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Abstract – This paper addresses a sonar image segmentation method employing a Robust A*-Search Image Segmentation (RASIS) 
algorithm. RASIS is applied on Mine-Like Objects (MLO) in sonar images, where an object is defined by highlight and shadow regions, 
i.e. regions of high and low pixel intensities in a side-scan sonar image. RASIS uses a modified A*-Search method, which is usually used 
in mobile robotics for finding the shortest path where the environment map is predefined, and the start/goal locations are known. 
RASIS algorithm represents the image segmentation problem as a path-finding problem. Main modification concerning the original 
A*-Search is in the cost function that takes pixel intensities and contour curvature in order to navigate the 2D segmentation contour. 
The proposed method is implemented in Matlab and tested on real MLO images. MLO image dataset consist of 70 MLO images 
with manta mine present, and 70 MLO images with cylinder mine present. Segmentation success rate is obtained by comparing 
the ground truth data given by the human technician who is detecting MLOs. Measured overall success rate (highlight and shadow 
regions) is 91% for manta mines and 81% for cylinder mines.

Keywords – A*-search, image segmentation, path planning, synthetic aperture sonar

1. INTRODUCTION

Image segmentation plays an important role in im-
age processing, and with the development of comput-
ers it became usable in many practical applications: 
sonar, radar and medical imaging. However, it enables 
the selection of specific objects in an input image such 
that a human can more easily detect isolated areas of 
interest. Usually, image segmentation is used in au-
tonomous systems, where the human interaction is re-
placed by the machine vision systems.

Image segmentation method considered in this work 
deals with a practical application of automated detec-
tion of underwater Mine-Like Objects (MLO). After the 
Second World War, underwater mines possess a real 
threat to the human population by endangering mis-
sions that include ships, sub-marines and other sea 
vessels. There are several types of anti-ship and -sub-
marine mines (moored, limpet, contact, manta, cylin-
der, etc.) that are usually recognized by acoustic vision 
systems. MLO detection missions are usually done with 



54 International Journal of Electrical and Computer Engineering Systems

a Side-scan SONAR system, being attached with a tow 
cable to a ship that is pulling the system [1]. After in-
spection of a certain area, a huge SONAR image is re-
corded. From this huge image, the so-called regions of 
interest (ROI) are extracted. Effective ROI selection is 
done in [2]. Each ROI is then used as an input image 
to the MLO segmentation process. MLO is defined by 
highlight (object) and shadow regions, i.e. regions of 
high and low pixel intensities in a side-scan sonar im-
age. Overall segmentation represents the union of the 
object and shadow region segmentation. Subsequent-
ly, after MLO map is reconstructed the mines are usu-
ally destroyed with remotely operated vehicles (ROVs) 
or with autonomous underwater vehicles (AUVs).

The rest of this paper is organized as follows. Section 
2 gives the literature overview of the paper topic. The 
proposed method for sonar image segmentation is ex-
plained in Section 3. Experimental results are present-
ed in Section 4. Finally, Section 5 concludes the paper.

2.  RELATED WORK

Image segmentation methods can be grouped in 
two categories: contour-based and region-based seg-
mentation methods. Main task of contour-based seg-
mentation method is finding a border that separates 
two disparate regions. There are a lot of region-based 
methods with similar idea [3], [4], [5], [6], [7]. Contour 
is defined as a closed line, which is possible to write in 
parametric form, by using a spline function or a poly-
gon. Contour shape is usually changed by the impact 
of out-side forces until a minimum energy constraint 
is satisfied. Forces are usually defined by curve contour 
on some other criteria. Minimum energy constraint is 
usually used in image segmentation methods [8]. Well 
known problem of contour-based methods is a defi-
nition of initial contour. Initial contour shape must be 
close to image segmentation result. Otherwise, con-
tour methods often jam into a local minimum.

On the other hand, region-based segmentation meth-
ods directly classify dissimilar regions. One simple seg-
mentation method is image thresholding, where cer-
tain gray level intensities define thresholds [9]. Usually, 
threshold methods usually provide poor results. Other 
simple grouping method is k-means [10], which is lim-
ited in application since it doesn’t use spatial distance 
between image pixels. However, these methods are of-
ten used for generating initial conditions of certain im-
age segmentation method. Waterfall image segmenta-
tion [11] represents pixel intensities as a height map and 
uses contours to connect points with the same height. 
High intensity represents a mountain and low intensity 
represents a valley. Valleys are filled with water until val-
ley and mountain regions are not separated satisfactory 
enough. Parametric approach in image segmentation 
is done with EM-methods (Expect Maximization) [12], 
[13]. Firstly, it is required to know certain image charac-
teristics and different density functions that correspond 
to certain image regions. Image properties depend on 

sonar system which is used to create an image. In sonar 
systems, image intensities are generally distributed by 
Gama or Rayleigh probability distribution. EM method 
places image pixels into a constant number of groups 
by iteratively changing initial parameter values and 
their corresponding weights. Similarity with Mean-shift 
method is described in [14]. Mean-shift method is a non-
parametric classifying method [15], [16]. It is based on 
an idea that the mod of probability density function is 
in the middle of the density function’s gradient. Markov 
Random Field (MRF) method is used in image seg-men-
tation with the idea that the intensity correlation is larg-
er between pixels that are close together than the pixels 
that are distanced apart [17]. There are a lot of different 
approaches that solve segmentation problem with rela-
tively little computation power, as it is the case with the 
use of graph search methods [18].

MLO segmentation and detection in side-scan sonar 
system is mostly done with the combination of before 
mentioned methods and machine learning approaches. 
In [19] authors use intrackability measurement and im-
proved Bag of Words (BOW) algorithm in combination 
with support vector machine (SVM) to detect MLOs. 
BOW features are used for SVM training. SVM with histo-
gram intersection kernel was used for classification. Au-
thors state recognition rate of maximum 91.33 %. In [20] 
authors tested Convolutional Neural Network (CNN) for 
MLO segmentation. CNN consist of a convolutional layer 
with six filters, a pooling layer, configured to max-pool 
and a fully-connected layer with two outputs, zero that 
represents background and one that represents MLO. 
Approach was tested on limited size of the training and 
evaluation dataset. Authors report accuracy of 86 % in 
the worst case for a limited dataset. K-means in combi-
nation with Chan-Vese active contours and morphologi-
cal operations are used for sonar image segmentation in 
[21]. Two measures are used to describe the MLOs, shad-
ows and highlights distance d and central masses linear 
line horizontal angle Θ. Segmented image is converted 
to d,Θ coordinate space and several model parameters 
were defined for two possible hypotheses of random 
variable. Model parameters are determined based on a 
training set with Neyman-Pearson test and the model 
was confirmed with false alarm probability of 0.92 × 10−3 
in the worst case.

In this work we present a new method for sonar image 
segmentation of MLOs based on A*-Search algorithm 
[22]. Method is not based on machine learning and 
therefore no training is necessary. The proposed RASIS 
method represents the image segmentation problem 
as a path-finding problem. Main modification concern-
ing the original A*-Search is in the cost function that 
takes pixel intensities and contour curvature in order to 
navigate the 2D segmentation contour. Pixel intensity 
thresholding technique is used to build a goal distance 
map with the numerical navigation function (NNF). The 
NNF uses the L2 norm to estimate the Euclidean distance 
between the current pixel and the goal pixel. Estimated 
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distance represents predicted cost h to the goal pixel. 
Overcomed distance represents cost g, penalty cost i 
is calculated according to pixel intensities, while with 
cost ρ straight paths are preferred. Finally, the proposed 
method uses the cost function f, as the sum of g, h, i and 
ρ, in order to determine a contour around an MLO.

3. RASIS: ROBUST A*-SEARCHIMAGE 
SEGMENTATION

RASIS method is based on a graph search image seg-
mentation with a hybrid region and contour-based im-
age segmentation approaches. Utilized graph search is 
based on a modified version of the A*-Search method. 
Usually, the A*-Search is used in conjunction with nu-
merical navigation function (NNF) for navigation in mo-
bile robotics [22]. However, the application of A*-Search 
to image segmentation in general, as well as to MLO 
segmentation in SONAR images, is a novel practical ap-
plication. RASIS uses Signal Change Detection (SCD) for 
image preprocessing and initial segmentation of MLO’s 
object and shadow regions [23]. SCD is also used for ini-
tializing start/goal positions for the A*-Search contour 
planning. SCD is a statistical method which can be used 
for detection of amplitude jumps in 1D signal. Output 
from SCD method is a list of indices that can be used for 
the approximation of a discrete stochastic signal with 
mean amplitude values. More detailed mathematical 
explanation of the SCD method is given in Appendix.

Fig. 1. Mine-like object (MLO) pixel intensities and 
threshold pixel intensity levels (a); inserted artificial 

walls that divide object and shadow regions into 
two parts for path planning on the left side (b); and 

the right side (c).

Let obstacle region be a set of pixels with intensity 
value set to 255, and let free region be a set of pixels 
with pixel intensity ranging from 0 to 244. Obstacle re-
gion is a term used for isolating specific region, either 
object or shadow, while the free region is its surround-
ing background. Path planner has a task to avoid ob-
stacle regions and to plan a path in the free region.

Basic idea of RASIS method is to plan a path around 
an obstacle region, c.f. Fig. 1. In order to enable 
path planning around a certain isolated region, it is 
required to divide that region in two parts and apply 
a path planning method from the left and from the 
right side separately. Line L divides the object and 
the shadow region in two parts, i.e. obstacle regions, 
c.f. Fig. 1. Artificial wall W is placed on the left (right) 
side of L when path∑ is planned on the right (left) 
side. Segmented regions are obtained by connecting 
left and right planned paths into contours around 
the object ∑O= ∑O,R + ∑O,L and the shadow region 
∑S= ∑S,R + ∑S,L.

3.1. IMAgE PREPROCESSINg

Input ROI image IM is an 8-bit image with typically 
100 x 100 pixels [2]. Image IM is oriented according 
to the sonar point-of-view so that the object region 
appears before the shadow region, c.f. Fig. 2a. In im-
age preprocessing step, c.f. Fig. 3, image denoising 
is done and image I’M is created. Image I’M is padded 
with k=3 pixels and is filtered with median filter in or-
der to reduce image noise and preserve lines. Inten-
sity values of padded pixels are set to the background 
mean μ with standard deviation σ. In this work μ=50 
and σ=5, c.f. Fig. 4a. Image thresholding technique is 
used for creation of thresholded I’O  and I’S  images, 
c.f. Fig. 4c and d. For object image I’O , obstacle re-
gion corresponds to pixels with intensities above the 
threshold tO , while the remaining pixels are assigned 
to free region. Similarly, for shadow image I’S , obstacle 
region corresponds to pixels with intensities below 
the threshold tS . SCD method is used for improving 
the image threshold results and assigning obstacle/
free regions, c.f. Fig. 3. SCD segmentation is applied 
on pixel intensities along a column or a row in order to 
detect the start and the end of obstacle/free regions. 
Vertical SCD (SCDV) is applied along image columns in 
order to create object I’’O  and shadow I’’S  images, c.f. 
Fig. 4e and f. Horizontal SCD (SCDH) is applied along 
image rows and segmented object image I’’’O  is cre-
ated, c.f. Fig. 4g. Results from previous steps are com-
bined and images I*O and I*S are created with eq. (1) 
and (2), c.f. Fig. 3.

Fig. 2. Region of Interest (ROI) 8-bit grayscale 
Sidescan SONAR image with Mine-like Object (a); 

segmented object region (red color), shadow region 
(boue color) and the background (green color) (b).

a) b)
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(1)

(2)

Morphological operations and image erosion 
methods [24] are applied on I*O and I*S images with 
Alg. 1. Finally, segmented object IO and shadow IS 
region images have relatively homogenous obstacle 
regions, c.f. Fig. 4k and l.

Black and white image IB is created from the image 
I’’’O by applying eq. (3), c.f. Fig. 4h. Image IB is used for 
path planner initialization step.

(3)

After the image preprocessing step, obstacle regions 
are defined with pixel intensity value 255 in object IO 
and shadow IS images. Remaining pixel intensities rep-
resent the free region.

3.2. PATh PLANNINg INITIALIzATION

RASIS method considered in this work uses a path-
planning algorithm. Start and a goal positions are re-
quired for a planner to plan a path. They are assigned 

Fig. 3. Image preprocessing steps for RASSIS method.

according to the obstacle regions in the black and white 
image IB  (3). Labeling technique [24] is applied on im-
age IB  in order to determine the number of obstacle 
regions nR . In this way individual isolated object regions 
are created. Example with nR=2 is illustrated in Fig 4h. 
Each isolated object region has assigned a centroid loca-
tion. Vertical lines L are placed through centroid loca-
tions, c.f. Fig. 5. Along a line L, one pair of start and goal 
locations is placed in the object region image IO and in 
the shadow region image IS . For each pair of start and 
goal locations, a path planner plans a path on the left 
and on the right side of a line L.

When planning a path on the left (right) side of a line 
L, an artificial wall W is inserted right (left) to the line 
L. Wall lines W are inserted in IO and the IS, separately 
for each side left and right, respectively, c.f. Fig. 6a to 
d. Wall line W is parallel to the line L and its pixels are 
considered to be in obstacle region. Line L is placed at 
centroid coordinate xc, while walls W is placed at xc-1 
and xc+1 coordinates, respectively.

Fig. 4. Intermediate images for RASSIS method: IM (a); I’M (b); I’O 
(c); I’S (d); I’’O (e); I’’S (f); I’’’O (g); IB (h); I*O (i); I*S (j); IO (k); IS (l).

Fig. 5. Placing vertical lines L (white line) with start (green 
circle) and goal (red circle) positions in: object IO (a); and 

shadow IS image (b).
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Numerical navigation function (NNF) is a potential 
field-based navigation function (terrain information 
is also used in the literature). Firstly, it was defined for 
wheeled mobile robot trajectory planning strategies 
[25]. Those methods interact with a robot as with a ball 
in a configuration space affected by an imaginary poten-
tial field. This potential field pushes a robot away from 
obstacle regions, avoiding collision with obstacles in its 
environment. On the other hand, potential field pulls a 
robot into a goal configuration. Analytic construction of 
navigation function over a free region (non-obstacle re-
gion) of arbitrary geometry is in general a complex task. 
However, if free region is represented with grid of cells, 
numerical navigation function (NNF) can be very effi-
cient with integer programming implementation [25]. In 

(4)

(5)

In addition to (4) and (5), one more constraint is used 
in this work. Diagonal neighbors hi+u, j+v (|u|=|v|=1) are 
not considered if both of their vertical and horizontal 
neighbors (|u|≠|v|) are in obstacle regions. In this way, 
the NNF wave propagates around, instead of over, the 
diagonally oriented thin obstacles. This is the case 
when an obstacle is a single pixel-wide thin line orient-
ed in ±45°. Therefore, modified NNF function does not 
navigate a path planner over thin obstacles.

While this implementation is a fast integer program-
ming method, its resulting propagation wave looks 
more octagonal than circular as it is supposed to be, 
c.f. Fig. 6e to h. However, this approximation gives sat-
isfying results. NNF calculation starts in the goal posi-
tion and ends when all pixels have their NNF values 
assigned. However, if NNF calculation would end in a 
start pixel, not all pixels would have their NNF values 
assigned. This approach may be used for mobile robot’s 
route planners that have a task to minimize the route 
length. In this work, we calculated NNF values for all 
pixels in order to optimize the segmented path.

this work, NNF is used in a conjunction with artificial wall 
placement. It divides image in two parts and enables 
path planning on each part separately. Assigned NNF 
values are illustrated in Fig. 6e to h.

NNF value hij, is assigned to the pixels that are in the free 
regions, while the pixels that are in obstacle regions do not 
have the NNF value assigned. NNF value hij is calculated 
based on eight neighbor pixels NNF values. In order to 
calculate NNF value hij+u,j+v for neighbor pixels pi+u,j+v , 
where u, v ∈ {-1, 0, 1}, following equations are used.

Fig. 6. Numerical Navigation Function (NNF) calculated for object region image IO right side (a) and the left side (b). 
NNF calculated for shadow region image IS right side (c) and the left side (d). Goal location has NNF value 0 (colored 

with dark blue color). Obstacle region has pixel intensity value 255 (colored with dark red color), while the free region 
has pixel intensities ranging from 0 to 254.
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The NNF distance metric is calculated separately for 
the object and the shadow region, c.f. Fig. 6e to h. Start-
ing in a goal pixel pgoal, NNF values are assigned accord-
ing to the distance between goal pixel pgoal and a cer-
tain pixel pi,j  connected with pgoal. Initially, NNF value 
assigned to pgoal is set to 0, as it is illustrated with dark 
blue color in Fig 6c to h. Let δ be pixel’s pi, j correspond-
ing width and height in meters. In the first iteration, four 
diagonal neighbor cells are  distance apart, that can 
be approximated as 1.5 δ, while distance from other 
four neighbor cells is δ. After normalization with 2/ δ, 
the integer NNF gradient for neighbor cells is 2 or 3.

3.4. PATh PLANNINg wITh MODIFIED A*-
SEARCh ALgORIThM

Let graph G(V, E) be an undirected graph, which is cre-
ated dynamically during a planning procedure, where V 
is a vertex set and E is an edge set. Vertex v ∈ V is con-
nected with vertex v’ ∈ V if there is an edge e ∈ E be-
tween v and v’. Vertices v and v’are defined with eq. (6),

(6)

where pi, j  stands for the pixel at location (i, j) and φ is 
the angle calculated from the current pixel pi, j  to the 
neighbor pixel p’.

Let T be a tree structure with vertex vstart as its root. 
Root vertex is inserted in T with the ROOT (v, T) func-
tion. Tree T consists of visited vertices v’. Each visited 
vertex v’ is connected in T with its corresponding par-
ent vertex v. This connection in T is done with a func-
tion CONNECT (v’, v, T) and is also denoted with .

Let Q be the list of vertices sorted according to their 
cost function value f (v), which is calculated as follows

(7)

where g(v) is accumulated Euclidean distance calcu-
lated between connected vertex pairs from vertex vinit  
to a current vertex v in a solution tree T. The NNF value 
h(v) is estimated Euclidean distance from a current lo-
cation p to a goal location pgoal. Pixel intensity penalty 
i(v) guides a path planner to plan a segmented path 
close to the obstacle region (object/shadow) by taking 
neighbor pixel intensities into account. In this way, a 
path is planned at preferable intensity levels. Curvature 
of planned path is controlled with p(v) function which 
applies penalty to curved paths.

The following functions are used to manipulate with 
the list Q and tree T. Function INSERT (v, Q) inserts ver-
tex v into the list Q that is sorted according to the vertex 
v cost function value (7). Initial vertex is inserted with 
the zero cost. Function EMPTY (Q) returns true if the 
list Q is empty, otherwise false. Function SORT (Q) sorts 
the list by ascending cost function f(v) value. Function 
FIRST (Q) returns a first vertex v from the sorted list Q 
and removes the same vertex from Q. Function GOAL 

(v) returns true if a goal vertex is reached, otherwise 
false. Goal is reached when a vertex vgoal has position 
equal to the goal pixel pgoal which is input to (Alg.1). 
Function DEPTH (T, v) returns the current depth dT for 
a vertex v in tree T, which is the number of vertices con-
nected to v. On the other hand, function NEXT (T, v, dT) 
returns a vertex v from T at the depth dT. Function VIS-
ITED (v) increments and returns a counter of how many 
times a vertex v is visited. It is used in order to avoid 
repeated search at the same vertex v. This function is a 
modification when compared to a real information of 
how many times a vertex v is visited. Instead of having 
a 3D binary array of visited vertices with 2D locations 
and 1D orientations (6), a 2D matrix of locations is used 
to store visited counters for each location pi, j and not 
concerning the orientation from which a certain vertex 
is visited.

Fig. 7. Set x of visited vertices v’ ∈ V (corresponds to 
pixel p’) that are connected with their parent vertex v’ 

∈ V (corresponds to pixel p).
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Fig. 8. The impact of image intensity I(v’) to the cost 
function part iO(v’) for planning a path around the 

object and the iS(v’) for shadow region.

Modified depth-limited A*-Search method (Alg. 2) is 
derived from [27] and has the following inputs: graf 
G, NNF matrix h, start/goal vertices vstart and vgoal , Nvisit 

max the number of times a vertex can be visited, graph 
search depth limit Dlimit and depth change Dstep. Typi-
cal depth limit values used in this work are Dlimit =4 
and Dstep =1. Output is a tree T with a set of edges that 
connects vertices vgoal  and vstart. A*-Search algorithm 
begins with the empty list Q and the empty tree T, 
with initially inserted starting vertex vstart in both of 
them (Alg.2 lines 1-3). While Q is not empty (Alg.2 
lines 5-19), Q is sorted and the vertex v with smallest 
cost function value is taken from Q (Alg.2 lines 6-7). 
If a vgoal is reached, tree T is returned as the solution 
(Alg.2 line 8).

Value dT controls the depth limit (Alg.2 line 4). When 
the graph search depth exceeds the current depth 
limit, a vertex v with lowest cost function value (7) is 
placed in an empty list Q (Alg.2 lines 9-14). In this way, 
a graph search planning is done until the dT + Dlimit 
depth is reached, and the planning is restarted at the 
dT + Dstep depth.

If a vertex v is not visited maximum number of times 
Nvisited max , vertex v is marked as visited by a function VIS-
ITED (Alg.2 line 15). The EXPAND function returns a set 
x of vertices v’ that are connected with v (Alg.2 line 16). 
Vertices v’ that are connected with the current vertex 
v are inserted into T and Q (Alg.2 lines 17-19). Finally, a 
tree T consists of expanded vertices in G, i.e. it contains 
edges and vertices that connects a goal vertex vgoal with 
the root vertex vstart . Finally, a path Σ is reconstructed by 
following edges in T, backwards, from a goal vertex vgoal 
to a start vertex vstart.

Edges of a graph G define a set X of neighbor vertices 
v’ ∈ V that are connected with their parent vertex v ∈ V. 
Connections between v and v’ are determined by the 
so called vertex expansion. Neighbor pixels p’, i.e. vis-
ited vertices v’, are defined with the following two geo-
metrical constraints and one pixel intensity constraint, 
c.f. (8-10). Geometrical constraints are the maximum dis-
tance change dmax (8) and the maximum angle of direc-
tion change φmax (9), c.f. Fig. 7. Pixel intensity constraint 
(10) ensures that each vertex v’ in x has a correspond-
ing location p’ in the free region.

(8)

(9)

(10)

Additionally, a feasible constraint is also taken into 
account when considering which vertex v’ remains in 
the set X. Vertex v’ is removed from the set X if there are 
more than Nfeasibile pixels in the obstacle region which 
are geometrically positioned on a line  . In this 
paper, for planning a path in the imageIO , where object 
region is obstacle region, parameter . For 
the image IS , where the shadow region is the obstacle 
region, parameter . The feasible constraint is 
used in order to avoid path planning over thin obstacle 
regions in an image IO . Since obstacle region in shadow 
image IS  is less homogenous, it is allowed to plan a path 
over thin lines which are in the obstacle region.

Finally, feasible constraint together with eq. (5-7) 
define the set X of neighbor vertices v’ from their 
parent vertex v .

3.5. COST FuNCTION

Cost function f(v’) is defined in eq. (7). It consists of 
four parts. First two parts involve path distance. Cu-
mulative distance sum g(v’) = g(v) + |v, v’|  is the over-
comed distance between vstart and v’. Estimated dis-
tance h(v’) between v’ and vgoal is calculated with the 
NNF. Third part i(v’) involve pixel intensity and is calcu-
lated differently for object IO and shadow IS  image, with 
eq. (11) and eq. (12), respectively, c.f. Fig. 8.

Weight factor wI determines how much i(v’) impacts 
the cost function f(v’). Intensity is quantized into nI groups 
by transforming the interval [0, tO] to [0, n1].Values used in 
this work are wI=15, nI=5 , tO=100 and . 
Therefore, the object intensity penalty iO(v’) value increas-
es with increasing pixel intensity value IO(v’). In this way, 
path planning in the IO  image is preferred to be over pixels 
with high intensity. On the other hand, shadow intensity 
penalty iS(v’) increases with smaller pixel intensity value 
IS(v’). In this way, path planning in IS image is preferred to 
be over pixels with low intensity.

(11)

(12)

Fourth part of the cost function is a path curvature 
ρ(v’). It enables straight path planning, as it is defined 
with eq. (10).
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Fig. 9. Planned paths around the object region for: 
line L1 from left side ∑O, L, 1 (a), right side ∑O, R, 1 (b) and 
connected paths ∑O, 1 (c); line L1 from left side ∑O, L, 2 

(d), right side ∑O, R, 2  (e), connected paths ∑O, 2  (f ).

Fig. 10. Planned paths around the shadow region for: 
line L1 from left side ∑S, L, 1 (a), right side ∑S, R, 1 (b) and 

connected paths ∑S, 1 (c); line L2 from left side ∑S, L, 2 (d), 
right side ∑S, R, 2 (e), connected paths ∑S, 2(f ).

(a)

(b)

(c)

(d)

(e)

(f )

(a)

(b)

(c)

(d)

(e)

(f )
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(13)

Weight factor wρ determines how much a path curva-
ture ρ(v’) impacts total cost function f(v’) value. In this 
work, wρ=5. Angular change Δφ’ = φ - φ’ is calculated 
between visited vertex v’ and its corresponding parent 
vertex v, while Δφ’’ = φ’’ - φ is calculated between the 
current vertex v and its parent vertex v’’ in tree T.

3.6. IMAgE SEgMENTATION BASED ON PATh 
PLANNINg wITh MODIFIED A*-SEARCh 
ALgORIThM

Proposed modified A*-Search algorithm is used for 
MLO image segmentation four times, for each line Lz, 
z  = 1,...,Z, where Z is the number of lines L in an MLO im-
age. Two lines, L1 and L2, are illustrated in Fig. 5. Modi-
fied A*-Search is used two times for image IO and two 
times for image IS, for each line Lz. In image IO, path is 
planned on the left ∑O,L,z and on the right ∑O,R,z  side of 
the line Lz. In image IS, path is planned on the left ∑S,L,z  
and on the right ∑S,R,z  side of the line Lz. Segmentation 
result is obtained by connecting left and right paths 
∑O,z= ∑O,R,z ⊕ ∑O,L,z, i.e. ∑S,z= ∑S,R,z ⊕ ∑S,L,z , c.f. Fig. 9 and 
Fig. 10. Contours ∑O,z and ∑S,z are converted to binary 
images RO,z  and RS,z  by applying eq. (14).

(14)

In case when there are more than one line Lz, i.e. Z>1, 
union of binary images is used, i.e. RO = RO,1 ⋁ RO,2 ⋁ ...RO,Z  
and RS = RS,1 ⋁ RS,2 ⋁ ...RS,Z . In order to represent the final 
segmentation result, binary images RO and RS are joined 
into a single 8-bit color image R by using eq. (15).

(15)

In eq. (15), I is identity matrix and factor RS ⋀ (RO ⋀ RS) 
is used to represent the object region pixels in the front 
of the shadow region pixels, in the case when they are 
overlapping. Resulting 8-bit color image R is illustrated 
in Fig. 11, where pixel intensity value 244 is assigned to 
the object region (red color) 0 to the shadow region (blue 
color) and 120 to remaining pixels, i.e. background 
(green color).

4. EXPERIMENTAL RESULTS

Proposed RASIS algorithm is tested on real MLO 
images. MLO images are obtained from a large Side-scan 
sonar image by a pre-segmentation method proposed 
in [2]. The tested dataset consists of 140 Side-scan sonar 
images divided in two equal sets. First set represents 70 
MLO images of manta mine, and the second set 70 MLO 
images of cylinder mine. For speed up parallel RASIS 

method is implemented in MATLAB. Parallel algorithm 
is depicted in Fig. 12. It consists of several sequential 
and parallel steps. After the image preprocessing step, 
the number of lines L is calculated and each line L is 
considered for path planning. Artificial wall W is placed 
on the left and on the right side of each line L. In this way 
object (IO,L and IO,R ) and shadow (IS,L  and IS,R ) images are 
created. Start and goal locations are calculated for path 
planning. The NNF matrix calculation and the A*-Search 
path planning are executed four times for each line L.

Planned paths on the left and on the right side are 
connected into a single contour around the object and 
shadow region, respectively. Finally, segmentation result 
is calculated as a union of surfaces inside contours.

Experimental analysis of the proposed method in-
cludes execution time measurement and MLO segmen-
tation performance measurement for highlight and 
shadow regions.

Execution times are measured on an Intel i5 CPU @ 
3.33 GHz, 8 GB RAM and Windows 10 operating system. 
In order to additionally shorten the execution time, pro-
posed SCD method [Appendix] is implemented as MAT-
LAB’s C++/Mex function [28], with the speedup value 100. 
Mean execution time values for each part of the RASIS 
method, c.f. Fig. 12, are illustrated in Table I. RASIS meth-
od segmentation results are illustrated for manta mine, 
c.f. Fig. 13, and for cylinder mine, c.f. Fig. 14. RASIS seg-
mentation performance is depicted in Table II. Segmen-
tation success rate is obtained by comparing the ground 
truth data given by the human technician who is detect-
ing MLOs, c.f. Table II.

Regarding execution time, the maximum value is be-
low 15 s for manta mines, and below 30 s for cylinder 
mines. Shorter execution time is expected with a pure 
C++ implementation and parallel implementation 
on hybrid platforms. Regarding segmentation perfor-
mance, measured worst case success rate is 91% for 
manta mines and 81% for cylinder mines. Manta mine 
segmentation performance is better than cylinder mine 
since cylinder mine has smaller surface and has a simi-
lar round shape to the surrounding seabed. Therefore, 
more processing time is spent on the path planning of 
the round objects. When compared to other MLO seg-
mentation methods [19], [20], [21] the proposed RASIS 
method gives satisfactory segmentation results with no 
need for the training stage.

Fig. 11. Segmentation result with RASIS method.



62 International Journal of Electrical and Computer Engineering Systems

Fig. 12. Parallel RASIS method implementation.

Table 1. RASSIS method average execution times.

Execution times, 
c.f. Fig. 11.

Manta mine 
[ms]

Cylinder mine 
[ms]

t1 0,1201 0,1294

t2 0,0003 0,0002

t3 0,0009 0,0008

t4 3,5445 3,1996

t5 3,2880 3,0796

t6 3,3896 2,5056

t7 3,2050 2,6088

tNNF 3,9581 3,6605

t8 0,6455 1,7841

t9 0,7228 1,7024

t10 3,3924 4,8671

t11 2,8187 4,3889

tA* 4,1692 6,3646

t12 0,0007 0,0005

t13 1,2021 3,4004

t 9,4514 13,6571

under water mine type Manta Cylinder

Execution time (t±σt) 9.45 ± 2.27 s 13.7 ± 4.51 s

Minimum  
execution time 5.01 s 5.42 s

Maximum 
 execution time 14.7 s 27.7 s

Object region  
segmentation success 100% 81%

Shadow region 
 segmentation success 91% 84%

Overall segmentation 
success 91% 81%

Table 2. RASIS method’s performance.

5. CONCLUSION

In this paper a novel Robust A*-Search Image Seg-
mentation (RASIS) method is proposed. It uses Signal 
Change Detection for region-based image pre-seg-
mentation and a modified A*-Search path planning 
method for contour-based segmentation. Modification 
of A*-Search method is in the cost function that takes 
pixel intensities and contour curvature in order to navi-
gate the 2D segmentation contour. RASIS method rep-
resents a hybrid combination of region and contour-
based image segmentation methods. It is not machine 
learning based method and therefore no training is 
necessary.

Method is implemented in MATLAB and the SCD 
method implemented in MATLAB’s C++/Mex function. 
Test dataset consist of real Side-scan sonar MLO im-
ages. In the experimental analysis execution time was 
measured and MLO segmentation performance for 
highlight and shadow regions was evaluated. Regard-
ing execution time, the maximum value is below 15 s 
for manta mines, and below 30 s for cylinder mines. 
Shorter execution time is expected with a pure C++ 
implementation and parallel implementation on hy-
brid platforms. Regarding segmentation performance, 
measured worst case success rate is 91% for manta 
mines and 81% for cylinder mines.

Several avenues for future work remain open. Firstly, 
it would be interesting to see how it behaves on larger 
dataset with different types of MLOs. Also, future work 
will include parallel implementation of the RASIS meth-
od on hybrid platforms multicore CPUs and GPGPU 
units to speed up the method execution time. Further-
more, classification of MLO type should be considered 
based on segmented highlight and shadow regions.

6. APPENDIX. SIgNAL ChANgE DETECTION

Signal Change Detection (SCD) is a statistical method 
which can be used for the detection of Ξ changes in a 
1D signal x, i.e. x(n), n=1,...,N. SCD method’s output is 
a list of indices (n1, n2,..., nξ), which enables the approxi-
mation of the original signal with only Ξ +1 distinct 
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Fig. 13. Sonar images of underwater manta mines (left) and corresponding images with segmented object 
(red), shadow(blue) and background (green) regions (right).

Fig. 14. Sonar images of underwater cylinder mines (left) and corresponding images with segmented 
object (red), shadow(blue) and background (green) regions (right).



64

amplitudes (A1, A2,..., Aξ+1). This approach is applicable 
for known/unknown amplitude changes ∆A= A(ξ+1) - Aξ, 
which may occur at known/unknown indices nξ ,ξ=1,…
,Ξ  [29]. Specifically, in this work the SCD method has 
Ξ=2 changes.

Let x be a referent signal (known original) with two 
amplitude changes ∆A at indices n1 and n2. The original 
signal x is defined with (A.1) and it has three amplitude 
levels A1, A2 and A3 which are defined by the mean val-
ues of x, before, between and after indices n1 and n2 (A.2).

(A.1)

(A.2)

Let x=x+u be a noised signal, where u represents 
an additive Gaussian white noise with the variance 
σ2. Let x’ be an approximation of x with SCD method 
and measured noised signal x. Thus, SCD can be 
considered as an optimization problem that provides 
indices n1’= ∈[1, n2’ - 1] and n2’= ∈[n1’ + 1, N-1] such 
that x’ approximates x with maximum probability of 
measurements x, (A.3).

~

~

~

(A.3)

The optimization problem of finding indices n1 and 
n2, for which p(x; n1, n2) has the maximum value, can be 
rewritten as a problem of finding indices n1  and n2  for 
which eq. (A.4)-(A.5) has the minimum value.

~

(A.4)

(A.5)

For an arbitrary large number of jumps Ξ, a general 
solution of eq. (A.5) can be obtained by applying 
dynamic programming and integral images [28]. In 
this work, where Ξ =2, the direct solution is used which 
considers all combinations of n such that 1<n1<n2<N. 
This minimization problem, eq. (A.5), has the time 
complexity of . In order to speed-up calculations, 
the direct solution is used in conjunction with the 
integral image method for the mean value calculation, 
c.f. Alg. A.1. Let the referent signal x(n) have N=100 
samples, amplitude levels A1=0, A2=3σ and A3=0 at 
indices n1=30 and n2=70, c.f. black line in Fig. A.1. Let 

~the measured signal x=(n) be a sum of x and u with the 
standard deviation σ2 = 2.5, c.f. blue line in Fig. A.1. As 
a result of SCD method, signal x is approximated with 
x’ at indices n’1=31 and n’2=69, and mean values A’1 , A’2 
and A’3 calculated at intervals [0, n’1], [n’1+ 1, n’2] and 
[n’2+ 1, N] ,c.f. red line in Fig. A.1. Normalized matrix 
P(n1, n2) with calculated probabilities, eq. (A.3), has 
the maximum value at n1=n’1 and n2=n’2. Matrix P(n1, 
n2) is an upper triangular matrix since 1<n1<n2<N, c.f. 
Fig. A.2.

To determine the stability of the SCD method, a 
stohastic experiment is done and the ratio ∆A/σ is 
considered. Additive Gausian noise u is generated in 
10000 instances with N=100 samples and σ =1.58 (σ2 
=2.5). Each group of 1000 instances is added to the 
the same amplitude jump ∆Aj=j · σ, j = 1, ..., 10. In this 
way ∆Aj/σ is ranging from 1 to 10. Amplitude levels 
of x are A1=0, A2=∆Aj and A3=0, and are changing at 
indices n1=30 and n2=70. Errors of estimated amplitude 
jump indices n’1,i and n’2,i are defined with (A.6), where 
i=1,...,1000.

(A.6)

Fig. A.1. Signal regonstruction by using Signal 
Change Detection (SCD).

Fig. A.2. Normalized probability matrix P(n1, n2)∈[0,1].

Fig. A.3. Error of estimated amplitude jump indices.

International Journal of Electrical and Computer Engineering Systems
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Error is considered to be 0 when the estimated 
amplitude jump index n’ is equal to the original 
amplitude jump index n. From the result illustrated in 
Fig. A.3, one can observe that the SCD method is stable 
with no errors, c.f. eq. (A.6), when ∆A/σ ≥ 4. In this work, 
the ratio ∆A/σ is several times larger than the minimum 
value required.
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