Multi-Agent Systems as Concurrent Constraint
Processes*

Lubosg Brim!, David Gilbert!,Jean-Marie Jacquet? and Mojmir Kfetinsky®

! Dept.of Comp.Sci., City University, London, U.K.
drg@soi.city.ac.uk
2 Dept.of Comp.Sci., University of Namur, Namur, Belgium
jmj@info.fundp.ac.be
3 Faculty of Informatics, Masaryk University Brno, Brno, Czech Republic
{brim,mojmir}@fi.muni.cz

Abstract. We present a language Scc for a specification of the direct ex-
change and/or the global sharing of information in multi-agent systems.
Scc is based on concurrent constraint programming paradigm which we
modify in such a way that agents can (i) maintain its local private store,
(i) share (read/write) the information in the global store and (iii) com-
municate with other agents (via multi-party or hand-shake). To justify
our proposal we compare Scc to a recently proposed language for the
exchange of information in multi-agent systems. Also we provide an op-
erational semantics of Scc. The full semantic treatment is sketched only
and done elsewhere.

1 Introduction

Multi-agent system is a system composed of several autonomous agents that
operate in a distributed environment which they can perceive, reason about as
well as can affect by performing actions. In the current research of multi-agent
systems, a major topic is the development of a standardised agent communi-
cation language for the exchange of information. Several languages have been
proposed, e.g. [7,9,12,4]. Recently de Boer et al.([4]) have also (for the first
time) introduced a formal semantic theory for the exchange of information in
the multi-agent systems. Their approach uses principles of concurrent constraint
programming (CCP) to model the local behaviour of agents while the commu-
nication is modelled by a standard process algebraic hand-shake approach.

Our proposal is based on CCP paradigm only, however semantics of mecha-
nism for updating and testing the (local/global) store(s) are changed.

CCP has inherited two of main features of concurrent logic programming,
namely the asynchronous character of the communication and the monotonic
update of the store. During last years some work have been done to lift both
features. On the one hand, de Boer et al. [5] has proposed non-monotonic updates

* This work has been partially supported by the Grant Agency of Czech Republic
grant No. 201,/00/0400.

https://core.ac.uk/display/335624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of the store and have studied compositional and fully abstract semantics for
them. On the other hand, Saraswat proposed a synchronisation mechanism in
([10]). Briefly, his proposal and many related ones (e.g. [6]) are based on a coding
of an explicit operator to achieve synchrony. This should be contrasted with the
classical concurrent constraint framework in which asynchronous communication
is simply obtained by the blocking of ask primitives when information on the
store is not complete enough to entail the asked constraints. Following these
lines, a natural alternative to obtain synchronous communication in CCP is to
force ask and tell primitives to synchronise in some way. We elaborate further
on this idea by proposing new versions of these primitives.

As in the classical CCP framework, our proposal makes use of tell and ask
primitives. However, a new perspective is taken in that, to be reduced, any tell(c)
operation needs an ask(c') partner. Restated in other terms, if the tell primi-
tives are seen as producers of new information and ask primitives as consumers,
the new primitives consist of lazy tell (or “just-in-time”) producers forced to
synchronise on their consumer asks. Stress is put on the novelty of informa-
tion, i.e. on the fact that the told information should not be entailed by the
current store. Consequently, any tell(c) and ask(c) operations whose constraint
argument c is entailed by the current store can proceed autonomously.

The general scheme is enriched by permitting the synchronisation of more
than two partners. Futher we allow some of the tell primitives not to update
the store. These primitives are subsequently called fictitious and are denoted as
ftell. They can be used to transmit the information which is not (yet) entailed
by the (global/local) store — quite important possibility in distributed systems.

Comparing to the works cited above for synchronisation, we notice the advan-
tage of our approach is that it permits the specification of on what information
the synchronisation should be made, rather than with whom. Our synchroni-
sation is thus more data-oriented as opposed to process-oriented (however still
keeping possibility to specify the latter approach as a derived operator). An
interesting consequence from a software engineering point of view is that in a
specification of an agent (process) it is not necessary to know in advance with
which other agents synchronisation should take place. Modularity is thus gained.

Our aim is not to present a new programming language but rather to in-
troduce new variants of tell and ask primitives, to justify our proposal via a
comparison with [4] (demonstrating expressiveness), and to present a semantics
for them. To sum up our approach allows each agent (i) to maintain its local
private store, (ii) to share (read/write) global information in its global stores
hierarchy and (iii) to communicate (via multi-party or hand-shakes) with other
agents. To achieve this we largely employ standard CCP constructs for hiding
of local variables (3x) and parameter passing (d,y) as well — see Definition 1.

The rest of this paper is organised as follows. In Section 2 we present the
syntax and an informal semantics of Scc. To justify our proposal we compare it
with the language of [4] in Section 3, while in the Section 4 we give an operational
(SOS rules and final result) semantics. We conclude by summarising full semantic
treatment of Scc and by suggesting some future research directions.

2 Language Scc

This section presents the syntax and the informal semantics of the language
underlying the Scc paradigm, also called Scc. As in [11], the constraint system
underlying Scc language consists of any system of partial information that sup-
ports the entailment relation. We assume a given cylindric constraint system
{C,}) over a set of variables Svar, defined as usual from a simple constraint
system (D,) as follows.

Definition 1. Let Svar be a denumerable set of variables (denoted by x,y,...)
and let (D,F) be a simple constraint system. Let Pr(D) denote the set of finite
subsets of D. For each variable x € Svar a function 3, : Pr(D) — Pr(D) is
defined such that for any c,d € Pr(D) the conditions (Ey) to (E4) are satified.
Moreover, for each x,y € Svar the elements dyy € D are diagonal elements iff
they satisfy the conditions (Es) to (Er).

(E1) ek 3;(c) (Es) O F dygy

(E2) ¢t d implies 3,(c) - 3.(d) (Eg) {dzy} ~ 32({dy2,d.y}) whenever x £y
(E3) 3p(cAN3p(d)) ~ Fp(c) ATp(d) (Er) {day} AFz(c A{dyy}) F e

(E4) 32(3y(c)) ~ Fy(Fu(c))

Then (P(D)~,F) is a cylindric constraint system (over Svar). We denote 3,(c)
by 3¢, and for a set X ={x1,... ,z,}, we denote I, ...3,, ¢ by Ixe.

The language description is parametric with respect to (C,F), and so are the
semantic constructions presented.

We use G possibly subscripted to range over the set Sgoal (processes), ¢,d, . ..
to range over basic constraints (i.e.constraints which are equivalent to a finite
set of primitive constraints), and X,Y,... to range over subsets of Svar.

Processes G € Sgoal are defined by the following grammar

G := A | ask(c) | tell(c) | ftell(c) | GGG | G+ G | G || G | IxG | p(t)

Let us briefly discuss an informal meaning of our language constructs. A con-
stant A denotes a successfully terminated process. The atomic constructs ask(c)
and tell(c) act on a given store in the following way: as usual, given a con-
straint c, the process ask(c) succeeds if c is entailed by the store, otherwise
it is suspended until it can succeed. However, the process tell(c), of a more
lazy nature than the classical one, succeeds only if c is (already) entailed by
the store and in this case it does not modify the store, and suspends otherwise.
It is resumed by a concurrently suspended ask(d) operation provided that the
conjunction of ¢ and of the store entails d. In that case, both the tell and the
ask are synchronously resumed and the store is atomically augmented with the
constraint ¢ at the same time. The atomic construct ftell(c) behaves as tell
with the exception that the store is not augmented with the constraint c.

The sequential composition G1; G2 and the nondeterministic choice G; + G2
have standard meanings (the latter being a global as the selection of a component
can be influenced by the store and by the environment of the process as well).

The parallel composition G; || G2 represents both the interleaving (merge) of
the computation steps of the components involved (provided they can perform
these steps independently of each other) and also synchronisation: this is the case
of the tell, ftell and ask described above. Note that in the general case there
can be a parallel composition of a finite sets of tell’s and ftell’s and a finite
set of ask’s such that store and a conjunction of tell and ftell constraints
entails ask constraints. In this case all the components synchronise. Sometimes
this is called a multi-party synchronous communication.

The block construct 3xG behaves like a process G with the variables in X
considered as local. It hides the information about variables from X within the
process G. Finally, p(t) is a procedure call, where p is the name of a procedure
and t is a list of actual parameters. Its meaning is given w.r.t.a set of proce-
dure declarations or program; each such a declaration is a construct of the form
p(x1,...,2n) :— G, where z1, ..., z, are distinct variables and G is a goal.

Finally, we note it is quite easy to recover the traditional concurrent con-
straint paradigm within our framework by the introduction of an asynchronous
tell. This can be specified by providing, for each constraint to be told, a concur-
rent corresponding ask operation. Hence this derived operator atell (standing for
an asynchronous tell) can be defined as

atell(c) : —tell(c) || ask(c).
Note the simulation of our primitives by the old ones is not so straightforward
and involve auxiliary tells and asks as well as the coding of a manager.

3 Specification of Multi-Agent Systems in Scc

In [4] a multi-agent programming language (we will refer to it in this paper as
MAL) has been introduced. In this section we show how the exchange of infor-
mation in multi-agent systems can be defined in Scc. To this end we represent
expressions from MAL in the framework of Scc. We want to justify that our
language Scc can be seen as a formal multi-agent programming language as well.
Furthermore, we show that some aspects of behavior of multi-agent systems
which cannot be covered by MAL have their (simple) specifications in Scc. The
definition of the language MAL is taken from [4].

In the following definitions we assume a given set Chan of communication
channels, with typical elements «, and a set Proc of procedure identifiers, with
typical elements p. We also suppose that the set of variables Svar is divided into
two disjoint subsets Svar=ChanVarUAgentVar. Typical elements of ChanVar
are w, typical elements of AgentVar are z,y. The variables from ChanVar will
be used to model communication via channels, while AgentVar is the set of
agent’s variables. We also suppose that the agent’s variables are split into local
and global ones. This is because in MAL there is a global store that is distributed
over the agents. Each agent has direct access only to its private store. Information
in the private store about the global variables can be communicated to the other
agents. The local variables of an agent cannot be referred to in communications.

Definition 2 (Basic actions). Given a cylindrical constraint system (C,F) the
basic actions of the programming language MAL are defined as follows:

a == alc| a?c | ask(c) | tell(c)

The execution of the output action ale consists of sending the information ¢
along the channel «, which has to synchronize with a corresponding input a?d,
for some d with ¢ I d. In other words, the information ¢ can be sent along a
channel « only if some information entailed by c is requested. The execution
of an input action a?d, which consists of receiving the information ¢ along the
channel a, also has to synchronize with a corresponding output alc, for some
¢ with ¢ F d. The execution of a basic action ask(c) by an agent consists of
checking whether the private store of the agent entails ¢. On the other hand, the
execution of tell(c) consist of adding ¢ to the private store.

Representing basic actions in Scc

With each channel o we associate a variable w, from ChanVar. The actions
ask(c) and tell(c) behave equally in both languages, hence are represented by
the same expressions. Sending information along a channel a is modeled by
the Scc action ftell(w, = true A ¢). This action has to synchronize with the
corresponding ask action. As ftell does not update information on the store,
the corresponding ask must be sequentially followed by an asynchronous tell
action which will actually store the information. Hence, receiving of information
is modeled as a sequence ask(w, = true A ¢);atell(c). The representation of
MAL basic actions in the Scc is summarized in the following table.

MAL Scc

ask(c) ask(c)

tell(c) tell(c)

ale ftell(w, = true A c)

a’e ask(w, = true A c); atell(c)

Definition 3 (Statements). MAL agents (statement S) are defined as:
S :=a.S | S1+ S, | S1&S, | = |p(§)

Statements are thus built up from the basic actions using the following standard
programming constructs: action prefixing (denoted by “.”), non-deterministic
choice (denoted by “+”), internal parallelism (denoted by “&”), local variables
(denoted by 3,5, which indicates that z is a local variable in S), and (recursive)
procedure calls of the form p(Z), where Z denotes a sequence of variables which
constitute the actual parameters of the call.

Representing statements in Scc
With the exeption of prefixing, all the statements are directly represented by the
corresponding Scc expressions. Prefixing is modeled by sequential composition.

MAL Sce
a.S a;S
S1+ S5 S1+ Sy
S1&5, S1 || Sa
3, 3,9
p(Z) p(z)

Definition 4 (Multi-agent systems). A multi-agent system A of MAL is as
A=< D,S;0>| A || Az | o (A)

A basic agent in a multi-agent system is represented by a tuple < D, S,c >
consisting of a set D of procedure declarations of the form p(Z) :— S, where
denote the formal parameters of p and S denotes its body. The statement S
in < D, S,c > describes the behavior of the agent with respect to its private
store c¢. The threads of S, i.e. the concurrently executing sub-statements of S,
interact with each other via the private store of the basic agent by means of the
actions ask(d) and tell(d). Additionally, a multi-agent system itself consists of a
collection of concurrently operating agents that interact with each other only via
a synchronous information-passing mechanism by means of the communication
actions ald and a?d. (In [4] authors provide the parallel composition of agent
systems only; the semantic treatment of sequential and the non-deterministic
composition of agent systems is standard.)

Representing multi-agent systems in Scc

The parallel operator || is represented as the asynchronous parallel operator ||
of Scc. The operator dg(A) is represented as 3, A. The encapsulation is thus
achieved by making the channels from H local. The communication among con-
currently operating agents is achieved by synchronous communication mecha-
nism of Scc. In particular, the pair ask,ftell allows to synchronously commu-
nicate information between two agents without storing information on the global
store. On the other hand the pair ask, tell allows for multi-agent communica-
tion among several process and with storing the communicated information. We
summarize the translation in the following table.

MAL Scc
<D,S,c> Scc program
A || Az Ay || 4>
ou(A) Fwn (A)

Global Multi-Agent Communication

In contrast to MAL our Scc language allows asynchronous and synchronous
multi-agent communication. Besides a synchronous ftell action, a Scc agent
can also perform tell,ftell and ask actions on the global store. If an agent
uses atell then it just communicates some piece of information to all processes,
i.e. it makes information generally accessible. If an agent uses a synchronous

tell action on the global store, then there must be at least one agent waiting
for this information and the communication is synchronous in this case. However,
as information is stored into the global store in this case it would be accessible
to any agent. This more general way of transmitting information among agents,
makes Scc more general and more flexible language for specification and imple-
mentation of the exchange of information in multi-agent systems as is MAL.

4 Operational semantics O of Scc

Contexts

It turns out that it is possible to treat the sequential and parallel composition
operators of Scc in a very similar way by introducing the auxiliary notion of
contezt. Basically, a context consists of a partially ordered structure where place
holders (subsequently referred to by O) have been inserted at a top-level place,
i.e. a place not constrained by the previous execution of other atoms. Viewing
goals as partially ordered structures too, the ask and tell primitives to be reduced
are those which can be substituted by a place holder O in a context. Furthermore,
the goals resulting from the reductions are essentially obtained by substituting
the place holder by the corresponding clause bodies or the A, depending upon
whether an atom or a ask/tell primitive is considered.

Definition 5. Contexts are functions inductively defined on goals as follows:

1. A nullary context is associated with any goal. It is represented by the goal
and is defined as the constant mapping from Sgoal to this goal with the goal
as value.

2. 0O is a unary context that maps any goal to itself. For any goal G, this
application is subsequently referred to as O[G]. Thus O[G] = G for any goal.

3. If tc is an n-ary context and if G is a goal, then (t¢;G) is an n-ary context.
Its application is defined as follows : for any goals Gy, ... , Gy,

(te; G)[G1, -+ ,Gr] = (tc[Gr, -+, Gp]; G)

4. If tey and tey are m-ary and n-ary contexts then tey || tex is an (m+n)-ary
context. Its application is defined as follows: for any goals G, ..., Gumin,

(ter || tea)[Gry -+, Grgn] = (ter[Gry -, Gm]) || (tealGrgrs o+, Gien))

In what follows the goals are considered modulo syntactical congruence in-
duced by associativity of “”, “||” and “+”, by commutativity of “||” and “+”,
and A as the unit element. Also we will simplify the goals resulting from the
application of contexts accordingly.

Transition system
The operational semantics of Scc is defined in Plotkin’s style ([8]) by means of
a transition system, which is itself defined by rules of the form

714052%2’;5 Zgzs if Conditions

where Assumptions and Conditions may possibly be absent. Configurations tra-
ditionally describe the statement to be computed and a state summing up the
computations made so far. Rephrased in the Scc context, the configurations to
be considered here comprise a goal to be reduced together with a store. In the
following definition Sstore denotes the set of stores.

Definition 6. The transition relation — is defined as the smallest relation of
(Sgoal x Sstore) x (Sgoal x Sstore) satisfying the rules' of Figure 1. We write
<G,0> — <G',0'> rather than (<G,0>,<G',0'>) €—.

(T) <tc[sp1,---,8Pm],0> = <tclA,---,Al, 7>

({sp1, -+ ,8pm} = {ask(ar), - ,ask(ap),)
tell(aty),- - - ,tell(aty),
tell(rt1),- - -, tell(rt,),
ftell(af1),-- -, ftell(afs),

if 4 ftell(rfi),- -, ftell(rfs) },

O-U{/rtly"' ,Ttr}U{T‘fl,'-- arft}

F{a1, - ,ap} U{ats, - ,atqs} U{afr,--- ,afs},

there is no strict subset S of {rti,--- ,rt,} U{rfi, - ,rf:}

such that c U S F {a1, -+ ,ap} U {at1,--- ,atq} U{afr, - ,afs},

\T=ocU{rty,---,rt,}, m>0

J

Fig. 1. Scc transition rules for new versions of aks and tells

The Operational Semantics
Rules for the sequential and parallel composition operators are tackled by means
of the notion of context within the rule (T).

The rule (T) defines reductions of tell, ftell and ask primitives. The primi-
tives to be reduced, referred to as spy, - . . , Spm, are partitioned in five categories:
(1) the ask primitives (the multi-set {ask(ai1),--- ,ask(ap)}),
the tell primitives split into (2) those which add information to the store (the
multi-set {tell(rty),--- ,tell(rt,)}) and (3) those which do not (the multi-set
{tell(at1),- - ,tell(aty)}, i.e. already entailed), and
the fictitious primitives ftell split in a similar way into (4) the multi-sets
{ftell(rfr),---, ftell(rfr)} and (5) {ftell(afr),-- -, ftell(afs)}, respectively.

All these primitives are then simultaneously reduced to the empty goal A
when information on the current store (o) together with new information told
(rti,... ,7tr,rf1,...,7rft) entails information of the other primitives. The new
store consists in this case of the old store enriched by new information told. Note
that this rule reflects the laziness feature of our tell primitives.

! Please note that due to lack of space we do not give the very standard rules for a
nondeterministic choice, hiding and a procedure call in Figure 1

An ask(c) primitive for a constraint ¢ entailed by the current store o can be
reduced alone following rule (T) by taking the unary context O, m =1, p =1,
q=0,7=0,s=0,t=0. The axiom

<ask(c),0> = <A, 0> if {okc} (1)

results from rule (T) as the particular case.

A tell(c) primitive for a constraint ¢ entailed by the current store o can be
reduced alone following rule (T) by taking the unary context O, m = 1, p = 0,
g=1,r=0,s=0,t=0. The axiom

<tell(c),o> — <A, o> if {otc} (2)

results from rule (T) as the particular case as well.

Other tell’s and ask’s need each other for reduction and reduce simultane-
ously. A minimality condition (see the side condition of (T)) is required to forbid
outsider tell’s to be reduced by taking advantage of a concurrent reduction.

To define the operational semantics we follow the logic programming tradi-
tion — it specifies the final store of the successful computations. It also indicates
those stores corresponding to deadlock situations and distinguishes between two
types: failure corresponding to the absence of suitable procedure declarations to
reduce procedure calls and suspension corresponding to the absence of suitable
data on the store or of concurrent processes that would allow tell and ask prim-
itives to proceed, i.e.to suspended tell’s and ask’s. Note that, as illustrated by
axioms (1) and (2) above, the two situations may be distinguished by a simple
criterion: the existence of a store richer than the current one that would enable
the computation to proceed. The following definition is based on this intuition.
The symbols §+, 6—, and §° are used to indicate the computations ending by a
success, a failure, and a suspension, respectively.

Definition 7. Operational semantics O : Sgoal — P(Sstore x {6%,8%5,67}) is
defined as the following function: for any goal G,

O(G) = { <1,0"> : <G, true> = --- > <A, 7>}
U { <7, >: <G true> — --- = <G, 7> 4, where G' # A and
there are o', G", 0" such that <G',0'> — <G",0">}
U {<7,0 >: <G, true> — --- = <G, 7> 4, where G' # A and
for any o', <G, 0'> 4 }

5 Conclusions

We have presented a language for a specification of the exchange and/or the
global sharing of information in multi-agent systems. It is solely based on con-
current constraint programming paradigm with slightly modified test and up-
dates operations. We have briefly compared it to the latest proposal within this
area as given in [4].

Due to a lack of space we have presented an operational semantics only.
Reader can easily verify it is not compositional. We refer to our studies in [2],
where a compositional semantics is given and proved to be correct with respect to

the semantics O (it is based on ‘hypothetical’ steps which can be made by both
concurrent agents and the state of global store rather than successive updates).
In [3] an algebraic (failure) semantics is defined for a subset of Scc (only finite
behaviours and without ftells). The algebraic semantics is proved to be sound
and complete with respect to a compositional operational semantics. Allowing
handshake communications only in the mentioned subset, we proposed [1] a de-
notational semantics. We employed so-called testing techniques — this semantics
uses monotonic sequences of labelled pairs of input-output states, possibly con-
taining “hypothetical” gaps, and ending with marks reporting success or failure
(to follow logic programming tradition). This semantics is proved to be correct
with respect to the operational semantics and fully abstract as well.

Our future work aims at designing fully abstract semantics for the full version
of Scc. Also we study possibilities of incorporating (discrete) real-time aspects.

References

1. L. Brim, D. Gilbert, J-M. Jacquet, and M. Kfetinsky. A fully abstract semantics
for a version of synchronous concurrent constraint programming. Technical Report
FIMU-RS-99-08, Faculty of Informatice, MU Brno, 1999.

2. L. Brim, D. Gilbert, J-M. Jacquet, and M. Kfetinsky. New Versions of Ask and Tell
for Synchronous Communication in Concurrent Constraint Programming. Techni-
cal report, TCU/CS/1996/03, City University London, ISSN1364-4009, 1996.

3. L. Brim, D. Gilbert, J-M. Jacquet, and M. Kfetinsky. A Process Algebra for Syn-
chronous Concurrent Constraint Programming. In Proceedings of ALP96, LNCS,
pages 24-37. Springer-Verlag, 1996.

4. F. de Boer, R. van Eijk, M. van der Hoek, and Ch. Meyer. Failure semantics for the
exchange of information in multi-agent systems. In CONCUR: 11th International
Conference on Concurrency Theory. LNCS, Springer-Verlag, 2000.

5. Frank S. de Boer, Joost N. Kok, Catuscia Palamidessi, and Jan J. M. M. Rutten.
Non-monotonic concurrent constraint programming. In Dale Miller, editor, Logic
Programming - Proceedings of the 1993 International Symposium, pages 315-334,
Vancouver, Canada, 1993. The MIT Press.

6. M. Falaschi, G. Levi, and Catuscia Palamidessi. A Synchronization Logic: Ax-
iomatics and Formal Semantics of Generalized Horn Clauses. Information and
Control, 60:36—69, 1994.

7. T. Finin, D. McKay, R. Fritzson, and R. McEntire. KQML: An information and
knowledge exchange protocol. In Knowledge Building and Knowledge Sharing.
Ohmsha and IOS Press, 1994.

8. G. Plotkin. A structured approach to operational semantics. Technical report,
Tech.Rep. DAIMI FN-19, Computer Science Dept., Aarhus University, 1981.

9. J-H. Rety. Langages concurrents avec constraintes, communication par messages
at distribution. Phd thesis, University of Orleans, 1997.

10. Vijay Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

11. Vijay Saraswat, Martin Rinard, and Prakash Panangaden. Semantic foundations
of concurrent constrant programming. In Proc. of the 18th POPL. ACM, 1991.
12. M. Wooldridge. Verifiable semantics for agent communication languages. In IC-

MAS’98. IEEE Computer Press, 1998.

