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1 Introduction
We say that a metric space (X, d) is countably k-recti�able if there is a family of Lipschitz mappings fi : Ei ⊂
Rk → X de�ned on measurable sets Ei ⊂ Rk

such that

Hk
(
X \

∞⋃
i=1
fi(Ei)

)
= 0.

A metric space (X, d) is said to be purely k-unrecti�able if for any Lipschitz mapping f : E ⊂ Rk → X, where

E ⊂ Rk
is measurable we haveHk

(f (E)) = 0.

The theory of recti�able sets plays a signi�cant role in geometric measure theory and calculus of vari-

ations. See e.g. [7, 19] for results in Euclidean spaces. Recent development of analysis on metric spaces ex-

tended this theory tometric spaces. See e.g. [1, 2, 4, 14] and references therein. Considering the importance of

this theory, it is reasonable to search for simple geometric conditions which would guarantee that the image

of a Lipschitz mapping from a subset of a Euclidean space into a metric space would have measure zero. One

of the main results of this paper (Theorem 1.1) establishes such conditions.

Let f : Z → (X, d) be a mapping between metric spaces and let {y
1
, . . . , yk} ⊂ X be given. The mapping

g : Z → Rk
de�ned by

g(x) = (d(f (x), y
1
), . . . , d(f (x), yk))

will be called the projection of f associated with the points y
1
, . . . , yk.

The mapping π : X → Rk
, π(y) = (d(y, y

1
), . . . , d(y, yk)) is Lipschitz. Since g = π ◦ f , we conclude that if

f is Lipschitz, then its projection g = π ◦ f is Lipschitz too.

A measurable function g : E → R de�ned on a measurable set E ⊂ Rk
is said to be approximately

di�erentiable at x ∈ E if there is a measurable set Ex ⊂ E and a linear function L : Rk → R such that x is a
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density point of Ex and
lim

Ex3y→x
g(y) − g(x) − L(y − x)

|y − x| = 0.

This de�nition is equivalent with other de�nitions that one can �nd in the literature. The approximate deriva-

tive L is unique (if it exists) and it is denoted by apDg(x). Lipschitz functions g : E → R are approximately

di�erentiable a.e. (by the McShane extension and the Rademacher theorems). In the case of mappings into

Rk
, approximate di�erentiability means approximate di�erentiability of each component.

Theorem 1.1. Let X be a metric space, let E ⊂ Rk be measurable, and let f : E → X be a Lipschitz mapping.
Then the following statements are equivalent:

1. Hk
(f (E)) = 0;

2. For any Lipschitz mapping φ : X → Rk, we haveHk
(φ(f (E))) = 0;

3. For any collection of distinct points {y
1
, y

2
, . . . , yk} ⊂ X, the associated projection g : E → Rk of f

satis�esHk
(g(E)) = 0;

4. For any collection of distinct points {y
1
, y

2
, . . . , yk} ⊂ X, the associated projection g : E → Rk of f

satis�es rank (apDg(x)) < k forHk-a.e. x ∈ E.

HereHk
stands for the k-dimensional Hausdor� measure.

Remark 1.2. It follows from the proof that in conditions (3) and (4) we do not have to consider all families

{y
1
, y

2
, . . . , yk} ⊂ X of distinct points, but it su�ces to consider such families with points yi taken from a

given countable and dense subset of f (E).

The implications from (1) to (2) and from (2) to (3) are obvious. The equivalence between (3) and (4) easily

follows from the classical change of variables formula which states that if g : E ⊂ Rk → Rk
is Lipschitz, then

ˆ
E
|Jg(x)| dHk

(x) =
ˆ
g(E)

Ng(y, E) dHk
(y). (1.1)

Here Jg stands for the Jacobian of g and Ng(y, E) is the number of points in the preimage g−1(y) ∩ E, see e.g.

[6, 7, 11]. Therefore, it remains to prove the implication (4) to (1) which is themost di�cult part of the theorem.

We will deduce it from another result which deals with Lipschitz mappings into `∞, see Theorem 2.2.

Note that in general it may happen for a subset A ⊂ X thatHk
(A) > 0, but for all Lipschitz mappings φ :

X → Rk
,Hk

(φ(A)) = 0. For example the Heisenberg groupHn
satis�esH2n+2

(Hn
) =∞, butH2n+2

(φ(Hn
)) = 0

for all Lipschitz mappings φ : Hn → R2n+2
, see [4, Section 11.5]. Hence the implication from (2) to (1) has

to use in an essential way the assumption that A = f (E) is a Lipschitz image of a Euclidean set. Since by [4,

Section 11.5] the condition (2) is satis�ed for Hn
with k = 2n + 2, we conclude that Hn

is purely (2n + 2)-

unrecti�able. For more general results see Theorem 3.2 in Section 3 and Theorem 5.3 in Section 5.

Theorem 1.1 is related to thework of Kirchheim [14] andAmbrosio-Kirchheim [1] onmetric di�erentiability

and the general area formula for mappings into arbitrary metric spaces. However, our approach in this paper

is elementary and does not involve neither the Kirchheim-Rademacher theorem [14, Theorem 2] nor any kind

of the area formula for mappings into arbitrary metric spaces [1, Theorem 5.1].

Although conditions (3) and (4) are necessary and su�cient for the validity of (1), often it is not easy to

verify them. The problem is that even if X is smooth, the distance function y 7→ d(y, yi) is not smooth at yi
and we need to consider such distance functions for yi from a dense subset of X, thus creating singularities

everywhere in X. Actually a collection of such distance functions gives an isometric embedding of X into `∞

(for a more precise statement see Theorem 2.2 and the proof of Theorem 1.1 which shows how Theorem 1.1

follows from Theorem 2.2). In applications we often deal with spaces X that have some sort of smoothness

(like Heisenberg groups or more general Carnot-Carathéodory spaces) and often for such spaces there is a

more natural LipschitzmappingΦ : X → RN
, than the embedding into `∞, amapping that takes into account

the structure of X. In Section 4 we state a suitable version of Theorem 1.1 (Theorem 4.2) and in Section 5 we

show how it applies to Carnot-Carathéodory spaces.
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The paper is organized as follows. In Section 2 we prove a version of the Sard theorem for Lipschitz map-

pings into `∞. We also prove Theorem 1.1 as a simple consequence of this result. In Section 3we provide a new

proof of the unrecti�ability of the Heisenberg group as a consequence of Theorem 1.1. In the proof we will en-

counter a problem with the lack of smoothness of the distance function y 7→ d(y, yi). In Section 4 we will

generalize Theorem 1.1 in a way that it will easily apply to general Carnot-Carathéodory spaces (including the

Heisenberg groups). This approach will allow us to avoid singularities of the distance function. Applications

will be presented in Section 5.

Our notation is fairly standard. By C we will denote various positive constants whose values may change

in a single string of estimates. By writing C = C(k) we mean that the constant C depends on k only. Hs
will

denote the s-dimensional Hausdor� measure. We will also write Hk
to denote the Lebesgue measure on Rk

.

Sometimes in order to emphasize that the Hausdor� measure is de�ned with respect to a metric d we will

writeHs
d. If V is a Banach space, thenHs

V denotes the Hausdor� measure with respect to the norm metric of

V. ByHs
∞

we will denote the Hausdor� content which is de�ned as the in�mum of

∑
∞

i=1 rsi over all coverings
by balls of radii ri. ClearlyHs

∞
is an outermeasure andHs

(A) = 0 if and only ifHs
∞
(A) = 0. The barred integral

will denote the integral average

´
E f dµ = µ(E)

−1

´
E f dµ.

2 Lipschitz mappings into `∞

A measurable function coincides with a continuous function outside a set of an arbitrarily small measure.

This is the Lusin property of measurable functions. The following result due to Federer shows a similar C1-
Lusin property of a.e. di�erentiable functions, [23].

Lemma 2.1 (Federer). If f : Ω → R is di�erentiable a.e. on an open set Ω ⊂ Rk, then for any ε > 0 there is a
function g ∈ C1(Rk

) such that
Hk ({x ∈ Ω : f (x) = ̸ g(x)

})
< ε.

The original proof was based on the Whitney extension theorem; for another, more direct approach, see [17,

Theorem 1.69].

In particular if E ⊂ Rk
is measurable and f : E → R is Lipschitz, then f can be extended to a Lipschitz

function
˜f : Rk → R (McShane) to which the above theorem applies. Hence for any ε > 0 there is g ∈ C1(Rk

)

such that

Hk ({x ∈ E : f (x) = ̸ g(x)
})

< ε. (2.1)

Note that at almost all points of the set where f = g we have that apDf (x) = Dg(x). This holds true at all

density points of the set {f = g}.
Let now f = (f

1
, f

2
, . . .) : E ⊂ Rk → `∞ be an L-Lipschitz mapping. Then the components fi : E → R are

also L-Lipschitz. Hence forHk
-almost all points x ∈ E, all functions fi, i ∈ N are approximately di�erentiable

at x ∈ E. We de�ne the approximate derivative of f componentwise

apDf (x) =


apDf

1
(x)

apDf
2
(x)

.

.

.


For each i ∈ N, apDfi(x) is a vector in Rk

with component bounded by L. Hence apDf (x) can be regarded as

a∞ × k matrix of real numbers bounded by L, i.e.

apDf (x) ∈ (`∞)k , ‖ apDf‖
∞
≤ L,
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where the norm in (`∞)k is de�ned as the supremum over all entries in the∞ × k matrix. It is easy to see that

for a∞ × k matrix the row rank equals the column rank.¹ Hence the rank of such matrix is always less than

or equal k. In particular the rank of the∞× kmatrix apDf (x) equals the dimension of the linear subspace of

Rk
spanned by the vectors apDfi(x), i ∈ N and rank (apDf (x)) ≤ k a.e.

If f : Ω → `∞ is Lipschitz, where Ω ⊂ Rk
is open, components of f are di�erentiable a.e. and we will

write Df (x) in place of apDf (x).
The next theorem is the main result of this section. It is a crucial step in the remaining implication (4) to

(1) of Theorem 1.1. The proof of Theorem 2.2 is based on ideas similar to those developed in [3, Section 7].

Theorem 2.2. Let E ⊂ Rk be measurable and let f : E → `∞ be a Lipschitz mapping. ThenHk
(f (E)) = 0 if and

only if rank (apDf (x)) < k,Hk-a.e. in E.

Before we prove this result we will show how to use it to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. As we already pointed out in Introduction, it remains to prove the implication (4) to

(1). Although we do not assume that X is separable, the image f (E) ⊂ X is separable and hence it can be

isometrically embedded into `∞. More precisely let {yi}∞i=1 ⊂ f (E) be a dense subset and let y
0
∈ f (E). Then it

is well-known and easy to prove that the mapping

f (E) 3 y 7→ κ(y) = {d(y, yi) − d(yi , y0)}∞i=1 ∈ `∞

is an isometric embedding of f (E) into `∞. It is the so called Kuratowski embedding. Clearly

Hk
d(f (E)) = Hk

`∞ ((κ ◦ f )(E)),

where subscripts indicatemetricswith respect towhichwe de�ne theHausdor�measures. It remains to prove

thatHk
`∞ ((κ ◦ f )(E)) = 0. Since

(κ ◦ f )(x) = {d(f (x), yi) − d(yi , y0)}∞i=1,

it easily follows from the assumptions that

rank (apD(κ ◦ f )) < k Hk
-a.e. in E.

Hence (1) follows from Theorem 2.2.

Thus it remains to prove Theorem 2.2. Before doing this let us make some comments explaining why it is not

easy. Theorem 2.2 is related to the Sard theorem for Lipschitz mappings which states that if f : Rk → Rm
,

m ≥ k is Lipschitz, then

Hk
(f ({x ∈ Rk

: rankDf (x) < k})) = 0.

The standard proof of this fact [19, Theorem 7.6] is based on the observation that if rankDf (x) < k, then for

any ε > 0 there is r > 0 such that

|f (z) − f (x) − Df (x)(z − x)| < εr for z ∈ B(x, r),

and hence

dist(f (z),Wx) ≤ εr for z ∈ B(x, r),

whereWx = f (x) + Df (x)(Rk
) is an a�ne subspace ofRm

of dimension less than or equal to k − 1. That means

f (B(x, r)) is contained in a thin neighborhood of an ellipsoid of dimension no greater than k − 1 and hence

we can cover it by C(L/ε)k−1 balls of radius Cεr, where L is the Lipschitz constant of f . Now we use covering

1 It is a simple exercise in linear algebra –�rst we prove that the row rank r (vectors inRk) equals to the maximum of dimensions

of minors with non-zero determinants. Clearly the column rank (vectors in `∞) is at least r. However, it cannot be larger than r –it
easily follows from the fact that the system of r × r equations with the non-zero determinant has a unique solution.

Brought to you by | University of Pittsburgh
Authenticated

Download Date | 4/9/15 6:30 PM



Unrecti�ability of Metric Spaces | 5

by these balls with the help of Vitali’s lemma to estimate the Hausdor� content of the image of the critical

set. For more details, see [19, Theorem 7.6].

The proof described above employs the fact that f is Frechet di�erentiable and hence this argument can-
not be applied to the case of mappings into `∞, because in general Lipschitz mappings into `∞ are not Frechet

di�erentiable, i.e. in general the image of f (B(x, r) ∩ E) is not well-approximated by the tangent mapping

apDf (x). To overcome this di�culty we need to investigate the structure of the set {apDf (x) < k} using argu-

ments employed in the proof of the general case of the Sard theorem for Cn mappings, [21]. In particular we

will need to use a version of the implicit function theorem.

In the proof of Theorem 2.2 we will also need the following result which is of independent interest.

Proposition 2.3. Let D ⊂ Rk be a bounded and convex set with non-empty interior and let f : D → `∞ be an
L-Lipschitz mapping. Then

diam(f (D)) ≤ C(k)L (diamD)k
Hk

(D) Hk
(D \ A)1/k

where
A = {x ∈ D : Df (x) = 0}.

In particular if D is a cube or a ball, then

diam(f (D)) ≤ C(k)LHk
(D \ A)1/k . (2.2)

Proof. We will need two well-known facts.

Lemma 2.4. If E ⊂ Rk is measurable, thenˆ
E

dy
|x − y|k−1 ≤ C(k)H

k
(E)1/k .

Proof. Let B = B(x, r) ⊂ Rk
be a ball such thatHk

(B) = Hk
(E). Thenˆ

E

dy
|x − y|k−1 ≤

ˆ
B

dy
|x − y|k−1 = C(k)r = C′(k)Hk

(E)1/k .

The inequality follows from the observation that on the part of the set E which lies outside B we integrate a

function which is strictly smaller than the function on B \ E and |E \ B| = |B \ E|.

For the next lemma see for example [9, Lemma 7.16].

Lemma 2.5. If D ⊂ Rk is a bounded and convex set with non-empty interior and if u : D → R is Lipschitz
continuous, then

|u(x) − uD| ≤
(diamD)k
kHk

(D)

ˆ
D

|∇u(y)|
|x − y|k−1 dy for all x ∈ D,

where uD =
´
Du(x) dx.

Now we can complete the proof of Proposition 2.3. If Df (x) = 0, then∇fi(x) = 0 for all i ∈ N. For each i ∈ N
we have

|fi(x) − fiD| ≤
(diamD)k
kHk

(D)

ˆ
D

|∇fi(y)|
|x − y|k−1 dy ≤

L(diamD)k
kHk

(D)

ˆ
D\A

dy
|x − y|k−1

≤C(k)L (diamD)k
Hk

(D) Hk
(D \ A)1/k .

The last inequality follows from Lemma 2.4. Hence for all x, y ∈ D

|fi(x) − fi(y)| ≤ |fi(x) − fiD| + |fi(y) − fiD| ≤ 2C(k)L
(diamD)k
Hk

(D) Hk
(D \ A)1/k .

Taking supremum over i ∈ N yields

‖f (x) − f (y)‖
∞
≤ 2C(k)L (diamD)k

Hk
(D) Hk

(D \ A)1/k

and the result follows upon taking supremum over all x, y ∈ D.
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Proof of Theorem 2.2. The implication from left to right is easy. Suppose that Hk
(f (E)) = 0. For any positive

integers i
1
< i

2
< . . . < ik the projection

`∞ 3 (y
1
, y

2
, . . .)→ (yi

1

, yi
2

, . . . , yik ) ∈ Rk

is Lipschitz continuous and hence the set

(fi
1

, . . . , fik )(E) ⊂ Rk

has Hk
-measure zero. It follows from the change of variables formula (1.1) that the matrix [∂fij /∂x`]kj,`=1 of

approximate partial derivatives has rank less than k almost everywhere in E. Since this is true for any choice

of i
1
< i

2
< . . . < ik, we conclude that rank (apDf (x)) < k a.e. in E.

Suppose now that rank (apDf (x)) < k a.e. in E. We need to prove that Hk
(f (E)) = 0. This implication is

more di�cult. Since fi : E → R is Lipschitz continuous, by (2.1) for any ε > 0 there is gi ∈ C1(Rk
) such that

Hk
({x ∈ E : fi(x) = ̸ gi(x)}) < ε/2i .

Moreover apDfi(x) = Dgi(x) for almost all points of the set where fi = gi. Hence there is a measurable set

F ⊂ E such thatHk
(E \ F) < ε and

f = g and apDf (x) = Dg(x) in F,

where

g = (g
1
, g

2
, . . .), Dg =


Dg

1

Dg
2

.

.

.

 .

It su�ces to prove that Hk
(f (F)) = 0, because we can exhaust E with sets F up to a subset of measure zero

and f maps sets of measure zero to sets of measure zero (since f is Lipschitz). Let

˜F = {x ∈ F : rank (apDf (x)) = rankDg(x) < k}.

SinceHk
(F \ ˜F) = 0, it su�ces to prove thatHk

(f (˜F)) = 0. For 0 ≤ j ≤ k − 1, let

Kj = {x ∈ ˜F : rankDg(x) = j}.

Since
˜F =

⋃k−1
j=0 Kj, it su�ces to prove that Hk

(f (Kj)) = 0 for any 0 ≤ j ≤ k − 1. Again, by removing a subset

of measure zero we can assume that all points of Kj are density points of Kj. To prove that Hk
(f (Kj)) = 0 we

need to make a change of variables in Rk
, but only when j ≥ 1.

If x ∈ Rk
\ F, the sequence (g

1
(x), g

2
(x), . . .) is not necessarily bounded. Let V be the linear space of

all real sequences (y
1
, y

2
, . . .). Clearly g : Rk → V. We do not equip V with any metric structure. Note that

g|F : F → `∞ ⊂ V, because g coincides with f on F.

Lemma 2.6. Let 1 ≤ j ≤ k − 1 and x
0
∈ Kj. Then there exists a neighborhood x

0
∈ U ⊂ Rk, a di�eomorphism

Φ : U ⊂ Rk → Φ(U) ⊂ Rk, and a composition of a translation (by a vector from `∞) with a permutation of
variables Ψ : V → V such that

• Φ−1(0) = x
0
and Ψ(g(x

0
)) = 0;

• There is ε > 0 such that for x = (x
1
, x

2
, . . . , xk) ∈ B(0, ε) ⊂ Rk and i = 1, 2, . . . , j,(

Ψ ◦ g ◦ Φ−1
)
i
(x) = xi ,

i.e., Ψ ◦ g ◦ Φ−1 �xes the �rst j variables in a neighborhood of 0.

Proof. By precomposing g with a translation of Rk
by the vector x

0
and postcomposing it with a translation

of V by the vector −g(x
0
) = −f (x

0
) ∈ `∞ we may assume that x

0
= 0 and g(x

0
) = 0. A certain j × j minor of
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Dg(x
0
) has rank j. By precomposing g with a permutation of j variables in Rk

and postcomposing it with a

permutation of j variables in V we may assume that

rank

[
∂gm
∂x`

(x
0
)

]
1≤m,`≤j

= j. (2.3)

Let H : Rk → Rk
be de�ned by

H(x) = (g
1
(x), . . . , gj(x), xj+1, . . . , xk).

It follows from (2.3) that JH(x0) ≠ 0 and hence H is a di�eomorphism in a neighborhood of x
0
= 0 ∈ Rk

. It

su�ces to observe that for all i = 1, 2, . . . , j,(
g ◦ H−1

)
i
(x) = xi .

In what follows, by cubes, we will mean cubes with edges parallel to the coordinate axes in Rk
. It su�ces

to prove that any point x
0
∈ Kj has a cubic neighborhood whose intersection with Kj is mapped onto a set

of Hk
-measure zero. Since we can take cubic neighborhoods to be arbitrarily small, the change of variables

from Lemma 2.6 allows us to assume that

Kj ⊂ (0, 1)

k
, gi(x) = xi for i = 1, 2, . . . , j and x ∈ [0, 1]k. (2.4)

Indeed, according to Lemma 2.6 we can assume that x
0
= 0 and that g �xes the �rst j variables in a neighbor-

hood of 0. The neighborhood can be very small, but a rescaling argument allows us to assume that it contains

a unit cube Q around 0. Translating the cube we can assume that Q = [0, 1]

k
. If x ∈ Kj, since rankDg(x) = j

and g �xes the �rst j coordinates, the derivative of g in directions orthogonal to the �rst j coordinates equals
zero at x, ∂g`(x)/∂xi = 0 for i = j + 1, . . . , k and any `.

Lemma 2.7. Under the assumptions (2.4) there exists a constant C = C(k) > 0 such that for any integer m ≥ 1,
and every x ∈ Kj, there is a closed cube Qx ⊂ [0, 1]

k with edge length dx centered at x with the property that
f (Kj ∩ Qx) = g(Kj ∩ Qx) can be covered by mj balls in `∞, each of radius CLdxm−1, where L is the Lipschitz
constant of f .

The theorem is an easy consequence of this lemma through a standard application of the 5r-covering lemma,

[13, Theorem 1.2]. First of all observe that cubes with sides parallel to coordinate axes in Rk
are balls with

respect to the `∞k metric

‖x − y‖
∞
= max

1≤i≤k
|xi − yi|.

Hence the 5r-covering lemma applies to families of cubes in Rk
. By 5

−1Q we will denote a cube concentric

with Q and with 5

−1

times the diameter. The cubes {5−1Qx}x∈Kj form a covering of Kj. Hence we can select

disjoint cubes {5−1Qxi}∞i=1 such that

Kj ⊂
∞⋃
i=1
Qxi .

If di is the edge length of Qxi , then
∑
∞

i=1(5
−1di)k ≤ 1, because the cubes 5

−1Qxi are disjoint and contained in

[0, 1]

k
. Hence

Hk
∞
(f (Kj)) ≤

∞∑
i=1

Hk
∞
(f (Kj ∩ Qxi )) ≤

∞∑
i=1

mj
(CLdim−1)k ≤ 5kCkLkmj−k

.

Since the exponent j− k is negative, andm can be arbitrarily large we conclude thatHk
∞
(f (Kj)) = 0 and hence

Hk
(f (Kj)) = 0. Thus it remains to prove Lemma 2.7.
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8 | Piotr Hajłasz and Soheil Malekzadeh

Proof of Lemma 2.7. Various constants C in the proof below will depend on k only. Fix an integer m ≥ 1. Let
x ∈ Kj. Since every point in Kj is a density point of Kj, there is a closed cube Q ⊂ [0, 1]

k
centered at x of edge

length d such that

Hk
(Q \ Kj) < m−kHk

(Q) = m−kdk . (2.5)

By translating the coordinate system in Rk
we may assume that

Q = [0, d]j × [0, d]k−j .

Each component of f : Q ∩ Kj → `∞ is an L-Lipschitz function. Extending each component to an L-Lipschitz
function on Q results in an L-Lipschitz extension

˜f : Q → `∞. This is well-known and easy to check.

Divide [0, d]j intomj
cubeswithpairwisedisjoint interiors, eachof edge lengthm−1d. Denote the resulting

cubes by Qν, ν ∈ {1, 2, . . . ,mj}. It remains to prove that

f ((Qν × [0, d]k−j) ∩ Kj) ⊂ ˜f (Qν × [0, d]k−j)

is contained in a ball (in `∞) of radius CLdm−1. It follows from (2.5) that

Hk
((Qν × [0, d]k−j) \ Kj) ≤ Hk

(Q \ Kj) < m−kdk .

Hence

Hk
((Qν × [0, d]k−j) ∩ Kj) > (m−j − m−k)dk .

This estimate and the Fubini theorem imply that there is ρ ∈ Qν such that

Hk−j
(({ρ} × [0, d]k−j) ∩ Kj) > (1 − mj−k

)dk−j .

Hence

Hk−j
(({ρ} × [0, d]k−j) \ Kj) < mj−kdk−j .

It follows from (2.2) with k replaced by k − j that

diam`∞ (
˜f ({ρ} × [0, d]k−j)) ≤ CLHk−j

(({ρ} × [0, d]k−j) \ Kj)1/(k−j) ≤ CLm−1d. (2.6)

Indeed, the rank of the derivative of g restricted to the slice {ρ} × [0, d]k−j equals zero at the points of ({ρ} ×
[0, d]k−j)∩Kj and this derivative coincides a.e. with the approximate derivative of

˜f restricted to {ρ}×[0, d]k−j∩
Kj which by the property of g must be zero as well.

Since the distance of any point in Qν × [0, d]k−j to {ρ}× [0, d]k−j is bounded by Cm−1d and
˜f is L-Lipschitz,

(2.6) implies that
˜f (Qν × [0, d]k−j) is contained in a ball of radius CLdm−1, perhaps with a constant C bigger

than that in (2.6). The proof of the lemma is complete.

This also completes the proof of Theorem 2.2.

3 Heisenberg groups
As an application we will show one more proof of the well-known result of Ambrosio-Kirchheim [1] and Mag-

nani [16] that the Heisenberg groupHn
is purely k-unrecti�able for k > n. Another proof was given in [3] and

our argument is related to the one given in [3] in a sense that the proof of Theorem 2.2 is based on similar

ideas. We will not recall the de�nition of the Heisenberg group as this is not the main subject of the paper.

The readermay �nd a detailed introduction for example in [3]; wewill follow notation used in that paper. The

following result is well-known, see for example Theorem 1.2 in [3].

Lemma 3.1. Let k > n and let E ⊂ Rk be a measurable set. If f : E → Hn is locally Lipschitz continuous, then
forHk-almost every point x ∈ E, rank (apDf (x)) ≤ n.
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The Heisenberg groupHn
is homeomorphic toR2n+1

and the identity mapping id : Hn → R2n+1
is locally Lip-

schitz continuous. Hence f is locally Lipschitz as a mapping into R2n+1
. The approximate derivative apDf (x)

is understood as the derivative of the mapping into R2n+1
. As an application of Theorem 1.1 we will prove

unrecti�ability ofHn
.

Theorem 3.2. Let k > n be positive integers. Let E ⊂ Rk be a measurable set, and let f : E → Hn be a Lipschitz
mapping. ThenHk

(f (E)) = 0.

Here the Hausdor� measure in Hn
is with respect to the Carnot-Carathéodory metric or with respect to the

Korányi metric dK which is bi-Lipschitz equivalent to the Carnot-Carathéodory one.

Proof. Let f : E ⊂ Rk → Hn
, k > n be Lipschitz. We need to prove thatHk

(f (E)) = 0. Recall that by Lemma 3.1,

rank (apDf (x)) ≤ n. Fix a collection of k distinct points yi , . . . , yk inHn
and de�ne themapping g : E ⊂ Rk →

Rk
as the projection of f

g(x) = (dK(f (x), y1), . . . , dK(f (x), yk)).

The mapping π : Hn → Rk
de�ned by π(z) = (dK(z, y1), . . . , dK(z, yk)) is Lipschitz continuous, but it is not

Lipschitz as a mapping π : R2n+1 → Rk
. Hence it is not obvious that we can apply the chain rule to g = π ◦ f

and conclude that rank (apDg(x)) ≤ n < k a.e. in E which would imply Hk
(f (E)) = 0 by Theorem 1.1. To

overcome this di�culty we use the fact that the Korányi metricR2n+1 3 z 7→ dK(z, y) ∈ R is C∞ onR2n+1
\{y}.

Hence the chain rule applies to g = π ◦ f on the set E \ (⋃k
i=1 Ei), where

Ei = {x ∈ E : f (x) = yi}

and rank (apDg(x)) ≤ n < k a.e. in E \ (⋃k
i=1 Ei). If x ∈ Ei, then f (x) = ̸ yj for j = ̸ i and

g(x) = (dK(f (x), y1), . . . , dK(f (x), yi−1), 0, dK(f (x), yi+1), . . . , dK(f (x), yk)), for x ∈ Ei .

Thus g = πi ◦ f on Ei, where

πi(z) = (dK(z, y1), . . . , dK(z, yi−1), 0, dK(z, yi+1), . . . , dK(z, yk)).

The function πi is smooth in a neighborhood of yi = f (x), x ∈ Ei and hence the chain rule shows that the

approximate derivative of g|Ei has rank less than or equal n < k a.e. in Ei. It remains to observe that at almost

all points of Ei the approximate derivative of g equals to that of g|Ei .

4 Generalization of Theorem 1.1
De�nition 4.1. We say that a metric space (X, d) is quasiconvex if there is a constantM ≥ 1 such that any two

points x, y ∈ X can be connected by a curve γ of length `(γ) ≤ Md(x, y).

The next result is a variant of Theorem 1.1.

Theorem 4.2. Suppose that (X, d) is a complete and quasiconvex metric space and that Φ : X → RN is a
Lipschitz map with the property that for some constant CΦ > 0 and all recti�able curves γ in X we have

`(γ) ≤ CΦ`(Φ ◦ γ). (4.1)

Then for any k ≥ 1 and any Lipschitz map f : E ⊂ Rk → X de�ned on a measurable set E ⊂ Rk the following
conditions are equivalent.

1. Hk
(f (E)) = 0 in X;

2. Hk
(Φ(f (E))) = 0 in RN;

3. rank (apD(Φ ◦ f )) < k,Hk-a.e. in E.
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10 | Piotr Hajłasz and Soheil Malekzadeh

Since the set f (E) is separable,Hk
(f (E)) = 0 if and only if every point in the set f (E)has a neighborhoodwhose

intersection with f (E) has measure zero. This also implies that a local version of Theorem 4.2 is true: We can

assume that the space is quasiconvex in a neighborhood of each point, thatΦ is locally Lipschitz continuous

and that for each x ∈ X there is a neighborhood x ∈ U ⊂ X and a constant CΦ,U such that (4.1) holds for all

recti�able curves γ in U with the constant CΦ,U . The reader will have no problem to state a suitable version

of the theorem.

In the proof of Theorem 1.1 we embedded f (E) isometrically into `∞ and we concluded the result from

Theorem 2.2. Here instead of the isometric embedding into `∞ we have the mapping Φ. The proof of Theo-

rem 4.2 is similar to that of Theorem 2.2 and for that reason our arguments will be sketchy, but an essential

di�culty arises in the proof of the counterpart of the estimate (2.6). One of the reasons for this di�culty is

that unlike `∞, the space X does not necessarily have the Lipschitz extension property and we cannot extend

f from Q ∩ Kj to a Lipschitz mapping
˜f : Q → X; we will need a slightly di�erent argument and this part of

the proof will be furnished with all the necessary details.

Proof of Theorem 4.2. The implication from (1) to (2) is obvious. If N < k, the equivalence between (2) and (3)

is also obvious, so we can assume that N ≥ k. In that case the equivalence between (2) and (3) follows from

the area formula which generalizes (1.1) to the case when the target space may have larger dimension than

the domain: If h : E ⊂ Rk → RN
is Lipschitz, then

ˆ
E
|Jh(x)| dHk

(x) =
ˆ
h(E)

Nh(y, E) dHk
(y),

[6, 7], and the observation that |Jh(x)| = 0 if and only if rank (apDh(x)) < k. It remains to prove that (3)

implies (1). Suppose that rank (apD(Φ ◦ f )) < k a.e. in E. For any ε > 0 there is a set F ⊂ E and a mapping

g = (g
1
, . . . , gN) ∈ C1(Rk

,RN
) such thatHk

(E \ F) < ε and

g = Φ ◦ f , Dg = apD(Φ ◦ f ), rankDg < k on F.

Since F = ⋃k−1
j=0 Kj, where

Kj = {x ∈ F : rankDg(x) = j},

it su�ces to show thatHk
(f (Kj)) = 0. By removing a subset of measure zero we can assume that all points of

Kj are the density points of Kj. Since the problem is local in the nature using a variant of Lemma 2.6 we can

assume that

Kj ⊂ (0, 1)

k
, gi(x) = xi for i = 1, 2, . . . , j and x ∈ [0, 1]k. (4.2)

Now the result will follow from the following version of Lemma 2.7.

Lemma 4.3. Under the assumption (4.2) there is a constant C = C(k)CΦMLip (Φ) > 0 such that for any integer
m ≥ 1, and any x ∈ Kj, there is a closed cube Qx ⊂ [0, 1]

k centered at x of edge length dx such that f (Kj ∩ Qx)
can be covered by mj balls in X, each of radius CLdxm−1, where L is the Lipschitz constant of f .

To prove the lemma we choose Q ⊂ [0, 1]

k
with edge length d, centered at x such that Hk

(Q \ Kj) < m−kdk.
We can assume that Q = [0, d]k. Divide Q into mj

rectangular boxes Qν × [0, d]k−j. We need to show that

f ((Qν × [0, d]k−j) ∩ Kj) is contained in a ball of radius CLdm−1. We �nd ρ ∈ Qν such that

Hk−j
(({ρ} × [0, d]k−j) \ Kj) < mj−kdk−j . (4.3)

By the volume argument every point in {ρ} × [0, d]k−j is at the distance no more than C(k)m−1d to the set

({ρ} × [0, d]k−j) ∩ Kj. Hence every point in Qν × [0, d]k−j, and thus every point in (Qν × [0, d]k−j) ∩ Kj, is at the
distance less than or equal to C(k)m−1d from the set ({ρ} × [0, d]k−j) ∩ Kj. Since f is L-Lipschitz it su�ces to

show that

diamX f (({ρ} × [0, d]k−j) ∩ Kj) < CLdm−1. (4.4)

This is the estimate that plays the role of (2.6), but the proof has to be di�erent now.
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Lemma 4.4. Let E ⊂ Q be a measurable subset of a cube Q ⊂ Rn. For x, y ∈ Q let Ix(y) be the length of the
intersection of the interval xy with E, i.e. Ix(y) = H1

(xy∩ E). Then there is a constant C = C(n) > 0 such that for
any x ∈ Q

Hn
({y ∈ Q : Ix(y) ≤ CHn

(E)1/n}) > Hn
(Q)
2

. (4.5)

The lemma says that if the measure of E is small, then more than 50% of the intervals xy intersect E along a

short subset.

Proof. It su�ces to show that for some constant C = C(n)
ˆ
−

Q
Ix(y) dy ≤ CHn

(E)1/n .

Then (4.5) will be true with C replaced by 2C. For z ∈ Sn−1 let δ(z) = sup{t > 0 : x + tz ∈ Q}. An integral over

Q can be represented in the spherical coordinates centered at x as follows

ˆ
Q
f (y) dy =

ˆ
Sn−1

ˆ δ(z)

0

f (x + tz)tn−1 dt dσ(z). (4.6)

If z ∈ Sn−1, then

Ix(x + tz) ≤ Ix(x + δ(z)z) =
ˆ δ(z)

0

χE(x + τz) dτ.

We have

ˆ
−

Q
Ix(y) dy = 1

Hn
(Q)

ˆ
Sn−1

ˆ δ(z)

0

tn−1Ix(x + tz) dt dσ(z)

≤

1

Hn
(Q)

ˆ
Sn−1

ˆ δ(z)

0

tn−1
ˆ δ(z)

0

χE(x + τz) dτ dt dσ(z)

≤

1

Hn
(Q)

ˆ
Sn−1

ˆ
diam Q

0

tn−1 dt
ˆ δ(z)

0

χE(x + τz) dτ dσ(z)

=C(n)
ˆ
Sn−1

ˆ δ(z)

0

χE(x + τz)
τn−1 τn−1 dτ dσ(z) (4.7)

=C
ˆ
Q

χE(y)
|x − y|n−1 dy ≤ CH

n
(E)1/n

by Lemma 2.4. Equality (4.7) follows from (4.6).

Nowunder the assumptions of the lemma, if x, y ∈ Q, we can�nd z ∈ Q such that Ix(z)+Iy(z) ≤ CHn
(E)1/n, i.e.

the curve xz+zy connecting x to y has length no bigger than 2diamQ and it intersects the set E along a subset

of length less than or equal to CHn
(E)1/n. Applying it to n = k−j,Q = {ρ}×[0, d]k−j, and E = ({ρ}×[0, d]k−j)\Kj,

every pair of points x, y ∈ Q∩Kj can be connected by a curve γ = xz+ zy of length `(γ) ≤ 2d
√
k − j (two times

the diameter of the cube) whose intersection with the complement of Kj has length no more than C(k)m−1d
by (4.3). We can parametrize γ by arc-length γ : [0, `(γ)]→ {ρ}× [0, d]k−j as a 1-Lipschitz curve. Themapping

f ◦ γ is L-Lipschitz and de�ned on a subset γ−1(Kj). It uniquely extends to the closure of γ−1(Kj) (because it is

Lipschitz and X is complete). The complement of this set consists of countably many open intervals of total

length bounded by C(k)m−1d. Since the space X is quasiconvexwe can extend f ◦γ from the closure of γ−1(Kj)
to f̃ ◦ γ : [0, `(γ)] → X as an ML-Lipschitz curve connecting x to y; here M is the quasiconvexity constant of

the space X. The curve

Φ ◦ (f̃ ◦ γ) : [0, `(γ)]→ RN

isLip (Φ)ML-Lipschitz. Note that on the set γ−1(Kj) this curve coincideswith g◦γ andhence for a.e. t ∈ γ−1(Kj)
we have

(Φ ◦ (f̃ ◦ γ))′(t) = (g ◦ γ)′(t) = 0.
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12 | Piotr Hajłasz and Soheil Malekzadeh

Hence the length of the curve Φ ◦ (f̃ ◦ γ) is bounded by

`(Φ ◦ (f̃ ◦ γ)) =
ˆ `(γ)

0

|(Φ ◦ (f̃ ◦ γ))′(t)| dt ≤ Lip (Φ)MLH1

([0, `(γ)] \ γ−1(Kj)) ≤ Lip (Φ)MLC(k)m−1d.

Now (4.1) implies that

d(f (x), f (y)) ≤ `(f̃ ◦ γ) ≤ CΦ`(Φ ◦ (f̃ ◦ γ)) ≤ CΦLip (Φ)MLC(k)m−1d.

Since this is true for all x, y ∈ {ρ} × [0, d]k−j ∩ Kj, (4.4) follows. The proof is complete.

5 Applications

5.1 Mappings of bounded length distortion

De�nition 5.1. A mapping f : X → Y between metric spaces is said to have the weak bounded length dis-
tortion property (weak BLD) if there is a constant C ≥ 1 such that for all recti�able curves γ in X we have

C−1`X(γ) ≤ `Y (f ◦ γ) ≤ C`X(γ). (5.1)

The class ofmappingswith bounded lengthdistortion (BLD)was introduced in [18] under the assumption that

f : Ω ⊂ Rn → Rn
is a continuousmapping on an open domain such that it is open, discrete, sense preserving

and satis�es (5.1) for all curves γ inΩ. Amore general de�nitionwithout any topological restrictionswas given

in [15, De�nition 2.10]. This de�nition is almost identical to ours, but it was assumed that (5.1) was satis�ed for

all curves γ in X. The two notions are di�erent: it may happen that amapping has the weak BLD property, but

some curves of in�nite length in X aremapped onto recti�able curves and hence such amapping is not BLD in

the sense of [15, De�nition 2.10]. For example the identity mapping on the Heisenberg group id : Hn → R2n+1

satis�es the weak BLD condition locally. However, any segment on the t-axis has in�nite length in the metric

of Hn
(actually its Hausdor� dimension equals 2) and it is mapped by the identity mapping to a segment in

the t-axis in R2n+1
of �nite Euclidean length.

As a consequence of Theorem 4.2 we obtain.

Theorem 5.2. If a mapping f : Ω ⊂ Rn → Rm de�ned on an open set Ω ⊂ Rn has the weak BLD property, then
f is locally Lipschitz, m ≥ n and rankDf (x) = n a.e. in Ω.

Proof. For any y ∈ B(x, r) ⊂ Ω, the segment xy is mapped on a curve of length bounded by C|x − y|. Hence

|f (x) − f (y)| ≤ C|x − y|. Let X be a closed ball contained in Ω, equip it with the Euclidean metric and let

Φ = f |X : X → Rm
. Let E ⊂ X be the set of points where rankDf < n and let ι : E → X be the identity

mapping. According to Theorem 4.2, Hn
(E) = Hn

(ι(E)) = 0 if and only if rank (apD(Φ ◦ ι)) = rankDf < n,
a.e. in E. Since the last condition is satis�ed by the de�nition of E, we conclude that Hn

(E) = 0, and hence

rankDf (x) = n a.e. inΩ, becauseΩ is a countable union of closed balls. This however, implies thatm ≥ n.

Gromov proved in [10, 2.4.11] that any Riemannian manifold of dimension n admits a mapping into Rn
that

preserves lengths of curves. It follows from Theorem 5.2 that the Jacobian of such mapping is di�erent than

zero a.e. and hence there is no such mapping into Rm
for m < n (this result is known).

In [18] it was proved that a mapping f : Ω ⊂ Rn → Rn
is BLD (under the topological assumptions: open,

discrete, sense preserving) if and only if f is locally Lipschitz and |Jf | ≥ C > 0 a.e. We proved without any

topological assumptions that |Jf | > 0 a.e.
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5.2 Carnot-Carathéodory spaces

Let X
1
, X

2
, . . . , Xm be a family of vector �elds de�ned on an open and connected set Ω ⊂ Rn

with locally

Lipschitz continuous coe�cients. Assume that the vector �elds are linearly independent at every point of Ω
and that for every compact set K ⊂ Ω

inf

p∈K
inf

i∈{1,...,m}
|Xi(p)| > 0.

For v =∑i aiXi(p) ∈ span {Xi(p), . . . , Xm(p)} we de�ne

|v|H =

( m∑
i=1

a2i
)
1/2

.

It follows from our assumptions that on compact subsets of Ω, |v|H is comparable to the Euclidean length |v|
of the vector v, i.e. for every compact set K ⊂ Ω there is a constant C ≥ 1 such that

C−1|v| ≤ |v|H ≤ C|v| for all p ∈ K and all v ∈ span {X
1
(p), . . . , Xm(p)}. (5.2)

We say that an absolutely continuous curve γ : [a, b] → Ω is horizontal if there are measurable functions

ai(t), a ≤ t ≤ b, i = 1, 2, . . . ,m such that

γ′(t) =
m∑
i=1

ai(t)Xi(γ(t)) for almost all t ∈ [a, b].

The horizontal length of γ is de�ned as

`H(γ) =

ˆ b

a
|γ′(t)|H dt.

Denoting the Euclidean length of a curve γ by `(γ), it easily follows from (5.2) that if G b Ω, then there is a

constant C ≥ 1 such that for any horizontal curve γ : [a, b]→ G we have

C−1`(γ) ≤ `H(γ) ≤ C`(γ). (5.3)

Assume that any two points in Ω can be connected by a horizontal curve. This is the case for example if the

vector �elds satisfy the Hörmander condition [22, Proposition III.4.1]. A Carnot group G is a group structure

on Rn
along with a horizontal distribution and the associated Carnot-Carathéodory metric. The Heisenberg

group is an example of the Carnot group. All the assumptions about the vector �elds given above are satis�ed

by Carnot groups (and in particular by the Heisenberg groups), [12, Section 11.3], but not by the Grushin type

spaces [8]. Namely in general in the Grushin type spaces the inequality `H(γ) ≤ C`(γ) need not be satis�ed.

The Carnot-Carathéodory distance dcc(x, y) of the points x, y ∈ Ω is de�ned as the in�mum of horizontal

lengths of horizontal curves connecting x and y. Since we assume that any two points in Ω can be connected

by a horizontal curve, (Ω, dcc) is a metric space.

Clearly horizontal curves are recti�able and it is well-known that every recti�able curve with the arc-

length parametrization is horizontal. Moreover `H(γ) equals the length `cc(γ) of γ with respect to the Carnot-

Carathéodorymetric. A detailed account on this topic can be found in [20]. id : (Ω, dcc)→ Ω from the Carnot-

Carathéodory space onto Ω with Euclidean metric is locally weakly BLD.

The next result follows immediately from a local version of Theorem 4.2. It applies to Carnot groups and

in particular to the Heisenberg groups.

Theorem 5.3. Let X
1
, . . . , Xm be a family of locally Lipschitz vector �elds in an open and connected domain

Ω ⊂ Rn such that for every compact set K ⊂ Ω

inf

p∈K
inf

i∈{1,...,m}
|Xi(p)| > 0. (5.4)

Assume also that any two points in Ω can be connected by a horizontal curve. Then for k ≥ 1 and any Lipschitz
mapping f : E ⊂ Rk → (Ω, dcc) the following conditions are equivalent.

1. Hk
dcc (f (E)) = 0 in (Ω, dcc);

2. Hk
(f (E)) = 0 with respect to the Euclidean metric in Ω;

3. rank (apDf ) < k a.e. in E.
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