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Abstract – In the field of machine learning, the problem of class imbalance considerably impairs the performance of classification 
algorithms. Various techniques have been proposed that seek to mitigate classifier bias with respect to the majority class, with simple 
oversampling approaches being one of the most effective. Their main representative is the well-known SMOTE algorithm, which introduces 
a synthetic instances creation mechanism as an interpolation procedure between minority instances. To date, an abundance of SMOTE-
based extensions that intend to improve the original algorithm has been proposed. This paper aims to compare the performance of several 
such extensions. In addition to comparing the overall performance, the impact of the selected oversamplers on the per-class performance is 
also evaluated. Finally, this paper tries to interpret the obtained performance results with respect to the internal procedures of oversampling 
algorithms. Some interesting findings have been made in this regard.
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1. INTRODUCTION

The main goal of a classification is to identify the class 
to which the new data will be assigned. Although many 
approaches have been developed to tackle classification 
problems, the characteristics and size of the available da-
tasets have always had a significant impact on the qual-
ity of the predictions, if not greater. One data property 
that notably complicates classification problems is the 
concept of class imbalance, according to which the label 
of one class is represented to a lesser degree. Classifier 
training over imbalanced datasets results in models that 
are strongly biased towards the majority class [1]. On top 
of that, the class with the minority of instances is usually 
the class of interest, resulting in more false positive pre-
dictions [2]. Such a result can have dire consequences 
in detecting faults or intrusions, problems arising from 
medical domains and several others. 

For that reason, it should come as no surprise that 
the problem of class imbalance has gathered consider-
able research interest. There are two main approaches 
to addressing the problem of imbalanced data in the 

literature [3]: algorithm-level approaches and data-level 
approaches. The former imply that the standard classi-
fication algorithms are modified to enhance the learn-
ing task with respect to the minority class, while the lat-
ter adjust the class imbalance ratio in order to achieve 
a balanced distribution between classes. Due to their 
adaptability and simplicity, data-level approaches that 
either conduct undersampling of majority instances 
or oversampling of minority ones are more commonly 
used [4]. To avoid the elimination of important majority 
instances, oversampling algorithms represent the pref-
erable choice. Their main representative is the SMOTE 
(synthetic minority oversampling technique) algorithm, 
proposed by Chawla et al. [5]. In the reminiscence of the 
origins of SMOTE [6], Chawla highlights two classifica-
tion results that he sought to improve when developing 
this algorithm: (1) performance on minority class and (2) 
generalization capacity. The novelty of SMOTE was in 
its synthetic instance creation mechanism that tried to 
cope with challenges arisen from overfitting the minor-
ity class when performing random oversampling, the 
state-of-the-art method at that time.  
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To date, more than 85 variants of the SMOTE algorithm 
have been proposed to improve the original in terms of 
various classification metrics [6]. The inner procedures of 
the original algorithm most often subject to change are 
the initial selection and adaptive generation of synthetic 
examples, where some extensions incorporate filtering, 
integration with undersampling, kernels and relabeling. 
Given the considerable number of SMOTE-based exten-
sions, there are surprisingly few studies in the literature 
that attempt to provide their in-depth comparison. The 
latest such studies have begun to place more empha-
sis on experimental analysis than on plain review. In 
analysis performed by Bajer et al. [7], six SMOTE-based 
algorithms are statistically compared in terms of the 
obtained geometric mean across large number of di-
verse imbalanced datasets and three different classifiers. 
An interesting conclusion of this analysis is that even a 
slight change in the synthetic instance creation method 
can alter the performance of the overall algorithm. More 
recent research was conducted by Kovács [8], who car-
ried out a comprehensive comparison and evaluation of 
85 variants of minority oversampling techniques across 
104 imbalanced datasets and four classifiers. 

In both studies, algorithms were compared using typi-
cal metrics to show overall classification performance. 
The conclusions of similar analyzes performed in the 
literature are often limited by the small number of data-
sets and algorithms used. With the increase in the num-
ber of datasets, the mean performance values become 
more realistic and it becomes more difficult to fine-tune 
the algorithms for seemingly better results, which is the 
impression sometimes given by the new propositions of 
oversampling algorithms. However, the analysis of the 
overall classification performance does not provide in-
sight into a per-class performance. While oversamplers 
improve performance on the minority class, the question 
is how they affect the prediction of the majority class. 
The trade-off between the number of false negative and 
false positive predictions can be a significant perfor-
mance indicator of a classifier and can be ameliorated 
using an oversampling algorithm. In numerous classifi-
cation problems, attaining good performance on both 
minority and majority classes is crucial, and it would be 
of great benefit to determine if there are oversampling 
algorithms that are dominant for both classes. This pa-
per attempts to give certain insights in that regard. The 
objective of the paper is twofold: (1) the overall perfor-
mance of several SMOTE-based oversampling approach-
es was evaluated and analyzed, and (2) a method for per-
class performance evaluation that integrates traditional 
classification metrics and techniques, from the domain 
of multi-objective optimization, has been proposed and 
conducted on the same set of oversampling algorithms. 

The rest of the paper is organized as follows. The over-
view of oversampling approaches is given in Section 2, 
with an emphasis on the SMOTE algorithm. Extensions 
to SMOTE are briefly described and categorized by the 
interpolation mechanisms they implement. Section 
3 presents the settings of the experimental analysis in 

terms of the datasets, classifiers, and performance met-
rics used. The comparison of selected algorithms is dem-
onstrated in Section 4, through both overall and per-
class performance aspects. In addition, the same com-
parisons were made for the interpolation mechanisms 
represented by the averaged performance results of the 
associated oversampling algorithms. Finally, Section 5 
summarizes the reached conclusions and provides pos-
sible directions for future work. 

2.  OVERSAMPLING ALGORITHMS

Early research on oversampling [9, 10] has discussed 
oversampling with replacement, where the positive 
(minority) examples were duplicated with replace-
ment to match the number of negative (majority) ex-
amples. Additionally, if minority instances are selected 
at random, this method is known as a simple random 
oversampling. Its main drawback is that it does not in-
troduce new information to the data and can lead to 
overfitting [11]. The first method that was proposed to 
alleviate this problem was the SMOTE algorithm.  

2.1. SynThETIC MInOrITy 
 OvErSAMPlInG TEChnIquE

In addition to improving the performance of the clas-
sifier on the minority class, SMOTE seeks to improve its 
generalization capacity, potentially eliminating the 
occurrence of overfitting. For this reason, it includes 
synthetic instance creation mechanism, according to 
which new minority instances are not duplicates of ex-
isting ones but are located in their neighborhood. For 
each minority instance x in M, first its k-neighborhood 
is determined, whereby various metric functions may 
be employed (typically the Euclidean distance is used). 
This is followed by the creation of q synthetic instances 
as the convex combination

(1)

where the created instance is placed on a line be-
tween the minority instance x and its random neigh-
bor from the k-neighborhood x ̂r(i), the exact placement 
being defined by a random number generated using a 
uniform distribution Ui (0,1). The complete SMOTE al-
gorithm is outlined in Fig. 1.

Fig. 1. Outline of SMOTE [7]
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While developing a synthetic instance creation 
mechanism, the authors of SMOTE focused on fea-
ture space, rather than data space, to make the algo-
rithm appropriate for a general imbalance problem [5]. 
Therefore, the synthetic instances are created along the 
line segments joining selected class neighbors. How-
ever, the pseudo-code of the algorithm presented in 
the same paper does not coincide with the described 
mechanism. While the pseudo-code incorporates the 
approach described by Eq. (1) for the synthetic instance 
creation, the approach compatible with the original 
description is

(2)

where Ui (0,1) is a n-dimensional vector of uniform ran-
dom variables in (0,1), and ⊙ denotes the Hadamard 
product. In the first case, new data is created on a line 
segment connecting the two minority instances. In the 
second case, new data is created within the bounding 
rectangle described by the two minority instances.    

Furthermore, comparing the original paper [5] with 
the review paper of the same authors [6], a twofold in-
terpretation of the procedure for the initial selection 
of minority instances is noticeable. While in the former 
interpretation, each minority instance is used for overs-
ampling, in the latter, they are selected at random. 
Based on the observations mentioned above, a combi-
nation of different interpretations of instance selection 
and synthetic creation procedures can produce four 
different versions of the SMOTE algorithm. Accordingly, 
the performance evaluation of different SMOTE-based 
algorithms can be reinforced with respect to the type 
of these two procedures.

2.2. ExTEnSIOnS TO SMOTE

In practice, SMOTE is renowned as the benchmark in 
the learning from imbalance datasets [6]. Despite its 
simplicity and efficiency, its shortcomings are evident 
in certain problems, especially when class imbalance 
coincides with various data intrinsic characteristics. 
Considering only minority instances and neglecting the 
majority ones can lead to increased overlap between 
classes [12] or to overgeneralization [13]. Furthermore, 
its selection method can also extend noise regions, 
by oversampling noisy examples, which eventually 
increases the possibility of overfitting [14]. Various ex-
tensions to SMOTE have been proposed to tackle the 
aforementioned issues, by integrating miscellaneous 
filtering, interpolation, undersampling or dimensional-
ity change techniques. A more extensive overview of 
SMOTE-based variants can be found in [6].

However, by incorporating these diverse techniques 
within a simple original algorithm, it becomes increas-
ingly burdensome to justify the obtained performance 
and clarify the origin of newly created synthetic in-
stances. Given that most of the algorithms consist of 
initial selection and interpolation procedures, the algo-

rithms selected for the analysis consist solely of certain 
combinations of those, so as not to impair the simplic-
ity and efficiency of the original SMOTE algorithm. Ac-
cordingly, representative algorithms were selected for 
three different interpolation mechanisms defined in 
[6]: SMOTE-like, range restricted and multiple. 

Given the influence of the SMOTE algorithm in the 
overall problem of learning from imbalanced data, many 
of its extensions leave the original interpolation mecha-
nism intact and alter other procedures. Such a group of 
algorithms can be said to perform SMOTE-like interpola-
tion. MSMOTE [15] is one of the earliest algorithms in this 
group, which does not introduce additional mechanisms 
but merely changes the initial selection procedure. The 
MSMOTE algorithm categorizes the minority instances 
into three groups (security, border and latent noise), and 
performs different neighborhood selection strategy for 
each group. Unlike noise samples, an increase in the num-
ber of security samples can improve the performance of 
a classifier. Those samples that are difficult to classify are 
referred to as boundary samples. One of the more recent 
algorithms that has also preserved the interpolation 
mechanism of the original algorithm is Weighted-SMOTE 
[16], which calculates a weight matrix for determining the 
amount of synthetic data to be created for each minority 
instance. The weights are determined using the Euclid-
ean distance of a given minority instance with respect to 
all remaining instances of the same class. The smaller the 
distance, the greater the amount of synthetic instances is 
generated for that minority data sample. 

The interpolation mechanisms may be range restrict-
ed, with the structure of a close neighborhood affecting 
the location of a newly created synthetic instance. One 
of the earliest and well-established SMOTE-based exten-
sions to include this type of interpolation is Borderline-
SMOTE [17], which only strengthens the borderline mi-
nority examples.  Examples at the borderline and those 
in the vicinity are more prone to misclassification than 
those far from the border and are therefore more impor-
tant for classification. Such examples are found by ana-
lyzing the amount of minority and majority instances in 
the neighborhood of each minority example. The idea 
established in Borderline-SMOTE was broaden and re-
fined for Safe-Level-SMOTE [13], which places synthetic 
instances closer to the largest safe level. The safe level 
is determined with a ratio between numbers of posi-
tive neighbors for the minority instance and its nearest 
neighbor. In contrast, SMOTE and Borderline-SMOTE can 
generate synthetic instances in unbefitting locations, 
such as overlapping regions and noise regions. One of 
the latest approaches that suggest a range restricted 
interpolation procedure is SMOTE-D (Deterministic 
version of SMOTE) [18], which generates synthetic ex-
amples by dividing the difference in attributes between 
two instances by the number of instances to be generat-
ed between them. Moreover, the greater the dispersion 
of distances between the minority instance and its class-
neighbors, the more synthetic instances will be created. 
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When creating new synthetic examples, some 
SMOTE-based extensions perform multiple interpola-
tions by calculating a combination of attributes from 
multiple neighbors. The earliest such approach is 
Distance-SMOTE [19], in which the new synthetic in-
stances lie between minority instances and the mean 
example from their neighborhood. To create the new 
synthetic instance the difference between the minor-
ity example and the mean instance is multiplied by a 
random number between 0 and 1, to select a random 
point. Further on, the Random-SMOTE algorithm [20] 
creates synthetic instances inside the triangle derived 
from the minority examples and two random instances 
in the minority-class space. This idea was introduced to 
better address sparse regions among minority exam-
ples. A somewhat similar interpolation approach was 
utilized in the SNOCC [21] oversampling technique, but 
the synthetic instance is calculated as a convex com-
bination of two randomly selected minority instances. 
This technique aims to generate instances that natu-
rally model the distribution of original samples.

In the end, a multitude of SMOTE-based extensions 
can be found in the literature. When it comes to inter-
polation mechanisms, popular approaches that prevail 
either perform clustering of the minority examples, 
use Gaussian disturbances to generate the data from 
a single point or follow topologies based on geometric 
shapes, Voronoi diagrams, and graphs. 

3.  EXPERIMENTAL ANALYSIS

As stated at the outset, the two goals of this paper 
are to compare the overall performance of known 
oversampling algorithms and to determine their im-
pact on the predictions of each class separately. Algo-
rithms consisting only of initial selection and interpola-
tion procedures were selected in order to maintain a 
simplicity of the original algorithm while investigating 
combinations of these mechanisms for better perfor-
mance. The selected algorithms are shown in Table 1. In 
addition to the displayed SMOTE-based extensions, a 
simple random oversampling algorithm is also includ-
ed in the analysis to serve as a point of reference. The 
algorithms are grouped by the interpolation mecha-
nisms they implement.

The experiment setup is similar to that proposed in 
[7], in terms of used datasets and performance evalu-
ation method, but different metrics are compared and 
different classifiers are considered. The datasets were 
obtained from the Keel [22] and the UCI [23] machine 
learning repositories and represent real-world prob-
lems with various imbalanced ratios to support the 
comparison. The characteristics of the selected data-
sets are summarized in Table 2. Oversampling tech-
niques are evaluated in diverse classification settings 
because some classifiers are more equal than others. 
In order to observe which oversampling algorithms 
operate best with different types of classifiers, we se-
lected the k-nearest neighbors with k = 5 (5-NN), multi-

layer perceptron (MLP), decision tree (DT) and support 
vector machine (SVM) algorithms. These classifiers are 
often used in the literature to compare oversampling 
techniques [7, 8]. The classifiers were implemented us-
ing Scikit-learn library [24], leaving default settings for 
each, to avoid the impact of manually selected param-
eters. Performance evaluation was conducted using 
stratified holdout testing. The datasets were split into 
the standard 0.75:0.25 ratio for training and testing, 
respectively. Each oversampler and classifier combina-
tion was evaluated simultaneously on the same split. 
This was repeated 30 times, each with a new split. The 
neighborhood size for all oversampling algorithms was 
set to the default and widely used value k = 5 [5, 17]. 
Regarding the number of synthetic instances created, 
a preliminary parameter study was conducted to find 
the value of q that yields the best performance for each 
combination of the dataset, classifier, and oversam-
pling algorithm.

3.1. PErfOrMAnCE METrICS fOr 
 IMBAlAnCED PrOBlEMS

The notion of metrics is particularly important in class 
imbalance problems. Accuracy is a fundamental metric 
for evaluating classification performance, but it is not 
suitable for evaluating imbalanced datasets since it plac-
es more weight on the majority class, making it difficult 
to assess the classifier performance on the minority class 
[25]. In imbalanced problems, the performance evalua-
tion metrics must consider class distribution [26]. Met-
rics such as the number of true positives (TP), the num-
ber of true positives (TN), the number of false positives 
(FP) and the number of false negatives (FN), can demon-
strate the classification performance on each class sepa-
rately. Considering the importance of achieving qual-
ity performance for all classes in imbalanced problems, 
these metrics are combined into more comprehensive 
metrics such as AUC [27], G-mean [28] and F-measure 
[29]. The latter has been widely used in the evaluation of 
oversampling algorithms in the literature [3, 7, 30], as a 
balanced Fβ-score with a β value of 1

(3)

The balanced F1-score demonstrates the trade-off 
between the precision and recall regarding the positive 
class, and it ranges between 0 and 1. The trade-off indi-
cates whether a classifier obtains high recall by sacrific-
ing precision or conversely by giving the classifier a low 
score. The F1-score may be a good indicator of the algo-
rithm’s overall performance, but like other such mea-
sures, it manually weighs the importance of accuracy 
on a per-class basis. Performance metrics proposed 
specifically for imbalanced problems can be found in 
the literature, such as the Adjusted F-measure (AGF) 
[31], which places greater emphasis on the minority 
class, assuming that the classifier efficiency should be 
evaluated mostly on it. 
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Interpolation 
mechanism

Algorithm 
name

Algorithm 
label

Initial selection 
description

Oversampling 
with 

replacement

Random 
oversampling RO

Minority instances 
are chosen at 
random [10]. 

SMOTE-like 
interpolation

Synthetic 
minority 

oversampling 
technique

SMOTE

Each minority 
instance is 

considered for 
synthetic creation 

procedure [5].

Modified-
SMOTE MSMOTE

Minority 
instances for 

synthetic creation 
procedure are 
selected from 
three groups: 

latent, security, 
border [15].

Weighted-
SMOTE WSMOTE

Each minority 
instance is 

assigned a weight 
that determines 

its contribution in 
synthetic creation 

procedure [16].    

Range 
restricted

Borderline-
SMOTE BSMOTE

Only minority 
instances from 

danger zone are 
chosen [17].

Safe-Level-
SMOTE SLSMOTE

Only minority 
instances with 

positive safe level 
are chosen [13].

Deterministic 
Version of 

SMOTE
SMOTED

Minority 
instances are 

deterministically 
chosen based on 
their deviation of 

distances [18].

Multiple 
interpolations

Distance-
SMOTE DSMOTE

Each minority 
instance is 

considered for 
synthetic creation 

procedure [19].

Random-
SMOTE RSMOTE

Each minority 
instance is 

considered for 
synthetic creation 

procedure [20].

Sigma Nearest 
Oversampling 

based on 
Convex 

Combination

SNOCC
Minority instances 

are chosen at 
random [21].

Table 1. The oversampling algorithms 
being compared

To avoid dictating a more dominant class in a single 
metric, this paper proposes a per-class performance 
evaluation procedure using two metrics, specificity and 
sensitivity. The specificity (or true negative rate) metric

(4)

can be interpreted as the proportion of actual nega-
tives that are correctly identified as such. On the other 
hand, the sensitivity (or true positive rate) metric

(5)

can be read as the proportion of actual positives that 
are correctly identified as such. In Eq. (4), FP denotes 
the number of false positives, while in Eq. (5), FN de-
notes the number of false negatives.

name label Source #inst. #feat. Ir

Climate D1 UCI 540 18 10.74

Ecoli3 D2 Keel 336 7 8.6

Ionosphere D3 UCI 351 34 1.79

Cleveland0v4 D4 Keel 173 13 12.31

Vehicle1 D5 Keel 846 18 2.9

Yeast2v4 D6 Keel 514 8 9.08

Abalone9v21 D7 Keel 731 7 16.4

Dermatology6 D8 Keel 358 34 16.9

Glass6 D9 Keel 214 9 6.38

LEDdigitAllv1 D10 Keel 443 7 10.97

Poker9v7 D11 Keel 244 10 29.5

Shuttle6v23 D12 Keel 230 9 22

Vehicle3 D13 Keel 846 18 2.99

Vowel0 D14 Keel 988 13 9.98

WineQualityRed4 D15 Keel 1599 11 29.17

WineQualityRed8v6 D16 Keel 656 11 35.44

Yeast1v7 D17 Keel 459 7 14.3

Parkinsons D18 UCI 195 22 3.06

Relax D19 UCI 182 12 2.5

Transfusion D20 UCI 748 4 3.2

Table 2. Characteristics of the datasets used

4.  RESULTS AND DISCUSSION

The experimental analysis is divided into three parts. 
The first part deals with the comparison of the selected 
oversamplers in terms of the overall performance rep-
resented by the obtained F1-scores. The second part is 
concerned with the performance on the per-class ba-
sis. In the third part, both overall and per-class perfor-
mance is evaluated at the level of interpolation mecha-
nisms of the selected algorithms.  

4.1. OvErAll ClASSIfICATIOn 
 PErfOrMAnCE EvAluATIOn

To determine the best performing oversampling al-
gorithms in terms of the overall performance, distances 
between attained F1-scores and the perfect classifier 
score were calculated for each combination of overs-
ampling and classifier algorithms. The performance 
of each such combination was constituted as a point 
in 20-dimensional space given that it is the number 
of datasets used, and each coordinate of the point is 
represented with the F1-score obtained on a particu-
lar dataset. The Euclidean distance was used to order 
the constructed performances and the Chebyshev dis-
tance was applied to break ties, as in [7].
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These distances are reported in Table 3 for each com-
bination of oversampling and classifier algorithms. It 
should be noted that the label NO represents the case 
without oversampling and serves as a basis for compar-
ison. Moreover, the smallest distances for each combi-
nation are highlighted.   

At first glance, it can be noticed that random oversam-
pling was twice the closest to the perfect classifier, for 
MLP and SVM classifiers. In addition, the performance 
achieved is considerably different with respect to the 
classifier used than with the oversampler used. Fur-
thermore, the performance of DT classifier is practically 
unsusceptible to the oversampling preprocessing step, 
whereas other algorithms show significant gains in per-
formance when oversampling is applied. This outcome 
is consistent with previous works [32], which show that 
oversampling does not affect the DT algorithm. 

Table 3. Distance of obtained F1-scores from the 
perfect classifier for selected oversamplers across 

different classifiers

Oversampler 5-nn MlP DT SvM

NO 1.52 (0.55) 1.74 (0.58) 1.46 (0.54) 2.22 (0.58)

RO 1.38 (0.54) 1.35 (0.57) 1.44 (0.50) 1.55 (0.58)

SMOTE 1.35 (0.53) 1.40 (0.58) 1.45 (0.53) 1.61 (0.58)

MSMOTE 1.36 (0.53) 1.40 (0.59) 1.45 (0.54) 1.62 (0.58)

WSMOTE 1.35 (0.54) 1.40 (0.57) 1.44 (0.53) 1.62 (0.58)

BSMOTE 1.35 (0.53) 1.38 (0.57) 1.45 (0.52) 1.75 (0.58)

SLSMOTE 1.36 (0.55) 1.40 (0.58) 1.46 (0.52) 1.66 (0.58)

SMOTED 1.34 (0.52) 1.43 (0.59) 1.45 (0.54) 1.82 (0.58)

DSMOTE 1.37 (0.55) 1.40 (0.57) 1.46 (0.54) 1.66 (0.58)

RSMOTE 1.35 (0.54) 1.41 (0.57) 1.43 (0.52) 1.66 (0.58)

SNOCC 1.37 (0.54) 1.45 (0.57) 1.46 (0.55) 1.63 (0.58)

For the sake of better validation and reliability, sta-
tistical tests were conducted to further validate the 
results. To gain insight into the statistical differences 
between oversampling algorithms within these three 
classifiers, average rankings of the Friedman test for 
multiple comparisons were determined for each such 
combination. The rankings are shown in Table 4, where 
smaller values indicate better performing algorithms. 
It is noticeable that all oversamplers considerably out-
perform NO. Random oversampling manifested as the 
weakest oversampler for the KNN classifier, but its to-
tal ranking is surprisingly ahead of the ranks of some 
SMOTE-based extensions. SNOCC and SLSMOTE stand 
out as the worst oversamplers, independent of the clas-
sifier. The best ranked oversampler in total is WSMOTE, 
although it was not the best for any particular classifier 
but was consistently among the best. In fact, WSMOTE 
has already manifested as preeminent in terms of over-
all performance in similar comparisons [7]. DSMOTE 
has twice been the best-performing oversampler, for 
MLP and SVM classifiers, and follows WSMOTE in rank-

ing as well as SMOTE and RSMOTE. It is interesting to 
note that the original SMOTE algorithm outperforms as 
many as six of its extensions in overall performance, i.e. 
all but WSMOTE and DSMOTE.    

Table 4. Average rankings of the Friedman test for 
obtained F1-scores of different oversamplers across 

different classifiers

Oversampler 5-nn MlP SvM Total

NO 9.475 9.85 9.475 28.800

RO 7.400 4.975 5.275 17.650

SMOTE 5.275 5.200 5.400 15.875

MSMOTE 6.100 6.025 5.800 17.925

WSMOTE 4.425 5.100 5.400 14.925

BSMOTE 5.725 5.900 5.725 17.350

SLSMOTE 6.525 5.875 6.800 19.200

SMOTED 4.175 5.725 6.650 16.550

DSMOTE 5.425 4.825 5.250 15.500

RSMOTE 4.875 5.775 5.275 15.925

SNOCC 6.600 6.750 6.025 19.375

4.2. PEr-ClASS PErfOrMAnCE EvAluATIOn

While it is of substantial importance to compare the 
overall performance of the selected oversampling al-
gorithms, it is also interesting to study how they affect 
the prediction of each class individually. To this end, Eu-
clidean distances from the perfect classifier were again 
obtained for two metrics: specificity and sensitivity. Ta-
ble 5 shows these distances, with the first number rep-
resenting the distance of the specificity values, and the 
number in parentheses the distance of the sensitivity 
values. It can be concluded that the prediction for the 
majority class is most accurate when no oversampling 
is performed. The DT classifier again proves immune to 
oversampling, as there are no major differences in ei-
ther of these two metrics, so it is excluded from further 
analysis. On the other hand, the use of oversampling 
with the SVM classifier alters both metrics the most.

Table 5. Distance of specificity and sensitivity 
scores from the perfect classifier for selected 

oversamplers across different classifiers

Oversampler 5-nn MlP DT SvM

NO 0.27 (2.97) 0.11 (3.41) 0.55 (2.46) 0.01 (4.17)

RO 0.69 (2.02) 0.51 (2.13) 0.53 (2.44) 0.45 (2.76)

SMOTE 0.69 (2.05) 0.51 (2.37) 0.61 (2.30) 0.50 (2.83)

MSMOTE 0.68 (2.21) 0.52 (2.41) 0.61 (2.33) 0.51 (2.88)

WSMOTE 0.71 (2.01) 0.53 (2.33) 0.60 (2.29) 0.57 (2.79)

BSMOTE 0.70 (1.99) 0.47 (2.35) 0.59 (2.36) 0.36 (3.18)

SLSMOTE 0.73 (2.01) 0.53 (2.28) 0.61 (2.32) 0.42 (3.09)

SMOTED 0.56 (2.15) 0.33 (2.54) 0.59 (2.33) 0.30 (3.40)

DSMOTE 0.78 (1.93) 0.51 (2.37) 0.60 (2.35) 0.55 (2.95)

RSMOTE 0.78 (1.92) 0.53 (2.38) 0.63 (2.24) 0.56 (2.96)

SNOCC 0.71 (2.14) 0.52 (2.58) 0.61 (2.34) 0.49 (2.95)
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As in the overall performance comparison, average 
rankings of Friedman test were derived to rank the 
selected oversampling algorithms according to the 
attained specificity and sensitivity scores. These ranks 
are shown in Table 6, with the first number represent-
ing the rank in terms of attained specificity values and 
the number in parentheses rank in terms of attained 
sensitivity values. It is obvious that the employment 
of oversampling greatly impairs the prediction accu-
racy on the majority class, i.e. the specificity value. The 
SMOTED algorithm least disrupts the performance on 
the majority class, and according to the utilized Neme-
nyi’s, Holm’s and Shaffer’s post-hoc procedures, most 
often statistically outperforms other algorithms. The 
performance of other oversamplers is similar when it 
comes to majority-class prediction. When it comes to 
ranks of sensitivity scores, it is evident that the use of 
oversampling considerably contributes to the suc-
cess of minority-class prediction. WSMOTE, RSMOTE 
and DSMOTE stand out as oversampling algorithms 
that best contribute to the performance of a classifier 
on the minority class. However, these algorithms are 
ranked the worst by specificity scores, which suggests 
that their success on the minority class results from sac-
rificing performance on the majority class.    

Table 6. Average rankings of the Friedman test 
for obtained specificity and sensitivity scores of 

different oversamplers across different classifiers

Oversampler 5-nn MlP SvM Total

NO 1.475 
(10.750)

1.675 
(10.750)

2.525 
(9.800)

5.675 
(31.300)

RO 7.475 
(6.225)

6.425 
(4.900)

6.500 
(5.150)

20.400 
(16.305)

SMOTE 5.900 
(5.725)

6.900 
(5.125)

6.350 
(5.325)

19.150 
(16.175)

MSMOTE 5.375 
(6.450)

6.425 
(5.575)

6.300 
(5.875)

18.100 
(17.900)

WSMOTE 6.350 
(4.850)

6.800 
(4.050)

8.000 
(4.200)

21.150 
(13.100)

BSMOTE 6.550 
(5.175)

5.400 
(6.200)

5.450 
(6.225)

17.400 
(17.600)

SLSMOTE 6.900 
(5.400)

7.775 
(4.900)

5.500 
(7.325)

20.175 
(17.625)

SMOTED 4.650 
(6.825)

4.000 
(7.775)

4.350 
(7.775)

13.000 
(22.375)

DSMOTE 7.425 
(4.400)

7.125 
(4.850)

7.425 
(4.525)

21.975 
(13.775)

RSMOTE 7.025 
(4.075)

7.500 
(5.325)

6.850 
(4.375)

21.375 
(13.775)

SNOCC 6.875 
(6.125)

5.975 
(6.550)

6.750 
(5.425)

19.600 
(18.100)

In various problems of class imbalance, the success of 
majority class prediction can be almost as important as 
the success of minority class prediction. Therefore, the 
question is whether some oversamplers achieve better 
performance on both classes on a particular problem. In 
order to discover such oversamplers on given datasets, 
non-dominated sorting for multi-objective problems 

[33] was applied. In this case, the specificity and sensi-
tivity scores represented the objectives to be maximized 
and the solutions were oversampling algorithms being 
compared. For each combination of dataset and classi-
fier, sorting determines non-dominated oversamplers, 
i.e. oversamplers that no other oversampling algorithm 
outperforms in both metrics. Given the extensiveness of 
displaying these results for each dataset, Table 7 shows 
how many times each oversampler appeared as a non-
dominated solution for each classifier. 

The oversampling algorithm that most often turned 
out to be a non-dominated solution is SMOTED and this 
applies for all three classifiers. This can be attributed to 
the fact that it achieved the best performance on the 
minority class, according to the Friedman rankings pre-
sented in Table 6. Surprisingly, the MSMOTE algorithm 
immediately follows SMOTED, though it ranks among 
the worse algorithms when comparing overall perfor-
mance, and sensitivity and specificity scores. On the 
contrary, original SMOTE algorithm appeared least as 
a non-dominated solution, although it was among the 
better oversamplers in terms of overall performance. 
The best performing algorithms overall, WSMOTE, 
DSMOTE and RSMOTE did not outperform its compe-
tition for any classifier. Due to their poor performance 
on the majority class, they fail to dominate other algo-
rithms, despite their superiority on the minority class. 
Finally, the SNOCC algorithm is one of the worst per-
forming algorithms in this comparison as well, which 
raises a question of its improvement over the original 
SMOTE algorithm. 

Table 7. The number of occurrences as non-
dominated solution for each oversampler across 

different classifiers

Oversampler 5-nn MlP SvM Total

RO 5 12 15 32

SMOTE 8 7 10 25

MSMOTE 12 9 11 39

WSMOTE 10 11 9 30

BSMOTE 10 13 13 36

SLSMOTE 11 11 11 33

SMOTED 16 15 15 46

DSMOTE 10 13 11 34

RSMOTE 12 7 14 33

SNOCC 6 8 12 26

4.3. PErfOrMAnCE EvAluATIOn Of 
 InTErPOlATIOn MEChAnISMS

The interpolation procedure is the main novelty in-
troduced by the SMOTE algorithm, while extensions to 
the original algorithm are mainly concerned with the 
improvement of such procedures. In order to compare 
groups of different interpolation mechanisms, the re-
sults of individual algorithms are aggregated, and the 
performance of a group is represented by the average 
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performance of the belonging algorithms. Table 8 pres-
ents average rankings of the Friedman test according 
to the obtained F_1-scores of each combination of in-
terpolation mechanism and classifier. In this way, the 
overall performance of the interpolation mechanisms 
can be compared.

The SMOTE-like interpolation, represented by the 
SMOTE, MSMOTE, and WSMOTE algorithms, achieved 
the best rank for KNN and MLP classifiers, as well as the 
best overall rank. On the other hand, range restricted in-
terpolation is the worst-ranked interpolation mechanism 
because poor performance of BSMOTE and SLSMOTE 
algorithms impairs the respectable performance of the 
SMOTED algorithm. Furthermore, this interpolation 
mechanism is the worst ranked for both MLP and SVM 
classifiers but performed as second best for KNN classi-
fier. The opposite is true for oversampling with replace-
ment, which performed especially well for the SVM algo-
rithm. The multiple interpolation mechanism maintains 
its rank almost independently of the classifier, being the 
second-worst mechanism in each case. 

Table 8. Average ranking of the Friedman test 
for derived F1-scores of different interpolation 

mechanisms across different classifiers

Interpolation mechanism 5-nn MlP SvM Total

Oversampling with replacement 3.15 2.175 2 7.325

SMOTE-like interpolation 2.05 2.15 2.35 6.55

Range restricted 2.15 3.075 2.95 8.175

Multiple interpolations 2.65 2.6 2.7 7.95

However, the differences in ranks from Friedman test 
are unsubstantial, so the Wilcoxon test [34] was con-
ducted to further explore the statistical differences. 
The obtained ranks computed by the Wilcoxon test are 
presented in Table 9. Statistically significant differences 
in ranks are denoted with ⊕ when the method in the 
row improves upon the one in the column, and with ⊙ 
when the method in the column improves upon one 
in the row. In this regard, the upper diagonal consid-
ers a significance level of 0.9, and the lower diagonal a 
level of 0.95. Table 9 shows that, for KNN classifier, both 
SMOTE-like and range restricted interpolation mecha-
nisms outperform the oversampling with replace-
ment in a statistically significant manner. For MLP and 
SVM classifiers, the range restricted mechanism was 
significantly outperformed by oversampling with re-
placement and SMOTE-like mechanisms, respectively. 
Multiple interpolations mechanism at no time outper-
formed the competition. Given that it is implemented 
by two algorithms that are among the best in the pre-
vious comparisons, DSMOTE and RSMOTE, this medio-
cre result is probably due to the ineffectiveness of the 
SNOCC algorithm. 

As with the comparison of the per-class performance 
of individual algorithms, non-dominated sorting was 
again conducted to determine non-dominated solu-

tions, which are represented by interpolation mecha-
nisms. Specificity and sensitivity values are aggregated 
for each interpolation mechanism which is represented 
by their average scores. Table 10 shows how many times 
each interpolation mechanism appeared as a non-dom-
inated solution for each classifier. These numbers are in 
line with the ranks shown previously. The SMOTE-like 
interpolation mechanism is most often the dominant 
solution regardless of the classifier, apart from oversam-
pling with replacement. This only adds significance to 
the original algorithm and emphasizes the complexity 
of the task of improving upon. Although not far behind 
in the overall performance, other mechanisms fail to im-
prove the original, which is the main goal of such ideas. 
Naturally, it should be noted that some algorithms from 
worse-performing interpolation mechanisms outper-
form those of other groups, but this can be attributed to 
their initial selection procedures.

Table 9. Ranks computed by the Wilcoxon test for 
the utilized classifiers using different interpolation 

mechanisms

5-nn

Interpolation 
mechanism

Oversam-
pling with 
replace-

ment

SMOTE-like 
interpolation

Range 
restricted

Multiple 
interpola-

tions

Oversampling 
with 

replacement
— 54.0 ⊙ 55.0 ⊙ 65.0

SMOTE-like 
interpolation 156.0 — 99.0 117.0

Range 
restricted 155.0 91.0 — 115.0

Multiple 
interpolations 145.0 73.0 75.0 —

MlP

Interpolation 
mechanism

Oversam-
pling with 
replace-

ment

SMOTE-like 
interpolation

Range 
restricted

Multiple 
interpola-

tions

Oversampling 
with 

replacement
— 111.0 145.0 ⊕ 122.0

SMOTE-like 
interpolation 79.0 — 146.0 127.0

Range 
restricted 45.0 ⊙ 64.0 — 95.0

Multiple 
interpolations 68.0 63.0 115.0 —

SvM

Interpolation 
mechanism

Oversam-
pling with 
replace-

ment

SMOTE-like 
interpolation

Range 
restricted

Multiple 
interpola-

tions

Oversampling 
with 

replacement
— 122.5 172.5 ⊕ 130.5

SMOTE-like 
interpolation 87.5 — 140.5 ⊕ 114.5

Range 
restricted 37.5 ⊙ 49.5 — 69.5

Multiple 
interpolations 79.5 75.5 120.5 —
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Table 10. The number of occurrences as a non-
dominated solution for each interpolation 

mechanism across different classifiers

Interpolation mechanism 5-nn MlP SvM Total

Oversampling with replacement 9 18 17 44

SMOTE-like interpolation 18 16 15 49

Range restricted 17 15 13 45

Multiple interpolations 15 14 13 42

5.  CONCLUSION

The significance and impact of the SMOTE algorithm 
are clear in the literature on handling the problem of 
class imbalance. Despite its efficiency, the algorithm 
is straightforward and consists only of initial selection 
and interpolation procedures. The primary objective of 
this study was to conduct an in-depth comparison of 
several oversampling techniques that only consist of 
the two procedures of the original algorithm. In doing 
so, comparisons were made in terms of overall and per-
class performances.

The experimental results indicate that the perfor-
mance of these algorithms should not be evaluated 
through a single metric. The Weighted-SMOTE algo-
rithm achieved the best overall performance, and is 
closely followed by Distance-SMOTE, original SMOTE, 
and Random-SMOTE. However, these oversamplers 
have been shown to most impair the accuracy of the 
majority class prediction. In addition, when looking at 
the overall performance alone, as many as six SMOTE-
based extensions fail to outperform the original al-
gorithm. By conducting a per-class comparison, it is 
possible for practitioners to select oversampling algo-
rithms depending on the efficiency on more important 
class. The deterministic version of SMOTE dominated 
its competition by performance in both classes. Inter-
estingly, the most dominant algorithms by the criteria 
of both specificity and sensitivity metrics are not the 
most successful in terms of overall performance. Lastly, 
the recently proposed oversampling approach, Sigma 
Nearest Oversampling based on Convex Combination 
(SNOCC), performed the worst in all observed aspects.

The performance evaluation per interpolation mech-
anisms confirmed the discoveries of some previous 
works in terms of the poor performance of well-estab-
lished SMOTE-based variants, Borderline-SMOTE and 
Safe-Level-SMOTE. The interpolation mechanism of the 
original algorithm proved to be the best in both overall 
and per-class performance, which raises the question of 
whether the some SMOTE-based extensions introduce 
valid improvements or suggest modifications for the 
sake of publication. For future work, other mechanisms 
of SMOTE-based extensions can also be compared, 
starting with initial selection. In addition, it would be 
beneficial to compare other interpolation mechanisms 
that are not considered in this paper, such as clustering. 

Finally, this performance study of oversampling al-
gorithms has resulted in several interesting findings. In 
the future, it should be extended to more algorithms 
proposed for dealing with the problems of class imbal-
ance. Also, it would be beneficial to include undersam-
pling algorithms in the study for a more comprehen-
sive evaluation of data-level approaches. In that regard, 
the issue of performance metrics for imbalanced prob-
lems needs to be addressed more profoundly. Hope-
fully, this paper clearly points to the need for more ex-
tensive comparisons of oversampling algorithms and 
their evaluation of their impact on both the minority 
and majority classes.
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