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Ameliorating Drought Stress Effects 
on Soybean Physiology and Yield by 
Hydrogen Peroxide
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Summary

Soybean is considered as an important legume because of its high content of protein and 
oil. However, it is sensitive to drought stress that was increasingly recorded recently. Plants 
respond to drought by several changes on the physiological and molecular levels and by 
endogenously changing the concentrations of certain substances, sauch as reactive oxygen 
species (ROS). An experiment was conducted in 2018 and 2019 to investigate the effects of 
drought stress and the possible effects of exogenously sprayed hydrogen peroxide (H2O2) at 
R1 stage on two soybean cultivars. Significant decreases in all studied traits were recorded 
as a result of drought stress. Noticeable enhancements in stomatal conductance, relative 
chlorophyll content, relative water content, leaf area index, plant height and the final seed 
yield of both cultivars when treated with H2O2 were also recorded. It could be concluded that 
H2O2 spraying can be a good strategy to alleviate presumable negative influence of drought.
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Figure 1. Precipitation (mm) and average temperature (°C) during 
the vegetative period of the soybean plants in 2018 and 2019

Introduction
Among seed legumes, soybean (Glycine max (L.) Merrill) has 

the greatest global area harvested representing the main source 
of relatively-cheap protein and vegetable oil (Mutava et al., 2015). 
Soybean is highly affected by many abiotic stresses, majorly 
drought stress (Fan et al., 2013) that intensively increased over 
the past decades, affecting the world’s food security (Vurukonda 
et al., 2016). Soybean is considered highly-sensitive to drought 
stress compared to other crops (Maleki et al., 2013) especially 
during certain periods of plant lifecycle (Liu et al., 2004). Drought 
stress decreases stomatal conductance, biomass, grain yield and 
its components (Ruppenthal et al., 2016). Drought also affects 
chlorophyll pigments and photosynthetic electron transport 
system. As such, production of reactive oxygen species (ROS) is 
induced (Zgallai et al., 2005) in higher concentrations (Shigeoka et 
al., 2002) resulting in cellular damage as a result of gene alteration, 
protein degradation and enzyme inactivation (Mahajan and 
Tuteja, 2005). High concentrations of ROS cause damages to the 
cells, yet low concentrations play the role of signaling molecules 
that can ease several processes like germination and growth 
(Dowling and Simmons, 2009). For example, it was reported that 
ROS play noticeable role in regulating stomatal closure in order to 
optimize water use efficiency (Wang and Song, 2008; Huang et al., 
2009). Hydrogen peroxide (H2O2) is a compound that belongs to 
non-radical ROS (Matilla-Vázquez and Matilla, 2012). It regulates 
many physiological mechanisms, such as growth and development, 
under both normal and stressed conditions, playing a major role in 
activating various signal molecules in plants leading to induction 
of different mechanisms of tolerance (Wendehenne et al., 2004; 
Bright et al., 2006; Foyer and Noctor, 2009). Many reports have 
demonstrated that treating plants with suitable concentrations 
of H2O2 increases tolerance to abiotic stresses (Chao et al., 2009; 
He et al., 2009; Xu et al., 2010; Gondim et al., 2013; Hossain and 
Fujita, 2013). It was previously reported that treating seeds before 
sowing with H2O2 or applying it as a foliar spray can enhance 
abiotic stress tolerance in plants. For example, a stimulation in the 
germination was reported when seeds of Pseudotsuga menziesii, 
Sorghum nutum, Andropogon gerardii, Panicum virgatum (Sarath et 
al., 2007) and Zinnia elegans (Ogawa and Iwabuchi, 2001) were 
pre-treated with H2O2. Similarly, enhanced germination rates were 
recorded in maize seeds pre-soaked in 140 mM of H2O2 (Ashraf et 
al., 2015). Jubany-Marí et al. (2009) reported that H2O2 is involved 
in the acclimation of Cistus albidus to summer drought. Ishibashi 
et al. (2011) concluded that spraying soybean plants with H2O2 
resulted in better net photosynthesis (Pn) and that this application 
made the plants more tolerant to drought stress. Similar 
conclusion was also reported for melon plants (Ozaki et al., 2009) 
and for cucumber seedlings (Sun et al., 2016). Liu et al. (2010) 
reported improved osmotic stress resistance when two cucumber 
varieties were pre-treated with H2O2 as a result of the activation of 
antioxidant system. It was suggested that the mechanism by which 
plants exogenously-sprayed with H2O2 better tolerate stress could 
be by ROS-detoxification modification or by regulation of multi-
pathways that respond to stress (Terzi et al., 2014; Hossain et al., 
2015). Other authors reported that H2O2 alleviated the negative 
stress effects by either a regulated stomatal closure (Kolla et al., 
2007; Quan et al., 2008; Wang and Song, 2008) or by promoting the 
biosynthesis of the oligosaccharide and, accordingly, maintaining 
the leaf water content (Ishibashi et al., 2011). Many efforts were 

made to exploit this characteristic in enhancing stress tolerance in 
plants (Jubany-Marí et al., 2009; Liu et al., 2010).

Although some experiments were conducted to investigate the 
effects of early exogenous H2O2 spraying on some physiological 
and molecular traits of some plant species, yet, to our knowledge, 
no report was introduced on the influence of the application of 
H2O2 at reproductive stages on soybean physiology and yield, 
especially in the study area where the soybean production is newly 
introduced. Therefore, our study aimed at revealing the probable 
positive effects of exogenously spraying H2O2 at R1 stage on both 
the physiology and the seed yield of two soybean cultivars.

Materials and Methods
Two soybean cultivars, 'Pannonia Kincse' and 'Boglár', were 

sown in Debrecen University's experimental site (Látókép) 
(N. latitude 47º 33', E. longitude 21º 27') on April 23rd and 26th 
and were harvested on September 15th and 16th in 2018 and 
2019, respectively. The soil type is calcareous chernozem. The 
precipitation and the average temperature during the vegetative 
period of the soybean plants are presented in Figure 1. The 
experimental design was split-plot with cultivars representing the 
main plots and irrigation treatments being the sub-plots. Three 
treatments were applied in three replications: fully-irrigated (FI) 
treatment, where irrigation was conveniently applied (100 mm in 
total) to reach water demands as recommended by the experimental 
site’s management (taking into account the precipitation amounts 
which were recorded as 271.2 mm and 275.9 mm in 2018 and 
2019, respectively); drought-stressed treatment (counting only on 
precipitation) with the application of 1mM of hydrogen peroxide 
(H2O2) as a foliar spray at R1 stage (Fehr and Caviness, 1977) 
(HP) and drought-stressed treatment with distilled water foliar 
spray at R1 stage (DW). Hydrogen peroxide and DW treatments 
received 1.5 liters of H2O2 and distilled water per plot, respectively, 
ensuring that the whole plant parts were completely covered by 
the sprayed liquid. The final number of plots was 18 (2 cultivars * 
3 treatments * 3 replications), with a plot area of 9 m² (3 * 3 m). 
Each plot consisted of six rows.

The relative chlorophyll content (SPAD) was measured using 
SPAD-502Plus (Konica Minolta, Japan). 

The stomatal conductance (gs) was measured using AP4 
porometer (Delta- T Devices, UK). Leaf area index (LAI) values 
were recorded using SS1 – SunScan canopy analysis system (Delta- 
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T Devices, UK). Plant height was measured using a standard ruler. 
For SPAD, LAI and gs measurements, 10 randomly-selected plants 
from the middle rows of each plot were used for the mentioned 
traits, and three measurements from the second most developed 
trifoliate (one measurement for each leaflet) were taken and then 
averaged.

To calculate the relative water content (RWC), ten fully-
matured leaves (homogenous in size) were collected at 6.30 am 
and fresh weight (FW) of the leaf was measured immediately. Dry 
weight (DW) was determined via drying the sample at 80°C to 
constant weight (after 48 h), and turgid weight (TW) was obtained 
after floating the leaf in distilled water in a tray at 4°C for 48 h. 
RWC was calculated as RWC(%) = (FW − DW)/(TW − DW) × 
100% (Weatherley, 1950). All traits were measured at R2 stage (1 - 
2 weeks after H2O2 application).

Yield was estimated by manually harvesting the middle two 
rows of every plot at full maturity (R8) stage. The analysis of 
variance (ANOVA) was conducted to compare the means and to 
indicate the effect size of each treatment, and then Tukey post-
hoc test was conducted to indicate the statistically-different means 
(IBM SPSS ver.25, USA Software).

Results

Stomatal Conductance (gs)

In both cultivars, gs was significantly higher when irrigation 
(FI) was applied. However, H2O2-sprayed plots were significantly 
higher than drought-stressed counterparts in terms of gs value. 
Drought application reduced gs by 51.6 and 47.7% compared to 
irrigated counterparts, whereas H2O2 spraying decreased the 
reduction ratio to 21.6 and 19.5% in 'Boglár' and 'Pannonia Kincse', 
respectively (Table 1). Correlation between gs and irrigation 
treatment was highly significant (< 0.01) (Table 3), and the effect 
size of H2O2 application (calculated as partial Eta squared) was 
81.6 and 90.5% in 'Boglár' and 'Pannonia Kincse', respectively. In 
other words, H2O2 application was responsible for 81.6 and 90.5% 
of gs changes in 'Boglár' and 'Pannonia Kincse', respectively.

Relative Chlorophyll Content (SPAD)

In 'Boglár', drought significantly decreased SPAD value by 
26.7% compared to the irrigated counterpart, whereas H2O2 
spraying resulted in better SPAD than both FI and DW counterparts. 
In 'Pannonia Kincse', on the other hand, irrigation resulted in the 
highest SPAD value; it was significantly higher (by 22.4%) than 
drought-stressed counterpart. However, HP treatment enhanced 
this value (by 13.1%) compared to DW, without reaching the same 
level of FI treatment as in 'Boglár' (Table 1). The correlation with 
irrigation was significant (< 0.05) and highly significant (< 0.01) 
in 'Boglár' and 'Pannonia Kincse' cultivars, respectively (Table 
3), and the effect size of H2O2 application was noticeably higher 
(85.7%) in 'Boglár' compared to 'Pannonia Kincse' (59.1%).

Relative Water Content (RWC)

In 'Boglár', drought significantly decreased RWC by 21.2% 
compared to the irrigated counterpart. However, H2O2-sprayed 
treatment significantly increased RWC (by 17.3%) compared 

Table 1. Stomatal conductance (gs), relative chlorophyll content 
(SPAD) and relative water content (RWC) of soybean cultivars 
'Boglár' and 'Pannonia Kincse' under three irrigation treatments; ful-
ly-irrigated (FI), drought-stressed with H2O2 foliar spray (HP) and 
drought-stressed (DW)

Trait Treatment Boglár Pannonia Kincse

gs
(mmol m-2 s-1)

DW 190.0c 218.3c

HP 307.7b 336.3b

FI 392.7a 417.7a

SPAD

DW 26.4b 33.6b

HP 37.2a 38.0b

FI 36.0a 43.3a

RWC
(%)

DW 57.333b 61.713c

HP 69.331a 79.707b

FI 72.701a 86.302a

In each trait, the same letter indicates no significant differences at p ≤ 0.05 level 
among the treatments within the same cultivar

to drought-stressed treatment and had very close value to FI 
treatment. In 'Pannonia Kincse', applying H2O2 significantly 
increased RWC by 29.2% compared to the drought-stressed 
treatment; however, irrigation treatment had significantly higher 
RWC (by 8.3 and 39.9%) compared to HP and DW treatments, 
respectively (Table 1).

Application of H2O2 had a significant effect on RWC (by 95.9 
and 97.3% in 'Boglár' and 'Pannonia Kincse', respectively) with a 
highly significant correlation coefficient (Table 3).

Leaf Area Index (LAI)

Both cultivars followed the same trend; LAI was significantly 
lower in DW treatment (by 13.0 and 17.5% in 'Boglár' and 
'Pannonia Kincse', respectively) compared to FI counterpart. 
Hydrogen peroxide treatment resulted in the highest LAI in 
both cultivars; LAI was 21.3 and 28.8% higher compared to DW 
counterparts in 'Boglár' and 'Pannonia Kincse', respectively (Table 
2).

Significant correlation was recorded between irrigation and 
LAI (Table 3). The effect of H2O2 application was also significant 
in both cultivars as well (with ratios of 92.8 and 95.1% in 'Boglár' 
and 'Pannonia Kincse', respectively).

Plant Height

Drought significantly reduced plant height in both cultivars 
compared to irrigated counterpart; the reduction ratio was 13.2 
and 7.1% in 'Boglár' and 'Pannonia Kincse', respectively. Applying 
H2O2 significantly increased plant height in both cultivars; plant 
height was 3.6% less in 'Boglár', whereas it was only 0.2% less in 
'Pannonia Kincse' compared to irrigated counterparts (Table 2). 
Application of H2O2 had an effect size of 84.2 and 82.8% in 'Boglár' 
and 'Pannonia Kincse', respectively.
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Table 2. Leaf area index (LAI), plant height and yield of soybean 
cultivars 'Boglár' and 'Pannonia Kincse' under three irrigation treat-
ments: fully-irrigated (FI), drought-stressed with H2O2 foliar spray 
(HP) and drought-stressed (DW)

Trait Treatment Boglár Pannonia Kincse

LAI

DW 4.7b 5.2b

HP 5.7a 6.7a

FI 5.4a 6.3a

Plant Height
(cm)

DW 86.9b 94.1b

HP 96.5a 101.1a

FI 100.1a 101.3a

Yield
(t ha-1)

DW 3.3b 3.7b

HP 4.0a 4.2ab

4.2a 4.6a

In each trait, the same letter indicates no significant differences at p ≤ 0.05 level 
among the treatments within the same cultivar

Table 3. Correlation coefficient of irrigation treatments with the 
studied traits

Trait Boglár Pannonia Kincse

gs .959** .975**

SPAD .758* .926**

RWC .929** .948**

LAI .668* .720*

Plant Height .908** .755*

Yield .861** .912**

* Correlation is significant at p ≤ 0.05 level (2-tailed).
** Correlation is significant at p ≤ 0.01 level (2-tailed).

Yield

Irrigation resulted in the best yield in both cultivars; the 
yield significantly increased by 27.3 and 24.3% in irrigated 
treatment compared to drought-stressed counterpart in 'Boglár' 
and 'Pannonia Kincse', respectively. Spraying with H2O2 also 
increased the yield of both cultivars compared to drought-stressed 
treatment; the increase ratio was 21.2 and 13.5% in 'Boglár' and 
'Pannonia Kincse', respectively (Table 2). The effect of H2O2 
application was bigger (78.9%) in 'Pannonia Kincse' compared to 
'Boglár' (72.1%). Correlation of irrigation with yield was highly 
significant in both cultivars (Table 3).

Discussion
Drought reduced gs in both cultivars as compared to irrigated 

counterparts, whereas H2O2 application could measurably 
alleviate gs. Drought stress induces stomatal closure, limits gas 
exchange and photosynthesis (Yordanov et al., 2000). Ohashi et 
al. (2006) reported that stomatal conductance of soybean plants 
significantly decreased under drought stress conditions; similar 
result was reported by Zhang et al. (2016); a 98.8% decrease in 
gs under drought. They concluded that this reduction in gs was a 
result of the reduced ratio of open stomata and stomatal aperture 
size in the plants subjected to drought stress. Hao et al. (2013) 
reported a significant reduction in stomatal conductance from 
0.25 to 0.10 mol H2O m-1 s-1 as a result of drought applied on 
soybean plants. Mathobo et al. (2017) justified the reduction in 
gs in their experiment on dry beans (Phaseolus vulgaris) by the 
prevention of CO2 from entering the leaf by stomatal closure. 
Similarly, Rosales et al. (2012) reported a 70% reduction of gs after 
22 days of drought stress application. Tang et al. (2017) concluded 
that polyethylene glycol (PEG) induced water stress on soybean 
significantly reduced gs by 73%. Ishibashi et al. (2011) compared 
gs of two groups of soybean seedlings under drought stress 
conditions. One group was sprayed with H2O2 and the other group 
with distilled water (DW). They reported that gs was significantly 
higher in H2O2-treated plants than in DW-treated plants. After two 
days of spraying, gs levels in H2O2-treated and DW-treated plants 
were 508 and 323 mmol m−2 s−1, respectively. They concluded that 
H2O2 spraying reduced stomatal closure caused by drought stress; 
i.e. H2O2 treatment reduced soybean sensitivity to drought stress. 
In experiment of Terzi et al. (2014) maize leaves pretreated with 
10 mM H2O2 significantly enhanced gs (by approximately 50%) 
as compared to drought-stressed leaves. They concluded that 
spraying leaves with H2O2 can reduce water loss under drought 
stress conditions by increasing the concentrations of metabolites 
that are involved in osmotic adjustment (such as proline, 
polyamines and soluble sugars). Other ROS species were also 
reported to have a role in alleviating drought stress. Razmi et al. 
(2017) reported that water stress reduced stomatal conductance of 
three soybean leaves compared to well-watered counterparts, and 
foliar spray of 0.4 mM salicylic acid (SA) significantly reversed 
drought induced stomatal closure and increased it.

Drought resulted in lower SPAD values compared to irrigated 
counterparts of both cultivars, whereas H2O2 application 
enhanced this value; it even increased SPAD to a level more than 
did irrigation in 'Boglár', but not in 'Pannonia Kincse'. Similarly, 
Ergo et al. (2018) reported that SPAD values significantly 
decreased from 35.5 to 22.4 under drought stress applied 30 days 
after R5.5 stage. Chlorophylls are the main pigments of absorbing, 
transporting and converting light energy, and their content is 
a major parameter that indicates photosynthetic performance 
(Liu et al., 2007). Subjecting plants to drought stress resulted 
in a significant decline in chla+b (from 19.5 to 13.0 mg g-1 DW), 
indicating a reduced capacity of absorbing and converting light 
energy (Tang et al., 2017). Similarly, Dong et al. (2015) concluded 
that light absorption was reduced by drought stress that resulted 
in changing both leaf area index and leaf chlorophyll content. 
Both chlorophylls a and b were reduced under drought stress 
(Farooq et al., 2010). Other papers also reported that chlorophyll 
content was decreased because of drought in soybean (Makbul et 
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al., 2011), chickpea (Mafakheri et al., 2010) and pea (Inaki-Iturbe 
et al., 1998). That reduction was attributed to induced destruction 
of the chloroplasts and to the instability of the chlorophyll protein 
complex (Khan et al., 2015). Sun et al. (2016) reported that the 
application of H2O2 significantly increased the leaf chlorophyll 
content of cucumber plants exposed to medium drought 
conditions. An evaluation of the effects of H2O2 on leaf chlorophyll 
content during adventitious rooting under drought conditions 
showed that drought stress resulted in a decline in chlorophyll 
content after 72 h of its application, producing a 39.1% decrease in 
the chlorophyll a content compared to control. However, applying 
exogenous H2O2 retarded chlorophyll degradation, especially 
chlorophyll a (Liao et al., 2012). Maize leaves had higher levels 
of both chlorophylls a and b when seeds were soaked in 140 mM 
H2O2 before sowing (Ashraf et al., 2015). Enhanced chlorophyll 
levels induced by hydrogen peroxide treatment were justified by 
H2O2-stimulated antioxidant enzyme activities (Azevedo Neto 
et al., 2005; Gao et al., 2010). Razmi et al. (2017) reported that 
drought significantly reduced both chlorophyll a and b contents 
in soybean leaves. However, significant increases (by 15% in 
chlorophyll a and 19% in chlorophyll b) resulted from foliar 
application of 0.4 mM of salicylic acid (SA) compared to control 
treatment (no SA).

Application of H2O2 significantly increased RWC in both 
cultivars compared to drought-stressed counterparts, and 
irrigation further enhanced this trait. It was previously reported 
that drought stress reduced RWC of soybean leaves (Razmi et al., 
2017). Ishibashi et al. (2011) reported that RWC in H2O2-treated 
and DW-treated (control, treated with distilled water only) plants 
was 60 and 40%, respectively after four days of drought stress 
application, and RWC was also higher in H2O2-treated plants than 
in DW-treated plants after six days of drought stress imposition. 
Authors concluded that H2O2 spraying enabled the leaves to 
maintain high levels of RWC by regulating the osmolality in the 
leaves, consequently ameliorating the negative effects of drought 
stress. Similar results on cucumber seedlings were reported later 
by Sun et al. (2016). Application of SA on common bean improved 
RWC under drought stress conditions (Sadeghipour and Aghaei, 
2012).

Irrigation significantly increased LAI in both cultivars 
compared to drought-stressed counterparts. Furthermore, H2O2 
application could further increase LAI in both cultivars. drought 
stress decreases LAI (Liu et al., 2008). Ashraf et al. (2015) 
reported that seeds soaked in 20, 80, 100 and 140 mM of H2O2 
later formed plants with higher leaf area under drought stress 
conditions compared to non-treated seeds. Using (SA), Other 
authors concluded that treatments with SA could improve LAI in 
different plants including soybean (Kuchlan et al., 2017; Razmi 
et al., 2017), strawberry (Ghaderi et al., 2015) and lemongrass 
(Idrees et al., 2010). This was attributed to increased accumulation 
of certain proteins (such as proline) and soluble sugars that, in 
part, enhances cell turgor pressure (Razmi et al., 2017).

Drought decreased plant height in both cultivars, and H2O2 
application could ameliorate drought’s effects and result in 
enhanced plant height, reaching a very close level of irrigated 
counterparts, especially in 'Pannonia Kincse' cultivar. Many 
previous papers reported a reduction in plant height under 
drought stress conditions (e.g. Atti et al., 2004; Demirtas et al., 
2010; Hao et al., 2013; Mak et al., 2014). Moreover, Garcia et al. 

(2010) reported a significant difference in plant height of drought-
stressed soybean genotypes compared to control counterparts. 
They also reported the different examined genotypes to be 
significantly different in plant height, which was demonstrated 
later by Hossain et al. (2014) who studied the effect of drought 
stress on the plant height of three soybean genotypes, one drought-
susceptible and two drought-tolerant genotypes; they reported 
plant height to be shortened as a result of drought stress for the 
three genotypes. However, the drought-susceptible genotype had 
a 44.3% of height of the control plants, whereas it was 56.7% 
and 59.1% for the two drought-tolerant genotypes. The authors 
attributed this reduction to a drought tolerance mechanism, as 
cell swells, cell wall and synthesis enzymes reduces, consequently, 
growth and plant height e decreases (Levitt, 1980; Austin, 1989). 
Banon et al. (2006) justified this decrease by a reduction in cell 
elongation caused by inhibited growth promoting hormones that, 
in part, led to decrease of cell turgor, cell volume and eventually 
cell growth and/or by a restriction of xylem and phloem vessels 
(Lavisalo and Schuber, 1998). Another possible explanation is 
that drought results in a decrease in the rate at which the stem 
nodes are produced (Frederick et al., 1989). Abbas and Mohamed 
(2011) conducted an experiment on common bean (Phaseolus 
vulgaris) seeds where half of the seeds were soaked in hydrogen 
peroxide (2%) for four hours and then air dried, and the other 
half of the seeds were soaked in distilled water for four hours and 
then air dried. Their results showed an increase by 43.6% in the 
H2O2-treated seedling height under a drought level of 60% of field 
capacity. Increasing the drought severity (to reach only 40% of 
field capacity) decreased the seedling height of both treatments. 
However, H2O2-treated seedlings showed better height by 38.4%.

Yield was significantly reduced by drought in both cultivars, 
whereas H2O2 application measurably recovered yield. The 
recovery was significant in 'Boglár' cultivar. Soybean seed yield 
decreases under drought stress conditions (Karam et al., 2005; 
Dogan et al., 2007; Bajaj et al., 2008; Sincik et al., 2008; Gercek et 
al., 2009; Sadeghipour and Abbasi, 2012; Li et al., 2013). It was also 
reported that genotypes significantly differ in yield production 
under drought stress conditions (Bellaloui and Mengistu, 2008; 
Maleki et al., 2013; He et al., 2017). Explanations for under 
drought stress conditions were that drought stress shortens the 
seed-filling period what explains yield decrease (Smiciklas et al., 
1992). Other authors suggested that it is due to the reduction of 
seeds number (Dornbos et al., 1989), seeds weight (Samarah et 
al., 2006; Demirtas et al., 2010) and pod number per plant (Atti et 
al., 2004; Khatun et al., 2016). However, exogenous application of 
H2O2 had improved plant biomass in wheat under drought stress 
(He et al., 2009), and SA application improved the grain yield of 
common bean under drought stress conditions (Sadeghipour and 
Aghaei, 2012). Horvath et al. (2007) reported that SA can enhance 
metabolite stream to the developing grains which reduces the 
abortion rate that, in part, can significantly increase pod number 
per plant and seed number pod-1 in soybean (Khatun et al., 2016). 
Not only yield, but also yield components (number of grains 
m-2, pods plant-1) were enhanced with the application of SA on 
soybean leaves under drought stress conditions (Razmi et al., 
2017). The authors attributed the increase of grain yield due to 
SA application, improved RWC, reduced restrictions of stomatal 
conductance and the enhanced biosynthesis of photosynthetic 
pigments in the leaves.
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Conclusions
Drought stress negatively affects soybean morphology, 

physiology and, consequently, the final seed yield; it resulted in 
significant reductions in all studied traits. Treating drought-
stressed soybean plants with 1 mM of H2O2 could alleviate that 
negative influence and enhance all studied traits. Its effect was 
more noticeable on the leaf area index LAI as H2O2-sprayed 
plants had higher LAI values than both drought-stressed and 
fully-irrigated counterparts. The effect was also noticeable on the 
relative water content RWC of both cultivars. The correlation of 
irrigation with the studied traits was also significant.
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