; .134) (-3.87; 1.038) (-4.041; .680) 

TS Global Acc. Cost 
-.219 (.153) -.195 (.142) -.119 (.137) -.154 (.110) 

B (SE) 
95% CI (-.625; .007) (-.602; .001) (-.462; .101) (-.456; .002) 

TS Local Acc. Cost .054 (.063) .065 (.062) .046 (.051) .036 (.05) 
B (SE) 

95% CI (-.026; .231) (-.011; .248) (-.027; .184) (-.036; .171) 
SPWM RT 

-.412 (1.068) -.788 (.983) -.429 (.865) -.449 (.948) 
B (SE) 

95% CI (-3.237; 1.223) (-3.737; .404) (-2.51; 1.059) (-2.891; 
1.014) 

SPWM Acc. 
.208 (.128) * .138 (.093) * .08 (.066) .152 (.101) * 

B (SE) 
95% CI (.030; .547) (.008; .398) (-.014; .255) (.013; .426) 

     CI=confidence interval; RT=reaction time; Acc=accuracy; SPWM=spatial working memory; TS=task-switch.  
    * indicates significant indirect effects (CI does not contain zero).  
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Accuracy stratified into accuracy rates on the 1-dot, 2-dot, and 3-dot spatial working memory trials.  Error 
bars indicate 95% confidence intervals. x indicates significant indirect effects (CI does not contain zero). 
 

Figure 4. Mediation indirect effects for Spatial Working Memory accuracy 

 
 

 

 
Ant. Int. Capsule = Anterior internal capsule; Ant. CR = Anterior corona radiatal; Sup. FOF = Superior 
Fronto-occipital fasciculus.  Error bars indicate 95% confidence intervals.  x indicates significant indirect 
effects (CI does not contain zero).  
 

Figure 5. Mediation indirect effects for Flanker RT cost 
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4.0  DISCUSSION 

In a large, cognitively healthy older adult sample, we found that fitness predicted white matter 

integrity in multiple white matter tracts, including the anterior limb of the internal capsule, the 

anterior corona radiata, the superior fronto-occipital fasciculus, and the splenium of the corpus 

callosum.  Further, for the first time, we demonstrate that fitness-related variation in white matter 

integrity within these regions mediates the relationship between fitness and cognitive 

performance.  These findings could not be explained by age, gender, or years of education.  

We observed a positive linear relationship between VO2, a measure of cardiorespiratory 

fitness, and white matter integrity within the anterior limb of the internal capsule and the anterior 

corona radiata.  This is consistent with recent evidence demonstrating a positive cross-sectional 

association between fitness and FA in the anterior corona radiata among a sample of middle-aged 

adults with multiple sclerosis  (Prakash et al., 2010).  The corona radiata is represented by a 

large, fan-like array of fibers responsible for cortico-thalamo-cortical projections.   The internal 

capsule is continuous with the corona radiata and corresponds to the ventral segment of fibers 

within the corona radiata located between the basal ganglia and the thalamus.  While the caudal 

portions of the internal capsule primarily include auditory, visual, and somatosensory projection 

fibers, the anterior limb carries ascending thalamic projections concerned with cognitive, limbic, 

and basal ganglia functions to the prefrontal cortex (Catani and de Schotten, 2012).  Given this 

anatomical connectivity, the involvement of these fiber tracts in cognitive processes, as observed 
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in the present study, is not surprising.  In fact, reduced integrity in the anterior internal capsule 

has been observed both in Alzheimer’s disease (Liu et al., 2011) and mild cognitive impairment 

(Liu et al., 2011; Cho et al., 2008).  This pathway has also been linked to cognitive performance 

in non-clinical populations.  Specifically, in a cognitively healthy sample of 52 adults, lower 

microstructural integrity within the anterior internal capsule predicted poorer performance on a 

variety of working memory tasks (Kennedy & Raz, 2009).  Similarly, in our sample, the anterior 

internal capsule and corona radiata mediated the association between fitness and spatial working 

memory performance.  Thus, fitness may preserve WM integrity in corticostriatal and 

corticothalamic circuits responsible for facilitating communication between subcortical and 

prefrontal regions involved in working memory processes.  

The superior fronto-occipital fasciculus was also found to be a significant mediator of the 

relationship between fitness and cognitive performance in the present study.  This fiber bundle 

contains projections from frontal association cortices to the parietal cortex, and has been 

previously implicated in nonverbal processing speed (Kennedy and Raz, 2009).   Overall, the 

functional role of this pathway is not well understood (Catani and de Schotten, 2012), although 

our results suggest that it may also be involved in visuospatial processing or working memory.     

Finally, white matter integrity within the splenium of the corpus callosum mediated the 

association between cardiorespiratory fitness and Flanker RT cost.   In a small sample of healthy 

older adults, Johnson and colleagues (2012) also observed a relationship between fitness, 

measured using VO2peak, and FA within a large portion of the corpus callosum, although the 

strongest effects were observed in the body of the corpus callosum (Johnson et al., 2012).  The 

splenium includes the caudal segment of the corpus callosum, and contains interhemispheric 

fibers from the occipital and superior temporal cortical areas, which broadly include auditory and 



 41 

visual processing regions.  Given the anatomical connectivity of the splenium, it would be 

expected that its functional role is limited to lower-level sensory processes.   On the contrary, 

white matter integrity in the splenium has been predictive of performance on tasks of memory 

and executive function (Kennedy and Raz, 2009; Madden et al., 2009b).  In fact, reduced FA in 

the splenium has previously been associated with greater reaction time during a visual detection 

task that required different responses depending on the stimuli presented (Madden et al., 2004).  

Thus, results from the present study support previous work demonstrating the involvement of the 

splenium in higher-order cognitive functions, and suggest that fitness is linked to greater white 

matter integrity in fibers within the splenium that may mediate attentional control processes.  

Although it is unknown through what molecular pathways exercise affects white matter 

integrity, there is some suggestion that this relationship may occur via cardiovascular pathways.  

Exercise reduces peripheral cardiometabolic risk factors including hypertension, adiposity, 

hypercholesterolemia, and insulin insensitivity (Carroll & Dudfield, 2004; Dunn et al., 1999; 

Healy et al., 2008), which converge to cause cognitive impairment and neural degeneration 

(Elias et al., 2003, Kivipelto et al., 2005; Whitmer et al., 2005).  Additionally, exercise may 

reduce levels of chronic low-grade systemic inflammation, a common feature of many of the 

aforementioned conditions which, when present, stimulates a host of neural and cognitive 

consequences (Rosano et al., 2012). Notably, higher levels of C-reactive protein, (CRP), an 

acute-phase protein considered a biomarker of inflammation, predicts reduced white matter 

integrity specifically in the corona radiata and the corpus callosum (Wersching et al., 2010).     

Given the positive associations observed in the present study between fitness and WM integrity 

within these regions, it may be that physical activity favorably affects white matter morphology 

by reducing levels of systemic inflammation, thereby sparing fiber bundles that are particularly 
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susceptible to inflammation-based degeneration.  Further elucidation on the possible mechanisms 

through which exercise might affect the brain has come from rodent models. In particular, 

studies have shown that exercise increases the production of nerve growth factors including 

brain-derived neurotrophic factor and insulin like growth factor-1, which facilitate neural repair 

and promote synaptic plasticity and neurogenesis (Cotman, Berchtold, & Christie, 2007; Trejo, 

Carro, & Torres-Alemán, 2001: Vaynman et al., 2003; Yang et al., 2014; Pang et al., 2004).   In 

addition, microscopic, angiogenic benefits have been observed in rodent models of exercise, 

which may also help to preserve white matter integrity (Yao et al., 2004; Amaral et al., 2001).  

Importantly, the mechanisms discussed above are speculative, as the biological pathways 

through which physical activity exerts effects on white matter morphology have not yet been 

investigated in humans. 

The proposed study is not without limitations.  First, the quantitative estimates of WM 

integrity are susceptible to variations in fiber-crossing and fiber density, and thus may not 

accurately represent WM integrity in all regions, although this is a limitation present in all 

research that uses diffusion weighted imaging.  Additionally, the diffusion data was collected 

using only 12 gradient directions, which limits the precision of the tensor estimation.  Also, 

white matter hyperintensities were not controlled for in this sample.  It is possible that 

unmeasured third variables may contribute to the relationship between cardiorespiratory fitness 

and cognitive performance or may moderate the fitness-white matter association, including 

health factors such as blood pressure and adiposity.  But, examination of these moderating 

factors may be more appropriate after the link between PA, white matter, and cognitive 

performance has been firmly established. Further, causal inferences cannot be made regarding 

results obtained from the above analyses as the cross-sectional nature of the data does not permit 
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assessment of true causal pathways.  Additionally, because the population was required to be 

sedentary at baseline, we were only able to examine the relationship between WM integrity and 

aerobic fitness within a relatively limited range of fitness.  This may be why we did not observe 

a direct relationship between fitness and task-switch performance, which is in contrast to 

previous findings (Verstynen et al., 2012).  But, the significant mediation results observed in the 

present study suggest that these findings may be even stronger in a population with greater inter-

individual variability in fitness levels.  Finally, there is a lack of diversity within our sample, 

with a large portion of participants Caucasian, well-educated, and derived from a similar location 

in Illinois, limiting the generalizability of the results.  

Despite these limitations, the current study has several strengths that distinguish this 

research from previous work.  The few existing studies that have assessed the association 

between fitness or PA and white matter integrity have been limited either by small sample sizes 

(n < 30) (Johnson et al., 2012; Marks et al., 2007; 2010; Tseng et al., 2013) or subjective, 

questionnaire-based assessments of PA (Gow et al., 2012; Gons et al., 2013), which are subject 

to recall bias.  In contrast, the present investigation utilized a larger sample size, decreasing the 

likelihood of type 2 error, as well as a well-validated, objective measure of fitness.  Additionally, 

our analytical assessment of white matter differs from existing work.   Past research has 

examined the association between PA or fitness and white matter integrity within either one or 

two a priori regions of interest (Tian et al., 2014; Marks et al., 2007; 2011), or using a voxel-

wise, whole-brain approach without subsequent cluster or region analysis (Gow et al., 2012; 

Gons et al., 2012).  The former approach limits understanding to a few discrete brain regions, 

while the latter does not provide information on regional specificity.  In the present study we 

utilized both voxel-based whole-brain and region of interest analysis to globally examine this 
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relationship and, in addition, further specify particular neural circuits associated with fitness.  

Finally, this is the first study that has examined the cognitive correlates of the fitness-white 

matter relationship.  

In sum, we have demonstrated, for the first time, that white matter integrity serves as a 

mediating pathway for the relationship between fitness and cognitive performance.  In particular, 

higher fitness levels predict greater white matter integrity in multiple fiber bundles, which, in 

turn, differentially relate to improved performance on tasks of attentional control, visuospatial 

processing, and working memory.  Future directions include using exercise interventions to 

assess causality, as well as elucidating the mechanisms by which fitness and PA affect white 

matter integrity.  
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