
MITIGATING LIMITED PCM WRITE BANDWIDTH AND

ENDURANCE IN HYBRID MEMORY SYSTEMS

by

Yu Du

B.S. in Computer Science, Shanghai Jiao Tong University, 2001

M.S. in Computer Science, Shanghai Jiao Tong University, 2004

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2015

UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Yu Du

It was defended on

April 8, 2015

and approved by

Prof. Rami Melhem, PhD, Department of Computer Science

Prof. Bruce R. Childers, PhD, Department of Computer Science

Prof. Daniel Mosśe, PhD, Department of Computer Science

Prof. Hai Li, PhD, Department of Electrical and Computer Engineering

Dissertation Director: Prof. Rami Melhem, PhD, Department of Computer Science

ii

MITIGATING LIMITED PCM WRITE BANDWIDTH AND ENDURANCE IN HYBRID

MEMORY SYSTEMS

Yu Du, PhD

University of Pittsburgh, 2015

With the rise of big data and cloud computing, there is increasing demand on memory capacity

to solve problems of large sizes and consolidate computation tasks. For large capacity memory

systems, DRAM is a significant source of energy consumption. Non-volatile memory, such as

Phase-Change Memory (PCM), is a promising technology for constructing energy-efficient mem-

ory. Unlike DRAM, PCM has negligible background (static) power and allows high density pack-

aging. But PCM also has limited write bandwidth and write endurance. Hybrid memory systems

have been proposed to combine the high-density and low standby power of PCM with the good

write performance of DRAM.

This thesis addresses two challenges which are unique to hybrid memory systems. The first

challenge is thelimited PCM bandwidth, which can become a performance bottleneck. The second

challenge is thenon-contiguous physical memorydue to retired memory pages. Since PCM cells

have limited write endurance, it is inevitable to graduallyhave increased number of uncorrectable

errors during the lifetime. Memory pages that have detectederrors are normally retired by the OS,

which create unusable “holes” in the physical memory. Theseunusable holes make it difficult to

construct traditional superpages, which can incur significant performance overhead.

In this thesis, I propose three solutions to address these two challenges. First, I observed that an

unbalanced distribution of modified data bits among PCM chipssignificantly increases PCM write

time and hurts effective write bandwidth. I propose new XOR-based mapping schemes between

program data bits and PCM cells to improve PCM write throughputby spreading modified data

bits evenly among PCM chips. Second, I propose a compressed DRAM cache scheme to improve

iii

DRAM effective capacity and reduce write traffic to PCM. A new adaptive delta-compression

technique for modified data is used to achieve a large compression ratio. Third, I propose Gap-

tolerant Sequential Mapping, a new memory page mapping scheme, to construct superpages from

non-contiguous physical memory. The proposed three solutions have simple and practical designs,

and can be easily adopted in future hybrid memory systems.

iv

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Goal . 1

1.2 Overview of the Proposed Approaches. 3

1.3 Thesis Organization. 4

2.0 BACKGROUND AND RELATED WORK . 5

2.1 Phase Change Memory. 5

2.2 Virtual Address Translation Overhead and Superpage. 7

2.3 Related Work . 9

2.3.1 Phase Change Memory. 9

2.3.2 Hybrid Main Memory . 9

2.3.3 Memory Compression. 9

2.3.4 Memory Error and Page Retirement. 10

2.3.5 TLB and Superpage. 10

3.0 BIT REMAPPING FOR BALANCED PCM CELL PROGRAMMING 12

3.1 Problem Statement. 12

3.2 Distribution of Modified Bits. 15

3.2.1 Distribution Patterns. 15

3.2.2 Distribution Imbalance of Modified Bits. 18

3.3 Proposed Solution: Bit Remapping. 19

3.3.1 XOR Mapping Function. 19

3.3.2 Support for Multiple Cell Group Sizes. 20

3.3.3 Support for PCM with Redundant Bits. 23

v

3.3.4 Support for Intra-line Wear Leveling. 25

3.3.5 Hardware Implementation. 25

3.4 Evaluation Environment. 26

3.4.1 Configuration. 26

3.4.2 Workloads . 28

3.5 Results. 29

3.5.1 Mapping for Data Bits. 29

3.5.2 Mapping with Redundant Bits. 34

3.5.3 Performance. 36

3.5.4 Intra-line Wear Leveling. 36

3.5.5 Impact of Division Program Width. 37

3.5.6 Impact of SET to RESET Ratio. 38

3.6 Conclusion . 39

4.0 DELTA-COMPRESSED DRAM CACHING FOR HYBRID MEMORY SYSTEMS 40

4.1 Problem Statement. 40

4.2 Proposed Solution: Delta-compressed DRAM Caching. 41

4.2.1 Compressed DRAM Caching. 41

4.2.1.1 Page Classification. 41

4.2.1.2 DRAM Partition Adjustment. 42

4.2.1.3 Selective and Predictive Compression. 42

4.2.2 Delta-compression for Written Data. 43

4.2.3 IBM MXT Compression for DRAM-only Systems. 44

4.2.4 Implementation of Delta-compressed DRAM Caching. 46

4.2.4.1 Hierarchical Compression Metadata. 46

4.2.4.2 Compressed Data Layout. 49

4.2.4.3 Memory Read. 50

4.2.4.4 Memory Write. 51

4.2.4.5 Cache Replacement Policy. 52

4.2.4.6 Hardware Cost and Overhead. 52

4.3 Evaluation Environment. 53

vi

4.3.1 Configuration. 53

4.3.2 Workloads . 54

4.4 Results. 56

4.4.1 Compression Ratio. 58

4.4.2 PCM Write . 59

4.4.3 Performance. 60

4.4.4 Energy Consumption. 61

4.4.5 Impact of PCM Write Bandwidth. 61

4.4.6 Impact of Size of Compressed DRAM Region. 62

4.5 Conclusion . 63

5.0 SUPPORTING SUPERPAGES IN NON-CONTIGUOUS PHYSICAL MEMORY . 64

5.1 Problem Statement. 64

5.2 Understanding Address Translation Overhead. 65

5.3 Page Retirement and Memory Fragmentation. 67

5.4 Proposed Solution: Gap-tolerant Superpage. 67

5.4.1 Gap-tolerant Sequential Mapping. 67

5.4.2 Gap-tolerant Page Directory Entry. 70

5.4.3 Tolerating More Retired Pages. 72

5.4.4 Mixing Traditional Pages and Superpages. 74

5.4.5 Compressing GT-PDEs. 77

5.4.6 Hardware Implementation. 78

5.4.7 Software Support. 80

5.5 Evaluation Environment. 81

5.5.1 Configuration. 81

5.5.2 Workloads . 82

5.6 Results. 86

5.6.1 TLB Miss Penalty . 86

5.6.2 Performance. 87

5.6.3 Memory Capacity Used as Superpages. 89

5.6.4 Sensitivity to Problem Size. 90

vii

5.6.5 Sensitivity to GT-PDE Address Translation Latency. 90

5.6.6 Sensitivity to GT-PDE Cache Size. 90

5.6.7 Comparing to TLB Coalescing. 92

5.7 Conclusion . 93

6.0 SUMMARY AND CONCLUSION OF THE THESIS 95

BIBLIOGRAPHY . 98

viii

LIST OF TABLES

1 System settings.. 27

2 Simulated workloads and their request rates.. 28

3 Reduction of write service time for different SET-to-RESET ratios. 38

4 System settings.. 55

5 Benchmarks with scaled problem sizes.. 56

6 Simulated workloads.. 57

7 Page table sizes for different workload memory footprintsand page sizes. 65

8 Parameters of GT-PDEs with different B-block sizes.. 74

9 List of all PDE modes in GTPTCR.. 79

10 System settings.. 83

11 Simulated workloads and PKIs.. 84

ix

LIST OF FIGURES

1 Division program operations in PCM devices.. 6

2 VA-to-PA translation in the x86-64 architecture.. 8

3 An example of the mappings between data bits and PCM cells.. 13

4 Bit mapping function. 14

5 Average bit flip rate at different bit positions.. 16

6 Average number of bytes covering 90% of the modified bits. 17

7 Distribution imbalance of modified bits at different address bits. 18

8 XOR mapping function.. 20

9 XOR mapping functions for different number of cell groups.. 21

10 D-XOR mapping function.. 22

11 Flip rate of ECC bits normalized to data bits.. 22

12 Mapping function for ECC memory swaps between selected data and ECC bits. . . 24

13 Revised intra-line wear leveling.. 24

14 Average number of modified bits on the critical cell group.. 30

15 Average write service time of regular data bits.. 30

16 Average write service time of different numbers of cell groups. 32

17 Average write service time of 20 random bit mapping functions. 32

18 Comparison to Flip-N-Write. 33

19 Average write service time for ECC memory.. 34

20 IPC improvement relative to H6 for ECC PCM with 64 cell groups. 35

21 IPC improvement as the number of cell groups is varied.. 35

22 Comparison between conventional row shifting and two-level row shifting. 37

x

23 Average write service time for different division program widths. 38

24 Compressed DRAM caching in hybrid memory.. 41

25 An example to illustrate delta-compression.. 44

26 IBM MXT compression.. 45

27 FPC-based delta-compression algorithm.. 48

28 Data layout of an example memory line.. 49

29 Rules for reading data from compressed hybrid memory.. 51

30 Compression ratios (original size / compressed size).. 58

31 PCM writes normalized to RaPP-RW.. 59

32 IPC normalized to RaPP-RW.. 60

33 System energy consumption.. 61

34 Sensitivity analysis of varing PCM write bandwidth on IPC. 62

35 Speedup with different compressed region capacities.. 63

36 CPI breakdown with different problem sizes and TLB configurations (GUPS). . . . 66

37 Probability of a memory block to be contiguous in memory with retired pages.. . . 68

38 Examples of different address mapping schemes.. 69

39 Gap-tolerant PDE (GT-PDE) format.. 70

40 Address translation using GT-PDE-4MB.. 71

41 Probability to construct a valid GT-PDE mapping.. 73

42 Decoding GT-PDE. 75

43 P-GT-PDE and its construction.. 76

44 Hardware implementation of GT-PDE.. 80

45 PTE access breakdown.. 86

46 Average TLB miss penalty.. 87

47 IPC normalized to traditional 4KB page baseline.. 88

48 Superpage percentage of different GT-PDEs.. 89

49 IPC with different problem sizes (GUPS).. 91

50 IPC of GT-PDE-4MB with different translation latencies of GT-PDEs. 91

51 IPC of GT-PDE-4MB with different PDE cache sizes.. 92

52 IPC of TLB coalescing and GT-PDE normalized to traditional 4KB page baseline.. 93

xi

LIST OF EQUATIONS

3.1 Equation (3.1). 18

4.1 Equation (4.1). 51

4.2 Equation (4.2). 51

xii

LIST OF ALGORITHMS

5.1 Construction of P-GT-PDEs in a Memory Chunk. 78

xiii

1.0 INTRODUCTION

1.1 GOAL

Driven by multi-core processors and data center applications, there is an increasing demand on

main memory capacity to solve large problem sizes and consolidate computation tasks. For exam-

ple, Intel’s 15-core 30-thread server processor [30] can support 12TB of memory in an 8-socket

system. Along with the demand for colossal memory capacity,energy consumption of DRAM is

now a significant portion of total energy consumption. Even equipped with Samsung’s 20nm class

1.2V DDR4 DRAM, the average power of 12TB DRAM for a typical server workload is more than

2 Kilowatts [51]. There is a critical need to find energy-efficient memory organizations [57].

Phase change memory (PCM) is a promising non-volatile memoryfor constructing energy-

efficient systems [34, 44, 50, 69]. Unlike charge-based DRAM, PCM uses different resistance

states of phase change material to represent data. When used as a large capacity main memory,

PCM has two major advantages. First, PCM cells have good scalability and can achieve excellent

memory density. A high performance PCM cell design has been demonstrated in sub-20nm tech-

nology [33]. With a multi-level cell design (MLC), PCM can achieve even greater densities by

storing multiple bits in one cell. Second, and most importantly, PCM has negligible background

(static) power due to its non-volatile nature. Given the same power budget, PCM can achieve much

higher capacity than DRAM. With low background power, PCM allows high-density memory chip

packagings (e.g. 3D TSVs) without having a severe heat dissipation issue. Despite its advantages,

PCM also has drawbacks. It has long write latency, high write energy, and limited write endurance

in comparison to DRAM. Specifically, PCM devices have severelyconstrained write bandwidth.

For example, a prototype 20nm8Gb PCM chip [13] has been demonstrated that has a read band-

width of 800MB/s and a write bandwidth of 40MB/s. When DRAM is replaced with PCM, the

1

limited PCM write bandwidth can become a major performance bottleneck.

Hybrid memorysystems [69, 37, 50] have been proposed with DRAM and PCM to combine

the high-density and low standby power of PCM with the good write performance of DRAM.

Frequently-modified data are stored in DRAM to reduce write traffic to PCM. Common hybrid

organizations use DRAM as a cache or an extension to PCM. When used as a cache, the DRAM’s

address space is not visible to the software. When used as an extension, OS is responsible for

memory page migration between DRAM and PCM. For hybrid memory systems, memory com-

pression can be used to increase DRAM effective capacity, which allows more frequently modified

data to be cached in DRAM to reduce memory write traffic to the non-volatile memory.

Besides the challenge of limited PCM write bandwidth, memory reliability is another challenge

for hybrid memory systems. To avoid system crashes caused bymemory errors, modern OSes sup-

port page retirement, a self-healing capability which removes physical memory pages containing

memory errors from the system’s address space [28]. For DRAM, retired memory pages only ac-

count for a small portion of total memory capacity(between 0.1% and 10%) [28]. With process

scaling, the percentage of retired pages is expected to increase due to increased process variations

[38]. For PCM, page retirement is a more critical issue. Compared to DRAM, PCM cells have

very limited write endurance (106 to 108 writes on average). Some cells have much lower write

endurance than other cells. Even with various wear levelingand error correction techniques, it is

inevitable for PCM to gradually have increased number of retired memory pages during its lifetime.

With the rise of big data and cloud computing, workload memory footprints keep increas-

ing, putting more pressure on the virtual memory subsystem [5]. Superpages are mandatory for

memory-intensive workloads with large memory footprints and random access patterns. A tradi-

tional superpage is a large virtual memory page that is mapped to an equivalent amount of contigu-

ous physical memory pages. Superpage mapping assumes that physical memory does not contain

retired pages, which is an important technique to improve memory resilience: the OS avoids al-

locating physical pages that have detected errors. Retired pages create unusable “holes” in the

physical memory. Even a small percentage of retired pages makes it very difficult to find enough

contiguous memory to form superpages.

2

1.2 OVERVIEW OF THE PROPOSED APPROACHES

Sincelimited write bandwidth of non-volatile memory andnon-contiguous physical memory

are two fundamental new challenges for hybrid memory systems, this thesis explores three archi-

tecture techniques to address the new challenges.

Balanced PCM Bit Mapping studies the mapping between program data bits and PCM cells

to improve PCM write throughput by spreading modified data bits evenly among PCM chips.

For each PCM write, the data bits of the write request are typically mapped to multiple cell groups

and processed in parallel. I observed that an unbalanced distribution of modified data bits among

cell groups significantly increases PCM write time and hurts effective write bandwidth. To address

this issue, I first uncover the cyclical and cluster patternsfor modified data bits. Next, I propose

double XOR mapping (D-XOR)to distribute modified data bits among cell groups in a balanced

way. D-XOR can reduce PCM write service time by 45% on average,which increases PCM write

throughput by1.8×. As error correction (redundant bits) is critical for PCM, I also consider the

impact of redundancy information in mapping data and error correction bits to cell groups. My

techniques lead to a 51% average reduction in write service time for a PCM main memory, which

increases IPC by 12%.

Delta-compressed DRAM Cachingstudies an adaptive delta-compressed DRAM caching

scheme toimprove DRAM effective capacity and reduce write traffic to PCM. Since the write

bandwidth is severely restricted in PCM devices, it is more important to reduce PCM write traf-

fic than to reduce PCM read latency for write-intensive applications. To reduce the number of

PCM writes, I propose a DRAM cache organization that employs compression. A new delta-

compression technique for modified data is used to achieve a large compression ratio. My approach

can selectively and predictively apply compression to improve its efficiency and performance. It is

designed to facilitate adoption in existing main memory compression frameworks. I describe an in-

stance of how to incorporate delta-compression in IBM’s MXT memory compression architecture

when used for DRAM cache in a hybrid main memory. For fourteen representative memory-

intensive workloads, on average, the proposed delta-compression technique reduces the number of

PCM writes by 54.3%, and improves IPC performance by 24.4%.

Gap-Tolerant Superpagestudies a new memory page mapping scheme toconstruct super-

3

pages from non-contiguous physical memory. Gap-tolerant Sequential Mapping (GTSM) is

proposed to allow superpages to be formed even in the presence of retired physical pages. A new

page table format is also proposed to support GTSM. This format has similar storage efficiency as

traditional superpaging to hold address translations in the last-level cache. To further compress the

page table and improve cache hit rates for address translation in large memory footprint workloads,

I also propose an extended format that reduces the page tablesize by 50%. In comparison to an

ideal memory without any retired physical pages, I show thatmy technique, with retired pages,

achieves nearly 95.8% of the performance of traditional 2MBsuperpaging.

1.3 THESIS ORGANIZATION

The rest of the thesis is organized as follows: Chapter2 is a background study of the related work

for phase change memory, hybrid main memory, memory compression, memory error and virtual

memory. Chapter3 introduces new XOR-based bit mapping functions to improve PCMwrite

throughput. Chapter4 describes a new delta-compressed DRAM caching scheme to reduce PCM

write traffic. Chapter5 develops a new page table design to construct superpages from memory

with retired pages. Finally, Chapter6 presents conclusions, as well as future work.

4

2.0 BACKGROUND AND RELATED WORK

2.1 PHASE CHANGE MEMORY

Limited write bandwidth is a major performance bottleneck for PCM. The limited write band-

width is due to three reasons. First, it takes much longer to program a PCM cell than a DRAM

cell. Unlike charge-based DRAM, PCM uses different resistance states of phase change material

to represent data. Precisely-controlled SET and RESET pulses are used to program PCM cells

(to heat and cool a cell). For single-level cell (SLC) PCM, it takes 50-100ns for RESET pro-

gramming (1→0) and 150-400ns for SET programming (0→1) [13, 35]. Second, programming a

PCM cell requires much higher programming current than programming a DRAM cell. Given a

fixed programming current budget, a PCM device cannot simultaneously program all data bits of

a write request. Instead, the data bits are statically divided into small divisions and programmed

sequentially [22]. Third, process variation has a non-negligible impact on cell programming time.

Due to process variation, different cells requires different programming currents. Using a sin-

gle high programming current level to program all cells is not a valid choice because the high

programming current will significantly degrade the write endurance of cells that requires a much

smaller programming current. Hence, PCM write circuits typically use a staircase programming

policy which gradually increases the programming current.With such a staircase policy, to suc-

cessfully program the cells that need a high programming current, multiple programming iterations

are used until the desired programming current level is reached.

Programming current is the major constraint which limits the number of cells that can be con-

currently programmed per chip [22]. For example, Samsung’s 20nm 8Gb PCM chip supports

only simultaneous programming of 128 cells with the defaultpower supply [13]. Therefore, PCM

devices have asymmetric read and write data widths. For PCM reads, all data bits are read con-

5

Write Request

G0 G1 GM-1

Write Request

Cell Group

Division

Programming

• • •

b4b0 b3 b7b1 b5 b2 b6

Unchanged

RESET

SET

b0

b7

b2 b6

b1

b3

RESET

Phase

SET

Phase

Data Bits

Time

Figure 1: Division program operations in PCM devices.

currently, while for PCM writes, the modified bits of each cellgroup are written usingdivision

program operations[22]. For each division program operation, a subset (i.e., adivision) of mem-

ory cells among a cell group are programmed rather than all cells in the group. Figure1 shows

an example of 2X division program operation [22]. For each cell group, the data bits are statically

divided into divisions. 2X means that each division consists of two cells. In this example, an

8-bit cell group is divided into four divisions: (0, 4), (1, 5), (2, 6) and (3, 7). Cells in the same

division can be concurrently programmed, while cells in different divisions must be programmed

in different iterations.

Divisions in the same cell group are programmed in a fixed sequential order. A division will

be skipped if it has no cell to program. The programming process is divided into two phases: a

RESET phase and a SET phase. In the RESET (SET) phase, only cellsthat need RESET (SET)

programming are programmed. In Figure1, cells 2 and 6 are programmed concurrently because

they belong to the same division. Cells 3 and 7 are programmed separately because they have

different programmed states. With division program operations, the programming time of each

6

cell group is no longer a constant. On average, a cell group with more modified bits requires more

programming iterations and tends to have a longer programming time. For each write request, the

write service time depends on the cell group that takes the longest programming time.

2.2 VIRTUAL ADDRESS TRANSLATION OVERHEAD AND SUPERPAGE

Virtual memory mechanisms use page tables to map between virtual pages and physical pages

for every memory access. To speed up translation, physical addresses of recently-accessed virtual

pages are cached in the TLB. On a TLB miss, a hardware page walker traverses the page table

to translate the virtual page address. We use x86-64 architecture as an example to explain why

superpage can reduce virtual address translation overhead.

In x86-64, as shown in Figure2(a), the page table has four levels, and a system register (CR3)

points to the PT root node. The corresponding translation entry at each level isPage-Map Level-

4 Entry (PML4E), Page Directory Pointer Entry(PDPE),Page Directory Entry(PDE) andPage

Table Entry(PTE). For each valid 4KB virtual page, the translation entries (PML4E, PDPE and

PDE) point to the base address of the next level node. The sizeof the translation entry at each level

is 8 bytes. With a 4KB page, there are 512 translation entriesper node, which are indexed by 9

virtual address bits. Only 48 virtual address bits are used in current x86-64 implementations: the

high 36 bits (9 x 4) are used to traverse the page table levels and the low 12 bits are the page offset.

Besides the TLB, recently accessed translation entries are also cached in the MMU as partial

translations, which can be used to speed up page walking [3]. For example, PDE entries can be

cached in a PDE cache. If the PDE of a virtual address hits in the PDE cache, the page walker

needs to access only the last-level PTE to complete address translation.

X86-64 superpage implementation has a similar structure. Because the mapping is one-to-one,

a 2MB superpage needs only a three-level page table (PML4, PDPE and PDE). The 7th bit of a

PDE indicates whether the PDE points to a page table of PTEs, or to the physical base address of

a 2MB superpage. Figures2(b) and2(c) show the format of PDE as a 4KB-page and 2MB-page

PDE, respectively. Similarly, for a 1GB superpage, the 7th bit of a PDPE indicates whether a PDPE

points to a page directory table of PDEs, or to the physical base address of the superpage.

7

Page

Directory

Pointer

Table

Page Map

Level-4

Table

Page

Directory

Table
PML4E

Page

Table

2MB superpage

CR3

PDPE

PDE

PTE

Physical

Address

PDE

PDPE

1GB superpage

Sign Extend

(16)

PML4E Index

(9)

PDPE Index

(9)

PDE Index

(9)

PTE Index

(9)

Page Offset

(12)

64-bit Virtual Address

Page-Table

Base Address
Available

63 5152 12

N

X

62

0 AVL

11 9 8 0
I

G

N

0

I

G

N

A

P

C

D

P

W

T

U

/

S

R

/

W

P

21 20

P

A

T

13 7 6 5 4 3 2 1

Physical Page

Base Address
Available

63 5152 12

N

X

62

0 AVL

11 9 8 0

G 1 D A

P

C

D

P

W

T

U

/

S

R

/

W

P

21 20 7 6 5 4 3 2 1

(a) x86-64 page table

(b) 4KB-page PDE

(c) 2MB-page PDE

Figure 2: VA-to-PA translation in the x86-64 architecture.

8

2.3 RELATED WORK

2.3.1 Phase Change Memory

Despite promise, PCM has weaknesses, which are the subject ofmuch research. Wear-leveling

techniques have been proposed to evenly distribute writes to PCM memory lines [70, 47, 54].

Fault-tolerance techniques have been proposed to protect PCM chips from weak cell failures [52,

43, 65, 31, 32].1 Write-pausing has been proposed to reduce the performance penalty from long

PCM write service time [45].

2.3.2 Hybrid Main Memory

DRAM/PCM hybrid main memory is a natural solution for future large-capacity energy-efficient

main memory because it combines the high-density and low standby power of PCM with the good

write performance of DRAM. With hybrid main memory, frequently modified data are transpar-

ently cached in DRAM to offload write traffic to PCM. Qureshiet al.[48] proposed to add a DRAM

buffer between the CPU and the PCM main memory to cache frequently accessed data. Fer-

reiraet al.[23] proposed PMMA architecture which integrates DRAM page cache with PCM main

memory using an improved page replacement policy. Zhang andLi [69] proposed a 3D-stacked

DRAM/PCM hybrid memory architecture which uses an OS-based page migration mechanism to

cache hot-modified pages in DRAM. Ramoset al.[50] proposed a hardware-based page migration

mechanism for hybrid memory which puts both frequently-modified and frequently-read pages into

DRAM. My work considers the use of memory compression to improve DRAM effective capacity

and reduce PCM write traffic in hybrid systems which is orthogonal to the above works.

2.3.3 Memory Compression

Memory compression is a common technique to allow more data to be stored in the memory and

has been well studied in DRAM-only systems. Douglis [19] studied using compression to free up

memory pages to reduce paging overhead. Ekman and Stenstrom[21] proposed a low latency main

1Weak cells have much lower write endurance than other PCM cells.

9

memory compression scheme based on the FPC compression algorithm. IBM Memory Expan-

sion Technology (MXT) technology [62] was introduced as a hardware-based high performance

architecture and is implemented in commercially availablechips. Suel and Memon [59] use delta-

compression to reduce data traffic for remote file synchronization. Zhang and Li [69] proposed

to apply compression to PCM data. Their proposal is not to improve DRAM effective capacity,

but to reduce the number of PCM bits that need to be updated. Thestudies in [19, 62] focus on

DRAM-only systems. I propose delta-compressed caching which is not discussed by traditional

DRAM-only memory compression. I give a detailed example to show how to extend an existing

compression architecture to support delta-compression for hybrid memory.

2.3.4 Memory Error and Page Retirement

Recent studies show that modern DRAM error rates are orders of magnitude higher than previ-

ously reported [53, 28]. Error Correcting Codes (ECC) are commonly used to protect memory

from one or multiple bit errors. Recent studies also showed that memory blocks that suffer from

correctable memory errors are much likely to subsequently face uncorrectable errors [53]. A field

study showed that retiring 1% of pages can cover 92% of memoryerrors [28]. Memory errors can

be tolerated using managed runtime systems [26], but this requires the program to be written in

managed code (e.g., Java).

2.3.5 TLB and Superpage

Recent study shows that traditional page-based virtual memory has significant performance over-

head for big-memory workloads [5]. Many new TLB designs have been proposed to alleviate the

problem by reducing TLB translation overhead. Barret al.[4] proposed a speculative translation

scheme which exploits the predictable behaviour of reservation-based physical memory alloca-

tors. Bhattacharjeeet al.[7] proposed shared last-level TLBs for chip multiprocessors which im-

prove the effective capacity of TLBs. Shekhar Srikantaiah and Mahmut Kandemir [58] proposed

a distributed variation of shared last-level TLBs, which makes a balance between TLB capacity

and TLB access latency. Phamet al.[42] proposed Coalesced Large-Reach TLBs (CoLT), which

coalesces multiple virtual-to-physical page translations into a single TLB entry. Basuet al.[5]

10

proposed a TLB-less design to eliminate TLB translation overhead for big-memory workloads.

My work studies new storage-efficient page table designs fornon-contiguous phyiscal memory. It

assumes that a small percentage of memory pages are retired and not available to use, which is

significantly different from previous work.

Both software and hardware changes are necessary to support superpages. Talluri et al. dis-

cussed the tradeoffs and challenges to support superpages in hardware [60]. Ganapathy and Schim-

mel described possible ways to support superpages in the OS [25]. Navarro et al. described a

design to transparently support superpages in the OS [39]. Zhang et al. described a design to map

superpages to disjoint physical pages using traditional base page table format [68]. In their pro-

posed design, page table still needs to be accessed when there is a cache miss. To the best of my

knowledge, this is the first work to propose a new storage-efficient superpage format designed for

memory with retired pages. By utilizing a block selection bitmap, a superpage is mapped to mul-

tiple equal-sized small memory blocks (i.e., physical pages) instead of a single large contiguous

memory block.

There are much work on improving TLB performance. TLB hit rate can be improved by shar-

ing TLB entries among CPU cores [8, 63, 7]. TLB miss penalty can be reduced by prefetching [8].

Recently, TLB coalescing has been studied to improve TLB reach [41, 42]. Similar to TLB coa-

lescing, MMU cache coalescing has been proposed to reduce TLB miss penalty [6]. My work does

not require any changes to TLB and is orthogonal to the work proposed for TLB performance im-

provement. For workloads with large memory footprints, improving the TLB performance alone

is not enough to solve the problem.

11

3.0 BIT REMAPPING FOR BALANCED PCM CELL PROGRAMMING

3.1 PROBLEM STATEMENT

Unlike charge-based DRAM, non-volatile memory cells need much more programming power

to change their states. Programming power is the major constraint which limits the number of

PCM cells that can be concurrently programmed per chip [22]. For PCM writes,division program

operationsare used to program the modified bits [22]. First, data bits are mapped to multiple cell

groups. For each division program operation, a subset (i.e., a division) of memory cells among a

cell group are programmed rather than all cells in the group.Divisions in the same cell group are

programmed in a fixed sequential order.

With division program operations, the programming time of each cell group is not a fixed

value. A cell group with more modified bits are likely to have alonger programming time. Memory

service time of a write request is determined by the cell group that has the longest programming

time. Therefore, the mapping function (abbreviated asmapping) between data bits and cell groups

will impact the write service time. To illustrate the importance of the mapping, Figure3 shows

an example in which the size of the write request is sixteen bits, seven of which are modified. In

this example, the sixteen data bits are mapped to four cell groups. Figure3(a) shows a possible

mapping in which adjacent data bits are directed to the same group. Notice that bits 4-7 are

adjacent and modified. They are mapped to the same cell group and cause a bottleneck on write

service time for the write request. Figure3(b) shows an alternate mapping in which adjacent data

bits are distributed to different cell groups. With this newmapping, the four adjacent modified bits

are distributed more uniformly among cell groups and the write service time is reduced. The intent

of this example is not to show that the second mapping is always better than the first one, but to

show that the mapping has an impact on the write service time.A good mapping should spread

12

4

5

6

7

Time

Group 0 Group 1 Group 2 Group 3

(a) Adjacent bits are mapped to the same cell group

(b) Adjacent bits are mapped to different cell groups

4

6

7

5

9 11
14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time

Group 0 Group 1 Group 2 Group 3

4

5

9 11
14

0 1 2 34 5 6 78 9 10 1112 13 14 15

Bit

Remapping

Unchanged RESET SET

0

1

2

3

8

9

10

11

12

13

14

15

1

5

9

13

0

4

8

12

2

6

10

14

3

7

11

15

6

7

Figure 3: An example showing that the mapping between data bits and PCM cells can affect

write service time.

13

Bit Mapping Function

F(BitPos) = Cell Group Index

���G0 G1 GM-1Cell Groups

Data Bits b0 bN-1���

Figure 4: Bit mapping function.

the modified bits among cell groups, which depends on the distribution of the modified bits in the

write request.

A mapping functionF defines a static partition ofN data bits from write requests intoM PCM

cell groups (N/M cells per cell group). Ideally, the problem is to find the functionF that minimizes

the longest programming time among all cell groups. Since over the long term, a modified bit is

equally probable to be SET or RESET, the problem is approximated to minimize the imbalance in

the number of modified data bits among all cell groups, which is achievable with a better mapping

function. The concept is shown in Figure4.

The input of the mapping functionF is a n-bit binary addressan−1an−2...a0(n = logN)

representing the bit position of each data bit. The output ofthe mapping functionF is anm-bit

binary numbertm−1tm−2...t0(m = logM) representing the index of the cell group to which the

data bit is mapped. A constraint onF is that the number of data bits mapped to each cell group

should be equal. Otherwise, some cell groups will not have enough PCM cells to establish a 1:1

mapping between data bits and cells. This work is focused on the mapping between data bits and

cell groups, the order of mapped cells inside a cell group is not considered, which is assumed to be

the same as the order of data bits.

14

3.2 DISTRIBUTION OF MODIFIED BITS

3.2.1 Distribution Patterns

Given that the distribution of modified bits can affect PCM write service time, thebit flip rate is

characterized to understand the distribution (patterns) of modified bits in write requests. The bit

flip rate at a given bit position is defined as the probability that the bit at that position changes its

state (flips) on a memory write. To calculate the bit flip rate at positionK, the number of flips in

theKth bit of all write requests is counted and divided by the total number of write requests. I

characterized all bit positions in the memory write traces (after a 32MB DRAM cache) for fourteen

applications.1 The write granularity of collected memory traces are 256 bytes. Figure5 shows the

bit flip rate histogram of the first 512 bit positions; the remaining positions are similar. Applications

are ordered by the average percentage of modified data bits per write request in ascending order.

As the figure shows, the bit flip rate histograms differ for each application. Two general patterns

in the bit flips are identified from the figure:cyclicalandcluster.

Cyclical Pattern. In this pattern, the flip rate histogram shows cyclical fluctuations. As shown

in Figure5, a typical cycle length can be 32 bits, 64 bits or 128 bits (mcf has a cycle length of

512 bits). Bit positions with the same low address bits but different high address bits tend to have

similar bit flip rates. To distribute modified data bits with acyclical pattern, the high address bits

should be used as an index to map the bits to cell groups. For example, in applicationlibquantum,

data bits with the same low 7-bit address should be mapped to different cell groups.

Cluster Pattern. Modified bits may also tend to aggregate into clusters. For example, in Figure5,

astar, cannealandmcf have most of their modified bits clustered in only a few bytes.To quantify

the clustering of modified bits at byte granularity, I also characterize the average number of bytes

that cover most modified bits of each memory write (choosing those bytes that have the most

number of modified bits). Figure6 shows the average number of bytes with 90% coverage. From

the figure,astar, mcf, omnetppandcannealhave strong clusters. The remaining applications show

moderate clusters, with 20% to 60% of the bytes covering 90% of the modified bits.Libquantum

is a special case. It requires a few bytes to cover most modified bits because it only has one bit

1Twelve write-intensive benchmarks from SPEC CPU2006, SPECJBB2005 and the only write-intensive bench-
mark (canneal) from the PARSEC suite are selected.

15

0

0.02

0.04

astar

0

0.1

0.2

canneal

0

0.5

1

libquantum

0

0.1

0.2

mcf

0

0.03

0.06

omnetpp

0

0.2

0.4

milc

0

0.4

0.8

zeusmp

0

0.3

0.6

GemsFDTD

0

0.3

0.6

lbm

0

0.3

0.6

leslie3d

0

0.3

0.6

soplex

0

0.3

0.6

gcc

0

0.3

0.6

b
it
0

b
it
8

b
it
1
6

b
it
2
4

b
it
3
2

b
it
4
0

b
it
4
8

b
it
5
6

b
it
6
4

b
it
7
2

b
it
8
0

b
it
8
8

b
it
9
6

b
it
1
0
4

b
it
1
1
2

b
it
1
2
0

b
it
1
2
8

b
it
1
3
6

b
it
1
4
4

b
it
1
5
2

b
it
1
6
0

b
it
1
6
8

b
it
1
7
6

b
it
1
8
4

b
it
1
9
2

b
it
2
0
0

b
it
2
0
8

b
it
2
1
6

b
it
2
2
4

b
it
2
3
2

b
it
2
4
0

b
it
2
4
8

b
it
2
5
6

b
it
2
6
4

b
it
2
7
2

b
it
2
8
0

b
it
2
8
8

b
it
2
9
6

b
it
3
0
4

b
it
3
1
2

b
it
3
2
0

b
it
3
2
8

b
it
3
3
6

b
it
3
4
4

b
it
3
5
2

b
it
3
6
0

b
it
3
6
8

b
it
3
7
6

b
it
3
8
4

b
it
3
9
2

b
it
4
0
0

b
it
4
0
8

b
it
4
1
6

b
it
4
2
4

b
it
4
3
2

b
it
4
4
0

b
it
4
4
8

b
it
4
5
6

b
it
4
6
4

b
it
4
7
2

b
it
4
8
0

b
it
4
8
8

b
it
4
9
6

b
it
5
0
4

wrf

Figure 5: Average bit flip rate at different bit positions (first 512 bits of 256-byte memory requests).

16

0
20
40
60
80

100
120
140
160
180

A
v

e
ra

g
e

 #
 o

f
b

y
te

s
 c

o
v

e
ri

n
g

9
0

%
 t

h
e

 m
o

d
if

ie
d

 b
it

s

0

A
v

e
ra

g
e

 #
 o

f
b

y
te

s
 c

o
v

e
ri

n
g

9
0

%
 t

h
e

 m
o

d
if

ie
d

 b
it

s

Figure 6: Average number of bytes covering 90% of the modifiedbits of 256-byte write requests.

modified per sixteen bytes. When clustered together, modifiedbits have the same high address bits

but different low address bits. A good mapping function should use low address bits to distribute

adjacent bits to different cell groups. For example, incanneal, adjacent data bits should be mapped

to different cell groups.

The distribution of modified data bits is affected by the datastructure and data type used in

the program. Programs whose modified bits have a cluster pattern tend to update only some data

object fields, possibly even just a part of a field. These programs usually have more random object

access. Programs whose modified bits have a cyclical patternoften update specific fields in arrays

of objects. Programs dominated by integer types tend to modify adjacent bits within an integer,

while programs dominated by floating point (FP) types modifybits with a more random distribution

within the float. Also, FP programs typically modify more bits per write. These behaviours are due

to integer and FP encoding, and how the types are used. For example, libquantumhas an array of

objects with an integer flag. One bit in the integer is updatedfrequently, causing spikes as seen in

Figure6. The flip rates for other programs can be similarly explainedaccording to data structures

17

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

λ
astar lbm libquantum avg. across 14 apps

0
0.1

0 1 2 3 4 5 6 7 8 9 10
Address Bit (i)

Figure 7: Distribution imbalance of modified bits at different address bits.

and types.

3.2.2 Distribution Imbalance of Modified Bits

To determine which address bits should be used in the mappingfunction, the distribution imbalance

of modified bits at different address bits for a data bit position is characterized. For theith address

bit, modified bits can be divided into two subsets:

S0 = {bk, k = an−1, · · ·, ai+1, 0, ai−1, · · ·, a0} and

S1 = {bk, k = an−1, · · ·, ai+1, 1, ai−1, · · ·, a0}.

S0 includes all modified bits with theai bit of the bit position equal to 0 andS1 includes all

modified bits with theai bit of the bit position equal to 1.

Similar to [40], I use thepercent imbalancemetric,λ(i), to characterize the distribution im-

balance of modified bits at theith address bit.

λ(i) =

(

max(|S0|, |S1|)

(|S0|+ |S1|) /2
− 1

)

× 100% (3.1)

18

Whenλ(i) = 0, modified bits are equally distributed betweenS0 andS1. Whenλ(i) = 1,

there is no modified bit inS0 or S1. The distribution imbalance of an address bit is calculatedby

averagingλ(i) over all write requests of each application.

An address bit with lowλ implies that the address bit is a good candidate for spreading modi-

fied bits into two balanced subsets. In general, a good mapping function should utilize address bits

with low λ.

In Figure7, λ for each of the eleven address bits (256-byte write request)is shown for three rep-

resentative applications:astar, lbmandlibquantum. Astarhas a strong cluster pattern,libquantum

has a cyclical pattern, andlbm has both patterns. In the figure, it is apparent that each application

has a uniqueλ profile. To get a balanced distribution of modified bits, different applications should

ideally use different address bits in the mapping of bits to cell groups.

The figure also shows the averageλ over fourteen applications. From the figure, two address

bit regions, on average, have lowλ. One region isa6...a10, which reflects cyclical patterns and the

other region isa0...a2, which reflects clusters at byte granularity. This observation is consistent

with the two patterns described in the previous section. To design an effective mapping function,

address bits from both regions should be used.

3.3 PROPOSED SOLUTION: BIT REMAPPING

3.3.1 XOR Mapping Function

From the distribution imbalance characterization, two mapping functions can be directly derived.

As shown in Figure8(a), to get anm-bit cell group index, high address bits can be used for

the mapping function such that a data bitbi, i = an−1an−2...a0, is mapped toGroupj where

j = an−1an−2...an−m. When high address bits are used, adjacent data bits are mapped to the

same cell group and the mapping function exploits the cyclical pattern. Alternatively, as shown in

Figure8(b), low address bits can be used, that is, a data bitbi, i = an−1an−2...a0, is mapped to

Groupj wherej = am−1am−2...a0. When low address bits are used, adjacent data bits are mapped

to different cell groups, and the mapping function exploitsthe cluster pattern. However, each of

19

m

m

m
m

m m

XOR

m

(c) XOR mapping

(a) High bits mapping

(b) Low bits mapping

0n-1

Figure 8: XOR mapping function.

these mapping functions has a limitation that onlym bits out ofn address bits are utilized.

As shown in Figure8(c), I devised anXOR mapping functionthat combines low address bits

with high address bits. This way, either pattern is incorporated seamlessly into the mapping. Sim-

ilar to the high address and low address mappings, this new mapping distributes an equal number

of data bits to each cell group. This is a necessary feature ofany valid mapping function, which

can be verified by calculating the cell group index of each bitposition.

3.3.2 Support for Multiple Cell Group Sizes

An XOR mapping function is optimized for a specific cell groupsize. There are scenarios where

a single mapping function is needed for multiple cell group sizes. For example, server memory

configurations typically map each request to more memory chips (more cell groups) to improve

reliability [17]. Also, a PCM chip can have a wider programming width (smallercell group size)

in the SET phase than in the RESET phase [22, 67] because the programming current of a SET

pulse is much smaller than the programming current of a RESET pulse.

I use an example to illustrate why a single XOR mapping function is not the optimal solution

20

M = 256

XOR

a0 a1 a2 a3 a4 a5 a6 a7

a3 a4 a5 a6 a7 a8 a9 a10

XOR

a0 a1 a2 a3 a4 a5

a5 a6 a7 a8 a9 a10

XOR

a0 a1 a2 a3

a7 a8 a9 a10

M = 64 M = 16

(a) size-dependent XOR mapping functions

XOR

a0 a1 a2 a3 a4 a5 a6 a7

a3 a4 a5 a6 a7 a8 a9 a10

XOR

a0 a1 a2 a3 a4 a5 x x

a3 a4 a5 a6 a7 a8 x x

XOR

a0 a1 a2 a3 x x x x

a3 a4 a5 a6 x x x x

(b) size-independent XOR mapping function

Figure 9: XOR mapping functions for different number of cellgroups.

in these scenarios. Figure9(a) shows XOR mapping functions that are size dependent. Foreach

unique number of cell groups,M , a specific implementation of XOR mapping is used. Figure9(b)

shows how a single function can be used to support mapping different number of cell groups. The

XOR mapping function is optimized for 256 cell groups. To mapto fewer number of cell groups,

the low bits of the mapping function are masked. The masking process is achieved by treating data

bits in adjacent cell groups as a larger single cell group. Maskingk bits of the mapping function

means that every2k adjacent cell groups are treated as one group. Given that theorder of data bits

is unchanged, the masking process does not require any additional hardware support. The problem

for masking is that fewer address bits are used in the mappingwhenM becomes smaller, which

will degrade effectiveness.

To address this problem, I proposedouble XOR mapping (D-XOR). In D-XOR, in addition to

the XOR between low and high address bits, the high half of thehigh address bits is XORed with

the low half of the high address bits. Figure10 shows an example with eleven address bits. The

mapping function does one XOR betweena0...a7 anda3...a10 and a second XOR witha7...a10

padded with zeros. ForM=16, all address bits still participate in the mapping function, although

the low four bits of the function are masked.

21

M = 256

a7 a8 a9 a10 0 0 0 0

XOR

a0 a1 a2 a3 a4 a5 a6 a7

a3 a4 a5 a6 a7 a8 a9 a10

a0 a1 a2 a3 a4 a5 x x

a3 a4 a5 a6 a7 a8 x x

a0 a1 a2 a3 x x x x

a3 a4 a5 a6 x x x x

M = 64 M = 16

XOR XOR

a7 a8 a9 a10 0 0 x x a7 a8 a9 a10 x x x x

Figure 10: D-XOR mapping function.

23.98

0.00

1.00

2.00

3.00

4.00

5.00

6.00

N
o

rm
a

li
ze

d
 F

li
p

 R
a

te

o
f

E
C

C
 B

it
s

o
v

e
r

D
a

ta
 B

it
s

Figure 11: Flip rate of ECC bits normalized to data bits.

22

3.3.3 Support for PCM with Redundant Bits

To protect memory from data corruption due to transient errors, error correcting codes (ECC)

are typically used in DRAM and PCM memory subsystems. Furthermore, PCM main memory

typically uses a scheme to tolerate not only transient errors but also permanent errors in weak

cells. To correct these errors, redundant bits are used. Fortypical DRAM solutions, extra DRAM

chips store ECC bits [27], but for PCM, dedicated ECC chips can degrade write performance if

ECC chips have more modified bits to write.

Figure11 shows the flip rate of ECC bits normalized to the flip rate of regular data bits. The

ECC code in this example is a (72, 64) SEC-DED ECC code with 8 ECC bits per 64-bit data block

[27]. Since ECC is a checksum for data bits, ECC bits tend to have a higher flip rate than normal

data bits. From the figure, in all applications, exceptgcc,2 the ECC bits have high flip rates. For

astar, canneal, libquantum, mcf andomnetpp, the ECC bit flip rates are much higher because most

data bits are rarely modified. With a high flip rate, the PCM chips that store ECC bits have many

more modified bits, which causes these redundant chips to become a write bottleneck.

Figure12 shows my mapping function for redundant PCM storage. Either XOR or D-XOR

mapping is used for data bits and redundant bits. To avoid thesituation where the cell groups for

redundant storage have many more modified bits than the cell groups for data storage, an extra bit

swap function (BS) between regular data bits and redundant bits (e.g., ECC) is added to disperse

the redundant bits (that have a high flip rate) among the data bits. By swapping some regular data

bits with redundant bits, redundant bits will not be clustered in a single cell group to become a

write bottleneck.

For example, if ECC is used with a capacity ratio of 8:1 betweendata bits and ECC bits,

then for PCM with 256-byte line size and 256-bit ECC, one bit fromevery data byte is picked to

swap with ECC bits. To avoid selecting frequently-modified bits with a cyclical pattern, an XOR

betweena5...a7 anda8...a10 is used to determine the bit to be swapped in each data byte.

2Gcchas many program data updates, which flips many data bits but few ECC bits.

23

Data Bits Redundant Bits

Data Chips Redundant Chips

Bit Mapping Bit Mapping

Bit Swap (BS)

Figure 12: Mapping function for ECC memory swaps between selected data and ECC bits.

G0

Write Request

G1 G2 G3

Bit Mapping

G3 G0 G1 G2

Figure 13: Revised intra-line wear leveling.

24

3.3.4 Support for Intra-line Wear Leveling

There are two types of wear leveling to evenly distribute memory writes over the entire memory

storage: inter-line and intra-line. Inter-line wear leveling balances memory writes among memory

lines. Intra-line wear leveling balances memory writes within a memory line.

My bit mapping functions change the bit ordering only withina memory request. Therefore,

the functions are not impacted by inter-line wear leveling.For intra-line wear leveling, the conven-

tional row shifting scheme [70] is not compatible with XOR or D-XOR mapping. Figure13shows

two-level row shifting which is compatible with my mapping functions. First, a global row shift

moves data bits at cell group granularity. Second, a local row shift moves data bits inside each cell

group. With two-level row shifting, the data bits mapped to asingle cell group are still mapped to

a single cell group after the row shift. Also, the overhead oftwo-level row shifting is the same as

conventional row shifting.

Intra-line wear leveling only allows for the even distribution of modified bits over the lifetime.

For each write request, distribution of modified bits can still be imbalanced with intra-line wear

leveling. By contrast, my mapping functions are effective inbalancing the distribution of modified

bits and reducing write service time for each write request.

3.3.5 Hardware Implementation

As will be shown in Section3.5, a single mapping function can provide good performance fordif-

ferent number of cell groups. Since a mapping function is a static rearrangement of the data bits in

a write request, it has negligible implementation overhead. For PCM writes, a fixed redistribution

network is needed to map the data bits to the desired positions before they are sent to PCM. For

PCM reads, a corresponding reverse redistribution network can restore data bits to their original

positions. Changing the representation of memory data is common for PCM. For example, Zhou

et al. [70] proposed a dynamic row shift mechanism to even out the writes to the cells inside a

memory line. The delay and power of their 1KB row shifter are 400ps and 795µW. my mapping

functions have much lower hardware cost because they statically change only the order of data bits.

The mapping functions do not require changes to the existingmemory interface. When data

bits are reordered, the memory controller divides the bits into chunks of adjacent bits and delivers

25

each chunk to a PCM chip in the DIMM. Each chip divides the bits into cell groups of adjacent

bits.

The mapping function can be implemented in the memory controller, which exposes all bits,

including redundancy bits (e.g., ECC). The mapping function can also be implemented inside the

PCM chips themselves, especially for redundant bits that arenot visible at the memory controller

(i.e., when the chip itself has a remapping or redundant bits).

3.4 EVALUATION ENVIRONMENT

3.4.1 Configuration

I use Virtutech Simics [36] to collect main memory traces, which contain a command identifier

(read or write) and address of each memory request. To accurately evaluate PCM write service

time, the memory trace file also includes the data before and after memory writes. The trace files

are input to a trace-driven simulator. The parameters of my simulator are detailed in Table1.

I assume an 8-core 2GHz CMP with in-order cores. Each core has a512KB private L2 cache

and a shared 16MB L3 cache (2MB quota per core). After L3 cache, there is a 256MB DRAM

cache (32MB quota per core) before the PCM main memory [44]. To alleviate cache miss penalty,

a next line sequential prefetcher is incorporated for the DRAM cache.

I model a 128GB PCM main memory with two channels; each channelhas two DIMMs and

each DIMM has 8 chips and 16 banks. I assume 32 bits per cell group (64 cell groups per 256-

byte request) and 2X division program operation (Up to two cells are concurrently programmed

per 32-bit cell group). A memory controller configuration similar to Qureshi et al. [45] is used,

where each bank has a 32-entry write queue. Read requests are given highest priority, as long as

the write queue is not full. For PCM memory scheduling, write pausing [45] is used, whereby the

memory controller suspends an active PCM write at the beginning of programming next modified

bit to schedule a higher priority read request to the memory bank. I use single-level cell (SLC)

PCM to conservatively evaluate the mappings because multi-level cell PCM has much lower write

bandwidth than SLC PCM. To model SLC PCM write service time, I use 100ns for cell RESET

26

CPU 8-core, 2GHz, 2-issue, in-order, 32KB L1 I/D

L2 Cache (private) 512KB, 8-way, 64-byte line size, write-back

L3 Cache 2MB per core, 32-way,

64-byte line size, write-back,

20-cycle local L3 hit

DRAM Cache 256MB total, 32MB per core, 32-way,

256-byte line size, write-back,

60-cycle (30ns) read latency,

next line sequential prefetcher

Memory Controller 2 PCM channels

2 DIMMs per channel

16 banks per DIMM

32-entry write-queue per bank

write pausing scheduling for PCM

Main Memory 128GB SLC PCM, 120ns read latency

100ns RESET pulse

150ns SET pulse

100ns pulse interval

32 bits per cell group, 2X division program operation

Table 1: System settings.

27

programming pulse (1→0), 150ns for cell SET programming (0→1) pulse and 100ns interval

between two programming pulses [13].

Name Read PKI Write PKI Description

Gemsr 5.35 2.14 8 copies of GemsFDTD

lbm r 3.14 1.52 8 copies of lbm

leslie r 3.48 0.79 8 copies of leslie3d

libq r 8.45 1.50 8 copies of libquantum

mcf r 11.27 6.42 8 copies of mcf

milc r 13.42 2.58 8 copies of milc

wrf r 0.62 0.21 8 copies of wrf

mix 1 1.34 0.37 gcc-mcf-zeusmp-canneal

mix 2 1.13 0.41 astar-gcc-Gems-wrf

mix 3 4.70 0.74 libq-mcf-milc-zeusmp

mix 4 2.94 1.02 Gems-leslie-mcf-zeusmp

mix 5 6.50 1.45 lbm-libq-mcf-canneal

mix 6 4.25 1.50 lbm-leslie-mcf-milc

mix 7 7.02 1.85 Gems-milc-omnetpp-soplex

mix 8 8.93 1.98 libq-mcf-omnetpp-canneal

Table 2: Simulated workloads and their request rates.

3.4.2 Workloads

Since my work addresses the write performance bottleneck for PCM, only write-intensive bench-

marks are considered. Twelve write-intensive benchmarks from SPEC CPU2006 andcannealfrom

PARSEC are selected. Onlycannealis selected from PARSEC because most PARSEC benchmarks

are computation-intensive or have a very small memory footprint. Cannealis executed in single-

threaded mode and uses the native input with 940MB memory footprint. For SPEC CPU2006, the

reference inputs are used. To evaluate system performance,eight representative multiprogrammed

28

workloads are selected, each containing two copies of four unique benchmarks; these are the mixi

workloads at the bottom of Table2. I also ran experiments with seven applications inrate mode,

where eight instances of the same benchmark are concurrently executed; see the top of Table2.

The other applications are not evaluated in rate mode because the 256MB DRAM cache effectively

filters most main memory write requests. All benchmarks are 64-bit binaries, compiled with gcc

4.1.2. Table2 shows the number of memory read and write requests per 1000 instructions (PKI)

after the DRAM cache.

3.5 RESULTS

This section presents simulation results for my mapping functions, with and without redundant bits.

I show how performance is improved in comparison to the conventional mapping, both in terms

of write service time and IPC, for each benchmark and the average over all benchmarks. Some

graphs are normalized, and in those graphs, The geometric mean is used instead of the average to

avoid the case in which one benchmark dominates the results.

I evaluated several mapping functions. Hx (Lx) uses the high (low) orderx address bits for

bit mapping, wherex is the number of bits for the cell group index. LxˆHx is an XOR mapping

function between the highx address bits and the lowx address bits. LxˆHxˆHy is a corresponding

D-XOR function.

Unless otherwise specified, each write request is mapped to 64 cell groups (M=64, x=6).

WhenM=64, H6 is the baseline, which maps logically adjacent 32 bits to the same cell group.

3.5.1 Mapping for Data Bits

Figure14 shows the average number of modified bits in the cell group that has the longest pro-

gramming time for a PCM write; we call this group thecritical cell group.3 When modified bits

are more evenly distributed among cell groups, the average number of modified bits in the critical

cell group decreases, which reduces the write service time.From the figure, most applications do

3If there are multiple groups having the longest programmingtime, a group having the maximum number of
modified bits is chosen as the critical cell group.

29

0

5

10

15

20

25

A
v

e
ra

g
e

 #
 o

f
M

o
d

if
ie

d
 B

it
s

o
n

 t
h

e
 C

ri
ti

ca
l

C
e

ll
 G

ro
u

p

H6 L6 L6^H6 L8^H8 L8^H8^H4

0

Figure 14: Average number of modified bits on the critical cell group (lower is better).

10.57 2.91

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

N
o

r
m

a
li

z
e

d
 W

r
it

e
 S

e
r
v

ic
e

 T
im

e

H6 L6 L6^H6 L8^H8 L8^H8^H4

0.00

Figure 15: Average write service time of regular data bits normalized to H6.

30

better with low address bits as the mapping function than with high address bits. This indicates

that the distribution of modified bits has a strong cluster pattern. In libquantum, zeusmp, leslie3d,

soplexandwrf, the distribution of modified bits is dominated by a cyclicalpattern. For these appli-

cations, it is more effective to use high address bits as the mapping function. Overall, L6 has 7.5%

fewer modified bits in the critical cell group than the H6 baseline. Because XOR functions com-

bine both low and high address bits, they are much better thanH6. L6ˆH6 has 41% fewer modified

bits in the critical cell group than the H6 baseline. L6ˆH6 isslightly better than L8ˆH8 because of

its effectiveness forlibquantum. For canneal, address bitsa9 anda10 are good candidates to use

in the mapping function, but these address bits are masked byL8ˆH8 whenM=64. The D-XOR

mapping function, L8ˆH8ˆH4, has similar results as L6ˆH6. In a later section, the advantage of

D-XOR mapping for a variable number of cell groups is shown.

Because divisions are sequentially programmed for each cellgroup, the number of modified

bits in the critical cell group has a direct consequence on PCMwrite service time. Figure15shows

the average write service time for each application normalized to H6. L6, L6ˆH6 and L8ˆH8 are

much better (79%, 55% and 60%, respectively) than H6. The D-XOR (L8ˆH8ˆH4) service time is

similar to L6ˆH6. The reduction in write service time also indicates an improvement in PCM write

throughput. Based on these results, I conclude that, on average, L6ˆH6, L8ˆH8 and L8ˆH8ˆH4 can

achieve 1.8X, 1.7X and 1.8X more write throughput than H6.

Figure16 shows the average write service time with different XOR mapping functions (averaged

over all 14 benchmarks). All results are normalized to L8ˆH8ˆH4.

As shown in the figure, each XOR mapping function is optimizedfor a specific number of

cell groups. If the number of cell groups is small, some high address bits are masked in the

mapping function. For example, with 16 cell groups, the average write service time of L8ˆH8 is

25% worse (higher) than L8ˆH8ˆH4. If the number of cell groups is large, there is unnecessary

overlap between high address bits and low address bits, which will also degrade the effectiveness

of an XOR mapping function.

Overall, L8ˆH8ˆH4 has similar write service time as an optimized XOR mapping function.

However, L8ˆH8ˆH4 is asinglemapping function that adapts to variable number of cell groups,

and thus, it is simpler to implement.

I also compared D-XOR to the most natural shuffling, namely random bit mapping. A random

31

1.05

1.1

1.15

1.2

1.25

1.3

N
o

r
m

a
li

z
e

d
 W

r
it

e
 S

e
r
v

ic
e

 T
im

e

L4 ^ H4 L5 ^ H5 L6 ^ H6 L7 ^ H7 L8 ^ H8

0.95

1

16 groups 32 groups 64 groups 128 groups 256 groups

N
o

r
m

a
li

z
e

d
 W

r
it

e
 S

e
r
v

ic
e

 T
im

e

Figure 16: Average write service time of different numbers of cell groups normalized to L8ˆH8ˆH4

(averaged over all 14 benchmarks).

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

N
o

r
m

a
li

z
e

d
 W

r
it

e
 S

e
r
v

ic
e

 T
im

e

0.4

Figure 17: Average write service time of 20 random bit mapping functions normalized to

L8ˆH8ˆH4.

32

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

N
o

r
m

a
li

z
e

d
 W

r
it

e
 S

e
r
v

ic
e

 T
im

e
H6 Flip-N-Write L8^H8^H4 L8^H8^H4 + Flip-N-Write

0.00

N
o

r
m

a
li

z
e

d
 W

r
it

e
 S

e
r
v

ic
e

 T
im

e

Figure 18: Comparison to Flip-N-Write.

mapping function is afixed random permutationof data bits that eliminates any inherent distribu-

tion pattern to avoid clustering the modified bits in one cellgroup. Figure17 shows the average

write service time for 20 randomly-generated mapping functions. The results are normalized to

L8ˆH8ˆH4 D-XOR for comparison. Because random mapping does not utilize cyclical and cluster

patterns, the average write service time is 14.7% worse (higher) than L8ˆH8ˆH4. The error bars

show the maximum and minimum write service time for different random instances. For most

applications, the difference is small.Libquantumhas a very large variation because the cyclical

pattern allows a perfect distribution of modified bits, which cannot be achieved by most random

mapping functions.

Adding Flip-N-Write. Flip-N-Write [12] is an effective technique to reduce PCM write service

time. With an extra bit of storage, Flip-N-Write counts the number of bits to be written and changes

the encoding of data bits to reduce the number of cells that must be programmed. Figure18shows

the average write service time for Flip-N-Write and the proposed L8ˆH8ˆH4 D-XOR mapping

function. Note that Flip-N-Write has an extra bit flip for every 32 data bits in each cell group.

All results are normalized to H6. On average, Flip-N-Write and L8ˆH8ˆH4 reduce the average

write service time by 12% and 45% respectively. Since both techniques are orthogonal, applying

Flip-N-Write to L8ˆH8ˆH4 further reduces the average write service time by 7% over L8ˆH8ˆH4

33

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
o

r
m

a
li

z
e

d
 W

r
it

e
 S

e
r
v

ic
e

 T
im

e
H6 + Flip-N-Write + D-XOR + BS

0

N
o

r
m

a
li

z
e

d
 W

r
it

e
 S

e
r
v

ic
e

 T
im

e

Figure 19: Average write service time for ECC memory normalized to H6.

alone.

3.5.2 Mapping with Redundant Bits

Figure19shows the average write service time for PCM with ECC redundantbits. The results are

normalized to a DRAM-like ECC baseline with H6. I first apply Flip-N-Write, which reduces the

write service time to 84% of H6, on average. Then, I apply D-XOR to both data bits and ECC

bits. For 256-byte write requests with 32-byte ECC, the mapping functions for data bits and ECC

bits are L8ˆH8ˆH4 and L5ˆH5ˆH2. The write service time is further reduced to 52% of the H6

baseline. Lastly, I apply the bit swap function (BS) to swap all 256 ECC bits with selected data

bits. Compared to D-XOR mapping, BS reduces the write service time by 8% on average to 48%

of H6. Specifically, given ECC bits as the bottleneck, BS reduces the write service time by 61%

for libquantum. BS is effective only if the average flip rate of ECC bits is much higher than the

flip rate of the data bits. Ingccandzeusmp, BS degrades write performance as a result. It may be

possible to adaptively disable BS in this situation.

34

0%

10%

20%

30%

40%

50%

60%

IP
C

 I
m

p
ro

v
e

m
e

n
t

Flip-N-Write + D-XOR + BS

0%

Figure 20: IPC improvement relative to H6 for ECC PCM with 64 cell groups.

-20%

-10%

0%

10%

20%

30%

40%

IP
C

 I
m

p
ro

v
e

m
e

n
t

Hx + Flip-N-Write + D-XOR + BS

-40%

-30%

-20%

16 32 64 128 256

Figure 21: IPC improvement as the number of cell groups is varied (baseline is H6 with 64 cell

groups).

35

3.5.3 Performance

Figure20 shows IPC improvement over the H6 baseline. The graph shows the improvement for

Flip-N-Write and my bit mapping functions for ECC PCM with 64 cell groups.

The results show that Flip-N-Write provides 6.1% performance improvement on average.

Adding D-XOR mapping, the improvement increases to 15.6%.libquantumhas a perfect stride

pattern. Hence, D-XOR cannot improve over the baseline. BS provides an additional 3.1% im-

provement on average. Becauselibquantumhas a few modified data bits, BS is particularly effec-

tive for libq r, which has a 20% improvement in IPC. Combining D-XOR and BS achieves an extra

11.9% IPC improvement on average over Flip-N-Write. The IPC improvement is sensitive to PCM

write traffic load. Workloads with a high WPKI tend to have higher performance improvement.

Wrf andmix-1have very small improvement because their write traffic is limited.

Figure 21 shows the average IPC improvement with different number of cell groups. The

maximum number of concurrently activated cell groups is kept fixed. If a memory request is

mapped to more cell groups, fewer memory requests can be concurrently processed. D-XOR

is consistently better than the H6 baseline and Flip-N-Write. BS provides an additional small

improvement, particularly when the number of cell groups issmall. The figure also shows that

careful selection of the number of cell groups is needed to achieve the best performance. If the

number of cell groups is too large, performance drops because fewer memory requests can be

concurrently processed. If the number of cell groups is too small, the write service time becomes

longer and the memory subsystem suffers a performance penalty from burst writes.

From the results in this section, we conclude that D-XOR mapping with BS and Flip-N-Write

should be applied to achieve the best performance for write intensive workloads.

3.5.4 Intra-line Wear Leveling

To quantify the effectiveness of intra-line wear leveling,the number of writes on each bit position

is measured. The hottest bit position has the maximum numberof writes. Perfect inter-line wear

leveling is assumed by simulating all memory write requeststo a single memory line. The row

shift offset is changed by one byte after every 256 writes [70].

Figure22 shows the number of writes normalized to the scheme without intra-line wear lev-

36

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

N
o

r
m

a
li

z
e

d
 #

 o
f

W
r
it

e
s

to
 t

h
e

 H
o

tt
e

s
t
 B

it
 P

o
s
it

io
n

Conventional Two-level

0.00
0.10

Figure 22: Comparison between conventional row shifting andtwo-level row shifting.

eling. The figure shows that two-level row shifting is as effective as conventional row shifting on

reducing the number of writes to the hottest bit position.

3.5.5 Impact of Division Program Width

Figure23 shows the average write service time for the proposed mapping function with differ-

ent division program widths (averaged over all 14 benchmarks). The mapping function used in

the evaluation is D-XOR + BS. All results assume that Flip-N-Write is enabled; the results are

normalized to H6 with 1X division program width. The division program width is the maximum

number of cells that can be programmed in one cell group. The figure shows that the proposed

mapping function consistently reduces write service time for different widths. However, the po-

tential benefit decreases (on average) as the width is increased. As shown in Figure19, gcc and

zeusmphave a worse write service time with BS.

37

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

r
m

a
li

z
e

d
 W

r
it

e
 S

e
r
v

ic
e

 T
im

e
1X-H6 1X-D-XOR+BS 2X-H6 2X-D-XOR+BS 4X-H6 4X-D-XOR+BS

0

N
o

r
m

a
li

z
e

d
 W

r
it

e
 S

e
r
v

ic
e

 T
im

e

Figure 23: Average write service time for different division program widths normalized to H6 with

1X division program width (over all 14 benchmarks).

3.5.6 Impact of SET to RESET Ratio

In the experiments above, the SET pulse is 150ns and the RESET pulse is 100ns [13]. I analyzed

the sensitivity of the proposed mapping functions to the SET:RESET latency ratio.

Table3 shows the reduction of write service time with Flip-N-Write (one flip bit per 32 bits)

and Bit Mapping (D-XOR + BS) for different SET latencies (RESET =100ns). The proposed bit

mapping technique is insensitive to the SET:RESET ratio. WhenSET:RESET ratio becomes larger,

the improvement becomes slightly smaller because write service time is gradually dominated by

SET programming time.

SET-to-RESET Latency 1.5:1 2:1 4:1 8:1

+Flip-N-Write 13.8% 13.3% 11.6% 10.3%

+Bit Mapping 50.7% 50.3% 49.2% 48.2%

Table 3: Reduction of write service time for different SET-to-RESET ratios.

38

3.6 CONCLUSION

The mapping between data bits and PCM cell groups has a significant impact on PCM write service

time. I first uncovered stride patterns and spatial localityin the distribution of modified bits in

memory write requests. Based on observations about how bit writes are distributed in a write

request, I showed that a balanced distribution of modified bits can be achieved by XOR mapping,

catering to both stride and locality. I also proposed a double XOR (D-XOR) mapping, which allows

a single mapping function to be used for different PCM device programming widths. Finally, I

extended my technique to PCM with ECC.

My results show that D-XOR mapping can reduce PCM write service time by 45% on average,

which results in a 1.8 times improvement in write throughput. My best mapping function achieves

an average 11.9% IPC improvement over Flip-N-Write for ECC-protected PCM. Data bit mapping

is a simple and effective mechanism to increase PCM write throughput and program IPC.

39

4.0 DELTA-COMPRESSED DRAM CACHING FOR HYBRID MEMORY SYSTEMS

4.1 PROBLEM STATEMENT

To avoid performance bottlenecks caused by the limited write performance of non-volatile mem-

ory, DRAM can be used as a cache to offload memory traffic to non-volatile memory for both

performance-critical dataandfrequently modified data. To cache more data in DRAM in hybrid

memory systems, compression can be used to increase the effective capacity of the DRAM cache.

Figure24 shows an organization which supports compressed DRAM caching in hybrid mem-

ory. The cache’s capacity is divided intouncompressedand compressedregions. The amount

of capacity allocated to each region can be dynamically changed. The uncompressed region has

low access latency (it does not require decompression and compression), and thus, it is used to

cache performance-critical data. The compressed region has higher access latency than the uncom-

pressed region; it caches only frequently modified data thatare not in the uncompressed region.

Non-modified data are not cached in the compressed region because the potential gain to read data

from the compressed DRAM region instead of PCM is limited due tothe latency overhead to locate

and decompress the data.

In a DRAM-only system, the design goal of memory compression is to reduce expensive disk

accesses. In hybrid memory, however, the design goal of DRAM compression is to reduce the

PCM write traffic. The problem is to find a new DRAM compression scheme which is optimized

for hybrid memory systems to further improve the compression ratio and reduce the PCM write

traffic.

40

Uncompressed

DRAM

Comp /Decomp

PCM

Memory Controller

Compressed

DRAM

Figure 24: Compressed DRAM caching in hybrid memory.

4.2 PROPOSED SOLUTION: DELTA-COMPRESSED DRAM CACHING

4.2.1 Compressed DRAM Caching

To support compressed DRAM caching, three components are introduced to control the DRAM

cache. Apage classificationmodule identifies memory pages that are suitable for the uncom-

pressed DRAM region and the compressed DRAM region. Apartition adjustmentmodule de-

termines how much DRAM capacity is used by each region. Acompression and decompression

module accesses data in the compressed region.

4.2.1.1 Page Classification Page classification is used to determine whether data shouldbe

kept uncompressed (frequently accessed), compressed (frequently modified) or uncached (infre-

quently accessed). The monitoring is done at page granularity instead of line granularity to amor-

tize the storage overhead. Recent techniques for PCM data placement use variations of a Multi-

Queue (MQ) algorithm to identify hot pages to cache in DRAM [69, 50]. In a MQ algorithm, a

memory page’s access frequency is monitored. Pages are placed into a queue based on their ac-

cess frequency. Queues are classified intohot andcool, and pages in the hot queues are cached in

DRAM.

In the proposed technique, the DRAM cache is partitioned intouncompressed and compressed

regions. Therefore, an additional classification categoryis introduced to the MQ algorithm:warm

queues. Using this classification, pages in hot queues are cached inthe uncompressed region, pages

41

in warm queues are cached in the compressed region, and pagesin cool queues are not cached in

DRAM. Because the compressed region is suitable for storing frequently-modified pages, page

write frequency should be used to identify warm pages, whilepage access frequency should be

used to identify hot pages. However, this increases hardware cost to monitor multiple metrics; In

this work, only page access frequency is used to determine page type.

4.2.1.2 DRAM Partition Adjustment When data is cached in the compressed region, its ac-

cess latency inevitably increases due to compression and decompression operations and extra mem-

ory accesses to the metadata. Therefore, it is beneficial to control the capacity of the uncompressed

and compressed cache regions. For workloads with low PCM write traffic, the capacity allocated

to the uncompressed region should be increased to get the benefit from low access latency. When

PCM write traffic is high, the compressed region’s size shouldbe increased to cache more modified

data in DRAM (avoiding writebacks and hitting the “write bandwidth wall” of the PCM devices).

The capacity allocated to the uncompressed and compressed regions are parameters that are typi-

cally set at system boot-up (e.g., set in the BIOS). The trade-off to determine how much capacity to

allocate to each region is investigated in the experimentalresults. The allocation decision could be

made online, according to monitored workload behaviour (the write throughput to the non-volatile

memory and the compression ratio of the data). This work onlyaddresses the detailed design of

incorporating compressed DRAM cache in hybrid memory.

4.2.1.3 Selective and Predictive CompressionAny memory compression scheme can be used

for the compressed region of the DRAM cache. In my scheme, I choose to use conventional and

delta-compression together. Delta-compression leads to ahigher compression ratio and fewer PCM

writes, but it may not improve performance because delta-compression can generate extra PCM

read traffic (to read the old reference data) for both memory reads and writes. Due to this additional

cost, I proposeselective compression, which sets a threshold on when delta-compression should

be enabled. Specifically, for each memory line, the memory controller selectively enables delta-

compression only if it leads to a minimum gain in storage (which I call aGain Threshold, GT)

over conventional compression. The GT captures a tradeoff between gain in memory capacity

due to compression and extra memory traffic to access delta-compressed data. Also, a line is kept

42

uncompressed if neither compression nor delta-compression can reduce the storage needed for the

line.

When writing a memory line, selective compression needs to read the old data in PCM to

evaluate whether the line should be delta-compressed. If the line is evaluated as not suitable for

delta-compression, the extra PCM read becomes an unnecessary overhead. I proposepredictive

compressionto address this problem. Predictive compression relies on the observation that delta-

compression is probably not advantageous for a line if delta-compression was not advantageous the

last time that the line was written. In other words, the memory controller applies delta-compression

to lines that can be consistently delta-compressed. For a line that was not delta-compressed last

time it was written, the memory controller typically storesit not delta-compressed to avoid unnec-

essary PCM read cost. To give the line a chance to recover delta-compressed status, with a small

probability (which I callRecovery Probability, RP) the memory controller will evaluate whether

the line should be delta-compressed.

4.2.2 Delta-compression for Written Data

For compression in a DRAM-only system, the data in amemory lineshould be compressed1. A

higher compression ratio can be achieved with delta-compression. Delta-compression requires the

data having a reference copy. The modification to the reference copy is compressed instead of

the data itself. Figure25 shows how to apply delta-compression in hybrid memory. First, the old

data is read from PCM. Then the difference between the new and the old data (calleddiff data)

is computed using an XOR operation. Lastly, the diff data arecompressed and stored in DRAM.

Delta-compression tends to have a higher compression ratiothan conventional compression be-

cause delta-compression converts unmodified data bits to zeros before compression.

The challenge is reading delta-compressed data (i.e., thefrequently modified data): it is more

time consuming because the decompressed diff data cannot beaccessed directly from DRAM.

Instead, the old PCM data must be read from main memory (PCM) andXORed with the decom-

pressed diff data. Delta-compression in DRAM provides a way to trade off more PCM reads

against reduced PCM writes (caching more modified data in a more compressed format).

1A memory line is defined as the minimum unit for memory compression.

43

01100011

01100010

XOR

PCM old data

New data

(b) Store data to DRAM with delta-compression

000000001

Diff data

01100011

01100010PCM old data

New data

(a) Store data to DRAM with compression

01100011

New data compress

compress
DRAM

DRAM

Figure 25: An example to illustrate delta-compression.

In summary, for delta-compression in hybrid memory, frequently modified data are compressed

and partially stored in both DRAM and PCM. The memory controller splits and combines data

to/from DRAM and PCM to provide correct data. Given this uniquerequirement on memory

compression in hybrid memory, I designed a compression scheme specially tailored to the DRAM

cache in hybrid memory, as described next.

4.2.3 IBM MXT Compression for DRAM-only Systems

Since my work is based on IBM MXT, I will make a brief introduction to IBM compression

framework. IBM MXT [62] is a high performance hardware-based memory compression scheme

for DRAM-only systems. Figure26(a) shows MXT’s architecture; 4KB pages are stored in DRAM

in a compressed form. On every memory access, the memory controller (MC) compresses or

decompresses the data. MXT offers a framework for my D-COMP algorithm and its variants.

Other compression frameworks could also be used.

MXT partitions DRAM into two regions: the sector translationtable (STT) and the sectored

memory2. STT contains the metadata to locate compressed lines. Sectored memory is a collection

of 256-byte memory sectors that hold compressed data. Each 4KB page is divided into 4memory

2This is a common design for a memory compression scheme.

44

MC

Decompressor

Compressor

READ

WRITE
���� �

���� �

���� �

���� 	

Sector Translation

Table (STT)
Sectored Memory

Compressed DRAM

LZ77

Control

(8)

PTR0

(30)

PTR1

(30)

PTR2

(30)

PTR3

(30)STT Entry

Baseline 1KB Uncompressed Data

(b) an example of a line compressed to three sectors

Compressed

Sectors

(a) MXT architecture

128 bits

Figure 26: IBM MXT compression.

45

lines. Figure26(b) shows how each memory line is compressed in MXT. A 16-byteSTT entry

is associated with each 1KB memory line and contains up to 4 pointers to memory sectors. The

memory controller uses the pointers in the STT entry to access the data. The control field of the

STT entry contains a line state to indicate whether the line is Uncompressed (U), Compressed (C)

or Invalid (I). If a line is Uncompressed, the STT entry uses all pointers to 4 memory sectors. If

a line is Compressed, the STT entry may have fewer than 4 valid pointers to compressed memory

sectors. The control field also contains the compressed sizeof the line. To avoid repeated accesses

to STT entries, a small dedicated on-chip storage in the memory controller (STT Cache) contains

recently accessed STT entries.

4.2.4 Implementation of Delta-compressed DRAM Caching

Delta-compression is not suitable for traditional memory compression because expensive disk read

operations are needed to restore delta-compressed data using the reference data on the disk. Delta-

compression is possible for hybrid memory because the reference data is accessed from PCM

which is slightly slower than DRAM.

In this section, I choose to use a DRAM-only compression scheme, namely MXT [62], as my

baseline and extend it to support delta-compression for hybrid memory. This approach allows me

to focus my efforts on enabling the unique delta-compression without reinventing the non-trivial

mechanisms that are germane to any memory compression scheme. My proposed techniques can

be tailored to other compression schemes that are used for hybrid memory systems.

4.2.4.1 Hierarchical Compression Metadata The most important change to MXT for hybrid

memory involves the compression algorithm. MXT uses a parallel derivative [24] of the Ziv-

Lempel (LZ77) algorithm. Because LZ77 is a dictionary algorithm, the memory line size is 1KB

to achieve a good compression ratio. The whole 1KB memory is stored in DRAM. It takes 128

CPU cycles for MXT to decompress a memory line.

In contrast, my new approach for hybrid memory needs to cacheonly modified data in the

compressed region of DRAM. Therefore, the 1KB line is dividedinto sixteen 64-byteblocksto

allow a finer granularity of compression (i.e., 64 bytes rather than 1KB). The memory controller

46

usesFrequent Pattern Compression(FPC) [2] to compress memory blocks. FPC is the underlying

compression algorithm for both conventional and delta-compression. FPC compresses data on

a word-by-word basis by storing common patterns in a compressed format accompanied by an

appropriate prefix. FPC has a low-cost hardware implementation [2] and takes only 5 CPU cycles

to encode/decode a 64-byte block [1]. In my implementation, the sixteen blocks in a memory line

can be compressed or decompressed in parallel.

Figure27(a) shows an example in which nine modified blocks are compressed and stored in

DRAM. For each block, both conventional compression and delta-compression are tried. The

compression method that achieves the smallest compressed block size is selected. If both schemes

give a compressed block size equal to or larger than the uncompressed size, neither scheme is

selected and the block is stored in an uncompressed form. Each block has a state to indicate its

format. There are four block states: Invalid (I), Uncompressed (U), Compressed (C) and Delta-

compressed (D). If a block state is Invalid, data is written and read from PCM. If a block state

is Uncompressed or Compressed, data is written and read from DRAM. If a block state is Delta-

compressed, then the DRAM stores only the diff data. To read the content of the block, the PCM

data is read and XORed with the diff data.

FPC-based compression allows a line to be partially decompressed to access some of its data

blocks. To achieve this capability, additional metadata are stored in the STT entry of each com-

pressed line. At a minimum, each 64-byte block requires 5-bit metadata: a 2-bit block state and

a 3-bit block size (if data block is aligned at 8-byte boundary). Hence, for all 16 blocks in a line,

there is an extra 80-bit metadata in each STT entry versus theoriginal MXT scheme. To avoid

actually increasing the STT entry size, the PTR3 field of the STT entry is reused, as described

next.

For my compression scheme, a 1KB line is not compressed if compressed data needs more

than three memory sectors. Therefore, for compressed lines, the PTR3 field of the STT entry is

unused. However, the PTR3 field is only 30 bits, which is not enough to store the 80-bit metadata.

To work around the problem, I use a hierarchical design for the metadata. Every 4 blocks in a line

are treated as asuperblock. Each 256-byte superblock requires 4-bit metadata: a 2-bitsuperblock

state and a 2-bit superblock size (superblocks are aligned at 64-byte boundary and the superblock

size field is valid only for compressed superblocks). The full 16-bit metadata for 4 superblocks

47

Baseline

Compressed

(a) an example of a compressed line

Revised

STT Entry

Modified Non-modified

Superblock State(2x4) Superblock Size(2x4) Unused(14)

Compressed Delta-compressed

MXT Ctrl(8) PTR0(30) PTR1(30) NULL Reused

1KB (64-byte x 16)

Line

Metadata

(b) Block and superblock states

Superblock

Invalid (I)

Uncompressed (U)

Compressed (C)

Delta-compressed (D)

Block

I

U

U, C

I, U, C, D

Figure 27: FPC-based delta-compression algorithm.

48

Superblock State Size

0

1

2

3

C

U

D

I

128 (80)

256 (256)

128 (114)

0

80256 114

Block State Size

0

1

2

3

D

I

C

U

18

0

31

64

18 31 641

Modified Compressed Delta-compressed

Figure 28: Data layout of an example memory line.

can be stored in the PTR3 field.

The superblock stateis a summary of the states of the associated blocks (see Figure 27(b)).

For an uncompressed (U) superblock, all of its blocks are uncompressed and there is no need to

store block states. Similarly, for an invalid (I) superblock, all of its blocks are invalid and the

block states are unnecessary. If all blocks in a superblock are stored in DRAM and at least one

block is compressed, the state of the superblock is compressed (C). If the state of a superblock

is not U, I and C, the state of the superblock is delta-compressed (D). For compressed or delta-

compressed superblocks, the states of constituent blocks are stored along with the compressed

data (described in the next section). By keeping superblock states rather than block states, we

trade off the granularity of state information against the storage overhead of the metadata.

4.2.4.2 Compressed Data Layout In MXT, compressed data are stored contiguously in the

logically linear storage implemented by the pointers in an STT entry. To avoid accessing two

memory sectors for each uncompressed superblock, a revisedcompressed data layout in the logi-

49

cally linear storage is used. In the layout, uncompressed superblocks are placed before compressed

superblocks. By doing so, each uncompressed superblock can be aligned to a 256-byte boundary

and stored in a dedicated sector3. Compressed superblocks are sequentially arranged after uncom-

pressed ones. Because my design uses a 64-byte read size, a compressed superblock is aligned to

a 64-byte boundary to avoid extra memory reads for crossing a64-byte boundary.

Figure28 shows the compressed data layout of an example memory line. Uncompressed su-

perblock 1 is placed at the beginning of the logically linearstorage, followed by two compressed

superblocks. There is a gap between the two compressed superblocks because superblocks are

aligned to a 64-byte boundary. The example also shows the detailed layout of superblock 2. Since

this block is delta-compressed, it has a block state header before the compressed data. The 1-

byte header contains the block states of the superblock. Thedata of the blocks are compressed

by the FPC algorithm. The size of each compressed block is indicated by the metadata inside the

FPC-compressed data.

4.2.4.3 Memory Read To read data from the cache, the memory controller needs to determine

the location of the data. Figure29(a) shows how to determine the data location from the line state

and superblock state. If the line state is invalid or uncompressed (first two rows of Figure29(a)),

the data will be read from PCM and DRAM only, respectively. If the line state is compressed, the

location of data depends on the superblock state as follows.If a superblockX is invalid (I), the

data will be read from PCM. If a superblockX is uncompressed (U) or compressed (C), the data

will be read from DRAM. If superblockX is delta-compressed (D), the data will be read from

both DRAM and PCM. The data from the DRAM and PCM also need to be merged to get actual

memory data. The merge operation is performed at block granularity based on the state of each

block. Figure29(b) shows the merging rules. For example, if a block is delta-compressed, the data

from the DRAM is decompressed and XORed with the data from the PCM.

To read PCM data, the address is the same as the address of the memory request. To read

DRAM data, the memory controller needs to calculate the startposition of the superblock from the

superblock state and superblock size in the STT entry.

If superblock state is U, its relative position is the sum of the sizes of the uncompressed su-

3Recall that the logically linear storage space is represented by multiple 256-byte sectors.

50

Line

State
DRAM

I

U

C

C

No

Yes

No

Yes

Superblock

State

-

-

I

U

PCM

Yes

No

Yes

No

C

C

Yes

Yes

C

D

No

Yes

Invalid (I)

Uncompressed (U)

Compressed (C)

Delta-compressed (D)

Read PCM

Read DRAM

Read Decompressed DRAM

Read Decompressed DRAM

XORed with PCM

(a) Determine data location (b) Merge block data

Block State Action on Data

Figure 29: Rules for reading data from compressed hybrid memory.

perblocks stored before it, that is

StartPos(X) =
X−1
∑

j=1

Uncomp(j) · Size(j) (4.1)

If a superblock state is C or D, its relative position is the sum of the sizes of all superblocks

stored before it and all other uncompressed superblocks, that is

StartPos(X) =
X−1
∑

j=1

Size(j) +
4

∑

j=X+1

Uncomp(j) · Size(j) (4.2)

To implement this calculation, simple logic is needed to conditionally sum the size of four

superblocks.

4.2.4.4 Memory Write To store a compressed superblock, the memory controller first evalu-

ates the different sizes of the data when the superblock is stored as uncompressed (U), compressed

(C) or delta-compressed (D). To calculate the size of a delta-compressed superblock, the current

PCM data of the superblock are read. After the evaluation, thememory controller chooses the su-

perblock state that can achieve the smallest compressed size. If the storage size of the superblock is

unchanged (aligned on a 64-byte boundary), then the new datawill be directly written to DRAM.

If the storage size of the superblock is changed (overflow/underflow), which is a common condi-

tion for compressed memory, the memory controller will readfrom DRAM all superblocks stored

51

after the requested superblock. The memory controller writes all affected superblocks to their new

DRAM location. I evaluated this extra data movement cost in myexperiments. With a write buffer,

the data movement operation is not on the critical path, and accounts for only a small portion of

total DRAM memory traffic. Similarly to reading PCM, writing PCMis straightforward. The data

is directly written to PCM using the address from the write request. The memory controller needs

to write data to PCM in two cases: a memory line is written but not cached in DRAM or a memory

line is evicted from DRAM.

4.2.4.5 Cache Replacement PolicyFor MXT, unused memory sectors are organized as a linked

list. When extra memory storage is needed, unused sectors areallocated from the list by a small

hardware circuit [62]. The memory controller tries to maintain a minimum quota ofunused DRAM

sectors (16MB in the experiments). Once the quota is below this threshold, the memory controller

walks the STT to evict rarely accessed pages.

The proposed design uses a MQ algorithm to monitor page access frequency. Recall that hot

pages are placed in the uncompressed region, only warm pagesare candidates for cache replace-

ment in the compressed region. The memory controller tracksthe number of pages in each warm

queue and divides warm queues into high-rank queues and low-rank queues. A high-rank warm

page is guaranteed to be cached in the compressed region. A low-rank warm page with low access

frequency is evicted first. To avoid thrashing, modified dataof a low-rank warm page is inserted

into the compressed region with a throttled insertion policy [46].

4.2.4.6 Hardware Cost and Overhead The hardware cost to support compressed DRAM

depends on the underlying compression algorithm and page classification mechanism. Delta-

compression by itself only requires implementing a tailored delta-compression algorithm for both

memory reads and writes in the memory controller. I use FPC asthe building block for delta-

compression. FPC is easily implemented in hardware and is used for on-chip cache compres-

sion [1].

For MXT, the STT is the major memory data structure. The size of the table can be dynamically

adjusted based on the size of the compressed region. For every 2GB of compressed capacity, 32MB

DRAM is needed for the STT. I assume a 16KB STT cache to hold the 256 most recently accessed

52

STT entries. I use Rank-based Page Placement (RaPP) [50], a hardware-assisted variation of MQ,

for page classification. RaPP requires 126KB on-chip storageand 12MB DRAM to maintain data

structures for the MQ algorithm for a 2GB DRAM and 16GB PCM hybrid memory.

When data is stored in a compressed form, its access latency isincreased. There are two

reasons for the increase: STT translation delay and decompression latency. I assume 5 CPU cycles

for STT translation delay, for a hit in the STT cache. I assume15 CPU cycles to decompress a 256-

byte superblock and merge the data from both DRAM and PCM if the data is delta-compressed.

I also model the extra memory delay due to STT misses. For uncompressed data, the memory

latency is the time to read the critical 64-byte block. For compressed data, all compressed blocks

of a superblock are read before decompressing the superblock.

Because FPC is simple, an on-chip FPC compression and decompression engine has low power

overhead. The power of the implementation is estimated to be0.28W [15]. I add 0.3W for the

compression and decompression logic. I assume 0.3W for STT logic and 0.3W for buffering.

4.3 EVALUATION ENVIRONMENT

4.3.1 Configuration

I use Virtutech Simics [36] to collect memory traces. To evaluate memory compression,I use

a trace-driven simulator that takes traces as input files with the command and address of each

memory request, and the data before and after every memory write.

I model an 8-core 2GHz CMP with in-order cores and a cache hierarchy similar to the IBM

Power7 [56] with a 32MB L3 cache. Since multiprogrammed workloads are executed with one

program per core, I assume that each core only uses its local 4MB L3 cache region. To alleviate

the miss penalty, I also model a simple sequential data prefetcher for the L3 cache.

I model a hybrid memory system with 2GB DRAM and 16GB PCM. Similar to [50], a small

DRAM size is used to match the memory footprint of the workloads. The hybrid memory has

four 12.8GB/s memory channels. Based on the measured bandwidth requirements, DRAM and

PCM have two dedicated memory channels, each with two DIMMs, and each DIMM with eight

53

banks. A memory controller configuration similar to [45] is used, where each bank has a separate

32-entry read queue and a 32-entry write queue. Read requestsare given higher priority, as long

as the write queue is not full. For PCM memory scheduling, WritePausing [45] is used: a PCM

write is divided into multiple 50ns epochs and the memory controller can suspend an active PCM

write at the beginning of an epoch to schedule a read request to the memory bank. In the baseline,

I assume 0.75GB/s PCM write bandwidth per channel, which is equivalent to PCM write service

time of 2600 cycles per write.

I calculate memory power as in [16], adding background power and operation power. Back-

ground power is determined by memory type, capacity and power state. Operation power is as-

sumed to be proportional to memory bandwidth. Memory power is estimated using the parameters

in [11]. The simulation parameters are summarized in Table4. My experiments confirmed the

results in [48] that a hybrid memory can have better performance and energythan a DRAM-only

system due to the increased capacity enabled by better cell density from PCM.

4.3.2 Workloads

Because my work focuses on memory, I use only memory-intensive benchmarks that have large

memory footprints from the SPEC CPU2006 [14] and PARSEC [9]. All benchmarks are 64-bit

binaries, compiled with gcc 4.1.2. Most PARSEC benchmarks are computation intensive or have

a very small memory footprint. For SPEC CPU2006, the reference inputs is used. The memory

footprints of benchmarks are scaled when it is possible to change the input parameters to avoid

results that are skewed bymcf, which has a 1.6GB memory footprint. Table5 gives the detailed

parameters of the scaling. Forcannealfrom PARSEC, I run it in single-threaded mode and use

native input with 940MB memory footprint.

Table6 shows the memory footprint (size, in GB), the number of memoryread requests per

1000 instructions (Read PKI) and the number of memory write requests per 1000 instructions

(Write PKI) of each workload. Ten representative multiprogrammed workloads are selected, each

containing two copies of four unique benchmarks. Four single applications are selected and run

in a rate mode, where eight instances of the same benchmark are concurrently executed. The

simulator requires a long warm-up phase to populate the large 2GB DRAM cache. The simulation

54

CPU 8-core, 2GHz, 2-issue, in-order, 32KB L1 I/D

L2 Cache 512KB private, 8-way, 64-byte linesize, write-back.

L3 Cache 32MB total, 4MB per core, 256-byte linesize,

20-cycle local L3 hit, write-back,

sequential data prefetcher

Memory Controller 2 PCM channels + 2 DRAM channels,

12.8GB/s per channel, 2 DIMMs per channel,

8 banks per DIMM,

32-entry read- and write-queue per bank,

read priority scheduling for DRAM,

write pausing scheduling for PCM,

FPC decoding latency 15 cycles

STT translation latency 5 cycles

DRAM 2GB, 50 ns (100 cycles) for first 64-byte read,

15 ns (30 cycles) for each consecutive 64-byte read.

Background Power: 0.93W/GB (leakage + refresh)

Read Energy: 0.8J/GB, Write Energy: 1.2J/GB

PCM 16GB, 80 ns (160 cycles) for first 64-byte read,

15 ns (30 cycles) for each consecutive 64-byte read,

0.75GB/s write bandwidth per channel,

(2600-cycle write service time per 64-byte write),

50ns epoch, 26 epochs per PCM write

Background Power: 0.10W/GB (leakage)

Read Energy: 1J/GB, Write Energy: 6J/GB

Table 4: System settings.

55

Name Ref Problem Size New Problem Size

libquantum 1397 5953 (1GB)

milc 20x20x20x20 26x26x26x26 (1.5GB)

leslie3d 121x121x15 331x331x35 (1.2GB)

Table 5: Benchmarks with scaled problem sizes.

is switched from the warm-up phase to the timing phase after 160 million write references are

simulated or after one benchmark completes 30 million writereferences. The simulation stops

when one of the benchmarks completes 60 million write references.

4.4 RESULTS

The baseline for my evaluation is a hybrid memory system using Rank-based Page Placement[50]

without compression (RaPP-RW). RaPP-RW uses a tailored MQ algorithm to identify and store

frequently-accessedpages in DRAM. I also evaluated a variation of the MQ algorithm(RaPP-WO),

which only identifies and storesfrequently-modifiedpages in DRAM.

I compare the baseline with four schemes that use compression: COMP applies FPC com-

pression only on the written data; D-COMP is a delta-compression scheme that applies FPC on

the difference between the new and old data; SD-COMP applies selective compression and PSD-

COMP adds predictive compression to SD-COMP (both described in Section4.2.1.3). Unless

explicitly specified, COMP, D-COMP, SD-COMP and PSD-COMP all have a 1.5GB compressed

region and a 0.5GB uncompressed region.

For SD-COMP and PSD-COMP, I performed a sensitivity study on Gain Threshold (GT, de-

fined in Section4.2.1.3). If GT is small, more lines are delta-compressed, and vice versa. I find

optimal performance results when GT is between 48 bytes and 96 bytes. In the evaluations, I

choose 64 bytes as the value of GT. For PSD-COMP, I also did a sensitivity study on the value of

56

Name Size (GB) Read PKI Write PKI Description

Gemsr 6.3 5.34 2.40 8 copies of GemsFDTD

leslie r 9.2 3.71 1.12 8 copies of leslie3d

mcf r 12.8 15.10 7.24 8 copies of mcf

milc r 11.8 6.18 1.84 8 copies of milc

mix 1 8.3 8.10 4.09 lbm-libq-mcf-milc

mix 2 8.2 5.43 1.66 libq-mcf-milc-zeusmp

mix 3 7.9 6.60 3.39 lbm-leslie-libq-mcf

mix 4 7.7 8.52 4.57 lbm-libq-mcf-canneal

mix 5 5.7 8.59 3.27 gcc-mcf-zeusmp-canneal

mix 6 5.4 5.14 1.98 leslie-omnetpp-zeusmp-canneal

mix 7 5.2 5.65 3.16 lbm-libq-zeusmp-canneal

mix 8 5.0 13.99 5.97 astar-libq-milc-omentpp

mix 9 3.6 3.91 2.06 astar-gcc-milc-zeusmp

mix 10 2.5 3.23 2.06 astar-gcc-Gems-wrf

Table 6: Simulated workloads.

57

0

1

2

3

4

5

6

7

C
o

m
p

re
ss

io
n

 R
a

ti
o

COMP D-COMP

0

Figure 30: Compression ratios (original size / compressed size) for FPC compression (COMP) and

delta-compression (D-COMP)

the recovery probability (RP, defined in Section4.2.1.3). I found that the workloads are not sensi-

tive to the value when RP is small. Consequently, I choose RP = 1/32, which means that for every

32 memory writes (lines are not delta compressed), the memory controller evaluates one write to

check whether the corresponding line should be delta compressed.

4.4.1 Compression Ratio

First, I evaluate the compressibility of the written data inthe benchmarks. Figure30 shows

the compression ratio for FPC compression (COMP) and delta-compression (D-COMP). For the

twelve studied benchmarks, while COMP achieves an effectiveaverage compression of 2.2X, D-

COMP can achieve an average of 3.1X. For six out of twelve benchmarks, D-COMP achieves

at least 35% more effective capacity than COMP because delta-compression converts unmodified

data bits to zeros, which are more compressible. The resultsalso show that, some floating-point

benchmarks, likeGemsFDTDandleslie3d, are difficult to compress, even with delta-compression.

58

0.20

0.40

0.60

0.80

1.00

1.20

N
o

r
m

a
li

z
e

d
 P

C
M

 W
r
it

e
RaPP-RW RaPP-WO COMP D-COMP SD-COMP PSD-COMP

0.00

0.20

Figure 31: PCM writes normalized to RaPP-RW.

4.4.2 PCM Write

Figure31shows the number of PCM writes normalized to RaPP-RW baseline.On average, RaPP-

WO, COMP and D-COMP reduce the number of PCM writes by 8.2%, 35.5%and 64.5%, respec-

tively. It turns out that using only D-COMP more than 90% PCM write requests are absorbed by

the DRAM cache for five out of fourteen workloads. This is because D-COMP can achieve a much

higher compression ratio than COMP.

For GemsFDTD, compression is not effective and cannot reduce the number of PCM writes

For leslie3d, the number of PCM writes will be reduced significantly if onlymodified data are

cached in DRAM. In general, SD-COMP results in more PCM writes than D-COMP because SD-

COMP only enables delta-compression on lines that have a minimum 64-byte storage gain (GT).

PSD-COMP has almost the same number of PCM writes as SD-COMP because PSD-COMP only

disables delta-compression for lines that are difficult to be delta-compressed, which will not change

overall compression ratio. When DRAM compression is enabled,PCM endurance is proportion-

ally improved with the reduction in PCM writes. On average, COMP, D-COMP, SD-COMP and

PSD-COMP achieve 1.6X, 2.8X, 2.2X and 2.2X improvements in PCMlifetime over RaPP-RW4.

4Assuming an ideal wear leveling mechanism.

59

0.50

1.00

1.50

2.00

2.50

N
o

r
m

a
li

z
e

d
 I

P
C

RaPP-RW RaPP-WO COMP D-COMP SD-COMP PSD-COMP

0.00

Figure 32: IPC normalized to RaPP-RW.

4.4.3 Performance

Figure32 shows IPC improvement of 15.6% and 22.3% for COMP and D-COMP, respectively,

when normalized to RaPP-RW. The difference shows the importance of enabling delta-compressed

caching for hybrid memory. SD-COMP and PSD-COMP have similar improvement as D-COMP,

but they bring higher power and energy savings (see next section).

Notice that blindly enabling compression will not always improve performance. This is be-

cause the performance gain on reducing PCM writes can be offset by the performance loss of

increased accessing latency. A typical example ismix-2. With COMP,mix-2has no reduction on

PCM writes but 25% performance penalty over RaPP-WO due to the extra read latency.

My results also show that on average RaPP-WO has similar performance as RaPP-RW. For

mix-2 and mix-3, RaPP-RW is better because more frequently-accessed data are cached in the

DRAM cache. Forleslie r, RaPP-WO is better because more frequently-modified data arecached

in the DRAM cache.

60

0.60

0.80

1.00

1.20

1.40

1.60

N
o

rm
a

li
ze

d
 T

o
ta

l
E

n
e

rg
y

RaPP-RW RaPP-WO COMP D-COMP SD-COMP PSD-COMP

0.40

0.60 N
o

rm
a

li
ze

d
 T

o
ta

l
E

n
e

rg
y

Figure 33: System energy consumption.

4.4.4 Energy Consumption

Although compression increases energy consumption, it reduces system total energy consumption

due to the reduction in execution time. To be conservative inestimating system power, I modelled

the 8-core processor with an average processor power of 25W.The energy consumption is com-

puted by multiplying the execution time with system power. Figure 33 shows that system total

energy consumption is reduced 4.6% and 6.6% with COMP and D-COMP, respectively. The re-

duction further goes to 7.5% and 11.0% with SD-COMP and PSD-COMP, respectively.Mcf r and

mix-1 have large energy savings with compression, which is consistent with their IPC improve-

ments, even though the power is much higher.

4.4.5 Impact of PCM Write Bandwidth

To analyze the impact of the PCM write bandwidth on the DRAM compression schemes, I carried

out experiments with different PCM write bandwidth values. Figure 34 shows IPC normalized

to the RaPP-RW baseline. As expected, the benefits of compression are higher when PCM write

bandwidth is lower. When PCM write bandwidth is decreased to 1GB/s, IPC performance benefit

61

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o

r
m

a
li

z
e

d
 I

P
C

RaPP-RW RaPP-WO COMP D-COMP SD-COMP PSD-COMP

0

0.2

1GB/s 1.5GB/s 2GB/s

PCM Write Bandwidth

Figure 34: Sensitivity analysis of varing PCM write bandwidth on IPC

of PSD-COMP is increased to 37.3%. When PCM write bandwidth is increased to 2GB/s, IPC per-

formance benefit of PSD-COMP is reduced from 24.4% to 15.7%. The performance gain from the

reduction of PCM writes is offset by the increased latency of compressing memory. If PCM write

bandwidth is the only bottleneck of the system, D-COMP will always get the best performance,

because it maximize the number of PCM writes that can be reduced. These results show that the

write bandwidth gap between DRAM and PCM is an important factorto determine whether or not

memory compression should be enabled for hybrid memory.

4.4.6 Impact of Size of Compressed DRAM Region

I evaluate PSD-COMP with different sizes of the compressed region. The total DRAM capacity

is fixed at 2GB. From Figure35, the optimal partition size highly depends on the workloads. For

mix-5andmix-8, it is better to use 1GB DRAM as compressed memory. Formilc r andmix-3, it

is better to use 2GB DRAM as compressed memory. To achieve better performance, the memory

controller should dynamically adjust the sizes of compressed and uncompressed regions of the

DRAM (about 7% potential for IPC improvement), which is an aspect of my future work.

62

0.5

1

1.5

2

2.5

N
o

r
m

a
li

z
e

d
 I

P
C

RaPP-RW 2GB PSD-COMP 1.75GB PSD-COMP

1.5GB PSD-COMP 1.25GB PSD-COMP 1GB PSD-COMP

0

0.5

Figure 35: Speedup with different compressed region capacities (normalized to RaPP-RW)

4.5 CONCLUSION

Given that PCM write bandwidth is a major performance bottleneck for hybrid memory, compres-

sion has been used to reduce PCM write traffic by increasing DRAMeffective capacity. I designed

a novel DRAM cache compression scheme that is flexible and tailored to the specific challenges

of hybrid memory. The proposeddelta-compressionalgorithm stores a compressed version of the

modified bits of the updated data in DRAM. I also proposed two extensions to further improve per-

formance and efficiency of my compression scheme, namelyselective compressionandpredictive

compression. My results demonstrate that compression can significantlyimprove DRAM cache

effective capacity by up to 6.3X and improve PCM lifetime by 2.2X on average. I observed 24.4%

IPC improvement from my compression scheme over a non-compression design. I conclude that

compression for the DRAM cache is an effective mechanism for improving the performance and

increasing the endurance of hybrid memory.

63

5.0 SUPPORTING SUPERPAGES IN NON-CONTIGUOUS PHYSICAL MEMORY

5.1 PROBLEM STATEMENT

Non-volatile memories are being introduced in hybrid main memory systems to reduce mem-

ory static power [49, 70, 50]. These non-volatile memories, however, have limited write en-

durance [47], and cells gradually become non-programmable “bad” cells. Mechanisms have been

proposed for error correction [52], but their limited error correction resources can tolerate limited

number of errors. When uncorrectable memory errors occur, the affected memory page must be

retired. Retired pages are marked as unusable [61] and prevented from being allocated in the fu-

ture. Retired pages create many unusable holes in the physical address space and render the space

non-contiguous. On the other hand, traditional superpagescan only be constructed with contigu-

ous physical memory blocks. As shown in Section5.3, even a small number of retired pages can

make it very difficult to find enough contiguous physical memory blocks to support traditional

superpages.

The goal of the chapter is to find new storage-efficient page table formats to accommodate

superpages in the context of non-contiguous physical memory. This is important because with-

out superpages the performance overhead of virtual memory can be significant, specifically for

memory-intensive workloads with large memory footprints and random access patterns. Four re-

quirements are identified to achieve this goal:

1. Allow mapping a superpage to multiple non-contiguous memory area;

2. Use superpage tables that are of the same size as traditional superpage tables;

3. Guarantee that address translation is completed in a fixednumber of steps; and,

4. Allow mixing superpages and traditional pages.

64

For backward compatibility and deployment, the new page table format is an optional extension

to allow a portion of the non-contiguous memory to be mapped as superpages and the rest of

memory to follow a traditional page table format.

5.2 UNDERSTANDING ADDRESS TRANSLATION OVERHEAD

There are three performance advantages to superpages. First, superpages increase TLB reach by

the ratio of the size of a superpage to the size of a normal basepage (i.e., TLB can cache 2-

3 orders of magnitude larger address space), thus reducing TLB miss rate. Second, superpages

reduce the number of levels during page walks, consequentlyreducing the latency of a TLB miss.

Third, superpages significantly reduce the size of the page table; Table7 shows page table sizes for

different workload memory footprints and page sizes assuming an 8-byte page table entry. Note

that for a workload with a 16GB memory footprint, the page table size for a traditional 4KB page

is 32MB, which is already beyond the capacity of the Last LevelCache (LLC) for most processors.

With 2MB superpages, the size of the page table is reduced to just 64KB and can easily fit in the

cache.

Memory Footprint 1GB 16GB

4KB page 2MB 32MB

2MB superpage 4KB 64KB

1GB superpage 8B 128B

Table 7: Page table sizes for different workload memory footprints and page sizes.

To further understand the overhead of address translation,I characterized the performance of

different problem sizes and TLB configurations for the GUPS workload [18], which is memory-

intensive with a random access pattern. I use cycles per instruction (CPI) to measure performance.

I study three TLB configurations: a 512-entry 4KB-page TLB, a 512-entry 2MB-page TLB and

an 256K-entry 4KB-page TLB, which is much larger than any practical TLB design. Recent work

shows that TLB reach can be improved by coalescing multiple TLB entries with similar con-

65

tents [42, 41]. The effective TLB reach of a 256K-entry 4KB-page TLB is 1GB, which is an upper

bound that can be achieved by TLB coalescing.

0

5

10

15

20

25

30

C
P
I

No PTE PTE - Ideal LLC Hit PTE -Memory

0

512-entry

4KB

256K-entry

4KB

512-entry

2MB

512-entry

4KB

256K-entry

4KB

512-entry

2MB

1GB 16GB

Figure 36: CPI breakdown with different problem sizes and TLBconfigurations for the GUPS

workload.

As shown in the left side of Figure36, when the memory footprint is 1GB, a 256K-entry 4KB

TLB has similar performance as a 512-entry 2MB TLB, since the memory footprint is not larger

than the 1GB TLB reach. When the memory footprint increases to16GB (right side of Figure36),

which is much larger than the 1GB TLB reach, the performance improvement from increasing

TLB reach becomes very small, but superpages perform very well.

Figure36characterizes the CPU cycles for an instruction on average, to understand the sources

of the address translation overhead. Approximately 15 cycles are needed to access data, execute

the instruction and account for address translation overhead in the first 3 levels (up to PDE, labeled

No PTE in the figure). Compared to a 512-entry 2MB-page TLB, the additional address translation

overhead of a 4KB-page TLB mainly comes from accessing PTEs.

The number of cycles to access PTEs can be broken down into twocomponents: the cycles to

access PTEs assuming all PTEs always fit in the LLC (PTE-IdealLLC hit, middle cycles), and the

cycles to access main memory if a PTE is not cached (PTE-Memory, at the top). For workloads

66

with large memory footprints (16GB), the performance overhead of accessing PTEs is dominated

by main memory accesses.

In conclusion, to avoid address translation overhead from becoming a performance bottleneck,

it is critical for workloads with large memory footprints tosupport superpages, which avoids ac-

cessing PTEs.

5.3 PAGE RETIREMENT AND MEMORY FRAGMENTATION

Given that superpages need contiguous physical memory, thephysical memory can become frag-

mented when there is even a small percentage of retired pages. Figure37 shows the probability

of finding a contiguous memory block (of sizes 2MB, 128KB, 64KB and 32KB) as a function

of percentage of retired 4KB pages (retired pages are uniformly distributed). The probability of

allocating a 2MB superpage quickly approaches zero if the number of retired pages increases (e.g.,

for 0.5% retired pages, the probability is less than 8%). This implies that a traditional superpage

implementation will be ineffective in the presence of retired pages. Nevertheless, it is relatively

easy to findsmall contiguous memory areaswhen the percentage of the retired pages is small.

To ensure that at least 60% of the memory blocks are contiguous (do not contain retired pages), the

threshold on the percentage of the retired pages for 128KB, 64KB and 32KB superpages is 1.6%,

3.1% and 6.1%, respectively.

In the next section I propose a new method to construct superpages from multiple small mem-

ory fixed-sized areas instead of a single large contiguous memory area.

5.4 PROPOSED SOLUTION: GAP-TOLERANT SUPERPAGE

5.4.1 Gap-tolerant Sequential Mapping

When the physical memory is littered with retired pages, it isproblematic to find a large contigu-

ous memory block to establish a mapping. I devisedGap-tolerant Sequential Mapping(GTSM)

67

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
ro

b
a

b
il

it
y

 o
f

H
a

v
in

g
 N

o
 R

e
ti

re
d

 P
a

g
e

2MB 128KB 64KB 32KB 4KB

0%

10%

0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0%

H
a

v
in

g
 N

o
 R

e
ti

re
d

 P
a

g
e

Percentage of Retired Pages

Figure 37: Probability of a memory block (of sizes 2MB, 128KB, 64KB and 32KB) to be contigu-

ous (no retired pages) for different percentages of retired4KB pages.

to support superpages in memory with retired pages. Figure38 shows three ways to map a vir-

tual memory space (VA) of the size of a superpage to physical memory (PA) that contains errors

(marked with an X). Figure38(a) shows traditional superpage mapping, that maps VA to contigu-

ous PA (in this case, there is no contiguous physical space that can accommodate a superpage).

Figure38(b) is the traditional page mapping, where each virtual pagecan be mapped to an ar-

bitrary non-retired physical page. This flexibility is not free: the storage cost of fine-grained paged

mapping is orders of magnitude higher than traditional superpage mapping. Figure38(c) shows

how GTSM divides a virtual superpage into multiple fixed-size smaller virtual blocks, which are

sequentially mapped to memory (B-blocks, or building blocks). B-blocks are bigger than a regular

page and together form a memoryslice, whose size is twice the size of a superpage. Note that

the utilization of memory isnot only 50% with GTSM because remaining unmapped fragmented

memory can still be used for traditional pages.

To maintain a one-to-one mapping between virtual blocks andB-blocks, exactly half of the B-

blocks participate in the mapping, given the size of the memory slice. Any B-block that contains

at least one retired page cannot be used for GTSM. Note that GTSM is a generalized form of

68

Mapped Page

(b) Fine-grained Paged

Mapping

Retired 4KB Page

(c) Gap-tolerant Sequential

Mapping

X

VA

PA

(a) Traditional Superpage

Mapping

VA

PA

VA

PA

X

X

X

X

X

X

Building

Block

(B-block)

Memory

Slice

X

X

X

Figure 38: Examples of different address mapping schemes.

69

∙∙∙

(a) A memory slice is divided into 64 B-blocks.

32 B-blocks (grey) are selected to construct a superpage.

063

Block Selection Bitmap

127 64

Physical Page Base Address Available

63 5152 12

N

X

62

0 AVL

11 9 8 0

G 1 D A

P

C

D

P

W

T

U

/

S

R

/

W

P

21 20

P

A

T

13 7 6 5 4 3 2 1

(b) Gap-tolerant PDE (GT-PDE) format.

Figure 39: Gap-tolerant PDE (GT-PDE) format.

traditional superpage mapping, but it is more flexible to take into account retired pages. If there is

no retired pages in a memory slice, GTSM creates the same (i.e., contiguous) memory mapping as

traditional superpage mapping. By sacrificing flexibility ofsmall/traditional page mapping, GTSM

tolerates retired pages and maintains a page table that has similar storage efficiency as superpage

mapping.

5.4.2 Gap-tolerant Page Directory Entry

For a 2MB superpage, page directory entry (PDE) is the last level of address translation; the PDE

format contains the physical page frame base address and control flags of the superpage (present

bit, access bit, dirty bit, etc.). To support GTSM, the 8-byte PDE is extended to a 16-byte Gap-

Tolerant PDE (GT-PDE). Figure39(a) shows a memory slice divided into 64 B-blocks with half of

the B-blocks selected to construct a GTSM superpage. As shownin Figure39(b), to minimize the

impact on the OS, The first 64 bits of a GT-PDE is kept the same asa traditional 2MB-page PDE.

An extra 64-bit B-block selection bitmap is appended for GTSM. The corresponding bit will be set

to 1 if the B-block is selected in the mapping. Otherwise, the bit will be set to 0.

Figure 40(a) shows address translation of a traditional 2MB-page PDE.The 9-bit PDE in-

dex/block offset is used to select a PDE among 512 regular PDEs. The 9-bit PTE index will be

70

(b) Address translation of a 4MB-page GT-PDE.

GT-PDE Index

(8)

Block

Index (5)

Page Offset

(12)

Block

Offset (5)

PDE Index

(9)

PTE Index /

Block Offset (9)

Page Offset

(12)

GT-PDE

Physical Page Base Address /

Slice Base Address (29)

Bitmap

Offset (6)

Page Offset

(12)

Block

Offset (5)

Block Selection

Bitmap (64)

(a) Address translation of a 2MB-page PDE.

PDE

Physical Page Base Address

(31)

Page Offset

(12)

Block Offset

(9)

VA

PA

VA

PA

Figure 40: Address translation using GT-PDE-4MB.

71

kept unchanged in the translated physical address. Since the default size of each page directory

table is 4KB, it can hold 256 GT-PDEs instead of 512 regular PDEs. To avoid changing the size

of the page directory table (4KB) and the size of the mapped memory range (1GB), each GT-PDE

entry needs to map a 4MB superpage instead of a traditional 2MB superpage. Based on GTSM, a

4MB superpage is mapped to a 8MB memory slice. Since each memory slice has 64 B-blocks, the

size of each B-block is 128KB.

Figure40(b) shows the address translation of a 4MB-page GT-PDE. Only the upper 8 bits of

the PDE index are needed to index a GT-PDE entry among 256 GT-PDEs. Since each B-block is

128KB, only the low 5 bits of the PTE index are used as block offset and kept unchanged during

address translation. The remaining 5 bits between GT-PDE index and block offset are treated as

block index. Block index is translated using the block selection bitmap of the selected GT-PDE.

Same as a 2MB-page PDE, the physical page base address field of aGT-PDE entry is 31 bits.

Because the mapped slice is aligned at an 8MB boundary, the low2 bits of the physical page base

address field are always zeros and ignored in the translated physical address. To translate block

indexK (0-31), the block selection bitmap is scanned to find theKth selected bit, whose position

in the bitmap (0 - 63) indicates the B-block that the virtual block is mapped to.

Because at least half of the B-blocks in the memory slice need tohave no retired pages, Fig-

ure 41 shows the probability of constructing a valid mapping for different percentages of usable

B-blocks, which are assumed to be randomly distributed in memory. A threshold of 60% is enough

for most memory slices (93.3%) to find a valid mapping. Becauseonly half of the B-blocks in a

slice are used in GTSM, the memory capacity that can be mappedwith GT-PDE is 46.6% with

60% B-blocks usable. Recall that the remaining memory capacity can be mapped as traditional

pages.

5.4.3 Tolerating More Retired Pages

There is a trade-off between B-block size and number of retired pages allowed (robustness of

mechanism). The B-block size used by a 4MB-page GT-PDE is 128KB.As shown in Figure37,

to tolerate more retired pages, a smaller B-block size shouldbe chosen (to ensure enough usable

B-blocks exist to find a valid mapping).

72

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
P

ro
b

a
b

il
it

y
 o

f
C

o
n

st
ru

ct
in

g

a
 V

a
li

d
 G

T
-P

D
E

0%

0% 20% 40% 60% 80% 100%

Percentage of Usable B-blocks

Figure 41: Probability to construct a valid GT-PDE mapping for different percentages of usable

B-blocks.

When the bit of the block selection bitmap represents a smaller B-block, the format of the

GT-PDE is not changed and the size of the superpage represented by a GT-PDE is reduced. To

avoid changing the size of the mapped memory range (1GB), the page directory table needs to

be expanded to hold more GT-PDEs. This change to use large pages (e.g., 16KB) as the page

directory table is feasible. Some architectures, like ARM, already have this capability.

I limit the B-block size to 128KB, 64KB or 32KB. Table8 shows the basic parameters of

GT-PDEs. Supporting 16KB or smaller B-blocks requires changing the GT-PDE format to have

more bits for the physical page base address. Although supporting 256KB or larger B-block size

is possible, it is not considered for two reasons. First, 256KB or larger B-block size implies

tolerating fewer retired pages (< 1%), which is lower than the goal set for this work. Second, the

size of the page directory table will be smaller than 4KB and become partially filled (i.e., wasted

space) assuming a minimum page size of 4KB.

The translation process of GT-PDE with a smaller B-block sizeis similar to a 4MB-page GT-

PDE. However, with a smaller B-block size, fewer address bitsare used as block offset. At the

same time, the page directory table is expanded to hold more GT-PDEs. More address bits are

used to locate the GT-PDE in the page directory table.

73

GT-PDE Mode B-block Size Page Directory Table SizeRetired Page Threshold

4MB-page 128KB 4KB 1.6%

2MB-page 64KB 8KB 3.1%

1MB-page 32KB 16KB 6.1%

Table 8: Parameters of GT-PDEs with different B-block sizes.

5.4.4 Mixing Traditional Pages and Superpages

When GT-PDE is enabled, a page directory table can store both 4KB-page PDEs and GT-PDEs at

the same time. Each 4KB-page PDE has the base address that points to the page table of PTEs.

Each PTE will further point to each mapped 4KB pages. Each GT-PDE directly points to the

physical base address of the mapped memory slice. 4KB-page PDEs need zero padding to fill the

unused space if the page directory table is expanded. Figure42 shows how to decode addresses

using GT-PDE for various B-block sizes (see explanations below). When GT-PDE is enabled, the

page directory table is accessed at aligned 16-byte granularity. Similar to a traditional 2MB-page

PDE, the 7th bit of the accessed 16-byte is utilized to determine whether a PDE is a 4KB-page PDE

or a GT-PDE. If the 7th bit is zero, the PDE should be decoded asa 4KB-page PDEs, otherwise

the PDE should be decoded as a GT-PDE.

When B-block size is 128KB, every 16 bytes of the page directory table can store either two

4KB-page PDEs or one GT-PDE. There is no padding needed. When B-block size is 64KB, the

size of the page directory table is doubled. To ensure 4KB-page PDEs are evenly distributed in the

page directory table, each 4KB-page PDE needs to be padded with an 8-byte zero padding. When

B-block size is 32KB, each 4KB-page PDE needs to be padded with a 24-byte zero padding. The

storage overhead of the padding is small because the dominant storage cost of 4KB-page PDEs

comes from their PTEs. When B-block size is 32KB, if the first access of a 4KB-page PDE points

to the bottom-half 16 bytes, which are the zero padding, a second access to the top-half 16 bytes is

needed. Similar to the storage cost, the performance overhead of the extra access is small because

the dominant address translation overhead is from accessing PTEs.

74

0

7

0

1

Block Selection Bitmap

0

Zero Padding Block Selection Bitmap

Zero Padding

Zero Padding

1

Block Selection Bitmap

GT-PDE

B-block Size = 128KB

7
4KB-page PDE

0

Zero Padding

1

Block Selection Bitmap
B-block Size = 64KB

B-block Size = 32KB

1

63 0 63 0

Figure 42: Decoding GT-PDE.

75

BAV0

Physical Memory

BAV1
Memory Chunk 1

∙∙∙

∙∙∙

BAVM

Slice 0

Slice M

(b) Construction of P-GT-PDEs

(a) Paired GT-PDE (P-GT-PDE)

Physical Page Base

Address
Available

63 5152 12

N

X

62

AVL

11 9 8 0

G 1 D A

P

C

D

P

W

T

U

/

S

R

/

W

P

Block Selection Bitmap

127 64

21 20

P

A

T

13

Offset-A Offset-B

27 26

P-GT-PDEs

Memory Chunk 0

(128 MB)

Memory Chunk N

MatchingSlice 1

14

0

6 5 4 3 2 17

Figure 43: P-GT-PDE and its construction.

76

5.4.5 Compressing GT-PDEs

Recent research showed that TLB entries with similar contents can be coalesced to store more

address translations in the TLB [42, 41]. Similarly, it is possible to halve the size of the page

directory table by coalescing every two adjacent GT-PDEs. Figure43(a) shows a Paired GT-PDE

(P-GT-PDE) format to support GT-PDE coalescing. To coalesce two GT-PDEs with P-GT-PDE,

two GT-PDEs use memory slices in a smaller range (128MB). Onlythe low 6 bits of physical page

base address are different for the two slices. Also, the two GT-PDEs need to have the same block

selection bitmap. Therefore, the low 6 bits of physical pagebase address of the second GT-PDE

can be stored in the unused field (bit 15-20) of the first GT-PDEto form a P-GT-PDE. As shown

in Figure43(a), when a P-GT-PDE is accessed, it is simple to restore the coalesced GT-PDEs by

masking the Offset-B field as zeros and overriding the Offset-A field with the value of the Offset-B

field.

Figure43(b) shows the matching process to construct P-GT-PDEs. First, the physical memory

is divided into multiple aligned 128MB memory chunks. Each chunk is further divided into mem-

ory slices. Based on the distribution of retired pages, each slice has a 64-bit Block Availability

Vector (BAV), which indicates which B-blocks of the slices can be used in the P-GT-PDE map-

ping. If a B-block is usable, the corresponding bit in BAV is set to 1, otherwise it is set to 0. A

matching algorithm finds memory slices that should be paired.

Algorithm 5.1 is my matching algorithm to find GT-PDE pairs to construct P-GT-PDEs. First,

for each memory chunk, a BAV can be constructed for each memory slice. A 128MB memory

chunk has 64 2MB-size slices or 32 4MB-size slices. Then, BAVs are sorted based on the number

of usable B-blocks in ascending order. The algorithm sequentially scans the remaining BAVs to

find two unprocessed BAVs that can be paired using the bitwise-AND. If the result has at least 32

bits set, the slices can share a valid block selection bitmap. Matching continues until there are no

more unprocessed BAVs. A special case is a memory slice whichdoes not have any retired page,

whose top half and bottom half slices can beSelf-Paired. For a Self-Paired P-GT-PDE, the block

selection bitmap is all ones.

Because the matching algorithm is done locally for each 128MBmemory chunk, the time

complexity of the algorithm is proportional to memory capacity. I tested my serial version of the

77

Algorithm 5.1 Construction of P-GT-PDEs in a Memory Chunk
Parameters:
B0...BN : a group of BAVs

Initialize the state of each BAV toUnprocessed.
Sort BAVs based on the number of usable B-blocks of each BAV in ascendant order.
Any BAVs with all B-blocks usable are marked asSelf-Paired.
while the number ofunprocessedBAVs ≥ 2 do

Scan the BAV list to find the firstUnprocessedBAV Bi.
for each remainingunprocessedBAV Bj do

Bmerged = Bi bitwise ANDBj .
if the number of usable B-blocks ofBmerged ≥ 32 then

Record(Bi, Bj) as a valid P-GT-PDE.
MarkBi andBj asPaired.
Go to find next unprocessed BAVBi to process.

end if
end for
MarkBi asDiscarded.

end while

algorithm on a 2.8GHz Intel Xeon E5-2680v2 processor. It takes less than 0.1 second to find all

BAV pairs for 128GB memory.

5.4.6 Hardware Implementation

To support GTSM, three hardware changes are introduced. First, a new 64-bit Gap-Tolerant Page

Table Control Register (GTPTCR) is used to manage the parametersof GTSM. Second, the hard-

ware page walker is extended to support loading missed TLB entries from GT-PDEs. Third, the

PDE cache in the MMU is extended to hold 16-byte GT-PDEs. Next, we describe these hardware

changes in detail.

As shown in Figure44(a), GTPTCR has three fields: GT, P and BS. GT indicates whether

GTSM is enabled. The page table of a process can use both 4KB-page PDE and traditional 2MB-

page PDE. Alternatively, the page table of a process can use both 4KB-page PDE and GT-PDE. To

avoid adding an extra flag in the PDE, the page table of a process cannot use both traditional 2MB-

page PDE and GT-PDE. The P field indicates whether P-GT-PDE format is used. The BS field

indicates the B-block size. If BS isn, the corresponding B-block size is2n × 4KB. The remaining

unused bits in GTPTCR are reserved for future extension. Table 9 shows the PDE modes that are

78

defined by the GTPTCR.

GT P BS B-block Size PDE Mode

0 0 0 - 2MB-page PDE

1 0 3 32KB 1MB-page GT-PDE

1 0 4 64KB 2MB-page GT-PDE

1 0 5 128KB 4MB-page GT-PDE

1 1 3 32KB 2MB-page P-GT-PDE

1 1 4 64KB 4MB-page P-GT-PDE

Table 9: List of all PDE modes in GTPTCR.

When a GT-PDE/P-GT-PDE is accessed, the hardware page table walker needs to translate the

block index to a bitmap offset using the block selection bitmap. As shown in Figure44(b), each

PDE cache entry needs an extra 15-byte storage to store the block selection bitmap (8 bytes) and

byte-granularity prefix sums (7 bytes). When a GT-PDE/P-GT-PDE is loaded into a PDE cache

entry, byte-granularity prefix sums are calculated and cached to reduce translation latency. As

shown in Figure44(b), byte-granularity prefix sum,Si, is the accumulated number of 1s of the

first i + 1 bytes of the block selection bitmap. Similar bit-counting logic is already implemented

in modern processors and can be reused to reduce hardware implementation cost. For example,

x86-64 POPCNT instruction counts the number of 1’s of a 64-bitregister in 3 cycles.S7, which

is the number of 1s of the whole block selection bitmap, is notstored because it is never used in

address translation.

For each address translation using GT-PDE/P-GT-PDE, the byte-granularity prefix sums are

compared with the value ofblockindex. The(i+ 1)th byte of the block selection bitmap contains

the matched bit position ifSi > blockindex andSi−1 ≤ blockindex. After the matched byte is

determined, bit-granularity prefix sums are calculated foreach bit position of the matched byte.

The eight bit-granularity prefix sums are compared with the value ofblockindex − Si−1 + 1, the

bit position of the matched bit-granularity prefix sum is thetranslated bitmap offset. Also, address

translation using the block selection bitmap can be done in parallel with other operations that are

needed to fill a TLB miss (e.g., validating the access rights of the superpage). I assume that loading

79

0 BS

(a) Gap-Tolerant Page Table Control Register (GTPTCR)

63 7 2 0

G

T
P

18

(b) PDE Cache Entry to support GT-PDE/P-GT-PDE

Virtual Address

Tag
PDE

Block Selection Bitmap

S6 S5 S4 S3 S2 S1 S0

Figure 44: Hardware implementation of GT-PDE.

a TLB entry from a GT-PDE takes an three more cycles than a traditional PDE. I also carried out a

sensitivity study on this penalty (see Section5.6).

In this work, I assume that the baseline processor has a 32-entry PDE cache to store recently-

accessed PDEs [3, 6]. The total storage overhead to support GT-PDE is 488 bytes:

8 bytes (GTPTCR) + 32× 15 bytes (PDE cache entries).

To minimize the changes to the MMU, my design does not change the TLB hierarchy. The

hardware page table walker is enhanced to support GTSM. When address translation is completed,

a 4KB TLB entry is inserted into the TLB hierarchy for the translated address. Early x86-64

processors have also used a similar method to support traditional superpages. Alternatively, the

TLB hierarchy can be enhanced to provide native support for GT-PDE.

5.4.7 Software Support

To enable GTSM, the OS needs to support functions to 1) configure GTPTCR; 2) determine

whether to use traditional or GT-PDE superpages based on thesetting of GTPTCR; 3) track mem-

ory slices that can be mapped as GTSM superpages; and, 4) install and release GTSM superpages.

To track memory slices that can be mapped as GT-PDE superpages, a BAV array can be used to

store the usability information of B-blocks. Each memory slice has a dedicated 64-bit BAV. When

80

the B-block size is 128KB, the memory storage cost of the BAV array is 128KB for 128GB main

memory. If the B-block size is halved, the memory storage costof the BAV array will be doubled.

When the OS boots, it initializes the BAV array using a fault map of pages with errors. The

fault map can be either stored in a permanent storage or constructed with memory built-in self-test

(mBIST) during boot. The OS needs to keep the BAV array updatedby using information from

the kernel physical page allocator (e.g., Linux Buddy Allocator). Once a memory page of a B-

block is allocated, the corresponding bit of the BAV needs tobe set to 0. Once all the memory

pages of a B-block are freed, the corresponding bit of the BAV needs to be set to 1. A memory

slice can be used for GT-PDE memory allocation if more than half of its B-blocks are usable. To

avoid scanning the BAV array for each GT-PDE memory allocation, all BAVs that can be used for

GT-PDE allocations can be maintained in a dedicated list.

Unlike GT-PDE, P-GT-PDE should be used only for processes with very large memory foot-

prints, and compressing GT-PDEs can further reduce TLB misspenalty. Because the matching

algorithm described in Section5.4.5needs to be applied to the BAV array to find BAVs that can be

paired, it is more expensive to make memory allocation with P-GT-PDE than GT-PDE. To utilize

P-GT-PDE, physical memory should be allocated at the early stage of the process lifetime and

released when the process is completed.

In this work, I assume that all processes use the same B-block size. To support per-process

B-block size, the OS needs to track BAVs at multiple granularities.

5.5 EVALUATION ENVIRONMENT

5.5.1 Configuration

I use PTLsim [66], a cycle-accurate simulator, for performance evaluation. The simulation param-

eters are detailed in Table10. The CPU is configured as a 2GHz out-of-order processor core with

a 512KB L2 cache and a 2MB L3 cache slice. After L3 cache, thereis a 256MB DRAM cache

(32MB quota per core) before the PCM main memory [44]. Main memory capacity is 128GB

PCM with 80ns access latency.

81

To evaluate different page table designs, I extended PTLsimwith a TLB performance model.

The L1 DTLB has 64 entries for 4KB pages and 32 entries for 2MB pages. The L1 ITLB has 64

entries for 4KB pages. The unified L2 TLB has 512 entries for both 4KB and 2MB pages. L1 TLB

miss penalty is 7 cycles if it hits in L2 TLB.

Besides the two-level TLB, a MMU cache [3] is modeled. The MMU cache has 32 PDE/GT-

PDE cache entries, 32 PDPE cache entries and 2 PML4E cache entries. Although the number of

entries in the PDPE is larger than usual, I increased it to reduce TLB miss penalty for workloads

with large memory footprints, as suggested in previous work[3, 6]. The MMU cache is indexed by

virtual address and is concurrently looked up with L2 TLB [3]. I assume 5 cycles for the hardware

page walker to access a PTE/PDE/PDPE/PML4E not including the cycles to load the entry from

the cache/memory hierarchy. I assume that it takes an extra 3cycles to access a GT-PDE due to

the address translation latency using the block selection bitmap. The hardware page walker is not

speculative (all configurations).

Since the B-block size is larger than a traditional page of 4KB(I experimented with 32KB,

64KB and 128KB), the selection of B-blocks in a memory slice hasnegligible impact on perfor-

mance. For L1 and L2 cache, if a virtual page is mapped to different B-blocks, data at a given

virtual address is still mapped to the same cache set. The selection of different B-blocks only

affects the value of cache tags, the cache replacement sequence is kept unchanged. The memory

pages for the page table are pre-allocated to simplify the simulation process. A similar reservation-

based allocation policy has been used to allow MMU cache coalescing [6].

I use a Monte Carlo method to calculate the effective capacityof different GT-PDE/P-GT-PDE

designs with different percentages of retired pages. To reduce the error introduced by the Monte

Carlo method, I modeled randomly-distributed retired pagesin a large physical memory sample

(16PB capacity). I use Intel RdRand instruction [29] to generate different percentages of retired

pages with a uniform random distribution.

5.5.2 Workloads

Since the work studies address translation overhead of virtual memory, only memory-intensive

benchmarks with large memory footprints are considered. I use these applications because they are

82

CPU Core 2GHz, out-of-order, 32KB L1 I/D

L2 Cache 512KB, 8-way, 64-byte line size,

8-cycle latency

L3 Cache 2MB per core, 32-way,

64-byte line size, 20-cycle latency

DRAM Cache 256MB total, 32MB per core, 32-way,

256-byte line size, write-back,

60-cycle (30ns) read latency,

next line sequential prefetcher

L1 DTLB 64-entry 4-way 4KB page

32-entry 4-way 2MB page

L1 ITLB 64-entry 4-way 4KB page

L2 TLB 512-entry 4-way 4KB/2MB page

7-cycle latency

MMU Cache 32-entry 4-way PDE/GT-PDE cache

32-entry 4-way PDPE cache

2-entry PML4E cache

5-cycle PTE/PDE/PDPE/PML4E access

8-cycle GT-PDE access

Main Memory 128GB PCM, 80ns read latency.

Table 10: System settings.

83

becoming prevalent and suffer the most from address translation overhead. I chooseGUPS[18],

Cannealfrom PARSEC [9] and 7 benchmarks from Problem Based Benchmark Suite [55]. GUPS

is a popular benchmark to test random memory access performance. Cannealis a cache-aware

simulated annealing kernel to minimize the routing cost of achip design.Dict is a benchmark to

test performance of batch insertion, deletion and search operations with a dictionary data structure.

BFSruns a breadth first search in a directed graph.SetCoverfinds an approximate solution to the

NP-hard set cover problem.MSTfinds the minimum spanning tree (MST) in an undirected graph.

SPMV is multiplication between a sparse matrix and a dense matrix. Matchingfinds a maximal

matching in an undirected graph.MIS finds a maximal independent set (MIS) in an undirected

graph. With my current simulator, only single-threaded workloads are evaluated. Multi-threaded

workloads should have similar results, given there will be even larger memory requirements by

multiple applications or threads running concurrently. The pressure on the cache and sizes of page

tables tend to be even bigger.

Name Memory Read PKI
TLB Miss PKI Memory Footprint(GB)

4KB 2MB Touched Total

GUPS 17.9 17.9 13.4 4.0 4.1

Canneal 24.4 21.2 2.9 3.7 4.0

dict 23.1 21.4 0.0 0.7 6.5

BFS 93.2 88.1 4.4 1.4 7.4

setCover 60.4 49.4 0.0 0.9 7.8

MST 50.0 43.2 0.0 1.0 13.0

SPMV 128.7 113.5 0.0 1.7 7.3

matching 119.1 109.7 0.0 0.9 6.2

MIS 144.4 124.3 0.0 1.3 7.3

Table 11: Simulated workloads and PKIs.

For the graph benchmarks, I use R-MAT graphs [10] as the input. ForDict, I use an uniform

random distribution as the input. For each workload, I skipped the initialization phase and simu-

lated 2 billion instructions. All benchmarks are 64-bit binaries, compiled with gcc 4.1.2. Table11

84

shows the number of memory reads per 1000 instructions (PKI), TLB Miss PKI after a 512-entry

L2 TLB (both 4KB pages and 2MB pages), and memory footprints of each workload (both the

total footprint and the size of memory touched by the 2B-cyclesimulation I ran). Most workloads

can only touch a small portion of their total memory footprints during the simulation interval. A

512-entry 2MB-page L2 TLB can provide enough memory coverage(1GB). Most workloads have

negligible TLB misses with ideal 2MB superpage.

Since accessing PTEs is a major source of address translation overhead for workloads with

large memory footprints, Figure45 shows the breakdown of PTE accesses based on whether the

PTE is accessed in memory, LLC, or L2 cache. I assume that the L2cache is the fastest cache large

enough to cache PTEs; essentially, caching PTEs in the L1 cache could cause significant adverse

cache pollution and severely harm performance. The breakdown of PTE accesses is an inherent

characteristic of each workload, and is sensitive to the memory footprints of the workloads. The

workloads that I studied can be divided into two categories.The slower page table access category

are those applications that have a large portion (i.e., morethan 10%) of PTE accesses to memory,

given that the access to memory is 7.5 times slower than LLC:GUPS, Canneal, dict andBFS. The

second category are those applications that have faster time to access PTs, with few PTE access to

memory:setCover, MST, SPMV, matchingandMIS.

85

30%

40%

50%

60%

70%

80%

90%

100%

P
T

E
 A

c
c
e

s
s
 B

re
a

k
d

o
w

n
Memory LLC Hit L2 Hit

0%

10%

20%

30%

GUPS Canneal dict BFS setCover MST SPMV matching MIS

P
T

E
 A

c
c
e

s
s
 B

re
a

k
d

o
w

n

Figure 45: PTE access breakdown.

5.6 RESULTS

This section presents simulation results of GT-PDE/P-GT-PDE superpages. I show how perfor-

mance is improved in comparison to traditional 4KB pages. I also showIdeal case, that is, tradi-

tional 2MB superpages with no retired pages (in other words,no errors occur in memory). Tra-

ditional 2MB superpage is only suitable for memory where retired pages are rare. In the figures,

I use GT-PDE-xMB to denotexMB-page GT-PDE. Similarly, I use P-GT-PDE-xMB to denote

xMB-page P-GT-PDE.

5.6.1 TLB Miss Penalty

Since my proposed design does not change the TLB hierarchy, it has the same TLB miss PKI as

the traditional 4KB page baseline. As a superpage table format, GT-PDE does not need to access a

PTE for each page table walk, which significantly reduces theTLB miss penalty. Figure46shows

the average TLB miss penalty of the traditional 4KB page baseline and GT-PDEs. Compared

with Figure45, strong correlation between PTE access breakdown and the reduction of TLB miss

86

113.5

30

40

50

60

70

80

90

100

A
v

g
.

T
LB

 M
is

s
P

e
n

a
lt

y
 (

C
P

U
 C

y
cl

e
)

4KB GT-PDE-1MB GT-PDE-2MB GT-PDE-4MB

0

10

20

30

GUPS Canneal dict BFS setCover MST SPMV matching MIS

A
v

g
.

T
LB

 M
is

s
P

e
n

a
lt

y
 (

C
P

U
 C

y
cl

e
)

Figure 46: Average TLB miss penalty.

penalty is observed. ForGUPS, Canneal, dict andBFS, average TLB miss penalty reduces by 30-

90 CPU cycles because a significant portion of PTEs are accessed from memory for the traditional

4KB page baseline. For the workloads I studied, the average TLB miss penalty of GT-PDE for

1MB, 2MB, and 4MB are all similar because the page tables fit in the same cache level.

5.6.2 Performance

Figure 47 shows IPC improvement over the traditional 4KB page baseline. The graph shows

the improvement for GT-PDE with different superpage sizes and Ideal superpages (i.e., super-

pages with no retired/faulty pages). Similar to Figure46, strong correlation between PTE access

breakdown and IPC performance improvement is observed. ForGUPS, Canneal, BFSanddict,

significant performance improvement (10% to 30%) is observed with GT-PDEs because PTEs are

no longer accessed from memory. ForsetCover, MST, SPMV, matchingandMIS, moderate per-

formance improvement is observed with GT-PDE because theseworkloads access PTEs that are

mostly cached in the L2 and the LLC; the address translation overhead is not significant enough

to cause a large difference in the IPC, which is approximately3% to 8%. MIS has the lowest

87

1.0

1.1

1.2

1.3

1.4

N
o

r
m

a
li

z
e

d
 I

P
C

4KB GT-PDE-1MB GT-PDE-2MB GT-PDE-4MB 2MB (Ideal)

0.8

0.9

GUPS Canneal dict BFS setCover MST SPMV matching MIS geo-mean

Figure 47: IPC normalized to traditional 4KB page baseline.

performance gain (2.9%).MIS has 99% PTE accesses to the L2 cache, and is less sensitive to

address translation overhead. On average, GT-PDE-4MB achieves 95.8% performance of Ideal.

The 4.2% overhead mainly comes from the extra 3 cycles to translate and access GT-PDE entries

from the cache hierarchy. For the workloads that I studied, the IPC performance of GT-PDE for

1MB, 2MB, and 4MB are all similar because they use the same address translation procedure and

have similar TLB miss penalty. Due to the same reasons (both fit in the L2 or LLC), even though

the paired schemes (P-GT-PDE, not shown) reduce the page table size by 50%, they have similar

performance as GT-PDE. The performance advantage of a smaller page table size is demonstrated

in Section5.6.4.

In my default configuration, the L2 cache is the highest levelto cache the page table. I also

evaluated the configuration that PTEs can be cached in the L1 cache. For the workloads that I

studied, the performance change is very small (< 0.1%) compared to my default configuration for

the traditional 4KB pages. On the other hand, there is an extra 1% performance gain on average if

GT-PDEs can be cached in the L1 cache instead of only in the L2 cache.

88

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
u

p
e

rp
a

g
e

 P
e

rc
e

n
ta

g
e

2MB Superpage GT-PDE-4MB (128KB) GT-PDE-2MB (64KB)

P-GT-PDE-2MB (32KB) GT-PDE-1MB (32KB) Non-retired Pages

0%

10%

20%

0% 1% 2% 3% 4% 5% 6% 7% 8%

Percentage of Retired Pages

Figure 48: Superpage percentage of different GT-PDEs.

5.6.3 Memory Capacity Used as Superpages

Figure48showssuperpage percentage, that is, the percentage of memory capacity that can be used

as superpages using different page table formats. Using more superpages is beneficial due to the

speedup achieved (recall that superpages do not need to traverse the last level of page tables). Note

that the remaining non-retired memory pages can still be used and mapped using traditional 4KB-

page PDEs. For traditional 2MB superpages, the percentage quickly drops to 0%. For GT-PDEs,

the superpage percentage to utilize GT-PDEs drops to 50% with increased retired pages, because

each memory slice is likely to have at least one retired page.When there is a retired page, only

50% of B-blocks of a memory slice can be used in the GT-PDEs. As shown in the figure, to have

50% superpage percentage, the thresholds of retired pages should be 1.4%, 2.8% and 5.5% for

B-block sizes of 128KB, 64KB and 32KB, respectively. The superpage percentage of P-GT-PDE-

2MB (paired approach) is bounded from below by GT-PDE-2MB and above by GT-PDE-1MB.

Compared to GT-PDE-2MB, the smaller B-block size allows P-GT-PDE-2MB to tolerate more

retired pages while maintaining the same page table size.

89

5.6.4 Sensitivity to Problem Size

Figure49 shows IPC ofGUPSwith different problem sizes and page table formats. I choose to

evaluateGUPSbecause it is a common benchmark in scalability studies, given that its memory

footprint varies with problem size from 64MB to 64GB. As shownin the figure, the performance

of traditional 4KB pages is sensitive to the problem size. When the problem size is increased from

64MB to 8GB or more, IPC reduces by more than 50%. This is due totwo reasons. First, the

limited capacity of the dram cache (256MB) is less effective for very large problem sizes. Second,

the address translation overhead is significantly increased with a larger problem size. On the other

hand, the performance advantage of superpages is significantly increased with lager problem size.

When the problem size is 8GB, the IPC of GT-PDE-4MB superpage is40.9% better than 4KB page.

The performance of GT-PDEs with different B-block sizes shows difference when the problem size

is very large. When the problem size is 64GB, GT-PDE-4MB is 8.7%better than GT-PDE-1MB

because of the smaller size of the page table. Since the majoradvantage of P-GT-PDE is to reduce

the size of the page table, this also implies that P-GT-PDE should only be used for processes with

very large memory footprints.

5.6.5 Sensitivity to GT-PDE Address Translation Latency

Figure50 shows the IPC of GT-PDE-4MB assuming different translationlatencies of GT-PDEs.

All results are normalized to the default 3-cycle extra latency. As shown in the figure, the per-

formance overhead is mostly consistent among the workloadsand is less than 1% if GT-PDE

translation latency is 6 cycles instead of 3 cycles.

5.6.6 Sensitivity to GT-PDE Cache Size

Figure51 shows the IPC improvement of GT-PDE-4MB with a larger PDE cache. The results are

normalized to the 32-entry PDE cache baseline. As shown in the figure, the performance is not

very sensitive to the size of the PDE cache (the range of the Y-axis is quite small); 32 or 64 entries

are enough for the PDE cache. In fact, the maximum improvement of making cache sizes much

larger is less by approximately 2% on average (see last column of the figure).

90

0.4

0.6

0.8

1.0

1.2

N
o

r
m

a
li

z
e

d
 I

P
C

4KB GT-PDE-1MB GT-PDE-2MB GT-PDE-4MB Ideal (2MB)

0.0

0.2

64MB 128MB 256MB 512MB 1GB 2GB 4GB 8GB 16GB 32GB 64GB

Figure 49: IPC with different problem sizes normalized to a problem size of 64MB using traditional

4KB page.

0.94

0.96

0.98

1

1.02

N
o

r
m

a
li

z
e

d
 I

P
C

0 3 6 9 12

0.9

0.92

GUPS Canneal dict BFS setCover MST SPMV matching MIS geo-mean

Figure 50: IPC of GT-PDE-4MB with different translation latencies of GT-PDEs normalized to a

default latency of 3 cycles.

91

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

N
o

r
m

a
li

z
e

d
 I

P
C

32 64 128 256 512

0.96

0.97

Figure 51: IPC of GT-PDE-4MB with different PDE cache sizes normalized to 32-entry PDE

cache.

5.6.7 Comparing to TLB Coalescing

TLB coalescing is a technique which can substantially increase TLB reach by coalescing multiple

adjacent PTEs into a single TLB [42, 41]. Note that for my target workloads, that is, those with

large memory footprints, the gain of TLB coalescing is not assignificant as for smaller applica-

tions.

Figure52 shows the performance comparison between TLB coalescing and GT-PDE. I eval-

uated the configuration that the 512-entry L2 TLB supports 8xand 32x TLB coalescing, which

merges adjacent 8 PTEs and 32 PTEs, respectively. In order toavoid favoring my own scheme,

I assume no extra CPU cycles to load L2 TLB entry with TLB coalescing. As shown in the fig-

ure, the performance gain with TLB coalescing is virtually non-existent because TLB reach is still

limited even with 32x TLB coalescing considering workloadswith large memory footprints. For

address translations that are missed in the TLB, the dominantperformance overhead is from ac-

cessing PTEs. To avoid address translation becoming a performance bottleneck, it is critical to

eliminate PTE accesses by supporting superpages.

92

1.0

1.1

1.2

1.3

1.4

N
o

r
m

a
li

z
e

d
 I

P
C

8x TLB Coalescing 32x TLB Coalescing GT-PDE-4MB Ideal (2MB)

0.8

0.9

GUPS Caneal dict BFS setCover MST SPMV matching MIS geo-mean

Figure 52: IPC of TLB coalescing and GT-PDE normalized to traditional 4KB page baseline.

5.7 CONCLUSION

Superpages are critical for workloads with large memory footprints. Traditional 2MB superpages

are not suitable for memory with retired pages, because a superpage must be mapped to large con-

tiguous physical memory. I proposed gap-tolerant sequential mapping (GTSM) to allow mapping

a superpage to memory with retired pages. I proposed GT-PDE which has a block selection bitmap

to support GTSM. I also proposed P-GT-PDE, a variant of GT-PDE, which can reduce the size of

the page table by 50%.

The proposed scheme is also applies to other memory and not only hybrid memory. When

applied to a DRAM-only system, the performance results are better and are presented in [20].

Because the evaluated DRAM/PCM hybrid memory system in this thesis assumes a faster 256MB

DRAM cache (30ns) than the commodity DRAM (50ns). Another difference is that in this thesis,

I assumes that the L2 cache is 512KB per core which is also larger than the 256KB L2 in [20].

Since the page table is cached in the DRAM cache, the evaluatedDRAM/PCM hybrid memory

system has lower TLB miss penalty than a DRAM-only system. Forexample, the average TLB

93

miss penalty of the GUPS workload is reduced to 113 cycles from 187 cycles. For all workloads,

the average IPC improvement of GT-PDE-4MB over the traditional 4KB page baseline is reduced

to 12.7% from 19.0% . Though the absolute performance gain isless significant for a DRAM/PCM

hybrid memory system than a DRAM-only system, the proposed GT-PDE page table format can

close the performance gap between the 4KB page and the ideal 2MB superpaging (i.e., with no

retired pages) for both main memory configurations. In the evaluated DRAM/PCM hybrid memory

system, the 4MB-page GT-PDE achieves 95.8% of traditional 2MB superpaging, while tolerating

memory faults. In the evaluated DRAM-only system, the 4MB-page GT-PDE achieves 96.8% of

traditional 2MB superpaging.

94

6.0 SUMMARY AND CONCLUSION OF THE THESIS

With cloud computing and the rise of big data, there is an urgent need to build large-capacity

energy-efficient main memory systems. A DRAM/PCM hybrid memory system is a promising

solution to achieve this goal. In my research work, I addressed two challenges that are unique

to hybrid memory systems with non-volatile memory. The firstchallenge is thelimited PCM

write bandwidth, which is a potential performance bottleneck for hybrid memory systems. The

second challenge is thenon-contiguous physical memorydue to retired memory pages. Due to

limited PCM write endurance, some memory pages will inevitably contain uncorrectable errors

and will be retired by the OS. These retired memory pages create unusable “holes” in the physical

memory, which makes it difficult to find enough contiguous memory to form superpages. Without

the support of superpages, workloads will incur significantperformance overhead, specifically for

memory-intensive workloads with large memory footprints and random access patterns. This thesis

proposes three computer architecture techniques to address the above two challenges.

First, this thesis studied the mapping between program databits and PCM cells to improve the

effective write bandwidth of PCM. It characterizes the distribution patterns of modified data bits

inside memory requests: cyclical and cluster patterns. Based on the characterization, I observed an

unbalanced distribution of modified data bits among PCM chipswhich significantly increases PCM

write time and hurts effective write bandwidth. This thesisproposes new XOR-based mapping

functions to evenly distribute modified data bits to PCM cell groups which significantly improves

PCM write throughput. The proposeddouble XOR mapping (D-XOR)reduces PCM write service

time by 45% on average, which increases PCM write throughput by 1.8×. As error correction (re-

dundant bits) is critical for PCM, I also consider the impact of redundancy information in mapping

data and error correction bits to cell groups. To avoid an imbalance distribution of modified bits

between data bits and redundant bits, a bit swap function is proposed to extend D-XOR for PCM

95

with redundant bits. An overall 51% reduction in write service time with D-XOR and swapping

leads to a 12% average IPC improvement over Flip-N-Write for aPCM main memory with ECC.

Second, this thesis studies DRAM compression to hold more modified data in DRAM and

reduce write traffic to PCM. This thesis proposes adelta-compressionscheme that is specifically

designed to compress only modified data for hybrid memory. The proposed delta-compressed

scheme has a much higher compression ratio than traditionalmemory compression schemes. To

improve delta-compression’s efficiency and reduce its overhead, this thesis also proposesselective

and predictive compressionthat avoids unnecessary delta-compression operations. Italso describes

a complete example of how to incorporate delta-compressionin IBM’s MXT memory compression

architecture when used for DRAM cache in a hybrid main memory.For the fourteen different

memory-intensive workloads that I evaluated, the proposedDRAM delta-compression reduces, on

average, the number of PCM writes by 54.3% and improves IPC performance and system energy

consumption by 24.4% and 11.0%, respectively.

Third, this thesis studies a new memory page mapping scheme to construct superpages from

non-contiguous physical memory. The thesis shows that superpages are critical for workloads

with large memory footprints and simply increasing the sizeof 4KB-page TLB is not enough. The

thesis describes a newgap-tolerant sequential mappingthat includes (a) a new page table format,

and (b) an access mechanism to support superpages for non-contiguous physical memory. The

thesis also describes a new page table compression scheme that uses (a) a variant of the new page

table format to further reduce the page table size by half, and (b) a matching algorithm to construct

the compressed page table. In comparison to an ideal memory without any retired physical pages,

the proposed gap-tolerant sequential mapping, with retired pages, achieves nearly 95.8% of the

performance of traditional 2MB superpaging.

There are several possible future research opportunities beyond the work of this thesis. First,

this thesis only evaluates DRAM/PCM hybrid memory systems. There are other promising non-

volatile memory technologies to be used in hybrid memory systems. Resistive Random-access

Memory (ReRAM)utilizes the change of the resistance across a dielectric solid-state material to

represent data. ReRAM shares the same drawbacks as PCM: limitedwrite bandwidth and write

endurance. Similar to PCM, the write service time of ReRAM is affected by the distribution of

modified bits[64]. Additional research is required to identify whether we can apply the proposed

96

techniques in this thesis to DRAM/ReRAM hybrid memory systems.Another promising research

direction is new virtual memory systems for hybrid memory systems. Current virtual memory

systems are only designed for DRAM-only systems. Future hybrid memory systems are expected

to have much larger capacity, and have mechanisms to tolerate memory errors and support efficient

data movement among different types of memories. New efficient virtual memory designs are

needed to address these requirements and support future hybrid memory systems.

97

BIBLIOGRAPHY

[1] Alaa R. Alameldeen and David A. Wood. Adaptive cache compression for high-performance
processors. InProceedings of the 31st Annual International Symposium on Computer Archi-
tecture, ISCA ’04, Jun 2004.

[2] Alaa R. Alameldeen and David A. Wood. Frequent pattern compression: A significance-
based compression scheme for l2 caches. Technical report, University of Wisconsin-Madison,
2004.

[3] Thomas W. Barr, Alan L. Cox, and Scott Rixner. Translation caching: Skip, don’t walk
(the page table). InProceedings of the 37th Annual International Symposium on Computer
Architecture, ISCA ’10, 2010.

[4] Thomas W. Barr, Alan L. Cox, and Scott Rixner. Spectlb: A mechanism for speculative
address translation. InProceedings of the 38th Annual International Symposium on Computer
Architecture, ISCA ’11, 2011.

[5] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M. Swift. Effi-
cient virtual memory for big memory servers. InProceedings of the 40th Annual International
Symposium on Computer Architecture, ISCA ’13, 2013.

[6] Abhishek Bhattacharjee. Large-reach memory managementunit caches. InProceedings
of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-46,
2013.

[7] Abhishek Bhattacharjee, Daniel Lustig, and Margaret Martonosi. Shared last-level tlbs for
chip multiprocessors. InProceedings of the IEEE 17th International Symposium on High
Performance Computer Architecture, HPCA ’11, 2011.

[8] Abhishek Bhattacharjee and Margaret Martonosi. Inter-core cooperative tlb for chip multi-
processors. InProceedings of the Fifteenth Edition of ASPLOS on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XV, 2010.

[9] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, andKai Li. The parsec benchmark
suite: Characterization and architectural implications. In Proceedings of the 17th Interna-
tional Conference on Parallel Architectures and CompilationTechniques, PACT ’08, 2008.

98

[10] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A recursive model for
graph mining. InProceedings of the Fourth SIAM International Conference on Data Mining
(ICDM), 2004.

[11] Shimin Chen, Phillip B. Gibbons, and Suman Nath. Rethinking database algorithms for phase
change memory. InCIDR’11: 5th Biennial Conference on Innovative Data Systems Research,
2011.

[12] Sangyeun Cho and Hyunjin Lee. Flip-n-write: A simple deterministic technique to im-
prove pram write performance, energy and endurance. InProceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-42, 2009.

[13] Youngdon Choi, Ickhyun Song, Mu-Hui Park, Hoeju Chung, Sanghoan Chang, Beakhyoung
Cho, Jinyoung Kim, Younghoon Oh, Duckmin Kwon, Jung Sunwoo, Junho Shin, Yoohwan
Rho, Changsoo Lee, Min Gu Kang, Jaeyun Lee, Yongjin Kwon, Soehee Kim, Jaehwan Kim,
Yong-Jun Lee, Qi Wang, Sooho Cha, Sujin Ahn, H. Horii, JaewookLee, Kisung Kim, Han-
sung Joo, Kwangjin Lee, Yeong-Taek Lee, Jeihwan Yoo, and G. Jeong. A 20nm 1.8v 8gb
pram with 40mb/s program bandwidth. InSolid-State Circuits Conference Digest of Techni-
cal Papers (ISSCC), 2012 IEEE International, Feb 2012.

[14] CPU2006. Spec cpu2006: http://www.spec.org/cpu2006/docs/readme1st.html, 2011.

[15] R. Das, A.K. Mishra, C. Nicopoulos, Dongkook Park, V. Narayanan, R. Iyer, M.S. Yousif,
and C.R. Das. Performance and power optimization through datacompression in network-
on-chip architectures. InProceedings of the IEEE 14th International Symposium on High
Performance Computer Architecture, HPCA ’08, Feb 2008.

[16] Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte, and Onur Mutlu. Memory
power management via dynamic voltage/frequency scaling. In Proceedings of the 8th ACM
international conference on Autonomic computing, ICAC ’11, 2011.

[17] T. J. Dell. A white paper on the benefits of chipkill-correct ecc for pc server main memory.,
1997. IBM Microelectronics Division.

[18] J. Dongarra and P. Luszczek. Introduction to the hpc challenge benchmark suite., 2005.

[19] Fred Douglis. The compression cache: Using on-line compression to extend physical mem-
ory. In Proceedings of the 1993 Winter USENIX Conference, 1993.

[20] Yu Du, Miao Zhou, B.R. Childers, D. Mosse, and R. Melhem. Supporting superpages in
non-contiguous physical memory. InProceedings of the IEEE 21st International Symposium
on High Performance Computer Architecture, HPCA ’15, Feb 2015.

[21] Magnus Ekman and Per Stenstrom. A robust main-memory compression scheme. InPro-
ceedings of the 32nd Annual International Symposium on Computer Architecture, ISCA ’05,
2005.

99

[22] Lee et al. Nonvolatile memory device and related methods of operation, 2011. U. S. Patent
7,876,609 B2.

[23] Alexandre P. Ferreira, Miao Zhou, Santiago Bock, Bruce Childers, Rami Melhem, and Daniel
Mosśe. Increasing pcm main memory lifetime. InProceedings of the Conference on Design,
Automation and Test in Europe, DATE ’10, 2010.

[24] P. Franaszek, J. Robinson, and J. Thomas. Parallel compression with cooperative dictionary
construction. InProceedings of the Conference on Data Compression, DCC ’96, Mar/Apr
1996.

[25] Narayanan Ganapathy and Curt Schimmel. General purposeoperating system support for
multiple page sizes. InProceedings of the Annual Conference on USENIX Annual Technical
Conference, ATEC ’98, 1998.

[26] Tiejun Gao, Karin Strauss, Stephen M. Blackburn, Kathryn S. McKinley, Doug Burger, and
James Larus. Using managed runtime systems to tolerate holes in wearable memories. In
Proceedings of the 34th ACM SIGPLAN Conference on ProgrammingLanguage Design and
Implementation, PLDI ’13, 2013.

[27] M. Y. Hsiao. A class of optimal minimum odd-weight-column sec-ded codes.IBM Journal
of Research and Development, Jul 1970.

[28] Andy A. Hwang, Ioan A. Stefanovici, and Bianca Schroeder. Cosmic rays don’t strike twice:
Understanding the nature of dram errors and the implications for system design. InProceed-
ings of the Seventeenth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVII, 2012.

[29] Intel. Intel 64 and ia-32 architectures developer’s manual., 1997.

[30] Intel. The intel xeon processor e7 v2 family, 2014. www.intel.com.

[31] Engin Ipek, Jeremy Condit, Edmund B. Nightingale, Doug Burger, and Thomas Moscibroda.
Dynamically replicated memory: Building reliable systems from nanoscale resistive memo-
ries. InProceedings of the Fifteenth Edition of ASPLOS on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XV, 2010.

[32] Lei Jiang, Yu Du, Youtao Zhang, B.R. Childers, and Jun Yang.Lls: Cooperative integration
of wear-leveling and salvaging for pcm main memory. InDependable Systems Networks
(DSN), Jun 2011.

[33] I.S. Kim, S.L. Cho, D.H. Im, E.H. Cho, D.H. Kim, G.H. Oh, D.H. Ahn, S.O. Park, S.W. Nam,
J.T. Moon, and C.H. Chung. High performance pram cell scalableto sub-20nm technology
with below 4f2 cell size, extendable to dram applications. In VLSI Technology (VLSIT), 2010
Symposium on, Jun 2010.

100

[34] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change
memory as a scalable dram alternative. InProceedings of the 36th Annual International
Symposium on Computer Architecture, ISCA ’09, 2009.

[35] Kwang-Jin Lee, Beak-Hyung Cho, Woo-Yeong Cho, Sangbeom Kang, Byung-Gil Choi,
Hyung-Rok Oh, Chang-Soo Lee, Hye-Jin Kim, Joon-Min Park, Qi Wang, Mu-Hui Park, Yu-
Hwan Ro, Joon-Yong Choi, Ki-Sung Kim, Young-Ran Kim, In-Cheol Shin, Ki-Won Lim,
Ho-Keun Cho, Chang-Han Choi, Won-Ryul Chung, Du-Eung Kim, Kwang-Suk Yu, Gi-Tae
Jeong, Hong-Sik Jeong, Choong-Keun Kwak, Chang-Hyun Kim, andKinam Kim. A 90nm
1.8v 512mb diode-switch pram with 266mb/s read throughput.In International Solid-State
Circuits Conference, 2007. ISSCC 2007, Feb 2007.

[36] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav
Hållberg, Johan Ḧogberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner. Simics:
A full system simulation platform.Computer, Feb 2002.

[37] Jeffrey C. Mogul, Eduardo Argollo, Mehul Shah, and PaoloFaraboschi. Operating system
support for nvm+dram hybrid main memory. InProceedings of the 12th conference on Hot
topics in operating systems, HotOS’09, 2009.

[38] Prashant J. Nair, Dae Hyun Kim, and Moinuddin K. Qureshi. Archshield: architectural frame-
work for assisting dram scaling by tolerating high error rates. InProceedings of the 40th
Annual International Symposium on Computer Architecture, ISCA ’13, 2013.

[39] Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. Practical, transparent operating
system support for superpages.SIGOPS Operating System Review, 36(SI), 2002.

[40] Olga Pearce, Todd Gamblin, Bronis R. de Supinski, Martin Schulz, and Nancy M. Amato.
Quantifying the effectiveness of load balance algorithms.In Proceedings of the 26th ACM
International Conference on Supercomputing, ICS ’12, Jun 2012.

[41] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and Gabriel H. Loh. Increasing tlb reach
by exploiting clustering in page translations. InProceedings of the IEEE 20th International
Symposium on High Performance Computer Architecture, HPCA ’14, 2014.

[42] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, andAbhishek Bhattacharjee. Colt:
Coalesced large-reach tlbs. InProceedings of the 45th Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO-45, 2012.

[43] Moinuddin K. Qureshi. Pay-as-you-go: low-overhead hard-error correction for phase change
memories. InProceedings of the 44th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO-44, 2011.

[44] Moinuddin K. Qureshi, Michele M. Franceschini, Luis A.Lastras-Montãno, and John P.
Karidis. Morphable memory system: a robust architecture for exploiting multi-level phase
change memories. InProceedings of the 37th Annual International Symposium on Computer
Architecture, ISCA ’10, 2010.

101

[45] Moinuddin K. Qureshi, Michele M. Franceschini, and Luis A. Lastras-Monta no. Improv-
ing read performance of phase change memories via write cancellation and write pausing.
In Proceedings of the IEEE 16th International Symposium on High Performance Computer
Architecture, HPCA ’10, Jan 2010.

[46] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, SimonC. Steely, and Joel Emer. Adaptive
insertion policies for high performance caching. InProceedings of the 34th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’07, 2007.

[47] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srinivasan, Luis
Lastras, and Bulent Abali. Enhancing lifetime and security of pcm-based main memory
with start-gap wear leveling. InProceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-42, 2009.

[48] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable high perfor-
mance main memory system using phase-change memory technology. InProceedings of the
36th Annual International Symposium on Computer Architecture, ISCA ’09, 2009.

[49] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable high perfor-
mance main memory system using phase-change memory technology. InProceedings of the
36th Annual International Symposium on Computer Architecture, ISCA ’09, 2009.

[50] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page placement in hybrid memory
systems. InProceedings of the International Conference on Supercomputing, ICS ’11, 2011.

[51] Samsung. Greening ofthe data center: How green memory and ssds impact roi, 2011.
www.samsung.com.

[52] Stuart Schechter, Gabriel H. Loh, Karin Straus, and Doug Burger. Use ecp, not ecc, for hard
failures in resistive memories. InProceedings of the 37th Annual International Symposium
on Computer Architecture, ISCA ’10, 2010.

[53] Bianca Schroeder, Eduardo Pinheiro, and Wolf-DietrichWeber. Dram errors in the wild:
A large-scale field study. InProceedings of the Eleventh International Joint Conferenceon
Measurement and Modeling of Computer Systems, SIGMETRICS ’09, 2009.

[54] Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee. Security refresh: prevent malicious
wear-out and increase durability for phase-change memory with dynamically randomized
address mapping. InProceedings of the 37th Annual International Symposium on Computer
Architecture, ISCA ’10, 2010.

[55] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, PhillipB. Gibbons, Aapo Kyrola, Har-
sha Vardhan Simhadri, and Kanat Tangwongsan. Brief announcement: The problem based
benchmark suite. InProceedings of the Twenty-fourth Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures, SPAA ’12, 2012.

102

[56] B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni, J. A. Van Norstrand, B. J.
Ronchetti, J. Stuecheli, J. Leenstra, G. L. Guthrie, D. Q. Nguyen, B. Blaner, C. F. Marino,
E. Retter, and P. Williams. Ibm power7 multicore server processor.IBM Journal of Research
and Development, May 2011.

[57] Michael Sporer. The power demands of data centers require memory innovations, 2011.
www.crucial.com.

[58] Shekhar Srikantaiah and Mahmut Kandemir. Synergistictlbs for high performance address
translation in chip multiprocessors. InProceedings of the 43rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-43, 2010.

[59] Torsten Suel and Nasir Memon. Algorithms for delta compression and remote file synchro-
nization. InLossless Compression Handbook, 2002.

[60] Madhusudhan Talluri, Shing Kong, Mark D. Hill, and David A. Patterson. Tradeoffs in sup-
porting two page sizes. InProceedings of the 19th Annual International Symposium on Com-
puter Architecture, ISCA ’92, 1992.

[61] Dong Tang, Peter Carruthers, Zuheir Totari, and MichaelW. Shapiro. Assessment of the
effect of memory page retirement on system ras against hardware faults. InProceedings of
the International Conference on Dependable Systems and Networks, DSN ’06, 2006.

[62] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz,T. B. Smith, M. E. Wazlowski,
and P. M. Bland. Ibm memory expansion technology (mxt).IBM J. Res. Dev., 2001.

[63] Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova, Yoav Etsion, Alex Ramirez, Avi
Mendelson, Nacho Navarro, Adrian Cristal, and Osman S. Unsal. Didi: Mitigating the per-
formance impact of tlb shootdowns using a shared tlb directory. In Proceedings of the 2011
International Conference on Parallel Architectures and Compilation Techniques, PACT ’11,
2011.

[64] Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev Balasubramonian, Tao Zhang, Shi-
meng Yu, and Yuan Xie. Overcoming the challenges of crossbarresistive memory archi-
tectures. InProceedings of the IEEE 21st International Symposium on High Performance
Computer Architecture, HPCA ’15, Feb 2015.

[65] Doe Hyun Yoon, Naveen Muralimanohar, Jichuan Chang, Parthasarathy Ranganathan, Nor-
man P. Jouppi, and Mattan Erez. Free-p: Protecting non-volatile memory against both hard
and soft errors. InProceedings of the IEEE 17th International Symposium on High Perfor-
mance Computer Architecture, HPCA ’11, 2011.

[66] Matt T. Yourst. Ptlsim: A cycle accurate full system x86-64 microarchitectural simulator. In
Performance Analysis of Systems Software, 2007. ISPASS 2007. IEEE International Sympo-
sium on, 2007.

103

[67] Jianhui Yue and Yifeng Zhu. Accelerating write by exploiting pcm asymmetries. InProceed-
ings of the IEEE 19th International Symposium on High Performance Computer Architecture,
HPCA ’13, Feb 2013.

[68] Lixin Zhang, Evan Speight, Ram Rajamony, and Jiang Lin. Enigma: Architectural and op-
erating system support for reducing the impact of address translation. InProceedings of the
24th ACM International Conference on Supercomputing, ICS ’10, 2010.

[69] Wangyuan Zhang and Tao Li. Exploring phase change memory and 3d die-stacking for
power/thermal friendly, fast and durable memory architectures. InProceedings of the 2009
18th International Conference on Parallel Architectures and Compilation Techniques, PACT
’09, 2009.

[70] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy efficient main mem-
ory using phase change memory technology. InProceedings of the 36th Annual International
Symposium on Computer Architecture, ISCA ’09, 2009.

104

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. System settings.
	2. Simulated workloads and their request rates.
	3. Reduction of write service time for different SET-to-RESET ratios.
	4. System settings.
	5. Benchmarks with scaled problem sizes.
	6. Simulated workloads.
	7. Page table sizes for different workload memory footprints and page sizes.
	8. Parameters of GT-PDEs with different B-block sizes.
	9. List of all PDE modes in GTPTCR.
	10. System settings.
	11. Simulated workloads and PKIs.

	LIST OF FIGURES
	1. Division program operations in PCM devices.
	2. VA-to-PA translation in the x86-64 architecture.
	3. An example of the mappings between data bits and PCM cells.
	4. Bit mapping function.
	5. Average bit flip rate at different bit positions.
	6. Average number of bytes covering 90% of the modified bits
	7. Distribution imbalance of modified bits at different address bits.
	8. XOR mapping function.
	9. XOR mapping functions for different number of cell groups.
	10. D-XOR mapping function.
	11. Flip rate of ECC bits normalized to data bits.
	12. Mapping function for ECC memory swaps between selected data and ECC bits.
	13. Revised intra-line wear leveling.
	14. Average number of modified bits on the critical cell group.
	15. Average write service time of regular data bits.
	16. Average write service time of different numbers of cell groups.
	17. Average write service time of 20 random bit mapping functions.
	18. Comparison to Flip-N-Write.
	19. Average write service time for ECC memory.
	20. IPC improvement relative to H6 for ECC PCM with 64 cell groups.
	21. IPC improvement as the number of cell groups is varied.
	22. Comparison between conventional row shifting and two-level row shifting.
	23. Average write service time for different division program widths.
	24. Compressed DRAM caching in hybrid memory.
	25. An example to illustrate delta-compression.
	26. IBM MXT compression.
	27. FPC-based delta-compression algorithm.
	28. Data layout of an example memory line.
	29. Rules for reading data from compressed hybrid memory.
	30. Compression ratios (original size / compressed size).
	31. PCM writes normalized to RaPP-RW.
	32. IPC normalized to RaPP-RW.
	33. System energy consumption.
	34. Sensitivity analysis of varing PCM write bandwidth on IPC
	35. Speedup with different compressed region capacities.
	36. CPI breakdown with different problem sizes and TLB configurations (GUPS).
	37. Probability of a memory block to be contiguous in memory with retired pages.
	38. Examples of different address mapping schemes.
	39. Gap-tolerant PDE (GT-PDE) format.
	40. Address translation using GT-PDE-4MB.
	41. Probability to construct a valid GT-PDE mapping.
	42. Decoding GT-PDE.
	43. P-GT-PDE and its construction.
	44. Hardware implementation of GT-PDE.
	45. PTE access breakdown.
	46. Average TLB miss penalty.
	47. IPC normalized to traditional 4KB page baseline.
	48. Superpage percentage of different GT-PDEs.
	49. IPC with different problem sizes (GUPS).
	50. IPC of GT-PDE-4MB with different translation latencies of GT-PDEs.
	51. IPC of GT-PDE-4MB with different PDE cache sizes.
	52. IPC of TLB coalescing and GT-PDE normalized to traditional 4KB page baseline.

	LIST OF EQUATIONS
	3.1. Equation (3.1)
	4.1. Equation (4.1)
	4.2. Equation (4.2)

	LIST OF ALGORITHMS
	5.1. Construction of P-GT-PDEs in a Memory Chunk

	1.0 INTRODUCTION
	1.1 Goal
	1.2 Overview of the Proposed Approaches
	1.3 Thesis Organization

	2.0 BACKGROUND AND RELATED WORK
	2.1 Phase Change Memory
	2.2 Virtual Address Translation Overhead and Superpage
	2.3 Related Work
	2.3.1 Phase Change Memory
	2.3.2 Hybrid Main Memory
	2.3.3 Memory Compression
	2.3.4 Memory Error and Page Retirement
	2.3.5 TLB and Superpage

	3.0 BIT REMAPPING FOR BALANCED PCM CELL PROGRAMMING
	3.1 Problem Statement
	3.2 Distribution of Modified Bits
	3.2.1 Distribution Patterns
	3.2.2 Distribution Imbalance of Modified Bits

	3.3 Proposed Solution: Bit Remapping
	3.3.1 XOR Mapping Function
	3.3.2 Support for Multiple Cell Group Sizes
	3.3.3 Support for PCM with Redundant Bits
	3.3.4 Support for Intra-line Wear Leveling
	3.3.5 Hardware Implementation

	3.4 Evaluation Environment
	3.4.1 Configuration
	3.4.2 Workloads

	3.5 Results
	3.5.1 Mapping for Data Bits
	3.5.2 Mapping with Redundant Bits
	3.5.3 Performance
	3.5.4 Intra-line Wear Leveling
	3.5.5 Impact of Division Program Width
	3.5.6 Impact of SET to RESET Ratio

	3.6 Conclusion

	4.0 DELTA-COMPRESSED DRAM CACHING FOR HYBRID MEMORY SYSTEMS
	4.1 Problem Statement
	4.2 Proposed Solution: Delta-compressed DRAM Caching
	4.2.1 Compressed DRAM Caching
	4.2.1.1 Page Classification
	4.2.1.2 DRAM Partition Adjustment
	4.2.1.3 Selective and Predictive Compression

	4.2.2 Delta-compression for Written Data
	4.2.3 IBM MXT Compression for DRAM-only Systems
	4.2.4 Implementation of Delta-compressed DRAM Caching
	4.2.4.1 Hierarchical Compression Metadata
	4.2.4.2 Compressed Data Layout
	4.2.4.3 Memory Read
	4.2.4.4 Memory Write
	4.2.4.5 Cache Replacement Policy
	4.2.4.6 Hardware Cost and Overhead

	4.3 Evaluation Environment
	4.3.1 Configuration
	4.3.2 Workloads

	4.4 Results
	4.4.1 Compression Ratio
	4.4.2 PCM Write
	4.4.3 Performance
	4.4.4 Energy Consumption
	4.4.5 Impact of PCM Write Bandwidth
	4.4.6 Impact of Size of Compressed DRAM Region

	4.5 Conclusion

	5.0 SUPPORTING SUPERPAGES IN NON-CONTIGUOUS PHYSICAL MEMORY
	5.1 Problem Statement
	5.2 Understanding Address Translation Overhead
	5.3 Page Retirement and Memory Fragmentation
	5.4 Proposed Solution: Gap-tolerant Superpage
	5.4.1 Gap-tolerant Sequential Mapping
	5.4.2 Gap-tolerant Page Directory Entry
	5.4.3 Tolerating More Retired Pages
	5.4.4 Mixing Traditional Pages and Superpages
	5.4.5 Compressing GT-PDEs
	5.4.6 Hardware Implementation
	5.4.7 Software Support

	5.5 Evaluation Environment
	5.5.1 Configuration
	5.5.2 Workloads

	5.6 Results
	5.6.1 TLB Miss Penalty
	5.6.2 Performance
	5.6.3 Memory Capacity Used as Superpages
	5.6.4 Sensitivity to Problem Size
	5.6.5 Sensitivity to GT-PDE Address Translation Latency
	5.6.6 Sensitivity to GT-PDE Cache Size
	5.6.7 Comparing to TLB Coalescing

	5.7 Conclusion

	6.0 SUMMARY AND CONCLUSION OF THE THESIS
	BIBLIOGRAPHY

