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RANK ZERO ELLIPTIC CURVES INDUCED BY RATIONAL
DIOPHANTINE TRIPLES

Andrej Dujella and Miljen Mikić

Abstract. Rational Diophantine triples, i.e. rationals a, b, c with the
property that ab + 1, ac + 1, bc + 1 are perfect squares, are often used in
the construction of elliptic curves with high rank. In this paper, we con-
sider the opposite problem and ask how small can be the rank of elliptic
curves induced by rational Diophantine triples. It is easy to find rational
Diophantine triples with elements with mixed signs which induce elliptic
curves with rank 0. However, the problem of finding such examples of ra-
tional Diophantine triples with positive elements is much more challenging,
and we will provide the first such known example.

1. Introduction

A set {a1, a2, . . . , am} of m distinct nonzero rationals is called a rational
Diophantine m-tuple if aiaj + 1 is a perfect square for all 1 ≤ i < j ≤ m. Dio-
phantus discovered a rational Diophantine quadruple { 1

16 ,
33
16 ,

17
4 ,

105
16 }. The

first example of a Diophantine quadruple in integers, the set {1, 3, 8, 120},
was found by Fermat. In 1969, Baker and Davenport [2] proved that Fer-
mat’s set cannot be extended to a Diophantine quintuple in integers. Re-
cently, He, Togbé and Ziegler proved that there are no Diophantine quintu-
ples in integers [24] (the nonexistence of Diophantine sextuples in integers
was proved in [9]). Euler proved that there are infinitely many rational Dio-
phantine quintuples. The first example of a rational Diophantine sextuple, the
set {11/192, 35/192, 155/27, 512/27, 1235/48, 180873/16}, was found by Gibbs
[23], while Dujella, Kazalicki, Mikić and Szikszai [14] recently proved that
there are infinitely many rational Diophantine sextuples (see also [13,15,16]).
It is not known whether there exists any rational Diophantine septuple. For
an overview of results on Diophantine m-tuples and its generalizations see
[11].

The problem of extendibility and existence of Diophantine m-tuples is
closely connected with the properties of the corresponding elliptic curves.
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Let {a, b, c} be a rational Diophantine triple. Then there exist nonnegative
rationals r, s, t such that ab + 1 = r2, ac + 1 = s2 and bc + 1 = t2. In order
to extend the triple {a, b, c} to a quadruple, we have to solve the system of
equations

(1.1) ax+ 1 = �, bx+ 1 = �, cx+ 1 = �.

We assign the following elliptic curve to the system (1.1):

(1.2) E : y2 = (ax+ 1)(bx+ 1)(cx+ 1).

We say that the elliptic curve E is induced by the rational Diophantine triple
{a, b, c}.

Since the curve E contains three 2-torsion points

A =
(
− 1
a
, 0
)
, B =

(
− 1
b
, 0
)
, C =

(
− 1
c
, 0
)
,

by Mazur’s theorem [25], there are at most four possibilities for the torsion
group over Q for such curves: Z/2Z×Z/2Z, Z/2Z×Z/4Z, Z/2Z×Z/6Z and
Z/2Z × Z/8Z. In [10], it was shown that all these torsion groups actually
appear. Moreover, it was shown that every elliptic curve with torsion group
Z/2Z × Z/8Z is induced by a Diophantine triple (see also [4]). Questions
about the ranks of elliptic curves induced by Diophantine triples were studied
in several papers ([1, 7, 8, 10, 12, 18–21]). In particular, such curves were used
for finding elliptic curves with the largest known rank over Q and Q(t) with
torsion groups Z/2Z× Z/4Z ([18,20]) and Z/2Z× Z/6Z ([19]).

In this paper, we consider the question how small can be the rank of
elliptic curves induced by rational Diophantine triples. We will see that it
is easy to find rational Diophantine triples with elements with mixed signs
which induce elliptic curves with rank 0 and that there exist such curves with
torsion groups Z/2Z× Z/4Z, Z/2Z× Z/6Z and Z/2Z× Z/8Z. However, the
problem of finding such examples of rational Diophantine triples with positive
elements is much harder, and they exist only for torsion Z/2Z × Z/8Z. We
describe the method for finding candidates for such curves and by using magma
we are able to find one explicit example.

2. Conditions for point S to be of finite order

Apart from three 2-torsion points A, B and C, the curve E contains also
the following two obvious rational points:

P = (0, 1), S =
( 1
abc

,
rst

abc

)
.

It is not so obvious, but it is easy to verify that S = 2R, where

R =
(rs+ rt+ st+ 1

abc
,

(r + s)(r + t)(s+ t)
abc

)
.
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Thus, a necessary condition for E to have the rank equal to 0 is that the points
P and S have finite order. The triple {a, b, c} is regular, i.e. c = a+ b± 2r if
and only if S = ∓2P (see [8]).

By Mazur’s theorem and the fact that S ∈ 2E(Q), we have the following
possibilities:

• mP = O, m = 3, 4, 6, 8;
• mS = O, m = 2, 3, 4.
In particular, since the point P cannot be of order 2, is it not possible to

have simultaneously rank equal to 0 and torsion group Z/2Z× Z/2Z.
By the coordinate transformation x 7→ x

abc , y 7→
y
abc , applied to the curve

E, we obtain the equivalent curve

(2.1) E′ : y2 = (x+ ab)(x+ ac)(x+ bc),

and the points A, B, C, P and S correspond to A′ = (−bc, 0), B′ = (−ac, 0),
C ′ = (−ab, 0), P ′ = (0, abc) and S′ = (1, rst), respectively. In the next
lemma, we will investigate all possibilities for point S to be of finite order.

Lemma 2.1.
(i) The condition 2S = O is equivalent to

(ab+ 1)(ac+ 1)(bc+ 1) = 0.

(ii) The condition 3S = O is equivalent to

3 + 4(ab+ ac+ bc) + 6abc(a+ b+ c) + 12(abc)2

− (abc)2(a2 + b2 + c2 − 2ab− 2ac− 2bc) = 0.

(iii) The point S is of order 4 if and only if

((ab+ 1)2 − ab(c− a)(c− b))((ac+ 1)2 − ab(c− a)(c− b))
× ((bc+ 1)2 − ab(c− a)(c− b)) = 0.

Proof.
(i) The condition 2S′ = O implies rst = −rst, i.e. rst = 0, and

(ab+ 1)(ac+ 1)(bc+ 1) = 0.

(ii) From 3S′ = O, i.e. x(2S′) = x(−S′) = x(S′), the formulas for doubling
points of elliptic curves give

3 + (ab+ ac+ bc)

= 9 + 4(ab+ ac+ bc)2 + (abc(a+ b+ c))2 + 12(ab+ ac+ bc)
4r2s2t2

+ 6abc(a+ b+ c) + 4abc(ab+ ac+ bc)(a+ b+ c)
4r2s2t2

.
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Thus we get
4
(
(abc)2 + abc(a+ b+ c) + (ab+ ac+ bc) + 1

)
(3 + ab+ ac+ bc)

= 9 + 12(ab+ ac+ bc) +
(
6abc(a+ b+ c) + 4(ab+ ac+ bc)2)

+ 4abc(ab+ ac+ bc)(a+ b+ c) + (abc(a+ b+ c))2
,

which is equivalent to
3 + 4(ab+ ac+ bc) + 6abc(a+ b+ c) + 12(abc)2

− (abc)2(a2 + b2 + c2 − 2ab− 2ac− 2bc) = 0.
(iii) The condition that the point S′ is of order 4 is equivalent to 2S′ ∈

{A′, B′, C ′}. Let us assume that 2S′ = C ′ (other two cases are com-
pletely analogous). From the formulas for doubling points of elliptic
curves, we get
2 + (bc+ ac)

= 9 + 4(ab+ ac+ bc)2 + (abc(a+ b+ c))2 + 12(ab+ ac+ bc)
4r2s2t2

+ 6abc(a+ b+ c) + 4abc(ab+ ac+ bc)(a+ b+ c)
4r2s2t2

,

which is equivalent to
(1 + 2ab− abc(c− a− b))2 = 0,

or
(ab+ 1)2 = ab(c− a)(c− b).

3. Rank zero curves for triples with mixed signs

Let us now consider three possibilities for mS = O.
Assume first that 2S = O. By Lemma 2.1(i), we have (ab + 1)(ac +

1)(bc + 1) = 0, so we conclude that a, b, c cannot have the same sign. If we
allow the mixed signs, then in this case we may assume that b = −1/a. In
[10], the following parametrization of rational Diophantine triples of the form
{a,−1/a, c} is given:

a = ut+ 1
t− u

, b = u− t
ut+ 1 , c = 4ut

(ut+ 1)(t− u) .

To find examples with rank 0, let us assume that the triple {a,−1/a, c} is
regular. This condition leads to (u2 − 1)(t2 − 1) = 0, so we may take u = 1.
If we take e.g. t = 2, we obtain the curve with torsion group Z/2Z × Z/4Z
and rank 0, induced by the triple{

3,−1
3 ,

8
3

}
.
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Assume now that 3S = O. If we also have 3P = O, then P = ±S, a
contradiction. Hence, if the point P has finite order, the only possibility is
that P is of order 6. This implies 2P = ±S and c = a+ b∓ 2r. By inserting
b = (r2− 1)/a and c = a+ b+ 2r in the condition from Lemma 2.1(ii), we get

(2ar − 1 + 2r2)(−a+ 2ar2 − 2r + 2r3)(2a2r − a− 2r + 4ar2 + 2r3) = 0.
Thus,

a = −2r(r2 − 1)
−1 + 2r2 , or −(−1 + 2r2)

2r , or 1− 4r2 ±
√

1 + 8r2

4r .

Take

(3.1) (a, b, c) =
(
−2r(r − 1)(r + 1)
−1 + 2r2 ,

−(−1 + 2r2)
2r ,

(−1 + 2r)(2r + 1)
2(−1 + 2r2)r

)
.

Then the condition ab > 0 is equivalent to r > 1 or r < −1, while the
condition bc > 0 is equivalent to −1/2 < r < 1/2. Hence, a, b, c cannot have
the same sign.

The case

(a, b, c) =
(
−(−1 + 2r2)

2r ,
−2r(r − 1)(r + 1)
−1 + 2r2 ,

(−1 + 2r)(2r + 1)
2(−1 + 2r2)r

)
is the same as the previous case, just a and b are exchanged.

Finally, let 8r2 + 1 = (2rt + 1)2, to get rid of a square root in the third
case. It gives r = −t

−2+t2 . Then

(a, b, c) =
(
−t(t− 2)(t+ 2)

2(−2 + t2) ,
2(t− 1)(t+ 1)

(−2 + t2)t ,
−(−2 + t2)

2t

)
(or a and b exchanged). The condition ac > 0 is equivalent to t > 2 or t < −2,
while the condition bc > 0 is equivalent to −1 < t < 1. Hence, in this case
also a, b, c cannot have the same sign.

If we allow the mixed signs, then we can obtain examples with rank 0,
e.g. from triples of the form (3.1). E.g. for t = 4 we obtain the curve with
torsion group Z/2Z× Z/6Z and rank 0, induced by the triple{

− 12
7 ,

15
28 ,−

7
4

}
.

It remains the case when the point S is of order 4. Then the point
R, such that 2R = S is of order 8 and therefore the torsion group of E is
Z/2Z × Z/8Z. As we already mentioned in the introduction, it is shown in
[10] that every elliptic curve over Q with this torsion group is induced by a
rational Diophantine triple. More precisely, any such curve is induced by a
Diophantine triple of the form

(3.2)
{

2T
T 2 − 1 ,

1− T 2

2T ,
6T 2 − T 4 − 1
2T (T 2 − 1)

}
.



34 A. DUJELLA AND M. MIKIĆ

It is clear that the elements of (3.2) have mixed signs. By taking T = 2 we
obtain the curve with torsion group Z/2Z×Z/8Z and rank 0, induced by the
triple {4

3 ,−
3
4 ,

7
12

}
.

4. An example of rank zero curve for triple with positive
elements

In a previous section, we showed that for rational Diophantine triples
with all positive elements we cannot have rank 0 and torsion group Z/2Z ×
Z/4Z or Z/2Z×Z/6Z. So the only remaining possibility is the torsion group
Z/2Z×Z/8Z. Since the elements of (3.2) clearly have mixed signs (ab = −1),
and all curves with torsion group Z/2Z× Z/8Z are induced by (3.2), at first
sight we might think that triples with all positive elements are not possible for
this torsion group. However, it is shown in [19] that this is not true. Namely,
we may have a triple with positive elements which induce the same curve as
(3.2) for certain rational number T .

But in [19] it remained open whether it is possible to obtain simultane-
ously torsion group Z/2Z×Z/8Z and rank 0 for triples with positive elements,
although some candidates for such triples are mentioned.

As in the previous section, we assume that the point S is of order 4, and
we take b = (r2 − 1)/a, c = a+ b+ 2r. By inserting this in the first factor

(ab+ 1)2 − ab(c− a)(c− b)

in Lemma 2.1(iii), we get the quadratic equation in a:

(2r3 − 2r)a2 + (4r4 − 6r2 + 1)a+ 2r5 + 2r − 4r3 = 0.

Its discriminant,
−4r4 + 4r2 + 1

should be a perfect square. The quartic curve defined by this equation is
birationally equivalent to the elliptic curve

E1 : Y 2 = X3 +X2 +X + 1

with rank 1 and a generator P1 = (0, 1). Thus, by computing multiples of
the point P1 on the curve E1 (adding the 2-torsion point T1 = (−1, 0) has a
same effect as changing r to −r), and transferring them back to the quartic,
we obtain candidates for the solution of our problem. However, we have to
satisfy the condition that all elements of the corresponding triple are positive
(it is enough that all elements have the same sign, since by multiplying all
elements from a rational Diophantine triple by −1 we obtain again a rational
Diophantine triple). The first two multiples of P producing the triples with
positive elements are 6P and 11P .
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The point 6P gives r = − 3855558
3603685 and the triple

(a, b, c) =
( 1884586446094351

25415891646864180 ,
14442883687791636
7402559392524605 ,

60340495895762708555
14487505263205637124

)
.

We were not able to determine the rank of the corresponding curve. Namely,
both magma and mwrank give that 0 ≤ rank ≤ 2. Assuming the Parity conjec-
ture the rank should be equal to 0 or 2.

The point 11P gives r = 35569516882766685106979
32383819387240952672281 and the triple (a, b, c),

where
a = 69705492951192675600645567228019184577147632882703132983

132014843349912467692901303836561266921302184459536763120 ,

b = 47826829880079829075801189563942620732062701095548790400
122336669420709509303637442647966391336596694969835459327 ,

c = 47982111146649404421749331709393501777791774558546217987550257759801
15400090753918257364093484910580652390786084055043677020804056653840 .

(By comparing j-invariants, we get that the same curve is induced by (3.2) for
T = 18451786408106133183649

41916048174422594852689 .) For the corresponding curve, both mwrank and
magma function MordellWeilShaInformation give that 0 ≤ rank ≤ 4. How-
ever, magma (version V2.24-7) function TwoPowerIsogenyDescentRankBound,
which implements the algorithm by Fisher from [22], gives that the rank is
equal to 0 (at step 5, just beyond 4-descent, but not yet 8-descent). Hence, we
found an example of a rational Diophantine triple with positive elements for
which the induced elliptic curve has the rank equal to 0. Let us mention that
the same magma function applied to the curve mentioned above correspond-
ing to the point 6P gives only rank ≤ 2. This construction certainly gives
infinitely many multiples of P which produce triples with positive elements
(the set E1(Q) is dense in E1(R), see e.g. [26, p.78]). However, it is hard to
predict distribution of ranks in such families of elliptic curve, so we may just
speculate that there might be infinitely many curves in this family with rank
equal to 0.
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Eliptičke krivulje ranga nula inducirane racionalnim Diofantovim
trojkama

Andrej Dujella i Miljen Mikić

Sažetak. Racionalne Diofantove trojke, tj. racionalni bro-
jevi a, b, c sa svojstvom da su ab + 1, ac + 1, bc + 1 potpuni
kvadrati, često su korištene u konstrukcijama eliptičkih krivulja
velikog ranga. U ovom članku, razmatramo obrnuti problem i
pitamo se koliko mali može biti rang eliptičke krivulje inducirane
racionalnom Diofantovom trojkom. Lako je naći racionalne Dio-
fantove trojke s elementima miješanih predznaka koji induciraju
eliptičke krivulje ranga 0. Problem nalaženja takvih primjera za
racionalne Diofantove trojke s pozitivnim elementima je znatno
teži, te u ovom članku mi dajemo prvi takav poznati primjer.
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