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With the rise of big data and cloud computing, there is insirgademand on memory capacity
to solve problems of large sizes and consolidate computadisks. For large capacity memory
systems, DRAM is a significant source of energy consumptioon-dblatile memory, such as
Phase-Change Memory (PCM), is a promising technology fortoacteng energy-efficient mem-
ory. Unlike DRAM, PCM has negligible background (static) powad allows high density pack-
aging. But PCM also has limited write bandwidth and write eadae. Hybrid memory systems
have been proposed to combine the high-density and low lsygpolwer of PCM with the good

write performance of DRAM.

This thesis addresses two challenges which are unique tadhylemory systems. The first
challenge is thémited PCM bandwidthwhich can become a performance bottleneck. The second
challenge is th@on-contiguous physical memadye to retired memory pages. Since PCM cells
have limited write endurance, it is inevitable to gradu&léve increased number of uncorrectable
errors during the lifetime. Memory pages that have deteetests are normally retired by the OS,
which create unusable “holes” in the physical memory. Theresable holes make it difficult to

construct traditional superpages, which can incur sigamfiperformance overhead.

In this thesis, | propose three solutions to address thesehallenges. First, | observed that an
unbalanced distribution of modified data bits among PCM chigsificantly increases PCM write
time and hurts effective write bandwidth. | propose new XCi#drl mapping schemes between
program data bits and PCM cells to improve PCM write throughgyuspreading modified data

bits evenly among PCM chips. Second, | propose a compressed/DfRRBhe scheme to improve



DRAM effective capacity and reduce write traffic to PCM. A newaptive delta-compression
technique for modified data is used to achieve a large comsipresatio. Third, | propose Gap-
tolerant Sequential Mapping, a new memory page mappingiseht® construct superpages from
non-contiguous physical memory. The proposed three solsitiave simple and practical designs,

and can be easily adopted in future hybrid memory systems.
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1.0 INTRODUCTION

1.1 GOAL

Driven by multi-core processors and data center applioatithere is an increasing demand on
main memory capacity to solve large problem sizes and calagelcomputation tasks. For exam-
ple, Intel's 15-core 30-thread server proces&fl] fan support 12TB of memory in an 8-socket
system. Along with the demand for colossal memory capaeitgrgy consumption of DRAM is
now a significant portion of total energy consumption. Evguigped with Samsung’s 20nm class
1.2V DDR4 DRAM, the average power of 12TB DRAM for a typical senwerkload is more than

2 Kilowatts [51]. There is a critical need to find energy-efficient memoryamigations 7).

Phase change memory (PCM) is a promising non-volatile merdwsrgonstructing energy-
efficient systems34, 44, 50, 69]. Unlike charge-based DRAM, PCM uses different resistance
states of phase change material to represent data. When siseldrge capacity main memory,
PCM has two major advantages. First, PCM cells have good sligi@nd can achieve excellent
memory density. A high performance PCM cell design has beerodstrated in sub-2intech-
nology [33]. With a multi-level cell design (MLC), PCM can achieve everaper densities by
storing multiple bits in one cell. Second, and most impdiya®®CM has negligible background
(static) power due to its non-volatile nature. Given thes@ower budget, PCM can achieve much
higher capacity than DRAM. With low background power, PCMwaBdigh-density memory chip
packagings (e.g. 3D TSVs) without having a severe heatgdiien issue. Despite its advantages,
PCM also has drawbacks. It has long write latency, high wnergy, and limited write endurance
in comparison to DRAM. Specifically, PCM devices have sevecelystrained write bandwidth.
For example, a prototype Bh8Gb PCM chip 13| has been demonstrated that has a read band-
width of 800MB/s and a write bandwidth of 40MB/s. When DRAM is @m@d with PCM, the



limited PCM write bandwidth can become a major performanddereck.

Hybrid memorysystems 9, 37, 50] have been proposed with DRAM and PCM to combine
the high-density and low standby power of PCM with the goodenvperformance of DRAM.
Frequently-modified data are stored in DRAM to reduce wrisdfitr to PCM. Common hybrid
organizations use DRAM as a cache or an extension to PCM. Wherassecache, the DRAM’s
address space is not visible to the software. When used astamssn, OS is responsible for
memory page migration between DRAM and PCM. For hybrid memgsyesns, memory com-
pression can be used to increase DRAM effective capacitgwdilows more frequently modified

data to be cached in DRAM to reduce memory write traffic to the-walatile memory.

Besides the challenge of limited PCM write bandwidth, memelability is another challenge
for hybrid memory systems. To avoid system crashes causewhyory errors, modern OSes sup-
port page retirement, a self-healing capability which reesophysical memory pages containing
memory errors from the system’s address spa& For DRAM, retired memory pages only ac-
count for a small portion of total memory capacity(betweet?® and 10%) 28]. With process
scaling, the percentage of retired pages is expected tearerdue to increased process variations
[38]. For PCM, page retirement is a more critical issue. CompawsedRAM, PCM cells have
very limited write endurancel(° to 10® writes on average). Some cells have much lower write
endurance than other cells. Even with various wear levelmgerror correction techniques, it is

inevitable for PCM to gradually have increased number ofedtmemory pages during its lifetime.

With the rise of big data and cloud computing, workload menfootprints keep increas-
ing, putting more pressure on the virtual memory subsystm3uperpages are mandatory for
memory-intensive workloads with large memory footprintsl @andom access patterns. A tradi-
tional superpage is a large virtual memory page that is nafgpan equivalent amount of contigu-
ous physical memory pages. Superpage mapping assumes$ylsatgd memory does not contain
retired pages, which is an important technique to improvenorg resilience: the OS avoids al-
locating physical pages that have detected errors. Reteigdspcreate unusable “holes” in the
physical memory. Even a small percentage of retired pagé&ssravery difficult to find enough

contiguous memory to form superpages.



1.2 OVERVIEW OF THE PROPOSED APPROACHES

Sincelimited write bandwidth of non-volatile memory andnon-contiguous physical memory
are two fundamental new challenges for hybrid memory systéhnis thesis explores three archi-
tecture techniques to address the new challenges.

Balanced PCM Bit Mapping studies the mapping between program data bits and PCM cells
to improve PCM write throughput by spreading modified data bits evenly among PCM chips.
For each PCM write, the data bits of the write request are &fgicnapped to multiple cell groups
and processed in parallel. | observed that an unbalancetditon of modified data bits among
cell groups significantly increases PCM write time and huifescéve write bandwidth. To address
this issue, | first uncover the cyclical and cluster pattéonsnodified data bits. Next, | propose
double XOR mapping (D-XOR9 distribute modified data bits among cell groups in a badnc
way. D-XOR can reduce PCM write service time by 45% on averafeh increases PCM write
throughput byl.8x. As error correction (redundant bits) is critical for PCM,I$@consider the
impact of redundancy information in mapping data and eroorection bits to cell groups. My
techniques lead to a 51% average reduction in write serwie@for a PCM main memory, which
increases IPC by 12%.

Delta-compressed DRAM Cachingstudies an adaptive delta-compressed DRAM caching
scheme tamprove DRAM effective capacity and reduce write traffic to PCM. Since the write
bandwidth is severely restricted in PCM devices, it is morpanant to reduce PCM write traf-
fic than to reduce PCM read latency for write-intensive agpions. To reduce the number of
PCM writes, | propose a DRAM cache organization that employsgression. A new delta-
compression technique for modified data is used to achiewga tompression ratio. My approach
can selectively and predictively apply compression to muprits efficiency and performance. Itis
designed to facilitate adoption in existing main memory pogssion frameworks. | describe anin-
stance of how to incorporate delta-compression in IBM’s MX&mory compression architecture
when used for DRAM cache in a hybrid main memory. For fourtespresentative memory-
intensive workloads, on average, the proposed delta-cessjam technique reduces the number of

PCM writes by 54.3%, and improves IPC performance by 24.4%.

Gap-Tolerant Superpagestudies a new memory page mapping schenmtestruct super-



pages from non-contiguous physical memoryGap-tolerant Sequential Mapping (GTSM) is
proposed to allow superpages to be formed even in the presémetired physical pages. A new
page table format is also proposed to support GTSM. Thisdbiras similar storage efficiency as
traditional superpaging to hold address translationseriakt-level cache. To further compress the
page table and improve cache hit rates for address traosiatiarge memory footprint workloads,

| also propose an extended format that reduces the pagesiabley 50%. In comparison to an
ideal memory without any retired physical pages, | show thgttechnique, with retired pages,

achieves nearly 95.8% of the performance of traditional 2MiBerpaging.

1.3 THESIS ORGANIZATION

The rest of the thesis is organized as follows: Chapisra background study of the related work
for phase change memory, hybrid main memory, memory corsjpresmemory error and virtual
memory. ChapteB introduces new XOR-based bit mapping functions to improve P@ite
throughput. Chaptet describes a new delta-compressed DRAM caching scheme tog&i{LiM
write traffic. Chaptes develops a new page table design to construct superpagesriesnory

with retired pages. Finally, Chaptépresents conclusions, as well as future work.



2.0 BACKGROUND AND RELATED WORK

2.1 PHASE CHANGE MEMORY

Limited write bandwidth is a major performance bottleneok PCM. The limited write band-
width is due to three reasons. First, it takes much longeragnam a PCM cell than a DRAM
cell. Unlike charge-based DRAM, PCM uses different resistastates of phase change material
to represent data. Precisely-controlled SET and RESET pualseused to program PCM cells
(to heat and cool a cell). For single-level cell (SLC) PCM, kes 50-100ns for RESET pro-
gramming (1+0) and 150-400ns for SET programming£Q) [13, 35. Second, programming a
PCM cell requires much higher programming current than @uogning a DRAM cell. Given a
fixed programming current budget, a PCM device cannot simettasly program all data bits of
a write request. Instead, the data bits are statically divicito small divisions and programmed
sequentially 22]. Third, process variation has a non-negligible impact elhgrogramming time.

Due to process variation, different cells requires difféqgrogramming currents. Using a sin-
gle high programming current level to program all cells i¢ aovalid choice because the high
programming current will significantly degrade the writedarance of cells that requires a much
smaller programming current. Hence, PCM write circuits ¢gfly use a staircase programming
policy which gradually increases the programming curréiith such a staircase policy, to suc-
cessfully program the cells that need a high programmingeatirmultiple programming iterations
are used until the desired programming current level ishreg.c

Programming current is the major constraint which limits ttumber of cells that can be con-
currently programmed per chi@2]. For example, Samsung’s 20nm 8Gb PCM chip supports
only simultaneous programming of 128 cells with the defpaolver supply 13]. Therefore, PCM

devices have asymmetric read and write data widths. For P@lisreall data bits are read con-
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Figure 1: Division program operations in PCM devices.

currently, while for PCM writes, the modified bits of each aglbup are written usinglivision
program operation$22]. For each division program operation, a subset (i.€liyeion) of mem-
ory cells among a cell group are programmed rather than Bdl icethe group. Figurel shows
an example of 2X division program operatid&®?]. For each cell group, the data bits are statically
divided into divisions. 2X means that each division comsst two cells. In this example, an
8-bit cell group is divided into four divisions: (0, 4), (1),52, 6) and (3, 7). Cells in the same
division can be concurrently programmed, while cells iriedént divisions must be programmed

in different iterations.

Divisions in the same cell group are programmed in a fixed esetipl order. A division will
be skipped if it has no cell to program. The programming psede divided into two phases: a
RESET phase and a SET phase. In the RESET (SET) phase, onlyheg¢llseeed RESET (SET)
programming are programmed. In Figutecells 2 and 6 are programmed concurrently because
they belong to the same division. Cells 3 and 7 are programmepdrately because they have

different programmed states. With division program operst, the programming time of each



cell group is no longer a constant. On average, a cell grottpmwore modified bits requires more
programming iterations and tends to have a longer progragpitime. For each write request, the

write service time depends on the cell group that takes tihgest programming time.

2.2 VIRTUAL ADDRESS TRANSLATION OVERHEAD AND SUPERPAGE

Virtual memory mechanisms use page tables to map betweeralvpages and physical pages
for every memory access. To speed up translation, physilclibases of recently-accessed virtual
pages are cached in the TLB. On a TLB miss, a hardware page miedikerses the page table
to translate the virtual page address. We use x86-64 actinigeas an example to explain why
superpage can reduce virtual address translation overhead

In x86-64, as shown in Figur&a), the page table has four levels, and a system regGR3 (
points to the PT root node. The corresponding translatidry et each level is?age-Map Level-
4 Entry (PML4E), Page Directory Pointer EntryPDPE),Page Directory Entry(PDE) andPage
Table Entry(PTE). For each valid 4KB virtual page, the translation iest(PML4E, PDPE and
PDE) point to the base address of the next level node. Thebthe translation entry at each level
is 8 bytes. With a 4KB page, there are 512 translation enpggsnode, which are indexed by 9
virtual address bits. Only 48 virtual address bits are useslirrent x86-64 implementations: the
high 36 bits (9 x 4) are used to traverse the page table lemdlthe low 12 bits are the page offset.

Besides the TLB, recently accessed translation entries smecathed in the MMU as patrtial
translations, which can be used to speed up page walBing-pr example, PDE entries can be
cached in a PDE cache. If the PDE of a virtual address hitsarPlbE cache, the page walker
needs to access only the last-level PTE to complete addeassdation.

X86-64 superpage implementation has a similar structurease the mapping is one-to-one,
a 2MB superpage needs only a three-level page table (PMLREdhd PDE). The 7th bit of a
PDE indicates whether the PDE points to a page table of PTHs,tbhe physical base address of
a 2MB superpage. Figur&gb) and2(c) show the format of PDE as a 4KB-page and 2MB-page
PDE, respectively. Similarly, for a 1GB superpage, the ftbfia PDPE indicates whether a PDPE
points to a page directory table of PDEs, or to the physics¢l@adress of the superpage.
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2.3 RELATED WORK

2.3.1 Phase Change Memory

Despite promise, PCM has weaknesses, which are the subjentaf research. Wear-leveling
techniques have been proposed to evenly distribute wiatd3aM memory lines70, 47, 54].
Fault-tolerance techniques have been proposed to pro@dtdPips from weak cell failures5p,
43, 65, 31, 32).1 Write-pausing has been proposed to reduce the performamnedtyé&om long

PCM write service time45].

2.3.2 Hybrid Main Memory

DRAM/PCM hybrid main memory is a natural solution for futurege-capacity energy-efficient
main memory because it combines the high-density and lawdbiapower of PCM with the good
write performance of DRAM. With hybrid main memory, frequigninodified data are transpar-
ently cached in DRAM to offload write traffic to PCM. Quregtial [48] proposed to add a DRAM
buffer between the CPU and the PCM main memory to cache frelguantessed data. Fer-
reiraet al[23] proposed PMMA architecture which integrates DRAM page eaglth PCM main
memory using an improved page replacement policy. Zhand.ah@9] proposed a 3D-stacked
DRAM/PCM hybrid memory architecture which uses an OS-basegeé paigration mechanism to
cache hot-modified pages in DRAM. Ranetsal [50] proposed a hardware-based page migration
mechanism for hybrid memory which puts both frequently-ified and frequently-read pages into
DRAM. My work considers the use of memory compression to impRAM effective capacity

and reduce PCM write traffic in hybrid systems which is orthwgdo the above works.

2.3.3 Memory Compression

Memory compression is a common technique to allow more aelte tstored in the memory and
has been well studied in DRAM-only systems. Dougli§|[studied using compression to free up

memory pages to reduce paging overhead. Ekman and Sterj&ttppnoposed a low latency main

IWeak cells have much lower write endurance than other PCId.cel



memory compression scheme based on the FPC compressiaithalgolBM Memory Expan-
sion Technology (MXT) technology6p] was introduced as a hardware-based high performance
architecture and is implemented in commercially availabligs. Suel and Memorbf] use delta-
compression to reduce data traffic for remote file synchadidn. Zhang and Lig§9] proposed

to apply compression to PCM data. Their proposal is not to avgIDRAM effective capacity,

but to reduce the number of PCM bits that need to be updated.stlidées in 19, 62] focus on
DRAM-only systems. | propose delta-compressed cachinglwisioot discussed by traditional
DRAM-only memory compression. | give a detailed example tonshow to extend an existing

compression architecture to support delta-compressiomytarid memory.

2.3.4 Memory Error and Page Retirement

Recent studies show that modern DRAM error rates are ordersaghitude higher than previ-
ously reported$3, 28]. Error Correcting Codes (ECC) are commonly used to protect mgmo
from one or multiple bit errors. Recent studies also showatrtiemory blocks that suffer from
correctable memory errors are much likely to subsequeatg tincorrectable errorS3. A field
study showed that retiring 1% of pages can cover 92% of memwoys P8]. Memory errors can
be tolerated using managed runtime syste®@}, [but this requires the program to be written in

managed code (e.g., Java).

2.3.5 TLB and Superpage

Recent study shows that traditional page-based virtual mehs significant performance over-
head for big-memory workload®]. Many new TLB designs have been proposed to alleviate the
problem by reducing TLB translation overhead. Beirial[4] proposed a speculative translation
scheme which exploits the predictable behaviour of resemnvdased physical memory alloca-
tors. Bhattacharjeet al[7] proposed shared last-level TLBs for chip multiprocessongctvim-
prove the effective capacity of TLBs. Shekhar Srikantaiadh lsiahmut Kandemir$8] proposed

a distributed variation of shared last-level TLBs, which esla balance between TLB capacity
and TLB access latency. Phahal[42] proposed Coalesced Large-Reach TLBs (CoLT), which

coalesces multiple virtual-to-physical page translaiono a single TLB entry. Basat al[5]
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proposed a TLB-less design to eliminate TLB translation logad for big-memory workloads.
My work studies new storage-efficient page table designadarcontiguous phyiscal memory. It
assumes that a small percentage of memory pages are reatoletbaavailable to use, which is
significantly different from previous work.

Both software and hardware changes are necessary to supperpages. Talluri et al. dis-
cussed the tradeoffs and challenges to support superpalgasiware §0]. Ganapathy and Schim-
mel described possible ways to support superpages in the28)S flavarro et al. described a
design to transparently support superpages in the39ISZhang et al. described a design to map
superpages to disjoint physical pages using traditionsé [page table forma6§]. In their pro-
posed design, page table still needs to be accessed wherigteecache miss. To the best of my
knowledge, this is the first work to propose a new storagetefft superpage format designed for
memory with retired pages. By utilizing a block selectiomiap, a superpage is mapped to mul-
tiple equal-sized small memory blocks (i.e., physical ggestead of a single large contiguous
memory block.

There are much work on improving TLB performance. TLB hieraan be improved by shar-
ing TLB entries among CPU core§,[63, 7]. TLB miss penalty can be reduced by prefetchifp [
Recently, TLB coalescing has been studied to improve TLBh¢4t, 42]. Similar to TLB coa-
lescing, MMU cache coalescing has been proposed to reduBeniss penalty§]. My work does
not require any changes to TLB and is orthogonal to the wook@sed for TLB performance im-
provement. For workloads with large memory footprints, ioying the TLB performance alone

is not enough to solve the problem.
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3.0 BIT REMAPPING FOR BALANCED PCM CELL PROGRAMMING

3.1 PROBLEM STATEMENT

Unlike charge-based DRAM, non-volatile memory cells neeccimmore programming power
to change their states. Programming power is the major @nswhich limits the number of
PCM cells that can be concurrently programmed per cd#h [For PCM writes division program
operationsare used to program the modified biB2]. First, data bits are mapped to multiple cell
groups. For each division program operation, a subset édivision) of memory cells among a
cell group are programmed rather than all cells in the gr@ipisions in the same cell group are
programmed in a fixed sequential order.

With division program operations, the programming time atle cell group is not a fixed
value. A cell group with more modified bits are likely to havemager programming time. Memory
service time of a write request is determined by the cell griliat has the longest programming
time. Therefore, the mapping function (abbreviatedhapping between data bits and cell groups
will impact the write service time. To illustrate the impamnte of the mapping, Figu@shows
an example in which the size of the write request is sixte&s) beven of which are modified. In
this example, the sixteen data bits are mapped to four cellgy. Figure3(a) shows a possible
mapping in which adjacent data bits are directed to the saimapg Notice that bits 4-7 are
adjacent and modified. They are mapped to the same cell graipause a bottleneck on write
service time for the write request. Figu3éh) shows an alternate mapping in which adjacent data
bits are distributed to different cell groups. With this neapping, the four adjacent modified bits
are distributed more uniformly among cell groups and theéeagervice time is reduced. The intent
of this example is not to show that the second mapping is aveayter than the first one, but to

show that the mapping has an impact on the write service téngood mapping should spread
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the modified bits among cell groups, which depends on thelaision of the modified bits in the

write request.

A mapping functiorf’ defines a static partition d¥ data bits from write requests infd PCM
cell groups (V/M cells per cell group). Ideally, the problem is to find the fiioie 7' that minimizes
the longest programming time among all cell groups. Sin@r twe long term, a modified bit is
equally probable to be SET or RESET, the problem is approxchat minimize the imbalance in
the number of modified data bits among all cell groups, whscchievable with a better mapping

function. The concept is shown in Figude

The input of the mapping functiof’ is a n-bit binary address.,, 1a,_s...ag(n = log N)
representing the bit position of each data bit. The outpuhefmapping functiorf” is anm-bit
binary numbett,, 1t,, »...to(m = log M) representing the index of the cell group to which the
data bit is mapped. A constraint dnis that the number of data bits mapped to each cell group
should be equal. Otherwise, some cell groups will not hawigh PCM cells to establish a 1:1
mapping between data bits and cells. This work is focusethemiapping between data bits and
cell groups, the order of mapped cells inside a cell groupixansidered, which is assumed to be

the same as the order of data bits.
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3.2 DISTRIBUTION OF MODIFIED BITS

3.2.1 Distribution Patterns

Given that the distribution of modified bits can affect PCMtengervice time, théit flip rate is
characterized to understand the distribution (patterhg)arlified bits in write requests. The bit
flip rate at a given bit position is defined as the probabiligttthe bit at that position changes its
state (flips) on a memory write. To calculate the bit flip rateasition K, the number of flips in
the K" bit of all write requests is counted and divided by the totamber of write requests. |
characterized all bit positions in the memory write tragdtet a 32MB DRAM cache) for fourteen
applications: The write granularity of collected memory traces are 25@&@$®yFigures shows the
bit flip rate histogram of the first 512 bit positions; the renirag positions are similar. Applications
are ordered by the average percentage of modified data Iitsrppe request in ascending order.
As the figure shows, the bit flip rate histograms differ forleapplication. Two general patterns
in the bit flips are identified from the figureyclical andcluster.

Cyclical Pattern. In this pattern, the flip rate histogram shows cyclical flattons. As shown

in Figureb, a typical cycle length can be 32 bits, 64 bits or 128 hit€f(has a cycle length of
512 bits). Bit positions with the same low address bits budet#ht high address bits tend to have
similar bit flip rates. To distribute modified data bits witltyclical pattern, the high address bits
should be used as an index to map the bits to cell groups. lBonghe, in applicatiotibquantum
data bits with the same low 7-bit address should be mappeiffeosht cell groups.

Cluster Pattern. Modified bits may also tend to aggregate into clusters. Famgpte, in Figureb,
astar, cannealandmcf have most of their modified bits clustered in only a few by#squantify
the clustering of modified bits at byte granularity, | alsactcterize the average number of bytes
that cover most modified bits of each memory write (chooshasé bytes that have the most
number of modified bits). Figuré shows the average number of bytes with 90% coverage. From
the figure astar, mcf omnetppandcannealhave strong clusters. The remaining applications show
moderate clusters, with 20% to 60% of the bytes covering 90#%eomodified bits.Libquantum

is a special case. It requires a few bytes to cover most mddifis because it only has one bit

Twelve write-intensive benchmarks from SPEC CPU2006, SBBEB2005 and the only write-intensive bench-
mark cannea) from the PARSEC suite are selected.
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Figure 6: Average number of bytes covering 90% of the modHiexlof 256-byte write requests.

modified per sixteen bytes. When clustered together, modiitedhave the same high address bits
but different low address bits. A good mapping function dtlause low address bits to distribute
adjacent bits to different cell groups. For examplezannea) adjacent data bits should be mapped

to different cell groups.

The distribution of modified data bits is affected by the dsttacture and data type used in
the program. Programs whose modified bits have a clusteerpatnd to update only some data
object fields, possibly even just a part of a field. These @ogrusually have more random object
access. Programs whose modified bits have a cyclical pattenm update specific fields in arrays
of objects. Programs dominated by integer types tend to fmadijacent bits within an integer,
while programs dominated by floating point (FP) types moMdifg with a more random distribution
within the float. Also, FP programs typically modify moredygter write. These behaviours are due
to integer and FP encoding, and how the types are used. Fompéxdibquantumhas an array of
objects with an integer flag. One bit in the integer is updéteguently, causing spikes as seen in

Figure6. The flip rates for other programs can be similarly explaiaecbrding to data structures
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Figure 7: Distribution imbalance of modified bits at diffet@ddress bits.
and types.

3.2.2 Distribution Imbalance of Modified Bits

To determine which address bits should be used in the mapymetjon, the distribution imbalance
of modified bits at different address bits for a data bit posits characterized. For th& address
bit, modified bits can be divided into two subsets:

So =A{bx, k= an_1, -+, a;41,0,a,_1,- - -, a0} and

Sy ={bg, k= an_1, -, a;41,1,a;-1, -+, a0}

Sp includes all modified bits with the; bit of the bit position equal to 0 an8l; includes all
modified bits with the:; bit of the bit position equal to 1.

Similar to [40], | use thepercent imbalancenetric, (i), to characterize the distribution im-
balance of modified bits at th€" address bit.

N mam(|50|,|51|) _
0= (T s 1) * o0 .
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When (i) = 0, modified bits are equally distributed betwegnandS;. When\(i) = 1,
there is no modified bit irb, or .S;. The distribution imbalance of an address bit is calculéed
averaging\(z) over all write requests of each application.

An address bit with lowA implies that the address bit is a good candidate for sprgadidi-
fied bits into two balanced subsets. In general, a good mggpiction should utilize address bits
with low \.

In Figure?, X for each of the eleven address bits (256-byte write regigesiiown for three rep-
resentative applicationgstar, lbm andlibquantum Astarhas a strong cluster pattetipquantum
has a cyclical pattern, arldm has both patterns. In the figure, it is apparent that eachcapiph
has a unique profile. To get a balanced distribution of modified bits, eliféfint applications should
ideally use different address bits in the mapping of bitsabgroups.

The figure also shows the averagy®ever fourteen applications. From the figure, two address
bit regions, on average, have low One region isis...a19, Which reflects cyclical patterns and the
other region isu...as, Which reflects clusters at byte granularity. This obséovais consistent
with the two patterns described in the previous section. é&gh an effective mapping function,

address bits from both regions should be used.

3.3 PROPOSED SOLUTION: BIT REMAPPING

3.3.1 XOR Mapping Function

From the distribution imbalance characterization, two paag functions can be directly derived.

As shown in FigureB(a), to get anm-bit cell group index, high address bits can be used for
the mapping function such that a data biti = a,,_1a,_2...ap, is mapped taGroup; where

j = an_1a,_2...a,_m. When high address bits are used, adjacent data bits are thapplee
same cell group and the mapping function exploits the cgcpattern. Alternatively, as shown in
Figure8(b), low address bits can be used, that is, a data;bit= a,,_1a,_»...ag, IS mapped to
Group; wherej = a,,—1a,,—2...ag. When low address bits are used, adjacent data bits are mapped

to different cell groups, and the mapping function explthis cluster pattern. However, each of
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Figure 8: XOR mapping function.

these mapping functions has a limitation that omlyits out ofn address bits are utilized.

As shown in Figured(c), | devised arKOR mapping functiothat combines low address bits
with high address bits. This way, either pattern is incoaped seamlessly into the mapping. Sim-
ilar to the high address and low address mappings, this ngepimg distributes an equal number
of data bits to each cell group. This is a necessary featuampalid mapping function, which

can be verified by calculating the cell group index of eachpbdition.

3.3.2 Support for Multiple Cell Group Sizes

An XOR mapping function is optimized for a specific cell grasipe. There are scenarios where
a single mapping function is needed for multiple cell groiges. For example, server memory
configurations typically map each request to more memorgsctinore cell groups) to improve
reliability [17]. Also, a PCM chip can have a wider programming width (smatdkdl group size)

in the SET phase than in the RESET pha&2 p7] because the programming current of a SET
pulse is much smaller than the programming current of a RESHESEp

| use an example to illustrate why a single XOR mapping fumcis not the optimal solution
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M =256 M = 64 M=16

‘ dp a; Az az a4 a5 g Ay ‘ dp A Az Az a4 as ‘ dp a4 az as
‘ a3 a4 3as A6 d7 Ag dg A9 ‘ ds d¢ a7 dg A9 A1 ‘ a7 ag a9 Ajo

(a) size-dependent XOR mapping functions

‘ dp 4a; ap Az a4 as adg Ay ‘ao a g az ag ads X X ‘ao a a3 X X X X
‘333.4&58,(,8,7333.93.10 ‘333435363738 X X ‘a3a4a5a6xxxx

(b) size-independent XOR mapping function

Figure 9: XOR mapping functions for different number of agibups.

in these scenarios. FiguBéa) shows XOR mapping functions that are size dependentedadr
unigue number of cell groupg/, a specific implementation of XOR mapping is used. Fidfb®
shows how a single function can be used to support mappifeyeiit number of cell groups. The
XOR mapping function is optimized for 256 cell groups. To n@apewer number of cell groups,
the low bits of the mapping function are masked. The maskinggss is achieved by treating data
bits in adjacent cell groups as a larger single cell groupskey & bits of the mapping function
means that every® adjacent cell groups are treated as one group. Given thatdee of data bits
is unchanged, the masking process does not require anyosddiinardware support. The problem
for masking is that fewer address bits are used in the mappivemn // becomes smaller, which

will degrade effectiveness.

To address this problem, | propodeuble XOR mapping (D-XORN D-XOR, in addition to
the XOR between low and high address bits, the high half ohtble address bits is XORed with
the low half of the high address bits. Figuré shows an example with eleven address bits. The
mapping function does one XOR betwen..a; andas...a;o and a second XOR with;...a;q
padded with zeros. Fav/=16, all address bits still participate in the mapping fimctalthough

the low four bits of the function are masked.
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Figure 10: D-XOR mapping function.
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Figure 11: Flip rate of ECC bits normalized to data bits.
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3.3.3 Support for PCM with Redundant Bits

To protect memory from data corruption due to transientrsrrerror correcting codes (ECC)
are typically used in DRAM and PCM memory subsystems. FurtbesmPCM main memory
typically uses a scheme to tolerate not only transient grpbot also permanent errors in weak
cells. To correct these errors, redundant bits are usedypimal DRAM solutions, extra DRAM
chips store ECC bits 2[7], but for PCM, dedicated ECC chips can degrade write perfoomdin

ECC chips have more modified bits to write.

Figure11 shows the flip rate of ECC bits normalized to the flip rate of fagdata bits. The
ECC code in this example is a (72, 64) SEC-DED ECC code with 8 EG(bit 64-bit data block
[27]. Since ECC is a checksum for data bits, ECC bits tend to havghehtilip rate than normal
data bits. From the figure, in all applications, excgpt? the ECC bits have high flip rates. For
astar, cannea] libquantum mcf andomnetppthe ECC bit flip rates are much higher because most
data bits are rarely modified. With a high flip rate, the PCM slilpat store ECC bits have many

more modified bits, which causes these redundant chips tmiea write bottleneck.

Figure 12 shows my mapping function for redundant PCM storage. Eith@RXor D-XOR
mapping is used for data bits and redundant bits. To avoidithation where the cell groups for
redundant storage have many more modified bits than theroelpg for data storage, an extra bit
swap function (BS) between regular data bits and redund&é{dag., ECC) is added to disperse
the redundant bits (that have a high flip rate) among the detaRy swapping some regular data
bits with redundant bits, redundant bits will not be clustem a single cell group to become a

write bottleneck.

For example, if ECC is used with a capacity ratio of 8:1 betwdata bits and ECC bits,
then for PCM with 256-byte line size and 256-bit ECC, one bit frevary data byte is picked to
swap with ECC bits. To avoid selecting frequently-modifiets bvith a cyclical pattern, an XOR

betweenus...a; andas...a;q is used to determine the bit to be swapped in each data byte.

2Gcchas many program data updates, which flips many data biteECC bits.
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Figure 13: Revised intra-line wear leveling.
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3.3.4 Support for Intra-line Wear Leveling

There are two types of wear leveling to evenly distribute mgnwrites over the entire memory
storage: inter-line and intra-line. Inter-line wear lernglbalances memory writes among memory
lines. Intra-line wear leveling balances memory writedwnita memory line.

My bit mapping functions change the bit ordering only witlirmemory request. Therefore,
the functions are not impacted by inter-line wear leveliRgr intra-line wear leveling, the conven-
tional row shifting scheme7] is not compatible with XOR or D-XOR mapping. Figut8 shows
two-level row shifting which is compatible with my mappingrictions. First, a global row shift
moves data bits at cell group granularity. Second, a losalstaft moves data bits inside each cell
group. With two-level row shifting, the data bits mapped &iragle cell group are still mapped to
a single cell group after the row shift. Also, the overheatai-level row shifting is the same as
conventional row shifting.

Intra-line wear leveling only allows for the even distrilaurt of modified bits over the lifetime.
For each write request, distribution of modified bits caft b& imbalanced with intra-line wear
leveling. By contrast, my mapping functions are effectiveatancing the distribution of modified

bits and reducing write service time for each write request.

3.3.5 Hardware Implementation

As will be shown in Sectio3.5, a single mapping function can provide good performancelifer
ferent number of cell groups. Since a mapping function isicstearrangement of the data bits in
a write request, it has negligible implementation overhdam PCM writes, a fixed redistribution
network is needed to map the data bits to the desired posikiefore they are sent to PCM. For
PCM reads, a corresponding reverse redistribution netwankrestore data bits to their original
positions. Changing the representation of memory data israamfor PCM. For example, Zhou
et al. [70] proposed a dynamic row shift mechanism to even out the svtitehe cells inside a
memory line. The delay and power of their 1KB row shifter ad®gs and 7956W. my mapping
functions have much lower hardware cost because theyatathange only the order of data bits.
The mapping functions do not require changes to the existiagory interface. When data

bits are reordered, the memory controller divides the bits chunks of adjacent bits and delivers
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each chunk to a PCM chip in the DIMM. Each chip divides the hits icell groups of adjacent
bits.

The mapping function can be implemented in the memory ctetravhich exposes all bits,
including redundancy bits (e.g., ECC). The mapping functiam @lso be implemented inside the
PCM chips themselves, especially for redundant bits thamareisible at the memory controller

(i.e., when the chip itself has a remapping or redundany. bits

3.4 EVALUATION ENVIRONMENT

3.4.1 Configuration

| use Virtutech Simics36] to collect main memory traces, which contain a commandtifien
(read or write) and address of each memory request. To a@etuevaluate PCM write service
time, the memory trace file also includes the data before &adrmemory writes. The trace files
are input to a trace-driven simulator. The parameters ofimylgtor are detailed in Table

| assume an 8-core 2GHz CMP with in-order cores. Each core BaglaB private L2 cache
and a shared 16MB L3 cache (2MB quota per core). After L3 caitteze is a 256 MB DRAM
cache (32MB quota per core) before the PCM main mem4 [To alleviate cache miss penalty,
a next line sequential prefetcher is incorporated for the DRxache.

I model a 128GB PCM main memory with two channels; each chamaetwo DIMMs and
each DIMM has 8 chips and 16 banks. | assume 32 bits per celpgi® cell groups per 256-
byte request) and 2X division program operation (Up to twitsare concurrently programmed
per 32-bit cell group). A memory controller configuratiomgar to Qureshi et al. 45] is used,
where each bank has a 32-entry write queue. Read requestsyemehgghest priority, as long as
the write queue is not full. For PCM memory scheduling, wriggiging 9] is used, whereby the
memory controller suspends an active PCM write at the begignof programming next modified
bit to schedule a higher priority read request to the memankb | use single-level cell (SLC)
PCM to conservatively evaluate the mappings because neutti-tell PCM has much lower write
bandwidth than SLC PCM. To model SLC PCM write service time,d L60ns for cell RESET
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CPU 8-core, 2GHz, 2-issue, in-order, 32KB L1 I/D
L2 Cache (private)| 512KB, 8-way, 64-byte line size, write-back
L3 Cache 2MB per core, 32-way,
64-byte line size, write-back,
20-cycle local L3 hit
DRAM Cache 256MB total, 32MB per core, 32-way,

256-byte line size, write-back,
60-cycle (30ns) read latency,

next line sequential prefetcher

Memory Controller

2 PCM channels

2 DIMMs per channel

16 banks per DIMM

32-entry write-queue per bank

write pausing scheduling for PCM

Main Memory

128GB SLC PCM, 120ns read latency
100ns RESET pulse
150ns SET pulse

100ns pulse interval

32 bits per cell group, 2X division program operation

Table 1: System settings.
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programming pulse (3>0), 150ns for cell SET programming 01) pulse and 100ns interval

between two programming pulse&3].

Name | Read PKI| Write PKI Description
Gemsr 5.35 2.14 8 copies of GemsFDTD
lom_r 3.14 1.52 8 copies of Iom
leslier 3.48 0.79 8 copies of leslie3d
libg_r 8.45 1.50 8 copies of libquantum
mcf.r 11.27 6.42 8 copies of mcf
milc_r 13.42 2.58 8 copies of milc

wrf_r 0.62 0.21 8 copies of wrf

mix_1 1.34 0.37 gcc-mcf-zeusmp-canneal
mix_2 1.13 0.41 astar-gcc-Gems-wrf
mix_3 4.70 0.74 libg-mcf-milc-zeusmp
mix_4 2.94 1.02 Gems-leslie-mcf-zeusmp
mix_5 6.50 1.45 Ibm-libg-mcf-canneal
mix_6 4.25 1.50 Ibm-leslie-mcf-milc
mix_7 7.02 1.85 Gems-milc-omnetpp-soplex
mix_8 8.93 1.98 libg-mcf-omnetpp-cannea

Table 2: Simulated workloads and their request rates.

3.4.2 Workloads

Since my work addresses the write performance bottlenedR@M, only write-intensive bench-
marks are considered. Twelve write-intensive benchmadis SPEC CPU2006 arwhnnealrom
PARSEC are selected. Ontgnneals selected from PARSEC because most PARSEC benchmarks
are computation-intensive or have a very small memory fiatpCannealis executed in single-
threaded mode and uses the native input with 940MB memotpffiod. For SPEC CPU2006, the

reference inputs are used. To evaluate system performeigte representative multiprogrammed
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workloads are selected, each containing two copies of foigue benchmarks; these are the mix
workloads at the bottom of Tabl2 | also ran experiments with seven applicationsate mode
where eight instances of the same benchmark are concyrex@tuted; see the top of Talte
The other applications are not evaluated in rate mode be¢ha256MB DRAM cache effectively
filters most main memory write requests. All benchmarks dr®i6binaries, compiled with gcc
4.1.2. Table2 shows the number of memory read and write requests per 180@dtions (PKI)
after the DRAM cache.

3.5 RESULTS

This section presents simulation results for my mappingtions, with and without redundant bits.
| show how performance is improved in comparison to the cotiweal mapping, both in terms
of write service time and IPC, for each benchmark and the geeoaer all benchmarks. Some
graphs are normalized, and in those graphs, The geometan meised instead of the average to
avoid the case in which one benchmark dominates the results.

| evaluated several mapping functionsx H.x) uses the high (low) ordet address bits for
bit mapping, where is the number of bits for the cell group indexx'Hx is an XOR mapping
function between the highaddress bits and the lowaddress bits. X HX"'Hy is a corresponding
D-XOR function.

Unless otherwise specified, each write request is mapped teb groups (/=64, x=6).

When /=64, H6 is the baseline, which maps logically adjacent 32 toithe same cell group.

3.5.1 Mapping for Data Bits

Figure 14 shows the average number of modified bits in the cell groupttas the longest pro-
gramming time for a PCM write; we call this group thetical cell group® When modified bits
are more evenly distributed among cell groups, the averagdar of modified bits in the critical

cell group decreases, which reduces the write service thran the figure, most applications do

3If there are multiple groups having the longest programntinge, a group having the maximum number of
modified bits is chosen as the critical cell group.
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Figure 14: Average number of modified bits on the critical gedup (lower is better).
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Figure 15: Average write service time of regular data bitsmadized to H6.
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better with low address bits as the mapping function thah Wwigjh address bits. This indicates
that the distribution of modified bits has a strong clustdtgsa. Inlibquantum zeusmpleslie3d
soplexandwrf, the distribution of modified bits is dominated by a cyclipattern. For these appli-
cations, it is more effective to use high address bits as #ygpmng function. Overall, L6 has 7.5%
fewer modified bits in the critical cell group than the H6 Hame Because XOR functions com-
bine both low and high address bits, they are much bettertitah6"H6 has 41% fewer modified
bits in the critical cell group than the H6 baseline. L6 HB&lightly better than L8 H8 because of
its effectiveness folibquantum For cannea) address bitay anda;, are good candidates to use
in the mapping function, but these address bits are maské®@1y8 when)/=64. The D-XOR
mapping function, L8"H8"H4, has similar results as L6 HA.al later section, the advantage of
D-XOR mapping for a variable number of cell groups is shown.

Because divisions are sequentially programmed for eactgoalip, the number of modified
bits in the critical cell group has a direct consequence on RCiké service time. Figuré5shows
the average write service time for each application noedlito H6. L6, L6"H6 and L8"H8 are
much better (79%, 55% and 60%, respectively) than H6. The@RXL8"H8"H4) service time is
similar to L6°H6. The reduction in write service time alsdicates an improvement in PCM write
throughput. Based on these results, | conclude that, ongeet& " H6, L8"H8 and L8"H8"H4 can
achieve 1.8X, 1.7X and 1.8X more write throughput than H6.

Figure16 shows the average write service time with different XOR nmiagpunctions (averaged
over all 14 benchmarks). All results are normalized to LSHHA

As shown in the figure, each XOR mapping function is optimif@mda specific number of
cell groups. If the number of cell groups is small, some hidldrass bits are masked in the
mapping function. For example, with 16 cell groups, the agerwrite service time of L8"H8 is
25% worse (higher) than L8"H8 H4. If the number of cell grsup large, there is unnecessary
overlap between high address bits and low address bitshwtilcalso degrade the effectiveness
of an XOR mapping function.

Overall, L8"H8"H4 has similar write service time as an ojitimal XOR mapping function.
However, L8"H8"H4 is asingle mapping function that adapts to variable number of cell gsou

and thus, it is simpler to implement.

| also compared D-XOR to the most natural shuffling, namehdecen bit mapping. A random
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Figure 18: Comparison to Flip-N-Write.

mapping function is dixed random permutatioof data bits that eliminates any inherent distribu-
tion pattern to avoid clustering the modified bits in one getup. Figurel7 shows the average
write service time for 20 randomly-generated mapping fiomst The results are normalized to
L8"H8"H4 D-XOR for comparison. Because random mapping doestilize cyclical and cluster
patterns, the average write service time is 14.7% worsénénjghan L8"H8"H4. The error bars
show the maximum and minimum write service time for diffédresandom instances. For most
applications, the difference is smallibquantumhas a very large variation because the cyclical
pattern allows a perfect distribution of modified bits, whicannot be achieved by most random

mapping functions.

Adding Flip-N-Write. Flip-N-Write [12] is an effective technique to reduce PCM write service
time. With an extra bit of storage, Flip-N-Write counts themher of bits to be written and changes
the encoding of data bits to reduce the number of cells that beiprogrammed. Figude3 shows
the average write service time for Flip-N-Write and the prgub L8"H8"H4 D-XOR mapping
function. Note that Flip-N-Write has an extra bit flip for eye32 data bits in each cell group.
All results are normalized to H6. On average, Flip-N-Writel &il8"H8"H4 reduce the average
write service time by 12% and 45% respectively. Since bathrigues are orthogonal, applying

Flip-N-Write to L8"H8"H4 further reduces the average wriggvice time by 7% over L8"H8"H4
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Figure 19: Average write service time for ECC memory nornealito H6.

alone.

3.5.2 Mapping with Redundant Bits

Figure19 shows the average write service time for PCM with ECC redunbiigsit The results are
normalized to a DRAM-like ECC baseline with H6. | first applypg-IN-Write, which reduces the
write service time to 84% of H6, on average. Then, | apply DRX® both data bits and ECC
bits. For 256-byte write requests with 32-byte ECC, the mapfunctions for data bits and ECC
bits are L8"H8"H4 and L5"H5"H2. The write service time isti@r reduced to 52% of the H6
baseline. Lastly, | apply the bit swap function (BS) to swd®86 ECC bits with selected data
bits. Compared to D-XOR mapping, BS reduces the write seriioe by 8% on average to 48%
of H6. Specifically, given ECC bits as the bottleneck, BS redube write service time by 61%
for libquantum BS is effective only if the average flip rate of ECC bits is mudfhler than the
flip rate of the data bits. IlgccandzeusmpBS degrades write performance as a result. It may be

possible to adaptively disable BS in this situation.
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Figure 20: IPC improvement relative to H6 for ECC PCM with 64 gebups.
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3.5.3 Performance

Figure 20 shows IPC improvement over the H6 baseline. The graph shoevertprovement for
Flip-N-Write and my bit mapping functions for ECC PCM with 64 |agioups.

The results show that Flip-N-Write provides 6.1% perforneimoprovement on average.
Adding D-XOR mapping, the improvement increases to 15.@i%guantumhas a perfect stride
pattern. Hence, D-XOR cannot improve over the baseline. B8iges an additional 3.1% im-
provement on average. Becalibguantumhas a few modified data bits, BS is particularly effec-
tive for libg_r, which has a 20% improvement in IPC. Combining D-XOR and BS aesian extra
11.9% IPC improvement on average over Flip-N-Write. The I@rovement is sensitive to PCM
write traffic load. Workloads with a high WPKI tend to have heglperformance improvement.
Wrf andmix-1have very small improvement because their write trafficstid.

Figure 21 shows the average IPC improvement with different numberedif groups. The
maximum number of concurrently activated cell groups istkeqd. If a memory request is
mapped to more cell groups, fewer memory requests can beaugently processed. D-XOR
is consistently better than the H6 baseline and Flip-N-WriBS provides an additional small
improvement, particularly when the number of cell groupsnsll. The figure also shows that
careful selection of the number of cell groups is needed kiese the best performance. If the
number of cell groups is too large, performance drops becéwser memory requests can be
concurrently processed. If the number of cell groups is toalk the write service time becomes
longer and the memory subsystem suffers a performancetpéroah burst writes.

From the results in this section, we conclude that D-XOR nrapwith BS and Flip-N-Write

should be applied to achieve the best performance for wiiensive workloads.

3.5.4 Intra-line Wear Leveling

To quantify the effectiveness of intra-line wear levelititg number of writes on each bit position
is measured. The hottest bit position has the maximum nuwtberites. Perfect inter-line wear
leveling is assumed by simulating all memory write requésta single memory line. The row
shift offset is changed by one byte after every 256 wri#. [

Figure22 shows the number of writes normalized to the scheme withdtd-line wear lev-
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Figure 22: Comparison between conventional row shiftingtaradievel row shifting.
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eling. The figure shows that two-level row shifting is as effifiee as conventional row shifting on

reducing the number of writes to the hottest bit position.

3.5.5 Impact of Division Program Width

Figure 23 shows the average write service time for the proposed mggpimction with differ-
ent division program widths (averaged over all 14 benchs)arkhe mapping function used in
the evaluation is D-XOR + BS. All results assume that Flip-Nit&/is enabled; the results are
normalized to H6 with 1X division program width. The divisiprogram width is the maximum
number of cells that can be programmed in one cell group. Huwedishows that the proposed
mapping function consistently reduces write service tioredifferent widths. However, the po-
tential benefit decreases (on average) as the width is sedeaAs shown in Figur&9, gccand

Zeusmphave a worse write service time with BS.
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Figure 23: Average write service time for different divisiprogram widths normalized to H6 with

1X division program width (over all 14 benchmarks).

3.5.6 Impact of SET to RESET Ratio

In the experiments above, the SET pulse is 150ns and the REGEd is 100ns13]. | analyzed

the sensitivity of the proposed mapping functions to the BEBET latency ratio.

Table 3 shows the reduction of write service time with Flip-N-Writang flip bit per 32 bits)
and Bit Mapping (D-XOR + BS) for different SET latencies (RESETGOns). The proposed bit
mapping technique is insensitive to the SET:RESET ratio. WBEERRESET ratio becomes larger,
the improvement becomes slightly smaller because writdcgetime is gradually dominated by

SET programming time.

SET-to-RESET Latency 1.5:1 | 2:1 | 41 | 81
+Flip-N-Write 13.8%| 13.3%| 11.6%| 10.3%
+Bit Mapping 50.7% | 50.3% | 49.2% | 48.2%

Table 3: Reduction of write service time for different SETR&SET ratios.
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3.6 CONCLUSION

The mapping between data bits and PCM cell groups has a sagtifrapact on PCM write service
time. | first uncovered stride patterns and spatial locafityhe distribution of modified bits in
memory write requests. Based on observations about how kgsnare distributed in a write
request, | showed that a balanced distribution of modifi¢sidan be achieved by XOR mapping,
catering to both stride and locality. | also proposed a doMi®dR (D-XOR) mapping, which allows
a single mapping function to be used for different PCM deviemgmmming widths. Finally, |
extended my technique to PCM with ECC.

My results show that D-XOR mapping can reduce PCM write sertiine by 45% on average,
which results in a 1.8 times improvement in write throughpdy best mapping function achieves
an average 11.9% IPC improvement over Flip-N-Write for ECQemried PCM. Data bit mapping

is a simple and effective mechanism to increase PCM writeufiiput and program IPC.
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4.0 DELTA-COMPRESSED DRAM CACHING FOR HYBRID MEMORY SYSTEMS

4.1 PROBLEM STATEMENT

To avoid performance bottlenecks caused by the limitedewr#rformance of non-volatile mem-
ory, DRAM can be used as a cache to offload memory traffic to rmdatile memory for both
performance-critical datandfrequently modified dataTo cache more data in DRAM in hybrid

memory systems, compression can be used to increase thevefleapacity of the DRAM cache.

Figure24 shows an organization which supports compressed DRAM cgchihybrid mem-
ory. The cache’s capacity is divided intmcompresseadnd compressedegions. The amount
of capacity allocated to each region can be dynamically gadn The uncompressed region has
low access latency (it does not require decompression amghr&ssion), and thus, it is used to
cache performance-critical data. The compressed regmhigher access latency than the uncom-
pressed region; it caches only frequently modified datadhanot in the uncompressed region.
Non-modified data are not cached in the compressed regi@ubecthe potential gain to read data
from the compressed DRAM region instead of PCM is limited duéédatency overhead to locate

and decompress the data.

In a DRAM-only system, the design goal of memory compresssdn reduce expensive disk
accesses. In hybrid memory, however, the design goal of DRAMpression is to reduce the
PCM write traffic. The problem is to find a new DRAM compressiohesne which is optimized
for hybrid memory systems to further improve the compressatio and reduce the PCM write

traffic.
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Figure 24: Compressed DRAM caching in hybrid memory.

4.2 PROPOSED SOLUTION: DELTA-COMPRESSED DRAM CACHING

4.2.1 Compressed DRAM Caching

To support compressed DRAM caching, three components amaluded to control the DRAM
cache. Apage classificatiormodule identifies memory pages that are suitable for the maco
pressed DRAM region and the compressed DRAM regionpaftition adjustmenimodule de-
termines how much DRAM capacity is used by each regiorcofpression and decompression

module accesses data in the compressed region.

4.2.1.1 Page Classification Page classification is used to determine whether data sheuld
kept uncompressed (frequently accessed), compressed€frly modified) or uncached (infre-
guently accessed). The monitoring is done at page gratwiastead of line granularity to amor-
tize the storage overhead. Recent techniques for PCM datempéat use variations of a Multi-
Queue (MQ) algorithm to identify hot pages to cache in DRA®3,[50]. In a MQ algorithm, a
memory page’s access frequency is monitored. Pages ardplato a queue based on their ac-
cess frequency. Queues are classified mdbandcool, and pages in the hot queues are cached in
DRAM.

In the proposed technique, the DRAM cache is partitioneduntmmpressed and compressed
regions. Therefore, an additional classification categoiytroduced to the MQ algorithmwvarm

gueuesUsing this classification, pages in hot queues are cachted imcompressed region, pages
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in warm queues are cached in the compressed region, and ipagesd queues are not cached in
DRAM. Because the compressed region is suitable for storguintly-modified pages, page
write frequency should be used to identify warm pages, wbélge access frequency should be
used to identify hot pages. However, this increases hagla@st to monitor multiple metrics; In

this work, only page access frequency is used to determige tyae.

4.2.1.2 DRAM Partition Adjustment When data is cached in the compressed region, its ac-
cess latency inevitably increases due to compression ahg@ession operations and extra mem-
ory accesses to the metadata. Therefore, it is beneficiahtoat the capacity of the uncompressed
and compressed cache regions. For workloads with low PCM wraffic, the capacity allocated
to the uncompressed region should be increased to get tledittfeom low access latency. When
PCM write traffic is high, the compressed region’s size shbelthcreased to cache more modified
data in DRAM (avoiding writebacks and hitting the “write bavidth wall” of the PCM devices).
The capacity allocated to the uncompressed and compresgens are parameters that are typi-
cally set at system boot-up (e.g., setin the BIOS). The tadti® determine how much capacity to
allocate to each region is investigated in the experimeatallts. The allocation decision could be
made online, according to monitored workload behaviouwe (thite throughput to the non-volatile
memory and the compression ratio of the data). This work adijresses the detailed design of

incorporating compressed DRAM cache in hybrid memory.

4.2.1.3 Selective and Predictive CompressionAny memory compression scheme can be used
for the compressed region of the DRAM cache. In my scheme, éshto use conventional and
delta-compression together. Delta-compression leadkitghar compression ratio and fewer PCM
writes, but it may not improve performance because deltapression can generate extra PCM
read traffic (to read the old reference data) for both memeags and writes. Due to this additional
cost, | proposeselective compressipmwhich sets a threshold on when delta-compression should
be enabled. Specifically, for each memory line, the memonjrotler selectively enables delta-
compression only if it leads to a minimum gain in storage @lhi call aGain Threshold GT)

over conventional compression. The GT captures a tradedifden gain in memory capacity

due to compression and extra memory traffic to access deftgpiessed data. Also, a line is kept
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uncompressed if neither compression nor delta-compressio reduce the storage needed for the
line.

When writing a memory line, selective compression needs dd tbe old data in PCM to
evaluate whether the line should be delta-compressede liirie is evaluated as not suitable for
delta-compression, the extra PCM read becomes an unnecessanead. | propospredictive
compressionio address this problem. Predictive compression reliehembservation that delta-
compression is probably not advantageous for a line if e=tapression was not advantageous the
last time that the line was written. In other words, the mgnaontroller applies delta-compression
to lines that can be consistently delta-compressed. Fareattiat was not delta-compressed last
time it was written, the memory controller typically storesot delta-compressed to avoid unnec-
essary PCM read cost. To give the line a chance to recoverciaitpressed status, with a small
probability (which | callRecovery ProbabilityRP) the memory controller will evaluate whether

the line should be delta-compressed.

4.2.2 Delta-compression for Written Data

For compression in a DRAM-only system, the data im@emory lineshould be compresskdA
higher compression ratio can be achieved with delta-cosspra. Delta-compression requires the
data having a reference copy. The modification to the reter@opy is compressed instead of
the data itself. Figur@5 shows how to apply delta-compression in hybrid memory.tFine old
data is read from PCM. Then the difference between the newlandlt data (calledliff data)

is computed using an XOR operation. Lastly, the diff datacampressed and stored in DRAM.
Delta-compression tends to have a higher compression traio conventional compression be-
cause delta-compression converts unmodified data bitgés before compression.

The challenge is reading delta-compressed data (i.efreégaently modified dajait is more
time consuming because the decompressed diff data canrextdessed directly from DRAM.
Instead, the old PCM data must be read from main memory (PCMX&ted with the decom-
pressed diff data. Delta-compression in DRAM provides a waydde off more PCM reads

against reduced PCM writes (caching more modified data in & eamnpressed format).

1A memory line is defined as the minimum unit for memory comgi@s
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Figure 25: An example to illustrate delta-compression.

In summary, for delta-compression in hybrid memory, freglyamodified data are compressed
and partially stored in both DRAM and PCM. The memory contradiglits and combines data
to/from DRAM and PCM to provide correct data. Given this unigaquirement on memory
compression in hybrid memory, | designed a compressiomselspecially tailored to the DRAM

cache in hybrid memory, as described next.

4.2.3 IBM MXT Compression for DRAM-only Systems

Since my work is based on IBM MXT, | will make a brief introduati to IBM compression
framework. IBM MXT [62] is a high performance hardware-based memory compressimnse
for DRAM-only systems. Figur26(a) shows MXT’s architecture; 4KB pages are stored in DRAM
in a compressed form. On every memory access, the memoryottent{MC) compresses or
decompresses the data. MXT offers a framework for my D-COMf@réghm and its variants.
Other compression frameworks could also be used.

MXT partitions DRAM into two regions: the sector translatitable (STT) and the sectored
memory. STT contains the metadata to locate compressed linesor8danemory is a collection

of 256-byte memory sectors that hold compressed data. BéBtpdge is divided into 4nemory

2This is a common design for a memory compression scheme.
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Figure 26: IBM MXT compression.
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lines Figure26(b) shows how each memory line is compressed in MXT. A 16-I$&& entry

is associated with each 1KB memory line and contains up toidtgrs to memory sectors. The
memory controller uses the pointers in the STT entry to actes data. The control field of the
STT entry contains a line state to indicate whether the Brigricompressed (U), Compressed (C)
or Invalid (I). If a line is Uncompressed, the STT entry uskpainters to 4 memory sectors. If
a line is Compressed, the STT entry may have fewer than 4 vaiideys to compressed memory
sectors. The control field also contains the compresseaéthe line. To avoid repeated accesses
to STT entries, a small dedicated on-chip storage in the mgsmntroller STT Cachgcontains

recently accessed STT entries.

4.2.4 Implementation of Delta-compressed DRAM Caching

Delta-compression is not suitable for traditional memagnpression because expensive disk read
operations are needed to restore delta-compressed dadgtlisireference data on the disk. Delta-
compression is possible for hybrid memory because theemter data is accessed from PCM
which is slightly slower than DRAM.

In this section, | choose to use a DRAM-only compression sehemmely MXT p2], as my
baseline and extend it to support delta-compression forithybbemory. This approach allows me
to focus my efforts on enabling the unique delta-compressgibhout reinventing the non-trivial
mechanisms that are germane to any memory compression sciyrproposed techniques can

be tailored to other compression schemes that are usedifodhypemory systems.

4.2.4.1 Hierarchical Compression Metadata The most important change to MXT for hybrid
memory involves the compression algorithm. MXT uses a f&rderivative R4] of the Ziv-
Lempel (LZ77) algorithm. Because LZ77 is a dictionary algori, the memory line size is 1KB
to achieve a good compression ratio. The whole 1KB memorjoied in DRAM. It takes 128
CPU cycles for MXT to decompress a memory line.

In contrast, my new approach for hybrid memory needs to cache modified data in the
compressed region of DRAM. Therefore, the 1KB line is dividetd sixteen 64-bytdlocksto

allow a finer granularity of compression (i.e., 64 bytes eatimnan 1KB). The memory controller
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usesFrequent Pattern Compressi¢RPC) ] to compress memory blocks. FPC is the underlying
compression algorithm for both conventional and deltajm@ssion. FPC compresses data on
a word-by-word basis by storing common patterns in a consgge$ormat accompanied by an
appropriate prefix. FPC has a low-cost hardware implementf] and takes only 5 CPU cycles
to encode/decode a 64-byte blodk.[In my implementation, the sixteen blocks in a memory line

can be compressed or decompressed in parallel.

Figure27(a) shows an example in which nine modified blocks are comspreand stored in
DRAM. For each block, both conventional compression andadsdimpression are tried. The
compression method that achieves the smallest compreksadsive is selected. If both schemes
give a compressed block size equal to or larger than the um@ssed size, neither scheme is
selected and the block is stored in an uncompressed fornh lEack has a state to indicate its
format. There are four block states: Invalid (), Uncompess (U), Compressed (C) and Delta-
compressed (D). If a block state is Invalid, data is writte aead from PCM. If a block state
is Uncompressed or Compressed, data is written and read fRAM If a block state is Delta-
compressed, then the DRAM stores only the diff data. To readdmtent of the block, the PCM
data is read and XORed with the diff data.

FPC-based compression allows a line to be partially decasspteto access some of its data
blocks. To achieve this capability, additional metadatasdored in the STT entry of each com-
pressed line. At a minimum, each 64-byte block requirest srlgitadata: a 2-bit block state and
a 3-bit block size (if data block is aligned at 8-byte boulaHence, for all 16 blocks in a line,
there is an extra 80-bit metadata in each STT entry versusrtgmal MXT scheme. To avoid
actually increasing the STT entry size, the PTR3 field of th@ 8mtry is reused, as described
next.

For my compression scheme, a 1KB line is not compressed ipoessed data needs more
than three memory sectors. Therefore, for compressed linedPTR3 field of the STT entry is
unused. However, the PTR3 field is only 30 bits, which is nougihao store the 80-bit metadata.
To work around the problem, | use a hierarchical design femtietadata. Every 4 blocks in a line
are treated as superblock Each 256-byte superblock requires 4-bit metadata: a &dipierblock
state and a 2-bit superblock size (superblocks are alignéd-hyte boundary and the superblock

size field is valid only for compressed superblocks). ThéXatbit metadata for 4 superblocks
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Baseline

Compressed

Revised
STT Entry

Line
Metadata

1KB (64-byte x 16)

O Modified QNon-modiﬁed @ Compressed @ Delta-compressed

MXT Ctrl(8) | PTRO(30) | PTR1(30) NULL Reused
Superblock State(2x4) Superblock Size(2x4) Unused(14)
(a) an example of a compressed line
Superblock Block

Invalid (T) I

Uncompressed (U) U

Compressed (C) U, C

Delta-compressed (D) LUC,D

(b) Block and superblock states

Figure 27: FPC-based delta-compression algorithm.
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Superblock | State Size Block State | Size
0 C 128 (80) //' 0 D 18
1 U 256 (256) / 1 I 0
2 D 128 (114) _ 2 C 31
3 I 0 s 3 U 64

Q Modified @ Compressed @ Delta-compressed

Figure 28: Data layout of an example memory line.

can be stored in the PTRS3 field.

The superblock statés a summary of the states of the associated blocks (seeeRg(ly)).
For an uncompressed (U) superblock, all of its blocks ar@mmpressed and there is no need to
store block states. Similarly, for an invalid (I) supertdpall of its blocks are invalid and the
block states are unnecessary. If all blocks in a superbloelsimred in DRAM and at least one
block is compressed, the state of the superblock is comguig$3). If the state of a superblock
is not U, | and C, the state of the superblock is delta-compreéB). For compressed or delta-
compressed superblocks, the states of constituent bloekstared along with the compressed
data (described in the next section). By keeping superbltaties rather than block states, we

trade off the granularity of state information against ttegage overhead of the metadata.

4.2.4.2 Compressed Data Layout In MXT, compressed data are stored contiguously in the
logically linear storage implemented by the pointers in & ®ntry. To avoid accessing two

memory sectors for each uncompressed superblock, a rexasepressed data layout in the logi-
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cally linear storage is used. In the layout, uncompressperblocks are placed before compressed
superblocks. By doing so, each uncompressed superblockecaligbned to a 256-byte boundary
and stored in a dedicated seétaCompressed superblocks are sequentially arranged aftenun
pressed ones. Because my design uses a 64-byte read sizepressad superblock is aligned to
a 64-byte boundary to avoid extra memory reads for crosst#tlayte boundary.

Figure28 shows the compressed data layout of an example memory lineorbpressed su-
perblock 1 is placed at the beginning of the logically linstarage, followed by two compressed
superblocks. There is a gap between the two compressedotuger because superblocks are
aligned to a 64-byte boundary. The example also shows tladetbtayout of superblock 2. Since
this block is delta-compressed, it has a block state heasferdothe compressed data. The 1-
byte header contains the block states of the superblock.dateof the blocks are compressed
by the FPC algorithm. The size of each compressed block isatetl by the metadata inside the

FPC-compressed data.

4.2.4.3 Memory Read To read data from the cache, the memory controller needs¢ordme
the location of the data. Figu%(a) shows how to determine the data location from the line sta
and superblock state. If the line state is invalid or uncaaged (first two rows of Figurgd(a)),
the data will be read from PCM and DRAM only, respectively. & tme state is compressed, the
location of data depends on the superblock state as follthes superblockX is invalid (1), the
data will be read from PCM. If a superblock is uncompressed (U) or compressed (C), the data
will be read from DRAM. If superblockX is delta-compressed (D), the data will be read from
both DRAM and PCM. The data from the DRAM and PCM also need to be edei@get actual
memory data. The merge operation is performed at block ¢metyubased on the state of each
block. Figure29(b) shows the merging rules. For example, if a block is dedtarpressed, the data
from the DRAM is decompressed and XORed with the data from the PCM

To read PCM data, the address is the same as the address of tiwyrequest. To read
DRAM data, the memory controller needs to calculate the ptasition of the superblock from the
superblock state and superblock size in the STT entry.

If superblock state is U, its relative position is the sumid sizes of the uncompressed su-

3Recall that the logically linear storage space is represeny multiple 256-byte sectors.
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Line | Superblock DRAM PCM Block State Action on Data
State State
I - No Yes Invalid (I) Read PCM
U } Yes No Uncompressed (U) Read DRAM
C I No Yes
C U Yes No Compressed (C) Read Decompressed DRAM
C C Yes No Delta-compressed (D) | Read Decompressed DRAM
C D Yes Yes XORed with PCM
(a) Determine data location (b) Merge block data

Figure 29: Rules for reading data from compressed hybrid nrmgemo

perblocks stored before it, that is
StartPos(X) = Z Uncomp(j) - Size(j) 4.1)

If a superblock state is C or D, its relative position is thensof the sizes of all superblocks

stored before it and all other uncompressed superblocksish

X—1 4
StartPos(X) = Z Size(7) + Z Uncomp(j) - Size(j) (4.2)
j=1 J=X+1

To implement this calculation, simple logic is needed toditbonally sum the size of four

superblocks.

4.2.4.4 Memory Write To store a compressed superblock, the memory controllerefiedu-
ates the different sizes of the data when the superblockiiedtis uncompressed (U), compressed
(C) or delta-compressed (D). To calculate the size of a aeltapressed superblock, the current
PCM data of the superblock are read. After the evaluationmémory controller chooses the su-
perblock state that can achieve the smallest compressedfdize storage size of the superblock is
unchanged (aligned on a 64-byte boundary), then the newndkitze directly written to DRAM.

If the storage size of the superblock is changed (overflogétiow), which is a common condi-

tion for compressed memory, the memory controller will réath DRAM all superblocks stored
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after the requested superblock. The memory controlleewatl affected superblocks to their new
DRAM location. | evaluated this extra data movement cost irexperiments. With a write buffer,
the data movement operation is not on the critical path, aedunts for only a small portion of
total DRAM memory traffic. Similarly to reading PCM, writing PCigl straightforward. The data
is directly written to PCM using the address from the writeuesf. The memory controller needs
to write data to PCM in two cases: a memory line is written butoached in DRAM or a memory

line is evicted from DRAM.

4.2.4.5 Cache Replacement Policy For MXT, unused memory sectors are organized as a linked
list. When extra memory storage is needed, unused sectoadl@cated from the list by a small
hardware circuit§2]. The memory controller tries to maintain a minimum quotawiised DRAM
sectors (16MB in the experiments). Once the quota is bel@thineshold, the memory controller
walks the STT to evict rarely accessed pages.

The proposed design uses a MQ algorithm to monitor page siéapiency. Recall that hot
pages are placed in the uncompressed region, only warm pageandidates for cache replace-
ment in the compressed region. The memory controller trdeksiumber of pages in each warm
gueue and divides warm queues into high-rank queues andaokvgueues. A high-rank warm
page is guaranteed to be cached in the compressed regiow-raiik warm page with low access
frequency is evicted first. To avoid thrashing, modified dzta low-rank warm page is inserted

into the compressed region with a throttled insertion ydis).

4.2.4.6 Hardware Cost and Overhead The hardware cost to support compressed DRAM
depends on the underlying compression algorithm and paagsification mechanism. Delta-
compression by itself only requires implementing a tatiodelta-compression algorithm for both
memory reads and writes in the memory controller. | use FP@adbuilding block for delta-
compression. FPC is easily implemented in hardware anded t@ on-chip cache compres-
sion [1].

For MXT, the STT is the major memory data structure. The sizketable can be dynamically
adjusted based on the size of the compressed region. Fgr288rof compressed capacity, 32MB

DRAM is needed for the STT. | assume a 16KB STT cache to hold%6a1st recently accessed
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STT entries. | use Rank-based Page Placement (R&BRa[hardware-assisted variation of MQ,
for page classification. RaPP requires 126KB on-chip stoaagel2MB DRAM to maintain data
structures for the MQ algorithm for a 2GB DRAM and 16GB PCM hghbriemory.

When data is stored in a compressed form, its access latenogresased. There are two
reasons for the increase: STT translation delay and de@ssipn latency. | assume 5 CPU cycles
for STT translation delay, for a hitin the STT cache. | assimEPU cycles to decompress a 256-
byte superblock and merge the data from both DRAM and PCM if Hta t delta-compressed.
| also model the extra memory delay due to STT misses. Formpoessed data, the memory
latency is the time to read the critical 64-byte block. Fompoessed data, all compressed blocks
of a superblock are read before decompressing the supkrbloc

Because FPC is simple, an on-chip FPC compression and deessigor engine has low power
overhead. The power of the implementation is estimated t0.p8W [15]. | add 0.3W for the

compression and decompression logic. | assume 0.3W for &Ji¢ and 0.3W for buffering.

4.3 EVALUATION ENVIRONMENT

4.3.1 Configuration

| use Virtutech Simics36] to collect memory traces. To evaluate memory compressioisg
a trace-driven simulator that takes traces as input fileb thié command and address of each
memory request, and the data before and after every memdas; wr

I model an 8-core 2GHz CMP with in-order cores and a cache faigyasimilar to the IBM
Power7 p6] with a 32MB L3 cache. Since multiprogrammed workloads atecated with one
program per core, | assume that each core only uses its IMBILB cache region. To alleviate
the miss penalty, | also model a simple sequential datateredefor the L3 cache.

I model a hybrid memory system with 2GB DRAM and 16GB PCM. Simita [50], a small
DRAM size is used to match the memory footprint of the workkadhe hybrid memory has
four 12.8GB/s memory channels. Based on the measured bahdwegliirements, DRAM and

PCM have two dedicated memory channels, each with two DIMMd, each DIMM with eight
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banks. A memory controller configuration similar #5] is used, where each bank has a separate
32-entry read queue and a 32-entry write queue. Read recaresgsven higher priority, as long
as the write queue is not full. For PCM memory scheduling, WR&e&sing 45] is used: a PCM
write is divided into multiple 50ns epochs and the memoryticier can suspend an active PCM
write at the beginning of an epoch to schedule a read requése tmemory bank. In the baseline,
| assume 0.75GB/s PCM write bandwidth per channel, which isvatpnt to PCM write service
time of 2600 cycles per write.

| calculate memory power as ii§], adding background power and operation power. Back-
ground power is determined by memory type, capacity and petate. Operation power is as-
sumed to be proportional to memory bandwidth. Memory powestimated using the parameters
in [11]. The simulation parameters are summarized in Tdbléy experiments confirmed the
results in f8] that a hybrid memory can have better performance and ertbegya DRAM-only

system due to the increased capacity enabled by betteres®dltgl from PCM.

4.3.2 Workloads

Because my work focuses on memory, | use only memory-interiswnchmarks that have large
memory footprints from the SPEC CPU200B4 and PARSEC 9]. All benchmarks are 64-bit
binaries, compiled with gcc 4.1.2. Most PARSEC benchmar&samputation intensive or have
a very small memory footprint. For SPEC CPU2006, the refexenputs is used. The memory
footprints of benchmarks are scaled when it is possible smgh the input parameters to avoid
results that are skewed lmgcf which has a 1.6GB memory footprint. TalBegives the detailed
parameters of the scaling. Foannealfrom PARSEC, | run it in single-threaded mode and use

native input with 940MB memory footprint.

Table 6 shows the memory footprint (size, in GB), the number of memend requests per
1000 instructions (Read PKI) and the number of memory writgiests per 1000 instructions
(Write PKI) of each workload. Ten representative multippogmed workloads are selected, each
containing two copies of four unique benchmarks. Four siragiplications are selected and run
in a rate mode, where eight instances of the same benchmargoacurrently executed. The

simulator requires a long warm-up phase to populate the @B DRAM cache. The simulation
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CPU 8-core, 2GHz, 2-issue, in-order, 32KB L1 I/D
L2 Cache 512KB private, 8-way, 64-byte linesize, write-back.
L3 Cache 32MB total, 4MB per core, 256-byte linesize,

20-cycle local L3 hit, write-back,

sequential data prefetcher

Memory Controller

2 PCM channels + 2 DRAM channels,
12.8GB/s per channel, 2 DIMMs per channel,
8 banks per DIMM,

32-entry read- and write-queue per bank,
read priority scheduling for DRAM,

write pausing scheduling for PCM,

FPC decoding latency 15 cycles

STT translation latency 5 cycles

DRAM 2GB, 50 ns (100 cycles) for first 64-byte read,
15 ns (30 cycles) for each consecutive 64-byte read.
Background Power: 0.93W/GB (leakage + refresh)
Read Energy: 0.8J/GB, Write Energy: 1.2J/GB
PCM 16GB, 80 ns (160 cycles) for first 64-byte read,

15 ns (30 cycles) for each consecutive 64-byte read,
0.75GB/s write bandwidth per channel,

(2600-cycle write service time per 64-byte write),
50ns epoch, 26 epochs per PCM write

Background Power: 0.10W/GB (leakage)

Read Energy: 1J/GB, Write Energy: 6J/GB

Table 4: System settings.
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Name Ref Problem Size New Problem Size
libquantum 1397 5953 (1GB)
milc 20x20x20x20 26x26x26x26 (1.5GB)
leslie3d 121x121x15 331x331x35 (1.2GB)

Table 5: Benchmarks with scaled problem sizes.

is switched from the warm-up phase to the timing phase aférrillion write references are
simulated or after one benchmark completes 30 million wetierences. The simulation stops

when one of the benchmarks completes 60 million write refess.

4.4 RESULTS

The baseline for my evaluation is a hybrid memory systemgRenk-based Page Placem¢&0]
without compression (RaPP-RW). RaPP-RW uses a tailored MQitligoto identify and store
frequently-accessquhges in DRAM. | also evaluated a variation of the MQ algorifRaPP-WO),
which only identifies and stordsequently-modifieghages in DRAM.

| compare the baseline with four schemes that use compres€@MP applies FPC com-
pression only on the written data; D-COMP is a delta-comjpwasscheme that applies FPC on
the difference between the new and old data; SD-COMP apmiest&ve compression and PSD-
COMP adds predictive compression to SD-COMP (both describesection4.2.1.3. Unless
explicitly specified, COMP, D-COMP, SD-COMP and PSD-COMP allehavi.5GB compressed
region and a 0.5GB uncompressed region.

For SD-COMP and PSD-COMP, | performed a sensitivity study om Gareshold (GT, de-
fined in Sectior.2.1.3. If GT is small, more lines are delta-compressed, and vasa: | find
optimal performance results when GT is between 48 bytes &nblyfes. In the evaluations, |

choose 64 bytes as the value of GT. For PSD-COMP, | also didsats#ty study on the value of
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Name | Size (GB)| Read PKI| Write PKI Description
Gemsr 6.3 5.34 2.40 8 copies of GemsFDTD
leslier 9.2 3.71 1.12 8 copies of leslie3d
mcf_r 12.8 15.10 7.24 8 copies of mcf
milc_r 11.8 6.18 1.84 8 copies of milc
mix_1 8.3 8.10 4.09 Ibm-libg-mcf-milc
mix_2 8.2 5.43 1.66 libg-mcf-milc-zeusmp
mix_3 7.9 6.60 3.39 Ibm-leslie-libg-mcf
mix_4 7.7 8.52 4.57 Ibm-libg-mcf-canneal
mix_5 5.7 8.59 3.27 gcc-mcf-zeusmp-canneal
mix_6 5.4 5.14 1.98 leslie-omnetpp-zeusmp-canne
mix_7 5.2 5.65 3.16 Ibm-libg-zeusmp-canneal
mix_8 5.0 13.99 5.97 astar-libg-milc-omentpp
mix_9 3.6 3.91 2.06 astar-gcc-milc-zeusmp
mix_10 2.5 3.23 2.06 astar-gcc-Gems-wrf

Table 6: Simulated workloads.

57

al



COMP mD-COMP

7
6
2
g5
54
83
Q
f2 I
o
al rr r F E
0
& o Ng N 5
{b%\ SQ \@%\\ 0‘2’0@ N & < 49 c?’ ‘v&
& \ J
& ¥

Figure 30: Compression ratios (original size / compressag) for FPC compression (COMP) and

delta-compression (D-COMP)

the recovery probability (RP, defined in Secti#®2.1.3. | found that the workloads are not sensi-
tive to the value when RP is small. Consequently, | choose RP2 Wi8ich means that for every
32 memory writes (lines are not delta compressed), the meoumtroller evaluates one write to

check whether the corresponding line should be delta cagspde

4.4.1 Compression Ratio

First, | evaluate the compressibility of the written datathe benchmarks. Figurd0 shows

the compression ratio for FPC compression (COMP) and deltapcession (D-COMP). For the
twelve studied benchmarks, while COMP achieves an effeetreeage compression of 2.2X, D-
COMP can achieve an average of 3.1X. For six out of twelve bmacks, D-COMP achieves
at least 35% more effective capacity than COMP because defitgression converts unmodified
data bits to zeros, which are more compressible. The resisltsshow that, some floating-point

benchmarks, lik&semsFDTDandleslie3d are difficult to compress, even with delta-compression.
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Figure 31: PCM writes normalized to RaPP-RW.

442 PCM Write

Figure31shows the number of PCM writes normalized to RaPP-RW basélineverage, RaPP-
WO, COMP and D-COMP reduce the number of PCM writes by 8.2%, 3aB8®64.5%, respec-
tively. It turns out that using only D-COMP more than 90% PCMterequests are absorbed by
the DRAM cache for five out of fourteen workloads. This is bessaD-COMP can achieve a much
higher compression ratio than COMP.

For GemsFDTD compression is not effective and cannot reduce the nunfbleCM writes
For leslie3d the number of PCM writes will be reduced significantly if omhodified data are
cached in DRAM. In general, SD-COMP results in more PCM writesth-COMP because SD-
COMP only enables delta-compression on lines that have armami64-byte storage gain (GT).
PSD-COMP has almost the same number of PCM writes as SD-COMRB3eP&D-COMP only
disables delta-compression for lines that are difficulgalblta-compressed, which will not change
overall compression ratio. When DRAM compression is enali#€tM endurance is proportion-
ally improved with the reduction in PCM writes. On average, CG&M-COMP, SD-COMP and
PSD-COMP achieve 1.6X, 2.8X, 2.2X and 2.2X improvements in Ri¥me over RaPP-RW

4Assuming an ideal wear leveling mechanism.

59



W RaPP-RW mRaPP-WO mCOMP mD-COMP mSD-COMP PSD-COMP
2.50

2.00

=
0
o

Normalized IPC
e
8

©
U
o

0.00 -

Figure 32: IPC normalized to RaPP-RW.

4.4.3 Performance

Figure 32 shows IPC improvement of 15.6% and 22.3% for COMP and D-COMipeively,
when normalized to RaPP-RW. The difference shows the impoetaf enabling delta-compressed
caching for hybrid memory. SD-COMP and PSD-COMP have simitggrovement as D-COMP,

but they bring higher power and energy savings (see nexbsgct

Notice that blindly enabling compression will not alwayspirove performance. This is be-
cause the performance gain on reducing PCM writes can bet &ifsthe performance loss of
increased accessing latency. A typical exampimiis-2 With COMP, mix-2 has no reduction on

PCM writes but 25% performance penalty over RaPP-WO due toxtine eead latency.

My results also show that on average RaPP-WO has similar ipeaface as RaPP-RW. For
mix-2 and mix-3 RaPP-RW is better because more frequently-accessed @ataened in the
DRAM cache. Foteslier, RaPP-WO is better because more frequently-modified dateaatesd
in the DRAM cache.
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Figure 33: System energy consumption.

4.4.4 Energy Consumption

Although compression increases energy consumption, utcesisystem total energy consumption
due to the reduction in execution time. To be conservatiestimating system power, | modelled
the 8-core processor with an average processor power of ZB&/energy consumption is com-
puted by multiplying the execution time with system poweigufe 33 shows that system total
energy consumption is reduced 4.6% and 6.6% with COMP and D-E@&spectively. The re-
duction further goes to 7.5% and 11.0% with SD-COMP and PSD-e0&kpectivelyMcf r and
mix-1 have large energy savings with compression, which is ctamgisvith their IPC improve-

ments, even though the power is much higher.

4.4.5 Impact of PCM Write Bandwidth

To analyze the impact of the PCM write bandwidth on the DRAM coespion schemes, | carried
out experiments with different PCM write bandwidth valuesgure 34 shows IPC normalized
to the RaPP-RW baseline. As expected, the benefits of connmesm® higher when PCM write
bandwidth is lower. When PCM write bandwidth is decreased tB/$3PC performance benefit
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Figure 34: Sensitivity analysis of varing PCM write bandwidn IPC

of PSD-COMP is increased to 37.3%. When PCM write bandwidthciessed to 2GB/s, IPC per-
formance benefit of PSD-COMP is reduced from 24.4% to 15.7%.pErformance gain from the
reduction of PCM writes is offset by the increased latencyashpressing memory. If PCM write
bandwidth is the only bottleneck of the system, D-COMP wiWlays get the best performance,
because it maximize the number of PCM writes that can be reldudeese results show that the
write bandwidth gap between DRAM and PCM is an important faictatetermine whether or not

memory compression should be enabled for hybrid memory.

4.4.6 Impact of Size of Compressed DRAM Region

| evaluate PSD-COMP with different sizes of the compressgbne The total DRAM capacity
is fixed at 2GB. From Figur85, the optimal partition size highly depends on the worklodets
mix-5andmix-8, it is better to use 1GB DRAM as compressed memory. riibc_r andmix-3, it

is better to use 2GB DRAM as compressed memory. To achieverlpstformance, the memory
controller should dynamically adjust the sizes of comprdsand uncompressed regions of the

DRAM (about 7% potential for IPC improvement), which is anexmof my future work.
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Figure 35: Speedup with different compressed region cipa¢normalized to RaPP-RW)

4.5 CONCLUSION

Given that PCM write bandwidth is a major performance bo&ékfor hybrid memory, compres-
sion has been used to reduce PCM write traffic by increasing DRAdtive capacity. | designed
a novel DRAM cache compression scheme that is flexible anoreéglito the specific challenges
of hybrid memory. The proposetklta-compressioalgorithm stores a compressed version of the
modified bits of the updated data in DRAM. | also proposed twemsions to further improve per-
formance and efficiency of my compression scheme, nasegctive compressia@andpredictive
compression My results demonstrate that compression can significamyrove DRAM cache
effective capacity by up to 6.3X and improve PCM lifetime b2 on average. | observed 24.4%
IPC improvement from my compression scheme over a non-aessjmn design. | conclude that

compression for the DRAM cache is an effective mechanismnigroving the performance and

increasing the endurance of hybrid memory.
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5.0 SUPPORTING SUPERPAGES IN NON-CONTIGUOUS PHYSICAL MEMORY

5.1 PROBLEM STATEMENT

Non-volatile memories are being introduced in hybrid maienmory systems to reduce mem-
ory static power 49, 70, 50]. These non-volatile memories, however, have limited even-
durance 47], and cells gradually become non-programmable “bad” cdllschanisms have been
proposed for error correctio®2], but their limited error correction resources can toledahited
number of errors. When uncorrectable memory errors occeratiected memory page must be
retired. Retired pages are marked as unusd@dlegnd prevented from being allocated in the fu-
ture. Retired pages create many unusable holes in the phgdai@ess space and render the space
non-contiguous. On the other hand, traditional superpegesnly be constructed with contigu-
ous physical memory blocks. As shown in SecttoB even a small number of retired pages can
make it very difficult to find enough contiguous physical meynblocks to support traditional
superpages.

The goal of the chapter is to find new storage-efficient pagke tlormats to accommodate
superpages in the context of non-contiguous physical mgnibis is important because with-
out superpages the performance overhead of virtual menambe significant, specifically for
memory-intensive workloads with large memory footprintsl @aandom access patterns. Four re-

guirements are identified to achieve this goal:

1. Allow mapping a superpage to multiple non-contiguous mgmarea;
2. Use superpage tables that are of the same size as tratigigrerpage tables;
3. Guarantee that address translation is completed in arixetdber of steps; and,

4. Allow mixing superpages and traditional pages.
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For backward compatibility and deployment, the new pagketaiomat is an optional extension
to allow a portion of the non-contiguous memory to be mappeduperpages and the rest of

memory to follow a traditional page table format.

5.2 UNDERSTANDING ADDRESS TRANSLATION OVERHEAD

There are three performance advantages to superpages.skpsrpages increase TLB reach by
the ratio of the size of a superpage to the size of a normal page (i.e., TLB can cache 2-
3 orders of magnitude larger address space), thus redutiBgniss rate. Second, superpages
reduce the number of levels during page walks, consequesttlycing the latency of a TLB miss.
Third, superpages significantly reduce the size of the pge;tTabler shows page table sizes for
different workload memory footprints and page sizes assgran 8-byte page table entry. Note
that for a workload with a 16GB memory footprint, the pagddadize for a traditional 4KB page
is 32MB, which is already beyond the capacity of the Last L&athe (LLC) for most processors.
With 2MB superpages, the size of the page table is reducast®f#KB and can easily fit in the

cache.

Memory Footprint| 1GB | 16GB
4KB page 2MB | 32MB
2MB superpage | 4KB | 64KB
1GB superpage| 8B | 128B

Table 7: Page table sizes for different workload memorygoots and page sizes.

To further understand the overhead of address transldtargracterized the performance of
different problem sizes and TLB configurations for the GURSkad [L8], which is memory-
intensive with a random access pattern. | use cycles peuaisin (CPI) to measure performance.
| study three TLB configurations: a 512-entry 4KB-page TLB, 2-8htry 2MB-page TLB and
an 256K-entry 4KB-page TLB, which is much larger than any pcatTLB design. Recent work

shows that TLB reach can be improved by coalescing multiplB €ntries with similar con-
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tents f2, 41]. The effective TLB reach of a 256K-entry 4KB-page TLB is 1GBiah is an upper
bound that can be achieved by TLB coalescing.
B No PTE ® PTE- Ideal LLCHit mPTE-Memory

30
25

—
15 -
10 -
5_
0_

CPI

512-entry | 256K-entry | 512-entry | 512-entry | 256K-entry | 512-entry
4KB 4KB 2MB 4KB 4KB 2MB
1GB 16GB

Figure 36: CPI breakdown with different problem sizes and Tdddfigurations for the GUPS

workload.

As shown in the left side of Figur@s, when the memory footprint is 1GB, a 256K-entry 4KB
TLB has similar performance as a 512-entry 2MB TLB, since tlenory footprint is not larger
than the 1GB TLB reach. When the memory footprint increasé@$€B (right side of Figur&6),
which is much larger than the 1GB TLB reach, the performangerovement from increasing
TLB reach becomes very small, but superpages perform velty we

Figure36 characterizes the CPU cycles for an instruction on averagmderstand the sources
of the address translation overhead. Approximately 15esyale needed to access data, execute
the instruction and account for address translation oeetirethe first 3 levels (up to PDE, labeled
No PTE in the figure). Compared to a 512-entry 2MB-page TLB, tlukt@eal address translation
overhead of a 4KB-page TLB mainly comes from accessing PTEs.

The number of cycles to access PTEs can be broken down intodmponents: the cycles to
access PTEs assuming all PTEs always fit in the LLC (PTE-Ide@lhit, middle cycles), and the

cycles to access main memory if a PTE is not cached (PTE-Mgrabthe top). For workloads
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with large memory footprints (16GB), the performance ovathef accessing PTEs is dominated
by main memory accesses.

In conclusion, to avoid address translation overhead freaoiming a performance bottleneck,
it is critical for workloads with large memory footprints support superpages, which avoids ac-

cessing PTEs.

5.3 PAGE RETIREMENT AND MEMORY FRAGMENTATION

Given that superpages need contiguous physical memorphyscal memory can become frag-
mented when there is even a small percentage of retired p&igsre 37 shows the probability
of finding a contiguous memory block (of sizes 2MB, 128KB, 64Kil&82KB) as a function
of percentage of retired 4KB pages (retired pages are unijodistributed). The probability of
allocating a 2MB superpage quickly approaches zero if tmelrar of retired pages increases (e.g.,
for 0.5% retired pages, the probability is less than 8%).sTimplies that a traditional superpage
implementation will be ineffective in the presence of mtippages. Nevertheless, it is relatively
easy to findsmall contiguous memory areasvhen the percentage of the retired pages is small.
To ensure that at least 60% of the memory blocks are contgy(gmnot contain retired pages), the
threshold on the percentage of the retired pages for 128KBBGhd 32KB superpages is 1.6%,
3.1% and 6.1%, respectively.

In the next section | propose a new method to construct sagesfrom multiple small mem-

ory fixed-sized areas instead of a single large contiguousangearea.

5.4 PROPOSED SOLUTION: GAP-TOLERANT SUPERPAGE

5.4.1 Gap-tolerant Sequential Mapping

When the physical memory is littered with retired pages, fgrigblematic to find a large contigu-

ous memory block to establish a mapping. | deviGap-tolerant Sequential Mappin@TSM)
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Figure 37: Probability of a memory block (of sizes 2MB, 128KBK® and 32KB) to be contigu-

ous (no retired pages) for different percentages of redi€d pages.

to support superpages in memory with retired pages. Fig8rghows three ways to map a vir-
tual memory space (VA) of the size of a superpage to physiemhany (PA) that contains errors
(marked with an X). Figur&8(a) shows traditional superpage mapping, that maps VA ttigon

ous PA (in this case, there is no contiguous physical spatedn accommodate a superpage).

Figure38(b) is the traditional page mapping, where each virtual gagebe mapped to an ar-
bitrary non-retired physical page. This flexibility is no¢é: the storage cost of fine-grained paged
mapping is orders of magnitude higher than traditional sugge mapping. Figurd3d(c) shows
how GTSM divides a virtual superpage into multiple fixedesemaller virtual blocks, which are
sequentially mapped to memorg-plocks or building blocks). B-blocks are bigger than a regular
page and together form a memalyce whose size is twice the size of a superpage. Note that
the utilization of memory isot only 50% with GTSM because remaining unmapped fragmented

memory can still be used for traditional pages.

To maintain a one-to-one mapping between virtual blocksBxbtbcks, exactly half of the B-
blocks participate in the mapping, given the size of the nrgrstice. Any B-block that contains

at least one retired page cannot be used for GTSM. Note th&MWGiE a generalized form of
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Figure 38: Examples of different address mapping schemes.
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(a) A memory slice is divided into 64 B-blocks.
32 B-blocks (grey) are selected to construct a superpage.
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(b) Gap-tolerant PDE (GT-PDE) format.

Figure 39: Gap-tolerant PDE (GT-PDE) format.

traditional superpage mapping, but it is more flexible teetadto account retired pages. If there is
no retired pages in a memory slice, GTSM creates the samec@riguous) memory mapping as
traditional superpage mapping. By sacrificing flexibilitysofall/traditional page mapping, GTSM

tolerates retired pages and maintains a page table thairhier storage efficiency as superpage

mapping.

5.4.2 Gap-tolerant Page Directory Entry

For a 2MB superpage, page directory entry (PDE) is the last & address translation; the PDE
format contains the physical page frame base address atrblcihags of the superpage (present
bit, access bit, dirty bit, etc.). To support GTSM, the 8ebPDE is extended to a 16-byte Gap-
Tolerant PDE (GT-PDE). FigurgX(a) shows a memory slice divided into 64 B-blocks with half of
the B-blocks selected to construct a GTSM superpage. As shiofigure39(b), to minimize the
impact on the OS, The first 64 bits of a GT-PDE is kept the sanseteslitional 2MB-page PDE.
An extra 64-bit B-block selection bitmap is appended for GTSWe corresponding bit will be set
to 1 if the B-block is selected in the mapping. Otherwise, thevitl be set to 0.

Figure 40(a) shows address translation of a traditional 2MB-page PDte. 9-bit PDE in-
dex/block offset is used to select a PDE among 512 regularsPDBEe 9-bit PTE index will be
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VA PDE Index PTE Index / Page Offset
) Block Offset (9) (12)
PDE
PA Physical Page Base Address Block Offset Page Offset
(€1)) ©) 12

(a) Address translation of a 2MB-page PDE.

VA GT-PDE Index Block Block Page Offset
®) Index (5) Offset (5) (12)
Block Selection
GT-PDE Bitmap (64)
PA Physical Page Base Address / Bitmap Block Page Offset
Slice Base Address (29) Offset (6) Offset (5) (12)

(b) Address translation of a 4MB-page GT-PDE.

Figure 40: Address translation using GT-PDE-4MB.
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kept unchanged in the translated physical address. Siecdefault size of each page directory
table is 4KB, it can hold 256 GT-PDEs instead of 512 regular DB avoid changing the size

of the page directory table (4KB) and the size of the mappedangnange (1GB), each GT-PDE

entry needs to map a 4MB superpage instead of a tradition8 2perpage. Based on GTSM, a
4MB superpage is mapped to a 8MB memory slice. Since each myestice has 64 B-blocks, the

size of each B-block is 128KB.

Figure40Q(b) shows the address translation of a 4MB-page GT-PDE. Owlypper 8 bits of
the PDE index are needed to index a GT-PDE entry among 256[EEPSince each B-block is
128KB, only the low 5 bits of the PTE index are used as blockedid kept unchanged during
address translation. The remaining 5 bits between GT-Pd&xiand block offset are treated as
block index. Block index is translated using the block seétecbitmap of the selected GT-PDE.
Same as a 2MB-page PDE, the physical page base address fielBBP®E entry is 31 bits.
Because the mapped slice is aligned at an 8MB boundary, th lmtg of the physical page base
address field are always zeros and ignored in the translégsigal address. To translate block
index K (0-31), the block selection bitmap is scanned to findAftl selected bit, whose position
in the bitmap (0 - 63) indicates the B-block that the virtualdid is mapped to.

Because at least half of the B-blocks in the memory slice neédve no retired pages, Fig-
ure 41 shows the probability of constructing a valid mapping fdfedent percentages of usable
B-blocks, which are assumed to be randomly distributed in argnA threshold of 60% is enough
for most memory slices (93.3%) to find a valid mapping. Becaudg half of the B-blocks in a
slice are used in GTSM, the memory capacity that can be mappbdGT-PDE is 46.6% with
60% B-blocks usable. Recall that the remaining memory capaaih be mapped as traditional

pages.

5.4.3 Tolerating More Retired Pages

There is a trade-off between B-block size and number of kfogages allowed (robustness of
mechanism). The B-block size used by a 4MB-page GT-PDE is 12&sBhown in Figure37,
to tolerate more retired pages, a smaller B-block size shoeldhosen (to ensure enough usable

B-blocks exist to find a valid mapping).
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Figure 41: Probability to construct a valid GT-PDE mappiog different percentages of usable
B-blocks.

When the bit of the block selection bitmap represents a smBHelock, the format of the
GT-PDE is not changed and the size of the superpage repeeseyta GT-PDE is reduced. To
avoid changing the size of the mapped memory range (1GB),abe directory table needs to
be expanded to hold more GT-PDEs. This change to use largssfagy., 16KB) as the page
directory table is feasible. Some architectures, like ARNMgady have this capability.

I limit the B-block size to 128KB, 64KB or 32KB. Tabl8 shows the basic parameters of
GT-PDEs. Supporting 16KB or smaller B-blocks requires clanghe GT-PDE format to have
more bits for the physical page base address. Although stipp@56KB or larger B-block size
is possible, it is not considered for two reasons. First,KEB@®r larger B-block size implies
tolerating fewer retired pages:(1%), which is lower than the goal set for this work. Second, th
size of the page directory table will be smaller than 4KB aaddme partially filled (i.e., wasted
space) assuming a minimum page size of 4KB.

The translation process of GT-PDE with a smaller B-block gz@milar to a 4MB-page GT-
PDE. However, with a smaller B-block size, fewer address d¢sused as block offset. At the
same time, the page directory table is expanded to hold m&+B[@ES. More address bits are

used to locate the GT-PDE in the page directory table.
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GT-PDE Mode| B-block Size| Page Directory Table SizeRetired Page Threshold
4MB-page 128KB 4KB 1.6%
2MB-page 64KB 8KB 3.1%
1MB-page 32KB 16KB 6.1%

Table 8: Parameters of GT-PDEs with different B-block sizes.

5.4.4 Mixing Traditional Pages and Superpages

When GT-PDE is enabled, a page directory table can store d@hpége PDEs and GT-PDEs at
the same time. Each 4KB-page PDE has the base address thist tpdine page table of PTEs.
Each PTE will further point to each mapped 4KB pages. EachPGE directly points to the
physical base address of the mapped memory slice. 4KB-pags R&ed zero padding to fill the
unused space if the page directory table is expanded. F#fusdows how to decode addresses
using GT-PDE for various B-block sizes (see explanationsvipelWhen GT-PDE is enabled, the
page directory table is accessed at aligned 16-byte gnatyul&imilar to a traditional 2MB-page
PDE, the 7th bit of the accessed 16-byte is utilized to datenvhether a PDE is a 4KB-page PDE
or a GT-PDE. If the 7th bit is zero, the PDE should be decodeal &$B-page PDES, otherwise
the PDE should be decoded as a GT-PDE.

When B-block size is 128KB, every 16 bytes of the page direcajetcan store either two
4KB-page PDEs or one GT-PDE. There is no padding needed. WhéocR-&ize is 64KB, the
size of the page directory table is doubled. To ensure 4KB: [PADES are evenly distributed in the
page directory table, each 4KB-page PDE needs to be paddedmvg-byte zero padding. When
B-block size is 32KB, each 4KB-page PDE needs to be padded wihlg/2 zero padding. The
storage overhead of the padding is small because the donstmage cost of 4KB-page PDEs
comes from their PTEs. When B-block size is 32KB, if the first asagf a 4KB-page PDE points
to the bottom-half 16 bytes, which are the zero padding, arskaccess to the top-half 16 bytes is
needed. Similar to the storage cost, the performance oaerbigthe extra access is small because

the dominant address translation overhead is from acagBIi&s.
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Figure 42: Decoding GT-PDE.
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Figure 43: P-GT-PDE and its construction.
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5.4.5 Compressing GT-PDEs

Recent research showed that TLB entries with similar coateah be coalesced to store more
address translations in the TLRZ, 41]. Similarly, it is possible to halve the size of the page
directory table by coalescing every two adjacent GT-PDEhgure 43(a) shows a Paired GT-PDE
(P-GT-PDE) format to support GT-PDE coalescing. To coadds® GT-PDEs with P-GT-PDE,
two GT-PDEs use memory slices in a smaller range (128MB). @yow 6 bits of physical page
base address are different for the two slices. Also, the tWd®GESs need to have the same block
selection bitmap. Therefore, the low 6 bits of physical pagse address of the second GT-PDE
can be stored in the unused field (bit 15-20) of the first GT-R®trm a P-GT-PDE. As shown
in Figure43(a), when a P-GT-PDE is accessed, it is simple to restoredhlesced GT-PDEs by
masking the Offset-B field as zeros and overriding the O#fsgéld with the value of the Offset-B
field.

Figure43(b) shows the matching process to construct P-GT-PDES, Bissphysical memory
is divided into multiple aligned 128MB memory chunks. Eabluk is further divided into mem-
ory slices. Based on the distribution of retired pages, efich Bas a 64-bit Block Availability
Vector (BAV), which indicates which B-blocks of the slicesndae used in the P-GT-PDE map-
ping. If a B-block is usable, the corresponding bit in BAV it &e1, otherwise it is setto 0. A

matching algorithm finds memory slices that should be paired

Algorithm 5.1is my matching algorithm to find GT-PDE pairs to construct PDES. First,
for each memory chunk, a BAV can be constructed for each mesime. A 128MB memory
chunk has 64 2MB-size slices or 32 4MB-size slices. Then, BA¢sarted based on the number
of usable B-blocks in ascending order. The algorithm segaignscans the remaining BAVS to
find two unprocessed BAVs that can be paired using the bit&NB. If the result has at least 32
bits set, the slices can share a valid block selection bitrivagiching continues until there are no
more unprocessed BAVs. A special case is a memory slice wddek not have any retired page,
whose top half and bottom half slices can®af-Paired For a Self-Paired P-GT-PDE, the block

selection bitmap is all ones.

Because the matching algorithm is done locally for each 128WBnory chunk, the time

complexity of the algorithm is proportional to memory caipacl tested my serial version of the
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Algorithm 5.1 Construction of P-GT-PDEs in a Memory Chunk
Parameters:
By...By: agroup of BAVs

Initialize the state of each BAV tdnprocessed
Sort BAVs based on the number of usable B-blocks of each BAV in ascerorder.
Any BAVs with all B-blocks usable are marked 8slf-Paired
while the number ofinprocesse®AVs > 2 do
Scan the BAV list to find the firdUnprocesse®AV B;.
for each remaininginprocesse@®AV B; do
Bmerged =B; bitwise AND Bj.
if the number of usable B-blocks &%,,¢,4cq > 32 then
Record(B;, B;) as a valid P-GT-PDE.
Mark B; and B; asPaired
Go to find next unprocessed BAB; to process.
end if
end for
Mark B; asDiscarded
end while

algorithm on a 2.8GHz Intel Xeon E5-2680v2 processor. lesaless than 0.1 second to find all
BAV pairs for 128GB memory.

5.4.6 Hardware Implementation

To support GTSM, three hardware changes are introducest, Rinew 64-bit Gap-Tolerant Page
Table Control Register (GTPTCR) is used to manage the parantét&BSM. Second, the hard-
ware page walker is extended to support loading missed Tliiesrfrom GT-PDEs. Third, the
PDE cache in the MMU is extended to hold 16-byte GT-PDEs. Negtdescribe these hardware
changes in detail.

As shown in Figured4(a), GTPTCR has three fields: GT, P and BS. GT indicates whether
GTSM is enabled. The page table of a process can use both 4¢@8RIaE and traditional 2MB-
page PDE. Alternatively, the page table of a process canatbelikB-page PDE and GT-PDE. To
avoid adding an extra flag in the PDE, the page table of a psamemot use both traditional 2MB-
page PDE and GT-PDE. The P field indicates whether P-GT-PD#&abis used. The BS field
indicates the B-block size. If BS ts, the corresponding B-block size38 x 4KB. The remaining

unused bits in GTPTCR are reserved for future extension.eBshows the PDE modes that are
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defined by the GTPTCR.

GT | P | BS | B-block Size PDE Mode
0O |0| O - 2MB-page PDE
1 0| 3 32KB 1MB-page GT-PDE
10| 4 64KB 2MB-page GT-PDE
1 /0|5 128KB 4MB-page GT-PDE
1 /1| 3 32KB 2MB-page P-GT-PDE
1 |1 4 64KB 4MB-page P-GT-PDE

Table 9: List of all PDE modes in GTPTCR.

When a GT-PDE/P-GT-PDE is accessed, the hardware page tallderweeds to translate the
block index to a bitmap offset using the block selection pmAs shown in Figurd4(b), each
PDE cache entry needs an extra 15-byte storage to storedtle $#lection bitmap (8 bytes) and
byte-granularity prefix sums (7 bytes). When a GT-PDE/P-®ERs loaded into a PDE cache
entry, byte-granularity prefix sums are calculated and eddb reduce translation latency. As
shown in Figure44(b), byte-granularity prefix sumg;, is the accumulated number of 1s of the
firsti + 1 bytes of the block selection bitmap. Similar bit-countingit is already implemented
in modern processors and can be reused to reduce hardwdesmergation cost. For example,
x86-64 POPCNT instruction counts the number of 1's of a 64dgister in 3 cyclesS;, which
is the number of 1s of the whole block selection bitmap, isstoted because it is never used in
address translation.

For each address translation using GT-PDE/P-GT-PDE, tkedmanularity prefix sums are
compared with the value éfockindex. The (i + 1) byte of the block selection bitmap contains
the matched bit position if; > blockindex and S;_; < blockindex. After the matched byte is
determined, bit-granularity prefix sums are calculatedefach bit position of the matched byte.
The eight bit-granularity prefix sums are compared with thlee ofblockindex — S;_1 + 1, the
bit position of the matched bit-granularity prefix sum is translated bitmap offset. Also, address
translation using the block selection bitmap can be doneauralfel with other operations that are

needed to fill a TLB miss (e.g., validating the access rights@superpage). | assume that loading
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Figure 44: Hardware implementation of GT-PDE.

a TLB entry from a GT-PDE takes an three more cycles than &itadl PDE. | also carried out a
sensitivity study on this penalty (see Sectmf).

In this work, | assume that the baseline processor has atBgfDE cache to store recently-
accessed PDES§|[6]. The total storage overhead to support GT-PDE is 488 bytes:

8 bytes (GTPTCR) + 32 x 15 bytes (PDE cache entries).

To minimize the changes to the MMU, my design does not changd LB hierarchy. The
hardware page table walker is enhanced to support GTSM. Wddress translation is completed,
a 4KB TLB entry is inserted into the TLB hierarchy for the tstated address. Early x86-64
processors have also used a similar method to supportitraalitsuperpages. Alternatively, the

TLB hierarchy can be enhanced to provide native support TGPGE.

5.4.7 Software Support

To enable GTSM, the OS needs to support functions to 1) caefi@IrPTCR; 2) determine

whether to use traditional or GT-PDE superpages based aettieg of GTPTCR; 3) track mem-

ory slices that can be mapped as GTSM superpages; and, ) arxl release GTSM superpages.
To track memory slices that can be mapped as GT-PDE supex;mBAV array can be used to

store the usability information of B-blocks. Each memorgeihas a dedicated 64-bit BAV. When
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the B-block size is 128KB, the memory storage cost of the BAdyais 128KB for 128GB main
memory. If the B-block size is halved, the memory storage cbgte BAV array will be doubled.

When the OS boots, it initializes the BAV array using a faulipned pages with errors. The
fault map can be either stored in a permanent storage orroctes with memory built-in self-test
(mBIST) during boot. The OS needs to keep the BAV array updayedsing information from
the kernel physical page allocator (e.g., Linux Buddy Alkoca Once a memory page of a B-
block is allocated, the corresponding bit of the BAV needbécset to 0. Once all the memory
pages of a B-block are freed, the corresponding bit of the BA®ds to be setto 1. A memory
slice can be used for GT-PDE memory allocation if more thdhdfats B-blocks are usable. To
avoid scanning the BAV array for each GT-PDE memory allacgtall BAVs that can be used for
GT-PDE allocations can be maintained in a dedicated list.

Unlike GT-PDE, P-GT-PDE should be used only for processdis vary large memory foot-
prints, and compressing GT-PDEs can further reduce TLB pesslty. Because the matching
algorithm described in Sectidn4.5needs to be applied to the BAV array to find BAVs that can be
paired, it is more expensive to make memory allocation wHBTPPDE than GT-PDE. To utilize
P-GT-PDE, physical memory should be allocated at the eaalyesof the process lifetime and
released when the process is completed.

In this work, | assume that all processes use the same B-bipek $0 support per-process

B-block size, the OS needs to track BAVs at multiple granti&si

5.5 EVALUATION ENVIRONMENT

5.5.1 Configuration

| use PTLsim §6], a cycle-accurate simulator, for performance evaluatidre simulation param-
eters are detailed in Tabl®. The CPU is configured as a 2GHz out-of-order processor cdle wi
a 512KB L2 cache and a 2MB L3 cache slice. After L3 cache, tieee256MB DRAM cache
(32MB quota per core) before the PCM main memoty][ Main memory capacity is 128GB

PCM with 80ns access latency.
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To evaluate different page table designs, | extended PThstma TLB performance model.
The L1 DTLB has 64 entries for 4KB pages and 32 entries for 2MBgs. The L1 ITLB has 64
entries for 4KB pages. The unified L2 TLB has 512 entries fahlgKB and 2MB pages. L1 TLB
miss penalty is 7 cycles if it hits in L2 TLB.

Besides the two-level TLB, a MMU cacha8][is modeled. The MMU cache has 32 PDE/GT-
PDE cache entries, 32 PDPE cache entries and 2 PML4E caadieseitithough the number of
entries in the PDPE is larger than usual, | increased it tacged LB miss penalty for workloads
with large memory footprints, as suggested in previous W8yrg]. The MMU cache is indexed by
virtual address and is concurrently looked up with L2 TI3 [| assume 5 cycles for the hardware
page walker to access a PTE/PDE/PDPE/PMLA4E not includiegykles to load the entry from
the cache/memory hierarchy. | assume that it takes an exiyal8s to access a GT-PDE due to
the address translation latency using the block selecitomalp. The hardware page walker is not
speculative (all configurations).

Since the B-block size is larger than a traditional page of 4K&xperimented with 32KB,
64KB and 128KB), the selection of B-blocks in a memory slice megligible impact on perfor-
mance. For L1 and L2 cache, if a virtual page is mapped toréiffieB-blocks, data at a given
virtual address is still mapped to the same cache set. Tleetgal of different B-blocks only
affects the value of cache tags, the cache replacementrsssgjisekept unchanged. The memory
pages for the page table are pre-allocated to simplify thelsition process. A similar reservation-
based allocation policy has been used to allow MMU cacheesscalg p].

| use a Monte Carlo method to calculate the effective capatityfferent GT-PDE/P-GT-PDE
designs with different percentages of retired pages. Toaedhe error introduced by the Monte
Carlo method, | modeled randomly-distributed retired pages large physical memory sample
(16PB capacity). | use Intel RdRand instructi@®|[to generate different percentages of retired

pages with a uniform random distribution.

5.5.2 Workloads

Since the work studies address translation overhead afadihemory, only memory-intensive

benchmarks with large memory footprints are consideredelthese applications because they are
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CPU Core | 2GHz, out-of-order, 32KB L1 I/D
L2 Cache | 512KB, 8-way, 64-byte line size,
8-cycle latency
L3 Cache | 2MB per core, 32-way,
64-byte line size, 20-cycle latency
DRAM Cache| 256MB total, 32MB per core, 32-way,
256-byte line size, write-back,
60-cycle (30ns) read latency,
next line sequential prefetcher
L1 DTLB 64-entry 4-way 4KB page
32-entry 4-way 2MB page
L1ITLB 64-entry 4-way 4KB page
L2 TLB 512-entry 4-way 4KB/2MB page
7-cycle latency
MMU Cache | 32-entry 4-way PDE/GT-PDE cache

32-entry 4-way PDPE cache
2-entry PML4E cache

5-cycle PTE/PDE/PDPE/PMLAE access

8-cycle GT-PDE access

Main Memory

128GB PCM, 80ns read latency.

Table 10: System settings.
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becoming prevalent and suffer the most from address triamslaverhead. | choos8UPS[1§],
Cannealfrom PARSEC 9] and 7 benchmarks from Problem Based Benchmark Sbfe GUPS

is a popular benchmark to test random memory access periecen&annealis a cache-aware
simulated annealing kernel to minimize the routing cost ohig design.Dict is a benchmark to
test performance of batch insertion, deletion and searetatipns with a dictionary data structure.
BFSruns a breadth first search in a directed grapétCoverfinds an approximate solution to the
NP-hard set cover problerMST finds the minimum spanning tree (MST) in an undirected graph.
SPMVis multiplication between a sparse matrix and a dense mattetchingfinds a maximal
matching in an undirected grapiMIS finds a maximal independent set (MIS) in an undirected
graph. With my current simulator, only single-threaded kimads are evaluated. Multi-threaded
workloads should have similar results, given there will kerelarger memory requirements by
multiple applications or threads running concurrentlye inessure on the cache and sizes of page

tables tend to be even bigger.

Name | Memory Read PK| TLB Miss PKI | Memory Footprint(GB)
4KB | 2MB | Touched Total
GUPS 17.9 179 | 134 4.0 4.1
Canneal 24.4 21.2 2.9 3.7 4.0
dict 23.1 21.4 0.0 0.7 6.5
BFS 93.2 88.1 4.4 14 7.4
setCover 60.4 494 | 0.0 0.9 7.8
MST 50.0 43.2 0.0 1.0 13.0
SPMV 128.7 113.5| 0.0 1.7 7.3
matching 1191 109.7| 0.0 0.9 6.2
MIS 144.4 124.3| 0.0 1.3 7.3

Table 11: Simulated workloads and PKIls.

For the graph benchmarks, | use R-MAT graph] [as the input. FoDict, | use an uniform
random distribution as the input. For each workload, | skgpthe initialization phase and simu-

lated 2 billion instructions. All benchmarks are 64-bities, compiled with gcc 4.1.2. Takld

84



shows the number of memory reads per 1000 instructions (HKB Miss PKI after a 512-entry
L2 TLB (both 4KB pages and 2MB pages), and memory footprifiteazh workload (both the
total footprint and the size of memory touched by the 2B-cgateulation | ran). Most workloads
can only touch a small portion of their total memory footgsiduring the simulation interval. A
512-entry 2MB-page L2 TLB can provide enough memory cove(agd). Most workloads have
negligible TLB misses with ideal 2MB superpage.

Since accessing PTEs is a major source of address transtateshead for workloads with
large memory footprints, Figuré5 shows the breakdown of PTE accesses based on whether the
PTE is accessed in memory, LLC, or L2 cache. | assume that tieadl# is the fastest cache large
enough to cache PTEs; essentially, caching PTEs in the Lecamuld cause significant adverse
cache pollution and severely harm performance. The breakad PTE accesses is an inherent
characteristic of each workload, and is sensitive to the argrfootprints of the workloads. The
workloads that | studied can be divided into two categorlé® slower page table access category
are those applications that have a large portion (i.e., ri@ne 10%) of PTE accesses to memory,
given that the access to memory is 7.5 times slower than IGIGPS Cannea) dict andBFS The
second category are those applications that have fastertdigmccess PTs, with few PTE access to

memory:setCoveyMST, SPMV, matchingandMIS.
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Figure 45: PTE access breakdown.

5.6 RESULTS

This section presents simulation results of GT-PDE/P-GERuperpages. | show how perfor-
mance is improved in comparison to traditional 4KB pagedsd ahowldeal case, that is, tradi-
tional 2MB superpages with no retired pages (in other wandserrors occur in memory). Tra-
ditional 2MB superpage is only suitable for memory wheré@edtpages are rare. In the figures,
| use GT-PDEXMB to denotexMB-page GT-PDE. Similarly, | use P-GT-PD®4B to denote
xMB-page P-GT-PDE.

5.6.1 TLB Miss Penalty

Since my proposed design does not change the TLB hieratdhgsithe same TLB miss PKI as
the traditional 4KB page baseline. As a superpage tabledyr@ir-PDE does not need to access a
PTE for each page table walk, which significantly reducediti® miss penalty. Figurd6 shows
the average TLB miss penalty of the traditional 4KB page lasend GT-PDEs. Compared

with Figure45, strong correlation between PTE access breakdown anddbetren of TLB miss
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Figure 46: Average TLB miss penalty.

penalty is observed. F&8UPS Cannea) dict andBFS average TLB miss penalty reduces by 30-
90 CPU cycles because a significant portion of PTEs are act&sse memory for the traditional
4KB page baseline. For the workloads | studied, the averadgenhiss penalty of GT-PDE for
1MB, 2MB, and 4MB are all similar because the page tables fitérstome cache level.

5.6.2 Performance

Figure 47 shows IPC improvement over the traditional 4KB page baselifhe graph shows
the improvement for GT-PDE with different superpage sized ldeal superpages (i.e., super-
pages with no retired/faulty pages). Similar to Figd& strong correlation between PTE access
breakdown and IPC performance improvement is observed GE#RS Cannea) BFSanddict,
significant performance improvement (10% to 30%) is obsewih GT-PDEs because PTEs are
no longer accessed from memory. BetCover MST, SPMV, matchingandMIS, moderate per-
formance improvement is observed with GT-PDE because theddoads access PTEs that are
mostly cached in the L2 and the LLC; the address translati@nh@ad is not significant enough

to cause a large difference in the IPC, which is approximadétyto 8%. MIS has the lowest
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Figure 47: IPC normalized to traditional 4KB page baseline.

performance gain (2.9%)MIS has 99% PTE accesses to the L2 cache, and is less sensitive to
address translation overhead. On average, GT-PDE-4MB&ehi95.8% performance of Ideal.
The 4.2% overhead mainly comes from the extra 3 cycles tslaand access GT-PDE entries
from the cache hierarchy. For the workloads that | studiee,|IPC performance of GT-PDE for
1MB, 2MB, and 4MB are all similar because they use the same asltir@nslation procedure and
have similar TLB miss penalty. Due to the same reasons (bathtfie L2 or LLC), even though

the paired schemes (P-GT-PDE, not shown) reduce the palgesiab by 50%, they have similar
performance as GT-PDE. The performance advantage of aesmalje table size is demonstrated

in Section5.6.4

In my default configuration, the L2 cache is the highest légatache the page table. | also
evaluated the configuration that PTEs can be cached in theatliec For the workloads that |
studied, the performance change is very smalD(1%) compared to my default configuration for
the traditional 4KB pages. On the other hand, there is amé*% performance gain on average if

GT-PDEs can be cached in the L1 cache instead of only in theatBe
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Figure 48: Superpage percentage of different GT-PDEs.

5.6.3 Memory Capacity Used as Superpages

Figure48 showssuperpage percentagtat is, the percentage of memory capacity that can be used

as superpages using different page table formats. Using superpages is beneficial due to the

speedup achieved (recall that superpages do not need ¢odeahe last level of page tables). Note

that the remaining non-retired memory pages can still bd ase mapped using traditional 4KB-

page PDEs. For traditional 2MB superpages, the percentagkly drops to 0%. For GT-PDEs,

the superpage percentage to utilize GT-PDEs drops to 50Puimdteased retired pages, because

each memory slice is likely to have at least one retired p&dken there is a retired page, only

50% of B-blocks of a memory slice can be used in the GT-PDEs.haws in the figure, to have

50% superpage percentage, the thresholds of retired pagaklde 1.4%, 2.8% and 5.5% for

B-block sizes of 128KB, 64KB and 32KB, respectively. The supggpercentage of P-GT-PDE-
2MB (paired approach) is bounded from below by GT-PDE-2MB above by GT-PDE-1MB.
Compared to GT-PDE-2MB, the smaller B-block size allows P-®ERMB to tolerate more

retired pages while maintaining the same page table size.
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5.6.4 Sensitivity to Problem Size

Figure49 shows IPC ofGUPSwith different problem sizes and page table formats. | chdos
evaluateGUPSbecause it is a common benchmark in scalability studiegngifaat its memory
footprint varies with problem size from 64MB to 64GB. As shoinrthe figure, the performance
of traditional 4KB pages is sensitive to the problem size. WMihe problem size is increased from
64MB to 8GB or more, IPC reduces by more than 50%. This is dua¢oreasons. First, the
limited capacity of the dram cache (256MB) is less effectmeviery large problem sizes. Second,
the address translation overhead is significantly incceastn a larger problem size. On the other
hand, the performance advantage of superpages is sigtijiaareased with lager problem size.
When the problem size is 8GB, the IPC of GT-PDE-4MB superpade.& better than 4KB page.
The performance of GT-PDEs with different B-block sizes shadifference when the problem size
is very large. When the problem size is 64GB, GT-PDE-4MB is 8b&ter than GT-PDE-1MB
because of the smaller size of the page table. Since the adyantage of P-GT-PDE is to reduce
the size of the page table, this also implies that P-GT-PQtlshonly be used for processes with

very large memory footprints.

5.6.5 Sensitivity to GT-PDE Address Translation Latency

Figure50 shows the IPC of GT-PDE-4MB assuming different translatadencies of GT-PDEs.
All results are normalized to the default 3-cycle extranate As shown in the figure, the per-
formance overhead is mostly consistent among the workleadsis less than 1% if GT-PDE

translation latency is 6 cycles instead of 3 cycles.

5.6.6 Sensitivity to GT-PDE Cache Size

Figure51 shows the IPC improvement of GT-PDE-4MB with a larger PDEhead he results are
normalized to the 32-entry PDE cache baseline. As showndrigjure, the performance is not
very sensitive to the size of the PDE cache (the range of thei¥is quite small); 32 or 64 entries
are enough for the PDE cache. In fact, the maximum improvéwfemaking cache sizes much

larger is less by approximately 2% on average (see last gobfithe figure).
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Figure 50: IPC of GT-PDE-4MB with different translationeaties of GT-PDEs normalized to a

default latency of 3 cycles.
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cache.

5.6.7 Comparing to TLB Coalescing

TLB coalescing is a technique which can substantially iaseeTLB reach by coalescing multiple
adjacent PTEs into a single TLR2, 41]. Note that for my target workloads, that is, those with
large memory footprints, the gain of TLB coalescing is nos@sificant as for smaller applica-

tions.

Figure52 shows the performance comparison between TLB coalescit@>d8nAPDE. | eval-
uated the configuration that the 512-entry L2 TLB supportsaBd 32x TLB coalescing, which
merges adjacent 8 PTEs and 32 PTEs, respectively. In ordmmoid favoring my own scheme,
| assume no extra CPU cycles to load L2 TLB entry with TLB coaileg. As shown in the fig-
ure, the performance gain with TLB coalescing is virtualbnrexistent because TLB reach is still
limited even with 32x TLB coalescing considering workloadth large memory footprints. For
address translations that are missed in the TLB, the dompenfidrmance overhead is from ac-
cessing PTEs. To avoid address translation becoming arpeafae bottleneck, it is critical to

eliminate PTE accesses by supporting superpages.
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Figure 52: IPC of TLB coalescing and GT-PDE normalized tditranal 4KB page baseline.

5.7 CONCLUSION

Superpages are critical for workloads with large memorygdaots. Traditional 2MB superpages
are not suitable for memory with retired pages, becauseergage must be mapped to large con-
tiguous physical memory. | proposed gap-tolerant seqalemtpping (GTSM) to allow mapping
a superpage to memory with retired pages. | proposed GT-Piéhwas a block selection bitmap
to support GTSM. | also proposed P-GT-PDE, a variant of GEPBhich can reduce the size of
the page table by 50%.

The proposed scheme is also applies to other memory and hohgorid memory. When
applied to a DRAM-only system, the performance results ateeband are presented i2(Q)].
Because the evaluated DRAM/PCM hybrid memory system in thEslassumes a faster 256MB
DRAM cache (30ns) than the commodity DRAM (50ns). Anotheredtédhce is that in this thesis,
| assumes that the L2 cache is 512KB per core which is alseddhgan the 256KB L2 inZ0].
Since the page table is cached in the DRAM cache, the evall@&d/PCM hybrid memory
system has lower TLB miss penalty than a DRAM-only system. éxample, the average TLB
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miss penalty of the GUPS workload is reduced to 113 cycles ft87 cycles. For all workloads,
the average IPC improvement of GT-PDE-4MB over the tradél@KB page baseline is reduced
t0 12.7% from 19.0% . Though the absolute performance géassssignificant for a DRAM/PCM
hybrid memory system than a DRAM-only system, the proposedPQE page table format can
close the performance gap between the 4KB page and the iNd&lsRperpaging (i.e., with no
retired pages) for both main memory configurations. In tladiated DRAM/PCM hybrid memory
system, the 4MB-page GT-PDE achieves 95.8% of traditionaB 2Mperpaging, while tolerating
memory faults. In the evaluated DRAM-only system, the 4AMB@&J-PDE achieves 96.8% of
traditional 2MB superpaging.
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6.0 SUMMARY AND CONCLUSION OF THE THESIS

With cloud computing and the rise of big data, there is an nirgeeed to build large-capacity
energy-efficient main memory systems. A DRAM/PCM hybrid meyngystem is a promising
solution to achieve this goal. In my research work, | addréddsvo challenges that are unique
to hybrid memory systems with non-volatile memory. The foisallenge is thdimited PCM
write bandwidth which is a potential performance bottleneck for hybrid meyrnsystems. The
second challenge is theon-contiguous physical memodye to retired memory pages. Due to
limited PCM write endurance, some memory pages will ineWtadontain uncorrectable errors
and will be retired by the OS. These retired memory pagesergaisable “holes” in the physical
memory, which makes it difficult to find enough contiguous roeyrto form superpages. Without
the support of superpages, workloads will incur signifigaerformance overhead, specifically for
memory-intensive workloads with large memaory footprimid aandom access patterns. This thesis
proposes three computer architecture techniques to adithesbove two challenges.

First, this thesis studied the mapping between programuidtstand PCM cells to improve the
effective write bandwidth of PCM. It characterizes the dittion patterns of modified data bits
inside memory requests: cyclical and cluster patterns. Base¢he characterization, | observed an
unbalanced distribution of modified data bits among PCM chipsh significantly increases PCM
write time and hurts effective write bandwidth. This thesisposes new XOR-based mapping
functions to evenly distribute modified data bits to PCM cetlups which significantly improves
PCM write throughput. The proposeduble XOR mapping (D-XOR¢duces PCM write service
time by 45% on average, which increases PCM write throughpaitd<. As error correction (re-
dundant bits) is critical for PCM, | also consider the impdatealundancy information in mapping
data and error correction bits to cell groups. To avoid anailarice distribution of modified bits

between data bits and redundant bits, a bit swap functiorojsgsed to extend D-XOR for PCM
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with redundant bits. An overall 51% reduction in write seevtime with D-XOR and swapping

leads to a 12% average IPC improvement over Flip-N-Write fBC main memory with ECC.

Second, this thesis studies DRAM compression to hold moreifradddata in DRAM and
reduce write traffic to PCM. This thesis proposededta-compressioscheme that is specifically
designed to compress only modified data for hybrid memorye pitoposed delta-compressed
scheme has a much higher compression ratio than traditnealory compression schemes. To
improve delta-compression’s efficiency and reduce itslued, this thesis also proposedective
and predictive compressidhat avoids unnecessary delta-compression operaticasoltescribes
a complete example of how to incorporate delta-compressilBiM’'s MXT memory compression
architecture when used for DRAM cache in a hybrid main meméiyr the fourteen different
memory-intensive workloads that | evaluated, the prop&¥@AM delta-compression reduces, on
average, the number of PCM writes by 54.3% and improves IPfonpeance and system energy

consumption by 24.4% and 11.0%, respectively.

Third, this thesis studies a new memory page mapping scheomnstruct superpages from
non-contiguous physical memory The thesis shows that superpages are critical for workload
with large memory footprints and simply increasing the sizéKB-page TLB is not enough. The
thesis describes a neyap-tolerant sequential mappintipat includes (a) a new page table format,
and (b) an access mechanism to support superpages for nogemus physical memory. The
thesis also describes a new page table compression schemusdis (a) a variant of the new page
table format to further reduce the page table size by hatf (Bha matching algorithm to construct
the compressed page table. In comparison to an ideal memtimguivany retired physical pages,
the proposed gap-tolerant sequential mapping, with tepages, achieves nearly 95.8% of the

performance of traditional 2MB superpaging.

There are several possible future research opportunigigsra the work of this thesis. First,
this thesis only evaluates DRAM/PCM hybrid memory systemseré&lare other promising non-
volatile memory technologies to be used in hybrid memoryesys. Resistive Random-access
Memory (ReRAMiitilizes the change of the resistance across a dielectiid-state material to
represent data. ReRAM shares the same drawbacks as PCM: limitecbandwidth and write
endurance. Similar to PCM, the write service time of ReRAM igettd by the distribution of

modified bitsp4]. Additional research is required to identify whether wa egply the proposed
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techniques in this thesis to DRAM/ReRAM hybrid memory systeArsother promising research
direction is new virtual memory systems for hybrid memorgteyns. Current virtual memory
systems are only designed for DRAM-only systems. Futureilybemory systems are expected
to have much larger capacity, and have mechanisms to teler@atory errors and support efficient
data movement among different types of memories. New difficietual memory designs are

needed to address these requirements and support futuid hdmory systems.
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